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FOREWORD

Seasonal thermal energy storage (STES) involves storing thermal energy,
such as winter chill, summer heat, and industrial waste heat for future use
in heating and cooling buildings or for industrial processes. Widespread
development and implementation of STES would significantly reduce the need to
generate primary energy in the U.S. In fact, 198D data indicate that STES is
technically suitable for providing 5 to 10% of the nation's energy with major

contributions in the commercial, industrial, and residential sectors.

Aquifer thermal energy storage {ATES) is predicted to be the most cost-
effective technology for seasonal storage of low-grade thermal energy.
Approximately 607 of the U.S. is underlain with aqu{fers potentially suitable
for underground energy storage. Under sponsorship of the U.5. Department of
Energy, Pacific Northwest Laboratory {operated by Battelle Memorial Institute)
has managed numerical modeling, laboratory studies, evaluation of environmental

and instituticnal issues, and field testing of ATES at several sites.

This report describes the computer program UCATES, developed by Dr. H.
Haitejema as a first step toward developing a comprehensive screening tool
for ATES systems in unconfined aquifers. The program is capable of predicting
the relative effects of regional flow on the efficiency of ATES systems, as
well as predicting the effects of water table variation due to ATES pumping
and injection, The code can be applied in its present form to virtually any
unconfined ATES analysis. The model described here uses a somewhat unrealistic
treatment of heat loss to overburden and underlaying soil. Inclusicn of a
more realistic heat loss mechanism within UCATES would improve the code making
more reliable predictions of absclute ATES efficiencies possible. However,
the predictions of the code described in this decument should be adequate for
preliminary design, evaluation, and optimization of unconfined ATES systems.

Landis D. Kannberg, Manager
Underground Energy Storage Program






SUMMARY

Convective heat transport in unconfined aquoifers is modeled in a
semi ~ analytic way. The transient groundwater Flow is modeled by superpositiom
of apalytic functioms, whereby changes in the aquifer storage are represented
by a network of triangles, each with a linsarly varying sink distributiom. This
analytic forrglation incorporates the nonlinearity of the differential equation
for unconfined flow and eliminates numerical dispersiom in modeling beat
convection.

The thermal 1losses through tbe aquifer base and vedose zone are modeled
rather c¢rudely. Only vertical bheat conductiom is considered in these
boundaries, whereby a linearly varying temperature is assumed at all times. The
latter assumption appears reasonable for thin aquifer boundaries. However,
assuming such thin aquifer boundaries may lead to an overestimatiom of the
thermal losses when the aquifer base is fesarded as infinitely thick in
reality.

The approach, indicated ahove, is implemented in the ccmpnter program DCATES,
which serves as a first step toward the development of a comprehensive
screening tool for ATES systems in unconfined aquifers. In its present form,
the program is capeble of predicting the relative effects of regiomel flow on
the efficiency of ATES systems. However, only after a more realistic heatloss
mechanism is incorporated in UCATES will relisble predictioms of absolnte ATES
efficiencies be possible,
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1.0 INTRODUCTION

Most studies on Aquifer Thermal Energy Storage (ATES) deal with heat or
chill storage in confined aquifers {Tsang et al. 1980; Mercer et al. 1982},
Particularly for the case of deep confined aquifers, relatively high recovery
rates of thermal emergy seem possible. For such deep aquifers, the design of a
thermal energy system may be based on a single well to be used for both
injection and recovery of hot water. If existing groundwater flow velocities
are spall, it is often sufficient to stndy radial groundwater flow and heat
transport in the vicinity of the injection/recovery well (Doughty et al. 1982;
Sauty et al. 1982). Nonsymmetrical flow cases have been investigated by
Gringarten and Santy (1975) among others, who stndied a well doublet in a
uniform regional flow field. One well was ugsed for the production of geothermal
energy and the other well for disposal of the heat -depleted water. The
authors investigated the effects of breakthrough on the production temperatures
by application of Lauwerier’s solution for transient heat flow in aquifers with
infinitely thick upper and lower boundaries, Multiple well systems have been
modeled by Vail and Kincaid (1983), who aepplied their computer program to a
hypothetical 25 well ATES system, Vail and Kincaid solved heat convection inm
the horizontal plame by inotegrating anmlytical expressions for velocity. They
solved heat conduction in the vertical plane by use of a finite -difference
algorithm, All of the studies mentioned above dealt with confined aquifers and
assumed steady groundwater flow, Indeed, even under transiemt flow conditions
in confined aquifers, solutioms to steady groundwater flow are often acceptable
because of the small storage coefficient imvolved.

The costs associated with installing an ATES system in deep confimed aquifers
form an incentive to study the use of shallow unconfined aquifers, where
installment costs for wells are relatively low. There are some complicating
factors, however, which may be summarized as follows:

. The maximmw possible injection and recovery rate of a single well in a
shallow unconfined aquifer iz usvally significantly less than that of a
well in a deep aquifer.

. Unconfined aquifers oftem exhibit complex flow conditioms, which are
cansed by such features as rainfall, creeks and canals.

. Transient flow conditions caunot be ignored because of the relatively
large storage coefficient for unconfined aquifers.

In view of these factors, feasibility studies for thermal energy storage in
shallow unconfined aquifers should not be limited to the case of radial heat
transport near & single well. It may be anticipated that multiple well systems
are needed and that the patural, transient Flow conditions have a large impact
on the performance of the system. Furthermore, ATES studies in unconfimed
aquifers require soluticms to transiemt groundwater flow.



The present study focusses on the develpment of a model to simnlate ATES
systems in unconfined aquifers under regiomali flow conditions. As a first
approximation, heat transport in the aquifer is modeled as purely convective,
Rorizontal heat conduction is disregarded and heat loss through the aquifer
base and vadose zone is treated in a highly simplified manner. The heat loss is
based solely on vertical heat conduction through the aguifer boundaries,
whereby a linear temperature distribution is 2ssomed at all times, Ignoring the
transient effects of the heat conduction in these aquifer boundaries seems
gcceptable, provided they are relatively thin. To solve the heat transport
equation, a solution to the noplinear transient groundwater flow problem i
sought by superposition of analytic functions. The latter approach has bee:.
applied earlier in modeling steady flow in a double aquifer system ( Strack anc
Haitjema 1981) . The groundwater flow problem, in this study, is unocoupled from
the hest flow problem, ignoring suoch effects as buoyancy and varying
permeabilities, As presented in this study, the solution procedure for
transient groundwater flow involves an approach, suggested by Strack, whereby
newly developed areal source distributions are used to model changes in the
aquifer storage. The amalytic formulation of the groundwater flow problem makes
it possible to solve the heat transport equation along its characteristics,
aveiding the oumerical dispersion problems frequently associated with pumerical
models, as reported for instance by Hellstrdm and Claesson (1978) .

The computer model UCATES, developed during this initial study, is intended
as a first step toward e comprehensive screening tool for projected ATES
systems in unconfinad aquifers. The present version of UCATES may be improved
npon by incloding a more sophisticated heat loss mechapism that shounld
incorporate the effects of transient heat conduction in the aquifer base and
vadose zone. Another improvement may be obtained by incorporating infiltratiom
due to rainfall, which may significantly affect the thermal efficiency of an
ATES system.

The following sectioms are inclnded io this report. In Section 2 the heat
balance equatiom is preaented for the case of heat trapsport inm unconfined
aquifers, whereby the Dupuit - Forchheimer assomption is adopted. In Sectiom 3
a simplified heat loas mechanism is developed and compared to more
sophisticated solntions for the case of steady confined groundwater flow, In
Section 4 a simple ATES simnlation is discussed for the case of radial flow.
The simm]ation is based on heat convection only and incorporates the simplified
hegt loga mechanism developed in Section 3. In Section 5, the scolntionm
procedores for the heat transport equation and for the transiemt groundwater
flow probiem are outlined. The implementation of these procedures in program
UCATES is briefly discnssed in Sectiom 6. Program validation is carried out in
Section 7 followed by two examples of ATES simulatioms in Section 8.

