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Lienard-Wiechert potentials are used to find the electromagnetic field everywhere in

free space resulting from a point charge moving on a helical trajectory. The total power

emitted as synchrotron radiation from a particle on a circular path is calculated. The point

charge results are generalized to the case of a line charge, and formulae are presented

which can easily be evaluated numerically. A useful gradient of 80 MeV/m per kA of

peak driving beam current over a distance of 1 cm is calculated using two 5 MeV driving

beams moving on 1 cm radius helical orbits with bunch length 1 mm.
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A concept for obtaining large accelerating gradients using synchrotron radiation is

described. Formulae for this purpose are derived, checked against a well known result,

and graphical results are presented.

The original motivation behind these calculations was to estimate effects of coherent

synchrotron radiation on particle beams in circular particle accelerators. Such effects have

caused much controversy in the past1'2*3'4'5*6, and although it has been shown that there is

no net effect on unbunched beams in azimuthally symmetric accelerators7'8, it is hoped

that this work will aid in resolving the matter for bunched beams in more realistic cir-

cumstances.

The electromagnetic field is derivable from potentials A and G>, which, for a point

charge q, are given by the Lienard-Wiechert formulae

<J> = ^ (1)

and

A - g P
R - p-R • ( 2 )

The vector R is the displacement directed from the retarded position to the field point, and

P is the velocity in units of c at the retarded position. Gaussian units are used here.

Shown in Fig. 1 are variables for the calculation of the fields resulting from a point

charge with speed Pc moving on a helix of radius r, with pitch angle y = tari~l($z/$x).

Here,

where y = (l-p2)~1/2, m is the rest mass of the particle, and B is the magnitude of the
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applied magnetic field, oriented along the negative 2-axis of Fig. 1 (q is assumed posi-

tive). The velocity components perpendicular and parallel to the magnetic field are given

by P±c and P zc, respectively.

The present position, retarded position, and field point, are labelled respectively in

Fig. 1 by q, Q, and P. The retarded position is located an angle a behind the charge's

present position, and a distance Az = r a p z / p i below it (Pz is positive). The field point

position is given by cylindrical coordinates (p,<!>,z), measured relative to the present posi-

tion of the charge as shown. The distance from retarded position to field point is given by

R. The time dependence of the fields will be kept implicit, since, once a "snapshot" is

available for a given time, the behaviour at other times can be found simply by replacing

<J> by <J>O — at and 2 by zo - Pzcr, where 00 = p±c/r.

The time for a signal with speed c to move from the retarded position to the field

point along a straight line path is the same as the time for the charge to move along the

helix from the retarded position to the present position with speed Pc. This retardation

condition can be written

rot = $XR . (4)

An additional relation between the distance R and the angle a is easily found using

the law of cosines, which, when combined with Eqn. (4) yields a transcendental equation

for a:

r a = -^— [*PZ + (z2 + (1 - p2)[r2 + p2 - 2rpcos«(. + a)]}1/2] . (5)

The scalar and vector potentials for a charge q moving along the helix of Fig. 1 are

given by
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A = -g- [px sin(<f) + a)P + pacosty + a )* + pz z ] , (7)

where

D = {z2 + (1 - p2)[r2 + p2 - 2rpcos(<)> + a)]}1 / 2 - papsin((t> + a) . (8)

The electric and magnetic fields are then obtained using

B = V x A . (10)

Consider the limit (p2 + z2) > r for pz = 0. The quantity R approaches

(p2 + z2)172, and can be used as the radial coordinate in a system of spherical coordinates

(/?,6,(|)). In this case, p ~» /?sin9, z -* RcosQ, and the azimuthal angle <(> has the same

meaning in the two coordinate systems.

The fields become

E _ q ft2 cos6 cos(<|> + a) § + (psin9 - sin(<l> + a)) ̂
r « [l-psin6sin(<t> + a)]3

B = R x E . (12)

The power radiated per unit solid angle is given by

JL = JL U^.]2f I 1 sin28cos2(<j> + a ) |
dQ. 4 ? t [ r J [ [ l - Psin9sin(<j> + a ) ] 4 f [1 - Psin0sin(<j> + a ) ] 6 J '

This expression is usually expressed in terms of coordinates attached to the retarded

position 9'10. Designating the polar and azimuthal angles of Ref. [10] by symbols (0/,<|>/),
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respectively, one can show that

sin6cos(<|> + a) = - sinGy cosfyj , (14)

sin9sin(<|> + a) = cos9/ . (15)

Apparently, the result (13) is equal to the result of Ref. [10], but divided by a factor

(1 - PR) = (1 - |3sin0sin(<j> + a)). In Ref. [10], this factor was necessary to convert to

the charge's own time t' = t — Rlc. Thus, the result (13) is the radiated power per unit

solid angle in real time.

Equation (5) can be differentiated implicidy, to yield

Integrating (13) over $, and using (16) to change the variable of integration to

(<)> + a) (recall that a is periodic in <)>), one finds that

dP = c f < ? P 2 ] 2 [ 2 + p2sin26 1 (4 + p2sin29)sin29 1
d(cos9) 4 I r J [[l-p2sin2e]5 / 2 Af [1 - faiiftf2 J '

and integrating over 9, one arrives at

which is the standard result.

Equations (5)-(l^) comprise an exact solution to the problem of a point charge mov-

ing along a helical trajectory. A physically important situation is that of a bunched beam

filling a volume of six dimensional phase space11. Such a general case is beyond the

scope of this paper, however, the formulae (5)-(10) can easily be extended to include finite
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bunch length, yielding results which can be readily evaluated numerically.

