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SULFUR ACTIVATION AT THE LITTLE BOY-COMET CRITICAL ASSEMBLY: 
A REPLICA OF THE HIROSHIMA BOMB 

George D. Kerr, Juel F. Emery,* and Joseph V. Pace, I I I * * 
Health and Safety Research Division 

Oak Ridge National Laboratory 
Oak Ridge, Tennessee 37831 

ABSTRACT 

Studies have been completed on the activation of sulfur by fast 
neutrons from the L i t t l e Boy-Comet Crit ical Assembly which replicates 
the general features of the Hiroshima bomb. The complex effects of the 
bomb's design and construction on leakage of sulfur-activation neutrons 
were investigated both experimentally and theoretically. Our sulfur-
activation studies were performed as part of a larger program to provide 
benchmark data for testing of methods used in recent source-term calcu-
lations for the Hiroshima bomb. Source neutrons capable of activating 
sulfur play an important role in determining neutron doses in Hiroshima 
at a kilometer or more from the point of explosion. 

INTRODUCTION 

The energy yield of and radiation leakage from the Nagasaki bomb 

are considered to be known to an adequate accuracy from measurements 
1-5 

made during several early test f ir ings. In contrast, the Hiroshima 

bomb was never tested, and the energy yield ( i . e . , total fissions) and 

radiation leakage ( i . e . , source terms for neutrons and gamma rays) have 

been inferred from indirect evidence and theoretical calculations. The 

f i rs t modern calculations of source terms for the Hiroshima and Nagas"Sl<T 

bombs were made in 1975 by Preeg.® His calculations were done using 

available computer codes at Los Alamos National Laboratory (LANL) and 

one-dimensional (spherical) models of the two bombs. A one-dimensional 
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model is a good approximation for the Nagasaki bomb (code named Fat 

Man) which was a spherical piutonium-implosion device.'' However, the 

Hiroshima bomb (code named L i t t l e Boy) was a radically different uranium 

gun-assembly device. I ts design was two-dimensional (cylindrical) and 

the effects of its cylindrical construction were noted in 1945 Japanese 
1-3 

measurements of the activation of sulfur in Hiroshima. Studies at 

the Oak Ridge National Laboratory (ORNL) have indicated that there was a 

blind spot in the radiation leakage through the nose of the Hiroshima 
bomb and that the bomb was t i l ted about 15° to the vertical at the 

3 8 time of explosion. ' 
Source terms for a two-dimensional model of the Hiroshima bomb were 

Q in calculated in 1982 by Whalen and co-workers at LANL ' A and the L i t t l e 

Boy-Comet Crit ical Assembly was constructed to provide benchmark data 
11 12 

for the testing of various calculational methods. ' This replica 

of the Hiroshima bomb has been used to perform three different kinds of 

experiments: (a) cr i t ica l separation experiments to establish an upper 11 12 l imit for the energy yield, ' (b) radiation spectra and dose mea-
13-25 surements for comparison with calculations, and (c) phenomeno-

26 27 logical experiments involving exposures of sulfur, blood samples, 
28 

and Japanese roof t i l es . Source neutrons capable of activating 
32 32 

sulfur by the S(n,p) P reaction play an important role in deter-

mining the neutron doses in Hiroshima at a kilometer or more from the 29 

point of the explosion. 

The source terms for one- and two-dimensional models of the 

Hiroshima bomb have also been calculated at Lawrence Livermore National 

Laboratory (LLNL). Currently, the LLNL and LANL calculations for the 11 12 leakage of sulfur-activation neutrons differ by a factor of two. * 
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The major part of this discrepancy is due to differences in the energy 

yields of the source-term calculations, but 20% of the discrepancy 

results from choices involving cross-section sets and representations. 

The dynamic disassembly of the exploding bomb is not duplicated in the 

experiments with the L i t t l e Boy-Comet Crit ical Assembly. However, the 

cr i t ica l separation experiments will allow the energy yields of the LANL 

and LLNL calculations to be brought together, and the various radiation 

measurements and phenomenological experiments will aid in the choice of 

the best cross-sections and cross-section representations for use in 
12 

f inal source-term calculations for the Hiroshima bomb. 

