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Abstract

Debugging on a parallel processor is more difficult than
debugging on a serial machine because errors in a parallel pro-
gram may introduce nondeterminism. The approach to parallel
debugging presented here attempts to reduce the problem of
debugging on a parallel machine to that of debugging on a serial
machine by automatically detecting nondeterminism.

1. Introduction

Parallel processors such as Cedar [GKLS83] and the NYU
Ultracomputer [GGKM83], also known as the MIMD [Flyn72| or
MES/MEA [Kuck82] class of machines, have great potential for
exploiting parallelism, but their flexibility also makes them more
difficult to program than single instruction stream machines. For
multiple processors to be able to cooperate on a problem they
require both communication and synchronization. Two models of
communication are message passing and shared memory. At first
glance, debugging in a message passing system appears easier
than debugging in a shared memory system. In a message pass-
ing system communication and computation are separate and dis-
tinet. All communications must be explicitly stated with primi-
tives denoting message send and/or message receive. In a shared
memory system the target of an assignment statement can be
thought of as a message send. A use of a variable can be thought
of as a message receive, In a message passing system one knows
when processors are communicating and which processors are
communicating together while in 2 shared memory system every
single shared memory reference is potentially 2 communication
{from any processor to any other or even all of the other proces-
sors, In a shared memory machine communications are a likely
source of error and these cowmunication errors are difficult to
detect using conventional breakpoint debugging techniques. To
detect a communication error using breakpoint debugging tech-
niques one must be able to detect the error by examining a
machine state that occurs shortly after the error. Because the
error depends upon the order of execution of instructions in
diferent instruction streams, it may occur infrequently, which
makes capturing communication errors difficult. This paper
presents methods which are being used in the design of a new
type of debugging tool. It is assumed that once the possible
sources of nondeterminism are identified the debugging process
can proceed by using methods similar to those used in conven-
tional debuggers. To detect nondeterminism, information gath-
ered during both compilation and exccution is used. Compile
time analysis relies upon the methodology originally developed
for dependence testing [Bane78] [Wolf82]. During execution a
trace is made which is used to refine the compile time informa-
tion.
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Throughout this paper, code refers to the instructions to be
executed. Input is the set of values that'is used by the code but
not generated by it. This includes values obtained through I/O
statements, values generated by OS services such as the time
function, and even values of variables which are used before they
are defined. A program is considered to be both code and input
taken together as a unit. Two programs are the same only if
both the code and the input are the same. Thus when speaking
of multiple runs of a program it is implied that the input must be
held fixed for a given piece of code.

A deterministic program is one in which the behavior of
the program is always the same from one run to the next. A For-
tran program executed sequentially is deterministic. The instruc-
tions of a serial Fortran program have a fixed meaning, and exe-
cute in a fixed order. If the behavior of the code changes, it must
be due to changes in the input and by the above definition of a
program we have different Fortran programs. A parallel Fortran
program can be nondetermintstic. Although the instructions of
a parallel Fortran program are the same as those doing the com-
putation in a serial Fortran program, the instructions of the
parallel program execute on asynchronous processors and may
have no order guaranteed. Consider the concurrent instruction
streams of Figure 1.1 accessing the same locations in shared
memory. In a doall loop each iteration of the loop is independent
and can be executed as a separate process, which can proceed in
any order. In Figure 1.1, assume that array A was initialized to
zeroes before this loop. At the termination of this loop, each of
the locations 2 through N of array b could either have the value
i-1 (if the write of A[i] occurs before the read of Ali]) or the value
0 (if the read of A[i] occurs before the write of Ali]). If th?ﬂn?)
gram was deterministic up to this point, we now have 2
different machine states possible at this point. The great explo-
sion of machine states prohibits one from enumerating all possi-
ble paths a nondeterministic program can take.

doall i=2,N

sl: Alil =i

82: bi] = Afi-1]
end doall

Figure 1.1. Nondeterminism of Concurrent Instruction Streams

2. Dependence-Driven Debugging

A common desire of people working with distributed sys-
tems is to be able to run a parallel program using some mechan-
ism to determine the ordering of events as they execute. It is also
important that the mechanism doesn’t substantially change the
execution ordering of those events [BFMS83|. This has also been
called the probe effect [Ga.i¢85]. One mechanism suggested to
provide information on the execution ordering is timestamping
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[Lamp78]. Because every memory reference in a shared memory
machine can be a communication, it is natural to want to treat
each reference as an event. In this approach, one would have to
record a timestamp from a clock to mark when each reference
was made. Machine instructions don’t execute at a fixed point in
time; their execution spans many machine clock cycles. Depend-
ing on the connection scheme between processors and memory, it
is even possible that memory requests to the same location will
not be serviced in the same order that the requests were gen-
erated. Thus timestamps would need to be generated at the
memory modules for each reference instead of being generated at
the processors and associated with the instructions.