Consider a mono-energetic line charge moving on the helix of Fig. 1 with line

charge density Xfa), where s is a measure of arc length along the helix. If s is defined

such that s = 0 when <J> = 0, then s = rpV^/p^, and a new function X.(<|)) can be constructed

such that X(<)>)d<t> = Xi(s)ds. The scalar potential resulting from this charge distribution

can be written

where D is given by equation (8). A similar result can be found for the vector potential,

and the fields can be determined from (9) and (10).

The method just described has two serious drawbacks from the standpoint of numer-

ical evaluation. First, for each value of <j>, the function D must be evaluated over a large

range of values <(>', and the transcendental equation (5) must be solved for each <(>'.

Secondly, the function D = R - P R becomes quite small fcr relativistic particles when p

is nearly parallel to R, causing the integrand in (19) to be a sharply peaked function of <(>'.

This requires a very large number of integrand evaluations to be made close to the "singu-

larity" in order to obtain an accurate result.

To overcome these problems, one must change the variable of integration in expres-

sions like (19) from <(»' to u = $ ' + oc^O, by using (16). Thus, instead of (19), we have

(20)
gKU)

and similarly,

, P, sin«p + p. cos«$ + PZ2
A(p,<M) = | du Xfy - u + cc(w)] -* j j - — , (21)
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where now

g(u) =R - pVR = [z2 + (1 - pz
2

) [ r2 + p2 _ 2rpcos«]}1 / 2 , (22)

and, combining with equation (5), we have

The fields E and B are still obtained from (9) and (10). By integrating over the dummy

variable u, one need not solve the transcendental equation (5) repeatedly, however, such a

solution is useful for setting the limits of integration. In addition, the denominator g(u),

given by (22), is free of the problem that D had. Although g(u) vanishes for z = 0,

p = r , and u = 0 (i.e. <j>'= 0), note that this results in the same kind of singularity

encountered when evaluating the static Coulomb field resulting from any extended charge

distribution.

As a numerical example, assume a line charge density

0 4 )

The current is then given by / = ^cXv and the peak current Ip is related to the bunch

length a according to

Shown in Fig. 2 is a plot of azimuthal electric field E^, per unit of peak current Ip

vs. <)> for various values of the bunch length a The beam particles were assumed to be 5

MeV electrons moving on a circle of radius 1 cm. From (3), it is seen that a 16 kG mag-

netic field would be necessary to cause this small bending radius.
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To make use of the field of Fig. 2, two driving beams consisting of counter - rotat-

ing negative line charges X, can be arranged as shown in Fig. 3. The two beams have

reflection symmetry through the y - axis, i.e. P̂  has mirror symmetry, but Pr has opposite

sign for the two beams. The applied magnetic field must be asymmetric, having a node

along the y-axis. If a relativistic positive test charge (e.g. a positron) were launched along

the y-axis at the right time, it would receive a large impulse parallel to its velocity. No

transverse kick would be experienced, however, due to symmetry.

Define y = y0 + p+c/ to be the position of the test charge along the y - axis of Fig.

3, where p+c is the test charge speed. The variable y is defined to be zero at the sym-

metry point S of the figure. Assume next that the driving beams are centered about the

symmetry point at time t - 0. If the distance between driving beam rotation centers is

given by 2b, then the coordinates (p,<|>) of the test charge relative to the left hand driving

beam are given by

p 2 = ;y2 + fe2) ( 2 6 )

and

The accelerating electric field component is given by

Ey = 2 Uf^pAz) + -j£p(p,(|>,z) , (28)

with p and <j> given by (26) and (27). The factor of two results from the fact that there are

two driving beams.
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Shown in Fig. 4 is a plot of Ey per unit of peak driving beam current vs. y for vari-

ous starting phases y 0 f° r Pz =0- Note that there exists an optimum starting phase that

yields maximum field integral.

Fig. 5 shows the effect of pitch angle Xf on accelerating gradient, after optimizing

the phase y0. Not only is the pulse width increased, but the peak field is nearly doubled

by using y = 1 radian. The increase in pulse width can be understood by considering the

synchrotron radiation to be a "searchlight" sweeping with angular speed (0 = ji^c/r. Intro-

ducing a pitch angle allows the test charge to remain in phase for a longer time because of

the slower sweep. The larger peak field is a result of having the driving beam velocities

directed towards the test charge for a longer time, so that the value of D = R — P*R in the

denominator of (19) remains small longer.

Preliminary investigations show that the accelerating fields calculated here are insen-

sitive to beam size, so long as it is significantly smaller than the distance b — r. Simi-

larly, the scale for the transverse angular spread of the beams is just blr-l. For fixed

radius of curvature, the fields are essentially independent of energy, once relativistic

speeds have been attained. Of crucial importance, however, is the time profile of both the

driving beams and the driven beam, as evidenced by figures 2 and 4.

In conclusion, a new acceleration method using synchrotron radiation in the near

field region has been presented, yielding gradients approaching 100 MeV. The scheme

requires two driving beams with high peak current and short bunch length moving on

tightly curved trajectories. Results derived here are expected to be useful for beam self-

force calculations in storage rings.
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FIGURE CAPTIONS

Fig. 1 Field calculation geometry.

Fig. 2 Variation of E^ with bunch length a.

Fig. 3 The synchrotron radiation accelerator concept.

Fig. 4 Accelerating field Ey vs. starting phase y0.

Fig. 5 Effect of helix pitch angle y on Ey.
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