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SUMMARY 

Reac t ion  r a t e  k i n e t i ' c s  have been determined '  f o r  t h e  o x i d a t i o n  and 

g a s i f i c a t i o n  o f  o i1 ' :shale '  c h a r  produced by r e t o r t i n g  o i  1  s h a l e  f r o m  t h e  

Anv i  1 P o i n t s  a r e a  o f  Co lorado;  , .  Exper imen ta l  methods employed i n c l  gded 

c o n t i n u o u s  g r a v i m e t r i c  measurements as w e l l  as ch romatog raph ic  ana lyses  
. .  . 

o f  t h e  make-.gas. v a r i a b l e s  wh ich  were i n v e s t i g a t e d  i n c l u d e d  t h e  e f f e c t  

o f  retur.l;ir~y r d  te ( . 3 -17  "C/min) on t h e  c h a r  q u a n t i t y  and q u a l i t y  as w e l l  

as a  .range o f  c o n c e n t r a t i o n s  and t e m p e r a t u r e s - p e r t i n e n t  t o  c h a r  g a s i f i -  

c a t i o n .  S p e - c i f i c a l l y  t hese  i n c l u d e d  tempera tu res  f r o m  425 C t o  800 C ,  

oxygen p ressu res  from .03 t o ,  .21 atrn, CO* p a r t i a l  p ressu res  f roo :  

.O1 t o  1 .0  a tm and steam p a r t i a l  p ressu res  f r o m  0.18 t o  0 .75 atm. I n  

a d d i t i o n  a  number o f  exper imen ts  were conducted t o  de te rm ine  oxygen mass 

t r a n s p o , r t  1  i m i t a t i o n s  f o r  1  a r g e r  ( 2  -cm diameter) . c y l  i n d r i c a l  c o r e  samples. 

I t  was. found  t h a t  as l o n g  as t h e  s h a l e  was r e t o r t e d  ' a t  r a t e s .  h ic jher  

t h a n  0 . 3 0 ~  m in  o r  w i t h  purge v e l o c i t i e s  h i g h e r  t h a n  4 cm/min (STP), t h e r e  

was no e f f e c t  o f  r e t o r t i n g  on t h e  c h a r  make. N e i t h e r  d i d  t h e  assay o f  

t h e  s h a l e  (15-50 GPT) have any e f f e c t  on t h e  c h a r  o x i d a t i o n  a c t i v i t y .  The 

k i n e t i c -  s t u d y  i n d i c a t e d  t h a t  c h a r  o x i d a t i o n  was f i r s t  o r d e r  ' w i t h  r e s p e c t  

t o  b o t h  c h a r  and oxygen and had an a c t i v a t i o n  energy  o f  23.2 k,cal /mole.  

These r e s u l t s  were v a l i d  f o r  s h a l e  whi.ch were e i t h e r  a c i d  l eached  o r  

I had n o t  undergone m i n e r a l  decompos i t i on .  On t h e ' o t h e r  hand, t h e  CzO 

I produced by  t h e  decompos i t i on  o f  c a l c i t e  appeared ' t o  c a t a l y z e  c h a r  o x i d a t i o n  

I so t h a t  i t s  r a t e  was i n c r e a s e d  by  abou t  one o r d e r  o f  magni tude.  Oxygen 

I mass t r a n s f e r  measurements w i t h  t h e  l a r g e r  s h a l e  p i 'eces y i e l d e d  e f f e c t i v e  

I ash l a y e r  d i f f u s i v i t i e s  i n  agreement w i t h  p r e v i o u s  work and p o i n t e d  t o  

t h e  impor tance  o f  c o n v e c t i v e  mass t r a n s p o r t  d u r i n g  t h e  o x i d a t i o n  o f  t h e  

f i ' r s t  40X o f  t h e  c h a r ;  i 

L i m i t e d  s t u d i e s  o f  t h e  m i n e r a l  r e a c t i o n s  wh ich  t a k e  p l a c e  i n d i c a t e d  

t h o t  cn1;ite was e a s i l y  re fo rmed  f r o m  CaO, p e r t i c u l a r l y  when COZ t i as  

i i i  2062 



1  i b e r a t e d  a t  t h e  s u r f a c e  f r o m  c h a r  o x i d a t i o n .  Whereas a  r e v e r s i b l e  c a l c i t e  

d e c o m p o s i t i o n  r a t e  e x p r e s s i o n  d e r i v e d  h e r e  d i f f e r e d  f r o m  one produced a t  

Lawrence ' L i  vermore L a b o r a t o r i e s  (,LLL) , i t  was found  t h a t  LLL '  s  s i  1  i c a t i o n  

r a t e  e x p r e s s i o n  p r o v i d e d '  a  good match t o  t h e  e x p e r i m e n t a l  data. .  The d a t a  

o b t a i n e d  h e r e  r e g a r d i n g  t h e  e f f e c t  o f  Hz0 on  m i n e r a l  decompos i t i on  a r e  j n  

agreement w i t h  L L L ' s  r e s u l t s  a1 thouah they  t e n d  t o  u n d e r e s t i m a t e  t h e  . - 

e f f e c t .  Ana1,ysi s  o f  t h e  decomposi t i o n  d a t a  d u r i n g  dolorni t e  decnmposi t . i on  

p o i n t  t o  t h e  p o s s i b i l i t y  t h a t  C02 may i n h i b i t  t h e  decon ipos i t i on  r a t e  as . - 

we1 1  a s  p r e v e n t  s team enhancement. 

A  . r a t e  e x p r e s s i o n  was d e r i v e d  t o  d e s c r i b e  C02-char g a s i f i c a t i o n  and  

accoun ts  f o r  l o w  a p p a r e n t  C02 r e a c t i o n  o r d e r s  a t  h i g h  p a r t i a l  p r e s s u r e s .  

I t , w a s  a l s o  found  t h a t  i t  was necessa ry  t o  c o n s i d e r  t h e  r o l e  o f ' t h e  w a t e r  

gas s h i f t  r e a c t i o n  d u r i n g  steam g a s i f i c a t i o n  o f  t h e  c h a r .  F a j l u r e  t o  do 

so r e s u l t s  i n  t h e  p r e d i c t i o n  o f  c h a r  consumpt ion  r a t e s  w h i c h  a r e .  s i q n i -  

f i c a n t l y  h i g h e r  t h a n  measured when conduc ted  i n  t h e  presence o f  CG2-H20 

n l i x t u r e s .    here‘ i s %  a l s o  s t r o n g  ev idence  t o  s u p p o r t  t h e  c o n t e n t i o n  t h a t .  

i r o n  p r e s e n t  i n  t h e  s h a i e  c a t a l y z e s  steam g a s i f i c a t i o n ,  p a r t i c u l a r l y  t h e  

w a t e r  gas s h i ' f t  r e a c t i o n .  'The steani g a s i f i c a t i o n  r a t e  was found  t o  he 
. 

/ 
h a l f - b \ d e r  w i t h  r e s p e c t  t o  steam, f i r s t  o r d e r  w i t h  r e s p e c t  t o  c h a r ,  and 

had an a c t i v a t i o n  ene rgy  o f  20 .6  k c a l / m o l e .  



TABLE OF CONTENTS 

INTRODUCTION 

BACKGROUND 

P y r o l  y s  i s  

M i n e r a l  Reac t ion  

Chqr O x i d a t i o n  

C02 ' G a s i f i c a t i o n  

Steam G d s i f i c a t i o n  

EXPERIMENTAL APPARATUS & PROCEDURES 

Equipment 

'Procedures 

Sample P r e p a r a t i o n  

. R e t o r t i n g  

I s o t h e r m a l  K i n e t i c  Exper iments  

 on-i sothermal  K i n e t i c  Exper iments .  

Mass T r a n s f e r  Measurements 

RESULTS 

E f f e c t  ' o f  Retor t i -ng on Char Make 

O x i d a t i o n  ' ~ i n ~ t i c s  

. O x i d a t i o n  Reac t ion  O r d e r s '  , 

O x i d a t i o n  o f  Slow R e t o r t e d I A c i d  Leached Sha le  

O x i d a t i o n  o f  Thermal l y  Decarbonated S h a l e . . .  

Reac t ion  Rate Express ion  f o r  Char O x i d a t i o n  
02 Mass T r a n s p o r t  

M i n e r a l  Decomposi t i o n  

CO2 ~ a s i f i c ~ t i o n  

Steam G a s i f i c a t i o n  

K i n e t l c s  

C a t a l y t i c  E f f e c t s  



K i n e t i c  I n t e r a c t i o n s  

M i n e r a l  Decompos i t ion  i n  C02 Environment 

M i n e r a l  Decompos i t ion  i n  Hz0 Environment 

M i  n e r a l  Decompos i t i o n  : .H2O-C02 Env i  ronment 

Char G a s i f i c a t i o n :  H20-C02 Environment 

CONCLUSIONS 

REFERENCES 



INTRODUCTION 

Even though t h e  c u r r e n t  economic scene appears tenuous t o  p r o s p e c t i v e  

i n v e s t o r s ,  p a r t i c u l a r l y  when i t  comes t o  t h e  development o f  an o i l  s h a l e  i n -  

d u s t r y  i n  t h e  U n i t e d  S t a t e s ,  it. i s  p r u b a b l y  o n l y  a ,  m a t t e r  o f  t i m e  b e f o r e  

o u r  vas t "o i ' 1  .shale d e p o s i t s  a r e  u t i l i z e d . ,  Towards t h i s  end. i t  i s  extrernel 'y 

i m p o r t a n t  t h a t  a  Y igorous r e s e a r c h  and development program be ma in ta ined '  so 

t h a t  o i l  s h a l e  t e c h n o l o g y  i s  on a  . f i r m  fundamental  b a s i s  when u t i l  i z a t i o n  

becomes e c o n o m i c a l l y  f e a s i b l e .  

An overwhelming c o n s i d e r a t i o n  i n ' . t h e  development o f  an o i  1  s h a l e  i n -  

d u s t r y  i s  p r o p e r  r e s p e c t  f o r  p o s s i b l e  env i ronmen ta l  damage. The most 

advznced techno1 ogy b e i  nq c o n s i d e r e d  f o r  . r e c o v e r i  ns  o i  1  f ron i  o i  1  s h a l e  

i n v o l  ve s u r f a c e  r e t o r t i  nq processes.  Whereas a i  r and w a t e r  p o l  1  u t i o n  p r o -  

blems a s s o c i a t e d  w i t h  t h e s e ' p r o c e s s e s  a r e  s i m i l a r  t o  o t h e r  r e l a t e d  i n d u s -  

t r i e s . ,  one s p e c i f i c  p rob lem i s  pa r t i cu l a r ly~ 'd i s t r e s s ing  t o  env i ronmen ta l  i s t s ,  

t h e  p rob lem o f  ash d i s p o s a l .  Va r ious  c o n s i d e r a t i o n s  w i l l  p r o b a b l y  d i c t a t e  

t h a t '  t h e  ash emanat ing  f r o m  an above-ground process be p i l e d  up and r e - .  

vege ta ted .  The c h a r a c t e r i s t i c s  o f  t h i s  ash a r e  i m p o r t a n t  f o r  b o t h  p r a c t i c a l  

a'nd a e s t h e t i c  reasons.  When t h e  keroqen compounds con. ta ined i n  raw o i  1  s h a l e  

decompose t o  f o r m  a t y p e  o f  c rude  o i l ,  t h e y  g e n e r a l l y  l e a v e  b e h i n d  a  c a r -  

bonaceous r e s i d u e ,  o r  " c h a r . "  If s u r f a c e  p r o c e s s i n g  s t o p s  here ,  t h e  ash 

l e a v i n g  t h e  , p l a n t  w i l l  c o n t a i n  t h i s  c h a r  and have a  deep b l a c k  c o i o r .  

Env i ronmen ta l  c o n s i d e r a t i o n  i s  o n l y  one reason f o r  a t t e m p t i n s  t o  r e -  

move t h e  c h a r .  Ano the r  reason i s  t o  t a k e  advantaae o f  i t s  h e a t i n g  v a l u e .  

As Dock te r l  has shown, f o r  o i l  s h a l e s  assessed a t  g r e a t e r  t h a n  20 q a l l o n s  

p e r  t o n  (GPT), t h e r e  i s  more t h a n  enouah energy  i n  t h e  c h a r  t o  s u p p l y  t h e  

a d d i t i o n a l  h e a t  r e q u i r e d  f o r  r e t o r t i n g  t h e  raw s h a l e .  C l e a r l y  t h e r e  wou ld  

be a  need less  and expens ive  waste  o f  energy  i f  t h e  c h a r  were n o t  u t i1 ize .d .  

As m i q h t  be e x k c t e d ,  t h e r e  a r e  v a r i o u s  t e c h n i c a l  p rob lems a s s o c i a t e d  w i t h  

t h e  r e c o v e r y  o f  t h i s  energy .  Fo r  one, a t t e m p t s  t o  o x i d i z e  ( b u r n )  i t  i n  

a i r  can l ead  t o  ' l o c a l l y  h i g h  tempera tu res  (%I 1 0 0 ~ )  w i t h  r e s u l t a n t  problems 



of c l i n k e r  formation and loss  of permeability. Another detrimental fea-  

t u r e  of these high, temperatures i s  the  mineral reac t ions  which take place.  

Depending on the  gaseous environment and the temperature time h i s to ry  seen 

by the  sha le ,  a  - number of decomposi t ion  and sol id-sol id  reac t ions  :vi 11  

occur. A t  ' least one of these  products,  CaO, can pose environmental prc- 

tile~:~s s ince  i t s  combination with run-off water could r e s u l t  in  high pH 

s o i l s .  In addi t ion ,  several of the  decomposition reac t ions .  a r e  highly 

endotherinic, which reduces the  thermal e f f i c i ency .  of t.he process. 

Another way,in which t o  u t i l i z e  the  char on re to r t ed  o i l  sha le  i s  t o  

gas i fy  i t .  This would involve reac t ions  of oxygen, C02, and steani with the  

cha r ;  the former in order  t o  produce s u f f i c f e n t l y  high temperatures f o r  the  

l a t t e r  t o  take place. The objec t ive  of gas i f i ca t ion  would be t o  produce a  

low-to-medium BTU gas which could be bu-rned .elsewhere in the  process. Here 

the  k ine t i c s  can be qu i t e  complex s ince  a  va r i e ty  of reac t ions  can occur 

some of whicn can be catalyzed by the  a l k a l i  components a l s o  present  in  

the  r e to r t ed  shale .  For surface  r e t o r t i n g ,  the  decision whether o r  not t 3  

gas i fy  the  char i s  t i e d  very cl'osely t o  econornic cons idera t ions .  'Such 

fact0r.s as  the quant i ty  of steam which must be suppl ied ,  the compos!tion 

of the  product gas and the  required temperatures must a l l  be ca re fu l iy  

evaluated so t h a t  decisions can be niade on the  need f o r  an oxygen piant  

and the extent  of gas t r e a t i n g  which w i l l  be required.  To date only 

Union Oil Cornpany of California has announced a surface  r e t o r t i n g  process 

which would u t i l i z e  steam g a s i f i c a t i o n ,  the  so-cal led Steam Gas Recjrcu- 

l a t i o n  (SGR) process2.  Here too ,  a  knowledge of the  react ion k ine t i c s  

would cont r ibute  to  the development of oi 1 -shal e  techno1 ogy. 

A knowledge of the k ine t i c s  of the  oxidat ion/aas i f ica t ion  of t h e  char 

on re to r t ed  o i l  sha le  i s  not only des i rable  f o r  irnprovinq the techno1og.y 

of. surfac.e r e t o r t i n g ,  but i s  even more important f o r  in-.~.i . t i ,~ o i l  shale  

r e t o r t i n g .  This process has some very a t t r a c t i v e  environmental and econo- 

mic fea tu res  s ince  i t  avoids the problerns of ash disposal and s o l i d s  handling. . .  . . . 



i n v o l v e s  some m i n i n g  i n  o r d e r  t o  be a b l e  t o  c r e a t e  a  "chimney" o f  b roken 

s h a l e .  I n  t h i s  case t h e r e  i s  a lways d i r e c t  u t i l i z a t i o n  o f  t h e  c h a r  s i n c e  

i t  f u e l s  a  combust ion  f r o n t  wh ich  g r a d u a l l y  moves d.own t h e  .chimney. The 

gases moving t h r o u g h  t h e  f r o n t .  a r e  hea ted  and move downstream .where t h e y  

g i v e  up t h e i r  h e a t  t o  t h e  c o o l e r  s h a l e  wh ich  g r a d u a l l y  r e a c h  r e t o r t i n g  

tempera tu res  (%450C). The c h a r  l e f t  beh ind  t h e n  se rves  as t h e  f u e l  t o  

the cornbus't.ion f r v r ~ t  wlier~ i t  even tua l  l y  reaches . t h e  r e t o r t e d  s h a l e .  

The c o s t  o f  conipressing t h e  , l a r g e  q u a n t i t i e s  o f  a i r  necessa ry  t o  

f o r m  t h e  combust ion  zone can be e x t r e m e l y  h i a h  and . t h e  process g e n e r a l l y  

I produces a  1 . o ~  q u a l i t y  o f f - ' gas  wh ich  rnust be f l a r e d  o r  burned.  There . .. 
'I ., 

I . . 
wou ld  be a  tremendous advantag'e i f  a  . h i g h e r  qua1 i t y  gas cou ld '  be produced' .  i 

I so t h a t  i.t would  c o n t a i n  s u f f i c i e n t  energy  t o  s u p p l y  t h e  needs o f  . t h e  . ;., 

e n t i  r e  p rocess .  P r e l  im inacy.  work a t  Laramie Energy Techno1 ogy Cen te r  
- ... 

(LETC) 3 '  has shown t h a t  a c o m b i n a t i o n  o f  . . o x i d a t i o n  and g a s i f i c a t i o n  

can indeed  produce such a  gas. There a r e  c u r r e n t l y  two i n - s i t u ' d e v e l o p m e n t  

programs whi'ch a r e  u s i n g  steam i n  t h e  sweep gas; t h e  R io  B lanco P r o j e c t 5  

and E q u i t y  O i l ' s  BX ' P r o j e c t 6 .  I n  t h e  l a t t e r  case, t h e  i n l e t  sweep.gas i s  

100% steam. 

A knowledge o f  t h e  k i n e t i c s  o f  t h e  v a r i o u s  c h a r  r e a c t i o n s  wh ich  can 

t a k e  p l a c e  i s  n o t  o n l y  i n p o r t a n t  f o r  s u r f a c e  r e t o r t i n g  process de.sign 

b u t  a l s o  as i n p u t s  t o  t h e  v a r i o u s  p r e d i c t i v e . m a t h e m a t i c a 1  models wh ich  

a t t e m p t  t o  d e s c r i b e  i n - s i t u  r e t o r t i n g .  I n  t h i s  l a t t e r  case a c c u r a t e  

models can be used t o  update  t h e  p r o g r e s s  o f  t h e  r e t o r t i n g  and t o  ho'pe- 

f u l l y  l e a d  t o  ' c o r r e c t i v . e  c o n t r o l s  i f  and when problems a r i s e  w i t h  mal -  

d i s t r i b u t i o n ,  l o s s  o f  pernieabi l  i t y ,  and t h e  l i ke. 