LITTLE BOY-COMET CRITICAL ASSEMBLY 

The L i t t le Boy-Comet Crit ical Assembly features a highly enriched uranium core surrounded by non-fissile components from a Hiroshima-type 
11 12 

bomb found in storage at Los Alamos. ' These non-fissile compo-

nents consisting primarily of steel were mounted in a nose-up position 
on the Comet Assembly Machine at the Los Alamos Crit ical Assembly 

235 

Faci l i ty . The U core used in the cr i t ical separation experiments 

was fabricated from original Hiroshima bomb drawings and specification 
o n o l 9 ' 3 ' i 

sheets. ' A small er U core, sufficient only for sustained 

operation as a low-power delayed-critical reactor, was used in the 

radiation spectra and dose measurements and the phenomenological experi-

ments. Cr i t ica l i ty and control of the reactor were achieved by means 

of a hydraulic l i f t and precision screw mechanism on the Comet Assembly 

Machine. The only changes made in the general features of the 

Hiroshima-type bomb were the shortening of the gun barrel and the use of 

dummy ini t iators. Shortening the gun barrel allowed a shorter stroke on 
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the hydraulic ram and screw mechanism and contributed to the operational 

safety of the reactor. Use of the dummy init iators also contributed to 

operational safety and did not compromise the various experiments in any 

way.12 

The L i t t l e Boy-Comet Crit ical Assembly is usually operated inside 

Kiva 2, one of three heavy concrete buildings located several hundred 

meters from the centralized control room and office building at the 
13 Los Alamos Crit ical Assembly Faci l i ty . During operations as a 

delayed-critical reactor, the center of the core is about 231 cm above 

floor level in Kiva 2 and 31 cm above the stand on the Comet Assembly 
20 

Machine. The cylindrical steel shell surrounding the core is 71 cm 

in diameter and its top surface extends approximately 60 cm above the 

center of the core. Because of complications from room-scattering, the 

L i t t le Boy-Comet Crit ical Assembly has also been operated in an open 12 13 
area outside Kiva 2. ' An additional stand was used during outside 

operations so that the center of the core was elevated four meters above 

ground level to minimize ground-scattering at detector distances of two 

meters or less. 

We have made sulfur-activation measurements using the L i t t l e Boy-

Comet Crit ical assembly both inside and outside Kiva 2. The reactor 

power levels were monitored primarily by a moderated and uncompensated 

BFg ion chamber having both analog (Brown recorder) and digital (cur-

rent integrator) readouts. Our sulfur-activation data were normalized 

to total fissions in the core as determined by counts on the digital 32 
current integrator and power calibration data supplied by LANL. The 

L i t t le Boy-Comet Crit ical Assembly and the detector locations used in 

our measurements are shown schematically in Fig. 1. 
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Figure 1. Detector locations ( # ) used in ORNL measurements of the 
activation of sulfur by fast neutrons from the L i t t l e Boy-Comet Crit ical 
Assembly. 
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SULFUR-ACTIVATION MEASUREMENTS 

Our sulfur-activation measurements were made with high purity 

sulfur pellets having uniform diameters, thicknesses, and densities of 
-3 32 3.8 cm, 0.95 cm, and 2.0 g cm , respectively. The P formed by 

32 32 
the S(n,p) P reaction has a ha l f - l i fe of 14.3 days and decays by 

the emission of beta particles having a maximum energy of 1.71 MeV. The 

activated sulfur pellets were counted by placing the f l a t side exposed 

toward the reactor on the thin plastic scint i l lator of a beta spec-

trometer. To calibrate the beta spectrometer, we then measured the dis-32 
integration rate of the P radioactivity in crushed and dissolved 

portions from several pellets using a calibrated l iquid-scinti l lat ion 

counter. Due to the combined effects of background in the liquid scin-32 
t i l l a t o r and low P radioactivity in the activated sulfur pellets, 

the calibration of the beta spectrometer was not very precise, and only 

a few useful results were obtained from our f i r s t set of measurements 

made on September 27, 1983 (Table 1). 