It is noted that throughont this report, refereuce is made to heat flow and
heat storage, but the results of this study apply equally well to ATES systems
for chill storage.



2.0 HEAT BALANCE TION FOR HEAT SPORT. INED AQUIFERS

In this section the differential equation for heat flow im unconfined
aquifers will be derived by integrating the three - dimensional heat flow
equation over the saturated thickness of the aquifer.

24 — DIMENSI HEAT FLOW EQUATION

The differential equetion for the temperature, T, in a porous medimm is given
by (Santy et al., 1982)
_ aT aT .

R O A IR 2.1
where A is the thermal condnctivity of the aquifer and where q; are the
components of the specific discharge vector, In writing (2.1} it is assumed
that the groundwater is incompressible, so that aqi/axi=0. Throughout this
report the Eiustein summation comnvention is uwsed. The coefficients C' and C are

the heat capacities of the groundwater and the saturated soil in the aquifer,
respectively. The parameters A, C  and C are defined as follows:

A=, +(1-n)3, (2.2)
C=n(:“,+(1-n)Cs (2.3)
w " PuCy (2.4)
C!,‘=1:>$m:s {(2.5)

where

thermal conductivity of water
thermal conductivity of solids
(aquifer formation)

WL

Py deusity of water
Py depsity of solids
C, specific heat of water
C, specific heat of solids
n porosity of the aquifer

The dimensions, in SI units, of the various parameters are:

S )



(2.6]

Note that in this analysis no distinction is made between the effective
porosity and tke total porosity. For sandy squifers, the effective porosity may
be zssomed equal to the total porosity n of the formation {(Olsthoorn, 1977) .

The left— hand term in (2.1) represents heat conductiom in the aquifer, the
first term on the right — hand side of (2.1) represents heat convection and the
remgining term accounts for heat storage. In this analysis the heat conductionm
in the horizontal direction will be disregarded with respect to the bheat
convection. This assumption hes been validated for the case of steady hesat
transport by Verruijt (1969) .

2.2 TWO - DIMENSIONAL HEAT FI.OW EQUATION FOR UNCONFINED AQUIFERS

82qoation (2.1} may be applied to <unconfinad aquifers, whereby the
Dupuit — Forchheimer assumption is adopted; the pierzometric head is constant
over the aquifer height. If the head, ¢, is memsured with respect to the
aquifer base, which is assumed horizontal, the saturated thickmess of the
aquifer equals ¢. Iotegrating expressiom (2.1} over the aquifer thickness
yields

¢ ¢ ¢
a*r aT aT .
l.la;'dx, = C'q —-dx Icﬁd“s {i=1,2,3) (2.7)
3
o 0 )
or
4 ¢ ¢
aT aT aT
la—l— lé;- C'[%é?dxs + C [ 13x dx3 + C[a—t'dx
3 =4 x3=o a
o ® o
(a‘=1)3) (2-8)

The vector q, is the specific discharge vector for horizontal two- dimensional
groundwater flow; a=1,2. The left-hand side of {(2.8) represents the heat



fluxes across the bottom and top of the agunifer and may be represented by the
symbols é and ﬁ. respectively, whereby

1t
""é?' = -lsjl
!’=II 13:0
{2.9)
pos L | . ii*_|
ax dJx
3 I’=¢ ) Is=¢

The superscripts 1 and 2 in (2.9) refer to the lower and upper boundaries,
respectively. The first integral on the right-hand side of (2.8) may be
written as

4 4

oT d d .= 3*

-—d = Td.! = — [T$]~ T {2.10)
j%ax X; T Y3z a] qaa l , =4 quaxu ¢ ‘luaz,Jl . -4

where nunse has been made of Leibmitz’s Rule and where q, is considered
independent __of x ., & consequence of the Depunit - Forchheimer assumption. The
temperature T is the average temperature over the aquifer height,.

The second integral on the right — hand side of {(2.8) may be written as

4 ¢
- 3
[ :‘f—dexa = qul:’_: - j'rai: dx, (2.11)

The vertical compoment of flow q,, in a gromdwater flow model based on the
Dupnit ~ Forchheimer assumption, may be found from contimmity considerations as
{ see Straeck 1983)

[, 24]%
q, [qdaxa+"at Py {2.12)
so thet
b SO L N[
[quaxa+n§% 7 (2.13)
With (2.12) and (2.13) the integral (2.11) becomes
4
T, _ 34 . 8 _ 3= _ ¢ =
[qsgfx = [qua—z-a+n£]'rlx iy qua-:-u'l‘ nﬁ T (2.14)

3
a

where use has been made of q,=0 for x3=0. The last integral of (2.8) becomes
with Leibnitz's Rule,



¢ ¢

aT - & . |
at dz: ot Im‘! Tat lx
3

-4

= %[ﬁ]—r%ﬂx y (2.15)

Combining (2.9), (2.10), (2.14) and (2.15) yields for (2.8)

- s - d d
§+§ - C' qdisa;;r ' qda_z-u'r B qu;tu'rlx —‘ ' qu‘a_z-ar'l "4 ’

4 - M7 - M5 ELES a4 '
natTix -4 quaqu “a:T * CatT * c"at CatT'x -4 (2.16.
s 3

The temperature at the top of the aquifer will be assumed equal to the average
temperature in the aquifer, so that

'.r’ =T (2.17)

With (2.17), and writing T for T, expressiom (2.16) rednces to
3 aT aT
Pef = Cbvazy, * ot (2.18)

where v, 18 the average horizontal groundwater velocity, which is obtained from

quas

\Fa—

q;“ (2.19)
Equation (2.18) is the heat belance equation for comvective hesat tramsport in
wnconfined aquifers, whereby the Dupuit — Forchheimer assmmption is adopted. It
is noted that, for this case of convective heat tramsport only, the temperature
gradient coincides with the direction of flow. The temperature T is assumed
constant over the saturated aquifer thickness and the terms 1* and é represent
the hest flox throogh the aquifer base and the upper aquifer boundary, the
vadose zone, respectively. In generazl, the coefficients ¢ and v, are functions
of position z_ and time t. The heat fluxes P and # are generally fumctions of

a
X ot and the temperature T in the aquifer,



3.0 ANALYSIS OF S5S THROUGH UPPER BOUNDARY

The differential equation (2.18) for heat transport in an mnconfined aquifer
contains the terms ﬂ' and l!'. which represent heat conduction through the aquifer
base and aquifer top, respectively. In general, these heat floxes are functions
of both location and time. Based on a number of simplifying assumptions,
however, the heat flurxes ﬁ and i" may be expressed exclusively in terms of the
average temperature in the aquifer. The assumptions made are:

¢ The aquifer boundary, vadose zone or aqnifer base, is of
constant thickness and has constant thermal properties.

e The temperature at the ontside of the aquifer tundaries is
constant.

# Heat convection and horizontal heat conduction in the aquifer
boundary is neglected. '

s The temperature distribution in the aquifer boundary is
linear.

In this report the phrase ‘aquifer boundary’ refers to the aquifer base and
vadose zone, unless specified otherwise., The fourth assumption, listed above,
is clearly in violation with reality. A linear temperature distribution in the
aquifer boundary will be approached only if the temperature in the aquifer has
remained constant for some time. To verify the importance of the fourth
asgsumption, the temperature distribution in the aquifer, obtained with the
above assumptions, will be compared with a distribution that is obtained with
transient heat conduction through the aguifer boundary. The latter solution
will be referred to as an exact ome, althongh it is still based on the first
three assumptions. Furthermore, it will be demonstrated that the approximate
heat loss mechanism may be improved by incorporating ( instantenecus) heat
storage in the aquifer boundaries.

