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Abstract

The United States health care industry is experiencing a substantial paradigm shift with regard to home
care due to the convergence of several technology areas. Increasingly-capable telehealth systems and the
internet are not only moving the point of care closer to the patient, but the patient can now assume a more
active role in his or her own care. These technologies, coupled with (1) the migration of the health care
industry to electronic patient records and (2) the emergence of a growing number of enabling health care
technologies (e.g., novel biosensors, wearable devices, and intelligent software agents), demonstrate
unprecedented potential for delivering highly automated, intelligent health care in the home.

This editorial paper presents a vision for the implementation of intelligent health care technology in the
home of the future, focusing on areas of research that have the highest potential payoff given targeted
government funding over the next ten years. Here, “intelligent health care technology” means smart
devices and systems that are aware of their context and can therefore assimilate information to support
care decisions. A systems perspective is used to describe a framework under which devices can interact
with one another in a plug-and-play manner. Within this infrastructure, traditionally passive sensors and
devices will have read/write access to appropriate portions of an individual’s electronic medical record.
Through intelligent software agents, plug-and-play mechanisms, messaging standards, and user
authentication tools, these smart home-based medical devices will be aware of their own capabilities, their
relationship to the other devices in the home system, and the identity of the individual(s) from whom they
acquire data. Information surety technology will be essential to maintain the confidentiality of patient-
identifiable medical information and to protect the integrity of geographically dispersed electronic
medical records with which each home-based system will interact.
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Introduction

The United States health care industry is experiencing a dramatic paradigm shift with regard to home care
due to the convergence of several technology areas. Increasingly-capable telehealth systems and the
internet are not only moving the point of care closer to the patient, but the patient can now assume a more
active role in his or her own care. These technologies, coupled with (1) the migration of the health care
industry to electronic patient records and (2) the emergence of a growing number of enabling health care
technologies (e.g., novel biosensors, wearable devices, and intelligent software agents [1]), demonstrate
unprecedented potential for delivering highly automated, intelligent health care in the home while at the
same time reducing the cost of care [2].

The concept of embedding antomation and artificial intelligence into the home environment is not new
[3,4,5,6]. While home automation products provide home networks potentially useful for health care
device interconnectivity, they primarily address needs such as physical security, entertainment,
communications, lighting, heating/cooling efficiency, and voice-activated environmental control [7] (e.g.,
for persons with disabilities [8]). Smart health care delivery in the home requires a more robust set of
features, including collective intelligence algorithms, secure interactions with electronic patient records,
advanced processing algorithms for physiological trend data, and a host of other capabilities referenced
later in this paper. Intelligent hybrid systems that incorporate knowledge synthesis algorithms and
artificial intelligence have been researched for some time [9,10]. While these technologies have migrated
into application areas such as smart transportation systems [11], they have yet to embed themselves into
home environments that utilize distributed sensors. A limited number of smart, stand-alone devices
experience success in the home care market . For example, a company in Japan designs smart toilets that
perform chemical analyses on urine specimens [12]. These devices demonstrate further potential for
detecting iron deficiencies caused by colon cancer [13].

Current desktop telemedicine platforms [14,15] are a natural starting point for the continued integration of
smart devices and automated care delivery in the home. These systems utilize video conferencing,
medical peripherals, store-and-forward capabilities, electronic patient record management software,
and/or a host of other emerging technologies (see Figure 1). While these leading-edge systems are
bellwethers for highly advanced home telehealth, they do not provide a proper framework for fully-
distributed, intelligent health care devices in the home. In this immature market, most commercial home
telehealth systems are custom-designed, “stovepipe” systems that do not interoperate with other
commercial offerings. Users are limited to a set of functionality that a single vendor provides and must
often pay high prices to obtain this functionality, since vendors in this marketplace must deliver entire
systems to compete. Besides increasing corporate research and development costs, this inhibits the ability
of the user to make intelligent purchasing decisions regarding best-of-breed technologies. In their current
instantiation, these systems do not provide the flexibility to integrate distributed sensors, intelligent
agents, and knowledge assimilation mechanisms required for smart home-based health care.

