
Debugging Fortran on a Shared Memory Machine D ~ E / ~ ~ / 25 0 0 1--37
Todd R. Allen and David A. Padua

~ ~ 8 8 003589
Center for Supercomputing Research and Development

University of Illinois at Urbma-Champaign
Urbana, Illinob 61801

I

Throughout thb paper, code retan k the inatructions to be
Abstract executed. Input b the net of valuer that in ured by the code but

not generated by it. Thit includsr value8 obtained through I/O
Debugging on a parallel p m c w ~ ~ ~ r b more difficult than statements, valuw generated by OS mr~icea such M the tima

debugging on a rerid machine bwaure error8 in a parallel pro- function, and even vduea of vuiablw which us wed before t h q
pun may introduce nondetermintm. The approach to puallel w de5ned. A program is conridwed to be both code and input
d@bu&ng prerented here atbmpk to reduce the problem of taken together M a unit. Two programs are the name only if
debugging on a parallel machina to that of debugging on a rerid both the code and the input u e the same. Thur when speaking
mrcbine by automatically detecting nondeterminism. of multiple rum of a program it b implied that the input must be

held 5ced for a given piece of code.

Parallel proeouorr ruch u Cedu [GKLS83] and the NYU
UItacomputu [GGKM83], rto known u the MIMD (Flyn72) or
M&S/MEA puek82] clur of machinas, have pea t potentid for
aploitia(r pud&m, but thelr Bcuibility makes them more
dUBcdt to proyarn than single inrtruction rtream machines. For
multlplo pmceuors to be able to cooperate on r problem they
r c q u h both aommunication and rynchroni~atlon. Two model8 of
communication are menage pauing and shared memory. At Rmt
dmce, debugging in a marrage puring ayrtem appears assier
Brn debugging in a shared memory ryrtem. In a message pass-
ing ayrtam communication and computation u e separate and dis-
tinct. All communieatlonr must be explicitly stated with primi-
titm denoting marrage nand and/or merrage receive. In a shared
mmory wtem the target of an auignment rtatement can be
thought of u a massage rand. A use of a variable can be thought
of u a message rercive, In a maurge pauing rystem one knowa
when processon are communicating and which proeeraore u e
commudcatlng together while in a shared memory ayrtmm evwy
dngle @hued memory reference h potentially a cornmunicrtion
from an7 proearnlor to any other or even a11 of the other procab
con. In r rhued memory machine communicationr are a likely
(Our- of ermr md thwe communicati~n errcrrr me difficult to
dekt oliag conventiond breakpoint debugging techniques. To
d t k t a eommunieation error wkrg breakpoint debugging tech-
alqaen oae mart be able to daket the error by examining. a
muhlne rtate that occurs rhortly after the error. Becaure the
tnor dependc upon the order of axecution of instructions in
ditwnt inrtruction rtrarmr, it ma7 occur infrequently, which
mrkcr captwbg commtlnication errorr dif8cult. Thu paper
pr-b methodr which u e being wed in the derlgn of a new
typo of debugging tool. It b urumed that once the porrible
sourcan of nondetarminism are identaed the debugging procw
era proceed by wing methodr rimilar to thora ured in conven-
tiand deburnerr. To detect nondetarminirm, information gath-
end during both compilation and execution b ured. Compile
Mms analpla reller upon the methodology originally developed
lor depaadenea tarting [Bane791 wolf82]. During execution a
trace L made which b used to refine the compile time informs-
tion.

A deteminirtie program is one in which the behavior of
the program b always the name from one r m to the n d . A For-
tran program exacutad requentially b determinktic. The inam*
tionr of a rerid Fortran program have a fixed mecntng, and rrc
cute in a 5xed ordw. If the behavior of the code c h u r p , it murt
be due to changer in the input and by the above d&tion of a
program we have di8erent Fortran progrunr. A p u d e l Fortran
program can be nonLkmQGtSe. Although hho htructlon, of
r parallel Fortran program u e the rame u thore doing the corn- '

putation in a rerial Fortran program, the inrtructionr of the
parallel program execute on asynchronour procerrorr and may
have no order guaranteed. Uondder the concurrent inntruetion
ntreamr of Figure 1.1 aceerring the same locations in shared
memory. In a doaIl loop each iteration of the bop b independent
and can be executed M 4 reparata proce~, which un proceed in
any order. In Figure 1.1, suume that array A waa initidired to
rarou before thb loop. At the termination of thk loop, each of
the locations 2 through N of uray b could either have the value
1-1 (if the write of A[il occun before the read of A[i]) or the value
0 (if the read of A[i] occurt before the write of A[i]). If t h ~ r p q
gram w u determinltic up to thin point, we now have 2
diaerent machine rtatw pmible at thii point. The great explo-
rion of machine rtatw prohiblta one from enumerating all p o d
b b p a t h a nsndsknninirtlc progrw can Lrke.