The work wh ich  has been conducted t o  d a t e  i n  t h e  Department o f  Cherni- 

c a l  E n g i n e e r i n g  a t  t h e  U n . i v e r s i t y  o f  Idaho has d e a l t  o n l y  w i t h  Co lorado 

o i l  shal 'e, s p e c i f i c a l l y  w i t h  s h a l e  f r o m  t h e  A n v i l  P o i n t s  a rea  o f  Co lorado.  

T h i s  report descrJbes t h e  resillts o f  Separa te  s e t s  o t '  expe r imen ts  t o  



determine kinet ic  expressions fo r  the oxidation,  C02 gas i f i ca t ion ,  and steam 

gas i f i ca t ion  of o i l  shale char.  These were a l l  studied under conditions 

where only reaction kinet ics  should predominate and f o r  a  wide range of 

-reacts-nt concentrations and temperatures. In addi t ion,  the r e ac t i v i t y  of 

the char f o r  d i f f e r en t  assay shales and fo r  a  range of re to r t ing  conditions 

was a l so  determined. Because of the f a c t  t h a t  a  number of these reactions 

wil l  occur simultaneously in an actual r e t o r t ,  one s e r i e s  of experiments 

was designed t o  study kinet ic  in teract ions  with two o r  more react ive  corn- 

ponents. Finally,  because of the high ra tes  of char oxidation,  global 

oxidation ra tes  were determined f o r  l a rqer  shale pieces in order t o  quantify 

the ro le  of gas-solid and ash diffusion mass t ranspor t .  

This project  was supported by the department .of Energy under contract  

number DE-ASO7-77ER12099 and 'was under the tec'hni cal di r e c t i  on of Leroy 
. . 

Dockter a t  the Laramie.. Energy Technology Center ( L E T C ) .  



BACKGROUND 

.. . .  . 

A1 t hough  o i l  s h a l e  p r o c e s s i n g ,  p a r t i c u l a r l y  . s u r f a c e  r e t o r t i n g ,  has 

been i n  deve lopment  f o r  a b o u t  30 y e a r s ,  v e r y  l i t t l e  work  d e a l i n g  w i t h  r a t e  

p rocesses  was.acconip1 i s h e d  p r i o r '  t o  1970.  t lowever, \ v i  th t h e  renewed i n t e r -  

e s t  i n  t h e  deve lopn ien t  o f  a  s y . n t h e t i c  f u ' e l s  i ' n d u s t r y  i n  t h i s  c o u n t r y ,  t h i s  

s i t u a t - i o n  has changed .n ia r ked l y  o v e r  t h e  p a s t  5  y e a r s .  I n  o r d e r  t o  be a5 

b r i e f  and p e r t i n e n t  as p o s s i b l e ,  t h i s  s e c t i o n  of  t h e  r e p o r t  w i l l  o n l y  d e a l  

w i t h  p r e v i o u s  k i n e t i c  and r a t e  s t u d i e s  w h i c h  have a  d i r e c t  b e a r i n g  on  t h e '  

work  r e p o r t e d  ' he re .  What i s  i l lore,  t h i s  d i s c u s s i o n  i s  s u b d i v i d e d  i n t o  t h e  

v a r i o u s  o i l .  s h a l e  r e a c t i o n s  w h i c h  can  t a k e  p l a c e ;  i . e . ,  p y r o l y s i s ,  ~ ! i i n e r a l  

r e a c t i o n s ,  and t h e  o x i d a t i o n  and g a s i f i c a t i o n  of  c h a r .  

P y r o l y s i s  . . 

Because t h e r e  a r e  i n d i c a t i o n s  t h a t  t h e  r e t o r t i n g  r a t e s  may a f f e c t  t h e  

a c t i v i t y  and t h e  q u a n t i t y  o f  c h a r  l e f t  b e h i n d  on  t h e  s h a l e ,  i t  i s  a p p r o p r i -  

a t e  t o  n i e n t i o n  sor:ie o f  t h e  p r e v i o u s  s t u d i e s  w h i c h  have been conduc ted  on 

ke rogen  d e c o m p o s i t i o n  r a t e s ;  'i . e . ,  o i l  s h a l e  p y r o l y s i s .  The f i r s t  e x t e n s i v e  

s t u d y  o f  ke rogen  d e c o n i p o s i t i o n  r a t e s  :.]as conduc ted  by  t lubbard  and Rob inson 
7 

i n  1950 . They r e p o r t e d  t h a t  t h e  decoinposi t i o n  r a t e s  ~1er .e  f i r s t  o r d e r  \~!i t h  

r e s p e c t  t o  t h e  o r g a n i c  m a t t e r  p r e s e n t  and k ~ e r e  a .  f u n c t i o n  of  t e c i p e r a t u r q .  

They . p r e s e n t e d  an A r r h e n i u s  t y p e  e x p r e s s i o n  f o r  t h e  s p e c i f i c  r a t e  c . o n s t a n t  
8 

as a  f u n c t i o n  o f  t e m p e r a t u r e .  These o r i a i n a l  d a t a  were  r e a n a l y z e d  by  A l l r e d  

i n  l i g h t  o f  h i s  own . t h e r n i o g r a v i n i e t r i c  t la ' ta.  He c o n c l u d e d  t h a t  t h e  r e a c t i o n  

~ i i e c h a n i s ~ ~ i  was- a  g e t  o f  s e r i e s  r e a c t i o n s  by  w h i c h  t h e  ke rogen  f i r s t  decomposed 

t o  gas ,  b ?  tumen and c h a r  and t h e  b i t u m e n  s u b s e q u e n t l y  deco~i?posed t o  h y d r o -  

c a r b o n s .  Mhereas. Hubbard and Rob inson conduc ted  t h . e i  r experi1: ients i so the r1~ ia l1 . y  
5 

and A l l r e d  hea ted  h i s  s h a l e  samples v e r y  s l o w l y  ( 3 " F / m i n . ) ,  A r n o l d  has r e -  

p o r t e d  on  h i s  s ' tudy ' o f  ke rogen  decon~pos i  t i o n  r a t e s  u t i  1  i z i  ng v a r i o u s  h e a t i n g  

r a t e s .  K e  c o n c l u d e d  t h a t  h i g h e r  h e a t i n g  r a t e s  p roduced  h i g h e r  deconiposi t i ' o n  

r a t e s ,  . r e s u l t e d  i n  h i g h e r  b o i l i n g  coniponents i n  t h e  r e c o v e r e d  sh-a le  o i l  and 

i n c r e a s e d  t h e  q u a n t i t y  'o f  c h a r .  A l t h o u g h  k i n e t i c  i n t e r p r e t a t i o n s  ' o f  t h e s e  

d a t a  a r e ' d i f f i . c u l t ,  t h e r e  seems t o  be l i t t l e  q u e s t i o n  t h a t  t h e '  h e a t i n g  r a t e s  



d e f i n i t e l y  a f f e c t  the  charac ter  of the  char .  A liiore recent  study a t  Lawrence 
1 0  

Livermore Laboratories showed t h a t  addi t ional  coke-1 i  ke-cha.r could be .pro- 

duced during,  pyrolysis  i f  the kerogen deconiposi t i  on products were not rapidly 

removed from the  sha le .  This was a t t r i b u t e d  t o  t h e  cracking of products and 

was found to  increase a t  low c a r r i e r  gas flow r a t e s  and low heat'ing r a t e s  

durimg r e t a r t i  ng. 

Mi nera 1 Reactions 

I n  addit ion t o  kerogen, o i l  sha le  contains a  mixture of a  va r i e ty  of 

mineral carbonates and s ' i l i c a t e s  as  well as various q u a n t i t i e s  of i r o n ,  

a1 uniinunl and sodium. Anvi 1 Points shale  contains s igni f i ' cant  amounts of 

dolonli t e  and c a l c i t e ,  both of wlii ch deconipose in  i n e r t  erlvi ror-~mer.~:ts a t  

about the same temperatures. The presence of a  la rge  amount of s i l i c a  a l so  

a1 lows the  mineral carbonates t o  .decompose t o  both s i  1 i c a t e s  and oxides.  The 

presence of a small amount of minerals known t o  be c a t a l y s t s  f o r  lilany reac t ions ,  
1 1 - 1 3  

a re  a l s o  found. in  the  sha le .  Studies conducted on the  mineralogy have 

shown t h a t  the  mineral composition of the  o i l  sha le  i s  very s e n s i t i v e  t o  the 

temperature and t o  .the external  gas co~nposition t o  which the shale  has been 

exposed.. Sillii l a r l y  the surface  cha rac te . r i s t i c s  may a l so  vary during a  re-  

'act ion and thus . a l t e r  the a b i l i t y  of the  shale  t o  undergo ce r t a in  r eac t ions .  

  he s i z e ,  geometry, and i n i t i a l  condit ions of an o i l  sha ie  san:ple can have a 

very draniatic e f f e c t  on the  gas environnlent a t  the react ing surfaces  of the 

sha le .  I t  i s  therefore  very important t h a t  the planner in which the experiiilents 

were' perfornled. in the e a r l i e r  s tud ies  be noted as  a  nleans t o  explzin any d i s -  

crepancies in the  r e s u l t s  of these s tud ies  and to  gain ins igh t  i n t o  the t r u e  

k ine t i c s  of the reac t ions  being considered. 

Both dolomite and c a l c i t e  are.known t o  decolnpose in an i n e r t  atnios- 

phere a t  elevated temperatures t o  Mg0 and CaO. Whereas dolomite. kan  
decompos.e to  c a l c i t e  in a  C02 r ich  environment, c a l c i t e  decomposition i s  

reversi 'ble  and can be inhibi ted  by the  presence of C02. P,ctually, dolo- 

mite deconlposi t ion  liiay proceed by two react ion paths during 'd6composi t ion  : 
. . 

CaMg (C03)2 -+ F,lgO + CaO + 2.C02 (PC02=O) ( 1  ) 
Ca?? ( . C C 2 ) 2  ? ::!I? 4- CaCC7 -I -  CO:, - ( r~~.+r . )  (2) 
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~ a l  c i  t e  .deconiposi t ion  f o l l  ows only one react ion path durinq decarbonation : . . 
CaC03 Z CaO + C02 ( 3 )  

The reve r s ib le  nature of t h i s  react ion i s  very s e n s i t i v e  t o  r e l a t i v e l y  low 

p a r t i a l  pressures of C02,. 

Mineral analyses of raw Anvil Points o i l  sha le  re-veal t h a t  a  small 

portion of the  doloniite in the .shale i s  in f a c t  Ankerite (CaFe ( C O j ) 2 )  

in  which the'magnesiuni' in  the  dolomite tiss been replaced by' i ron .  The 

decomposition of .ankerite i s  general ly considered t o  follow <he same 

react ions  as the  dolomite except t h a t  Fep03 and Fe304 a r e  t h i  u l t imate 
. . 

products  containing iron instead o f  FeO1 '. Because there  i s  an abundance 

of quartz present  in the shale  i t  has been found t h a t  the  dolomite and 

c a l c i t e  can a l s o  reac t  with the quartz t o  produce a  la rge  number of ca l -  

cium and magnesium s i l i c a t e s .  All of the react ions involving quartz have, 

been found t o  be i r r e v e r s i b l e ,  r e su l t ing  in the  evolut ion of C02 according 

t o  the  general ized expression :. 

MC03 + s i l i c a  + s i l i c a t e  + C02 (4 1 
where "M"  r ep resen t s  the  minerals Ca and Mg. The pr inc ip le  s i1 , ica tes  formed 
a r e  ankermanite ( C ~ ~ M C J S ~ ~ O ~ ' )  and d iops ide  ( ' C ~ M C J S ~ ~ O ~ ) .  

, ' , '  .. 

O11e of the  e a r l i e s t  k ine t i c  s tudies 'of  ~ ~ ~ i n e r a l  deco!nposition in o i ? . ' ' .  
111 

shale was performed by E .  E :  Jukkola, .  e t .  a l .  . tie stuldied the isothermal 

decarbonatiqn .of raw .30 GPT Green River oi l . . sha ie  g'round t o  65 mesh. ' I n  his  

experiments, 10 gram salnples were placed in a  one inch diameter' 'sample holder ,  

which. were t h e n  p laced 'in a  reac tor  preheated t o  a  desired .temperature. The 

salnples. were reacted a t  t h i s  temperature f o r  a  specifi 'ed length of ti~iie and 

then, reriioved froni the reac tor  and quenched. . I n  each experiment e i t h e r  pure 

Cop o r  nitrogen waspercola ted  through the sample holder arid a t  the end of 
J 

the  run, the  mineral C!I2 re~iiaining in  t h e  sample was determined. The experi-  

ments were perfortiled over a  :range of temperatures f.rom 565 C t o  870 C. 

The k ine t i c s  f o r  dolo~nite~decomposit ion were determined by taking the  

r a t e  o f  C02 evolution f o r  the  f i r s t  2 5 9  of the  t o t a l  C02 evolved and assulning 

during t h i s  period t h a t  t h e ' c a l c i t e  was not decomposing. A f i r s t  order re-  

act ion analys is  f o r  dolomite gave a' rtite constant  with an a c t i v a t i ~ n  energy 

of 48 kcal laole  f o r  deconiposition i n  one a t~~iosphere  of CO? and 9 8 . 4  kcal/iilole 

f o r  decolilposi t ion  i n .  ni trogen. I t  was found t h a t  the decolnposi t ion  r.ate of 



d o l o m i t e  i n  t h e  C02 atmosphere was as much as 6 t i m e s f a s t e r  t h a n  t h a t  i n  

. t he  n i t r o g e n  m i x t u r e  b u t  no e x p l a n a t i o n  was g i v e n .  T h e i r  a n a 1 y s . i ~  o f  t h e  

deco lnpos i t i on  o f  c a l c i t e  was accompl ished by measur ing  t h e  r a t e  of C02 

e v o l u t i o n  f o r  t h e  f i n a l  6112 o f  t h e  t o t a l  C02 evo lved  and mak ing t h e  assutiip- 

t i o n  t h a t  o n l y  c a l c i t e  was decomposing d u r i n g  ' t h i s  p o r t i o n  o f  t h e  r u n .  Pan 

a c t i v a t i o n  energy  of 19 .2  k c a l / ~ ? i o l  e  was c a l c u l a t e d  f o r  c a l c i t e  decompos i t i on  

assuming f i r s t  o r d e r  k i n e t i c s  f o r  b o t h  gas env i ronmen ts .  No m e n t i o n  o f  t h e  

e f f e c t  o f  r e v e r s i b i l i t y  on t h e  accu racy  ' o f  t h e  r a t e  e x p r e s s i o n  was d i scussed .  
1 3  

Won C .  Pa rk ,  e t .  a1 . performed a s e r i e s  o f  exper iments .  u s i n g  o i  1  . s h a l e  

f rom t h e  Logan b!ash s i t e  i n  Co lorado.  H i s  exper imen ts  were s i m i l a r  i n  many 
1 4  

r e s p e c t s  t o  t h o s e  o f  J u k k o l a ,  a t .  a1 . . A1 1  exper imen ts  were perfor1;ied by 

i n t r o d u c i n g  an u n r e t o r t e d  5 .4  GPT o i l  s h a l e  sample i n t o  a  r e a c t o r  wh ich  had 

been p rehea ted  t o  a  d e s i r e d  tempera tu re .  . The saniple was retiloved a f t e r  a  

s p e c i f i e d  t i m e  and coo led .  The exper imen ts  cove red  a  tempera tu re  range from 

6 0 0 ~ ~  t o  1200°C and used sweep gases o f  e i t h e r  p u r e  C C 2 ,  a  1% n2/112 " i x i u r e  

o r  a i r  f l o w i n g  a t  5000 cc /min .  The m i n e r a l  con ipos i t ion '  o f  t h e  c o o l e d  sanlples 

was de te rm ined  p r i n c i p a l l y  by  x - r a y  d i f f r a c t i o n  methods. The do lomi . te  and 

c a l c i t e  c o n t e n t s  were a l s o  measured by  r e a c t i o n  w i t h .  o r t h o s c o p i c  a c i d  a f t e r  

p re t rea tmen t . .  The main d i f f e r e n c e  between t h e  exper imen ts  i n  t h e s e  two 

i n v e s t i g a t i o n s  was i n  t h e  sample p r e p a r a t i o n .  Park  used r e c o n s t r u c t e d  o i  1 

s h a l e  . p e l  l e t s  p repared  f r o m  a  homogeneous m i x t u r e  o f  Logan Wash , s h a l e  ob- 

t a i n e d  f r q m  a  100 f o o t  deep-sha le  c 6 m p o s i t e .  The compos i te  was ground t o  

. : .  a  503 urn d i a m e t e r  powder, mixed,  and t h e n  p ressed  ' a t  21 ,-000' p s i g  i n t o  one 

i n c h  dianie. ter  p e l  1  e t s  . P a r k ' s  s t u d y  showed t h a t  t h e  d e c o m p o s i t i o n  r a t e s  

f o r  d o l o m i t e  were f i r s t  o r d e r  i n  d o l o m i t e  and t h a t  MgO and c a l c i t e  were 

s t a b l e  'p roducts  i n  t h e  presence o f  a  CO2 atmosphere a t  l o w e r  tempera tu res .  

A t  t empera tu res  above 8 0 0 ° C t h e  MgO.un'derwent a  r a p i d  s i l i c a t i o n  and t h e  

c a l c i t e '  r e a c t e d  w i t h  b o t h  t h e  q u a r t z  and MgO. t o  fo rn i  v a r i o u s  s i l i c a t e s .  

