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INTRODUCTION 

The "Cool Pool" i s  a p a s s i v e  coo l ing  system c o n s i s t i n g  of a shaded, 

evapora t ing  roof pond which thermosiphons c o o l  water  i n t o  w a t e r - f i l l e d ,  

me ta l  columns ( c u l v e r t  p ipes )  l o c a t e d  w i t h i n  t h e  b u i l d i n g  l i v i n g  space.  

F igu re  1 shows a  schematic  of t h e  Cool Pool  and test b u i l d i n g  which has  

been b u i l t  a t  L iv ing  Systems loca t ed  near  Sacramento, C a l i f o r n i a .  
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Figu re  1. Cool Pool Tes t  Bui ld ing  
. . . ,. 
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The roof pond r e q u i r e s  no movable i n s u l a t i o n .  A f i x e d  shade keeps 
;. . i;; ",;!,; 2 
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d i r e c t  s u n l i g h t  o u t  of t h e  pool  bu t  a l l ows  a i r  movement over t h e  pool '.. . .: I ,  

i 
su r f ace .  The water  i n  t h e  roof pond i s  cooled by e v a p ~ r a t i o n ~ c o n -  ' ." , , ? . .  .* 3 ,  

, ; .<.:.,': 
v e c t i o n  and r a d i a t i o n .  , , .  

Because t h e  water  i n  t h e  pool  and damcomer i s  c o l d e r  and denser  

than t h e  water  i n  t h e  column a p r e s s u r e  d i f f e r e n c e  is  c r e a t e d  and t h e  

co ld  water  f lows from t h e  pool ,  through t h e  downcomer and i n t o  t h e  t 



bottom of t h e  column. The warm column water  r i s e s  and f lows through 

a connect ing p ipe  i n t o  t h e  pool .  It is' then  cooled and t h e  c y c l e  

r e p e a t s  i t s e l f .  The system r e q u i r e s  no pumps. 

The water  column absorbs h e a t  from t h e  bu i ld ing  i n t e r i o r  p r imar i ly  . ; 
by convect ion and r a d i a t i o n .  Since the 'column i s  r a d i a t i n g  a t  a s i g n i -  

f i c a n t l y  lower temperature t han  t h e  i n t e r i o r  w a l l s  i t  p l ays  a double 

r o l e  i n  l~un~an cornf'ort. Not only does i t  cool  the afr by convect ion . ' 

b u t  i t  provides  a h e a t  s i n k  t o  which people can  r a d i a t e .  S ince  thermal  

r a d i a t i o n  i s  important  t o  t h e  coo l ing  of people,  t h e  co ld  water  column 

c o n t r i b u t e s  s u b s t a n t i a l l y  t o  t h e i r  f e e l i n g s  of comfort.  

During 1979-1980 Living Systems i s  cont inuing  the  i n v e s r i g a t i o n  

of t h e  Cool Pool .  The major t a s k s  under t h e  D.O.E. g r a n t  inc lude :  

Cont ro l  of b i o l o g i c a l  organisms and d e b r i s  i n . t h e  roof pond and water  

c y l i n d e r s  (B.4); Development of a h e a t  exchanger ( B . 5 ) ;  Experimental 

i n v e s t i g a t i o n  of t h e  sys tem's  thermal  performance (C.5)'; and develop- 

ment of a p r e d i c t i v e  computer s imu la t ion  of t h e  Cool Pool ( c .6 ) .  

This  i n t e r im  r e p o r t  w i l l  d i s c u s s  t h e  progress  made between March 

and June of 197 9. 
. . 

Be 4 BIOLOGICAL ORGANISMS AND DEBRIS 

Mosquitos, a l g a e ,  and d e b r i s  may develop i n  t h e  Cool Pool .  

Mosquitos must be completely c o n t r o l l e d  a s  they a r e  no t  only a 

nuisance bu t  p re sen t  a h e a l t h  hazard .  Algae and d e b r i s  a r e  problems 

only i f  they o b s t r u c t  t h e  plumbing or  a i d  i n  co r ros ion  of t h e  

pool con ta ine r .  

Three main c o n t r o l s  f o r  these ,problems a r e , b e i n g  i n v e s t i g a t e d :  

b i o l o g i c a l ,  chemical and b a r r i e r .  