Realization of automated, intelligent health care delivery in the home requires smart devices that are
aware of their context and are therefore able to assimilate information to support care decisions. Sensors
distributed throughout the home will help to provide this context, since each sensor will acquire
information regarding a patient’s physiology as well as environmental factors that influence their state of
health. Through initiatives targeting home-based networks and distributed computing [16,17,18,19],
communication infrastructures that accommodate these needs may soon be in place. Internet appliances
are already taking advantage of some of these capabilities in other settings [20,21,22]. However, the
integration of medical devices into home-based networks is hampered by a lack of technology in several
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areas, including (1) secure, component-based messaging standards that allow exchange of pertinent,
patient-identifiable medical information both inside and outside the home (e.g., with the health
information network available to a patient’s primary care physician) and (2) information architectures and
plug-and-play medical devices that allow consumers to assemble low-cost, home-based systems
comprised of best-of-breed, commodity technologies, allowing patients to match system capabilities to
their individual care needs. If these issues can be resolved, the payoff is that the technologies vital to
intelligent home care also promote medical information exchange in other settings (see Figure 2).

Figure 1. The patient end of a state-of-the-art, desktop telemedicine system. Photograph courtesy
Richard N..Re, M.D. and Marie A. Krousel-Wood, M.D., Alton Ochsner Medical Foundation, New Orleans, LA.
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This editorial paper presents a vision for the implementation of componentized health care technology in
the home of the future, focusing on research areas that have the highest potential payoff given targeted
government funding over the next ten years. First, a systems perspective is used to describe a framework
under which these device components can interact with one another in a plug-and-play manner. Within
this infrastructure, traditionally passive sensors and devices will have read/write access to appropriate
portions of an individual’s electronic medical record. Through intelligent software agents, plug-and-play
mechanisms, messaging standards, and user authentication tools, these smart home-based medical devices
will be aware of their own capabilities, their relationship to the other devices in the home system, and the
identity of the individual(s) from whom they acquire data. Information surety technology (i.e., security,
integrity, reliability, safety, and availability) will be essential to maintain the confidentiality of patient-
identifiable medical information and to protect the integrity of geographically dispersed electronic
medical records with which each home-based system will interact [23,24].

Vision

Smart Devices and Collective Intelligence

The word “smart” implies the ability to process information within context. Intelligence can exist on a
stand-alone device given that the knowledge set required to make decisions is maintained in the memory
of the device. However, more flexible implementations of intelligent devices should accommodate a
modular design that allows access to geographically distributed knowledge (information) and the software
capable of processing those data [25]. This on-demand contextual information will likely be patient-
confidential, so functional implementations of smart health care devices for the home must utilize
appropriate information surety technology before home-based telehealth systems will be given read/write
access to electronic patient records [26]."

In the home of the future, some devices will contribute physiological information about the patient (e.g.,
heart rate, blood pressure), while other devices in and around the home will contribute information about
the patient’s environment (e.g., humidity, temperature, carbon monoxide level). These physiological and
environmental data will be collated to assess the patient’s state of health and to identify external factors
that may influence that state. In some cases, groups of devices will have enough collective awareness to
function autonomously based on sensor data (e.g., A carbon monoxide detector may note levels above a
safety threshold, initiating a protocol to open the windows, sound an alarm, and activate vital signs
sensors for individuals in the house. Each device in this sequence would know the context of its action
and initiate the proper device procedures). In order to protect individuals in the home from unforeseen
catastrophes, additional devices may be dispersed around the locality of the residence to detect air-born
viruses, bacteria, and possibly chemical/biological agents. These collective devices would provide data
for automated response procedures as well as demographic analyses yielding information about the scope
and intensity of, for example, a disease outbreak or an attack with a biological agent. Collective
intelligence technology will be essential to analyze data from these distributed sensors [27]. In a mass-
networked, information-infused society, these sensors and systems become important components of the

! The requirement that home health systems have read/write access to electronic patient records stored in clinical
databases is relatively new. Full integration of electronic patient records with hospital information systems has been
underway for some time, supporting tools for workflow management and physician decision support. However,
telemedicine systems have not been traditionally integrated with health information networks for various reasons,
including the lack of standards for message passing, security concerns (i.e., patient confidentiality), questionable
data integrity, and the simple fact that developers of legacy hospital information systems assumed an enclave model
at system inception and therefore did not design mechanisms for remote access into those systems. As noted in
Figure 2, secure exchange of patient-confidential information is key in multiple care delivery settings.
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United States critical infrastructure because of their direct relationship to emergency response services
[28,29].

Intelligent Health Care in the Home of the Future

The following editorial sections briefly describe how health care and smart technology will interrelate in
the home of the future.

