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ABSTRACT

Efforts to optimize the design of mechanical systems for preestablished use environments and to extend the
durations of use cycles establish a need for in-service health monitoring. Numerous studies have
proposed measures of structural response for the identification of structural damage, but few have
suggested systematic techniques to guide the decision as to whether or not damage has occurred based on
-real data. Such techniques are necessary because in field applications the environments in which systems
operate and the measurements that characterize system behavior are random.

This paper investigates the use of artificial neural networks (ANNs) to identify damage in mechanical
systems. Two probabilistic neural networks (PNNs) are developed and used to judge whether or not
damage has occurred in a specific mechanical system, based on experimental measurements. The first
PNN is a classical type that casts Bayesian decision analysis into an ANN framework; it uses exemplars
measured from the undamaged and damaged system to establish whether system response measurements
of unknown origin come from the former class (undamaged) or the latter class (damaged). The second
PNN establishes the character of the undamaged system in terms of a kernel density estimator of measures
of system response; when presented with system response measures of unknown origin, it makes a
probabilistic judgment whether or not the data come from the undamaged population. The physical system
used to carry out the experiments is an aerospace system component, and the environment used to excite
the system is a stationary random vibration. The results of damage identification experiments are
presented along with conclusions rating the effectiveness of the approaches.
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1. INTRODUCTION , _

Structural engineering design usually dictates that systems be fabricated to optimum weight and cost
specifications, and yet safely sustain the loads applied to them for a preestablished duration. This can be
accomplished because great strides are being made in analysis, design, and testing practice, but it is
complicated by the fact that loads applied to any real structure are unknown and the material properties and
geometry of a structure have random components. In view of this, responses of critical structures must be
monitored, and the information used to infer structural functionality and safety.
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Many frameworks can be used to assess the relative health of a structure, and this paper presents two of
them. They are the classical PNN of Specht (1990), and a PPC that we have developed. The former is an
ANN implementation of the Bayes’ decision analysis procedure. The latter is a formal statistical procedure
that permits us to judge the source of data of unknown origin.

The PNN requires data sets from two or more sources. When presented with a datum of unknown origin,
it judges which set of known data is the likeliest source of the unknown datum. The PNN implements
Bayes’ decision rule representing the probability density functions (PDFs) of the known data sets with
kernel density estimators. These were first developed in the form in which they are used today by Parzen
(1962), and their form was later generalized to the multivariate case by Cacoullos (1966). A text that
summarizes kernel density estimators is that of Silverman (1986). The PNN is briefly described in Section
2.

When one or more measures of structural behavior representing both damaged and undamaged system
states are available, they can be used to establish the parameters of a PNN. When corresponding measures
of structural behavior are taken from a structure not known to be damaged or undamaged, théy can be
presented to the PNN for its judgment regarding the state of the system.

“The PPC, in contrast, requires a data set from one source. When presented with a datum of unknown
origin, it judges whether the datum is a member, an outlier, or a nonmember of the set whose source is
known. This tool also uses the PDF representation of Parzen and Cacoullos, but given that representation
it defines a transform (see Rosenblatt, 1952) into the space of uncorrelated standard normal random
variables. Data of unknown origin are transformed into this space, and a test of hypothesis is performed to
judge the source of the data. The PPC is developed in Section 3.

When one or more measures of structural behavior representing undamaged system states are available,
they can be used to establish the parameters of a PPC. When corresponding measures of structural
behavior are taken from a structure not known to be damaged or undamaged, they can be presented to the
PPC for its judgment regarding membership of the data in the set of undamaged data. The data will be
judged members, outliers, or nonmembers of the undamaged data set. Details of the approaches used
perform the statistical damage diagnoses described above are given in Section 4.

The real test of a damage diagnosis tool is its effectiveness in practical application. The two health
monitoring tools considered in this study are applied to the monitoring of damage in a physical system.
The system is a stereolithography model of an aerospace component. The system was tested using random
vibration and its response measured and used to characterize the undamaged system. Next, a small amount
of damage was introduced into the system, and it was retested and characterized again. This step was
repeated four more times; each time incremental damage was introduced into the system before retesting.
Finally, the PNN and PPC were used to determine whether the incremental damage could be recognized.
The results were successful, and are presented in detail in Section 5.