The b i o l o g i c a l  c o n t f o l  method i s  being t r i e d  i n  t h e  6'x101x1'.  

deep shaded Cool Pool  l oca t ed  on t h e  roof of t h e  t e s t  bu i ld ing .  

This  pool  is  now plumbed i n f o  two 8 '  t a l l  1%' diameter  water  c y l i n d e r s  

which a r e  thermosiphoning. The chemical and b a r r i e r  experiments a r e  

being conducted i n  14" diameter  4" deep galvanized s t e e l  pans loca t ed  

under a plywood shade ( see  F igu re  2 ) .  



Figure  2 .  B io log ica l  Set-up 

B i o l o g i c s :  

Mosquito f i s h ,  Gambusia A f f i n i s ,  e a t  mosquito l a r v a e .  They t h r i v e  

i n  water  which i s  between 40°F and 100°F and can  even su rv ive  t h e  

win te r  under a  l a y e r  of i c e .  These f i s h  grow t o  be  about 2 inches long. . 

They bear  l i v e  young about t h r e e  t imes per  summer. . L 

Mosquito f i s h  were introduced i n t o  t h e  Cool Pool  t e s t  bu i ld ing  1 , 

water  on June 11, 1979. A s  of June 30, 1979 they  a r e  a l i v e  and no 

mosquitos have developed al though mosquitos a r e  p re sen t  i n  t h i s  a r e a .  . . 
Algae i s  growing i n  a  t h i n  l a y e r  on t h e  Cool Pool bottom. . Af te r  

2 yea r s  of ope ra t ion  no co r ros ion  of t he  metal  pan i s  v i s i b l e ,  under 
' 

t h e  a l g a e  and t h e  a lgae  i s  n o t  i n h i b i t i n g  t h e  flbwlth;?ugh t h e  p ipes .  

I t  does no t  seem t o  p re sen t  any,problem. 

Chemical 

Two chemical a l t e r n a t i v e s  a r e  being i n v e s t i g a t e d  inc luding  Copper 

Sulphate  and Ph c o n t r o l .  



Copper Sulphate  ( a l s o  kno'm a s  b lue  s tone)  is  an  a lgaec ide  which, 

i n  t h e  recommended dosage ( 1  t o  1 . 5  ' P P ~ ) ,  i s  r e l a t i v e l y  harmless t o  

most animals  inc luding  humans and l i v e s t o c k .  ' It is  t o x i c  i n  g r e a t e r  

concen t r a t ions .  Since i t  does no t  evapora te  wi th  t h e  water one dose , . 

should l a s t  t h e  season.  However, when t h e  win ter  r a i n s  cause runoff , ,  

an 'over f low t o  t h e  sewer system o r  s e p t i c  tank  should be  provided t o  
' 

avoid t h e  build-up . of copper s u l p h a t e  i n  t h e  s o i l .  

Copper Sulphate  may c o n t r o l  mosquitos by dep r iv ing  t h e  . l a rvae  

of food. It tends t o  ox id i ze  f e r r o u s  m a t e r i a l s  bu t  as y e t  no co r ros ion  , . . .  : 

of t h e  galvanized s t e e l  con ta ine r  has  been observed.  

A g r i c u l t u r a l  Lime (CaCo ) has been used t o  induce a n  a l k a l i n e  
3 I '  

Ph of about 8.3. This  appears  t o  be t h e  maximum s o l u a b i l i t y  achiev- 

a b l e .  It is hoped t h a t  t h i s  b a s i c  environment w i l l  i n h i b i t  a l g a e  growth 

and thus  s t a r v e  t h e  mosquito l a r v a e .  Pre l iminary  r e s u l t s  i n d i c a t e  

t h a t  t he  l ime enhances co r ros ion .  

The c o n t r o l  pan has  achieved a  Ph of 8.3 from evaporat ion and 

concen t r a t ion  of n a t u r a l l y  occur ing  s a l t s  without  co r ros ion .  

V o l a t i l e  chemicals such a s  c h l o r i n e  were r e j e c t e d  because t h e  pool  

water  would need t o  be c o n s t a n t l y  t e s t e d  and t h e  chemical r ep l en i shed .  

I n  a d d i t i o n ,  c h l o r i n e  i s  an  oxident  and corrodes s t e e l .  

O i l  o r  kerosene i s  uscd t o  c o n t r o l  mosquitos.  However a  coa t ing  

of t h e s e  subs tances  on t h e  water  s u r f a c e  may a l s o  decrease  evapora t ion  

and decrease  the  poo l ' s  a b i l i t y  t o  r e j e c t  h e a t .  