Finally, the first assumption, an aquifer base of finite thickness, is
investigated. The temperature distribution in a confined aquifer with both a
thin aquifer top and a thin aquifer base is compared with a solution for the
case of a thin aquifer top and an infinitely thick aquifer base. Similar to the
previous comparison, steady groundwater flow is assumed.

It is remarked that the phrase ’‘aquifer boundary’ in this report refers to
the aquifer base and vadose zone, unless specified otherwise.

3.1 APPROXIMATE HEAT LOSS MECHANISM

As indicated in Fig. 3.1, the vadose zone and aquifer base are of constant



thickness :l and 3, respectively. The thermal properties of the vadose zome are
{ ana é The thermal properties of the aquifer base are i and é The
temperature on the ontside of the aquifer boundaries is assumed conmstant and

2 X

d 2 2

| X, C

— ———

! H 1 1

1Cl T A, C
e

T

Fig. 3.1, Linear Temperature Distribution in the Aquifer
Boundaries

taken to be zero. The heat fluxes $ ana £ become, with (2.9),

1
= -$2T - -3I
= ia; I =~k
3 I, =0 a
(3.1
_zaf' ‘ _ _3T
ﬂ'-li = -
3 :3 =4 a
The differential equation (2.18) becomes, with (3.1),
11 3
3T _ ., 3T Ad +4d :
nC'c’vuaxu"'C(’at aa T {a=1,1) (3.2;

where T is measured with respect to the temperature outside the aquifer,
Expression (3.2) may be further evaluated by introducing the velocity v; as

v, = —vy (3.3}

The velocity v:I is termed the thermal wvelocity (HellstrSm and Claesson,
1978), and may be interpreted as the wvelocity with which a temperature
discontimity ( thermal front)} travels through the aquifer. With {3.3) the

differential equation (3.2) becomes

1z 21
v-i’l_‘ aT _ ad +id

naxa at qaa

The first term in (3.4) may be expressed in terms of the residence time t* of
a thermal front, so that

(3.4)



T a1 _
;‘+at = BT (3.5)

For the case of confined flow, the head ¢ in (3.4) may be replaced by the
aquifer thickness H, so that f is constant,

g

13
_Ad ¥
cadd

The solutiom to {3.5) is found to be (using standard Laplace transform pairs)

(3.6)

p

T=T, o Pt” p(t-¢?) (3.7

where 'I" is the temperature at the point of injectiom, where t* is the
residence time of & thermal front since inmjection and where U(t-—-t®) is
Heaviside's unit step function and defined as

O(t-t*)=1 (t>t")
(3.8)

O(t-t*)=0 (t ¢<t™)

It is noted that the flow path of a thermal fromt, in general, does not
coincide with the flow path of a water particle, However, for the case of
steady flow and for some special cases of transient flow (e.g., radial flow)
2 thermal front does travel along the flow path of & water particle, The
velocity of a thermal front is a constant fraction of the water wvelocity [ see
(3.3) 1 so that, for the case of coimciding flow paths of thermal front and
water, the temperature may be expressed as

—B_g...-: C
'I'='I’“I e nC' U[t-E't] (3.9)
where © is the residence time of 8 water particle; the time that elapsed since
the water particle was injected. This resnlt conforms with the findings of
Dietz and Lehner (1969) and Verruijt (1969) .

3.2 TRANSIENT HEAT LOSS THROUGH A THIN AQUIFER TOP

With the heat loss mechanism expressed by (3.1), the proper transient effects
in the heat conduction through the aquifer boundary are disregarded., To
estimate the error that resnlts from this approximatiom, a comparison will be
made between the temperature distribution given by {(3.7) and a temperature
distribution obtained by incorporating transient heat loss through the aquifer
boundaries. This comparison will be carried out by solving a non- steady heat
flow problem for steady radial groundwater flow in a confined aquifer (see
Fig. 3.2) . The aquifer has a thickness H and has an upper aquifer boundary of



to & At hezu
1>=0
T-Te H C. Tir. t}
r

Fig. 3.2, Steady Radial Flow with Heat Injection for r=0 at
t2o0.

constant thickmess 3 For simplicity, the aquifer base will be comsidered a
thermal insulator. The temperature T in the aquifer is assumed constant over
the aquifer hmight, but depends on ths radial distance r from the heat source
( snd water source) and on the time t that has elapsed since hsat injection;

T=T{(r,t} (3.10}
The temperature f in the aquifer boundary depends not only on r and t, but alsc
on the vertical coordinate z;

‘f=f(r,z.t) (3.11)

The temperature T in the aquifer satisfies the following differential eguatiom
[see (2.18) 1

f&vg__i__a_{'| L (0<$z<m) (3.12)
C¥ear ~ @azl T 2z '

where the groundwater velocity v. is independent of time. The temperzture f in
the aguifer boundary satisfies

ig—g = ég% (BSz <) (3.13)
The differential equations (3.12) and (3.13) are similar to those presented by
Lauwerier {1955) for the csse of linear flow. Lauwerier, however, solved the
problem assoming an infinitely thick aquifer boundary. The analysis may be
pursoed in terms of the residence time Tt of the injected water, as suggested by
Dietz and Lehner (1969), rather than the radial coordinate r, so that (3.12)
becomes

F

_ A ot + I
C at (H oz at
z=H

=0 (0Sz<H) (3.14)

The following dimensionless parsmeters are introdmced:

F= X
T_Tq (3.15)
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k1
~ T
T [ i (3.16)
3 To
;=§ (3.17)
A
= x (3.18)
nC_H?
?=%t (3.19)

With expressioms (3.15) throogh (3.19), the differential equations (3.13) and

(3.14) become

1, _ o, 4
- =8 {1 (z-§1-+ﬁ) (3.20)
az? at
and
T, AT, oT
-+ =0 (z=1) (3.21)
4t dz at
respectively, where nse has been made of
=% (z=1H) (3.22)
and where 8 is defined as
&
o=2 (3.23)
The boundary conditions and initial conditions for (3.20) and (3.21) are
T, =1 (t20,t=0, z=1) (3.24)
T, =0 (t=0, ¥ >0, z=1) (3.25)
- - 3
T =0 (T20,720, z2=1+5) (3.26)

The solution to (3.20) with (3.21) and (3.24) through (3.26) is obtained by use
of the same double Laplace transform as employed by Lauwerier (1955):

o

v(z,s,p) = J‘e_StJ‘(l—Ti}e_pt drdt

(3.27)

Using (3.27), the differemtial equatioms (3.20) and (3.21) become

1



: ~
§~_v_es += =0 (1<z§1+aﬁ) (3.28)
az? P
(a:+1:|)v-a—:r_'-l =90 (z=1) (3.29}
iz P
The general solutiom to {3.28) is given by
v = Aet 05 4p,m240s [ 1 (3.30)

sp
The constants A and B are found from the boundary conditions z=1 and
z=1 +3!H. It follows from (3.26) with (3.27) that, for z=1 +3fﬂ,

v=1l (z=1+43/8) (3.31)
sp .

so that B may be erpressed in terms of A as [see (3.30) ]

B e —perla+d/m) 50 (3.32)

Applying the boundary conditiom (3.29) and using (3.32) yields, after some
elaborate but straightforward algebra,

v = sl_p_% sxn.h{(z-l-a/ll) "se } (3.33)

(s+p)sinh{-d/B) s } - {s0' cosh{(d/m) y{se }

A solution for v is sought at the upper aguifer boundary (:=1), so that
(3.33) reduces to

1

ve L2 (3.34)
(s+pl)+ "se coth { (d/8) "se }
The inverse transformation of v, with respect to p, becomes
L-t(v} = L_1 -[s+ {8 coth((d/m) {s€ 117 (3.35)
P s s
The inverss transformatiom with respect to s may be written in the form
T =1L17* [e'“ f(s)] (3.36)
s
where f(s) is defined as
f(s) = ]_; 0™ "93 coth[(a.’ﬂ) "93 Iz (3.37)

It is noted that, because the solntion is valid at z= 1, the temperature
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4.3 REMARKS

Small differences exist hetween the resunlts obtained for confined flow and
unconfined flow, The temperature distributicn penetrates slightly more intoc the
confined aquifer than intc the unconfined aquifer. The thermal efficiency of
the injectiom, storage and recovery scheme, however, is approximately the same
for both flow cases.