Instead of attempting to determine the order in which
events occur, one can attempt to determine whether the effects of
a given pair of events depends on order. Communications on a
shared memory multiprocessor depend on order and these com-
munications can be detected using the methods of data depen-
dence analysis originally developed for restructuring compilers
[KKLWS80] [PaWo868]. Given two array references both within a
set of nested loops, data dependence lesting answers the question
of whether the two array references are dependent, i.e. whether
they will access any common locations, and if so, In whal urder
do they access those common locations.

2.1. Terminology for Classifying Dependences

Restructuring compiler writers make a distinction between
flow, anti and output dependences [PaWo86]. A flow dependence
is the relationship between a definition and a use of a variable
such that a value of the variable flows from the definition to the
use. An anti-dependence is the relationship between a use and a
definition of a variable such that the use precedes the definition
which destroys the current value. An output dependence is the
relationship between two definitions of a variable such that one
definition of the variable supercedes the previous definition. To
restructure a Fortran program for execution on a parallel
machine, care must be taken to preserve the order of dependent
references. When debugging it is useful to know the fact that
communication exists between a given definition/use or
definition/definition pair. If an order of the references isn’t
guaranteed the fact that there is communication will introduce
nondeterminisin. The word dependence implies an order. For
example A depends on B imphes B must occur before A can
occur, Within a parallel program, il no order for a pair of refer-
ences to the same location is forced then a race condition exists
for the reference pair, and the relationship between the pair is
called a data race. Consider the parallel loop of Figure 1.1. If
one interprets the loop as a serial loop then the values would flow
from an earlier iteration to the following iteration. But it is not
a serial loop. Calling the pair of references to array A a "flow
dependence” suggests that one wants data values to "flow" from
one iteration to the next, and that the loop should be serialized to
honor the dependence. It may be that the programmer actually
desired the race with no preferred ordering of iterations. The
assumption that a program would be corrected if all doall’'s with
races are replaced by serial Do’s is not correct. If the references
come not from a loop, but from blocks of concurrent code, then
there is nothing to indicate which if any of the possible serial ord-
erings would be preferred. A debugger’s purpose is to provide a
programmer with a convenient means to study a program’s
behavior. Data races are a good place to focus one’s attention.
They are likely to be errors because of the nondeterminism they
can introduce, but the determination of whether the synchroniza-
tion is correct or not will be left up to the programmer.
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The term ’read/write race’ will be used to indicate unor
dered communication between a use/definition pair, Two unor
dered definitions of the same location will be called a 'write/write
race’. Note that a race doesn’t exist for two reads to a shared
location since the result will be the same regardless of the order
they occur. Read/write and write/write races are collectively
referred to as data races. If synchronlsation in the: parallel ver
sion preserves the ordering of a pair of references to the same
memory location then it isn’t a race, it is a dependence. If one ls
unable to tell whether a pair of unordered references access the
same location then it will be termed a potential race.

Data races may or may not exist for the same code depend-
ing on the input given to the code. However, if a data race exisy
in a program it may be detected regardless of whether the pro-
gram executes correctly or not for a given run, When called with
the array A the bubble sort in Figure 2.1 will always work
correctly regardless of the order that the iterations are performed
in the doall loop. The reason that it will always work correctly s
that due to the values in array A no iteration of the doall ever
writes a location that another iteration also reads or write.
Using just the data of array A one is unable to detect by tracing
the pousibility of arrar through a data race because no data race
can occur. The program could still execute correctly with the call
on array B if the iterations occurred in the same order that they
would if the loop was serial. However, with array B multiph
ileralions of the doall rcad and write the same locations and 4
data race exists. This can be detected regardless of whether the
particular run executes correctly or not.

