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Throughout thb paper, code retan k the inatructions to be 
Abstract executed. Input b the net of valuer that in ured by the code but 

not generated by it. Thit includsr value8 obtained through I/O 
Debugging on a parallel p m c w ~ ~ ~ r  b more difficult than statements, valuw generated by OS mr~icea such M the tima 

debugging on a rerid machine bwaure error8 in a parallel pro- function, and even vduea of vuiablw which us wed before t h q  
pun may introduce nondetermintm. The approach to puallel w de5ned. A program is conridwed to be both code and input 
d@bu&ng prerented here atbmpk to reduce the problem of taken together M a unit. Two programs are the name only if 
debugging on a parallel machina to that of debugging on a rerid both the code and the input u e  the same. Thur when speaking 
mrcbine by automatically detecting nondeterminism. of multiple rum of a program it b implied that the input must be 

held 5ced for a given piece of code. 

Parallel proeouorr ruch u Cedu [GKLS83] and the NYU 
UItacomputu [GGKM83], rto known u the MIMD (Flyn72) or 
M&S/MEA puek82] clur of machinas, have pea t  potentid for 
aploitia(r pud&m,  but thelr Bcuibility makes them more 
dUBcdt to proyarn than single inrtruction rtream machines. For 
multlplo pmceuors to be able to cooperate on r problem they 
r c q u h  both aommunication and rynchroni~atlon. Two model8 of 
communication are menage pauing and shared memory. At Rmt 
dmce, debugging in a marrage puring ayrtem appears assier 
Brn debugging in a shared memory ryrtem. In a message pass- 
ing ayrtam communication and computation u e  separate and dis- 
tinct. All communieatlonr must be explicitly stated with primi- 
titm denoting marrage nand and/or merrage receive. In a shared 
mmory wtem the target of an auignment rtatement can be 
thought of u a massage rand. A use of a variable can be thought 
of u a message rercive, In a maurge pauing rystem one knowa 
when processon are communicating and which proeeraore u e  
commudcatlng together while in a shared memory ayrtmm evwy 
dngle @hued memory reference h potentially a cornmunicrtion 
from an7 proearnlor to any other or even a11 of the other procab 
con. In r rhued memory machine communicationr are a likely 
(Our- of ermr md thwe communicati~n errcrrr me difficult to 
dekt oliag conventiond breakpoint debugging techniques. To 
d t k t  a eommunieation error wkrg breakpoint debugging tech- 
alqaen oae mart be able to daket the error by examining. a 
muhlne rtate that occurs rhortly after the error. Becaure the 
tnor dependc upon the order of axecution of instructions in 
ditwnt inrtruction rtrarmr, it ma7 occur infrequently, which 
mrkcr captwbg commtlnication errorr dif8cult. Thu paper 
pr-b methodr which u e  being wed in the derlgn of a new 
typo of debugging tool. It b urumed that once the porrible 
sourcan of nondetarminism are identaed the debugging procw 
era proceed by wing methodr rimilar to thora ured in conven- 
tiand deburnerr. To detect nondetarminirm, information gath- 
end during both compilation and execution b ured. Compile 
Mms analpla reller upon the methodology originally developed 
lor depaadenea tarting [Bane791 wolf82]. During execution a 
trace L made which b used to refine the compile time informs- 
tion. 

A deteminirtie program is one in which the behavior of 
the program b always the name from one r m  to the n d .  A For- 
tran program exacutad requentially b determinktic. The inam* 
tionr of a rerid Fortran program have a fixed mecntng, and rrc 
cute in a 5xed ordw. If the behavior of the code c h u r p ,  it murt 
be due to changer in the input and by the above d&tion of a 
program we have di8erent Fortran progrunr. A p u d e l  Fortran 
program can be nonLkmQGtSe. Although hho htructlon, of 
r parallel Fortran program u e  the rame u thore doing the corn- ' 

putation in a rerial Fortran program, the inrtructionr of the 
parallel program execute on asynchronour procerrorr and may 
have no order guaranteed. Uondder the concurrent inntruetion 
ntreamr of Figure 1.1 aceerring the same locations in shared 
memory. In a doaIl loop each iteration of the bop b independent 
and can be executed M 4 reparata proce~,  which un proceed in 
any order. In Figure 1.1, suume that array A waa initidired to 
rarou before thb loop. At the termination of thk loop, each of 
the locations 2 through N of uray b could either have the value 
1-1 (if the write of A[il occun before the read of A[i]) or the value 
0 (if the read of A[i] occurt before the write of A[i]). If t h ~ r p q  
gram w u  determinltic up to thin point, we now have 2 
diaerent machine rtatw pmible at thii point. The great explo- 
rion of machine rtatw prohiblta one from enumerating all p o d  
b b  p a t h  a nsndsknninirtlc progrw can Lrke. 