2. CLASSICAL PROBABILISTIC NEURAL NETWORK
The classical PNN uses the Bayesian decision analysis cast into an ANN framework to judge the origin of -
datum z given that data from two random variable sources, X and Y, are known. The known data are
denoted x 2 Y Jj=1L..,N. The sources X and Y are assumed to be vector random variables with
dimension », and their corresponding realizations are also assumed to be vectors. For the two-source case,
the origin of z is determined based on the following Bayesian decision rule

zeX if HxLxfx(z)>HyLyfy(z)
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where fx(z) and fy(z) are the PDFs for the sources X and Y, respectively; Hy and Hy are the a priori
probabilities of sources X and Y; and Ly and Ly are the losses resulting from incorrect decisions that the
sources are Y and X, respectively. Often the a priori probabilities can be determined for the source data,
however, the loss factors require some subjective evaluation based on the application from which the
source data have come. The key to using Eq. (1) is the ability to estimate the probability density functions
fx(z) and fy(z) based on experimental data. These joint PDFs can be approximated using the kernel
density estimator (see Parzen (1962), Cacoullos (1966) and Silverman (1986)). The kernel density
estimator (KDE) is a data based estimator and one form is
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where most of the notation is described above Eq. (1). Of course, the kernel in this expression, is a
multivariate normal PDF. The kernel density estimator is a superposition of N multivariate normal
densities centered at each measured realization of X. This summation is normalized so that its hyperspace
volume equals one. S is the covariance matrix for the kernel. This matrix can conveniently be
approximated by the special form

S=¢?I 3)

where I is the identity matrix and o is the smoothing parameter of the KDE. A small smoothing
parameter can cause the estimated density function to show distinct modes at the locations of the training
data, while a large value of o provides greater smoothing or interpolation between points in the density
estimation. The following smoothing factor was used in the KDEs of this study.
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where std(x;) refers to the standard deviation of the ith random variable vector source X, and the other
parameters were previously described.

3. PROBABILISTIC PATTERN CLASSIFIER A

The PPC is similar to the PNN in that it seeks to distinguish the source of a datum of unknown origin.
However, the PPC differs from the PNN in that the PPC seeks to answer the question: Is the datum of
unknown origin a member, an outlier, or a nonmember of the data set of interest? It answers this question
by: (1) characterizing the data set of interest using the kernel density estimator of Eq. (2), (2) using this
expression to develop a transformation to the space of uncorrelated standard normal random variables,
then (3) transforming the datum of unknown origin to the standard normal space where we perform a test
of hypothesis to judge its membership in the reference set.

We commence the development by assuming that a random variable X is characterized by a collection of
data denoted x, j=1,...,n. The source and the data it produces may be vector quantities. The kemnel
density estimator for the data is given by Eq. (2). We seek a transformation from the space of X to the

space of uncorrelated standard normal random variables. Such a transformation can be developed using the
Rosenblatt transformation (see Rosenblatt, 1952).

The Rosenblatt transformation is a unique and invertible mapping that permits the conversion of vector
realizations of random variables with arbitrary joint probability distribution to vector realizations of




independent, uniformly distributed random variables on the interval [0,1]. To develop the transformation,
note that there is a cumulative distribution function (CDF) estimator that corresponds to the KDE in Eq.
(2) It is easy to obtain the CDF estimator because of the form of the covariance matrix in Eq. (3); it is
given by
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where x is the variate vector and &, is its kth element, Xxy; is the kth vector element in the jth data point -
xj, F(.) is the CDF of a standard normal random variable and the other quantities in the expression are

defined following Eq. (2). This is the joint CDF of all the random variables, Xz, k =1,...,n, in the vector

X. From this function all the lower order joint CDFs (including marginal CDFs) and conditional CDFs can
be developed. The Rosenblatt transformation is defined as

u =Fyx, (&)

up =Fy, 1, (£2141) (6)

Uy =Fx X, ... X (G0 16n-15-61)

where the u jsJ=1,...n,are realizations of independent, uniformly distributed random variables on [0,1],

the & s j=1,...,n, are elements of the vector x, and the functions on the right hand side are one marginal

(the first equation) and several conditional CDFs obtained from Eq. (5). The following shorthand notation
can be adopted for Egs. (6).

u=T(x) )

where u is the vector of elements u s Jj=1,...,n, and x is the vector of elements & s j=L..,n.

Because the CDF defined in Eq. (5) is monotone increasing (The standard normal CDF, @() is a
monotone increasing function.), the transformation of Egs. (6) and (7) is invertible, therefore,

x =T (u) t))

Because we can define the forward and inverse transformations in Eqgs. (6) through (8) for a vector of
random variables X with arbitrary distribution, we can also define the transformation for a vector of
random variables W that are uncorrelated with standard normal distribution (i.e., each element of W is .
normally distributed with mean zero and unit variance.). The forward and i inverse ’transformations may be
denoted

u=Ty(w) w=Ty (u) 9

where the subscript “sn” refers to the fact that these are transformations to and from the standard normal
space.