A more precise calibration of the beta spectrometer was obtained 
in our second set of measurements by means of Cerenkov radiation count-

32 ing. The P radioactivity was measured by crushing several sulfur 
pellets and by dissolving and diluting a 5-g sample of each sulfur 

pellet to 50 ml. The counted samples were then spiked with a known 
32 

quantity of P using standard addition techniques and recounted to 

establish the Cerenkov radiation counting efficiency. The efficiency is 

zero below 260 keV and increases thereafter with beta particle energy so 

that low backgrounds are achieved in the counting of the high energy-32 beta particles from p. The values which we obtained for relating 
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Table 1. Sulfur activation data from ORNL measurements 
at the L i t t l e Boy-Comet Crit ical Assembly. 

Sulfur Detector I r n t i a l P radioactivity 
p e V e t location n u m b e r dpm/g of S/10 fission RSD (%)a 

Sept. 27, 1983b 

1-6 Surface-90° 594 11.2 
1-7 90° 581 11.3 
1-8 90° 572 11.2 
1-15 200 cm-90° 14.8 19.4 

March 13, 1984c 

2-1 75 cm-90° 93.7 4.8 
2-2 75° 78.0 7.3 
2-3 67.5° 67.3 3.5 
2-4 60° 44.3 3.7 
2-5 45° 14.8 4.8 
2-6 30° 2.51 8.5 
2-7 22.5° 2.34 10.3 
2-8 15° 2.67 10.5 
2-9 0° 2.85 9.7 
2-10 Surface-90° 540 3.3 
2-11 67.5° 112 3.4 
2-12 45° 7.17 3.6 
2-13 22.5° 4.17 4.5 
2-14 0° 5.83 8.2 

May 8 , 1984d 

3-1 200 cm-90° 12.41 3.41 
3-2 90° 13.14 3.48 
3-3 90° 12.88 3.49 
3-4 75 cm-90° 103.8 3.37 
3-5 90° 102.5 3.38 
3-6 90° 101.6 3.37 
3-7 Surface-90° 591.7 3.39 
3-8 90° 588.3 3.39 
3-9 90° 592.7 3.39 

aRelative standard deviation of measured sulfur-activation values, 
h 1 fi 
Two maximum-power operations (2.0 x 10 fissions) inside Kiva 2. 

1 c 
Three maximum-power operations (3.0 x 10 fissions) inside Kiva 2. 

J 

Three maximum-power operations (3.0 x 10 fissions) outside Kiva 2. 
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disintegrations per minute per gram of sulfur (dpm/g of S) to counts per 

minute (cpm) of a sulfur pellet are given in Table 2. In our second 

and third sets of sulfur-activation measurements, the energy gain of 

the beta spectrometer was established very carefully using conversion 
137 

electrons from a Cs source, the spectral region between 160 keV and 

2.0 MeV was integrated, and the background subtracted to obtain the net 

count rate for each sulfur pel let . These count-rate data and the 

weighted mean calibration fartor for the beta spectrometer (Table 2) 32 
were used to estimate the disintegration rates of the P radio-

activity in the sulfur pellets exposed on March 13 and May 8, 1984 

(Table 1). 

The primary purpose of our second set of measurements was to obtain 

data on the angular distribution of the leakage of sulfur-activation 

neutrons from the L i t t l e Boy-Comet Crit ical Assembly (Table 1). Hence, 

we exposed a number of sulfur pellets at the surface and 75 cm from 

the center of the core and at various angles between the nose (0°) and 

waist (90°) as shown in Fig. 1. The results of our measurements at 

angular intervals of 15° and 22.5° are illustrated in Figs. 2 and 3, 

respectively. In the measurements made on an arc at 75 cm from the 

center of the core, we could easily determine the angle of the exposed 

sulfur pellets to within a couple of degrees. However, we encountered 

experimental d i f f icul t ies in determining the angles of sulfur pellets 

exposed at the surface of the assembly. Note, for example, that 

the sulfur pellet exposed at the 75 cm-45° detector location shows a 

greater activation than the sulfur pellet exposed at the surface-45° 

detector location. This anomaly is probably due to a combination of the 

rapidly changing leakage of sulfur-activation neutrons at angles of 
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Table 2. Summary of calibration data for beta spectrometer. 