doall i=2,N
rlt A(i] = i
82: bIij - A(i-11

end doall

Figwe 1.1. Nondetanninbm of Concurrent htruction Strarnu

A common desire of people working with diitributed rye
temr h to be able to run a puallel program using mme mechan-

Thir work w u rupported in part by the National Science ism to debrmine tlie ordering of evenk u they execute. It in d m
Foundation under Grantr No. US NSF DCR84-08916 and important that the m ~ h a n b m doun't rubrtantlally change the
US NSF DCR84-10110, the US Department of Energy under execution ordering of thore evanb (BFMS831. Thb h u . t o been
Grant No. US DOE DEFG02-85ER25001, and by a donation called the probe affect (Gait85). One mchanbm ruggwted to
from the IBM Corporation. provide information on the execution ordering b timertamping

1'). -

I) !
k. '
8 - .
' / _ . . . , . , . ..
I .. 1 , .. 8

1.- .,
t i '

, . .

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

4

The following pages are an exact

representation of what is in the original
document folder.

[Lamp78]. Becaure every memory reference in a rhued memory
machine can be a communication, it la natural to want to treat
each reference u m event. In this approach, one would have to
record a timwtunp from a clock to m u k when each reference
w u made. Machine instructions don't execute at a 5%ed point in
timet thelr execution rpana many machine clock cyclw. Depend-
ing on the connection =heme betwwn procouon and memory, it
Ir even porrible that memory nqu-k to the rune l o c a t h will
not be nrviced in the rune order that the r e q u ~ t a ware gen-
erated. Thur timartampa would need to be generated a t the
memory modular for each reference inatead of being generated at
the procerrorr and .uocl.ted with the inrtructionr.

Inrtead of attempting to determine the order in which
eventa occur, one can attempt to determine whether t b efPwta of
a given pair of eventr depends on order. Communications on a
ahued memory multiprocerror depend on order urd there com-
municationr can be detected uring the methob of data depen-
dence analyst originally doveloped for rertructuring wmpilerr
m W 8 0] (PaWo86j. Given two uray reference8 both within a
art of nertlrd lwpr, data dapervlerrcr tortlag anrwarr tho quortion
of whether the two array referencar are dependent, i.e. whether
they will accerr any common it%C&ti&ar, m d If so, In whab urder
do they u c e r thwe common locations.

2.1. Tsrmlnology for Qlssslfying Depnndences

Rertructuring compiler writers make a diitinction between
flow, anti and output dependences [PaWo86]. A Bow dependence
b the relationship between a definition and a use of a variable
ruch that a value of the variable Bows from the deanition to the
ure. An mti-dependmce is the relationship between a use and a
definition of a variable ruch that tha use prsrcder the definition
which dartroya the current value. An output dependence t the
rdationship between two definitionr of a variable ruch that one
definition of the variable rupercedw the previour definition. To
restructure a Fortran program for execution on a parallel
machine, c u e murt be taken to prwerve the order of dependent
references. When debugging it la urefui to know the fact that
communication ewirta between a given dehition/ure or
ddnitlon/definition pair. If m order of the referensea isn't
guaranteed the fact that there ia communication will introduce
nondeterminism. The word dependence lrnpliea an order. For
example A dcpcndr on ti impUU B Bubt M C U ~ before A can
&cur. Within a parallel program, if nu etder for a pair of refer-
eneor to the name lwatlon ir forced then a roes conditbn @ta
for the reference pair, and the relationahlp between the pair ir
called a data race. Condder t l ~ e parallel loop of Figure 1.1. If
one interpret8 the loop u a serial loop then the valuer would Bow
from m aulier iteration to the following iteration. But it ir not
a aerial loop. Calling the pair ot referencer to urs). A a *flow
depond9oce" nrggcsk that one wants data valuer to "fiow" from
one iteration to the n u t , m d that tha Imp bhould be rerirllred to
honor the dependence. It may be that the programmer actually
d d e d the race with no preferred ordering of itarationr. The
urumption that a program would be corrected if d i d d i 8 r with
racar u e replaced by rerial Do's is not correct. If the referencar
come not from a loop, but from block8 of concurrent code, then
tbrr is nethhg to indi~sta whieh if my of the poaaibb ~erial ord-
uingr would be preferred. A debugger'a p u r p o ~ t to provide a
programmer with a convenient meam to rtudy a progrun8r
bhvior . Data rues u e a good place to focur one'r attention.
They u e likely to be errorr becaure of the nondekrminiim they
can introduce, but the determination of whether the rynchronir*
tion b wrrect or not will be left up to the programmer.