In comparing the resnlts in this section with those of other studies, it
appears that the thermal efficiency n (4.19) is low, especially for larger
values of At (Doughty et al. 1982} . A reason for this low efficiency may be
the rather crude way in which heat loss through the aquifer boundaries is
modeled. Especially the assumption of a thin agnifer base with a comstant outer
temperature, shown in Fig. 3.1, may lead to an overestimation of the heat loss,
as was foond in Sectiom 3.
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In Section 4, the injection, storage and recovery of thermal energy has been
discussed for the simple case of radial flow., In general, however, the flow
pattern loses its symuetry dne to such features as miform flow, creeks, canals
and wells. As a result of this asymmetry, a significant portion of the injected
hot or cold water may not be recovered., SHence, the flow conditions in the
aquifer may have a significant impact on the thermal efficiency of an ATES
system,

A computer program UCATES (UnConfined Aquifer Yhermal Bnergy Storage) has
been written that solves the general problem of tramsisnt groundwater flow and
heat transport in unconfined aquifers through the supsrposition of elementary
analytic solutions.

The program is intended to be a first step toward a comprehensive screening
tool for projected ATES systems in unconfined aquifers, In its present form, it
treats the heat loss throumgh the aquifer base and vadose zone in a rather crande
mamner, but is designed to provide a detailed solution to tha heat couvectiem
in the aquifer, including flow toward, for instance, canals or creeks,

In this sectiou the solution techniques employed by UCATES will be discussed

and the main stroctuore of the program will be outlined. At the end of this
section some program validations and demomstrations will be presented.

5.1 SOLVING THE HEAT TRANSPORT PROBLEM

The differential equation for heat transport in unconfined aquifers is given
by (2.18) as

T T
nC'Qvaa-;—u + Céﬁ =t + # {(a=1,2) (5.1)

The heat fluxes ﬁ and ﬂ through the aquifer base and vadose zone, respectively,
will be approximated by [see (3.1) ]

# = -2'1' ; # o= -iT (5.2)

4

where 3 and d are the thermal conductivity and thickmess of the aquifer base,

respectively, and where i and & are the same properties for the vadose zome, It
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has been shown in Section 3 that this heat loss mechanism may be improved upen
by incorporating heat storzge in the aquifer bounderies. In doing so, C must be
replaced by C* [see also (3.68) I:

&3 o)
. == —— v——

c cC + 33 + 3% (5.3)

whereby it is noted that c* depends on the head ¢, whick is a function of both

location and time, Expression (5.1) may be written im the form

«dT 4T
qux—u+ Fy il {5.4)

| ]
Yo -—C—‘va | (5.5)
and where B is defined by
Bl
p= (5.6)
c*¢dd
Equation (5.4) may also be written as
;T _
-a-;—.*'a = ﬂT (5-7)

where t°® is the residence time of a thermal fromt. Expression (5.7) is
identical to (3.5), however P is dependent on § and therefore on x, aod t,
Equation (5.7} therefore, in general, cannot be evaluated by use of standerd
Laplace transforms, as has been dome in sectiom 3 with P being constant, see
(3.6). However, if P is taken to be constant during a small iocrement At® of
the residence time t*, then (5.7) can be evaluated incrementally, leading to

-

Ti+1='rie‘ﬂi“1+;‘ti) U(ti+1-t;+1) (5.8)
whore B, is evalusted at time t, and kept counstant between t-i, and t'i+ , see
also (3.7}. If, in evaluating (5.8), thermal fronts are followed, then t may
be replaced by the time t, leading to

Tie1=Ty e Biltiv,ty) (5.9)

Temperature Distribuntion in the Aguifer
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The location x; of a2 thermal front is found by integrating

dx; 11('.7‘r .
T " gy TalTart) (a=1,2) (5.10)
C (x_ .t
a

whereby the temperature of the thermal froamt is obtained from (5.9):

- -(x¥, )0t —t.]
L T, e a*i i+ Ni (5.11)
The differential equations (5.10) are solved in program UCATES by the classical
fourth order Runge - Kntta method {Forsyth et al., 1977).

Because expressions (5.10) and (5.11) involve both the groundwater velocity
v, and the head ¢ [seec also (5.3) and (5.6) ], the solution to the tramsient
groundwater flow oproblem mnst either be Imown in advance or constiructed
simultaneonsly in solving (5.10) and (5.11). Im program UCATES, the solution to
the groundwater flow problem is solved and stored for one phase of the ATES
cycle at a time: the injection, the storage, or the recovery phase,

5.2 SOL THE TRANSIENT GROUNDWATER PRO

The differential equstion for transient flow in an unconfined aquifer, based
on the Dupuit — Forchheimer assumption, is

Vi = -&% (5.12)
The discharge potential ¥ is defined as
1. .3

where k is the aquifer permeability and ¢ is the head meaasured with respect to
the aquifer base. The storage term on the right — hand side of (5.1) may be
viewed as an areal sink distribution, the strength of which depends on both
location and time;

=l

= u(xa.t) (a=1,2) (5.14)

K=

The areal siok distribution stremgth o may be approximated by a network of
triangles, each with a linear strength distribution. The solution in terms of &
and velocity V. for such a triangunlar areal sink was provided by Strack, who
also snggested its use for solving transient flow.

The potential at an arbitrary point x
written in the form

o ond at a time t in the aquifer may be
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M J
Is )+ 4 c
Blxg,t) = ) Falxdqft) + ) Filx)eft) + 6(x,) + 8 (5.15)

m= 1 j=1

The functiom G represents all Imown contributioms to the potential % as
generated, for instance, by umniform flow and discharge specified wells. The
Is

functions Fm represent the contrihutions of all M flow features with unknown

Is
strength parameters ant ) . In this stody F represents line sinks omly, which
may be used to model creeks, cansls, or lake boundaries (Strack and Baitjema

tr
1981), The functioms . represent the contributions of the areel sink

distrihution, with J nod‘al strengths cJ(t), which are also uwnimown. The
potential i is independent of the location and time. The M+ J unknown strength

c
parameters and the constant # may be obtained as follows. At each element with
nninown Q:t) the potential is given and assumed constant, which leads to the
following M equations:

()

=]F': (t)+F + G +'; (i=1,2 M) (5.16)
i QO i.jdj i i Py S .

(m=1,2,.....M)
{i=1.2,.....7)

At the jth nodal point of the triangle network, the strength o,

]
exrpressed in terms of the potential & [see (5.14) ]

(227, - 5.0

If a linear strenmgth distribution is assumed over a time span At, (5.17) leads
to the following J egnatioms at the J nodal points of the triangle network:

may be

i(t+At)_§j(t) g{t) g (t+aAL)

n___j . o i _
hi(t) At = 3 (i=1,2,.....7) (5.18)

Finally a contiunity conditiom is to be satisfied requiring that all discharge
variations, at each time step, together are zero. This conditiom implies that
water is obtained from storage and not from infinity. Consequently, when a well
is switched on and left pumping for a long time its entire discharge is
sepplied by line sinks (creeks} in the domain; the strengths of the
triangular surface distributioms will have vanished.

Before the agbove equations can be solved, a solution is required for t=0.
This steady state solutiom can be obtained from (5.15) by omitting the terms of
the triamgles, Like for the transiemt case¢ potentials are specified at the line

c
sink centers to solve for the stremgth’s Qm(") . The constant & is obtained by

specifying the potential at a reference point outside the domain of interest,
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This procednre is identical to the ome applied by Strack and Haitjems [1981].