Sulfur 
pellet 
number 

In i t i a l 
count rate 

(cpm) 

In i t i a l 32P 
radioactivity 
(dpm/g of S) 

Cali bration 
factor 

(dpm/g of S/cpm) 

2-1 166.2 + 3.5%a 284.04 + 5.2%b 1.7090 + 6.3% 

2-10 957.0 + 0.5% 1625.6 + 4.6% 1.6986 + 4.7% 

2-15 64.22 + 2.2% 107.03 + 5.8% 1.6666 + 6.2% 

Weighted mean 1.6927 + 3.2% 

In i t i a l count rate of sulfur pellet and relative standard 
deviation as determined by beta spectr •• ;ter and by extrapolation back 
to time of exposure. 

h W 
In i t ia l P radioactivity and relative standard deviation as 

determined by Cerenkov radiation counting of a crushed and dissolved 
sample of sulfur from each pellet and by extrapolation back to time of 
exposure. 
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Figure 2. Experimental ORNL data on sulfur activation at 75 cm 
from the core and at angular intervals of 15° between the nose (0°) 
and waist (90°) of the reactor (Fig. 1). The data are normalized to 
sulfur activation at the 90° detector location. 
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Figure 3. Experimental ORNL data on sulfur activation at the surface 
and 75 cm from the core and at angular intervals of 22.5° between the nose 
(0°) and waist (90°) of the reactor (Fig. 1). The data are normalized to 
sulfur activation at the 90° detector locations. 



about 45° and the experimental d i f f icul t ies encountered in determining 

the angles for sulfur pellets exposed at the surface of the assembly. 

Only the angle for sulfur pellets exposed at the surface-90° detector 

location could be determined to within a reasonable accuracy of a couple 

of degrees. 

A troublesome aspect of our f i rs t and second set of measurements 

made inside Kiva 2 was the observed difference in the activation of 

sulfur at the surface-90° detector location (Table 1). Hence, the 

purpose of our third set of measurements made outside Kiva 2 was to 

refine the sulfur-activation data taken at the waist (90°) where we 

could accurately determine the angle of the exposed sulfur pellets. 

Note that the results of our third set of measurements at the surface-

90° location are more consistent with the results of our f i rs t set of 

measurements than those of our second set (Table 1). The results of our 

second set of measurements may be a r t i f i c i a l l y low due to backscatter-

ing of low-energy neutrons into the reactor power-level instrumentation 

( i . e . , the moderated and uncompensated BF̂  ion chamber) from close-by 

extraneous equipment as noted in reactor logbook entries for March 13, 

1984. 

The sulfur pellet exposures were normally made at the maximum 

reactor-power level of 170 watts permitted by various operational safety 
18 

considerations. However, we also exposed sulfur pellets at several 

other power levels during our second set of measurements (Table 3). A 

nonlinear response of the reactor power-level instrumentation at higher 

power levels was suggested by sulfur activation and other radiation 27 
measurements made by Straume and Dobson, and they recommended that 

caution should be used when normalizing data obtained at different power 
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Table 3. Data on sulfur activation at varying reactor power levels. 

Sulfur In i t ia l Irradiation Reactor 
pellet count rate time power 
number (cpm) (minutes) (watts) 

2-10 957.0 + 0.5%a 90b 170c 

2-15 64.22 + 2.2% 20 50 

2-16 54.04 + 2.4% 50 17 

2-17 27.59 + 3.6% 90 5 

In i t i a l count rate of sulfur pellet and relative standard devi-
ation as determined by beta spectrometer and by extrapolation back to 
time of exposure. 