The term 'read/write race8 wlll be used to indicrk unm
dered communication be twm a u ~ / d e R n i t h pair. Two unw
dered deanitiona of tho rune h t l m wlll be d a d r 'wrik/wtlk
rum8. Note that a race doe8n8t ukt for two r e d to r bed
location nbcr the m u l t 4 ba the 88m8 r e ~ u d l w of Uc 0 t h
they occur. R.ul/wrik d nrik/nrik racm ur adktholj
referred to u d a b r-. U in Chr.p~dId vw
Jon prommas the o r d e r b g o f r p & o f ~ d ~ w y t o U I w u
memory locrtion then it b a t a ram, it L r depmdona If ow O
unable to tsll whether 8 pair of unordered rdemncm acmn C
m e location then it WUI be krmed a pokntial w e .

Data racar may or may not exist for the same coda depord
ing on the input &en to the coda Ho'~.ver~ 11 r data rrcr e x i ~ t ~
in a p w r u n it may be dekctod mgudlru of whatha the pro
y u n amcutw corraco or not for r given run. Whm crlkd xkb
the u r r j A the bubble sort in FSgura 2.1 WU h a p work
correctly ragudlerr of the order that the iteratiow ue pufotmd
in the do8ll loop. The r e w n that it WUI always work colmtb L
that due to the vduw in uray A no ikrrLion d the dod tiu
writna r lacatbn that -other iteration .Lo mad8 or wit*
Uaing just the d r t r of u r r y A one L unable to detect by trubl
the porribility fit mmr thrnu~h d d a rrccl ~ W W Q UQ dnb
e m occur. The pzoyrsr could still axacuto corrrotly with th9 nU
on uray B if the iterations occurred in the arms order that the!
would lf the loop w u rerid. However, with uray B muhipb
lknliuur of the dodl r e d aad write the rame @e~tlon~ ud a
data race d t s . Thk c m be dek ted regudlwr of whrthe tb
putieulu run executes correctly or not.

c8ll lort(N,A)
call mrt(N,B)

rubroutine rort(N,X)
integer N, XU
do i=r ,~ - i

d o d J=i+l,N
lf (XU-11 > XU11 ~ w ~ P W)

endl
end d d

end do

Figwe 2.1. A W o r k k t Parallel Bubblo Sort

Some data racar cur be detected at compile time wins tbc
twhniqusa of data dspsndmws tcuting while taking Inb car
rideration the aynchroniratlon inrtructionr. Static &ta deptn.
dcncs testing b conrotrothe. Ths technique is to try a I U ~ d
teak in an atbmpt to prove independence of a pJ r of refercntr
If independenen L nwnr proven then dependence b mumcd
T h t gumantear dl dependencw u e found. One cm rko test L
the oppcwite manner. Inatead of attempting to prow indeptc
denca one can attamp$ to prove that two r d e n e ~ w uow tlt
rame location. If dependence h t h g b applied to aa onorderd
pair of roferencu,.thon s hi whlch would indicab dependeat*
for ordered referencan indicates the pouibility of r r.cr eonditior
Raws discovered which can ha pmven in t h t Wb); will be trkl(
rtatic racer. An example of a sbtk r u e L the pair of dnrcr
to uray A in Figure 1.1, U N cur be rtaticdly dekrmlaod to k
greater than 2. The remJntU rrcu feud, thou ~ m d

k r u ~ e Independence could not be proven, may or may not really
nit. Theaa will be referred to M potential races. An example of
I pottntlal race is the use of array X in Figure 2.1 and the call to
nbrrutine swap which haa aecees to array X. By tracing refer-
nco Lo memory, one can determine if potential races really are
rum. If a particular location is actually read and written or
aul~iply written from separate instruction streams between
pin! of synchroniration a race ia indicated. Races found a t run
cimt will be called dynamic races or simply data racea. If the
)mlrrm in Figure 2.1 were traced, the call to sort with array B
mold produce both a write to X[2] in iteration j=2 of the doall
ud I read to thin same location from iteration j=3, which would
h rn example of a dynamic race.

Using ntatic analysis, one can learn a lot about the Bow of
lrlr through Fortran code. T o get exact information one must
uturlly execute the code over a set of input data and record the
mulb through tracing. Currently, data dependence testing can
OPIJ be done practically if the subscript expressions are linear
haitiona of do loop indices or linear induction variables. Also,
uiorate teating can only be done if the lower and upper bounds
ol the inductive sequences are known. What is needed is a way to
r r lac the information generated a t compile time with informa-
tiin gathered a t run time.

1. Plnding D a t a Races T h r o u g h T r a c l n g

Tracing is a powerful debugging mechanism. For a given
wt of data, one can get complete information on the behavior of
I program by tracing everything that the program does. If the
program is deterministic then a trace can be an exhaustive
duiription of that program. Tracing of this nature is expensive.
k addition to. the resources required to generate and save a com-
pltk trace, the data generated can be very time consuming to
utlyre. It is possible to limit the amount of tracing in this aye-
krn aince we are concerned only with proving or disproving the
aLtence of potential data races. T o detect data races through
Irrting, memory references, tank spawning instructions (doall,
fork) and synchroniration instructions must be recorded as they
ue executed. A data race ia indicated by a read and a write or
1.0 writes to the same memory location by different instruction
ltrearns where those Instruction streams have no synchronlsatlon
ordering. them.