The approach outlined here was proposed by Strack and first tested by Debbarh
(1982) for the case of one-—dimensional flow. Debbarh employed sink
distributions over a line element inatead of triangles. Good agrcoment was
obtained in comparisom with exact solutions, except during the early time
steps, Debbarh identified that problem &s related to a poor estimate of the
initial areal sink distribution, Tests condocted doring this stody for the
two — dimensional flow case confirmed his findings, However, after improving
the initial areal strength distribution, by locally refining the network and
using small initial time steps, good agreéeement with en exact solution counld be
obtained.

Alternative Solution Procedure

When the transient flow conditions in the aquifer are doe mainly to discharge
specified wells, as may be the case when desling with injectiom and recovery
systems for thermal energy, the efficiency of the above approach may he
improved upon as follows.

The potential & is written as the sum of N+ 1 potentiala,

-] N w
$ =23 + E ;) (5.19)
i.=1

With (5.19) the differential equation (5.12) may be written as

s . ¥ #,
1z . 0 oO® a 1
Vi = ot E T (5.20)
l1=1
The second term on the right — hand side of (5.20) is written as
N w N w w
n (i) o B(i) _ nbd;) ¥,
2 i at 2 - at | = at (s.21)
i=1 i=1 h#(i) k“(i)

where the head 3(1) is chosen independent of both location and time and is
defined as

E(i) = ¢-44 () (5.22)

Expressions (5.20) and (5.21) are combined to form the following N+1
differential equations:

e N b
nAd, .y o,
. S (i) (i) (5.23)

v=; = 2
d = at
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(i=1,2,3,.....,N) (5.24)

e
If a solgtion is found for &, which satisfies (5.23), and solutions are found

w
for #(3), which satisfy {5.24), then the sum of these solutions, & [see

{(5.19) 1, will satisfy (5.20) and therefors (5.12), It is noted that the
equations (5.24) are linear, since 4(“ is a constant. The differential
equations (5.24) are of the same form as (4.22) for the case of radial flow,

w
The potentials i(“ , therefore, may be chosen as the sclutions to (5.24) for
L
flow doe to the injection and recovery wells, The potential *(i) is then
w
generated by the ith well, located at x, and pumping with a discharge Q(i)
1

since time t(i):

¥ Uiy, &
*(i)(xa,t) = -TEI(na) {5.25)

i
whare u® is defined as

w w
i n ﬁa-xu ?a_xa
u? = - 1 (i no sum) (5.26)
gy [t-tey) ]
It is noted that the use of (5.25) requires finite injection or extraction

periods, as (5.25) does not approach a steady state solution when t becomes
infinite, In the present case of seasoual thermsl energy storage, however,

e
periodic injection and extraction is agtomatically implied. The potential % is
now used to represent all remaining flow features in the aquifer, such as
oniform flow, wells (that are not switched on or off} and creeks. The

potential ; also contains contribotions from the transient wells, which are
introduced by means of the areal sink or source distributions represented by
the second term on the right - hand side of {5.23). This latter term accounts
for the nonlinearity of the original differential equation (5.20).

Equation (5.23) may be sclved iz the same way as was proposed for solving
(5.12) [i.e. see (5.12) through (5.18) ]. However, instead of a single
strength distribution o, the right~ hand side of (5.23)} is now replaced by two

-} w
areal sink or source distributions, o and o,

:0 e w
Vi = alx,,t) - ol(x,t) (5.27)
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whoere

]
¢ _n 2
- 25 (5.28)
w
c= ) MG 2w (5.29)
- ¢ .
i=a By

Both strength distributions (5.28) and (5.29) may be approximated by the same
network of triangles as was proposed for representing distribution (5.14). The
strength distribution (5.29) is known, provided that M(i) or, for that

s ¢
matter, ¢ is known, The unknown strengtha %y Q. and the unknown constant # are

obtained from a contilmnity equation and from the following J+M equations; see
also (5.16) throumgh (5.18):

-] Is Lo a v ¢

{(t) _ (t) (t)__(t)

*i = Fiﬂ. + Fij[dj ﬂ'j ] + Gi + & (5.30)
and

g(t+rat) _g(r)  S(t) >(t+At)
7— Il - d J (5.31)
k‘(t) At 2

whoreby

{(i=1,2,3,.....M)
(m=1)2)330000'H)
(i=1,2,3,....,1)

As indicated in (5.31), in solving for the unknowns at time t+At, the head ¢

a
in (5.31) is obtained from the solution at time t. The potentials §i(t) at the
line sink centers are obtained from the known and constant potentials *i at
those points by

N
] v
]t =8 - [i(‘jt,’]i (i=1,2,...,M) (5.32)

whare ;((;)}] are the potentials st the line sink centers obtainsd from
(5.25) with (5.26). Because the most dominant transient effects are already
incorporated in the potentials ;(i) ., & solution to (5.27) may be construmcted
with larger time steps then would be feasible when solving (5.12) with (5.14).
The sensitivity of the solution to the imitial areal strength distributiom,
mentioned before, may also be avoided by making proper choices for the heads
a(i) . At the onset of pumping, the derivative of the potential with respect

v -
to time, M(i)fat, is zero everywhere except at the well. If 4(“ is
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selected equal to the head at the well that occurs at the onset of pumping, the
corresponding term in (5.29) vanishes. Expressiom (5.29) vanishes altogether
(initially) 4if this procedure is adopted for all transienmt wells. Expression
(5.28) is also zerc imitially, since the remaining flow features in the aquifer
do not cause transient effects until affected by the transient wells.

The above solotion procedure is implemented in program UCATES. Solutions to
the groundwater flow problem are comstructed and stored for a complete phase of
the ATES cycle at a time: injection, storage, or recovery. The solution is
stored by storing the following parameters for I time steps:

[e w ](ti)

Uj"ﬂj
gl ts) (5.33)
;(ti)

where
{j=1,2.3,....1)
{m=1,2,3,...,M)
(i=1,2,3,...,I)

Is
The coefficient function F for the line sink is given below as the real part

of 8 complex potential functiom,

g HEY
F{xa) = Rel Q(z) (5.34)

where D0(z) is given by (see Strack and Haitjema 1981)
1s @z -z
a(z) = a1 .
2::(::-:1)
[(z-:,)ln(:-xl)-(z*zl)ln(:—zl)+(z=-—zl) ] {(5.35)

The argument z in (5.34) is the complex coordinate
z = xl+ix= {5.36)

and z_and z_ in (5.35) are the complex endpoints of the line sink. The form of

tr
the coefficient function for the areel sonrce distribotiom F is presented in

Appendix A.
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6.0 PROGRAM UCATES

A new program UCATES (UnConfined Aqunifer Thermal Bnergy Storage) has been
designed to solve the heat transport problem in unconfined aquifers under
transient flow conditions. The program is developed on a Perkin Elmer 3220
computer and written in Fortran, Program UCATES 1is equipped with free format
ioput rontines, which allows the introduction of data in random order by
command words and parameters. Commands may be entered from a file or a terminal
or from both by a SWITQH command. Two types of binary data files can be
created; one file containa all data stored in common, while the other file
contains data for generating contounr plots of heads, isotherms, or temperature
distributions in the recovery wells. The data files make 1t possible to
preserve intermediate results or to save complete ATES simmlations for later
interpretation. Error checking routines are included that protect the user
against illegal input and array overflow. Two debugging facilities are
provided, First, most routines in the program check essential parameters prior
to egxecution. Second, a DEBUG command is available, which lets the nser inspect
the contents of all commou blocks and arrays through free format commands. In
addition, each individnal function in the program may also be teated using the
DEBUG command, A user mammal is provided that may be accessed via a HELP
command. Typing HELP displays & scmmary of all available commands and
parameters, while typing HELP followed by 8 command word displays an
explenation of the nse of that command.