data N/4/, A/2,1,4,3/, B/.4,2,1,3/

call sort(N,A)
call sort(N,B)

subroutine sort(N,X)
integer N, X[]
do i=1,N-1

doall j=i+1,N

if (X[j-1] > X[j]) call swap(X,j)
endif

end doall

end do

Figure 2.1. A Working? Parallel Bubble Sort

Some data races can be detected at compile time using the
techniques of data dependence testing while taking into con.
sideration the synchronisation instructions. Static data depes.
dence testing is conservative. The technique is to try a series of
tests in an attempt to prove independence of a pair of references.
If independence is never proven then dependence is assumed.
This guarantees all dependences are found. One can also test ia
the opposite manner. Instead of attempting to prove indepes.
dence one can attcmpt to prove that two references access the
same location. If dependence testing is applied to an unordered
pair of references, then a lest which would indicate dependence
for ordered references indicates the possibility of a race condition
Races discovered which can be proven in this way, will be calld
static races. An example of a static race is the pair of references
to array A in Figure 1.1, if N can be statically determined to b
greater than 2. The remaining races found, those assumed
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\ecause independence could not be proven, may or may not really
atist. These will be referred to as potential races. An example of
1 potential race is the use of array X in Figure 2.1 and the call to
mbreutine swap which has access to array X. By tracing refer-
nces lo memory, one can determine if potential races really are
nees. If a particular location is actually read and written or
voltiply written from separate instruction astreams between
pints of synchronisation a race is indicated. Races found at run
time will be called dynamic races or simply data races. If the
jrogram in Figure 2.1 were traced, the call to sort with array B
would produce both a write to X[2] in iteration j=2 of the doall
d a read to this same location from iteration j=3, which would
b an example of a dynamic race.

Using static analysis, one can learn a lot about the flow of
dita through Fortran code., To get exact information one must
stually execute the code over a set of input data and record the
rults through tracing. Currently, data dependence testing can
esly be done practically if the subscript expressions are linear
Inactions of do loop indices or linear induction variables. Also,
wcurate testing can only be done if the lower and upper bounds
of the inductive sequences are known. What is needed is a way to
teine the information generated at compile time with informa-
tion gathered at run time.

I. Finding Data Races Through Tracing

Tracing is a powerful debugging mechanism. For a given
i of data, one can get complete information on the behavior of
s program by tracing everything that the program does. If the
program is deterministic then a trace can be an exhaustive
duscription of that program. Tracing of this nature is expensive.
I» addition to.the resources required to generate and save a com-
plete trace, the data generated can be very time consuming to
wnalyse. It is possible to limit the amount of tracing in this sys-
tem since we are concerned only with proving or disproving the
eaistence of potential data races. To detect data races through
\ricing, memory references, task spawning instructions (doall,
fork) and synchronisation instructions must be recorded as they
ue executed. A data race is indicated by a read and a write or
tvo writes to the same memory location by different instruction
rtreams where those instruction streams have no synchronisation
otdering them.,

The example of Figure 3.1 shows a hypothetical trace of a
program. The instruction test z will wait until z is greater than
the iteration number minus the dependence distance specified in
the testset Instruction. Figure 3.2 shows a structure representing
iachronisation of statements in the sample trace. Downward
ses Indicate statements that are synchronised by virtue of
belonging to the same instruction stream. Horisontal ares indi-
esle statements that are synchronised through synchronisation
slalements. II a directed path exists between two statements,
they are synchronised. If no directed path exists between two
writes or a read and a write to the same variable then a race con-
dition exists, These race conditions may then be presented to the
user either graphically or textually. The references in the trace
are grouped according to instruction streams. The number of
processors used to generate the trace makes no diflerence, because
the instruction streams are determined according to the state-
ments which control the spawning and synchronisation of instruc-
tlon streams and not according to what Is executed on which pro-
cessor. In this case we can see that with the testset distance
d=2?, iterations 1 and 2 {each of which is a separate instruction
stream) have no synchronisation and thns there are several race
conditions between them. There are no races for d=1, even
though a4 of each iteration is unsynchronized with the statements
of lollowing iterations, because no common locations are read and
written by these statements.
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integer A[3], B[4]

data A/1,2,3/, B/1,2,3,1/

doall i=1,3

sl:  test (x)