The example of Figure 3.1 shown a hypothetical trace of a
program. The instruction test z will wait until z is greater than
lbc ikration number minus the dependence distance specified in
lht teatset Instruction. Figure 3.2 shows a structure representing
vnehroniration of statements in the sample trace. Downward
1111 indicate statements that are synchronised by virtue of
bilongln6 to the aamc inabrucbion abreom, Horinonbal area indi-
trle atatemanta that are synchronlsed through synchronisatlon
~lrtemenb. 1r a directed path exisb between two statements,
they are synchronised. If no directed path exists between two
write, or a read and a write to the same variable then a race con-
dition exists. These race conditions may then be presented to the
uto either graphically or textually. The references in the trace
are grouped according to instruction streams. The number of
proceesors used to generate the trace makes no diuerence, because
the instruction streams are determined according to the state-
mtnb which control the spawning and synchronisation of instruc-
lion streams and not according to what is executed on which pro-
ietaor. In this caa0 we can see that with the testset distance
d=2, iterations 1 and 2 (each of which is a separate instruction
itream) have no synchronisation and t h ~ l s there are several race
tonditions between them. There are no races for d = l , even
though ad of each iteration is unsynchroniaed with the statements
or following iterations, because no common locations are read and
written by these statements.

integer A[3], B[4]
data A/1,2,3/, B/1,2,3,1/

doall i=1,3
sl : test (x)
82: A[B[i]] = A[B[i+l]]
83: testset (x) d
84: B[i] = sum(A, B[i])

end doall

function sum(vect, len) '
integer sum, len, vect[len]
sum = 0
do i=l,len

sum = sum + vect[i]
end do
return

Sample Trace:

enter doall
iteration 1
81: test x
82: read B[2]
82: read A121
02: read B[l] .
82: write Ail]
83: testset x d
84: read BIl]
84: read vect[l]
84: write Bill
end iteration

iteration 2
81: test x
82: read B[3]
82: read A131
82: read B[2]
82: write A121
03: testset x d
84: read B[2]
84: read vectll]
84: read vect[2]
84: write B[2] .
end iteration

iteration 3
81: test x
82: read B[4]
82: read All]
82: read B[3]
82: write A131
83: testset x d
84: read B[3]
84: read vect[l]
84: read vect[2]
84: read vect[3]
041 write B[3]
end iteration
exit doall

Figure 3.1. An Example of Tracing

8. i . Synchrontca t lon

T o be able to detect nondeterminisk in a parallel program,
one must be able to recognize instructions which spawn multiple
processes and the rynchronizstion . used noeds to be
understandable. Therefore, i t is necessary to limit the primitives
which will be accepted by the dehuggar. .Synehronlsatlon that is
unrecognired by the debugger is not catastrophic. The debugger
will simply report all reference pairs which may be in races
without synchronisation. Unrecognised synchronisation may
increase the number of warnings but it will never cause racea to
go unnoticed.

8.2. T r a c l n g M e m o r y Reference8

T o record a memory reference, both the, address referenced
and the identification of the reference's lexical occurrence are
needed. The address is needed to eaaiiy pick up conIlicta that
occur through aliasing. Actually, i t is unnecessary to record the
lexical occurrence of every variable referenced. A useful optimi-
sation is to record baaic block [AhU177] numbers instead of indi-
vidual references. At the entry point of each bank block, an
integer that uniquely identifies that basic block will be recorded.
Within the basic block there is a fixed number of references to be
made, and they occur in a fixed order. Once a basic block L
entered all of these references must be made. The only additional
information needed to record the exact set of memory addresses
referenced is the values of the indexing functions of arrays. By
applying common subexpression elimination to the indexing func-

Synchroniration for d = l Synchronisation for d=2

When testset distance d=l:
No race conditions.

When testset distance d=2:
Rase=.

32: read of A[2] in iter. 1 and 82: write A121 in iter. 2
32: write of A[l] in iter. 1 and 82: read vect[l] in iter. 2
32: read of B[2] in iter. 1 and 84: write B[2] in iter. 2

Figure 3.2. Annlyoing Sample Trace

tions, only the values of unique indexing functions need be
recorded. Without recording basic block numbers one would
have to trace scalars in addition to arrays. if the reference to a
aealar wao controlled by a conditional then the reference may or
may not be in race with another lexical reference to the same
scalar. Howev'er, by recording basic block numbers one has exact
information concerning all scalars referenced. Recording basic
block numbers to indicate what has been traced requires that the
compiler build a table of basic blocks,'where the entry for each
baaic block is a table of array references corresponding to the
trace statements added for the indexing functions of those arrays.
Recording basic block numbers moves work from run time to
compile time. The compiler needs only to generate information
of sire proportional to the number of lexical references while one

. have to record information of sire proportional to the number of
dynamic refcrenccs in the trace.