6.1 MATRYTX BOUATIONS

The groundwater flow problem is solved with (5.30) amd (5.31) et various
times doring a phase of the ATES cycle. The equations (5.30) with (5.32) and
{5.31) may be written in matrix form as

where the matrix coefficients Aij are defined as follows:

For 1=1,2,,..,J+M and j=1,2,...,T:

T

= F.. - §.. —0
(i)
For i=1,2,...,J+Mand j=7+1,7+2,...,T+M:
Is

For i=1,2,...J+Mand j=T+M+1:
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ij
For i=J+M+1 and j=1,2,...,J
= l}t
Aij 3 o
For i=J+M+1 and j=J+1,...,J+N
A k
ij =L
For i=J+M+1 and j=JF+M+1

(6.4)

(6.5)

{6.6)

(6.7)

where the right band side of (6.5) represents the total area of the triangles
associated with the j th triangle node and where the rigth hand side of (6.6)
represents the length of the j th line sink. The solution vector x;

5 = o(t+At) _ 2(t)

f f {(i=1,2....7)

= alt+At) _ .(t) -
xj Qj Qj (J J+1.¢--|I+H)

5 - glt+at) _ S(¢) (j=F+M+1)

c

is defined

(6.8)

(6.9)

(6.10)

The last equnation implies that the constant % is recomputed at every time step.

<
However, 4 does not vary with time, so (6.10) should yield zero, The recomputed

c
constant ¥ is stored for every time step and may be used to verify the accuracy
with which the differential equation is satisfied in the farfield. The known

vector y, is defined as

(t) J
k /7y At o T v w
y; = _....(_:L)_ "i(t) + E Fij [aj(t+&t)-crj(t)] (i=1,2,...7)
i=a
(6.11)
( N w w ( I tr "(
= - t) _ t+At) _ t) t+At)
vi =8 - § [*tj} i) ]i ¥ ,§ Fij ["j
J=1 J=1
L 3
- crj(t)] (i=F+1,...,T+M) (6.12)

5C



- - '(t)_'(t}]l"_ ()P (.
N E[“.i % 320 EQJ- L; (i=J+N+1)  (6.13)

The potential &, is given and follows from the heads specified at line sink
Y(t+at)

centers. It is noted that the stremgth %; involves the unlmown head
‘((.it)Mt) [ses (5.29) and (5.22) ]:

N ¢3. . _4(t+at), ¥
"(c+ae) . En”(j) d(i) 1 &)

i t+At) ot

( - (6.14)
i=s M) " o

-] w
The head ¢ (t*4t) n UCATES is estimated by use of 2%t} and 2 (FF4t), bota
of which are known at time t, so that

p— N L}
(t+At) . {2]5(t) ¥ (t+At)
¢ ~ [F{2!t)+ 2 2 (L (6.15)

y 1=1

The matrix equations (6.1} are solved by use of LU decomposition and back
substitution (Forsythe et al, 1977) ., Because some of the matrix coefficients
Aij depend on ¢ [see (6.2) ], the LU decompositiom has to be repeated for
each time step At.

6,2 THERMAL MARKERS

The temperature distribution in the aquifer as a functiom of both location
and time is represented by sets of thermal markers, which are reieased at the
injection well (s) at certain time intervals and which are traveling through
the aquifer with the thermal velocity, {(5.5). The position of each thermal
marker is calcolated with (5.10) and its temperature is fomad from (5.11).
Since B in {(5.11) depends on both locatiom and time, the equations (5.10) and
(5.12) are evaluated simultaneocusly under control of the routine TRACE. The
markers are released at time intervals that are selected in such a way that the
temperature intervals between markers are approximately the same, This is
accompl ished by eftinating the subsequeunt release times t. by using (5.11) with
a constant value p for B,

t = t_ - 1:11:[1-%1‘] (6.16)

r+1 r
B r

The parameter AT is the desired temperature increment and Tr is the temperature
at time t.. The locations and release times of thermal markers are generated by
the rontine GENCHR, An isotherm of a given temperature is generated by a set of
points in the aquifer. Each point is obtained by lipnear interpolation between
markers released from the same location at the same well, but at different
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times.

During recovery, thermal markers may enter a recovery well, irfluencing the
temperature in that well. A recovery wall is subdivided into a oumber of
sectors, At the onset of recovery the temperature in each sector is the same
and dotermined by the temperature distribution in the aquifer that occurs at
the end of storage. The program requires the specificatiom of this initial
temperature as user - provided ioput. When a single marker enters a sector
doring a time step, the temperature in that sector ia set equsl to the
temperature of that thermal marker. When more than one marker enters the same
sector during the same time step, the temperatures of the markers are averaged
and assigned to that sector, At the end of each time step, the temperature in
the well is deofined as the average of the temperatures in the sectors. Each
sector, however, maintains its own temperature, unless now thermal markers
enter that sector. When a thermal marker that was relessed at the onset of the
injection cycle enters a sector, it is assumed that the tempersture in that
sector is zero {equsls the injtial temperature in the aquifer) during all
subsequent time steps. The temperature in a sector is also maintained at zero,
if a 'zero marker’ enters that sector. The latter markers, with a temperature
zero, are distribmted just oumtside the warm water domain at the begimning of
the recovery cycle, The bookkeeping discussed above is performed in romtine
WELTEM. It is clear that a smooth temperature distribution in the well can be
obtained only if the temperature in the aquifer is defined by a sufficient
amount of thermal markers,

The thermal efficiency n of an ATES cycle is finally obtasined by calculating

the everage temperature in all recovery wells for the recovery phase; see also
(4.18).
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APPENDIX A

DUE TO A TRIANGULAR SOURCE WITH LINFART.Y VARYING

In this appendix the expressions are presented for generating the potential
distribution and flow field due to a triangular areal sink or source
distribution. The expressions and variables sre presented here for the purpose

3
¢
23
Zy
Z,
Fig. A.l. Linearly Vearying Souwrce Distribution Over a
Triangle

of interpreting program UCATES,

Consider the triangle with its cormers definsd by the complex coordinates L
z, and I, as skatched in Fig. A.1. A }inurly varying somwrce distribution
exists over the triangle with a strength o in z, and a zero strenmgth in points
z and z,. The potential i(z} for this source Qistributionm is here written in
the form

3,y Flz,2.z,2,) (A.1)

where c’r is the strength at the point z, and where the complex coordinate z is
defined as

z=x +ix {A.2)

The function F is given by

I -¢
Flaz,2,2,) = B [AZI+A +KIA ] Lapiyg +
L =+1A 2 1 13 3 1 . F] l’—l
[ﬁili ﬁlxl IKIAI] ni’+1 * [TIIS+TII3+1A1K1A1] ln 13 +
B ln[ (Il-c)L] - P(z,2 .,z ,z,) (A.3)

The last term in (A.3) represents a farfield correction which will be presenced
later in this section. The parameters in {(A.3) are defined as follows (see
also Fig. A.2):
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ﬂ1=%;ci(-c+ib)

Ll
12nb

c{—¢+2ib)(=c+ib)

T, = -%;ai(a+ib)

3

L
127

a{a+2ib)({a+ib)

L =X +iA = = ~-a

1 1 1 z -
2 zl

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)



I’ ey (A.16)
1 “a
- z'

1’ = ;1'—_';-’ {A.17)

It is noted that 11 {(1=1,2,3) are complex coordinates with respect to the
local coordinate systems (K ,A ), (K A ) and (E,A ), each of which
originates at a side of the trimg}e {(see Fig. A.3). The complex potential
#(z) due to the strength parameter & in a network of triangles is given by

s T
(z)=0 F(z.z’.N) {(A.18)

o
where F(z,z ,N) is the sum of those N triangles in the network that have the
corner point z, in common,

& Ny i
Flz,2,,N) = EF(z.zl.z:.z’) (A.19)

i=1

N,
i [_..K‘ . 1
L a ! - —
2 1 T‘:f:k"