Optimized Care Delivery

e Basic vital sign sensors and interactive remote consultation equipment for the home will be
inexpensive commodity items available at local department stores.

e More expensive equipment will be available through monthly lease packages via third-party suppliers
(e.g., a lease package for home pregnancy monitoring).

e Individuals will have direct and immediate electronic access to information regarding their medical
history, health maintenance, and procedures for dealing with emergency medical situations.

e Mechanistic duties traditionally provided by a care provider (e.g., vital sign acquisition) will be
replaced by self-measurements and automated protocols.
Care options will be tailored to each individual in the home.
Monthly checkups will occur at home. Telehealth systems will acquire data, interpret those data, and
make appropriate health care suggestions.

e Through the use of intelligent agents, smart health care devices will make routine decisions, allowing
care professionals to spend more time on sophisticated tasks that require human intelligence.

e Care will be geographically decentralized (e.g., vital sign monitoring will occur at any location in the
home). Physiological information will be obtained with a variety of wearable and non-contact

Sensors.

e Patients will interact with providers through everyday mechanisms such as television sets or palmtop
computers.

s Home systems will have access to a life-long electronic medical record for every individual in the
home.

e Trend data acquired with lightweight, continuously-operating sensors will become more important in
the care delivery process, serving as a way to predict adverse events (e.g., a myocardial infarction):
home health care will migrate to a more proactive, rather than reactive, delivery model.

Home care networks will be aware of every individual’s location and physiological status.
Interactive care sessions will be fun for children and informative for adults.

Health care systems in the home will exchange information with other systems in a manner similar to
home automation technology available today.

Advanced Sensors and Treatment Options

e Non-invasive, lightweight sensors will replace bulky traditional sensors (e.g., a light-based wrist
watch may provide heart rate, blood pressure, and oxygen saturation measurements previously
supplied by a blood pressure cuff in tandem with a pulse oximeter).

e Surrogate diagnostics (i.e., alternative indicators of state of health) will replace diagnostics from
traditionally cumbersome or problematic vital signs sensors.

» Noninvasive sensors will replace more invasive procedures (e.g., blood gas and blood glucose
measurements).

e Equipment will emerge to provide therapy or treatment in a non-sterile environment.

Sensors will work with all ages and sizes of individuals.

e Non-invasive, lightweight sensors will increase patient comfort and pave the way for continuous

acquisition of physiological data and the resulting trend analyses.
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Advanced devices will provide analysis capabilities (e.g., urine chemical analysis) currently available
with only hospital-based systems.

High-risk patients may wear multiple sensors that communicate with one another through a local area
network that resides on the patient.

Interoperable Devices

Flexible information networks will promote plug-and-play functionality throughout the home by
utilizing standard connectors, message-passing protocols, data definitions, and security mechanisms.
All home-based sensors and devices will interoperate seamlessly so that monitoring functionality can
be tailored to the needs of individuals.

These devices will be affordable commodity items, since original equipment manufacturers will
compete by producing best-of-breed technologies consistent with their company strengths.
Competition will occur at component, system, and service levels.

Wireless, low-power devices will communicate via radio-frequency repeater stations scattered
through the home.

All devices will be aware of their capabilities and be able to express those capabilities to other
devices.

Certain classes of devices will incorporate knowledge assimilation modules that gather information
from all other devices in the home in order to provide context for medical decisions.

Patient-Device Interaction

Voice recognition technology will reside on components of distributed telehealth systems as well as
individual, stand-alone devices (e.g., the patient will be able to interact, using natural English, with
the wrist-worn unit that is monitoring and displaying his or her vital parameters).

Devices will be owner-aware through biometric mechanisms and intelligent association technology.
User interfaces will be simple.

Patients will be able to communicate with devices via gestures or sign-language.

Dynamic Interaction with Electronic Patient Records

Every individual will be able to view his or her own life-long electronic patient record (EPR).
Home-based health care devices will have (in)direct read/write access to EPR’s.

Appropriate knowledge databases and copies of individuals’ EPR’s will be stored in a repository and
accessed on-demand through the home’s local area network.

Data from home consultations and automated measurements will be stored directly to EPR’s.
Individuals will carry appropriate portions of their EPR’s (e.g., on watches, smart cards).

EPR storage devices will “plug into” standard ports (through wireless or direct connections), updating
the information on the devices and/or the EPR repositories.

Intelligent Assistants

Intelligent software agents will interpret vital sign data and note anomalies to address. If a patient
needs immediate assistance, an agent will send a message to a device that will call for help.