The existence of the transformation in Eq. (7) and the second transformation in Eq. (9) implies that a
transformation from a realization of a vector random variable with arbitrary joint probability distribution to
a realization of a vector of uncorrelated standard normal random variables can be defined In terms of the
notation in Egs. (7) and (9), it is

w=Tg (T(x)) (10)

This transformation, developed using the detailed forms of Eqs. (5) and (6), forms the basis of the PPC.
The transformation reflects the character of the data source X via its measured realizations x j»J=L.,N,

because the CDFs in Eq. (6) come from Eq. (5), and Eq. (5) involves the x jJ=L...N.

The PPC operates on the following basis. We consider a datum z of unknown origin, and make the
hypothesis that it comes from the random source X. We transform z to the space of realizations of
uncorrelated standard normal random variables using Eq. (10). The operation yields

w, =T (T(2)) an

Note that the distance from the origin of a random vector in uncorrelated standard normal space is related
to the chi squared distribution. Specifically, the square of the distance from the origin of a random vector
with dimension n, whose components are standard normal random variables, is chi squared distributed
with n degrees of freedom. In view of this, the hypothesis specified above is rejected at the a x100% level

of significance if the norm of w, (i.e., "wz ") falls outside the interval [0,,} x3,1_a], where

Fa(B1ea)=1-0 (12)

and F 2 (.) is the CDF of a chi squared distributed random variable with n degrees of freedom. Otherwise,

the hypothems is accepted at the discretion of the analyst. (The need for discretion arises here because
measure of performance may simply not have been one that leads to rejection of the hypothesis; i.e., other
measures of structural response may have led to rejection.)

In summary, we transform the datum z using Eq. (11), compute the norm of w,, then observe whether
"wz “ falls within [o,,[ 21a ] If it does, then we may conclude that z is a realization of the random variable

X; otherwise, we conclude that it is not. It is anticipated that, on average, (1~ a)x100% of the realizations z
that come from the random source X will fall in the interval. When we perform a test under practical
conditions, we will often set the significance level in the range 0.1% through 5%. In a heuristic sense, we

can conclude that when "wz " is outside the interval [0,\’1,2,,1_,, ] , but not too much greater than 2, , then

z may simply be an outlier of the random variable X. When "wz“is much greater than 22, ., then we -
conclude that z did not arise from the random source X.

4. APPLICATION OF PROBABILISTIC NEURAL NETWORKS TO STRUCTURAL
HEALTH MONITORING

The current research effort has focused on the development of two PNN software codes (the classical
PNN and the PPC) to address the health of mechanical structures based on experimental data. These ANN
approaches use measures of system response (and sometimes input) data to characterize the dynamic
behavior of a component. The PNN uses measures of both damaged and undamaged system behavior to




characterize a structure; the PPC uses only the latter. Once these models have been developed with
measured response data, they can be used to enhance the decision making process related to the health of
the structure. On-line measurements of both inputs and responses of an operating system, such as
equipment on a production or manufacturing line, can be used to train the ANN. Once trained, the ANN
can be used to monitor system health, either in real-time, or via post processing of data. There is no
limitation on the types of structural response measures that can be used in the ANN training process to
help assure that change in structural response or structural damage is clearly detected.

There are several key elements that are required to develop a useful PNN. First, the selection of a KDE
plays an important role in the ANN development process. The KDE is an estimator of the PDF required in
the decision analysis. Second, the selection of appropriate measures of structural response are needed that
help to clearly reveal structural damage. These elements are a critical part of the development of a PNN that
can be used to establish a measure of system health.

There are limitations to using these ANNs. Care needs to be taken when calculating multivariate density
estimates. The size of the exemplar or training set needed in kemel density estimation -increases
dramatically as the order or dimensionality of the density estimation increases (Silverman, 1986). Thus,
the requirement for large amounts of experimental data in estimating the probability densities might cause
some limitations of these ANN techniques. Also, these two techniques are currently limited to assessing
whether damage has occurred in a structure and they do not provide a method for determining the location
or extent of the damage in the structure. In addition, the type of smoothing chosen in the kernel density
estimation could limit not only the accuracy but also the computational speed of the estimation. Finally,
when the sample set is large, the choice of kernel estimator may be very important in reducing the
computation time of the probability density estimation (Silverman, 1986).

5. NUMERICAL EXAMPLE

An aerospace housing component was selected as test case hardware for generating experimental data
where the health of the system could be monitored under different structural conditions. A test design tool
called the Virtual Environment for Test Optimization (VETO) was used to design an optimal experiment for
this housing component. The frequency band of interest was selected to include the first five vibration
modes of the structure. A solids model of the aerospace housing component was used to generate a rapid
prototype component through a stereolithography process. The testing was performed on this
stereolithography component. Figure 1 shows a test setup photo.




The excitation used in the experiment was a stationary random vibration; acceleration response was
measured at 55 locations. Using the visualization software within the VETO environment, two separate
locations on the housing structure were selected for the introduction of damage. The basis for the selection
of these locations was made by animating the vibration modes of interest while observing maximum strain
energy density on the structure. Five separate damage cuts - each of one-quarter inch depth - were
introduced at two locations with high strain energy density.