B a r r i e r  

Ordinary po lyes t e r  window screening  h a s , b e e n  fas tened  over one 

t e s t  pan. The sc reen  i s  loca t ed  1% inches  above t h e  water  s u r f a c e -  and 

the  edges a r e  c a r e f u l i y  sea led  t o  t h e  pan. Although i t  is  p o s s i b l e  , '  

t h a t  t h e  mosquitos may l a y  t h e i r  eggs through t h e  sc reen , the  new mosquitos . 

w i l l  be  trapped under t h e  sc reen  and d i e .  During t h e  3 weeks t h e  

s c r e e n  has  been i n  p l a c e  no l a r v a e  have been observed i n  t h e  water .  

Conclusion t o  B io log ica l  

The e f f e c t i v e n e s s  of t h e  d i f f e r e n t  methods f o r  mosquito c o n t r o l  is 

c u r r e n t l y  being t e s t e d .  It appears  t h a t  l ime a i d s  co r ros ion  and sh-mild 

no t  be  used where i t  may come. i n t o  confac t  w i th  s t e e l .  Algae and d e b r i s  
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do no t  seem t o  p re sen t  a  problem. They do no t  appear  t o  enhance 1 '  

1.1 > . 
co r ros ion  nor  do they  i n h i b i t  t h e  thermosiphoning. . .,r:,- 

i 
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B. 5 D E v E L O ~ E N T  O F  A C O O L  POOL H E A T  EXCflANGER . . . . . 

A s h e e t  me ta l  h e a t  exchanger and. v i n y l  water  bag were s t u d i e d .  . . I . .  

A d i scus s ion  of t h e  ' p ros  and cons of each method fo l lows:  
. , 

'. ! 

. . 
The themos iphon ing  Cool Pool ' ope ra t e s  on a  p r e s s u r e  d i f f e r e n c e  

.of a s  l i t t l e  a s  0.05 p s i .  This  r 'u les  out  t h e  use of c.onventiona1 

piped hea t  exchangers s i n c e  they in t roduce  s u b s t a n t i a l  f r i c t i o n a l  .. . 

r e s i s t a n c e  and would s t o p  the  thermosiphoning'. The des igns  shown 

i n  F igu re s  3 and 4 p re sen t  n e g l i g i b l e  f r i c t i o n a l  r e s i s t a n c e  t o  t h e  

water flow. . , 

It i s  important. t h a t  t h e  su r f ace :  of  t h e  pool be  a t  a n  equa l  or 

h igher  l e v e l  than t h e  top of t h e  water c y l i n d e r  s o  t h a t  t h e  thermo- 

s iphoning w i l l  work proper ly .  This  presented a  des ign  problem f o r  
. . 

t h e  r i g i d  s h e e t  me ta l  hea t . exchange r .  The s o l u t i o n  i s  shown i n  

F igu re  3 .  . . 

C O L V  1'9 N 

Figure 3 .  Mecal Heat Exchanger 

The s h e e t  meta l  exchanger (A) i s  t i l t e d  s l i g h t l y  from h o r i z o n t a l  

60 t h a t  air will not be  trapped under  the msrnl. an8 obatr~rec F.h@ )I@&$ 

t r a n s f e r  f r m  the i s o l a t e d  i w e r  warrr t o  t h e  top,  evapora t ing  water .  . . 

The h ighes t  p o i n t  of t h e  system (B) c o n t a i n s  a  f l o a t  va lve  w i th  make 



l e v e l  were t o  drop s o  t h a t  t h e r e  was .an  a i r  gap between the  lower 

water  and the  h e a t  exchanger, .  cool ing  would be d r a s t i c a l l y  reduced. 