The m a j o r .  produc' t  m i n e r a l  s  observed were d i o p s i d e  (CaMgSi206) and a k e r -  

mani t e  (Ca2MgSi207). Ca lc ium o x i d e  was n o t  observed as a  p r o d u c t '  i n  any 

o f  t h e  exper imen ts  per formed.  I n o n e  s e t  o f  exper imen ts ,  pe r fo rmed  u s i n g  

a  s t e a m - a i r  gas m i a t u r e ,  Park found  b o t h  t h e  r a t e  o f  m i n e r a l  d e c a r b o n a t i o n  

and s i ' l i c a t e  f o r m a t i o n  t o  be a c c e l e r a t e d  due t o  t h e  presence o f  steam. 
\ 



Cambell 15 ' .16 '  a l so  performed experiments o n  re tor ted  and decharred o i l  

shale from the Anvil pojnts area .  In his experiments, 10-50 mg samples of 

raw shale were ground .to '800 urn and re tor ted  t o  500 C a t  a  heating ra te  

of 12.'C/min. Oxidation was then conducted in a i r  f o r  24 hours a t  400 C 

(a temperature below tha t  necessar,y f o r  'decomposition of dolomite and 

sha l e ) .  After oxidation,  the samples were heated, from 500 C t o  1000 C 

in various C02-N2 gas .mixtures and a t  various l i nea r  heating ra tes  with 

a constant sweep gas .flow ra te  o f . 8 0  cclmin. The resul t ing weight loss  

r a t e  was analyzed fur each experiment. using a non-linear l e a s t  squares 

method to  determine the kinet ic  parameters which f i t  the revers ible  

decomposition r a t e  expression : 

in which MCO3 represented e i t he r  dolomite o r  c a l c i t e  and k f  was assumed 

t o  be the  same fo r  b o t h  dolomite and c a l c i t e  decarbonation 

k f  = 1 . 0 ( 1 0 ) ~ ~  exp (-57.81RT) ( 6  

The equil i  brium c,onstant fo r  dolomite decomposition was determined to  be 

large enough t o  neglect the term Pco2/Keq in the above.,expression. The 

equil ibrium constant f o r  c a l c i t e  decomposition was calculated from other 

e 'xperime~ts and found , t o  be :, x 

Keq = 1 .92 (1 o ) ~  exp ( - 4 4 . 4 1 ~ ~ )  ( 7 1  

Campbell a1 so performed experiments on pure nahcol i  t e  (MaHC03j and 

dawsoni t e  (NaAL(OH)2C03) ; two carbonates which a re  found in small b u t  

measurable amounts i n  Anvil Points shale.  I t  has concluded from t h e i r  

.experiments t ha t  these minerals a re  co~llpletely decarbonated a t  temperatures 

above 420 c". 

In Campbell's study of carbonate decomposition, analys is  of the ther-  

mooravimetric measurements showed a t h i rd  reaction taking pi ace when t h e  

sanlp1.e~ were decomposed in a gas envi ronnient containing C02. This reaction 

.was considered ,to be due t o  reactions of the c a l c i t e  with quartz to  pro- 

duce various s i l i c a t e s .  In order to. predict  the r a t e  of c a l c i t e  decomposi- 

ti.on t o  . the  s i l i c a t e s ,  an empirical r a t e  expression was formulated which 



assumed an acti 'vat.ion of 27.2 kcal/mole a s  reported by Kr.idelbauqhl' f o r  

the  rea.ct.ion betweer! pure c a l c i t e  and s i l i c a .  The r a t e  expression a l s o  

assumed t h a t  the  weight loss  observed was due only t o  reac t ions  between 

the  quartz and c a l c i t e  t o  form calcium s i l i c a t e .  The formation of mag- 

nesium s i l i c a t e s  wa.s assunled t o  come about from react ions  between the M g O  
. . . . 

and t h e  s i l i c a t e s  r a the r  than d i r e c t l y  from the  decomposition df dolomite 

The f ina l  model involved two expressions t o  charac ter ize  the  react ion of 

f r e e  c a l c i t e  wi'th s i l i c a  and the  react ion of c a l c i t e  'produced from dolo- 

mite deconiposi t i o n ,  with s i  1 i  ca.  The r a t e  expressions a r e  respect ive ly :  

d ( ~ a ~ 0 3 ) ~ / d t  = 2 . 5 ( 1 0 ) ~  exp( -27 .2 /R~)  ( c ~ c o ) ~  (aCaO) ('8 ) 

d(CaC03)d/dt = 1 .5  (1 o ) ~  exp(-27.2/RT) ( c a C 0 3 ) d ( a ~ a ~ )  ( 9 )  
Where: 

acaO. = Keq/Pco2 f o r  Pco2 Keq . . . . ( l b l  

.acao = 1.0  f o r  Pco2 < Keq ( 1 1 )  

Campbel.1 acknowledged t h a t  the  above r a t e  expressions a r e ,  a t  bes t ,  simple 

empirical . model s  based on observation . r a the r  than sol id s t a t e  react ion 

mechanisms. 

Burnhaml ' performed mineral decomposition experiments ..in. the  pre- 

sence of steam. Using sha1.e samples from the same master. batch us@d .by - . 

Campbell 1 5 ,  they were a l s o  re to r t ed  anti decharred in the  same manne'r. The 

sample s i z e  used in these experin~ents was t y p i c a l l y  .25 g  and a  sweep gas . . 

flow r a t e  of 1500 cc/min was used. Reaction r a t e s  were determined by 

measuringthe.C02 evolut ion r a t e s  during a  l i n e a r  heat u p  r a t e  of 2.1 C/nin ' 

from 400 C t o  900 C.' : In a  second s e t  of experiments', 'samples weighing 

about 0.8 g wereadded to' a  r eac to r  which had been preheated t o 4 0 0  C. 

The samples were then heated a t  4  C/min t o  a  speci f ied  temperature and 

then removed from the reac to r .  The samples..were immediately cooled and 

analyzed f o r  mineral content  using x-ray d i f f r a c t i o n  ana lys i s .  A purely 

empirical k ine t i c  model was developed which describes the  r a t e  of dolomite - 



and c a l c i t e  decomposition' in the  presence of steam. The qeneral expression 

i s :  

d (  MC03 ) / d t  = [fl R1 + f2R2 ] ( t!C03 ) ( 1 2 )  

Where: f l  = .35 PH20 

f2 = 1 - f l  

This expression,  when extrapolated t o  0% steam, gives. a  react ion r a t e  t h a t  

i s  twice t h a t  predicted by, Campbell l 5  f o r  the  same condi t ions .  No explana- 

t ion 'was given f o r  t h i s  discrepancy; 

A considerable discrepancy e x i s t s  in the  'actlva'tion ener.@y f o r  do.lomi t e  

and c a l c i t e  decomposjti.on, between those predicted by Jukkola e t  a l l 4  and 

those reported by ~ a m p b e l l l ~ .  Other s tud ies  on the  :dec.ompos.ition of pure 

c a l c i t e  referenced by Campbell. give ac t iva t ion  energies t h a t  ranc.e 5rom 40 

t o  52.5 k'cal/mole18. These values agree f a i r l y  with Campbell ' s  resui.ts f o r  

sha le ,  an.d with h is  . ac t iva t ion  energy of 55.5 kcal/mole obtained wi;t:h pure 

c a l c i t e .  Jukkola e t  a1 l4 referenced the r e s u l t s  of Ral ston e t  a-1" along 

with some of t h e i r  own r e s u l t s  f o r  . t he  decomposition of  pure . c a l c i t e ,  which 

give an ac t iva t ion  energy of 140.9 kcal/mole. young2', in h is  discussion of 

the  decomposition of pure dolomite and pure c a l c i t e ,  showed t h a t  t h e . a c t i v a -  

t ion  energies'  ranaed from 44 kcallmole t o  55 kcal/mole f o r  dolomite and 4C) 

kcallmole t o .  41 kcal1mol.e f o r  ca1c.i t e .    urn ham's" experiments were simi- 

l a r  t o  those r u n  by Campbell, . b u t  t he  k ine t i c s  were determined usiny! .CO2 ' 

evolut ion r a t e s .  He found the  do.lomi,te and c a l c i t e .  decompositions t o  have 

an ac t iva t ion  energy o f  .57 kcalLmole. I t  would seem t h a t  the  k ine t i c  

expressions developed by Campbell a r e  in b e t t e r  agreement with the  o the r  

works than those. of Jukkola e t  a1 14 .  

Another i n t e r e s t i n g  d i f ference  in the r e s u l t s  reported by the  various 

authors on the  decarbonation of c a l c i t e  present in o i l  s h a l e ,  i s  on the  



p r o d u c t i o n  o f  CaO as a  p roduc t  o f  decarbonat ion.  park13 d i d  n o t  observe CaO 

as a  p roduc t  o f  decarbonat ion i n  any o f  h i s  exper iments  where x - ray  d i f f r a c t i o n s  

. ana l ys i s .  was used. . S i m i l a r l y ,  Smith e t  a121, i n  h i s  x - ray  d i f f r a c t i o n  s t u d i e s  

o f  m ine ra l  products  r e s u l t i n g  f rom the  decarbonat ion o f  mahogany zone (Colorado)  

o i l  sha le  a t  temperatures r ang ing  from 300 C t o  1100 C and i n  atmospheres o f  

a i r ,  n i t r o g e n ,  and C02, found CaO as  a p roduc t  o n l y  when the sha le  was de- 

composed a t  900 C w i t h  n i t r o g e n  used as t h e  c a r r i e r  gas.. ~ u r n h a m l  l , i n  h i s  

x - r ay  d i f f r a c t i o n  a n a l y s i s  o f  samples decarbonated i n  va r ious  gas n l x t u r e s  

o f  N2, steam, and C02, showed cad t o b e  a  major  p roduc t  when t h e  sha le  was 

decomposed i n  n i t r ogen ,  and a  measurable p roduc t  when 50/50 mi 'x tures o f  

steam and ~ 0 2 ,  n i t r o g e n ,  .and C02, and n i t r o g e n  and steam were used. 

There a re  two p o s s i b l e  exp lana t i ons  f o r  t h e  apparent  d isc repanc ies  i n  

these resu.1 t s .  ' The f i r s t  po.ssi b l e  cause cou ld  be t h e  d l  i f e rence  i n  t h e  sample 

s i z e .  Alth.ough d e t a i l s  o f  t h e  sample s i z e  and p r e p a r a t i o n  i n  Sm i th ' s  s t u d i e s  

were n o t  'p rov ided,  Park used one i n c h  di-ameter pe l  l e t s .  Burhnam, on t he  o t h e r  

hand, used powdered samples r ang ing  from. 250 t o  800 mg. I t  . is  v.ery p o s s i b l e  

t h a t  t h e  samples used by Park were l a r g e  enougn t h a t  the .  Cl)2 p a r t i a l  pressures 

i n s i d e  t h e  p e l l e t  were o f  s u f f i c i e n t  magnitude . to  p reven t  t he  decomposi t ion 

o f  c a l c i t e  to .Ca0  . (s ince i t  i s  r e v e r s i b l e ) ,  thus . a l l ow ing  t he  c a l c i t e  t o  

deco~npose e n t i r e l y  t o  t h e  va r i ous  s i l i c a t e s .  A second p o s s i b l e  cause f o r  

t h e  d.ifiei-,ence i n  t h e  r e s u l t s  i s  due t o  t h e  d i f f e rence  i n  t h e  i n i t i a l  c o n d i t i o n  

o f  t h e  sample. Park used un re to r t ed .  sha le  i n  h i s  exper iments which were 

subsequent ly  r e t o r t e d  a t  t h e  h i g h  tkmperatures necessary f o r  d ~ c o m p o s i t i o n  

o f  do l om i t e  and c a l c i t e .  The gas environment exper ienced i n s i d e  t h e  p e l l e t s  

d u r i n g  t h i s  r e t o r t i n g  process would be s i g n i f i c a n t l y  d-i f , f e ren t  than  t h e  

r e t o r t e d  and decharred samples used i n  t h e  exper iments  by Burnham. ~ l t h o u g h  

t h e r e  i s  no proof ,  i t  i s  p o s s i b l e  t h a t  t h e  presence o f  02 i n  t h e  exper iments  

performed by Smith and Park may have i n h i b i t e d  CaO f o r m a t i o n i n  thcse  runs ,  

w i t h o u t  C02 in .  t h e  sweep gas. 
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Char Oxi'dation 

The f i r s t  experimental s tudies  of o i l  sha le  char oxidation d e a l t  with 

r e l a t i v e l y  la rge  p a r t i c l e s  s ince  these a r e  expected t o  be predominant f o r  

Sn-si t u  r e t o r t i n g .  

One of the  f i r s t  s tud ies  of t h i s  nature was conducted by ~ o c k t e r '  who 

studied the  oxidation of cyl indr ica l  core samples of s h a l e s  which assayed a t  

10-40 gallons per  ton ( G P T ) .  He found t h a t  . for  oxygen concentrat ions between 

7 and 21% and f o r  temperatures between 400 and..600 C t h a t  the  b u r n  depth 

pat tern  fol lowed 'a d i f fus ion control shrinking core model. This was follo\.red 

by a  study conducted by Mallon and ~ r a u n ~ ~  who experimented with la rge  blocks 

of o i l  sha le  (0.15-0.25 m )  and studied the  oxidat ion as -we1 1 as the  reac t ions  

of C02 with the char.  They a l so  found t h a t  the  oxidation r a t e  was. l imited by 

d i f fus ion and concluded t h a t  the  react ion r a t e  of the  C02 ( re leased by car-  

bonate decomposition) with the  char was s i g n i f i c a n t l y  h iaher ' than .  the d i f -  

fusion 1 imited oxidation r a t e .  As can be seen, p r i o r  t o  the  work reported 

here ,  there  was 1 i t t l e  research e f f o r t  expended on the  subjec t  of char oxi-  

dat ion and' e s s e n t i a l l y  no t r u e  k ine t i c  da ta .  

Carbon dioxide can react  with the  char t o  produce carbon monoxide ac- 

cording t o  the  reac t ion:  

co2 + C ' 2CO ( 1 7 )  
In a .  study of the  gas i f i ca t ion  of pulverized coal1*,  a  react ion scheme 

usin.g Langmuir Hinshelwoodkinetics was based on the  mechanism: 

cg, + s - co t s . 0  (18). 
S .O  + c : -F  cc + s (191 

where S- i s  an ac t iva t ion  s i t e ,  led t o  the following r a t e  expression:  



The r a t e  constants f o r  the  above expression f o r  the qas i f i ca t ion  of coke 

a r e :  

k l  = 8 . 3 6 ( 1 0 ) ~  Exp(-47.7/~T) (21 

K 2  = 8.48(10)-]  Exp(l4.9/RT) (22 

K3 = 1 . 3 ( 1 0 ) ~  Exp(61361RT) (23) 

I t  can be seen from t h i s  r e la t ion  t h a t  a t  low C02 par t i a l  pressures the r a t e  

expression approached f i r s t  order i n  C02. A t  hiqh pa r t i a l  pressures of C02 

the  r a t e  expression approaches zero order.  This expression a l so  shows t h a t  

the production of CO as a  product i n h i b i t s  the  overal l  react ion r a t e .  

~ u r n h a r n ' ~ ~ ~ ~ , ~ ' i n  h is  study of the C02 gas i f i ca t ion  of o i l  shale  char. 

under nonisotherma'l conditions showed t h a t  the  reaction r a t e  could best  be 

described by two para1 l e l  react ion r a t e s :  

where R1 = 3.6(10)'  Exp(-49.OIRT) P ~ ~ ~ , ~  

and R2 = . 9 . 0 ( 1 0 ) ~  ~xp(-32.OlRT) P ~ ~ ~ . ~  

Other r e s u l t s  from t h i s  study showed t h a t  heat pretreatment of t h e  sample 

and ac id  leachina t'he samples in HC1 both tended to  reduce the  r e a c t i v i t y  of 

the  char., 

Steam. Gasif icat ion 

As nie.ntioned previously, there  i s  great  incentive t o  increase the heatin? 

value of t-he off-gas produced during in - s i tu  r e t o r t i n g .  This led to  some pre- 

liminary p i l o t  plant  experiments a t  'the Laramie Energy Technology Center ( C E T C ) ' : ~ ~  

with the  goal of studying the e f f e c t s  c~f  02 and Hz0 concentrat ions,  totaq 

pressure and Fischer Assay on the heating value of the product gas. The i n i -  

t i a l  exper.iments were conducted in a- sirni.lar manner t o  i n - s i t u  .processing in ' 

the absence of steam .sb t h a t ' a  colnbustion wave was caused '?.o t ravel  throuqh 

a  bed o f ' c rushed , (1 /8" -1 /2" )  shale .  Measurements were re .s t r ic ted  t o  time 

varying teniperature profi 1 es in th'e r e a c t o r  and gas chro~iiatocjt-aph analyses of 

the  make gas.  Although these t.ypes of experiments were not conducive. to k inet ic  



s tud ies . ,  t h e  r e s u l t s  showed a  marked i n c r e a s e  i n  t h e  h e a t i n g  v a l u e  o f  t h e  niake 

gases w i t h  moderate amounts o f  excess o-xygen (above 21%).  The e f f e c t  o f  t o . t a l  

p r e s s u r e  was i n t e r e s t i n g  i n  t h a t ,  a t  a  c0nstan. t  oxygen c o n c e n t r a t i o n ,  t h e  

h e a t i n g  v a l u e  o f  t h e  niake gases decreased w i t h  i t i c r w i s i n g  p ressu res  up t o  

a.bout 250 p s i  and t h e n  i n c r e a s e d  -as t h e  p r e s s u r e  was r a i s e d  ' t o  i t s  h i g h e s t  

v a l u e  o f  545 p s i .  T h i s  appears t o  be an i n d i c a t i o n  o f  d i f f e r e n t  r e a c t i o n s  

. b e i n g  f a v o r e d  as '  t h e  oxygen p a r t i a l  p r e s s u r e  changes. S ince  . i n  t h e s e  e x p e r i  - 

ments, r e t o r t i n g  was o c c u r r i n g  a t  t h e  same t i m e  as combut ions,  i t  i s  ex-  

t r e m e l y  d i f ' f i c u l t  t o  i s o l a t e  t h e  v a r i o u s  r e a c t i o n s  wh ich  a r e  p r o b a b l y  o c c u r r i n g  

T h i s  o r i g i n a l  work was f o l l o w e d  by  a  s t u d y  o f  t h e  e f f e c t  o f  s team.on t h e  

.qua1 i ty  o f  t h e  make gas. The same equ.ipment and p.rocedure was' used ,excep t  
- t h a t  steam was i n t r o d u c e d  t o  t h e  r e a c t o r  15 m inu tes  a f t e r  t h e  i n j e c t i o n  o f  a i r .  

Thus i t  i s  p r o b a b l e  t h a t  t h e  steam r e a c t e d  w i t h  t h e  carbon r e s i d u e  l e f t  beh ind  

by t h e  combust ion  wave. Aga in  t h e  r e s u l t s  were g r a t i f y i n g  i n  t h a t  t h e  r u n  

t i m e s  were l owered  s i g n i f i c a n t l y  by  t h e  a d d i t i o n  o f  t h e  steam ( d e f i n i t e  p r o o f  

t h a t  g a s i . f i c a t i o n  o f  t h e  carbon r e s i d u e  was t a k i n g  p l a c e )  and up t o  8 4 b f  

t h e  Fische.r  Assay was recove red  i n  t h e  o i l  and gas. Again,  however, i t  was 

n o t  p o s s i b l e  t o  s t u d y  t h e  a s s o i i a t e d  k i n e t i c s  a l t h o u g h  t h e  e f f e c t s  o f  t o t a l  

p r e s s u r e  and H20 c o n c e n t r a t i o n  i n d i c a t e  t h a t  d i f f e r e n t  r e a c t i o n s  p r o b a b l y  
. . 

o c c u r  as t h e s e  v a r i a b l e s  a r e  a1 t e r e d .  . 