Fig. A.3. Local Coordinate Systems at Normalized Triangle
Sides

The function F aa given by (A.3) and (A.4) through (A.17) is programmed in the
routine CFIRIP. The coefficients (A.4) through (A.14) are generated only once
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for each triangle and are stored in common COE. Those coefficients are
gonerated by the routines DRIVCD and GENCOE,

Ferfield Solutioms

In case the potential is evaluated at s large distance outside the triangle,
expressiou (A.3) is inappropriate due to the inaccurate way in which the
imaginary parts of the complex logaritlms of (A.3) are evaluated, Therefore,
and for reasons of computational efficiency, a farfield expansion has been
derived for (A.3),

N
Flra,z,z,) = s= | ) ™™ + Cun(T-T) + + cla(T-T,) -
n=4
i(C +C )a (A.20)
where | is defined as
T=z2-3(z +2z +1) (A.21)

The coefficients Cu are defined as,
3 .
1
= ) by (A.22)

i
with bn defined as

3
gn= z——“""n_j 8, (A.23)

3 n-j_71 n—j

‘r: ‘rx 3
n n-j R
J=0o

i
and aj defined as
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° 6
. -eizc ‘t:
o = 5
(A.24)
. o1 ‘tn
2 = 3
1 —iia
8 = -
and
i r i 1'i (%
o _ 13, "3
' 6 2
r
i T
‘1- —‘i_ - rl-c'
(i=2,3) {A.25)
i i
i r i, +_I_'-?
3 2 2
] i
i r,
l’—T
i
The coefficients I', are givenm by
P _aQ,-tpar -t -1,
* (TS-T’)’ etic
P 1,-toa -1
2 ('f!-'f:) etia
{A.26)

7. (7 -1yt -1, -1

* ('f’—'fl)’ e?ia

P 1ot a -t
(T,-T,) oic

The coefficients ¢, are calculated by the routines DRIVCC and GENCC, whereas
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the coefficients ay, and b, are calculated by GENCA and GENB. The latter two
coefficlents are not stored permanently. The points Ti (i=1,2,3) reflect the
corner points of the triangle {see (A.21)), while ’t. is defined as

(AR ERIREE ERLRLR (.21)

The constants é. ?: and ¢ ere given by

C, = -2h', (A.28)
C,=-3b%, (A.29)
a=acg{z -z ]} {A.30)

The farfield solution (A.20) is included in the routine CFTRIP and is used with
N=10,7,5 and 3 at distances from the center of the triangle, of 2,4,8 and 16

times the length of side z2,. I, respectivoly. The farfield correction

P(z,zl,z’,z') in (A.3) becomes, in terms of [,

3
p(z.zl,z’.z,)=p‘(T)- E ch’-n (A.31)

N=1

The function (A.31) is implemented in the routins CFARCO,

Discharge Function
The discharge wvector Qx,Qy may be obtained from the complex discharge
function W{(z),

a_ . .
W(z)=- =0 +iQ (A.32)

The discharge function W for the triangular areal distribution of Fig. A.l1 is
given by

W)= —2— | 3A (oK) i 4 [ 38,12 + 26,4, - 34 =] g2
z z -z, P BT 11+a B, 2 T2B,2, :xl n1’+1 *
[3"1’+z"‘x -3&:*] we l  [aztea 1.1
LA AL 11 23 [ 171 :] 11_"" 11+a
[321:+ﬁ11:] [f1_11+1] * [731:+711:] [1’—1-1;] *
B dP'(T)dT(za-z:.)
(11-0) ST & T m {A.33)

where
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Bi’B

1
i -
z %

(i=1,2) (A.34)

> z3-z:|.
Ty Tiz —
1 3

The last term in (A.33) represents the farfield correction, which is obtained
by differentiating (A.31) with respect to { and (A.21) with respect to z,

» 3
de‘E_Q%zI = E (3-m)c T*7" (A.35)
n=1

The farfield expression (A.20) may be differentiated rlso to yield a farfield
expression for the discharge fumction,

W) =- ‘5 (3-n)e 7270 + % + % (A.36)
2nh 1 !-Il !-:3 '

n=4

The components v, and vy of the gronndwater velocity vector are obtained from W
as,

(z)

vztz)-("‘ﬂ4 =Re (W(z)}/ (n4)

(A.37)

v (z)=w= ~Im{W{(z)}/(nd)
y o4

where n is the porosity of the aquifer and where ¢ is the saturated aquifer
thickness, hence the bead in a Dupuit~ Forchheimer model.

Similarly as for the case of the potential function, evalnation of A and v_ st
a point z, and therefore of W(z), will be performed by the nearfield solution
{A.33) or by the farfield solution {(A.34) depending on the distance of z from
the center of the triangle.
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APPENDIX B

MANUAL. FOR PROGRAM UCATES

Program input and ontput is controlled by command words and parameters. Each
command and parameter may be abbreviated, provided it remains wniqoe, An
explenation of each command word and its parameters may be obtained under
program control by typing HELP followed by the command word to be explained, If
only HEIP ia typed a summary of the command worda and their parameters is
displayed. This sumaary and the command word explanations are stored in s file
UCATES ,MAN, which is listed in this Appendix.

Sequence

Even though there exists no fixed order in which commands must be given, some
reatrictions apply to emsure proper program execution. The AQUIFFR command must
preceed all othear data input commands, unless its parameters are retrieved from
a file by use of the GET command. Obviously, ontput commands are only legal if
relevant output dats have been generated.

File lin

There are four commands for storing and retrieving data from file: SAVE, GET
WRITE and READ, The SAVE and GET commands store and retrieve all data in main
comnon, respectively, Since the program generates a solution to the groundwater
flow problem for each phase of an ATES cycle at the time, three data files are
necessary to store the complete flow problem for am ATES cycle: injectiom,
storage and rocovery.

Piezometric hoad distributions in the aquifer, as obtained by use of the GRID

command, and temperatore distributions in the aquifer or recovery wells, as
obtained by use of the SOLVE TEMPERATURES command, may be stored om a file by
use of the WRITE command, They may be retrieved at amy time by use of the READ
command, after which a PLOT ISOTHERMS or e PLOT WELL command may be given.
Therefore, three more data files are necessary to atore the threes temperatuore
distributions in the agqnifer; at the end of injection, at the end of storage
and at the end of recovery. The temperature distributioms in the recovery wells
are sutomatically stored with the temperature data at the end of the recovery
. phase.
NOTE: Core storage for piezometric head distributions and temperature
distributions is shared with storage for the matrix operations nescesasary for a
groundwater flow solution. Therefore, a SAVE or WRITE command must be given
prior to a pew SOLVE or GRID command if the generated data is to be stored.
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Instead of operating the program interactively, it is often convenient to
store all data input commands on a file and let the program read that input
file by use of the SWITCH command, A SWITCH OON: at the end of the file will
switch control back to the terminal (Comsol). This procedure avoids retyping
everything in case of an error in the input data.

Debugging

It is noted that program UCATES, in ita present form, is not yet an
operational screeming tool for ATES systems, but a research tool awaiting
further development., In view of this, extensive debugging facilitiea =zre
incorporated in the program. The contents of all variables in common and all
arrays can be displayed at any point in the command sequence by typing DEBDG.
The debugging routine has its own command structure, a summary of which may be
displayed by typing HELP aftor a DEBDG command haa been execoted., For more
extonsive debmgging, the DEBDG snbroutine may be called at any point in the
program, to provide an opportunity to display intermediate results. A RETURN
command will exit the debugging routine and cause program execution to
contime.