^Irradiation time of sulfur pellet exposed at surface-90° de-
tector location as shown in Fig. 1. 

c 10 Reactor power levels based on a value of 3.3 x 10 fissions 
per second per watt and power calibration data provided by LANL. 
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levels. Our sulfur activation data for varying power levels failed to 

show any significant nonlinear response of the reactor instrumentation 

between 5 and 170 watts (Fig. 4). The backscattering of low-energy 

neutrons into the reactor power-level instrumentation from close-

by extraneous equipment may cause normalization problems as noted 

previously. 

Our relative angular-distribution data on sulfur activation by fast 

neutrons from the L i t t l e Boy-Comet Crit ical Assembly can be used with 

confidence (Figs. 2 and 3) because backscattered low-energy neutrons do 
32 32 

not contribute to activation of sulfur by the S(n,p) P thres-

hold reaction. However, comparisons between measurements and calcu-

lations on an absolute basis should be limited to the sulfur-activation 

data from our third set of measurements made in the open area outside 

Kiva 2 (Table 1). 

SULFUR-ACTIVATION CALCULATIONS 

The leakage of fast neutrons from the L i t t l e Boy-Comet Crit ical 

Assembly has been calculated at LANL using Monte Carlo radiation trans-
5 11 port techniques ' ' and ORNL using discrete ordinates transport 

(DOT) techniques.34-36 Wg h a v e u s e d ^ neutron-leakage spectra 
33 34 32 32 from these studies ' and the cross sections for the S(n,p) P 

07 
reaction from the Vitamin-E (ENDF/B-5) Library to calculate the 

32 

expected in i t i a l P radioactivity in the exposed sulfur pellets. The 

results of our calculations are given in Table 4. Neutron transport 

through the cylindrical steel shell surrounding the core causes a severe 

"softening" of the fission neutron spectrum. The average energy of the 235 fast neutrons from fissions in U is about 1 MeV, while the average 
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Figure 4. Experimental ORNL data on sulfur activation for varying 
reactor power levels. The sulfur pellets were exposed at the surface-
90° detector location (Fig. 1). 
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Table 4. Sulfur-activation data obtained by using LANL 
and ORNL calculations of the neutron-leakage spectra 

from the L i t t l e Boy-Comet Crit ical Assembly. 

32 Detector In i t i a l P activity (dpm/g of S/fission) 
Inr^inr i 3 Ratio l 0 C < l w , u n LANL calculation ORNL calculation 

75 cm-90° 7.37 x 10"15 7.64 x 10"15 0.97 

67.5° 5.73 x 10"15 5.03 x 10"15 1.14 

45° 1.10 x 10"15 1.07 x 10"15 1.03 

22.5° 1.50 x 10"16 1.51 x 10"16 0.99 

0° 2.15 x 10"16 1.97 x 10"16 1.09 

200 cm-90° 1.05 x 10*15 9.15 x 10"16 1.15 

67.5° 7.25 x 10"16 6.62 x 10"16 1.10 

45° 2.54 x 10"16 2.41 x 10~16 1.05 

22.5° 4.55 x 10"17 4.27 x 10"17 1.07 

0° 2.13 x 10"17 1.65 x 10"17 1.29 

aSee Fig. 1. 
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energy of the fast neutrons leaking from the L i t t l e Boy-Comet Crit ical 

Assembly is only about 0.3 MeV. Very few of the leakage neutrons have 

energies greater than the effective threshold energy of about 2.5 MeV 
32 32 

for the S(n,p) P reaction, and the statist ical uncertainties 

associated with LANL Monte Carlo calculations of the neutron-leakage 

fluences at energies greater than 2.5 MeV are quite large. These 

statistical uncertainties probably account for most of the observed 

differences in the ratios between the two sets of theoretical sulfur-

activation data in Table 4. 

A couple of comparisons can be made using the experimental and 

theoretical data on sulfur activation in Tables 1 and 4, respectively. 