As m i g h t  be expected t h e r e  i s  a  voluminous q u a n t i t y  o f  l i t e r a t u r e  d e a l -  

i n g  w i t h  t h e  v a r i o u s  r e a c t i o n s  o f  oxygen and steam w i t h  c o a l .  I t  would. se rve  

no u s e f u l  purpose t o  r e v i e w  even a  smal l '  p o r t i o n  o f  t h e s e  works b u t  solue o f  

t h e  r e s u l t s  p e r t a i n  d i r e c t l y  t o  o i l  sha le ,  i f  o n l y  i n  a  q u a l i t a t i v e  manner. 

F i r s t  o f  a l l  i t  i s  g e n e r a l l y  accepted t h a t  t h e  reac . t i ons  o f  oxygen and 

c a r b o n . a r e  f a s t  under most c o n d i t i o n s  so t h a t  o v e r a l l  r a t e s  a r e  o f t e n  governed 

b y  h e a t  o r  mass t r a n s f e r  1  i m i t a t i o n s z .  ~ o c k t e r ' s '  expe r ience  w i t h  o i l - s h a l e  

carbon r e s i d u e  i s  a  case i n  p o i n t  s i n c e  he conc luded  t h a t  ash d i f f u s i o n  was 

t h c  r ~ t e  l i m i t i n g  s tep .  T l ~ e  5d111e I S  n o t  true. however t o r  r e a c t i . o n s  o f  steam 



and carbon o r ,  f o r  t h a t  mat ter ,  f o r  any of the, o ther  react ions.which mi&t 

occur. The most comnion react ions  involving steam a r e :  

Rea'ction (27)  i s  usually assumed t o  be the  prevalent  gas i f i ca t ion  react ion 

and was used by Burwell and ~acobsen '  t o  determine the  maximum quant i ty  of 

Hz0 needed in the i  r.  gas; f i c a t i o n  experiments'. ~ e a c t i o n  (28) i s  the  conven- 

t iona l  water-gas s h i f t  react ion and there  was some ear ly 'evidence  t h a t  i t  

could be catalyzed by components present  in o i l  sha le .  

I t  would--be expected t h a t  f o r  coa l ,  the  r a t e s  of the reac t ions  l i s t e d  

above would not be s j g n i f i c a n t  un t i l  temperatures become on the  .order of 

1000 C o r  g rea te r .  Of course i f  oxidat ion i s  a l so .occur r ing ,  then the  car -  

bon surface  temperatures could e a s i l y  reach th0s.e values. In any case ,  a  

g rea t  number of inves t iga to r s  have reported t h a t  the  presence ( o r  add i t ion)  

of va.rious a l k a l i  carbonates have a  dramatic c a t a l y t i c  e f f e c t  on a11 th ree  

r eac t ions ,  p a r t i c u l a r l y  a t  lower temperatures ( <: 700 C ) .  For example, Lewis 

e t  a12' reported t h a t  the  addi t ion  of 10% K2C03 produced sig.nficant  g a s i f i -  

ca t ion  r a t e s  of wood charcoal even a t  temperatures a s  low as 700 C .  They 

a l s o  found t h a t  the  water gas s h i f t  react ion was always in equjl ibrium. 

Simi lar  r e s u l t s  with various in0rgani.c add i t ives  were a1 so obtained by many 

o the r  inves t iga tors '28  '31, including one inves t iga t ion  a t  pressures a s  h igh '  

a s  300 p s i g 3 2 .  'of particu1a.r s igni f icance  t o  o i l - s h a l e  processing i s  t h a t ,  

i n  t h i s  l a t t e r  s'tudy, dolomite was found t o  ca ta lyze  the  qas i f i ca t ion  

r e a c t i o n ( s ) .  In a  very e a r l y  study,  Taylor and ~ e v i l l e ~ ~  showed t h a t  both 

potassium and sodiumcarbonate acted t o  ca ta lyze  both ' the  water gas s h i f t  

reac t ion  and C02 gas i f i ca t ion  (Eq. 17) and hypothesized t h a t  the  increased 

g a s i f i c a t i o n  r a t e s  were, i n  a c t u a l i t y ,  primari ly due t o  the  c a t a l y s i s  of C02 

g a s i f i c a t i o n .  

Up un t i l  recent ly  the  only k ine t i c  s tud ies  conducted on t h e  carbon- 

steam react ion d e a l t  with the  steam gas i f i ca t ion  of coa l .  However the re  i s  



one s i g n i f i c a n t  d i f f e r e n c e  between c o a l  and o i l  s h a l e  c h a r  and t h a t  i s  t h e  

ca rbon  c o n c e n t r a t i . o n .  F o r  example i t  i s  commonly agreed u p o n  t h a t  as c o a l  

carbon i s  consumed, . the a c t i v e  s u r f a c e  a rea  f i r s t  i n c r e a s e s  and t h e n  de- 

c reases .  T h i s  i s  du.e t o  t h e  f a c t  t h a t  carbon i s  t h e  o v e r w h e l ~ n i n g  c o n s t i -  

t u e n t  o f ' c o a l . .  ' Th i s  i s  n o t  t h e  case w i t h  o i ' l  s h a l e  c h a r  however s i n c e  t h e  

o r g a n i c  carbon c o n t e n t  o f  r e t o r t e d  s h a l e  i s  a t  most  o n l y . 8 - 9 %  by w e i g h t .  
P 

When o i l  s h a l e  c h a r  i s  consumed, t h e  s h a l e  m a t r i x  i s  l a r g e l y  u n a f f e c t e d ;  

t h a t  i s ,  b a r r i n g  s i j n i f i c a n t  m i n e r a l '  r e a c t i o n s .  

Thus . t h e r e  h.ave been a  number o f  k i n e t i c  e x p r e s s i o n s  proposed f o r  t h e  

steam g a s i f i c a t i o n  o f  c o a l  wh ich  account  f o r  t h e  change i n  a c t i v e  s u r f a c e  

a r e a 3 4 > 3 s .  Smoot and ~ r a . t t l " a v e  r e p o r t e d  t h a t  t h e  r a t e  o f  steani g a s i -  

f i c a t i o n  o f  c o a l  c h a r  can be d e s c r i b e d  by  e q u a t i o n  ( 2 9 ) :  

a l t h o u g h  t h e y  ment ioned t h a t  t h e  presence 0 f . P ~  i n  t h e  den'ominator c o u l d  
2  

v e r y  w e l l  be due t o  t h e  i n f l u e n c e  o f  t h e  w a t e r  gas s h i f t  r e a c t i o n .  

P r i o r  t o  t h i s  work,  t h e  o n l y  r e p o r t e d  k i n e t i c  s t u d i e s  on t h e  steam 

g a s i f i c a t i o n  o f  o i l  s h a l e  c h a r  was giver1 by   urn ham^^. I n  t h e s e  exper imen ts ,  

samples w e i g h i n g  0.2 t o  0 .3  g  were f i r s t  r e t o r t e d  t o  500°C and t h e n  r e a c t e d  

i n  a  sweep gas a t  f l o w  r a t e s  f r o m  300 t o  1500 cc /n i in .  Steam was genera ted  

by  b .ubb l i ng  i n e r t  j a s  t h r o u g h  a  c o n s t a n t  ten1peratu.t-e w a t e r  b a t h .  Both  i s o t h e r m a l  

and non- i so the rma l  exper imen ts  were r u n  and t h e  r e a c t i o n  r a t e s  wefe d e t e r - '  

m i n e d b y  measur ing  t h e  Hz e v o l u t i o n  r a t e .  The r e s u l t s  o f  t h i s  s t u d y  shoured 

t h a t  t h e  o v e r a l l  r e a c t i o n  c o u l d  b e s t  be d e s c r i b e d  by  two para1 l e l  r e a c t i o n  

r a t e s  : 

( r c / C ) ~ 2 0  = .57  R1 + .43 R2 (30 )  

w i t h  R1 = 9 . 6 ( , 1 0 ) ~  exp( -44.  OIRT) pHZom5 (31 

5  and d 2  = 1 .5 (10)  exp(-3?.11/RT) P ~ ~ ~ ~ - ~  (32') 



Gas ana lyses  i n d i c a t e d  t h a t  most  o f  t h e  CO was c o n v e r t e d  t o  C o p  by t h e  water-,  

gas s h i f t  r e a c t i o n .  The s t u d y  a l s o  showed t h a t  h e a t  p r e t r e a t m e n t  o f  t h e  sam- 

p l e  tended t o  reduce t h e  r e a . c t i v i t y  o f  t h e  ct~du. as  i t d i d  i n  t h e  case 0.f C02 

g a s i f i c a t i o n .  



E X P E R I M E N T A L  APPARATUS & PROCEDURES 

.Equipment 

Figure 1  shows a  scheniatic..of the equipment which was used fo r  bo th ' the  ' 

re to r t ing  and the kinet ic  phases of the i n ~ e s t i ~ a t ' i o n  and 'Figure 2 shows the 

d e t a i l s .  of the reactor .  Provisions were made t o  introduce any .one o r  a  

mixture of pre-metered gases in to  the react .or / re tor t .  5tcsm was introduced 

in to  the reactor  by metering l iquid  water which was supplied from a  large 

storage tank with a helium overpressure of .about  2 atmospheres. An in - l ine  

paper f i l t e r  was insta. l led in the water l i n e  j u s t  ,upstream of a  rotameter 

and flow control valve. . This arrangement was found to  produce the minimum 

f luctuat ion in the steam flow to  the reactor .  The gases exited the reac- 

t o r  ;ia a  condenser maintained a t  0°C and. then a  gas sample'valve ( G S V )  

pr io r  t o  venting. When using the apparatus in the r e t o r t  mode, the condenser 

served t o  co l l e c t  the o i l  make b u t  no attempt was made t o  obtain quan t i t a t ive  

analyses of e i t h e r  the o i l  o r  the product gases. When the apparatus was 

used fo r  char k inet ic  s tud ies ,  the condenser acted t o  separate unreactea H20 

and the water-free overhead gases were sampled on-l ine with the GSV and 

analyzed on a  Carle Model 111 H gas chromatograph. The chromatograph, ca- 

pable of accurate detection of Hz-at a l l  concentrat ions,  was equipped with 

a  3.5 ni Carbo-Sieve B column maintained a t  a  constant temperature of 120C 

with a  helium c a r r i e r  gas flow ra te  of 20 cc/min. The gas sampling equip- 

ment was capable of sampling and s tor inq four individual samples in order 

t o  increase the sampling r a t e  during the i n i t i a l  portion of a  run where the 

reaction ra tes  a re  highest.  The G . C .  technique was capable of base l i n e  

separation of Hz, C O ,  CHq, and C02 over a  10-minute period. 

The r eac to r / r e t o r t  (Figure 2 )  was inserted in to  a  temperature program- 

mable furnace which was controlled by a  chromel-alumel thermocouple located 

j u s t  below the shale sample. The furnace was capable of heating ra tes  as 

high a s  20°C/min, u p  t o  550°C ~ I I J  u i  operating isothermally a t  temperatures 
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up t o  870°C. When t h e  system was gsed f o r  r e t o r t i n ? ,  150 gin samples o f  s h a l e  

(5 .6 -6 .6  nim) were p l a c e d  i n  a  f i x e d  bed arrangement.  The c a r r i e r  gas i n  

thes.e experinie.nts was h e l i u m  wh ich  e n t e r e d  a t  t h e  b o t t o m  o f  t h e  r e t o r t  t h r o u g h  

a  c o i l e d ,  p e r f o r a t e d  s t a i n l e s s  s t e e l  t ube .  When used f o r  k i n e t i c  s t u d i e s ,  

1 -2  gin samples o f  c rushed  (70  m i c r o n s )  r e t o r t e d  s h a l e  were p l a c e d  i n  - a  5 cni 

" 'basket "  wh.ich was i n  t u r n  suspended f r o m  a  Cah.n E l e c t r o b a l a n c e  b y  a  0.076 .mm 

t u n g s t e n  w i r e .  T h i s  o l  lowed f o r  a r o n t i  n i o u s  q r a v i m e t r i c  measurcmer~t wh ich  

was r e c o r d e d  'on an Azar  recur-cler. ' .  The w i r e  e x i t e d  t h e  t o p  o f  t h e  r e a c t o r  

t h r o u g h  a  2 . 5  cm l e n g t h  u f  0.84 mm s t a i n l e s s  s teel  c a p i l l a r y  tub i .ng  wh ich  

p r o v i d e d  s u f f i c i e n t  f l o w  r e s i s t a n c e  t o  produce t h e  r e q u i r e d  f l o w  a t  t h e  qas 

exi.1; '1  i n e .  (necessary  f o r  G.C.  sampl i n g )  . The b a s k e t  i t s e l f  was c o n s t r u c t e d  

o f  400 mesh s t a i n l e s s  s t e e l  c l o t h .  

As nien.t ioned p r e v i o u s l y , ,  a c t u a l  commercia l  ope ra t i . ons  w i  11 i n v o l  ve l a r g e  

s h a l e  p i e c e s .  I n  o r d e r ' t o  e v a l u a t e  t h e  s imu l taneous  e f f e c t s  . o f  c h e m i c a l  

k i n e t i c s ,  gas -so l  i d  02 t r a n s p o r t  and 02 d i f f u s i o n  t h r o u g h  t h e  d'e-c.harred ash 

1ayer;experiments were a l s o  r u n  u t i l i z i n g  a  l a r g e r  tube  w a l l  f u r n a c e  appa- 

r a t u s  as shown i n  F i g u r e  3. The t u b e  had a  5 cm I D  and was 1 .5  ni l o n g .  

Separa te  r e s i d e n c e  t i m e  distribution s t u d i e s  i n d i c a t e d  t h a t  i t  behaved 

e s s e n t i a l l y  as a  p l u g  f l o w  r e a c t o r .  Here c y l i n d r i c a l  sample; were sus- 

pended i n  .a  coa rse  mesh. s t a i n l e s s  s t e e l  s l i n g  f r o m  a  c a n t i l e v e r e d  bean1 

equ ipped  w i t h  s t r a i n  gages. I n  e f f e c t  t h i s  se rved  as  a  l a r g e  g r a v i m e t r i c  

a n a l y z e r  capa.bl e o f  s u p p o r t i n g  t h e  l a r g e r  ( 2  cm. diameter.) s h a l e  c y l  i nders  

w h i c h  were employed d u r i n g  t h i s  phase o f  t h e  s t u d y .  

Procedures  

Sample P r e p a r a t i o n .  The o n l y  sample p r e p a r a t i o n  p r i o r  t o  r e t o r t i n g  

c o n s i s t e d  o f  c r u s h i n g  t h e  s h a l e  t o  u n i f o r m  s i z e  r a n g i n g  f r o m  5 .6  t o  6 .6  mm. 

The s h a l e  samples u t i l i z e d  i n  t h e  s t u d y  assayed between 15 and 50 GPT. 

A f t e r  r e t o ' r t i n g ,  t h e  s a h p l e s . w e r e  s t o r e d  under  a  n i t r o g e n  b l a n k e t  and t h e n  

c rushed  t o  abou t  70 m ic rons  p r i ' o r  t o  u t i l i z a t i o n  i n  t h e  k i n e t i c  s t u d i e s .  111. 

ord.er  t o  be a b l e  t o  s t u d y  r e a c t i o n . k i ' n e t i c s  a t . h i a h  tempera tu res  w i t h o u t .  t h e  
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added complexity of simul taneo.us mineral decarbonation, a  number of samples 

were aci.d leached. This was done in two ways so t ha t  a  separate eva1uatio.n 

o.f the  presence of d i f fe ren t  mineral compounds could be obtained. Some 

samples were leached in a 5% H2SO4 solution (immersion fo r  10 minutes under 

boi 1 ing condit ions) in which case insol ub1.e sul f a t e s  were formed. Other 

samples were s i l r~ i l a r ly  'leached in 5% H C 1  which succeeded in removinq the 

soluble chlorides of Ca, Mg, and F e .  

The samples employed in the mass t r an s f e r  s tudies  consisted of 2 cm 

diameter cyl indrical  core samples which were cut b o t h  perpendicular and 

para l l e l  t o  the bedding plane. A number of runs were conducted.wi t h  these 

samples placed so tha t  the longitudinal axis  was perpendicular t u  the gas 

flow. This a1 lowed fo r  reasonable predictions of the velocity d i s t r ibu t ion  

around the sample and thus ,  more accurate measurements of gas-sol id mass 

t r anspor t .  coef f i c ien t s .  This \/~oul d a1 so simulate t o  some ex ten t ,  shale 

pieces which might be exposed on a l l  s ides  t o  reacting 'gas media. In 

o ther  experiments the procedure of Dockterl was u t i l i z ed .  That i s ,  the 

cyl indr ical  surface was wrapped with impermeable foi  1 and the sample was 

placid with the longitudinal axis  pardllel  to  the flow stream. I n  t h i s  

case i t  was possible t o  obtain e f fec t ive  02 d i f fus iv i  t i e s  b o t h  perpendicular 

and para1 l e l  t o  the bedding plane and thus these data should pive the maxi - 
m u m  range of the d i f f u s i v i t i e s  t o  be expe.cted. Unfortunately ho\~ever., there 

was visibl 'e evidence t ha t  the heat generated by the coring process resulted 

in pa r t i a l  fusion of the cyl indr ical  surface.  

Retorting. A t  room temperature the r e t o r t  was f i r s t  evacuated and then 

flushed with helium in order to remove a1 1 t races  of oxygen. All r e to r t ing  

runs were conducted with a helium purge gas s ince  i t  contained, a t  most, 

only 20 p'pm 02. The re to r t ing  was carr ied  o.ut a t  heating ra tes  .from 0 . 3  - 

17"C/min. u p  to  a maxirnunl temperature of 500°C and a t  purge gas ve loc i t i e s  

from 4 t o  40 cm/min. (500°C). A few runs were held a t  500°C for  u p  t o  an 

hour, and i t  was concluded t ha t  once the temperature reached t h i s  value, 

complete kerogen deco~nposition had taken place. 



I so the rn ia l  K i n e t i c  Exper iments .  I n  t h e s e  exper imen ts ,  t h e  r e a c t o r  was 

i n i t i a l l y  f l u s h e d  w i t h  h e l i u m  u n t i l  t h e  e x i t  02 c o n c e n t r a t i o n  dropped t o  

t h e  v a l u e  i n h e r e n t  i n  t h e  h e l i u m  purge s t ream.  The tempera tu re  was t h e n  

r a i s e d  t o  t h e  d e s i r e d  l e v e l  a t  wh ich  p o i n t  t h e  p r e s e l e c t e d  r e a c t a n t  

(oxygen,  steam, C02) m i x t u r e  was in t r -oduced t o  t h e  r e a c t o r .  Reac tan t  con- 

c e n t r a t i o n s  were v a r i e d  by  d i l u t i o n  w i t h  he1 iuni wh ich  was p r e s e t  w i t h  t h e  

r e a c t o r  on b,ypass. W i th  02 o r  C02, i t  t y p i c a l l y  t o o k  abou t  1 .5  m inu tes  

h e f o r e  t h c  r e a c t o r -  a t t a i n e d  t h e  i n l e t  compos i t i on .  T h i s  was due t o  t h e  

f a c t  t h a t  t h e  r e a c t o r  behaved v e r y  s i m i l a r l y  t o  an i d e a l  back.-mix r e a c t o r  

wh ich  was v e r i f i e d  by separa te  step-change r e s i d e n c e  t i m e  d i s t r i b u t i o n  

measurements. Fo r  exper imen ts  conducted w i t h  steam i n  t h e  c a r r i e r  gas, 

t h e  steam c o n c e n t r a t i o n  i n  t h e  r e a c t o r  reached t h e  i n l e t .  c o n c e n t r a t i o n  i n  

abou t  30 seconds. T h i s  was due t o  t h e  sudden expans ion o f  t h e  l i q u i d  Hz0 

as i t  e n t e r e d  t h e  reac t0 . r .  