Although t h e  water  under t h e  h e a t  exchanger i s . e n c l o s e d . a n d  should 

not  need r ep len i sh ing ,  experience.  has  shown t h a t  a  back-up system 

is  wise. A second f l o a t  va lve  loca ted  above t h e  h e a t  exchanger i s  

necessary  t o  r e p l e n i s h  t h e  evaporat ing wa te r . ,  

F igure  4 shows the  v i n y l  waterbag h e a t  exchanger. Since v i n y l  

has  about  t h e  same d e n s i t y  as water t h e  water  bag completely l o s e s  

i t s  s t r u c t u r a l  shape when immersed i n  water. .  'This p r e s e n t s  a  problem 

s i n c e  t h e  v i n y l  may drape  over t he '  connect ing p ipes  and o b s t r u c t  t h e  

thermosiphoning. O r  i t  may f l o a t  t o  . t h e  pool  s u r f a c e ,  become dry  and 

reduce the  water  a r e a  a v a i l a b l e  f o r  evaporat ion.  . . Therefore  a re- 

s t r a i n i n g  framework must be designed '  £0; the  v i n y l  h e a t  exchanger. 

C O L U M N  

Figure  4. Vinyl Bag Heat Exchanger 

Since f l e x i b l e  v i n y l  f i l m  does no t  a f f e c t  the  p re s su re  grsd ien t .  

w i t h i n  t h e  roof pond only one f l o a t  va lve  ( loca t ed  a t . ' t h e  f r e e  su r f ace )  

i s  uecessary. Care musr be taken t h a t  t h e  water l e v e l  i n  t he  i n t e r i o r  

column remains a t  o r  below t h e  p o o l ' s  f r e e  su r f ace .  This w i l l ' n o t  b e  

a  problem un le s s  t h e  c y l i n d e r  is  ove r - f i l l ed  i n i t i a l l y .  
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A pro to type  water  bag h e a t  exchanger i s  c u r r e n t l y  be ing  cons t ruc t ed  ~, .. .,. . : -. : , 

, . '  . < . i !  
by Carson Manufacturing Company i n  S a u s a l i t o ,  C a l i f o r n i a  and w i l l  be  . . 

. .  s .  
i. , . ' I,, 

I .  ( . i n s t a l l e d  on t h e  Cool .Pool du r ing  the.1979 summer. The r e s t r a i n i n g  . . , . .  ' .  I .  
. . 1': ., 

framework 'is being designed.  . , . .  . .  . . . . . ' 
. . , . 

'. ' / 

C ,  5 COOL POOL SIZING EXPERIMENTS 

The Fluke 2200B d a t a  logger  has  been hooked up t o  thermocouples 

which monitor temperatures  i n  t h e  t e s t  b d i l d i n g  . ~ e m ~ e r a t u r e s  
. . 

monitored inc lude  5 l e v e l s  i n  t h e  water  column, 8 l e v e l s '  of i n t e r i o r  

a i r ,  3 l e v e l s  i n  t h e  downcomey, c e i l i n g  and  .wal l  t empera tures ,  pool  

temperature ,  o u t s i d e  dry and w e t  bu lb  ( v i a  a n  a s p i r a t e d  wet, bu lb  

thermometer us ing  plat inum r e s i s t a n c e  s enso r s ) .  Net r a d i a t i o n  over 

t h e  pool  i s  a l s o  recorded.  The thermoc,obples were f a b r i c a t e d  from 

Omega 30 gungc t e f l o n  coated copper-constantan w i r e .  The ends were 

welded toge the r  arrd coated w i th  epoxy t o  prevent  spu r ious  c u r r e n t s  . . 

from i n t e r f e r i n g  wi th  t h e  v o l t a g e  r ead ings .  

The the rmocoup l~s  were c a l i b r a t e d  - a g a i n s t  a  secondary s t anda rd  

platinum r e s i s t a n c e  thermometer owned by t h e  Un ive r s i t y  of ~ a i i f  o r n i a  

a t  Davis. A Rosemount c o n t r o l l e d  temperature .oi .1  and i c e  b a t h  w a s  

used. Resu l t s  i n d i c a t e  t h a t  a l l  thermocouples were uniformly b i a sed  

by a  maximum of .2?C a t  50°C ( l e s s  a t  lower tempera tures )  b u t  t h a t  

t h e r e  was no d e t e c t a b l e  d e v i a t i o n  among t h e  thermocouples themselves.  

On M a j ~  24, and May 2.5, 1979 t h e  f i r s t  thermosiphoning t e s t  was 

conducted. The thermosiphoning r a t e  was measured by i n j  ec  t i n g  vege- 

t a b l e  dye through a  tubber  s l e e v e  connect ing a 4 f t .  long 1y' I D  

t r anspa ren t  a c r y l i c  tube  t o  t h e  r i s e r  o u t l e t . .  The l eng th  of t ime 

t h a t  t h e  f a s t e s t  c e n t r a l  s t ream-l ine  took t o  t r a v e r s e .  t h e  4'tube 

was recorded.  The flow was obviously laminar .  Therefore  t h e  average .  

v e l o c i t y  was determined by d i v i d i n g  t h e  c e n t e r l i n e  v e l o c i t y  i n  h a l f .  