Software assistants will process large volumes of health information (e.g., continuous physiological
measurements) in order to provide physicians with meaningful quantities of relevant data, avoiding
information overload.

Data mining tools will search global repositories for information relevant to a patient’s state of health.
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Information Surety

e Medical information exchange will be secured at an appropriate level through role-based access
mechanisms.

e Surety standards will exist for maintaining the security, integrity, reliability, and availability of
medical information acquired in the home.

* Predefined rules will balance patient confidentiality concerns against the need to access medical
information in emergency situations.

¢ Biometric mechanisms and other technologies will authenticate patients and establish patient-device
or patient-system associations.

¢ Independent algorithms will monitor data integrity and maintain information security at each step in
the care delivery process.

Robust Communications

e High-bandwidth access to information will occur at any location in the home.

e Each home will support its own local area network, utilizing both wireless and direct connections.

¢ Terminology and message passing standards will promote information exchange between home care
devices, hospital databases, and home-based information networks.

An Example Home Layout

Sensor and system layouts in the home of the future may appear as shown in Figure 3. In this scenario,

the following items come into play:

e A local area network supports sensors distributed throughout the home and the immediate outside
environment.

e Transmitter/receiver boxes scattered throughout the home allow wireless sensors [30] to utilize low-
power infrared [31] and radio-frequency telemetry mechanisms [32].

e In the living room, a set-top box [33] serves as a central information hub for sending and receiving
sensor data, consulting with a care provider via video-conference over the cable TV line, collating
information relevant to patient state-of-health, and providing educational material on health
maintenance and emergency procedures.

e The home incorporates flexible switching protocols for communicating with the outside world over
multiple modalities (e.g., UHF, FM, cellular, satellite, phone/ISDN/T1 land line).

e Although a temporary knowledge database and EPR repository exists in the home, the home
information system is capable of communicating securely with remote hospital information networks
and EPR repositories in order to obtain new information relevant to patient care. Data mining
capabilities allow the home network to search large repositories for context-specific information.
This information is filtered to provide meaningful quantities of health information to both patients
and physicians.

Smart Spaces

For individuals requiring constant observation, future homes will have smart spaces that utilize numerous
technologies to track behavior and state-of-health. These spaces may employ digital cameras, laser
rangers, audio recognition mechanisms, and/or pressure-sensitive flooring that would identify occupants,
track their locations, and “read” their facial expressions, gestures, and behavior [34,35]. While such data
may not be sufficiently fine-grained to determine physiological state, these data could provide indicators
for medical conditions characterized by deficiencies in motion control (e.g., individuals recovering from
limb injuries, mobility-impaired individuals, or people with handicaps). In addition, the system may be
able to recognize when an individual is in pain [36], experiencing an epileptic seizure, or having a heart
attack. Digital cameras could use cueing and tracking techniques to follow an individual across their
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fields of view, developing a behavioral baseline for each person. Complimentary state-of-health data
would be supplied by wearable sensors and/or remote monitors, such as micro-impulse radar devices [37]
that measure and record heart rate.

The safety and alerting roles of such rooms are particularly important, especially for people with chronic
conditions or individuals prone to falls. A smart room could monitor the walking behavior of an impaired
person, determine if he or she is at risk of falling, and alert a domestic caregiver. In an emergency, the
smart room could also alert local emergency medical services. This technology may be the only way that
these individuals could live at home, although applications in geriatric wards would conceivably
demonstrate a more cost-effective economy of scale.

Smart spaces may also include mechanisms for authenticating the identity of individuals in a room,
thereby providing an independent measure of the integrity of data acquired from a person within that
space. For example, smart floors (“smart carpets™) being developed by Georgia Tech [38] can identify
and track multiple people based on their footfall. Such floors incorporate thousands of pressure-sensitive
piezoelectric sensors to measure an individual’s weight, foot force profiles, length of stride, limb length,
and joint angles. These biomechanical data, which are unique to an individual, can be correlated to sensor
data acquired from that person, yielding an unobtrusive biometric indicator that corroborates the identity
of the patient, thereby providing an additional means for maintaining the integrity of the electronic patient
record to which these data are written.