Non- Iso thermal  K i n e t i c  Exper iments .  A number o f  runs ,  p r i m a r i l y  t o  

e v a l u a t e  k i n e t i c  i n t e r a c t i o n s  d u r i n g  s imu l taneous  r e a c t i o n s ,  were con- 

d u c t e d  i n  a non - i so the rma l  manner. Wh i le  t h e s e  exper imen ts  a r e  n o t  i d e a l  l . y  

s u i t e d  t o  o b t a i n i n g  complex k i n e t i c  da ta ,  t h e  p r i m a r y  purpose was t o  com- 

pa.re t h e  p r e d i c t i o n s  o f  p r e v i o u s l y  de te rm ined  k i n e t i c  e x p r e s s i o r ~ s  w i t h  

e x p e r i m e n t a l  measurements. 

A l l  non - i so the rma l  exper imen ts  were conducted u s i n g  1  gm r e t o r t e d  s h a l e  

samples. The samples were f i r s t  hea ted  t o  400C i n  h e l i u m  t o  remove m o i s t u r e  

and t o  s t a b i  1  i z e  t h e  l o w  tempera tu re  decompos i t i on  r e a c t i o n s  (dawsoni t e  and 

nahco l  i t e ) .  A t  t h i s  p o i n t  t h e  d e s i r e d  sweep gas c o m p o s i t i o n  was i n t r o d u c e d  

and t h e  r e a c t o r  t empera tu re  was r a i s e d  a t  abou t  2  C/min t o  a  maximum tem- 

p e r a t u r e  o f  abou t  800C. A t  t h e  end o f  each o f  t h e s e  r u n s  t h e  sample was 

dechar red  i n  a i r  ( t o  de te rm ine  t h e  q u a n t i t y  o f  c h a r  r e m a i n i n g ) ,  decarbonated 

i n  h e l i u m  ( t o  de te rm ine  r e s i d u a l  Ca-C03), and t h e n  r e c a r b o n a t e d  a t  600C i n  a  

He/C02 m i x t u r e  ( t o  de te rm ine  t o t a l  CaO make d u r i n g  t h e  r u n ) .  

Mass T r a n s f e r  Measurements'. As s t a t e d  p r e v i o u s l y ,  a a s - s o l i d  and d i f -  

f u s i o n a l  mass t r a n s p o r t  o f  oxygen was s t u d i e d  u s i n g  2  cm c y l i n d r i c a l  c o r e  



samples in th,e large tube.furnace shown in Figure 3. Because of the s i z e  and 

mass of these samples i t  was necessary t o  r e s t r i c t  these measurements t o  

sha1e.s which assayed a t  20 GPT o r  l e s s .  I f  assays much exceeded t h i s  value, 

there  was a  high r i sk  of the 1oss .o f  the s t ruc tu ra l  in tegr i ty .  of the sample 

during re to r t ing .  The raw shale sample was placed in the desired position 

(para l l e l  o r  cross flow or ien ta t ion)  within the furnace and, a f t e r  a  one- ,  

hour he1 ium purge, .was re tor ted  a t  475C in a  he1 ium purge of 1 cm/sec (475C.). 

These conditions were maintained unti l  the gravimetric measurements indi-  

cated t h a t  r e t o r t i ng  was complete, usually about two hours .TI-~e sample was 

then cooled t o  room temperature a t  which point t h e  gravimetric analyzer was 

re-ca.1 i  brated and the sample was ca re fu l ly  re-posi tiorled in the ;l i ng. 

The temperatur.e was then raised t o  the desired value in he1 ium when the . 
preselected air-helium mixture was introduced t o  the reactor .  Superficial  

gas ve loc i t i e s  were varied from 0.5  t o  4.0  cm/sec which corresponded t o  

p a r t i c l e  Reynolds numbers from 2 t o  16. 



RESULTS 

Effect  of Retorting on Char-Make 

Table 1 shows the .  r e s u l t s  of the r e t o r t i n g  experinients in terms of 

the .percentage of , the  weight of the  raw shale  which i s  l o s t  during r e t o r t -  

ing. The r e p l i c a t e s  a t  the high r e t o r t i n g  r a t e  show t h a t  the  ' r e p e a t a b i l i t y  

was typ ica l ly  within about 2%.  From these data . i t  appears tha t  higher purge 

v e l o c i t i e s  cons i s t en t ly  produce larger  weight losses .  Table 2 shows the  re-  

s u l t s  in t e r ~ ~ l s  of the  char quant i ty  ( %  raw sha le )  and here the  trends a r e  

niore d i s t i n c t  although the data s c a t t e r  i s  l a r g e r .  

I n  .analyzing these r e s u l t s  d i s t i n c t i o n  111ust be rllade between those 

saitiples r e to r t ed  a t  a  low veloci ty ( 4  cn!/nlin) and those a t  'a high veloci ty  

(40 cnl/min). Thus, a t  low purge v e l o c i t i e s ,  lo\./ r e to r t ing  r a t e s  produce 

a  l a rge r  quant.ity of char .  Presuniahly t h i s  occurs due to  the preval.ence. of 

pyrolysis  reac t ions  which form carbon precursor compou~ds a t  low r e t o r t i  ng 

r a t e s .  The f a c t  t h a t  the  purse ve loci ty  i s  so. low increases the  probabi l i ty  

t h a t  product cracking wil l  occur before the  products can be removed frorn 

the s'ysteni. This can a l s o  be seen from the  r e s u l t s  obtained a t '  ? . low r e -  

to r t ing  r a t e  when the purge. ve loci ty  was increased.  That is ' ,  with the e x -  

ception of the one run ( a s t e r i s k  in Table 2 ) ,  increasing the purge veloci ty 

resulted in a lower orgatlic carbon residue 'which i s  cons is tent  with the 

above explanation.  The ilnpl ica t ion  of these r e s u l t s  f o r  proposed conn!ercial 

processing i s  not s i g n i f i c a n t ,  however. Surface r e t o r t s  typ ica l ly  operate 

a t  high r e t o r t i n g  r a t e s . a n d  here there  i s  no e f f e c t  of purge veloci ty .  A l -  

though i n - s i t u  processing takes place a t  low re to r t ing  r a t e s ,  i t  i s  doubtful 

whether the purge v e l o c i t i e s  would ever be low enough where t h i s  could be a  

problem. 

The qua1 i t y  of the char \qas evaluated by exatxining i t s  chemical r e a c t i v i t y .  

This was accomplished by exposing the r e to r t ed  samples t o  a i r  a n d  noting the  

te~iiperature a t  which oxidation was i n i t i a t e d  while the temperature was being 

ra ised  a t  15  C/min, These experiments indicated t h a t ,  with the exception of 

the char produced a t  3OC/niin. and a  4.0 c~n/~iiin purge ve loc i ty ,  ther.e were no 

s i g n i f i c a n t  d i f ferences  in t h i s  oxidation " l i g h t - o f f "  temperature. A second 

s e t  .of experiments w a s  a1 so conducted to exa~ni ne char r e a c t i v i t y .  These 

experiments. attempted t o  evaluate the  hydrogenation capabi 1.i t y  of the residue 



TAELE 1 

WEIGHT LOSS DURING RETORTING 

( X  of  Raw S h a l e )  

R e t o r t i n g  Ra te  + 0.3°C/Fli n 17"C/Mi n 
S 

Purg'e V e l o c i t y  Rep1 i ca t e s  

a 
V e l o c i t i e s  a t  500 C ,  1 atm. 

15 GPT 

50 GPT 



TABLE I 1  

CHAR QUANTITY AFTER RETORTING 

( %  o f  Raw S h a l e )  

R e t o r t i n g  Ra te  - -  0.3OC/Nin 17"C/Pli n  

Purge  el o c i  tya Rep1 i c a t e s  
4. 

15 GPT 

4 .03  4.63 
- 

4 . 2 5  1 ,  3 . 7 1  1 
30 GPT 

1--.- 

a 
V e l o c i t i e s  a t  50 C,  1  atni .  

* .Susp i c i ous  Data 



by exposing i t  t o  hydrogen. Act iv i ty  \.;as measured in  t e r~ns  of the  tempera- 

tu re  a t  which methane f i r s t  appeared in the e x i t  gas.  Aga.in, i t  was found 

t h a t  a l l  of the r e to r t ed  san~ples began t o  produce methane a t  about the 

sallie temperature (475OC) and thus i t  was concluded t h a t  the  d i f ferences  

in . t h e  r e to r t ing  paran1ete.r~ did . . not a f f e c t  the qua l i ty  ( r e a c t i v i t y )  of the 

char produced. As wi 1 1  be discussed below, the  r e a c t i v i t y  of the  char pro- 

duced a t  the  lowest purge gas ve loci ty  and re to r t ing  r a t e  was markedly lower. 

This i's probably due to .  product cracking which produces a  more inac t ive  char 
1 0  

as concluded by StuuL e t .  a1 . 
0xidati.on Kinetics 

. . 

Since the s t a t e d  goal was to  obtain k ine t i c  data i n  the absence of mas's 

t r a n s f e r  e f f e c t s ,  i t  was iniportant t o  ensure t h a t  ne i the r  gas-sol id nor in-  

t e rna l  dif . fusion were r a t e  1 i ~ n i t i n g  f a c t o r s .  The for-nier was checked by mea-' 

suring the  oxidation r a t e s  a t  550°C and .075 atm oxygen a t  d i f f e r e n t  gas 

.flow rates.  and the  r e s u l t s  a r e  shown in Figure 4 .  Since ' t he re  was no i.ncrease 

in the  f r ac t ion  of char oxidized ( x )  as  the flow r a t e  was doubled fron: 400 

t o  800 scc/min i t  was concluded t h a t  the experinients were f r e e  of s i g n i f i c a n t  

gas-sol id ntass t r a n s f e r  r e s i s t ances .  However' t h i s  i s  only a val id conclusio~i  

with respect  t o  convective t ranspor t  phenomena which i s  dependent cn flow 

r a t e s .  As will be discussed in 1?1or-e de ta i  1 bclow, addi t innal  ~ileasurerlients 

of the  actual  saniple teniperatures indicated t h a t  r ad ia t ive  energy t ranspor t  

was a  s i g n i f i c a n t  f a c t o r  in maintaining near isother~iial condit ions a t  the 

i n i t i a t i o n  of the  exothermic oxidation reac t ion .  I n  add i t ion ,  oxidatior! r e -  

ac t ion  r a t e s  were f a s t e r  a t  higher O 2  pressures and there  was d e f i n i t e e v i -  

dence of s i g n i f i c a n t  gas-so-lid mass t ranspor t  r e s i s t ance  a t  temperatures 

g rea te r  than 550 C .  However, in order t o  obtain accurate gravinietric 

nleasurenlen.ts, i t  was necessary t o  r e s t r i c t  the gas flow r a t e s  t o  (libout 650 

scc/liiin and t h i s  value was subsequently used f o r  a l l  the expel-i~lients r e -  

ported here.  

. Internal  d i f fus ion  pheno~iiena has already been mentioned as the r a t e  
1 , 2 2  

1 iniiti'ng f a c t o r  in previous work b u t  those inves t iga t ions  were a l l  con- 

ducted wi t l i  r e l a t i v e l y  large sample pieces.  Even with the slnall p a r t i c l e  

s i z e s  used here (70 urn), ash d i f fus ion  can s t i l l  be a  problem s ince  char 

oxidat ion i s  a  r e l a t i v e l y  rapid reac t ion .  I f  t h i s  were the case ,  the prob,lem 

\;/auld be I-11ost severe near the end of a ' r u n  when niost of the unoxidized, char 
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would. be . located near the  cen te r  of the p a r t i c l e .  This was evaluated in 

a  few se lec ted  runs by ra i s ing  the  temperature a f t e r  90% of the  char 

had been oxidized. As can be seen from Figure 5 ,  ' the  conversion r a t e  in-  

creased dramatical ly a s  soon as  the  temperature was increased.  This i s  

c l e a r l y  ind ica t ive  of a chemical react ion r a t e  as opposed to' a' tel~iperature 

insens i t ive  d i f fus ion r a t e .  Thus i t  can be concluded t h a t  the k i n e t i c ' d a t a  

reported here were f r e e  from .any di  ffu.sional e f f e c t s .  

Thc k ine t i c  data were a l l  corre la ted  in Ler~ns of the  f r a c t i u r ~  of t h e  

char converted and, in an unsteady s t a t e  expersinlent such a; t h i s ,  the oxi- 

dat ion reac t ion  r a t e  might be expected t o  . take the  .empirical form 

dx - ' - E* C - -  k exp [ - I  ~ ~ ~ ( 1 - x ' ) ~ ~ ~  K 
0 d t  0  RT 2 

where C i s  the i n i t i a l  'char concentration (gm/gm of s h a l e ) ,  E* i s  the  0 
ac t iva t ion  energy, P i s  the oxygen , p a r t i a l  pressure (al;ln), T i s  the temp- 

02 
e ra tu re  ( O K )  a n d  a and 6 a r e  the  reac t ion  orders with respect  t o  the  residue, 

and oxygen. 

Although the  experiments were designed t o  run a t  a  constant  oxyg'on con- 

c e n t r a t i o n ,  t h i s  was not possib.le f o r  runs where s i g n i f i c a n t  char  consu!nption 

occurred during the  f i r s t  2-3 minutes a f t e r  oxygen exposure. Tbis i s  due t o  

the f d c t  t h a t  i t  took a  f i n i t e  time f o r  the  oxygen mixture t o  d isplace  t t ~ e  

helium in the  r eac to r .  In order  t o  obtain a  q u a n t i t a t i v e  evaluat iur~  of t h i s  

phenomenon, experiments were conducted in which the e x i t  concentrat ion of a  

t r a c e r  gas was monitored as  a  functivrl of time fol:o\ving a  "step-change" i n  

the  feed gds. Figure 6 shows such a  p lo t  and the  data correspond c lose ly  

t o  an idea l ly  niixed r e a c t o r ;  one where the e x i t  concentrat ion i s  ident ica l  

t o  the concentration within the  r eac to r .  In  t,er~:~s of oxyqen then ,  i t s  va r i a -  

t ion  with tinle f o r  a constant  feed pressure Po- O i s  

Po2 
1 3  

("oil o = 1 - exp [-t/t]  (34)  

where t i s  the  average residence time in the r eac to r .  
3 7 

The k ine t i c  data were evaluated using in tegra l  analys ls  techniques . 

Thus, i f . t h e  oxidation r a t e  i s  assullled t o  be f i r s t  order  with respect  t o  

both the residue ( a . = l )  and oxygen ( 6  = I ) ,  equation (33 )  can be i n t e g r a t e d  

upon the  subs t i tu t ion  of equation (34.) f o r  PO2.- This r e s u l t s  in 
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When' the data were analyzed in t h i s  nian'ner the r e s u l t s  were found t o  be 

very repeatable ;  within t.hree perccr~t  f o r  two experiments conducted under 

the  same condit ions weeks a p a r t .  I t  was a l s o  possible t o  evaluate the  

char consuniption r a t e  f o r  soriie runs by analyzing .the e x i t  gases.  In a.11 

cases ,  C O Z  was the  only co~iibustior, product 'detected in the e x i t  gas. Sincc 

I-~ydrwgen i s  a l s o  expected t o  be present in the  residue and i t  was not possib.le 

to  de tec t  H20 in the  e x i t  gas ,  the d i f ference  between the  weight loss  measured 

by the  gravirlietric technique and tha taccoun ted  f o r  by the C02 carboniras 

a t t r i b u t e d  t o  hydrogen oxidat ion.  I t  was v r~ ly  possible t o  do t h i s  however, 

f o r  runs with r e l a t i v e l y  slow oxidation r a t e s  s ince  the  ~?iaxirnum G . C .  sampling 

r a t e  was one saniple/four n~in .  The r e s u l t s  f o r  these runs indicated tha t  the 

C / H  r a t i o  was approxilnately 1 . 5 .  

Oxidation Reaction Orders 

The f i r s t .  s e t  of oxidation experir:lents were conducted with shal e  sanipl es 

with t h e i r  niineral carbonates i n t a c t .  To do t h i s  of course,  requ.ilned t h a t  the 

experililents be conducted a t  teniperatures below 600 C .  Figure 7 shov./s the  r c  

sul t s  of a  f i r s t  order analys is  p lo t ted  according t o  equations (35)  and (37)  

a t  425 C f o r  various O2 p a r t i a l  pressures with a. 50 GPT shale  saliiple. As car 

be seen,  good f i r s t  order p lo t s  a r e  obtained a t  a l l  O 2  pressures which i s  a  

c l e a r  indica t ion  t h a t  char oxidation i s  f i r s t  order with respect  t o  the char 

present .  As .indicated by equation ( 3 6 ) ,  the slopes of these ' l i n e s  a r e  equal 

t o  k* which ~ h o u l d  p lo t  l i n e a r l y  with P i f  oxidation i s  f i r s t  order  with 
02 

respect  t o  02. That t h i s  i s  indeed the case can b.e seen frcni Figure 8  here 

a l l  b u t  the very low P runs f a l l  on the f i r s t  order l i n e .  The deviat ion 
0  2 

a t  low P i s  a t t r i b u t e d  t o  the  d i f f i c u l t y  in  cont ro l l ing  the low O 2  flow 
0  2 

r a t e s  a t  these condit ions.  Note a l s o '  t h a t  the  rcsul  t s  f o r  15 a n d  50 GPT 

shales were a l l  the same, indica t ing  t h a t  there  i s  no separa te  influence of 

the shale  assay.  Because of t h i s ,  a l l  subsequent experiliients were conducted 

with 50 GPT shale  s ince  i t  produced a  higher concentration of char and con- 

sequently gave niore accurate and reproducible r e s u l t s .  
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h 15 GPT 

0 50 GPT 

P -- ATM 
02 

FIGURE 8:  ANALYSIS OF OXIDATION REACTION ORDER (425 C) 



Figure 9 shows f i r s t  order  p l o t s  f o r  two temperatures a t  P o p  = .075 

atmospheres. klhile a  good f i r s t  order p lo t  i s  obtained a t  the  lower temp- 

e r a t u r e ,  the  high conversion data a t  572 C (845 K )  l i e  below the apparent 

f i r s t  order  l 'ine. Deviations s imi la r  t o  . these were found a t  a l l  runs con- 

ducted a t  temperatures g rea te r  than 550 C and could be a t t r i b u t e d  'to gas- 

so l id  mass t ranspor t  e f f e c t s ,  a s  wil l  be discussed below. 