2 AB[i] = A[Bfi+1]

83:  testset (x) d

s4:  B[i] = sum(A, BJi])

end doall

function sum(vect, len) "
integer sum, len, vect[len]

sum = 0
do i=1,len

sum == sum + vecti]

end do
return

Sample Trace:

enter doall
iteration 1
sl: test x

82: read B[2)
82: read A2}
82: read B[1)
82: write A[1}
83: testset x d
84: read B[1}
84: read vect|1)
84: write B(1}
end iteration

iteration 2

8l: test x

s2: read B[3]
82: read A[3)
82: read B[2]
82: write A[2)
83: testset x d
s4: read B(2}
84: read vect|i]
84: read vect(2]
s4: write B[2] .
end iteration

iteration 3

sl: test x

82: read B{4]
82: read A[1}
82: read B3]
82: write A[3]
83: testset x d
s4: read B[3]
s4: read vect|1)
84: read vect(2]
84: read vect[3]
41 write B[3]

end iteration
exit doall

Figure 3.1. An Example of Tracing

8.1. Synchronization

To be able to detect nondeterminism in a parallel program,
one must be able to recognize instructions which spawn multiple
processes and the aynchronization - used neceds to be
understandable. Therefore, it is necessary to limit the primitives
which will be accepted by the debugger. Synchronisation that is
unrecognized by the debugger is not catastrophic. The debugger
will simply report all reference pairs which may be in races
without synchronisation. Unrecognited synchronization may
increase the number of warnings but it will never cause races to
go unnoticed. ’ :

3.2. Tracing Memory Refcrences

To record a memory reference, both the address referenced
and the identification of the reference’s lexical occurrence are
needed. The address is needed to easily pick up conflicts that
occur through aliasing, Actually, it is unnecessary to regord the
lexical occurrence of every variable referenced. A useful optimi-
sation is to record basic block [AhUI77] numbers instead of indi-
vidual references. At the entry point of each basic block, an
integer that uniquely identifies that basic block will be recorded.
Within the basic block there is a fixed number of references to be
made, and they occur in a fixed order. Once a basic block is
entered all of these references must be made. The only additional
information needed to record the exact set of memory addresses
referenced is the values of the indexing functions of arrays. By
applying common subexpression climination to the indexing fune-
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When testset distance d=1:
No race conditions.

When testset distance d==2:

Races.
82: read of Af2] in iter. 1 and 82: write A{2] in iter. 2
82: write of A[1] in iter. 1 and s2: read vect[1] in iter. 2
82: read of B[2] in iter. 1 and s4: write B[2] in iter. 2

Figure 3.2. Analysing Sample Trace

tions, only the values ol unique indexing functions need be
recorded. Without recording basic block numbers one would
have to trace scalars in addition to arrays. If the reference to a
scalar was controlled by a conditional then the reference may or

may not be in race with another lexical reference to the same

scalar. However, by recording basic block numbers one has exact
Information concerning all scalars referenced. Recording basic
block numbers to indicate what has been traced requires that the
compiler build a table of basic blocks, where the entry for each
basic block is a table of array references corresponding to the
trace statements added for the indexing functions of those arrays.
Recording basic block numbers moves work from run time to
compile time. The compiler needs only to generate information
of sise proportional to the number of lexical references while one
have to record information of sise proportional to the number of
dynamic references in the trace. '

8.8, Analysing the Trace

One can do even better when tracing if some form of data
compression is used. An example of this would be recording
references in vector notation instead of on an element by element
basis when it is obvious that an entire vector is going to refer-
enced. This approach seems difficult to implement. When deal-
ing with multi-dimensional arrays, one could record some sub-
scripts in vector notation, but this may result in no savings at all
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il any subscript is nonlinear with respect to the innermost loop.
In that case the nonlinear subscript-would have to have its valut
recorded for every reference, generating just as much trace infor
mation as recording the value of the linearised indexing funcrics
for each reference. Even more important than saving duris

trace generation, using some form of vector notatlon also sare -

during trace analysis. Given two groups of references, il bo
groups of references are represented in vector syntax then the test
for intersection is reduced to a single test for vector intersectios.
A reasonable compromise between the difficulty of handling tbe
recording of references in vector notation and the benefits of
doing so is to record all references on an element by element
basis, and then construct vector notation before doing interse-
tion testing. Constructing vector notation would be done )
grouping all of the references generated by each lexical reference
into vectors grown as large as possible during a single linear puw
over the list of basic blocks executed. One can then test for inter
section between two lexical references quickly by testing for intern
section between the lists of vectors they referenced.