Flexible Communications

Air-born
agent sensor

T/R

Electronic
medical
records and
knowledge

database

Health education,
Home LAN diagnosis and treatment

Electronic
Patient Databases
Record \ Set-top box
Repositories L. 3
i Fully Distributed "
! Network of Healthcare

Information Resources
Patient vital signs monitor

Data with wrist display
Performance Processing
Computers Algorithms *T/R: Transmitter/Receiver

Figure 3. An example of smart device and resource connectivity in the home of the future.

Enabling Technologies

In order to realize smart health care technology in the home of the future, certain classes of technology
must be refined or developed. This section describes those technologies within the context of a
conceptual information framework.
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Information Frameworks

Intelligent home care systems will require secure, component-based information frameworks that promote
secure, ‘plug-and-play’ interaction between device and system components through standardized
interfaces, communication protocols, messaging formats, and data definitions. A telemedicine device
architecture has been proposed that defines functionality sets within which these technologies can be
grouped [39]. The implementation of this framework would vary depending on the technologies that
render the framework. However, the functionality sets are relatively constant (see Figure 4).

User
Interface

Medical
Devices

Protocols

Backplane

Patient
Records

Processing

Communications

Figure 4. Service areas represented in the proposed telemedicine device architecture.

The following items describe these architectural services:

o The USER INTERFACE service area represents hardware and software with which the user interacts,
including mechanisms that support telemedicine device control (e.g., buttons and lights on the front
panel of an instrument) and person-to-person interactions.

o The MEDICAL DEVICES service area represents mechanisms for acquiring patient data, delivering
therapy to a patient, or analyzing specimens collected from a patient.

e The PATIENT RECORDS service area represents a device’s ability to store and retrieve information that
the device has collected about a patient.

o The PROCESSING service area consists of specialized routines to manipulate data. Examples of this
include statistical routines to analyze trends in data sets, filtering routines to manipulate waveforms
and images, and “intelligent agents” that aid in diagnosis and care planning.

e The COMMUNICATIONS service area represents (1) mechanisms a telemedicine device uses to
communicate with other devices and (2) the services that support these communications (e.g., address
books that contain email addresses, or directories that indicate where to find specific services).

e The PROTOCOLS service area constitutes the brain of a telemedicine device. The “programs” or
“scripts” in this service area accomplish specific medical objectives by utilizing resources acquired
from the other services. A simple protocol might, for example, direct a medical instrument to take a
reading, tell the patient record to store the reading, and tell the user interface to display the reading.
Protocols can deliver sophisticated functionality through command nesting.

» Finally, the BACKPLANE service area represents mechanisms that tie the other six services together. It
provides intra-device communications, as well as profile information needed for device “self-
awareness.” This self-awareness is essential to creating devices that work with one another in a plug-
and-play fashion.

Given the partitioning shown in Figure 4, it is possible to include some portions and exclude others in
order to produce what would appear from an external point of view to be fundamentally different devices
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(see Figure 5). This approach to construction of telehealth devices is cost-effective because it allows
developers to specialize on system components/services while offering the user the ability to purchase
only the system components that are necessary for their needs. Note that the partitioning arrangement in
Figure 4 is fractal in nature: a collection of segments can represent (1) an individual sensor, (2) a
collection of sensors, memory, hardware, and software that constitutes a device, (3) a stand-alone
telemedicine system, or (4) a fully integrated home-based telehealth system.

Pl‘OVid.el.' Patient Video
Telemefllcme Telemedicine Conferencing
Station Station System

User
Interface

Backplane Backplane Backplane

Patient
Records

Processing

Figure 5. Creation of various telehealth devices and systems through different combinations of the
fundamental architectural building blocks.

It is important to note that information surety (i.e., security, integrity, reliability, safety, and availability),
plays an extremely important role in this architecture, since it is distributed by nature. Stovepipe, point-
to-point systems are relatively straightforward to secure given the small user population, the static
network topologies, and the limited range of technologies from which these systems are composed.
Future home-based telehealth implementations will incorporate mass-market communications, emphasize
distributed computing over private networks, and support both legacy and leading-edge technologies.
These health care information networks will be highly dynamic, and the range of technologies used to
deliver medical services will be increasingly diverse. In this environment, security solutions will be more
important than ever while at the same time more problematic [40].