Oxidation of  Slow RetortedIAcid Leached Shale ---- - 
, 

In . t h e  .previous sect ion i t  was pointed o u t  tha t  snille r e to r t ed  i ~ t  0.3OCI 

niin. and in a  purge gas ve loci ty  of 4- cr;i/min, "slob! retort.edn s h a l e ,  produced 

a  l a r g e r  quant i ty  of char .  The r e a c t i v i t y  of t h i s  same char was a l s o  evaluated 

by comparing i t s  r a t e  of oxidation with the  r a t e s  measured f o r  f a s t  re , torted 

sha le .  As shown in Figure 1.0, the  slopes of t h e  f i r s t  order p l o t s  f o r  the  

s 1 . o ~ ~  re to r t ed  shale  a r e  .a'bout 40% lower t h a n  those f o r  the f a s t  r e to r t ed  shdle 

a t  both temperatures. Since Po was the same in these  runs (0.075 a tm) ,  t h i s  
2 

means t h a t  the r a t e  constants  f o r  slow re to r t ed  shale a re  a l s o  402 .lower. 

Since the low char r e a c t i v i t y  i s  a t t r i b u t e d  t o  coke formed from the  cracking 

of the  product o i l ,  i t  i s  highly probable t h a t  char produced within la rge  

blocks of sha le ,  such a s  would be present in In-Situ r e t o r t i n g ,  may a l s o  have 

a  s ig , t i i f icant ly  lower r e d c t i v i t y .  This hypothesis,  ho\t/ever, has not been t e s t -  

ed as  of ye't. 

The reasons f o r  acid leaching of 'the shale  samples have already 'been 

given during the  discussion of sample preparat ion.  The oxidation r a t e  con- 

s t a n t s  f o r  acid leached sha le ,  whether H C 1  or  H2S04 leached, were found t o  

be e s s e n t i a l l y  the  sanle a s  those f o r  shale  wit11 i t s  mineral carbonates i n t a c t .  

This i s .  shown in Figure 11 which i s  an Arrhenius p lo t  corresponding t o  a tenlp- 

e ra tu re  range of 425-700 1;. I t  st~aulcl be pointed out. t ha t  the teclperatures 

corresponding t o  the  data points  in Figure11 a re  average values f o r  the  

part ic .ular  run. .Separate measurements of the shale  sample temperatures i n -  

dicated t h a t  u'pon i n i t i a l  exposure t o  oxygen the sample experi ericed a tenlpera- 

t u r e  r i s e  of about 25 C and then cooled t o  the  or ig inal  h u l k  gas telllperature. 

I n t e r e s t i n g l y ,  a  major f r a c t i o n  of the cooling nlechanis~il was f o ~ n d  t o  be 

rad ia t ion  from the  small shale  sanlple t o  the  r e l a t i v e l y  la rge  .reactof su r faces .  

The ac t iva t ion  energy corresponding t o  the  s t r a i g h t  l i n e  t h r o u g h  the data 

points  i b  23,200 cal/l:?ole., The s t r a i g h t  l i n e  was drawn t.0 give' g r e a t e r  weight 
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Tl0,JO TEMPERATURES ( P o  = . 0 7 5  a t m )  
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FIGURE 1 0 :  COMPARATIVE O X I D A T I O N  FOR 

SLOW RETORTED SHALE ( P o  = . 0 7 5  at.111) 
3 
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F I G U R E  1 1  : A R R t l E N I U S  ' P L O T  FOR CHAR O X I D A T I O I ~ I  



t o  the  low temperature data s ince  the  high r a t e s  a t  high tefi~peratures a re  

thought t o  be l e s s  accurate due t o  the r e l a t i v e l y  shor t  run t i ~ ~ e s .  The 
f a c t  t h a t  the  telilperature dependency of the high teciperature r a t e  constants  

i s  almost negl ig ib le  ind ica tes  t h a t  the  oxidation r a t e  i s  being influenced 

by Illass t ranspor t  r a t e  1 i rni tat ions.  Since in ternal  d i f fus ion had already 

been found t o  be i n s i g n i f i c a n t ,  mass t ranspor t  influences a r e  ~:iost assuredly 

due t o  gas-sol id t r anspor t .  A more de ta i l ed  analys is  of t h i s  r i l l  be pre- 

sented in the  discussion of oxygen rnass t r anspor t  during char oxidation, 

Oxidation of Thernial l y  Decarbonated Shale -- 

The problenls of mi.nera1 decoi~i,position have already been thoroughly 

discussed in the BACKGROU?ID s e c t i o r ~ o f  t h i s  r epor t .  In actual  r e t o r t i n g  

processes,  whether surface o r  in- . s i tu ,  i t  i s  most. 1 i krlly tliat a t  l e a s t  son;e 

of the  char oxidation will  occur s in~ul  taneously wi ti1 .ininera1 c!ecor:ip.osi t i o n .  

Since, in t h i s  case the shale b!ill see various C02 concentrat ions,  the  extent  

t o  wh.ich ca. lci te  wil l  deconlpose t o  CaC) i s  uncert.ain. I n  order  t o  evaluate 

the e f f e c t  of the presence of CaO on char oxidat ion ,  i t  was decided t o  oxa~:line 

the extreme case in which a l l  of the c a l c i t e  was decomposed t o  CaO. 

P r io r  t o  oxidation the  sa~;iples were ra ised  t o  tel:iperatures o'n the order  

of 675 C in the presence of i n e r t  he1 ium and maintained a t  t h i s  tc?r?iperat.are 

un t i l  a l l  .the dolo~ilite and c a l c i t e  had decomposed t o  the oxides.  This \$!as 

ve r i f i ed  by both continuous gravimetric  readings and G.C. ana lyses 'o f  the 

e x i t  gas .  I t  should be pointed out t h a t  during t h i s  procedure approxin:atnly 

10% of the  char ( 2 .  5 riig) reacted ni t h  the  C02 produced during mineral decos~po- 

s i t i o n  t o  produce CC! (de tec ted  by gas chromatograp'hy). The f a c t  t h a t  t h i s  

react ion occurred t o  such an extent  even though the measured CO, part ial '  
L 

pressure never exceeded 0.01 atnlospheres, i s  an indicat ion of the surfac.e 

ac t ive  nature of C02 g a s i f i c a t i o n .  That i s ,  the C02 r d e a s e d  by a ine ra l  

decon~posi t i  on i s  r ead i ly  access ib le  t o  the char and the react ion eviden%ly 

proceeds a t  a  ~ ;~uch f a s t e r  r a t e  than v~oulc! be i?ieasured i f  the C02 had t o  be 

supplied by th'e b u l k  sweep gas.  

Figure 1 2  shows the  raw gravimetric  data f o r  two runs coticluctod wit-!i 

thermally decarbonated sha le ,  one a t  70C).t: and t h e . o t h e r  'at  945 G .  I t  i s  

i n t e r e s t i n g  t h a t  in  both cases the  sample weight i n i t i a l l y  i n c i ~ c a ~ : ~ ~  as char 

oxidat ion begins. Even lilore in te res t ing  i s  the  f a c t  tha t  the  weight increase 



TIME- m in' 

F I G U R E  1 2 :  SAMPLE W E I G H T  CHANGES D U R I N G  O X I D A T I O N  O F  

THERMALLY DECARBONATED S H A L E  ( P  = . C 7 5  a t m )  
O 2  



i s  higher a t  the  lower temperature. Evidently the CaO present in the sample 

i s  recoiiibining with the  C02 produced by char oxidation t o  reforln the  carbonate 

(Cat) + C02 -. CaCO ) since t h i s  i s  the only illinera1 react ion whicli i s  r eve r s ib le .  
3 

;\lot only does t h i s  account f o r  the  i n i t i a l  weight increase b u t  a l s o  f o r  the 

l a rge r  weight increase a t  the lower temperature. This l a t t e r  e f f e c t  i s  

apparently due t o  equi 1 i  briu~li considerat ions s i  rice 1 ower temperatures favor 

carbonate reformation, a t  l e a s t  fro~;i a  ther~nodynaaiic poitit of vie\.!. I t  should 

a l s o  be pointed out t h a t  the .ter!iperatut-es indicated in t h i s  f igure  a re  temp- 

e r a t u r e s  in the  b u l  k gas strean?. A t  these terliperatures theniio,dynan~ic equi 1 i  - 

briusii f o r  the carbonate deco~!!position reac t ions  would not be expet:l;ed. 5el:tar- 

a t e  experili1en.t~ were therefore  conducted t o  obtain nleasureillents of the actual  

sha le  ter:iperatures dilri n y  oxidat ion.  Unfortunately, d.ue t o  the sensi L i  v i  i y  

of the  electrobalance i t  was not possible t o  obtain simultaneous weight cleasure- 

ments. Nevertheless, these  expet-in~ents indicate'd t h a t ,  in .these two runs,  t!ie 

shale  t e~~ lpe ra tu res  reached ~;laxirilum values of 775 K '  a n d  975 K a t  .very riearly the 

same tinle as the  obser'ved ~:iaxil:lu~:i in the sample weight. 

Another f a c t o r  of importance i s  t h a t  the carbonate refor~;iation react ion 

can only occur as  f a s t  a s  ths char oxidation react ion since the C02 required 

f o r  the carbonate react ion i s  supplied by char oxidat ion.  Thus the  r a t e  of 

weight increase indicated in Figure 1 2  provides a  lower est imate of the char 

oxidat ion r a t e .  When t h i s  analys is  was conducted, i t  was found t h a t  t h e - c h a r  

oxidat ion ra t e  v!as a t  l e a s t  an order  of magnitude g rea te r  than t h a t  observed 

when the n~ii lerals  were l e f t  i n t a c t .  These r e s u l t s  then proe?pted a  dynamic 

nather:iatical simulation t o  predic t  the  sample weight as  a  function cf  tivie. 

This was accomplished by solving the  d i f f e r e n t i a l  equations v~hic!? descri  hed 

the  r a t e s  of char oxidat ion ,  cal c i t e  recarbonati on and species consur;:p-tion/ 

production within the  CSTR, using the  IBll CSI'/:P program. The pt-e-exponential 

f a c t o r s  f o r  the  char oxidation r a t e  constant  obtained ea r l  i e r  (Fiqur? 1 1  ) 

and f o r  the  r a t e  of c a l c i t e  recarbonation (obtained in separa te  experir;lc-fits 

and a i  scussed be1 ow) krere sys te~na t i ca l  1 y  adjusted unti 1 t-easonable niatches 

were obtained t o  the data shown in Figure 12. The best  1:iatch was obtained 

with a  char oxidation . ra te  constant equal t o  ten tir~les the values giver! ill 

Figure 11. Furtheriiiore, using the ~iieasured shale temperatures fo,r both runs,  

the  sirilulation indicated t h a t  a t  the inaxi~num saciple weights sliov:n in Figure 1.2, 

the  r a t e  of recarbonation was very nearly zero (c lose  t o  equi 1 ibriuin). and 
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approxitilately 1 0 - 2 5 m f  the char remained. Thus the  weight loss  which occurs 

a f t e r  the nlaxilnu~!i i s  reached i s  due t o  the  consumption of the rell~aining char.  

Another in te res t ing  r e s u l t  from, the siniulation was t h a t  the  c a l c i t e  recarbona- 

t ion  r a t e  was a l so  s ign i f i can t ly .  higher in these experinients (% 2 orders  of 

riiagnitude) than when C02 i s  supplied by t h e b u l  k sweep g a s .  This \\lould indi -  

ca te  the  p o s s i b i l i t y  t h a t  char oxidation i s  being catalyzed as a  r e s u l t  of the 

ther~iial decarbonation procedure. There .are  a t  l e a s t  three  p o s s i b i l i t i e s  f o r  

these e f f e c t s  : ' ( 1  ) increased pore vol unie due t o  the or ig inal  decarbonation ; 

( 2 )  the  iron contained one of the  shale  r;iinerals, a n k e r i t e ,  (% 1.57;) i s  a n  

oxidation c a t a l y s t  o r ;  ( 3 )  the  oxides produced by carbonate decoc~positi,on 

a re  oxidat ion c a t a l y s t s .  Nhile i t  i s  d i f f i c u l t  t o  prove any of these  conclu- 

s i v e l y ,  there  i s  evidenc.e t o  support the r e j ec t ion  of the  f i r s t  two p o s s i b i l i -  

t i e s .  TI1a.i; i s ,  s ince leaching with HC1 resul ted  in the sane oxidat ion r a t e  
3 6 

as  unleached shale despi te  a three  fo ld  increase in avail 'able surface  area , 

i t  would seen1 t h a t  the explanation does not l i e  here.  Furthermore, HC1-l'each- 

ed shale  should not contain iron and t h i s  i ron-f ree  sliale had .the sanie oxida- 

t ion  a c t i v i t y  as  t h a t  containing i ron .  Thus a d e f i n i t e  p o s s i b i l i t y  i s  t h a t  

the oxides produced during thernial deconiposi t ion  cat layze the char o x i d a t i ~ n .  
3 9 

I n  f a c t  CaO i s  a  known c a t a l y s t  f o r  a  number of reac t ions  

Both NgO and CaO a r e  produced during, ther~!~al decarbonation, the forbier 

by dololiiite decomposition, the l a t t e r  by c a l c i t e  decomposition. Cheliii- 

sorpt ion experiments were conducted a t  25 C in order  t o  evaluate the capa- 

b i l  i t y  of thermally. decarbonated shale  t o  adsorb O 2  and C02. Table 3 shows 

the  r e s u l t s  and as can be seen there  i s  d e f i n i t e  indica t ion  of 0, chenisorp- 
L 

t ion  on the  decarbonated shale and a draiiiatic increase in the  C02 uptake -over 

T A B L E  3 

O2 A N D  C02 ADSORPTION MEASUREMENTS O N  , 

R E T O R T E D  O I L  SHLAE (25 C )  

S A M P L E  o2  UPTAKE^ co,  UPTAKE^ 
. . 1 . .  . \  . . ' .  -- - , : 

Ther~iial ly Decarbonated 15 125 

Carbonates Present % 0 2 5 

. .. 
apniol es/gl~i sanipl e  



t h a t  measured w i t h  ca rbona tes  p r e s e n t .  However i t  s h o u l d  tie p o i n t e d  o u t  

t h a t  w i i i  l e  t h e  02 iso then:1  was s i c ~ i  l a r  t o  t h a t  expec ted  f o r  cheaii s o r p t i o n  

( s h a l l o w  s l o p e ) ,  t h e  dependency o f  C02 u p t a k e  on p r e s s u r e  was niore s i g n i T i -  

c a n t  and. ' t he  p o s s i b i  1 i t y  o f  some p h y s i c a l  a d s o r p t i o n  t a k i n g  p l a c e  canpo t  he 

r u l e d '  o u t .  

T h e -  f a c t  t h a t  t h e  c a r b o n a t e .  r e f o r r z a t i o n  r a t e  was a1 so much h i g h e r  when 

C02 i s  s u p p l i e d  by c h a r  o x i d a t i o n ,  i s  a n i n d i c a t i o n  t h a t  a  s u r f a c e  a c t i v e  

s t e p  n i i g h t  be p a r t  o f  t h e  r e a c t i o n  niechanism. T h i s  i s  s u p p o r t e d  by  t h e  

r e l a t i v e l y  h i g h  C02 a d s o p r t i o n  c a p a c i t y  nf t h e r n i a l l y  deca rbona ted  s h a l e  

( T a b l e  3 ) .  G iven  t h i s ,  t o q e t h e r  w i  t.h t h e  der l ions t ra ted  ,capab i  1 i t y  f o r  

.oxygen c h e r n i s o r p t i o n  t o  o c c u r ,  t h e  f o l  l o w i n g  ~i iechanism i s  h y p o t h e s i z e d :  

O 2  + CaO .-. (I2 . CaO ( 3 8 )  

O2  . CaO + C .,-,. C o p  . CaO ( 3 9 )  

C02 . C,aO -- CaO + CO, ( 4 0 )  
L 

C q 2  CaO - CaC03 ( 4 1  ) 
where X . Y  - i n d i c a t e s  t h a t  X i s  chernisorbed t o  Y .  Equa t i ons  ( 3 8 )  and ( 3 9 )  

c o u l d  * e x p l a i n  t h e  o x i d a t i o n  c a t l a y s i s  and e q u a t i o n s  ( 4 0 )  and ( 4 1 )  a r e  

c o m p e t i t i v e  r e a c t i o n s  w h i c h  de te ra i i ne  t h e  e x t e n t  o f  c a r b o n a t e  r e f o r m a t i o n .  

T h i s  wou ld  a l s o  e x ' p l a i n  , t h e  increased . r a t e  nf c a r b o n a t e  f o r m a t i o n  d u r i n g  

c h a r  o x . i d d t i o n ;  i . e .  , t h e  C02 does n o t  have t o  adso rb  [ v i a  t h e  r e v e r s e  o f  

r e a c t i o n  ( 4 0 ) j  s i n c e  i t  i s  p roduced i n  an  adsorbed s t a t e  b y  Irleans o f  r e s c t i o n  

( 3 9 ) .  

R e a c t i o n  Rate  E x p r e s s i o n  F o r  Char O x i d a t i o n  

A l l  o f  t h e  k i n e t i c  o x i d a t i o n  d a t a  o b t a i n e d  w i t h  s h a l e  wh ich  had n o t  

been t h e r ~ i l a l l y  deca rbona ted  were c o n s i s t e n t  up t o  a  t e m p e r a t u r e  o f  5 5 0  C .  Above 

t h i s  t e m p e r a t u r e  s i g n i f i c a n t  g a s - s o l i d  mass t r a n s p o r t  r e s i s t a n c e s  were e v i -  

d e n t .  As d i s c u s s e d  above, t h e r e  i s  s t ro.ng evid 'ence of c a t a l y t i c  e f f e c t s  

when s h a l e  i s  t h e r m a l l y  decoclposed t o  o x i d e s .  

w i t h  t h e s e  r e s t r i c t i o n s ,  t h e  f o l l o w i n g  r a t e  e x p r e s s i o n  i s  be1 i e v e d  t o  

be i n d i c a t i v e  o f  i n t r i n s i c  o x i d a t i o n  k i n e t i c s  f o r  A n v i l  P o i n t s  o i l  s h a l e  

where c': i s  t h e  i n i t i a l  c h a r  c o n c e n t r a t i o n ,  X i s  t h e  f r a c t i o n  c h a r  c o n v e r t e d ,  
.k 

and Po i s  t h e  oxygen p a r t i a l  p r e s s u r e  a t  t h e  su r face ,  s p e c i f i c a l l y  
2  



where kc: has t h e  u n i t s  o f  (atm-rnin)- l ,  T  i s  i n K ,  Po2 i s  i n  atni and R i s  

i n  ~ c a l / n i o l e - k .  