8.8. Analya lng t h e T r a c e

One can do even better when tracing if some form of data
compression is used. An example of this would be recording
references in vector notation instead of on an element by element
basis when it is obvious that an entire vector is going to refer-
enced. This approach seems difficult to implement. When deal-
ing with multi-dimensional arrays, one could record some sub-
scripts in vector notation, but this may result in no savings a t all

if any subscript is nonlinear with respect to the innermost Iwp.
In tha t case the nonlinear aubscript.would have to have its vrl~t
recorded for every reference, generating just an much trace infor.
mation as recording the value of the llnearlred indexing funclicr
for each reference. Even more lmpoltant than savlng d~rip'
trace generation, using some form of vector notatlon tho tala
during trace analysis. Given two groups of references, if bod
groups of references are represented in vector syntax then the tot
for intersection is reduced to a single test for vector interaectio~
A reasonable compromise between the difeculty of handtin& the
recording of references in vector notation and the beneht, d
doing so is to record all references on an element by eltrntr~
basis, and then construct vector notation before doing interw.
tion testing. Constructlng vector notation would be doac bj
grouping all of the references generated by each lexical refertnca
into vectors grown as large sr possible during b single llnerr pur
over the list of basic blocks executed. One can then test for inttr.
section between two lexical reference^ quickly by testing tor inttr.
section between the lute of vectorr they referenced.

T o actually delecC races, a gray11 wlth two typao of brcc ~IIJ
be built during static analysis. Each node of the race grrpk
wuuld represent a b ~ l c block a d a scajqr race arc would bc
placed belween two nodes if a potential tead/wr#e or writc/wriu
race exists on any scalar if the two basic blocks were executtd
concurrently. The arc would be labeled with the lexical identitio
or n11 ~cslnra involvod in raaoa botwoon tho basia blocka, h i c c uu
also created for array references. Array raee arcs have the ad&
tional information of pointers to the locations of the array which
are referenced. A race exists if both basic blocks representing th t

two ends of an arc appear in concurrent instruction streams and
if the arc was for an array there must be an intersection betwna
the locations referenced.

4. Ualng Dataf low Analysls t o Di rec t T r a c l n g

It is possible to guarantee that a program is free from dl18
races through information gatlrered a t run time. The program u
deterministic until the Erst da ta race occurs tbus, one b
guaranteed of Eiidlig (LC, IllbL rase. It will always occur U 11
exists. However, onee the first race occurs, nondetarmlum L
introduced into the program and without further information oat
can no longer assume that any further results generated throu6h
tracing are accurate. Thin might riot be (I terrible lill~ilalion U
the program being debugged does not require or Ia unable to trkt
~dvarrbaga ~f r r o ~ r d c t c i ~ i r i i 6 ~ . DVCII eo, Lllls would sLU llrnll unt
to correcting data raee errors one a t a time. This is unacceptahlt
since each trace can be expensive to generate.

4.1. T h e 'EIldea' Rc la t ton

The di5culty of detecting multiple races at onee liar In lht
fact that the races found introduce noodeterminism and prrlic.
ular execution order may hide other races born the view of tht
tracer by preventing the occurrence of the race condition. For
each da ta race thcrc is a single variable or array element whirl
ends up with a nondeterministic value. U the race is a read/writt
racc thcn the riu~ideterminlatic v.arlable Is the VMlbble which
receives the value of the variable read. If the race ir r
writelwrite race, the variable involved in the race in the non.
deterministic variable.' If i t is known where the nondetermioltic
variable is used, the erects of the nondeterminism,can be isolrttd.

A test is needed tha t will indicate the possibility of one rut
hiding another race in the remainder of the t rue . Although M

exact test would be optimal, i t is su5cient to be conservatirt.
The test is conservative if it can guarantee that all data racer ut

\- '

found, but i t may indicate races that do not exist. To do the
static data race testing data flow analysis must be done. The
tame lnformatfon can be used to determine the erects of the race.
One race can hide a second race if i t affects the locations refer-
enced in the second race. If, for example, the second race
involves an array, and if the nondeterministic variable of the Erst
rue wan involved in either indexing function of the second race
(either directly or through a chain of defs to uses) then the second
rres might not occur depending on the ordor of the references in
the Erst race. Another way one race can hide a second race is if
the nondeterministic variable of the Erst race appears in a control
expression which can determine whether either reference of the
~econd race is executed.

4.2. The Hldea Graph

To deal with the problems discussed above we will use a
'

graph whose purpose is to determine which of the potential races
uist or must be assumed because tracing is unable to disprove a
rrce condition. Let the static and potential races be the nodes of
thin graph. The arcs of this graph will represent the hides rela-
tion being true between two nodes. The nodes which represent
rctnal races (races which are
be marked and reported to
means that the occurrence

occurrence 05 a potential race B S S where Sn is a state- I .. Y J
ment which is involved in the race. This ,relation is also com-
puted in a conservative manner (i,e. if i t can not be disproven the
relation is assumed to be true).