Industry must continue to develop standards for the ways these devices interact at the component,
subsystem, and system level in order for smart device technology to move forward. Standards are
currently under development for security, messaging, communication, plug-and-play hardware,
nomenclature, protocols, and diagnostic procedures [41]. Many of these (e.g., the Health Level 7 (HL7)
standard for health data exchange [42]) are moving forward quickly and being adopted by industry, while
others are either still in the definition phase (e.g., the CORBAmed Health Research Access Control
(HRAC) standard for role-based access to medical information [43]) or have been in development for
some time but have experiences limited industry support to date (e.g., the IEEE 1073 Medical Information
Bus (MIB) standard for plug-and-play peripheral systems [44]). The bottom line is that standards
promote interoperability and the determination of context: two key components for building smart
devices and systems.

Smart Component Functionality

Concentrating on the architecture component areas described in the previous section is a good way to
focus thoughts regarding smart devices and the technologies that must be developed in order to realize
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these devices. Using the architecture service areas as a starting point, this section lists the classes of
technology that must be developed in order to realize smart, home-based health care capabilities that
function within a mass-networked, fully distributed environment.

The Backplane service area stores functionality information about devices as well as their
addresses/locations within the home system. From that standpoint, the Backplane provides context and
allows devices to communicate with one another, which is the fundamental starting point for a smart
home subsystem consisting of distributed sensing elements. Other information used for context is stored
in the Patient Records service area, which allows access to distributed information databases that may
contain vital information. Instruction sets for automated devices are stored in the Protocols service area,
while the Processing service area implies functionality for intelligent agents, decision support systems,
data interpretation algorithms, and signal extraction techniques. The Medical Devices service area
supplies smart-device sensor functionality, while the Communications service area gives components
“access to the outside world.” Interestingly, the User Interfaces service area is the only area for which a
broad mapping to smart devices is unclear, since intelligence is more highly aligned with the ability of
devices to process information. Table 1 below lists a subset of technologies that populate the service
areas of the framework discussed above. Although every class of technology may eventually contribute
to smart devices and systems, some technologies have a much more immediate and telling effect on the
availability of intelligent home-based systems. As a means for distinguishing key technologies from
contributing technologies, Table 1 ranks each class of technology according to its perceived potential to
influence smart system design. Technologies that simply supply data are ranked as contributing
technologies, while technologies that enable integration of data and sensors are ranked as key
technologies because of their ability to contribute to contextual decision making. In other words, the goal
of the scoring in Table 1 is to differentiate between intelligent technology and capabilities that would
simply “be nice to have” for other reasons.

Table 1. Classes of technology that contribute to smart medical devices and advanced systems.
These technologies are assigned to the framework component that is the best match. In addition,
they are scored relative to their perceived potential to contribute to contextual decision making:
contributing element (*), enabling element (¥**), key technology (**%).

User Interface
#* | Voice recognition | ** | Signlanguage and gesture interpretation [34]
Medical Devices
*%% | Wearable devices with integrated sensors, *#* | Noninvasive, light-weight sensors for
communications, and processing continuous data acquisition (trend data)
[45,46,47,48,49,50]
**% | Smart, self-aware sensors [25,51] * Micromachines for sensors, invasive therapy
[52]
*%* | Remote, non-contact sensors [53] * Sensors for airborne agents, particulates
[54.55]
*%* | Surrogate diagnostics ** | Emergency event detectors
* | Light-based sensors [45] ##*% | Battery technology [56]
**% | Low-power sensors * Hand-held units with diagnostic capabilities
** | Small sensors * | Low-cost, high-resolution cameras
*** | Self-calibrating sensors [57] ** | Embedded ORB’s [58] and Java applets [59]
Patient Records
*** | Distributed electronic patient record *%% | Wearable or portable devices for storing EPR
repositories information [60,61]
** | Terminology translators * Longitudinal EPR construction utilities [62]
*¥% | BEPR software in the home *% | Patient identification services [63]
*%% | Data mining and search engines *¥% | Better memory storage
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Communications

*** | Low-power telemetry technology [30,64,65] * High-bandwidth infrastructures

*** | Home-based repeater networks [32] * Data/voice synchronization technology

* | Fast, effective compression / decompression ** | Patient locator technology
algorithms and chips
* | Better teleconsultation technology *%% | Body LANs that unite autonomous sensors
and wearable devices [49]

Processing

*%% | Intelligent software agents {1] *** | Trend data analysis tools

***% | Automated diagnosis algorithms ** | Demographic analysis tools

*** | Knowledge assimilation techniques for state- ** | Advanced filtering (e.g., signal extraction) and
of-health determination waveform analysis tools [66]

**% | Artificial intelligence algorithms for care *** | Information reduction and interpretation tools
decisions [67] to avoid physician information overload [68]