0 Mass T r a n s p o r t  -2 

The f a c t  t h a t  t h e  k i n e t i c  e x p e r i ~ i i e n t s  a t  t empera tu res  g r e a t e r  t h a n  550 C 

$/ere u.nder t h e  p a r t i a l  i n f l u e n c e  o f ' g a s - s o l i d  mass t r a n s p o r t  has a l r e a d y  been 

ment ioned.  Ano the r  c o n s i s t e n t  t r e n d  i n  t h e  d a t a  was t h e  f a i l u r e  of t h e  h i g h  

tempera tu re ,  h i g h  c o n v e r s i o n  d a t a  t o  f o l  l o w  t h e  a p p a r e n t  f i r s t  o r d e r  p l o t  

(see F i g u r e s  9 and 10). A s ' w i l ' l  'nuw be shown, t h i s  t o o  can be e x p l a i n e d  i n  

tet-HIS o f  g a s - s o l  i d  liiass t r a n s p o r t  1  i 1 1 i . i  t a t i o n s .  

F i r s t  o f  a l l ,  i f  " q u a s i - s t e a d y  s t a t e "  can be assumed t h e r e  i s  a  s'teady 

s t a t e  e q u i v a l e n c y  o f  illass t r a n s p o r t  and che1:ii c a l  r e a c t i o n  r a t e s  ; i . e .  , 

where k q  i s  t h e  g a s - s o l i d  niass t r a n s p o r t  c o e f f i c i e n t ,  k  i s  t h e  k i n e t i c  r a t e  - 
c o n s t a n t ,  C c  i s  t h e  c h a r  c o n c e n t r a t i o n  a t  any t i m e ,  acii P i s  t h e  oxygen 0 
p a r t i a l  p r e s s u r e  i n  t h e  b u l k  gas .  I f  e q u a t i o n  ( 4 4 )  i s  s o f v e d  f o r  PB i n  

2 2% -9 
tern is  o f  t h e  b u l k  gas oxygen p ressu re ,  Po , and t h e n  s u b s t i t u t e d  i n t o  e q u a t i o n  

2  1 
( 4 2 ) ,  we o b t a i n  t h e  f o l l o w i n g  g l o b a l  r a t e  e x p r e s s i o n  .. & 

Y 

A t  a  c o n s t a n t  oxygen p a r t i a l  p r e s s u r e  and teinperatut-e we can e x p l a i n  t h e  h i g h  

teniperat .ure d a t a  i n  F i g u r e s  9 and 10 by  r e f e r r i n g  t o  t h e  b r a c k e t e d  t e r m  i n  equa- 

t i o n  ( 4 5 ) .  A t  h i g h  ten ipe ra tu re ,  t h e '  r e a c t i o n  r a t e  c o n s t a n t ,  k,wi l l be l a r g e  
kcc  \;I and, a t  an e a r l y  s t a t e  o f  t h e  r e a c t i o n ,  C, w i l l  be l a r g e .  I n  t h i s  case - 
k 

c! 

and t h e  r e a c t i o n  r a t e  beconies independent  o f  c h a r  c o n c e n t r a t i o n ,  i . e . ,  z e r o  

o r d e r .  Mowever as t h e  r e a c t i o n  proceeds,  t h e  c h a r  c o n c e n t r a t i o n  decreases 

u n t i l  we have -. kCc - i c  1  and t h e  r e a c t i o n  r a t e  b e c o ~ ~ l e s  f i r s t  o r d e r  w i t h  r k -  

9  
s p e c t  t o  c h a r . c o n c e n t r a t i o n .  Thus i t  i s  seen t h a t  h i g h  lilass t ' r a n s l ~ o r t  r e s i s t -  

ance can cause an apparen t  s h i f t i n g  o r d e r  wh ich  i s  what  i s  observed i n  t h e  

h i g h  ten ipe ra tu re  d a t a  o f  F i g u r e s  9 and 10. F u r t h e r  c o n s i d e r a t i o n  o f  t y p i c a l  

niass t r a n s p o r t  c o e f f i c i e n t s  f o r  t h e s e  c o n d i t i o n s  i n d i c a t e d  t h a t  e q u a t i o n  ( 4 3 )  



i s  representa t ive  o f  the  chemical k ine t i c s  a t  l e a s t  u p  t o  the point  a t  which 

carbonate deco~iiposi t i  on occurs. 

.While equations . ( 4 2 )  and (43)  provide funda~iiental k ine t i c  informatior! 

and give an indicat ion of the  maximum oxidation r a t e s  t o  be expected from 

undeconipos'ed shal e ,  com1;lercial r e t o r t  operat ions wi 1 1  of course ei~iploy much 

l a rge r  shale  p a r t i c l e  s i z e s . .  In ,such cases ,  O 2  niass t ranspor t  can be expected 

t o  play a inore important r o l e  and provides the nintivation f o r  conducting exper-i- 

~ i ier~ts  with the  l a r g e r ,  cy l indr i ca l  core samples described e a r l i e r .  PI1 o f  the  

experiments during t h i s  phase of the  inves t iga t ion  u t i l i z e d  shale  assayed a t  

1 7  GPT so t h a t  s t r u c t u r a l  i n t e g r i t y  remained intact .  a f t e r  r e t o r t i n g .  The con- 

t i  nuous sa~iipl e  weight data provided measure~i:en t s  of f r ac t ion  char converted 

as  a  function of t.il;ie which were then cor~ipared t o  tile arialytical expressions 
' t  0 

developed by Levenspiel in order t o  e x t r a c t  values o.f both the  gas-sol id 

convective niass t r anspor t  c o e f f i c i e n t ,  , and the e f f e c t i v e  d i f f u s i  vity of a 
O 2  through the  decharred portion of the  sample, !I. 

Pleasurernents of the  e f f e c t i v e  d i f f u s i v i t y  with samples or iented  so t h a t  

the  d i f fus ion  path was r a d i a l ,  gave r e s u l t s  which were cons is tent ly  about three  

tinies lower than those measured with axia l  d i f fus ion paths.  I t  was concluded 

tha t  the  coring technique resu l t ed  in the creat.ion of a  t h i n ,  lowcr per11:cability 

layer  near the  cy l indr i ca l  surface  which produced a r t i f i c i a l l y  low 6 . j f f u s i v i t i e s .  

Effec t ive  d i f f u s i v i  t i e s  rlieasured with axia l  di f f ~ l s i o n  paths a r e  considered t o  

be more representa t ive  and were found t o  be independent of both oxygeri concen- 

t r a t i o n  and temperature (425-525 C ) .  These m~asureriients gave d i f f u s i v i t y  values 
- 6  2 

of 3 0  X 10  m / sec  fo r  d i f fus ion pa ra l l e l  t o  the  bedding plane and 12 X lo-' 
2 

ni / s ec  f o r  d i f fus ion perpendicular t o  the  bedding plane. These nleasurenients a re  
2 2 

cons i s t en t  with those of Mallon and Braun and the  f a c t  t h a t  d i f fus ion  perpend.i- 
1 

c u l a r  t o  the bedding plane i s  rliore d i f f i c u l t ,  i s  in agreement with Dockter 's  

r e s u l t s .  

Convective mass t ranspor t  c o e f f i c i e n t s  were nieasured k!i t h  the flow normal 

t o  the  cyl inder  over a  ve loci ty  range of 0 .5  t o  4 . 0  c~!i/sec. Figure 13 shows 
I.; 1 

the r e s u l t s  conlpared t o  the cot-relation of Ranz . Note t h a t  tkle dependence 

on veloci ty  i s  s ini i lar  (square r o o t )  but t h a t  the  data a re  lower than the  corre-  

l a t i o n  by a  f ac to r  of about 2 .5 .  This i s  typical  of data col lec ted  a t  lo\v' 
1:  2 

pdr t i ca l  Reynolds numbers (2-16 'here) as  pointed out by Kunii and Levens,piel . 





Based on these measurements, ca lcula t ions  were then made to  estiniate the 

percentage of the  t o t a l  char oxidation res is tance  contributed by each of the 

three  r a t e  processes: oxidation k ine t i cs ,  external mass transport  (EMTI, and 
4 0 

di f fus ion .  The calcula t ions  followed the equations given by Levenspiel 

which predict  the r e l a t i ve  res is tances  as a function of conversion. Although 

the nrass t ranspor t  coef f i c ien t s  measured in t h i s  investigation would not be ex- 

pected t o  d i r ec t l y  apply t o  a  'fixed bed.process such as in - s i tu  r e t o r t i ng ,  there 

a r e  a number of c.ompensating f ac to r s .  Fnr example, mass t ranspor t  coeffi  c icn t s  

a r e  generally higher f o r  s ingle  pa r t i c l e s  than the fixed beds b u t  theeactual 

i n t e r s t i t i a l  ve loc i t i e s  in fixed beds a r e  higher than the superf ic ia l  velo- 

c i t i e s .  Also, there  was no separate n~easurement  her^ of  the e f f e c t  of pa r t i c l e  

s i z e  on kg. However, s ince we observed the san?e dependency on velncity as did 
4 1 

Ranz , t l ~ e  calcula t ions  assunie the saliie dependency on pat-'ticle s i7e ;  i  . e ,  

negative ha1 f -order .  

Figure' 1 4  shows these r e su l t s  fo r  two d i f fe ren t  pa r t i c l e  s i zes  (assuming 

spherical geometry) a t  a  gas velocity of 2 cm/sec and a t  a  temperature of 325 C .  

This temperature i s  in the neighborhood of the char igni t ion temperature and the 

ve:ocity and par t i c le  s i zes  a re  not inconsistent  with what might be encouii.tered 

during in - s i tu  r e t o r t i ng .  A t  hfgher temperatures the res is tance  due t o  kine- 

t i c s  drops off  rapidly and since the  remaining two resistances a re  r e l a t i ve ly  

'independent of temperature, ?he values in Figure 14 can a l so  be used to  evaluate 
. . 

re1 a t i  ve res is tances  a t  other temperatures. The in teres t ing fea tu re  o.f these 

r e s u l t s  i.s the importance ,of external niass t ranspor t .  Even for  large pa r t i c l e s  

i t  contributes most of the res is tance  un t i l  40% of the char has been oxidized. 

Mi nera 1 Deco~npos i  t i  - on 

The subject  of mineral deconlposition has been extensively studied a t  
11,15,16 

Lawrence L ivertnore Laboratories and has been reviewed e a r l i e r  in 
1 2 - 1 ' t  

t h i s  repor t  along with other per t inent  invest igat ions  . Ho\vever, when 

i t  became apparent t ha t  recarbonation of CaO took place a t  a very high r a t e  

during char oxidation,  i t  was decided t o  obtain separate k inet ic  data on the 

recarbonation of CaO. 

A t  t h i s  point i t  i s  well to  review the s i tua t ion  with respect t o  do101;lite 

and c a l c i t e  decoinposition as shown below in Figure 15. I n  t h i s  schenle dolo- 

~ n i t e  deco~~~pos i t ion  i s  shown as being able to  deconipose by two routes.  I n  



FRACTION CHAR CONVERTED 

F I G U R E .  14: .  R E L A T I V E  R E S I S T A N C E S  FOR T H E  O X I D A T I O l l  

O F  LARGE SHALE P I E C E S  ( 3 2 5  C,  2  cm/sec) 
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D o L o m E  +;go + C a  .+  c i 2  

C a l c i t e  + C02 

0 
+ CO2 

CALCITE (FREE) , CaO + C02 

FIGURE 15 

DOLOMITE/CALCITE DECOMPOSITION ROUTES 

r o u t e  @ i t  dcco~nposes d i r e c t l y  t o  FlgO and CaO and a1 though  t h i s  s t e p  i s  

howl 

t e.p 

hen 

i as b e i n g  i r r e v e r s i b l e , .  t.here i s  no evic ience t o  s u p p o r t  such a  one- 

p rocess .  Rou te  @ has t h e  d o l o ~ i i i t e  f i r s t  f o r t i l i ng  c a l c i t e  r l h i c h  can 

r e v e r s i b l y  decotiipose t o  CaO by r o u t e  @ . I n  a d d i t i o n  t o  dolomite, 
" f r e e "  c a l c i t e  i s  a l s o  p r e s e n t  i n  A n v i l  P o i n t s  o i ' l  s h a l e  and i t  t o o  can 

d e c o ~ i ~ p o s e . r e v e r s i b l y  t o  CaO. Because o f  t h e  r e v e r s i b l e  n a t u r e  o f  c a l c i t e  

decon ipos i t i on  i t  can be i n h i b i t e d  and, i n  f a c t  prevented;  by h a v i n g  s u f f i c i e n t -  

l y  h i g h  C02 p r e s s u r e s  (depend ing on  t h e  t e m p e r a t u r e ) .  
1s  

The work c a r r i e d  o u t  a t  Lawrence, L i ve r t i l o re  L a b o r a t o r y  c o n c e n t r a t e d  o ~ l y  

on t h e  decompo;i t ion o f  t h e  o i l  s h a l e  m i n e r a l s  a1 though t h e  i n h i b i t o r y  e f f e c t  

of PcoZ o n . c a l c i t e  d e c o ~ i i ~ o s i t i o n  was accounted f o r ,  as s h o w n i n  e q u a t i o n  ( 5 ) .  

.' d (MC03) /d t  = k f  ( M C O ~ )  [l - PC02/Keq] ( 5 )  

I n  t h e i r  work no d i s t i n c t i o n  c o u l d  be iliade b e t w e e n d o l o n i i t e  and c a l c i t e  de-  

c o m p o s i t i o n .  .Thus;  e q u a t i o n  ( 5 )  was used f o r  b o t h  w i t h  t h e  e x c e p t i o n  t n a t  

t h e  i n h i b i t i n g  e f f e c t  o f  PC02 was removed i n  t h e  case o f  do lo t i6 te  decomposi- 

t i o n .  ' I n  t h e  work r e p o r t e d  h e r e  t h e  saniples were i n i t i a l l y  decha r red  and 

deca rbona ted  i n  h e l i u n i  so t h a t  CaO wou ld  be fo rmed (PCo2 1 0.005 at.). Re- 

c a r b o n a t i o n  k i  n e t i  c s  were o b t a i n e d  by  p a s s i  ng sweep gases c o n t a i  n i  ng v a r i o u s  

C02 p a r t i a l  p r e s s u r e s  o v e r  t h e  deca.rbc1nated samples a t  t empera tu res  r a n g i n g  

fro111 425 C t o  725 C .  The r a t e  o f  r e c a r b o n a t i o n  was d e t e k i n e d  frori: t h e  con- 

t i n u o u s  g r a v i r i i e t r i c  nleasureti ients. A f t e r  each s i m p l e  was r e c a r b o n a t e d ,  t h e  

sarnple was deca rbona ted  a  second t i m e  t o  g e t  k i n e t i c  d a t a  on t l i e  d e c a r b o n a t i o n  

r a t e s .  The f o l l o w i n g  r a t e  e x p r e s s i o n  was deve loped f rom t h i s  s t u d y :  

PCO (CaO) 
d (CaC03) /d t  = ( C ~ O )  ( 1  - -2- Keq (CaCOj ) 1 

Where k f  i s  t h e  deconiposi t i  on r a t e  c o n s t a n t :  



and the  equilibrium constant ,  Keq i s  given by 
7 Keq = 6.19(10) exp [-41.7/RT] (48)  

The r a t e  expression assumes t h a t  the a c t i v i t i e s  of the  two so l id  phases a re  

1 .O, and t h a t  the surface areas  of the  c a l c i t e  and CaO a re  proportional t o  

the amount of each mineral present .  
15 

In comparing the  r e s u l t s  given by equation (46) with Campbell's re-  

s u l t s  given in equation ( 5 ) ,  the  d i f ference  i s  seen t o  l i e  in the  assu~iiptions 

made concerning the surface areas  of c a l c i t e  and CaO. Campbell assumed t h a t  

the  surface  area of c a l c i t e  was the  same as  the  CaO surface  a r e a .  However 

equation (46) was derived by assuming t h a t  the  surface areas  of the  two were 

proportional t o  the quant i ty  of each present  a t  any tinle. Table 4 compares 

the  predic t ions  of these  two expressions a s  a f r a c t i o n  of c a l c i t e  converted 

a t  two temperatures f o r  PCO2 = 0.01 atni. - - 

T A B L E  4 

COMPARISON O F  CALCI.TE DECOMPOSITION RATES 

(PCO2 = . O 1  a t n )  
. . 

dx/dt (min-') 
*,., , 

As can be .seen,  the r e s u l t s  a r e  q u i t e  d i f f e renk ,  p a r t i c u l a r l y  a t  the lower. 

teniperature where equation ( 5 )  predic ts  a decompositio~i r a t e  which i s  a fac-  

t o r .  of ten lower than tha t  predicted by equation ( 4 6 ) .  , A t  the higher tei:lper- 

a t u r e ,  equation ( 5 )  predic ts  a higher. r a t e  by a f a c t o r  of about 2 . .  ~ h e ' d i f -  

ference in the  predict ions . a t  750 C i s  due t o  the  higher ac t iva t io r ,  energy 

reported by. Campbell b u t  the d i f ference  a t  the lower temperature i s  d u e  t o  

the  much l a rge r  inhibi tory  e f f e c t  of Prn,  in  h i s  expression.  For example, 
. . L  

the i n i t i a l  c a l c i t e  decoriiposition r a t e  ( x  = 0 )  i s  inhib i ted  by 90% in equa- 

t ion  ( 5 )  whereas, s ince  there  i s  no CaO present  under these condi t ions ,  there  

' . i s  no i n i t i a l  C02 ' inhib i t ion  predicted by equation ( 4 6 ) .  Since equation (46)  



was derived on the basis of recarbonation as well as decarbonaticn, i t  

would seem t h a t  t h i s  should be more representat ive of the revers ible  

reaction ra te .  

Reca.11 t h a t  the r e su l t s  obtained during char oxidation with thermally 

decomposed char ind ica ted  t ha t  the recarbonation might very we1 1  proceed 

via .a surface ac t ive  s tep .  

C02 + CaO ;! CaO.Co2 (491 

CaO-GO2 f CaCQ3 (50) 

Since the I-ecarbonation ra te  was found t o  be s ign i f i can t ly  higher when ~ 0 2  

was supplied by char oxidation,  i t  was proposed t ha t  C02 was already ad- 

,sorbed in  t ha t  c a s e .  This W O U ~ ~  fur ther  indicate  t ha t  not only does re-  
- carbonation fol low a  two s tep  reaction se'q'uence,. bu . t  that . ' the '  f i  r s t '  s t ep ,  

equation (40) ,  i s  the slowest s tep .  In other words, when C02 i s  supplied 

by the bulk sweep gas,  we are  in essence measuring the kinet ics  of 

equation (49) ,  b u t  when i t  i s  already on the surface (as  in char oxidat ion) ,  

we measure the kinet ics  of equation (50) .  This could ea s i l y  explain the 

discrepancies in Table 4  and points t o  the need fo r  more fundamental work 

along these 1  ines.  