Let the races be the nodes of a hides graph. For each node
A which is a potential or static race and each node B which is a
pokntial race, a directed arc is placed from A to B if hides(A,tl)
L true. All nodes representing static races will be marked. All
nodes which are a t the head of an arc represent races which could
be hidden by the node (race) a t the tail of the arc so they must
1180 be marked since tracing cannot disprove the possibility of a
race. The marks are iteratively propagated along all arcs until
no additional nodes can be marked. The set of nodes marked
through the above propagation need not be traced. Alter tracing
the unmarked nodes, ail nodes which were found to be races
through tracing are marked. The marks must be propagated
again. AU marked nodes are assumed to be races and as previ-
ontly stated, are repoAed to the user. The user will also be told

.. - why each race is being reported, i.e. whether the race was found
~trtically, was assumed because i t was hidden by a static race, i t
rss found dynamically through tracing, or it was induced :
dynamically.

In Figure 4.1 there are only potential data races. There-
lore, there actually is the possibility that this loop could run
dekrminfs~lcally as a doall. At first glance, the potential race
S4,S4 looks like a static race, but since the execution of this state-
ment ia conditional, no race condition may ever occur. Potential
raced Sl,S2 and S2,S3 are not hidden. They need to be traced. If
1 race occurs in either case, every potential race must be assumed
by propagation through the hides graph. If no races were
detected, then the potential race a4,s4 would need to be traced.
Thii trace could be performed a t the same time as the previous
trace or it could be traced on a different run. The potential race
14,84 can be traced on a separate run because everything on
which this race depends has been proven to be deterministic since
no races were found on any of its incoming arcs. This process
continues until the nature of each potential race In the hides
graph has been determined. One simplifying assumption that
could be Improved is the propagation of a race across every areof
the hides graph. The arcs of the hides graph are built durlng

. doall i=l,n
Sl: A[f(i)] = B [i] + C [i]
S2: C[i]=A[i]
S3: if (C[~(i) j > n) then
S4: E[i] = E[i-11
S5: B[E[i]] =B[i]

end doall

Static Data races: none

Potential Data races: Sl,S2 S1,SS S2,S3 S4,34 S6,SS
(actually these should be a t the reference level and not a t thc
statement level)

Hides Graph:
Sl,S2 . S2,SJ

4 d

t '";,
S1,SS S5,SS

Figure 4.1. Sample Hides Graph

static analysis on a by name basis. If array C is nondeterministi-
cally assigned in S2, i t is automatically assumed that this will
erect the results of the teat on C in S3. However, it may be that
the one or more elements of C nondeterministically assigned are.
never actually used in the test in S 3 . In this case the race would
have been unnecessarily propagated. Since tracing gives the,
specific sets of elements used, and the references responsible for
the hides graph arc are either already being traced or could be
added to the list of references to trace, i t is possible that arcs
created on a by name basis could be validated by checking the
actual elements referenced. However, if races are unnecessarily
propagated because the arcs aren't validated'the user will receive
excessive warning messages, but no races will be overlooked.
Also, one would generally try and eliminate the root races before
attempting to deal with the propagated races. If this is done, the
falsely propagated races .will automatically fall out if the root
race is eliminated.

There is another case where one can get more accurate
results. In Figure 4.2 a race on A can prevent execution of the
references to B for some iterations of i. This causes an arc to be -

inserted in th'e hides graph since it cannot be determined whether
the race on B exists by tracing. If all references made to B in
both the false and true branches of the if are recorded regardless
of which branch is executed then all locations of B that could be
referenced are enumerated. By using this method one can detect
whether a real race on B could ever exist.

If static analysis of race conditions is good, much work can
be eliminated for the tracer. However, even if the static analysis
is suboptimal the final results from the trace analysis will not be
debased. Given two potential races A and B if the compiler
proves no raco on B, then the trace analyser will show no race on
B occurred. The only way Lo assume a race on B after doing that
trace a l ~ a l ~ a i a would be if rltcrc w.u a race on A and hides(A,llj
were true. If hidea(A,U) is true, then either the nondeterministic
variable from A was used in the subscripting of B, and the com-
piler would have been unable to prove no race for B, or the non-
deterministic variable from A affected the control flow around B,
in which case If "conditional hides graph arc testing" was per-
formed and showed a race then static analysis must also show a
race.

doall i=l,n
A[f(i)] =
if A[g(i)] then

B[h(i)] =
endif
= B[2i]

end doall

Figure 4.2. Testing of Conditional I.Iides Graph Arcs

Still t l~ere are several reasons to strive for accurate static
analysis. First, static analysis can ;significantly reduce the
amount of tracing needed. The more accurate the analysis, the
less one needs to trace. Second, the hides graph arcs are all built
upon statically generated data flow information. If the data flow
analysis is poor, the hides graph arcs will be excessively conserva-
tlve. Finally, results generated by static analysis are more gen-
eral than the results of tracing, because static analysis applies to
all'possible inputs while the trace only applies to the inputs of the
program traced.