Average measured v e l o c i t i e s  were compared t o  t h e o r e t i c a l  . . 
v e l o c i t i e s  c a l c u l a t e d  from t h e  r e l a t i o n s h i p .  

where P = d e n s i t y  of water  

." = average  v e l o c i t y  

f  = f r i c t i o n  f a c t o r  = 6 4 1 ~ e  



Re = Reynolds number . . 

a , :hq& 

~ / d  = l eng th  + diameter  r a t i o  % 120 

K = expansion f a c t o r  (4 .5  f o r  5 expansions) 
*"fY , d1.t 

4: 1p . 4 h . S  

(yh, = he igh t  x d e n s i t y  f o r  downcomer , &#$ .' 
{yhc = he igh t  x d e n s i t y  f o r .  column (from measured ' .  . 

, ' 2' 
Table I shows t h e  experimental  v e l o c i t i e s  and t h e  c a l c u l a t e d  ;,**$ . i . 3 1 ,,. ,,y, 

+if. v e l o c i t i e s .  The maxi~uum discrepancy was 12.6% which shows e x c e l l e n t  . . &,- 

s .  ' ., .;ifil.Q5i 
agreement cons ider ing  t h e  e r r o r  a n a l y s i s  i n d i c a t e s  t h e  maximum possib16L' - f - ~ p $ i ~ ~  

* :,, ;:4 STE . . 
e r r o r  i n  c a l c u l a t e d  v e l o c i t y  r e s u l t i n g  from cumulative measurement 

e r r o r s  could reach 20%. 

R E A O J N G  UGH V C A L C  
1 0.091 0,0598 
Z 0,067 0,0460 
3 0-0'7h 0,0519 
4 0.098 0.0439 
5 0,109 .0.0699 
6 0.110 0,0?.10 
7 0,109 OQO?Oi? 
8 0.105 0.0684 
9 0,091 0,0608 

10 0,075 0,0514 
1 1  OO07f 0,0529 
12 0,085 0,0%?2 
13 0.095 0.0627 
14 0.100 0,0650 
15 Q a I V.2 O a.0659 
11 6 0.100 0.0648 
17 0,097 0.0630 
1 Q 0,100 0,0639 
I 9 0,097. 0.0622 
20 0.090 0.0582 
2 8 0.086 g..0540 
2 . 0,078. 0,05112 
23  0 0 0 7 2  0.0480 
24 0,065 0,0438 
25 0.065 0,0440 
26 0,063 0,0431 
27 0;070 0,0475 
28 0,071 0,0482 
29 0,070 0,04?5 
30 , 0.074 0,0467 
31 0,071 0 0 0 4 ~ 9  

VEXP 
0,0535 
0,0472 
0:0471 
0,8654 
O , O P O i !  
'0,0473 
0.067 8 
Oi0601 
0,0570 
0,0522 
0,0487 
0,0585 
0.0625 
0,0637 
0,0645 
060631 
0.0625 
0,0617 
0,0617 
o ,  oses 
0,0560 
0,0546 
0,0539 
0,0449 
0,0449 
0 ;0404 
0,0455 
0.0482 
0,0!79 
0,0521 
0.0534 

+ .  - .-. * . - 
Table I. CalculaLed vs.  Measured Water v e l o c i t i e s  ""---------- 

Through 1% Inch Pipe 
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C .6 PREDICTIVE COMPUTER. SIMULATION '.<.. ..e .-. ; . . 
. . .  .L ..n ,.,. :% , . 7 , .  r , , -  . *  ;. ' 
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Figure  5.  Nodes For Computer ~ i m u l a t i o n  



Node 1 is  t h e  roof pool.  The downcomer and.column+are d iv ided  

i n t o  h o r i z o n t a l  s l i c e s .  Nodes- 2 ,  3 and 4 a r e  t h e  top ,  middle and 

lower downcomer nodes .' Node 5 is the'. lowest column s l i c e .  Nodes 

6,  7 and 8 a r e .  t h e  middle column' nodes. Node 9 i s  the  top  column 

, .node. The t e n t h  node is  t h e  . i n t e r i o r  a i r .  
. . 