Example

As an example of the program cperatiou, the commends given for the ATES
simulation near creeks and a domestic well in section 8.2, 1is listed below.
Note that the pregram is stopped and restarted three times in order to allow
for data interpretatiom.
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AQUI 1 0.25 0.05

REFE 22 0 0.85

WEHL 14 11 0.2

LINE 1 11 9 15 1.1
LINE 91517 13 1
LINE1 59 4 0.95
LINE 9 4 15 2 0.9
LINE 14 4 17 10 0.85
TRIA -50 -50 80 80 72
THERM

0.6097561 0.0002107 1
0.4878049 0.0002107 0.1
0.4878049 0.0002107 0.2
WINDO¥ -2 -2 20 20
SAVE UCATESQO.RST
SOLVE GROU

711 -0.50

0.1
0.5

5

10

20

50

80

120

0

SAVE UCATESQ1.RST
¥RITE UCATESO1.GRD
ST
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GET UCATESO1.RST
SOLVE TEM

INY

10,116 3

SAVE UCATESO1.RST
WRITE UCATESO1.GRD
SOLVE GRDUN

7 11 0.5 120

120.5

121

125

130

140

160

170

180

0

READ TUCATESO1.GRD
SOLVE TEM

STO

3

SAVE DCATESO2 ,RST
WRITE DCATESO2.GED
ST

GET UCATES02 ,RST
SOLVE GROUND
99 0.5 180

180.1

180.5

181

185

1%0

200

230

260

300

0

SAVE DCATESO3 ,RST
READ UCATESO2 .GRD
SOLVE TEM

REC

4 3

0.75
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WRITE UCATESO3 .GRD
SAVE UCATESO3 .RST
8T
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FILE

NO~NO WA ;

Ul ol ol ol ol o =
DN UNEWRE RO

[
~0

20
21
22
23
25
268
27
28
29
30
31
32
33
34

C
~

3é&
37

38
39
30
<1

42
43

44
45
4é&
a7

48
49
20
31
52
=3
54
59

FAGE 1

#*HBUCATES . MAN
USER MANUAL OF FROGRAM -UCATES-

Command summary:

HELF

Lcommand wordl
AGUIFER (rperm) (rpor) {(ra
THERMAL
RESET
UNIFLO (x) (y) (@x) (Gy)
WELL (x) (y) (@)
LINESINK (1) (yl) (w2} (y2) (h)
TRIANGLES (%1} (yl) {(x2) (y2) (ntt)
REFERENCE (x) (y) (h)
FOTENTIAL (x) (y) (1)
ODISCHARGE {(x) (y) (1)
LAYQUT
WINDOW (2l (yl) (x2) (yZ2)
GRID {(nincx) (t)
FLAOT (heads/isotherms/well)
SOLVE (groundwater/ temperatures)
DEBUG
SAVE (filename.2xt)
GET {filename.=xt}
Lag ron/off)
EFFICIENCY
STOP
AQUIFER (rperm} {(rpor) (rQ)
rperm permeability (=1 for dimensionless input)
rpor porosity of the aquifer
ro radius for all wells
In case of a new problem, this command shouid precesd all oather

data input commands.

REFERENCE

XY

H

WELL

Ly

() (y) (H)

Location of a reference point whers heads
are assumed unaffectad

hRead at the reference point (initial head if
only transient wslls are introduced)

Select H=1 for dimensionltess inpu?

(x) dy) (Q)

iocation of steady state well
discharge

Note: Transient wells are prompted for upon giving the
command SOLVE GROUNDWATER
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FILE 7% PAGE 2

56 -

57 -

58 LINESINKS (xl) {yl) (x2) (y2) (H)

59 -

&0 xil,yl starting point of a line sink

&1 12,y2 end point of a line sink

&2 H head at the center of a line sink

53 -

&9 Note: If lime sinks are introduced, a triangle network

&5 must be added by using the command TRIANGLE

bb -

&7 -

68 UNIFLD (x) (y) {(Bx} (By)

&9 -

70 XY point where head remains unaffected

71 by uniform flow

72 Qx,Qy uniform flow vector

73 -

74 -

75 TRIANGLE (x1) (yl) (xZ) (yZ) (NT)

7& -

7 xl,yl lower ieft-hand corner of network

78 x2,y2 upper right-hand corner of m=twork

7% NT approximate number of triangies

a0 -

81 Note: Triangles are propduced with approximateiy equal

az rectanqular sides, which may lead to 1255 than

a3 NT triangies for a given domain

84 -

as -

84 THERMAL

az -

as Foutine prompts for thermal constants and the
a9 thicknesses af the vadose zone and the aquifsr bass,
0 {Recommended values for the thicknesses of

71 the agquif=r base al and vadosz= zon= d2 are:
2 di=0,2 and dZ2=¢. 1)

23 -

P4 -

25 WINDOW (xi) (yl) (x2) (y2)

F6 -

g7 xl,yl lower teft-hand corner of domain to be piotted
28 x2,y2 upper right-hand caorner of domain to b= plotted
9 -
100 -
101 DEBUG
102 -
lo3 Enters debugging program, which has its own
104 command summary display. The debugqging program
105 allows every comman block and every array
106 element to be examined. Every function in
107 UCATES may be examined separately under control
108 of the IJEBUG prograrm
109 -
110 -
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FILE

75

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
13&
137
138
139
130
141
142
143
144
145
1446
147
148
149
135G
151
152
153
154
155
1564
157
158
159
1460
161
162
163
1464
1465

FAGE 3
LOG

on

off

SWITCH

RESET

LAYOUT

-

SOLVE
Groundwater

Temperatures

(on/aff)

echo’s all output from program DEBUG to
iogical unit ILU4 (see DEFAUL routine)
and plots the tracing of thermal markers
prevents above actions

(file name/device name)

Input is r=ad from the specifisd device
or file., Default: consol

Command reinitializes the data base

{(file name)

Creates a file and writes all common hlocks
to that file

(file name)

Reads all common blocks from a file

(file mname=)

Creates a file anc writes grid data for
centour plots of heads or isotherm data
to that file

{(file name)

Reads grid data for contour plats of
heads or isotherm data from file

Flats a layout of ail =lements in the
flow daomain,; including the triangle networy

(Groundmater/ temperatures)

prompts for new transient wells,
prompts for times at which to caiculats
a solution,

message: Groundwatsr soiution is ready
praompts for =nd of ingsction/storage/

B.8



FILE

75

166
147
168
149
170
171
172
173
174
175
174
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
125
196
197
198
199
200
201
202
203
204
205
2086
207
208
209
210
211
212
213
214
215
2146
217
218
219
220

PAGE ¢
recovery
ingection: prompts for temperature increments
alaong flow paths, number of flow
paths per well and approximate
tine step (for Runga-Kutta routine)
stporage : prompts for approximate time step
recovery : praompts for number of sectors per
well and approximate time step.
prompts for temperature in the wel!l
at the onset of recovery (data to be
obtained from the isotherms at the
end of storage)
FOTENTIAL (x> (y) (1)
p Y location where potential will be caiculated
t time from which potential will bhe calculated

Note: t must be with the time span for which a groundwatsr
flow solution has been generated

DISCHARGE (x) (y) (1)

» WY location where the discharge vector Qx+iQy
will be calculated
t time for which the discharge will be calculated

Not=s: t must be with the time span for which a groundwater
filow solution has hesen gensrated

GRID (NX} (T)

ENX ) number of increments along the horizontal
base of the window {(see also WINDOW command)
(T) time for which heads are to be plaotted

Note: generatss a grid of heads to be contoured by use
of the command PLOT {(heads). NX determines the
resolution (limited to 40)

PLOT {heads/isatherms/we!ll)

heads: must have been preceded by a GRID command
or an appropriate READ command.
displays minumum and maximum level in the
grid and prompts for the min. l!savel and
increment for contours

isotherms: prompts for the temperatures to he displayed.
plots dots in the domaln for each temperature
and reports which temperatures wers
piotted
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221
222
223
224
225
224
227
228
229
230
231
232
233
234
235
236

[
)

EFFICIENCY

STOP

prompts for a recovery well number and plots
the temperature distribution versus the
recovery time

Command may only be given after a recovery
cycle has been solved by use of SOLVE
TEMPERATUREs caommand. The thermal efficiency
af the ATES simulation is displayed

terminates program execution.
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