Because of the low activation of sulfur near the nose (0 and 22.5°) 

of trie L i t t l e Boy-Comet Crit ical Assembly (Table 4), we could not mea-

sure the angular distribution of sulfur-activation neutrons at 200 cm 

from the core (Fig. 1). Hence, reliable experimental data on the an-

gular distribution of sulfur-activation neutrons are only available at 

detector distances of 75 cm. These experimental ORNL data and the theo-

retical ORNL and LANL data are compared on a relative basis in Table 5 

and Fig. 5. With the exception of the data at 22.5°, the agreement 

is quite good (+ 15%). The overall agreement is not as good (+_ 40%) 

when the various ORNL and LANL data at the waist (90°) and the 75- and 

200-cm detector locations are compared on an absolute basis (Table 6). 

Our experimental and theoretical data on sulfur activation may 

contain several systematic errors. The potential systematic errors in 

the experimental data (Table 6) due to either the beta spectrometer 

calibration or power calibration data are probably small compared to 

potential systematic errors in the theoretical da ta .^ For example, 
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Table 5. Comparison of theoretical and experimental data on 
the angular distribution of sulfur-activation neutrons 

from the L i t t l e Boy-Comet Crit ical Assembly. 

Relative sulfur activation 
Detector 
location3 ORNL LANL ORNL 

measurement calculation calculation 

75 cm-90° 1.000b 1.000c 1.000c 

67.5° 0.718 0.777 0.658 

45° 0.158 0.149 0.140 

22.5° 0.025 0.020 0.020 

0° 0.030 0.029 0.026 

aSee Fig. 1. 

^See Table 1 (Measurements on March 13, 1984). 
cSee Table 4. 
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Figure 5. Comparison of measured and calculated data on sulfur 
activation at 75 cm from the core and at angular intervals of 22.5° 
between the nose (0°) and waist (90°) of the reactor (Fig. 1). The 
various data sets are normalized to sulfur activation at the waist 
detector locations. 
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Table 6. Comparison between experimental and theoretical data on 
sulfur activation at the L i t t l e Boy-Comet Critical Assembly. 

32 
Detector In i t ia l P activity Ratio of measurement 
location (dpm/g of S/fission) to calculation 

200 cm-90° 

ORNL measurement13 1.28 x 10"15 

LANL calculation0 1.05 x 10"15 1.22 

ORNL calculation0 9.15 x 10'16 1.40 

75 cm- 90° 

ORNL measurement'3 1.03 x 10"14 

LANL calculation0 7.37 x 1G"15 1.40 

ORNL calculation0 7.64 x 10"15 1.35 

aSee Fig. 1. 

^See Table 1 (Measurements on May 8, 1984). 

°See Table 4. 
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a systematic error as large as 1S% may be embodied in both sets of 

theoretical sulfur-activation data (Table 6) due to uncertainties in 
32 32 

the cross sections for the S(n,p) P reaction. The theoretical 

neutron-leakage data also come from "deep penetration" calculations and 

may contain large uncertainties due to relat ively small uncertainties 

in the cross-section data for the steel shell surrounding the core of 18 

the L i t t l e Boy-Comet Crit ical Assembly. A detailed analysis of 

potential systematic errors in the theoretical neutron-leakage data will 

require the use of experimental data from a variety of radiation spectra 11 17 18 and dose measurements. ' ' The activation of sulfur is relevant 

to questions concerning the leakage of fast neutrons from the L i t t l e 
19 24 25 Boy-Comet Critical Assembly. ' ' 3 

SUMMARY 

Studies of the activation of sulfur have been completed using the 

L i t t l e Boy-Comet Cri t ical Assembly at the Los Alamos Crit ical Faci l i ty 

(Table 1 and Figs. 2 and 3). We have found good agreement between ex-

perimental and theoretical data on the angular distribution of sulfur-

activation neutrons at 75 cm from the core and at various angles between 

the nose (0°) and waist (90°) of the reactor when the comparisons 

were made on a relative basis (Table 5 and Fig. 5). However, the agree-

ment was not as good when comparisons were made at the waist (90°) on 

an absolute basis (Table 6). Our sulfur-activation studies were per-

formed as part of a larger program to provide benchmark data for the 

testing of methods used in recent source-term calculations for the 

Hiroshima bomb. 
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