, The h e a t  t r a n s f e r  mechanisms descr ibed  by tl ie d i f f e r e n t i a l  

equat ions  a r e  ' these:  

Node 1. The Roof Pond: 

A) mass f low from column top  
. . 

. . 
B) mass flow t o  downcomer top  

C) evapora t ion  t o  o u t s i d e  a i r  

D) convect ion t o  o u t s i d e  a i r  

E) n e t  r a d i a t i o n  from shades and,  sky 

, . Node 2 - 4 .  The   own comer 
A) mass flow i n  a n d . o u t  

B) conduct ion from water  column 

. . Node 5 - 9 .   he Column 

A) mass f l o w . i n  and out  , 

B) conduct ion from downcomer 

. . C) r a d i a t i o n :  t o  bu i ld ing  i n t e r i o r  
. . 

D) convect ion t o  i n t e r i o r  a i r  

.Node 10.  I n t e r i o r  A i r  

, . A)  r a d i a t i o n  from column 

B) convect ion from col.umn 

C) bu i ld ing  load '  

I t  i s  assumed t h a t  convect ion loops w i t h i n '  the  1); f o o t  diameter 

water  column enhance, temperature '  s t r a t i f i c a t i o n .  To s imu la t e  t h i s  

process  a l l  t h e  water cooled by conduct ion from t h e  downcomer i s  

assumed ' to  be  de l ive red  t o  t h e  bottom of t h e  water  column. Conduction 
. . . . 

. . 'between water  l a y e r s  . (which would weaken temperature s t r a t i f i c a t i o n )  

. ' i s  ignored.  
. . 

Siz ing  P r o w  

%he f i r s t  v e r s i o n  of t h e ; s i z i n g  program has .been  developed us ing  
. . 

t h e  fol lowing i n p u t s  and h e a t  t r a n s f e r  pa ths .  



I n p u t s  (hourly)  

n e t  r ad ' i a t i on  i n t o  pool  (exp.erimental)  

o u t s i d e  a i r  temperature  

o u t s i d e  .wet, bu lb  temperature  

parameters  
. . 

bu i ld ing '  hour ly  h e a t .  l o s ~  Goef f  i c i e n t  

volume of water column 

s u r f a c e  a r e a  of column ' ,  

volume of roof pond 

s u r f a c e  a r e a  of roof pond 

p ipe  10s.; f r i c t i o n  f a c t o r  
, . 

surface ' .  a r e a  of downcomer 

volume of downcomer 

volume of bu i ld ing  

1 n i t i a l i z a t i o . n  

a l l  node temperatures  

I n t e r i m  Outputs 

, . nod& tempera tures  

v e l o c i t y  of water  i n  r i s e r  

mass f low r a t e  

n e t  h e a t  t r a n s f e r  i n t o  column from a i r  

. . 

Resu l t s  

This  program models thermosiphoning and column tempera tures  

q u i t e  we l l .  ~ u l r u r e  work w i l l  a t t emp t  t o  develop a n  a lgo r i t hm f o r  

a i r  ~ t r n t i f i c a t i o t l  u r  an a l r e r n a t e  method of a c c u r a t e l y  p r e d i c t i n g  

h e a t  t r a n s f e r  i n t o  t h e  column' ' su r f ace .  These a lgo r i t hms  can then .. 

. . 
be  incorpora ted  i n t o  t h e  computer model. 

. . 

Hourly west and dry bu lb  c l i m a t e  d a t a  f o r  d i f f e r e n t  a r e a s  of ' 

t h e  United S t a t e s  has  been ga thered  and w i l l  be  used f o r  s i z i n g  t h e  

Cool Pool f o r  t h e  Cool Pool  c l i m a t i c  r eg ions .  



CONCLUSION 

Work has progressed r a p i d l y  du r ing  t h e .  f if'st q u a r t e r  of  t h i s  p r o j e c t  . 
The second q u a r t e r l y  r e p o r t  w i l l  i n c lude  

- Resu l t s  and conc lus ions  from t h e  b i o l o g i c a l  t e s t i n g .  

- Performance. eva lua t  i on  of th,e hea t  exchanger. 

- A comparison of  s imulated Cool Pool performance wi th  t h e  
experimental  da t a .  

I 