To actually detect races, a graph with two types of arés will
be built during static analysis. Each node of the race grpt
would represent a basie block ahd s scalar race arc would be
placed between two nodes if a potential read/write or weite/wriu
race exists on any scalar if the two basic blocks were executed
concurrently. The arc would be labeled with the lexieal identities
of all scalars involved in races between the basie blocks: Aicé ue
also created for array references. Array race arcs have the addi
tional information of pointers to the locations of the array which
are referenced. A race exists if both basic blocks representing the
two ends of an arc appear in concurrent instruction streams and
if the arc was for an array there must be an intersection betwees
the locations referenced.

4. Using Dataflow Analysis to Direct Tracling

It is possible to guarantee that a program is free from data
races through information gathered at run time. The program is
deterministic until the first data race occurs thus, one b
guaranteed of Loding the Dist sace. It will always occur U &
exists. However, once the frst race occurs, nondeterminism i
introduced into the program and without further information ane
can no longer assume that any further results generated through
tracing are accurate. This might not be a terrible limilation U
the program being debugged does not require or is unable to take
sdvanbage of nondeterinisim, Byen so, thls would still Umlt vee
to correcting data race errors one at a time. This is unacceptable
since each trace can be expensive to generate.

4.1, The 'Hides' Relation

The difficulty of detecting multiple races at once lies in the ‘

fact that the races found introduce nondeterminism and a partic.
ular execution order may hide other races from the view of the
tracer by preventing the occurrence of the race condition. For
each data race therc is s single variable or array element whick
ends up with a nondeterministic value, If the race is a read/write
race then the nondeterministic varlable 1s the varlabls which
receives the value of the variable read. If the race is
write/write race, the variable Involved in the race is the non
deterministic variable. If it is known where the nondeterministic

variable is used, the effects of the nondeterminism can be isolated, -

A test is needed that will indicate the possibility of one race
hiding another race in the remainder of the trace. Although 1
exact test would be optimal, it is sufficient to be conservative.
The test is conservative if it can guarantee that all data races are



found, but it may indicate races that do not exist. To do the
static data race testing data flow analysis must be done. The
same information can be used to determine the effects of the race.
One race can hide a second race if it affects the locations refer-
enced in ‘the second race. If, for example, the second race
involves an array, and if the nondeterministic variable of the first
race was involved in either indexing function of the second race
(either directly or through a chain of defs to uses) then the second
race might not occur depending on the order of the references in
the first race. Another way one race can hide a second race is if
the nondeterministic variable of the first race appears in a control
expression which can determine whether either reference of the
second race is executed.

4.2, The Hides Graph-

To deal with the problems Aiacussed above we will use a

graph whose purpose is to determine which of the potential races
exist or must be assumed because tracing is unable to disprove a
race condition. Let the static and potential races be the nodes of
this graph. The arcs of this graph will represent the hides rela-
tion being true between two nodes. The nodes which represent
actual races (races which are proven or cannot be disproven) will
be marked and reported to the user. Th xela.]ion hides(A,B)
)

means that the occurrence of ‘race A = Si S. | can eflect the
£

occurrence of a potential race B = [Sx Sy where S_ is a state-

ment which is involved in the race. This relation is also com-
puted in a conservative manner (i.e. if it can not be disproven the
relation is assumed to be true).

Let the races be the nodes of a hides graph. For cach node
A which is a potential or static race and each node B which is a
potential race, a directed arc is placed from A to B if hides(A,8)
is true. All nodes representing static races will be marked. All
nodes which are at the head of an arc represent races which could
be hidden by the node (race) at the tail of the arc so they must
ilso be marked since tracing cannot disprove the possibility of a
rtace. The marks are iteratively propagated along all arcs until
no additional nodes can be marked. The set of nodes marked
through the above propagation need not be traced. After tracing
the unmarked nodes, all nodes which were found to be races
through tracing are marked. The marks must be propagated
a1gain. All marked nodes are assumed to be races and as previ-
ously stated, are reported to the user. The user will also be told
why each race is being reported, i.e. whether the race was found
statically, was assumed because it was hidden by a static race, it

was found dynamically through tracing, or it was induced -

dynamically.