doall i=2,N 
rlt  A(i] = i 
82: bIij - A(i-11 

end doall 

Figwe 1.1. Nondetanninbm of Concurrent htruction Strarnu 

A common desire of people working with diitributed rye 
temr h to be able to run a puallel program using mme mechan- 
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[Lamp78]. Becaure every memory reference in a rhued memory 
machine can be a communication, it  la natural to want to treat 
each reference u m event. In this approach, one would have to 
record a timwtunp from a clock to m u k  when each reference 
w u  made. Machine instructions don't execute at a 5%ed point in 
timet thelr execution rpana many machine clock cyclw. Depend- 
ing on the connection =heme betwwn procouon and memory, it 
Ir even porrible that memory nqu-k to the rune l o c a t h  will 
not be nrviced in the rune order that the r e q u ~ t a  ware gen- 
erated. Thur timartampa would need to be generated a t  the 
memory modular for each reference inatead of being generated at 
the procerrorr and .uocl.ted with the inrtructionr. 

Inrtead of attempting to determine the order in which 
eventa occur, one can attempt to determine whether t b  efPwta of 
a given pair of eventr depends on order. Communications on a 
ahued memory multiprocerror depend on order urd there com- 
municationr can be detected uring the methob of data depen- 
dence analyst originally doveloped for rertructuring wmpilerr 
m W 8 0 ]  (PaWo86j. Given two uray reference8 both within a 
art of nertlrd lwpr, data dapervlerrcr tortlag anrwarr tho quortion 
of whether the two array referencar are dependent, i.e. whether 
they will accerr any common it%C&ti&ar, m d  If so, In whab urder 
do they u c e r  thwe common locations. 

2.1. Tsrmlnology for Qlssslfying Depnndences 

Rertructuring compiler writers make a diitinction between 
flow, anti and output dependences [PaWo86]. A Bow dependence 
b the relationship between a definition and a use of a variable 
ruch that a value of the variable Bows from the deanition to the 
ure. An mti-dependmce is the relationship between a use and a 
definition of a variable ruch that tha use prsrcder the definition 
which dartroya the current value. An output dependence t the 
rdationship between two definitionr of a variable ruch that one 
definition of the variable rupercedw the previour definition. To 
restructure a Fortran program for execution on a parallel 
machine, c u e  murt be taken to prwerve the order of dependent 
references. When debugging it  la urefui to know the fact that 
communication ewirta between a given dehition/ure or 
ddnitlon/definition pair. If m order of the referensea isn't 
guaranteed the fact that there ia communication will introduce 
nondeterminism. The word dependence lrnpliea an order. For 
example A dcpcndr on ti impUU B Bubt M C U ~  before A can 
&cur. Within a parallel program, if nu etder for a pair of refer- 
eneor to the name lwatlon ir forced then a roes conditbn @ta 
for the reference pair, and the relationahlp between the pair ir 
called a data race. Condder t l ~ e  parallel loop of Figure 1.1. If 
one interpret8 the loop u a serial loop then the valuer would Bow 
from m aulier iteration to the following iteration. But it ir not 
a aerial loop. Calling the pair ot referencer to urs). A a *flow 
depond9oce" nrggcsk that one wants data valuer to "fiow" from 
one iteration to the n u t ,  m d  that tha Imp bhould be rerirllred to 
honor the dependence. It may be that the programmer actually 
d d e d  the race with no preferred ordering of itarationr. The 
urumption that a program would be corrected if d i  d d i 8 r  with 
racar u e  replaced by rerial Do's is not correct. If the referencar 
come not from a loop, but from block8 of concurrent code, then 
tbrr  is nethhg to indi~sta whieh if my of the poaaibb ~erial ord- 
uingr would be preferred. A debugger'a p u r p o ~  t to provide a 
programmer with a convenient meam to rtudy a progrun8r 
bhvior .  Data rues  u e  a good place to focur one'r attention. 
They u e  likely to be errorr becaure of the nondekrminiim they 
can introduce, but the determination of whether the rynchronir* 
tion b wrrect or not will be left up to the programmer. 