Although trace reoults apply only to a single set of Input
data, if one were to Include variables which are set through read
rtatementr M noder in the hlder graph, one could then determine
if the occurrence of a race is aaected by a change in input data.

6. I rnp le rnenta t lon

AB stated in the introduction, the primary goal of this tool
is to ~ r o v i d e the user with knowledge about the nondeterminis~n
in his program to allow him to apply breakpoint debugging tech-
niques. This is accomplished in three phases: compile time static
analysis, runtime tracing and trace analysis. Since little user
interaction is needed for any of these phases and each phase could
potentially be very time consuming for a large program, a nonin-
teractive uscr interface is desirable. A prototype debugger using
these methods is being designed as a batch system. The user will
submit a job and wall for a listing containing information on the
races. If thin Information is acceptable, the programmer will be
able to proceed to an interactive debugging procoss. The interac-
tive debugger will support breakpoints. The information gen-
erated by this tool will allow the user to make judicious use of
brrakyulnls.

It was briefly mentioned before that the debugger will only
be able to support a limited set of synchroniration and task
spawning primitives. The prototype debugger will accept the fol-
lowing statements. For the purpose of splitting a single instruc-
tion stream into multiple threads of execution, a forking subrou-
tine call will be used. Synchronization between forked tasks is
currently under consideration. For executing the iteraf.ions of a
loop concurrently, the notation doall is used. The instructions
test and testact [MiPaEB] are used to guarantee ordering betwccn
references in concurrent loop iterations.

8. M e r g i n g T h e s e M e t h o d s w i t h B r e a k p o l n t Debugging

Debugging is the process used to determine why the output
of a program isn't what was expected. Serial debugging relies
heavily upon breakpoints. A breakpoint interrupts the execution
of a program and gives control to eitlter a user who will
examine/modify the program state or a debugging routine which
will save some portion of the program state in a trace file. If a
program is tound to be deterministic or is altered to be deter-
ministic then one can proceed with standard breakpoint debug-

ging techniques. If necessary one can even sequentidre the ur
cution by simulating a multiprocesror with a shgle proctwr.
However, if the program retains some nondeterminbm due rc
parallelism one must decide if breakpoint debugging ie stUI rppL
cable. Before one can evaluate the usefulness of brealtpoint~ Ln
parallel program one must decide what a parallel breakpout
docs. In a parallel program there are two possible implemea~
tions of a breakpoint, a local breakpoint that interrupts onb C
processor encountering i t and a global breakpoint that brings d
processors to a halt. Of these two choices the global breakpout
seems to be both more powerful and more dimcult to impltmeoc
One question irnmediatoly surfaces with global breakpoinb. Do.
it have to stop all processors immediately or can one allow come
amount of delay between the time Erst processor hi* the brtd.
point and the time the other processors are halted! If rll proco
sors must be stopped immediately either the debugger will requin
special hardware support or the machine will have to be tmp
lated. If the processors aren't stopped immediately they wlll brtc
an opportunity to modify the state, perhaps changing the I n l ~
mation in which one is interested. If a local breakpoint b hit
one processor each of the other processore will proceed until the1
reach a breakpoint, a blockin synchroniaation or the endl d
their in8lrurtion slreams. wilt an h tan taneoua global h td .
point on an asynchronous macltir~e each processor could be at u)
given point of progress in the execution of its instruction rlrtu
when the breakpoint in hit. The abillty to rtop the machlnt (Ira
the illuaian tha t one lrrrn pick r point to a b p bhs runclriue and w
what is going on. However, one La actually only picking the top
ping point for the processor oncountering the breakpoint. Tryin'
to make deductlone based on the current machine atatt b
dangerous, if t h a t machine state was randomly selected and IL
user has no information on how' that state was reached. kJ
breakpoints give the user precise control. With local breakpoipr
the user can independently choose where to stop each procew.
By using race analysis to determine where nondeterminirm i
introduced, the user can then place local breakpoints before t d
of the references involved in a race and determine what the eKn~
of the race will be.

7. Conelus lone

The purpose of a debugger t to aid a programmer in lwrk
ing code which causes unexpected behavior in an spplicrtlon. k
a parallel program, code which can introduce nondeterminum 'r
likoly to introduce unbxpeclell Irelravlor. By providing a methrp.
ism to automatically detect nondotsrmineim we hopa to aid &I
programmer in determining whether a problem l~ due r
incorrectly specified parallelism or a logical error. After dt
sources of nondeterminism have been identified, the user will k
able to proceed with breakpoint debugging techniques.