In Figure 4.1 there are only potential data races. There-
fore, there actually is the possibility that this loop could run
determiulstically as a doall. At first glance, the potential race
54,54 looks like a static race, but since the execution of this state-
ment is conditional, no race condition may ever occur. Potential
races 51,52 and S2,53 are not hidden. They need to be traced. If
3 race occurs in either case, every potential race must be assumed
by propagation through the hides graph. If no races were
detected, then the potential race s4,54 would need to be traced.
This trace could be performed at the same time as the previous
trace or it could be traced on a different run. The potential race
1434 can be traced on a separate run because everything on
which this race depends has been proven to be deterministic since
no races were found on any of its incoming arcs. This process
continues until the nature of each potential race in the hides
graph has been determined. One simplifying assumption that
could be improved is the propagation of a race across every arc-of
the hides graph, The arcs of the hides graph are built during
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- doall i=1,n
s1: A[f(i)] = Bli] + Cli
s2:  Cli] = Alj]
83: if (C[g(i)] > n) then
S4: Eli) = Efi-1}
85: BI[Eli]] = Bli]
end doall

Static Data races: none

Potential Data races: 81,52 §1,S5 52,83 54,34 85,85
{actually these should be at the reference level and not at the
statement level)

Hides Graph:
S$1,52 © 82,53

Vv ¥
54,84

vy

S1,85  S5,S5

Figure 4.1. Sample Hides Graph

static analysis on a by name basis. If array C is nondeterministi-
cally assigned in S2, it is automatically assumed that this will
effect the results of the test on C in §3. However, it may be that
the one or more clements of C nondeterministically assigned are
never actually used in the test in $3. In this case the race would
have been unnecessarily propagated. Since tracing gives the
specific sets of elements used, and the references responsible for
the hides graph arc are either already being traced or could be
added to the list of references to trace, it is possible that arcs
created on a by name basis could be validated by checking the
actual elements referenced. However, if races are unnecessarily
propagated because the arcs aren't validated the user will receive
excessive warning messages, but no races will be overlooked.
Also, one would generally try and eliminate the root races before
attempting to deal with the propagated races. If this is done, the
falsely propagated races -will automatically fall out if the root
race is eliminated. :

There is another case where one can get more accurate
results. In Figure 4.2 a race on A can prevent execution of the
references to B for some iterations of i. This causes an arc to be
inserted in the hides graph since it cannot be determined whether
the race on B exists by tracing. If all references made to B in
both the false and true branches of the if are recorded regardless
of which branch is executed then all locations of B that could be
referenced are enumerated. By using this ‘method one can detect
whether a real race on B could ever exist.

If static analysis of race conditions is good, much work can
be eliminated for the tracer. However, even if the static analysis
is suboptimal the final results from the trace analysis will not be
debased. Given two potential races A and B if the compiler
proves no race on B3, then the trace analyser will show no race on
B occurred. The only way to assume a race on B after doing that
trace analysis would be if there was a race on A and Aides(A,l))
were truc. If hideafA,D) is true, then cither the nondeterministic
variable from A was used in the subscripting of B, and the com-
piler would have been unable to prove no race for B, or the non-
deterministic variable from A affected the control flow around B,
in which case If "conditional hides graph arc testing” was per-
formed and showed a race then static analysis must also show a
race.



doall i=1;n
Al =
it A(g(i)] then
BIh(i)] =
endif -
= B(2i]
end doall

Figure 4.2. Testing of Conditional Hides Graph Arcs

Still there are scveral reasons to sirive for accurate static
analysis. First, static analysis can :significantly reduce the
amount of tracing needed. The more accurate the analysis, the
less one needs to trace. Second, the hides graph arcs are all built
upon statically generated data flow information. If the data flow
analysis is poor, the hides graph arcs will be excessively conserva-
tive. Finally, results generated by static analysis are more gen-
eral than the results of tracing, because static analysis applies to
all possible inputs while the trace only applies to the inputs of the
program traced.