The term 'read/write race8 wlll be used to indicrk unm 
dered communication be twm a u ~ / d e R n i t h  pair. Two unw 
dered deanitiona of tho rune h t l m  wlll be d a d  r 'wrik/wtlk 
rum8. Note that a race doe8n8t ukt for two r e d  to r bed 
location nbcr the m u l t  4 ba the 88m8 r e ~ u d l w  of Uc 0 t h  
they occur. R.ul/wrik d nrik/nrik racm ur adktholj 
referred to u d a b  r-. U in Chr.p~dId vw 
Jon prommas the o r d e r b g o f r p &  o f ~ d ~ w y t o U I w u  
memory locrtion then it b a t  a ram, it L r depmdona If ow O 
unable to tsll whether 8 pair of unordered rdemncm acmn C 
m e  location then it WUI be krmed a pokntial w e .  

Data racar may or may not exist for the same coda depord 
ing on the input &en to the coda Ho'~.ver~ 11 r data rrcr e x i ~ t ~  
in a p w r u n  it may be dekctod mgudlru of whatha the pro 
y u n  amcutw corraco or not for r given run. Whm crlkd xkb  
the u r r j  A the bubble sort in FSgura 2.1 WU h a p  work 
correctly ragudlerr of the order that the iteratiow ue pufotmd 
in the do8ll loop. The r e w n  that it  WUI always work colmtb L 
that due to the vduw in uray  A no ikrrLion d the dod tiu 
writna r lacatbn that -other iteration .Lo mad8 or wit* 
Uaing just the d r t r  of u r r y  A one L unable to detect by trubl 
the porribility fit mmr thrnu~h d d a  rrccl ~ W W Q  UQ dnb 
e m  occur. The pzoyrsr could still axacuto corrrotly with th9 nU 
on uray B if the iterations occurred in the arms order that the! 
would lf the loop w u  rerid. However, with uray B muhipb 
lknliuur of the dodl r e d  aad write the rame @e~tlon~ ud a 
data race d t s .  Thk c m  be dek ted  regudlwr of whrthe tb  
putieulu run executes correctly or not. 

c8ll lort(N,A) 
call mrt(N,B) 

rubroutine rort(N,X) 
integer N, XU 
do i=r ,~ - i  

d o d  J=i+l,N 
lf (XU-11 > XU11 ~ w ~ P W )  

endl  
end d d  

end do 

Figwe 2.1. A W o r k k t  Parallel Bubblo Sort 

Some data racar cur be detected at  compile time wins tbc 
twhniqusa of data dspsndmws tcuting while taking Inb car 
rideration the aynchroniratlon inrtructionr. Static &ta deptn. 
dcncs testing b conrotrothe. Ths technique is to try a I U ~  d 
teak in an atbmpt to prove independence of a pJ r  of refercntr 
If independenen L nwnr proven then dependence b mumcd 
T h t  gumantear dl dependencw u e  found. One cm rko test L 
the oppcwite manner. Inatead of attempting to prow indeptc 
denca one can attamp$ to prove that two r d e n e ~ w  uow tlt 
rame location. If dependence h t h g  b applied to aa onorderd 
pair of roferencu,.thon s hi whlch would indicab dependeat* 
for ordered referencan indicates the pouibility of r r.cr eonditior 
Raws discovered which can ha pmven in t h t  Wb); will be trkl( 
rtatic racer. An example of a sbtk r u e  L the pair of dnrcr 
to uray A in Figure 1.1, U N cur be rtaticdly dekrmlaod to k 
greater than 2. The remJntU rrcu feud, thou ~ m d  



k r u ~ e  Independence could not be proven, may or may not really 
nit. Theaa will be referred to  M potential races. An example of 
I pottntlal race is the use of array X in Figure 2.1 and the call to 
nbrrutine swap which haa aecees to  array X. By tracing refer- 
nco Lo memory, one can determine if potential races really are 
rum. If a particular location is actually read and written or 
aul~iply written from separate instruction streams between 
pin! of synchroniration a race ia indicated. Races found a t  run 
cimt will be called dynamic races or simply data racea. If the 
)mlrrm in Figure 2.1 were traced, the call to sort with array B 
mold produce both a write to X[2] in iteration j=2 of the doall 
ud I read to thin same location from iteration j=3, which would 
h rn example of a dynamic race. 