We would like to express our thankr to Sam MldkiK d
USIID, who inspired using data dependence information fw
debugging communicat:on problems. Thanks are also due to RPL
Cyt.mn of DM, who pointod out bhc uaefulrrsss uf databor
analysis. Dennis Gannon and William Jalby of CSRD providd
from their w r r y r a ~ l i ~ a l experlmce, many inslghrs on debuggi~~
Thanks also go to Williams Harrison for help in the preparr~iv:
of this paper.

t
REFERENCES

I

)hUll7] A.V. Aho, J.D. Ullman, Principles of Compiler Design,
Addion-Wesley, 1977

81nt79) U. Banerjee, "Speedup of Ordinary Programs", Ph.D.
nub, Univeraity of Illinois a t Urbana-Champaign, DCS Report
No. WCDCS-R-79-989, October 1979

PFMS831 F. Baiardi, N. De Francesco, E. Matteoli, S. Stefanini,
C. Vaglini, "Development of a Debugger for a Concurrent
L~aguage", Roceedinga of the A C M Sigsoft/SigpIan Software
Enqinarring Symposium o'n High-Level Debugging, pp 98-108,
Ao8.1983

jBoCpEB] M. Burke, R.G. Cytron, "Interprocedural Dependence
.halyais and Parallellaation," Roceedinga of the Sigplan Sympo-
rium on Compiler Construction, 1988

l$tr84] R.G. Cytron, "Compile-tlme Scheduling and Optimisa-
lion for hynchronous Machines", Ph.D. Thesis, University of Illi-
aoL at Urbana-Champaign, DCS Report No. UIUCDCS-R-84-
1177, 1984

pav181] J.R. Beckman-Davies, "Parallel Loop Constructs for
hlultlprocesaors," M.S. Thesis, University of Illinois i t Urbana-
Champaign, DCS Report No. UIUCDCS-R-81-1070, May 1981

[Fly11721 M.J. Flynn, "Some Computer Organiaations and Their
ERtctiveneas," IEEE Trans. on Cornputera, Vol. C-21, No. 9, pp.
948-980, Sept. 1972

ICait86] Jason Gait, "A Debugger for Concurrent Programs,"
Software-Practlce and Experience, 16, 539-664, June 1985

. .
(CGKM831 A. Gottlieb, R. Grishman, C.P. Kruskal, K.P.
hlcAuliffe, L. Rudolph, and M. Snir, "The NYU Ultracomputer -
Deoigning an MIMD Shared-Memory Parallel Machine," IEEE
Trans. on Computers, Vol. C-32, No. 2, pp. 175-189, Feb. 1983 ,
ICKLS831 D. Gajski, D. Kuck, D. Lawrie and A. Sameh,
'CEDAR - A Largc Sealc Multiprocessor", R o c . of International
Conference on Parallel Rocessing, 524-629, Aug. 1983

(Kuck78] David J. Kuck, The Structure of Computers and Com-
pololions Vol I., John Wiley & Sons, 1978

. (Kuck821 David J. Kuck, "High Speed Machines and Their Com-
i pilaro," Parallel Rocessing Systems, pp. 103-214, 1982

' Pa(LW80] D.J. .Kuck, R.H. Kuhn, B. Leasure, and M. Wolfe, I T b a Structure of an Advanced Vectoriser for Pipelined Proces-
Fourth Internotional Computer Software and AppIica-

Conjerence, Oct. 1980
1

' &mp78] L. Lamport, "Time, Clocks and the Ordering of Events
in Ditributed Systems", Comm. of the ACM, Vol. 21, no. 7, pp.
158-585, July 1978

WPnRfl] S.P. MidkilT, D.A. Padua 'Compiler Generited Syn-
thronisation For Do Loops', Rocecdings of the 1988 Inferna-
lional Con fercnce on Parallel Rocessing, pp 544-551, Aug. 1988

[Padu79] D.A. Padua, "Multiprocessors: Discussions of Some
Theoretical and Practical Problema," Ph.D. Thesis, University of
Illinois a t Urbana-Champaign, DCS Report No. UNCDCS-R-
79-99.0, Nov. 1979

[PaWoEB] D.A. Padua, M.J. Wolfe, "Advanced Compiler Optimi-
lations for Supercomputers," Communications of the A C M Vol.
29, No. 12, pp. 1184-1201, Dec. 1988

[Smit85] Edward T. Smith, 'A Debugger for Message-based
Processes', Software-Ractice and Ezpcrience, vol. 15, 1073-
1088, Nov. 1985

[Wo182] Michael J. Wolfe, timir miring Supercompilers for
Supercomputers", Ph.D. Thesis, University of Illinois, Report No.
UIUCDCS-R-82-1105, Oct. 1982

Bpr79) Glenford J. Myers, The Art of Software Testing, John
WUey & Sons, 1979