*** | Neural network [69,70] and fuzzy logic [71] ** | Techniques for collating non-health sensor
technology for decision making data with physiological data for determining

patient state of health

*#* | On-chip or on-device decision support tools

Protocols

#** | Evaluation procedures | ** | Mechanistic activities

Backplane

i ] Standard device descriptions ]l whE ] List of resources for establishing context

Information Surety

*** | New biometric algorithms [72] * High-speed, low-power encryption chips

*#*% | Owner-aware sensors *% | Audit trails for the home

*%% | Health databases with role-based permissions * Procedural guidelines

*** | Role-based access control standards

Standards

**% | Information architectures [39,73] %% | Storage

#** | Security [74] *#*% | Nomenclature [75,76]

**%* | Plug-and-play hardware [25,44,77,78] *#*% | Protocols

*** | Communication [18] #** | Diagnostic procedures [79]

% | Messaging [42] #+* | Device descriptions [80]

Conclusions

Health care is moving closer to the patient, and a host of technologies (including increasingly capable
telehealth systems and the internet) allow patients to play a greater role in their own care. In order to
maximize the health benefit to the patient, these home-based telehealth systems must be smarter than
former generations of telemedicine systems because of the limited medical knowledge base of the typical
patient and the inability of care providers to ascertain all health indicators at a distance. Conversely, the
implementation of smart health care technology in the home opens up fields of care that have not been
fully explored, such as proactive health models that rely on continuous vital sign monitoring and trend
data analysis to predict health, rather than reacting to medical conditions as they occur.

Intelligent health care systems in the home will utilize a myriad of technologies in their implementation.
However, while some of these technologies will simply contribute to smart systems, other classes of
technology are key to the implementation of intelligent devices and systems: primarily those that allow
devices to be aware of their context and those that assimilate information to support meaningful care
decisions. Table 1 listed classes of technology that will contribute to future home care systems, scoring
them according to their ability to enable smart systems. In general key technologies noted in Table 1 are
summarized by the following items.
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o Distributed Computing:
— frameworks for interoperability and plug-and-play devices,
— device component registries that provide a “lay of the land” with regard to the resources available
on a home system,
— standards for terminology and device interaction, and
— home-based networks that allow distributed medical devices to function as virtual systems.
o Intelligent Processing:
— knowledge assimilation algorithms that collate data from separate devices into care decision
matrices,
— intelligent agents that facilitate data mining and automated care delivery,
— data mining and search engines that gather missing EPR information or information relevant to a
patient’s medical history,
— artificial intelligence, neural network, and fuzzy logic algorithms for making care decisions,
— information reduction technology for avoiding physician and patient information overload, and
— protocols and procedures that promote automation of common or mechanistic tasks.
s Information Surety:
— new biometric algorithms for authentication and access control,
— owner-aware sensors,
— role-based access control mechanisms for EPR databases, and
— surety mechanisms for protecting data integrity and reliability at each point in the information
exchange process.
e Novel Devices and Sensors:
— wearable devices that incorporate non-invasive, self-calibrating, and low-power sensors,
— body LANS that use low-power telemetry to unite data from autonomous sensors worn on the
body,
— on-board processing algorithms that filter data prior to storage and transmission,
— low-power telemetry chips, and
— smaller, more powerful batteries.
o EPR and Data Repositories:
— distributed EPR repositories and knowledge databases that can be securely accessed through role-
based security mechanisms,
— temporary EPR’s and knowledge databases that reside in the home, and
— wearable or portable devices that store EPR’s.
e Standards:
— information architectures,
- security,
— plug-and-play hardware,
— communication,
— messaging,
— storage,
— nomenclature,
— diagnostic protocols and procedures, and
— device descriptions.

Even with targeted government funding for intelligent home care technologies over the next ten years,
research and development will not proceed in an optimal way without effective communication between
the medical and scientific communities. Communication can be difficult since physicians, scientists, and
engineers approach problem solving in different ways because of the nature of their work, their
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experiences, and their education/training. Technical designers are often unaware of the medical
applications for their technology because they rarely engage in active discourse with members of the
medical community. An ongoing dialogue must be established so that health care providers can (1) help
scientists and engineers understand care needs in the home, (2) learn about emerging technologies that
may have implications for health care, and (3) specify operational requirements for home-based telehealth
systems, focusing the work of scientists and engineers on cost-effective technology that meets practical
needs while it improves the quality of home-based care.
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