Using ntatic analysis, one can learn a lot about the Bow of 
lrlr through Fortran code. T o  get exact information one must 
uturlly execute the code over a set of input data and record the 
mulb through tracing. Currently, data dependence testing can 
OPIJ be done practically if the subscript expressions are linear 
haitiona of do loop indices or linear induction variables. Also, 
uiorate teating can only be done if the lower and upper bounds 
ol the inductive sequences are known. What is needed is a way to 
r r lac  the information generated a t  compile time with informa- 
tiin gathered a t  run time. 

1. Plnding D a t a  Races  T h r o u g h  T r a c l n g  

Tracing is a powerful debugging mechanism. For a given 
wt of data, one can get complete information on the behavior of 
I program by tracing everything that  the program does. If the 
program is deterministic then a trace can be an exhaustive 
duiription of that  program. Tracing of this nature is expensive. 
k addition to. the resources required to generate and save a com- 
pltk trace, the data generated can be very time consuming to 
utlyre. It is possible to limit the amount of tracing in this aye- 
krn aince we are concerned only with proving or disproving the 
aLtence of potential data races. T o  detect data races through 
Irrting, memory references, tank spawning instructions (doall, 
fork) and synchroniration instructions must be recorded as they 
ue executed. A data race ia indicated by a read and a write or 
1.0 writes to the same memory location by different instruction 
ltrearns where those Instruction streams have no synchronlsatlon 
ordering. them. 

The example of Figure 3.1 shown a hypothetical trace of a 
program. The instruction test z will wait until z is greater than 
lbc ikration number minus the dependence distance specified in 
lht teatset Instruction. Figure 3.2 shows a structure representing 
vnehroniration of statements in the sample trace. Downward 
1111 indicate statements that  are synchronised by virtue of 
bilongln6 to the aamc inabrucbion abreom, Horinonbal area indi- 
trle atatemanta that  are synchronlsed through synchronisatlon 
~lrtemenb. 1r a directed path exisb between two statements, 
they are synchronised. If no directed path exists between two 
write, or a read and a write to  the same variable then a race con- 
dition exists. These race conditions may then be presented to the 
uto either graphically or textually. The references in the trace 
are grouped according to instruction streams. The number of 
proceesors used to generate the trace makes no diuerence, because 
the instruction streams are determined according to the state- 
mtnb which control the spawning and synchronisation of instruc- 
lion streams and not according to what is executed on which pro- 
ietaor. In this caa0 we can see that  with the testset distance 
d=2, iterations 1 and 2 (each of which is a separate instruction 
itream) have no synchronisation and t h ~ l s  there are several race 
tonditions between them. There are no races for d = l ,  even 
though ad of each iteration is unsynchroniaed with the statements 
or following iterations, because no common locations are read and 
written by these statements. 

integer A[3], B[4] 
data A/1,2,3/, B/1,2,3,1/ 

doall i=1,3 
sl :  test (x) 
82: A[B[i]] = A[B[i+l]] 
83: testset (x) d 
84: B[i] = sum(A, B[i]) 

end doall 

function sum(vect, len) ' 
integer sum, len, vect[len] 
sum = 0 
do i=l,len 

sum = sum + vect[i] 
end do 
return 

Sample Trace: 

enter doall 
iteration 1 
81: test x 
82: read B[2] 
82: read A121 
02: read B[l]  . 
82: write Ail]  
83: testset x d 
84: read BIl] 
84: read vect[l] 
84: write Bill 
end iteration 

iteration 2 
81: test x 
82: read B[3] 
82: read A131 
82: read B[2] 
82: write A121 
03: testset x d 
84: read B[2] 
84: read vectll] 
84: read vect[2] 
84: write B[2] . 
end iteration 

iteration 3 
81: test x 
82: read B[4] 
82: read All]  
82: read B[3] 
82: write A131 
83: testset x d 
84: read B[3] 
84: read vect[l] 
84: read vect[2] 
84: read vect[3] 
041 write B[3] 
end iteration 
exit doall 

Figure 3.1. An Example of Tracing 

8. i .  Synchrontca t lon  

T o  be able to detect nondeterminisk in a parallel program, 
one must be able to recognize instructions which spawn multiple 
processes and the rynchronizstion . used noeds to be 
understandable. Therefore, i t  is necessary to limit the primitives 
which will be accepted by the dehuggar. .Synehronlsatlon that  is 
unrecognired by the debugger is not catastrophic. The debugger 
will simply report all reference pairs which may be in races 
without synchronisation. Unrecognised synchronisation may 
increase the number of warnings but  it will never cause racea to 
go unnoticed. 