The selection of independent response measures for training the PNN was an important factor in
developing a useful tool to measure the health of the housing component. The goal in choosing these
measures was to minimize the dimension of the ANN while preserving or amplifying the response
differences as damage was introduced into the structure. Responses measured at five locations were used
in the analyses. It was determined that measures of static flexibility at the five measurement locations on
the housing component would be used to train the PNNs to detect structural damage. Selecting static
flexibility as the measure of structural response to use in the ANN applications required some analysis to
be completed on the experimental data. Large sample sets of data were collected from input as well as for
each of these response locations on the structure. Thirty-nine frequency response function (FRF)
realizations were calculated using smaller blocks of this large sample set of data. An approximation of the
static flexibility was calculated given each of these FRF realizations. The method for estimating the static
flexibilities was to average the low frequency FRF behavior to asymptotically approximate these measures.
The difficulty in determining these estimates was in selecting an appropriate frequency range to make the
calculations. A typical FRF measure is shown in Figure 2.
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Figure 2. Typical frequency response function.

The first case study utilized these measures of static flexibility at the five selected locations on the housing
structure as input to the classical PNN. Operation of the classical PNN requires data from at least two
known sources; one set of static flexibilities from the undamaged case and one or more sets of static -
flexibilities from the group of damaged cases. When the classical PNN was presented with data from an
unknown source (this unknown data was taken from the sample set of undamaged or damaged flexibilities
and was subsequently not used as PNN training data), the PNN would judge the origin of that data based
on the Bayesian decision criterion shown in Eq. (1). The a priori probabilities given the two known
sources of data were 0.5 and the loss factors were set to 1. The results from the classical PNN study were
perfect with the code predicting the correct origin of an unknown source 78 out of a possible 78 times in
all damage cases. Because of the obvious difficulties in graphically presenting the results of a five-
dimensional density, two of the five locations on the housing structure were arbitrarily selected for
displaying results from the classical PNN. Figure 3 shows the two-dimensional scatter plot of the static
flexibilities plotted against one another for the undamaged (o) and five successive damaged cases (+). The




differences between the undamaged and damaged cases for these two static flexibility measures are quite
apparent enabling the PNN to easily detect the origin of an unknown source. The classical PNN was able
to distinguish the damaged from the undamaged data in all cases, including the most lightly damaged case.
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Figure 3. Scatter plot of static flexibilities. '

The second case study utilized the same measures of static flexibility as input to the PPC. In this case, the
PPC requires data from only a single source, such as the undamaged set of flexibilities, and seeks to judge
whether or not the data from an unknown origin comes from that source. The Rosenblatt transformation
was used to map the static flexibility data from the space of the kernel density estimator into the space of
uncorrelated, standard normal random variables. This transformation was also used to transform the data
from an unknown source, static flexibility data from the damage cases, into the standard normal space. A
distance from the origin was used as criterion to judge whether the data from the unknown source (data
from successive damage cases) came from the known undamaged source. An acceptance region, distances
from the origin considered as part of the undamaged source, was established based on the use of the chi
square distribution. A chi square random variable with five degrees of freedom has a 99.9% probability of
a distance from the origin less than 4.53. The results for the five damage cases input into the PPC are
shown in Figure 4 as well as the maximum distance from the origin in standard normal space at which a 5-
dimensional datum could be considered a realization of a 5- vector of uncorrelated standard normal

random variables (4.53). (This is the straight line at $=4.53.) This figure shows the trend that as damage
increases in the structure the distance measure in standard normal space also increases. The data near beta
= 12 correspond to the first damage case. The data near beta = 50, 90 (smoother curve), and 110,
correspond to the second, third, and fourth level damage cases, respectively. The data near beta = 90
(more erratic curve) correspond to the fifth level damage case. At this time it is not clear to us why the fifth
level damage case yields lower beta values than the fourth level damage case.

6. CONCLUSIONS

The results obtained using both the classical PNN and the PPC were quite successful. The damage in the
aerospace housing component was identified, even in the most lightly damaged case, using both
techniques. These ANNs clearly offer a robust method for assisting in the identification of damage in
structures.

There are, however, a number of limitations in using these ANN techniques. The first is the limitation of
these methods to provide or determine the location and extent of the structural damage. Further research in
these ANNs will explore the combining of these techniques with data condensation methods to assist
identifying the location and ultimately the extent of the structural damage. Some additional research will



focus on the sensitivity of these ANNSs to boundary conditions. Studies will be done to assess the effects
that changing test configurations might have on the ANN results.
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Figure 4. Plot of distance from the origin of data in standard normal space.
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