Although trace results apply only to a aingle set of input
data, if one were to include variables which are set through read
statements as nodes in the hides graph, one could then determine
if the occurrence of a race is affected by a change in input data.

6. Implementation

As stated in the introduction, the primary goal of this tool
is to provide the user with knowledge about the nondeterminisin
in his program to allow him to apply breakpoint debugging tech-
niques. This is accomplished in three phases: compile time static
analysis, runtime tracing and trace analysis. Since little user
interaction is needed for any of these phases and each phase could
potentially be very time consuming for a large program, a nonin-
teractive user interface is desirable, A prototype debugger using
these methods is being designed as a batch system. The user will
submit a job and wait for a listing containing information on the
races. If this information is acceptable, the programmer will be
able to proceed to an interactive debugging process. The interac-
tive debugger will support breakpoints. The information gen-
erated by this tool will allow the user to make judicious use of
breakpolnts. ’

1t was briefly wentioned before that the debugger will only
be able to support a limited set of synchronisation and task

spawning primitives. The prototype debugger will accept the fo)- .

lowing statements. For the purpose of splitting a single instruc-
tion stream into multiple threads of execution, a forking subrou-
tine call will be used. Synchronization between forked tasks js
currently under consideration. For executing the iterations of a
loop concurrently, the notation doall is used. The instructions
test and testset (MiPa86] are used to guarantee ordering between
references in concurrent loop iterations.

8., Merging These Methods with Breakpoint Debugging

Debugging is the process used to determine why the output
of a program isn't what was expected. Serial debugging relies
heavily upon breakpoints. A breakpoint interrupts the execution
of a program and gives control to either a user who will
examine/modily the program state or a debugging routine which
will save some portion of the program state in a trace file. If a
program is found to be deterministic or ia altered to be deter-

ministic then one can proceed with standard breakpoint debug-
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ging techniques. If necessary one can even sequentiallse the ae
cution by simulating s multiprocessor with a single processr.
However, il the program retains some nondetorminism due i
parallelism one must decide if breakpoint debugging is still apph.
cable. Before one can evaluate the usefulness of breakpoints la
parallel program one must decide what a parallel breakpoizi
does. In a parallel program there are two possible implemeats
tions of a breakpoint, a local breakpoint that interrupts only tt
processor encountering it and a global breakpoint that brings
processors to a halt, Of these two choices the global breakpoiat
seems to be both more powerful and more difficult to implemest
One question immediatoly surfaces with global breakpoints, Doa
it have to stop all processors immediately or can one allow some
amount of delay between the time first processor hits the breal.
point and the time the other processors are halted? If all proces
sors must be stopped immediately either the debugger will requin
special hardware support or the machine will have to be e
lated. If the processors aren’t stopped immediately they wlll base
an opportunity to modify the state, perhaps changing the hnfon
mation in which one is interested. If a local breakpoint is hit b
one processor each of the other processors will proceed until the)
reach a breakpoint, a blocking synchronisation or the ends of
their instruction streams. With an instantancous global breal.
polint on an asynchronous machine each processor could be at s
given point of progress in the execution of its instruction stzean
when the breakpoint is hit, The ability to stop the machine gira
the illusion that ane can pick a point to akep the machine and we
what is going on. However, one is actually only picking the stop.
ping point for the processor encountering the breakpoint. Trying
to make deductlons based on the current machine state &
dangerous, if that machine state was randomly selected and W
user has no information on how that state was reached. Loca
breakpoints give the user precise control. With local breakpoisu
the user can independently choose where to stop each processor.
By using race analysis to determine where nondeterminiin ¥
introduced, the user can then place local breakpoints before esch
of the references involved in a race and determine what the eflxy
of the race will be.

7. Concluslons

The purpose of a debugger is to ald & programmer in loat
ing code which causes unexpected behavior in an application. Iy
a parallel program, code which can introduce nondeterminism
likoly to introduce unexpecied beliavlor. By providing a mechaa.
ism (o automatically datect nondeterminsim wa hope to aid &
programmer in determining whether a problem i3 due w
incorrectly specified parallelism or a logical error. After b
sources of nondeterminism have been identified, the user will bt
able to proceed with breakpoint debugging techniques.
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