8.2. T r a c l n g  M e m o r y  Reference8 

T o  record a memory reference, both the, address referenced 
and the identification of the reference's lexical occurrence are 
needed. The address is needed to eaaiiy pick up conIlicta that  
occur through aliasing. Actually, i t  is unnecessary to record the 
lexical occurrence of every variable referenced. A useful optimi- 
sation is to record baaic block [AhU177] numbers instead of indi- 
vidual references. At the entry point of each bank block, an 
integer that  uniquely identifies that  basic block will be recorded. 
Within the basic block there is a fixed number of references to be 
made, and they occur in a fixed order. Once a basic block L 
entered all of these references must be made. The only additional 
information needed to  record the exact set of memory addresses 
referenced is the values of the indexing functions of arrays. By 
applying common subexpression elimination to the indexing func- 



Synchroniration for d = l  Synchronisation for d=2 

When testset distance d=l: 
No race conditions. 

When testset distance d=2: 
Rase=. 

32: read of A[2] in iter. 1 and 82: write A121 in iter. 2 
32: write of A[l]  in iter. 1 and 82: read vect[l] in iter. 2 
32: read of B[2] in iter. 1 and 84: write B[2] in iter. 2 

Figure 3.2. Annlyoing Sample Trace 

tions, only the values of unique indexing functions need be 
recorded. Without recording basic block numbers one would 
have to trace scalars in addition to arrays. if the reference to a 
aealar wao controlled by a conditional then the reference may or 
may not be in race with another lexical reference to the same 
scalar. Howev'er, by recording basic block numbers one has exact 
information concerning all scalars referenced. Recording basic 
block numbers to indicate what  has been traced requires that  the 
compiler build a table of basic blocks,'where the entry for each 
baaic block is a table of array references corresponding to  the 
trace statements added for the indexing functions of those arrays. 
Recording basic block numbers moves work from run time to 
compile time. The compiler needs only to  generate information 
of sire proportional to  the number of lexical references while one 

. have to  record information of sire proportional to the number of 
dynamic refcrenccs in the trace. 

8.8. Analya lng  t h e  T r a c e  

One can do even better when tracing if some form of data 
compression is used. An example of this would be recording 
references in vector notation instead of on an element by element 
basis when it is obvious that  an entire vector is going to refer- 
enced. This approach seems difficult to implement. When deal- 
ing with multi-dimensional arrays, one could record some sub- 
scripts in vector notation, but  this may result in no savings a t  all 

if any subscript is nonlinear with respect to the innermost Iwp. 
In tha t  case the nonlinear aubscript.would have to have its vrl~t 
recorded for every reference, generating just an much trace infor. 
mation as recording the value of the llnearlred indexing funclicr 
for each reference. Even more lmpoltant than savlng d~rip' 
trace generation, using some form of vector notatlon tho tala 
during trace analysis. Given two groups of references, if bod 
groups of references are represented in vector syntax then the tot 
for intersection is reduced to a single test for vector interaectio~ 
A reasonable compromise between the difeculty of handtin& the 
recording of references in vector notation and the beneht, d 
doing so is to  record all references on an element by eltrntr~ 
basis, and then construct vector notation before doing interw. 
tion testing. Constructlng vector notation would be doac bj 
grouping all of the references generated by each lexical refertnca 
into vectors grown as large sr possible during b single llnerr pur 
over the list of basic blocks executed. One can then test for inttr. 
section between two lexical  reference^ quickly by testing tor inttr. 
section between the lute of vectorr they referenced. 

T o  actually delecC races, a gray11 wlth two typao of brcc ~IIJ 
be built during static analysis. Each node of the race grrpk 
wuuld represent a b ~ l c  block a d  a scajqr race arc would bc 
placed belween two nodes if a potential tead/wr#e or writc/wriu 
race exists on  any scalar if the two basic blocks were executtd 
concurrently. The arc would be labeled with the lexical identitio 
or n11 ~cslnra involvod in raaoa botwoon tho basia blocka, h i c c  uu 
also created for array references. Array raee arcs have the ad& 
tional information of pointers to the locations of the array which 
are referenced. A race exists if both basic blocks representing th t  

two ends of an arc appear in concurrent instruction streams and 
if the arc was for an array there must be an intersection betwna 
the locations referenced. 

4. Ualng Dataf low Analysls  t o  Di rec t  T r a c l n g  

It is possible to guarantee that  a program is free from dl18 
races through information gatlrered a t  run time. The program u 
deterministic until the Erst da ta  race occurs tbus, one b 
guaranteed of Eiidlig (LC, IllbL rase. It will always occur U 11 
exists. However, onee the first race occurs, nondetarmlum L 
introduced into the program and without further information oat 
can no longer assume that  any further results generated throu6h 
tracing are accurate. Thin might riot be (I terrible lill~ilalion U 
the program being debugged does not require or Ia unable to trkt 
~dvarrbaga ~f r r o ~ r d c t c i ~ i r i i 6 ~ .  DVCII eo, Lllls would sLU llrnll unt 
to correcting data raee errors one a t  a time. This is unacceptahlt 
since each trace can be expensive to generate. 

4.1. T h e  'EIldea' Rc la t ton  

The di5culty of detecting multiple races at  onee liar In lht 
fact that  the races found introduce noodeterminism and prrlic. 
ular execution order may hide other races born the view of tht 
tracer by preventing the occurrence of the race condition. For 
each da ta  race thcrc is a single variable or array element whirl 
ends up with a nondeterministic value. U the race is a read/writt 
racc thcn the riu~ideterminlatic v.arlable Is the VMlbble which 
receives the value of the variable read. If the race ir r 
writelwrite race, the variable involved in the race in the non. 
deterministic variable.' If i t  is known where the nondetermioltic 
variable is used, the erects of the nondeterminism,can be isolrttd. 

A test is needed tha t  will indicate the possibility of one rut 
hiding another race in the remainder of the t rue .  Although M 

exact test would be optimal, i t  is su5cient to be conservatirt. 
The test is conservative if it can guarantee that all data racer ut 



\- ' 

found, but i t  may indicate races that do not exist. To  do the 
static data race testing data flow analysis must be done. The 
tame lnformatfon can be used to  determine the erects of the race. 
One race can hide a second race if i t  affects the locations refer- 
enced in the second race. If, for example, the second race 
involves an array, and if the nondeterministic variable of the Erst 
rue wan involved in either indexing function of the second race 
(either directly or through a chain of defs to uses) then the second 
rres might not occur depending on the ordor of the references in 
the Erst race. Another way one race can hide a second race is if 
the nondeterministic variable of the Erst race appears in a control 
expression which can determine whether either reference of the 
~econd race is executed. 

4.2. The Hldea Graph 

To deal with the problems discussed above we will use a 
' 

graph whose purpose is to determine which of the potential races 
uist or must be assumed because tracing is unable to disprove a 
rrce condition. Let the static and potential races be the nodes of 
thin graph. The arcs of this graph will represent the hides rela- 
tion being true between two nodes. The nodes which represent 
rctnal races (races which are 
be marked and reported to 
means that the occurrence 

occurrence 05 a potential race B S S where Sn is a state- I .. Y J  
ment which is involved in the race. This ,relation is also com- 
puted in a conservative manner (i,e. if i t  can not be disproven the 
relation is assumed to be true). 

Let the races be the nodes of a hides graph. For each node 
A which is a potential or static race and each node B which is a 
pokntial race, a directed arc is placed from A to B if hides(A,tl) 
L true. All nodes representing static races will be marked. All 
nodes which are a t  the head of an arc represent races which could 
be hidden by the node (race) a t  the tail of the arc so they must 
1180 be marked since tracing cannot disprove the possibility of a 
race. The marks are iteratively propagated along all arcs until 
no additional nodes can be marked. The set of nodes marked 
through the above propagation need not be traced. Alter tracing 
the unmarked nodes, ail nodes which were found to be races 
through tracing are marked. The marks must be propagated 
again. AU marked nodes are assumed to be races and as previ- 
ontly stated, are repoAed to the user. The user will also be told 

.. - why each race is being reported, i.e. whether the race was found 
~trtically, was assumed because i t  was hidden by a static race, i t  
rss found dynamically through tracing, or it was induced : 
dynamically. 

In Figure 4.1 there are only potential data races. There- 
lore, there actually is the possibility that  this loop could run 
dekrminfs~lcally as a doall. At first glance, the potential race 
S4,S4 looks like a static race, but  since the execution of this state- 
ment ia conditional, no race condition may ever occur. Potential 
raced Sl,S2 and S2,S3 are not hidden. They need to be traced. If 
1 race occurs in either case, every potential race must be assumed 
by propagation through the hides graph. If no races were 
detected, then the potential race a4,s4 would need to  be traced. 
Thii trace could be performed a t  the same time as the previous 
trace or it could be traced on a different run. The potential race 
14,84 can be traced on a separate run because everything on 
which this race depends has been proven to be deterministic since 
no races were found on any of its incoming arcs. This process 
continues until the nature of each potential race In the hides 
graph has been determined. One simplifying assumption that  
could be Improved is the propagation of a race across every areof 
the hides graph. The arcs of the hides graph are built durlng 

. doall i=l,n 
Sl:  A[f(i)] = B [ i ] + C [ i ]  
S2: C[i]=A[i]  
S3: if (C[~( i ) j  > n) then 
S4: E[i] = E[i-11 
S5: B[E[i]] =B[i] 

end doall 

Static Data races: none 

Potential Data races: Sl,S2 S1,SS S2,S3 S4,34 S6,SS 
(actually these should be a t  the reference level and not a t  thc 
statement level) 

Hides Graph: 
Sl,S2 . S2,SJ 

4 d 

t '";, 
S1,SS S5,SS 

Figure 4.1. Sample Hides Graph 

static analysis on a by name basis. If array C is nondeterministi- 
cally assigned in S2, i t  is automatically assumed that  this will 
erect the results of the teat on C in S3. However, it may be that  
the one or more elements of C nondeterministically assigned are. 
never actually used in the test in S 3 .  In this case the race would 
have been unnecessarily propagated. Since tracing gives the, 
specific sets of elements used, and the references responsible for 
the hides graph arc are either already being traced or could be 
added to the list of references to trace, i t  is possible that  arcs 
created on a by name basis could be validated by checking the 
actual elements referenced. However, if races are unnecessarily 
propagated because the arcs aren't validated'the user will receive 
excessive warning messages, but  no races will be overlooked. 
Also, one would generally try and eliminate the root races before 
attempting to deal with the propagated races. If this is done, the 
falsely propagated races .will automatically fall out if the root 
race is eliminated. 

There is another case where one can get more accurate 
results. In Figure 4.2 a race on A can prevent execution of the 
references to B for some iterations of i. This causes an arc to be - 

inserted in th'e hides graph since it cannot be determined whether 
the race on B exists by tracing. If all references made to B in 
both the false and true branches of the if are recorded regardless 
of which branch is executed then all locations of B that  could be 
referenced are enumerated. By using this method one can detect 
whether a real race on B could ever exist. 

If static analysis of race conditions is good, much work can 
be eliminated for the tracer. However, even if the static analysis 
is suboptimal the final results from the trace analysis will not be 
debased. Given two potential races A and B if the compiler 
proves no raco on B, then the trace analyser will show no race on 
B occurred. The only way Lo assume a race on B after doing that 
trace a l ~ a l ~ a i a  would be if rltcrc w.u  a race on A and hides(A,llj 
were true. If hidea(A,U) is true, then either the nondeterministic 
variable from A was used in the subscripting of B, and the com- 
piler would have been unable to  prove no race for B, or the non- 
deterministic variable from A affected the control flow around B, 
in which case If "conditional hides graph arc testing" was per- 
formed and showed a race then static analysis must also show a 
race. 



doall i=l,n 
A[f(i)] = 
if A[g(i)] then 

B[h(i)] = 
endif 
= B[2i] 

end doall 

Figure 4.2. Testing of Conditional I.Iides Graph Arcs 

Still t l~ere are several reasons to strive for accurate static 
analysis. First, static analysis can ;significantly reduce the 
amount of tracing needed. The more accurate the analysis, the 
less one needs to trace. Second, the hides graph arcs are all built 
upon statically generated data flow information. If the data flow 
analysis is poor, the hides graph arcs will be excessively conserva- 
tlve. Finally, results generated by static analysis are more gen- 
eral than the results of tracing, because static analysis applies to 
all'possible inputs while the trace only applies to the inputs of the 
program traced. 

Although trace reoults apply only to a single set of Input 
data, if one were to Include variables which are set through read 
rtatementr M noder in the hlder graph, one could then determine 
if the occurrence of a race is aaected by a change in input data. 

6. I rnp le rnenta t lon  

AB stated in the introduction, the primary goal of this tool 
is to ~ r o v i d e  the user with knowledge about the nondeterminis~n 
in his program to allow him to apply breakpoint debugging tech- 
niques. This is accomplished in three phases: compile time static 
analysis, runtime tracing and trace analysis. Since little user 
interaction is needed for any of these phases and each phase could 
potentially be very time consuming for a large program, a nonin- 
teractive uscr interface is desirable. A prototype debugger using 
these methods is being designed as a batch system. The user will 
submit a job and wall for a listing containing information on the 
races. If thin Information is acceptable, the programmer will be 
able to  proceed to an interactive debugging procoss. The interac- 
tive debugger will support breakpoints. The information gen- 
erated by this tool will allow the user to make judicious use of 
brrakyulnls. 

It was briefly mentioned before that  the debugger will only 
be able to support a limited set of synchroniration and task 
spawning primitives. The prototype debugger will accept the fol- 
lowing statements. For the purpose of splitting a single instruc- 
tion stream into multiple threads of execution, a forking subrou- 
tine call will be used. Synchronization between forked tasks is  
currently under consideration. For executing the iteraf.ions of a 
loop concurrently, the notation doall is used. The instructions 
test and testact [MiPaEB] are used to guarantee ordering betwccn 
references in concurrent loop iterations. 

8. M e r g i n g  T h e s e  M e t h o d s  w i t h  B r e a k p o l n t  Debugging 

Debugging is the process used to determine why the output 
of a program isn't what was expected. Serial debugging relies 
heavily upon breakpoints. A breakpoint interrupts the execution 
of a program and gives control to eitlter a user who will 
examine/modify the program state or a debugging routine which 
will save some portion of the program state in a trace file. If a 
program is tound to be deterministic or is altered to be deter- 
ministic then one can proceed with standard breakpoint debug- 

ging techniques. If necessary one can even sequentidre the ur 
cution by simulating a multiprocesror with a shgle proctwr. 
However, if the program retains some nondeterminbm due rc 
parallelism one must decide if breakpoint debugging ie stUI rppL 
cable. Before one can evaluate the usefulness of brealtpoint~ Ln 
parallel program one must decide what a parallel breakpout 
docs. In a parallel program there are two possible implemea~ 
tions of a breakpoint, a local breakpoint that  interrupts onb C 
processor encountering i t  and a global breakpoint that brings d 
processors to a halt. Of these two choices the global breakpout 
seems to be both more powerful and more dimcult to impltmeoc 
One question irnmediatoly surfaces with global breakpoinb. Do. 
it  have to stop all processors immediately or can one allow come 
amount of delay between the time Erst processor hi* the brtd. 
point and the time the other processors are halted! If rll proco 
sors must be stopped immediately either the debugger will requin 
special hardware support or the machine will have to be tmp 
lated. If the processors aren't stopped immediately they wlll brtc 
an opportunity to  modify the state, perhaps changing the I n l ~  
mation in which one is interested. If a local breakpoint b hit 
one processor each of the other processore will proceed until the1 
reach a breakpoint, a blockin synchroniaation or the endl d 
their in8lrurtion slreams. wilt an h tan taneoua  global h td .  
point on an asynchronous macltir~e each processor could be at u) 
given point of progress in the execution of its instruction rlrtu 
when the breakpoint in hit. The abillty to rtop the machlnt (Ira 
the illuaian tha t  one lrrrn pick r point to a b p  bhs runclriue and w 
what is going on. However, one La actually only picking the  top 
ping point for the processor oncountering the breakpoint. Tryin' 
to make deductlone based on the current machine atatt b 
dangerous, if t h a t  machine state was randomly selected and IL 
user has no information on how' that  state was reached. kJ 
breakpoints give the user precise control. With local breakpoipr 
the user can independently choose where to stop each procew. 
By using race analysis to  determine where nondeterminirm i 
introduced, the user can then place local breakpoints before t d  
of the references involved in a race and determine what the eKn~ 
of the race will be. 

7. Conelus lone  

The purpose of a debugger t to aid a programmer in lwrk 
ing code which causes unexpected behavior in an spplicrtlon. k 
a parallel program, code which can introduce nondeterminum 'r 
likoly to introduce unbxpeclell Irelravlor. By providing a methrp. 
ism to automatically detect nondotsrmineim we hopa to aid &I 
programmer in determining whether a problem l~ due r 
incorrectly specified parallelism or a logical error. After dt 
sources of nondeterminism have been identified, the user will k 
able to proceed with breakpoint debugging techniques. 

We would like to express our thankr to Sam MldkiK d 
USIID, who inspired using data dependence information fw 
debugging communicat:on problems. Thanks are also due to RPL 
Cyt.mn of DM, who pointod out  bhc uaefulrrsss uf databor 
analysis. Dennis Gannon and William Jalby of CSRD providd 
from their w r r  y r a ~ l i ~ a l  experlmce, many inslghrs on debuggi~~ 
Thanks also go to Williams Harrison for help in the preparr~iv: 
of this paper. 
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