C02 ~ a s i f i c a t i o n  

The o i l y  reported study of the C02 gas i f i ca t ion  of o i l  shale char i s  

the  wprk of   urn ham^^,^^,^^ a t  Lawrence Livermore Laboratories. 'His re- 

sul t s  ha9e a l  ready been discussed in deta i l  (see  equations [24]-[26]) and 

were largely empirical in nature. Becuase of the Targe uncer ta inty ' in  the 

reaction order 'with respect t o  C02 (0:2 f 0 .2 )23  i t  was decided t o  attempt 

a  separate determination of the  reaction order,  using the norii"sotherma1 

technique described earl  i e r .  

Usin.g a  heating r a t e  of 2°C/min,. and C02 par t i a l  pressures between 

O.Ol6.and 1 atm, the C02 gas i f ica t ion r a t e  was determined by Gas chroma- 

tographic ~iieasurements of the CO production detected 'in the e x i t  gases. 

The cha'r p r e s e n t a t  any time was found by numerical in tegra t ion of the 



r a t e  of CO production. B.urnhamls r e s u l t s  indicated t h a t  C02 gasi f i c a t i o n  

was f i r s t  order  with respect  t o  char  and t h i s  was ' a l s o  found to  be the case. 

here. I n i t i a l  attempts t o  determine the  react ion order  with respect  t o  C02 

indicated t h a t  the  apparent react ion order  decreased with increasing Pco2. 
Consequently the f.ollowing r a t e  expression was proposed: 

The reciprocal  of equation (51) can be rearranged t o  a  l i n e a r  equation:  

so t h a t  a  s t r a i g h t  l i n e  r e s u 1 . t ~  with a  s lope of 1./I:l and an in te rcep t   of^ 

k2/kl.  The data ,  p lo t ted  according. t o  equation ( 5 2 ) ,  .a re  shown in Figure 16 

a t  th ree  d i f f e r e n t  temperatures. The constant  kl was found t o  vary with 

temperature and the Arrhenius p lo t  shown in  Figure 17 was used t o  develop 

the  following expression for  kl : 

where the  un i t s  f o r  kl a r e  min-l atrn-l . The constant  k2 was found t o  be in- 

dependent of temperature and the average value f o r  these experinlents was.: 

K2 = 4.95 atm-1 (54)  

I t  i s  i n t e r e s t i n g  t o  compare t h i s  r a t e  expression t o  equation (20) for  the  

C02 gas i f i ca t ion  of coke. Both expressions have about the  same ac t iva t ion  

energy .for the r a t e  constant k l .  A.lso the adsorption constant  K 3  in  equa- 

t ion  (20)  var ies  from about 5.6-4..7 over the  same temperature range. The 

. r eac t iv i ty  of the coke however i s  about 330 times l e s s  than the  char present 

in the sha le .  

I t  i s  a l s o  i n t e r e s t i n g  t o  compare the C02 gas i f i ca t ion  r a t e s  obtained 

here with those measured by B ~ r n h a m ~ ~ .  As can be seen from Table 5 ,  Burnham's 

r a t e s  a r e  about three  times higher than those measured here. - A t  t h i s  point 

the re  i s  no obvious reason f o r  the d i f ference  in char r e a c t i v i t y  althouqh 







Burnham d i d  n o t e  t h a t  b o t h  HC1 l e a c h i n g  and t h e r m a l  p r e t r e a t m e n t  red'uced 

t h e  r e a c t i v i t y  s u ' b s t a n t i a . 1 1 ~ .  However t h e  samples used h e r e  were a p p a r e n t l y  

TABLE 5 

COMPARISONS OF C02 GASIFICATION RATE o 

. ( T ' =  700C) 

r c / C  x  1 0 2 ( ~ i n )  

(Atm) LLL  ate^^ T h i s  Work 

t r e a t e d  i n  t h e  same manner d e s c r i b e d  b y  Burnham. It i s  poss. ib. le  t h a t  t h e  

answer l i e s  i n  some o f  t h e  o t h e r  r e a c t i o n s  wh ich  t a k e  p l a c e  i n  a  non- 

i s o t h e r m a l  exper ' iment .  A t  t h e  C02 p a r t i a l  p ressures '  used i.n b o t h  e x p e r i r r e n t s  

c a l c i t e  wou ld  n o t  be expec ted  t o  decompose t o  CaO b u t  i t  wou ld  r e a c t  t o  

f o r m  s i l  i c a t e s  a t  t empera tu res  above 700C. \./hen t h i s  o c c u r s ,  C02 i s  '1 i b e r a t e d  

a t  t h e  s u r f a c e  and, as \ v i , l ' l  be shown ' l a t e r ,  i s  v e r y  r e a c t i v e .  I t  i s  p o s s i -  

b l e  t h a t  t h e  d i f f e r e n c e  i n  t h e  assays o f  t h e  s h a l e  used i n  t h e  two s e t s  o f  

e x p e r i m e n t s  (Burnham used 22 GPT s h a l e ,  50 GPT s h a l e  was used h e r e ) ,  i s  t h e  

reason  f o r  t h e  d i s c r e p a n c y .  T h a t  i s ,  t h e  h i g h e r  c o n c e n t r a t i o n  o f  m i n e r a l s  

i n  t h e  l o w e r  assay s.hale c o u l d  have produced'  lFore s u r f a c e  C02 wh ich  t h e n  

r e s u l t e d .  i n  a  h i g h e r  y a ' s i f i c a t i o n  r a t e .  Aga in  t h i s  i s  a  s u b j e c t  d e s e r v i n g  

o f  !!:ore. s t u d y .  

The f a c t  t h a t  t h e  p resence  o f  CO on t h e  su r face  may have a  s i g n i f i c a n t  

i n h i b i t i n g  e f f e c t  on t h e  o v e r a l l  g a s i f i c a t i o n  r a t e h a s  a l r e a d y  been men- 

t i o n e d .  3ne e x p e r i m e n t  was per fo rmed t o  assess t h e  s i g n i f i c a n c e  o f  t h e  

p resence  of C O  i n  t h e  sweep gas.  The i n h i b i . t i v e  e f f e c t  o f  CO was d e t e r -  

mined by  o b s e r v i n g  t h e  sa~ i i p le  w e i g h t  l o s s  r a t e  f o r  v a r i o u s  p a r t i a l  p r e s -  

su res  o f  CO a t  a c o n s t a n t  t e m p e r a t u r e  o f  abou t  1000°K and a  f i x e d  C02 

p a r t i a l  p r e s s u r e  o f  . 5  atni.  The niaximuln r a t i o  o f  p a r t i a l  p r e s s u r e  o f  C9 

t o  C02 i n  t h e  i n l e t  gas was s e t  so t h a t  e q u i l i b r i u m  [ (PCO/PC02)eq = 1 . 0 1  was 

n o t  approached f o r  t h i s  r e a c t i o n  ( P C ~ / p C 0 2 ) m a x  = . 6 ) .  I n  t h i s  expe r i i i l en t ,  



an u n e x p l a i n e d  w e i g h t  i n c r e a s e  was i n i t i a l l y  observed when 0 .3  atm o f  CO 

was f i r s t  passed o v e r  t h e  sample ( t h i s  w i l l  be d i s c u s s e d  i n  more d e t a i l  

b e l o w ) .  A f t e r  t h e  w e i g h t  s tab1  i z e d ,  ' t h e  expe r imen t  was. con t i nued .  and t h e  

c h a r  consumpt ion  r a t e s  measured i n  t h i s  expe r imen t  f o r  v a r i o u s  CO p a r t i a l '  

p . ressures i s .  t a b u l a t e d  i n  Tab le  G .  

TABLE 6 

EFFECT OF CO ON CO? GASIFICATION OF CHAR 

(PCo2 = . 5  atm, Temp., = 1003OK) 

PCO . (a tm)  r c / C  ( l / m i n )  

These r a t e s  a r e  o n l y  app rox ima te  due t o  t h e  sma l l  w e i g h t  l o s s  observed,  

b u t  assuming t h a t  t h e  w e i g h t  l o s s e s  obse rved  were due s o l e l y  t'o t h e  p a s i -  

f i c a t i o n  o f  cha r ,  i t  was a p p a r e n t  t h a t  t h e  presence o f  CO a t  p a r t i a l  p r e s -  

su res  as l o w  as .05  a tm had - a  s i g n i f i c a n t  i n h i b i t i n g  e f f e c t  on C02 g a s i f i -  

c a t i o n  r a t e .  Us ing  t h e  r e s u l t s  i n  T a b l e  6 and s o l v i n g  t h e .  r a t e  e x p r e s s i o n :  

f o r  k 3  gave v a l u e s  o f  32 and 4 8  u s i n g  CO p a r t i a l  p r e s s u r e s  o f  . 1  and . 05  atm 
.. 

r e s p e c t i v e l y .  These v a l u e s  a1 so compare v e r y  we1 1  w i t h  t h e  "a1 ues c j iven f o r  

c o k e @ i n  e q u a t i o n  '(20),. a t  t h i s  same tempera tu re .  .It i s  t h e r e f o r e  o b v i o u s  

t h a t  CO i n h i b i t i o n  i s  s i g n i f i c a n t  and more r e s e a r c h  i s  necessa ry  t o  o b t a i n  

k 3  as  a  f u n c t i o n  o f  t e m p e r a t u r e . a n d  t o  a l s o  e x p l o r e  t h e  p o s s i b l e  i n h i b i t i o n  

e f f e c t s  o f  o t h e r  s p e c i e s  wh ich  c o u l d  be p r e s e n t  i n  i n - s i t u  a p p l i c a t i o n s  

(H2 f o r  example) .  



Steam Gasificat ion 

Kinetics. Once again the only reported measurements of the ra tes  of 

the steam-oil shale char reaction a re  those of B ~ r n h a m ~ ~ .  I n  t h a t  study 

the non-isothermal k inet ic  data were analyzed empirical ly and, as in the 

case of the C02-char react ion,  two para1,lel . r a te  expressions were used 

t o  f i t  the data (equations [30]-[32]). A1 thouyt~ Burnham reported t ha t  

the steam gas i f i ca t ion  r a t e  appeared t o  be one-ha1 f  order with respect t o  

steam, his  f ina l  r a t e  expression did not have a steam pressure dependency 

and appeared t o  apply only t o  P H ~ O  = 1 atm. 

Because of the empirical nature of Burnham's r e s u l t s ,  an attempt was 

niade here t o  obtain and i n t e rp r e t  steam gasi f ica t ion in a more fundamental 

manner. There. are  ac tual ly  a t  l e a s t  three  basic reactions wh.ich .take 

place during steam 

C + Hz0 + CO + H2 ( 2 7 )  
CO + H20 Z C02 + H2 (28) 
C02 + C + 2co (17) 

The second reaction (equation [28]) ,  the water gas  s h i f t  reaction: i s  known 

to  occur t o  a  great  extent  over o i l   hale^,^^ and can r e su l t .  in a make- 

pas almost t o t a l l y  devoid of C02. Once appreciable quan t i t i e s  of C02 a re  

produced, C02 gas i f ica t ion (equation [17]) can a1 so occur. Any fundame~tal 

analys is  of steam gasi f ica t ion data must account fo r  a l l  three react ions .  

The kinet ic  s tudies  discussed here were al.1 based on data collected 

i n . t h e  presence of shale which had been thermally decarbonated t o  the 

oxides. Again, the decarbonation was conducted a t  675C in the presence 

of helium. A t  t h i s  temperature a loss  of char (due t o  C02 gas i f i ca t ion)  

on the order of 5-10% was experienced. 

The f i r s t  attempt a t  data analysis  was a siniple power law expression 

t o  represent the r a t e  of char consumption. For isothermal experiments 

(760-870C) a t  constant values of ( .  13-.75 atm),  a  f i r s t  order plot  

in terms of the  f rac t ion char converted was found t o  give consis tent  



s t r a i g h t  1  ines under a l l .  conditions. This indicated t ha t  steam gasi f i c a -  

t ion was f i r s t  order with respect t o  char. The slopes of these l i ne s  were 

then plotted on log-log paper as a  function o f ,  P H ~ ~  in order to  determine 

the  reactton order with respect to  steam. I f  the reaction order i s  con- 

s t an t . ,  s tra. ight  l ines  of the same slope should r e su l t  a t  each temperature. 

Figure 18 shows a  de f in i t e  deviation from a s t r a i gh t  l i n e ,  with the appa- 

r.ent reaction order varying from one-ha1 f  order a t  low steam pressu.res 

t o  approximately f i r s t  order a t  high pressures. 

Some ins ight  in to  the mechanisms a t  work can be o'btained from.the G.C. 

analyses of the e x i t  'gases which are  shown as a  function of time fo r  a  

typical  run in Figure 19. Note t ha t  the CO make i s  minimal a'nd the H2/C02. 

r a t i o  i s  on the order of 2 .  In view of the stoichiometr.;; of equations (27 ) ,  

( 28 ) ,  and ( 1 7 ) ,  i t  i s  obviou.~ tha t  the water gas s h i f t  reaction i s  playing 

a  major ro le  in the reaction sequence. The data were then tes ted  t o  

determine -whether the water gas s h i f t  reaction was a t  o r  near chemical 

equil ibrium. The equilibrium constant f o r  t h i s  reaction i s  defined a s :  

Pco2 P n 2  
Keq = 

P~~ P ~ 2 ~  

The .pa r t i a l  pressure r a t i o  as defined by the r igh t  .hand s ide  of equation (56) 

i s  plotted as a  function of time fo r  a  run a t  815C in Fiqure 20. A t  this,  

temperature the equilibrium constant i s  equal to  0.93 and, as can be seen, I 
the par t ia l  pressure r a t i o  increases,  approaches Keq a t  about 6  minutes, I 
and then decreases. This can be explained by an ea r ly  predominance of 

equation ( 2 7 )  t o  build u p  concentrations of C O .  A t  t h i s  point the ra te  of 

the  water gas s h i f t  reaction increases which serves t o  increase the C02/CO 

r a t i o  and the H z  make. Finally,  the increased concentration of C02 acceler-  

a t e s  the C02 gas i f ica t ion r a t e  causing the par t i a l  pressure r a t i o  in 

equation (56) t o  drop s ign i f i can t ly .  
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With these i t  was dec ided t o  a t tempt  t o  match t h e  observed 

k i n e t i c  da ta  w i t h  a  dynamic s i m u l a t i o n  o f  t h e  r a t e s  o f  t h e  t h r e e  p e r t i n e n t  

equa t ions .  The k i n e t i c ,  express ion  f o r  CO2 g a s i f i c a t i o n  has a 1  ready been 

de.rive,d (equa t ion  [51])  and thus  i t  remained t o  develop k i n e t i c  express ions 

f o r  equa t ions  (27)  and (28) .  I n  t h e  absence o f  a  separate  and, detai : led 

k i n e t i c  s tudy  o f  the  water  gas s h i f t  r e a c t i o n ,  a  s imple elementary r e a c t i o n  

r a t e  express ion  was proposed 

I 
r s  ' ks (PCO P H ~ ?  - - Keqs P ~ 2  P ~ ~ 2  ) (57)  

S i n c e t h e r e  i s  no s e p a r a t e  evidence f o r  t h e  form o f  equa t ion  ( 57 ) ,  t h i s  i s  

s t r i c t l y  con jec tu re  a t  t h i s  p o i n t .  However, i t s  advantage i s  t h a t  i t  n o t  

o n l y  accounts f o r  t h e  i n h i b i t ' i n g  e f f e c t s  o f  C02 and .Hz b u t  i t  w i l l  a l s o .  

produce a  zero r a t e  i f  chemical e q u i l i b r i u m  i s  reached. On t h i s  bas i s  

then, t h e  o n l y  unknown i s  t h e  fo rward  r a t e  cons tan t ,  k.S. ' 

The problem o f  t h e  r a t e  o f  steam g a s i f i c a t i o n  i s  made t r a c t a b l e  by 

t h e  r e a l i z a t i o n  t h a t  a t  t ime  = 0, t h e  o n l y  r e a c t i o n  o c c u r r i n g  i s  equa t ion  ( 27 ) .  

Thus, by examining t h e  i n i t i a l  r a t e s ,  t h e  r e a c t i o n  o r d e r  w i t h  r espec t  t o  

steam was found t o  be one -ha l f  o rde r  and t h e  a c t i v a t i o n  energy o f  t h e  C + 

Hz0 r e a c t i o n  !vas equal t o  20.6 Kcal /mole.  Tu rn i ng  now t o  t h e  r e a c t i o n  o r d e r  

w i t h  r espec t  t o  char ,  no te  t h a t  o n l y  equa t ions  (27)  and (17)  consume char ,  

and t h e  r a t e  o f  t he  l a t t e r  r e a c t i o n  has a l r eady  been determined t o  be f i r s t  

o r d e r  w i t h  respec t  t o  char .  I f  equa t ion  (27)  i s  a l s o  f i r s t  o r d e r  and i f  

PCO? can be assumed t o  be cons tan t ,  then  a  p l o t  of l n ( 1 - x )  vs .  t i ~ i i e  s h o ~ ~ l d  

produce a  s t r a i g h t  l i n e .  Such a p l o t  i s  shown i n  F i gu re  2  1  and reasonable  

s t r a i g h t  l i n e s  do r e s u l t .  The s l i g h t  S-shaped p a t t e r n  o f  t h e  a c t u a l  data  

p o i n t s  about t h e  l i n e  i s  a t t r i b u t e d  t o  t h e  f a c t  t h a t  Pco2 i s  n o t  s t r i c t l y  

cons tan t .  I n  f a c t ,  f o r  a l l  t h r e e  runs,  Pco2 dropped f rom .O1 atm near  t h e  

beg inn ing  o f  t h e  r u n  t o  .001 atm a t  t h e  end. A l though t h i s  i s  a  change 

o f  a  f a c t o r  o f  ten,  i t  should  be noted t h a t  C02 g a s i f i c a t i o n  o n l y  accounts 

f o r  about  3% o f  t h e  char  consumption a t  l ow temperatures (750C) and about 

17% a t  t h e  h i qhes t  temperatures (860C). 
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where 

Thus an app l  i c a b l e  k i n e t i c  - e x p r e s s i o n  f o r  e q u a t i o n  ( 2 7 )  i s  

s !I = 2.. 1  x 1  o3 exp l-+J 
I n  v r d e r  t o  a s c e r t a i n  whether  t h e  s e t  o f  t h r e e  e q u a t i o n s  does, i ndeed  des- 

c r i b e  steam g a s i f i c a t i o n ,  i t  i s  necessary  t o  de te rm ine  ks  and t h e n  see if 

t h e  measured d a t a  can be p r e d i c t e d  f r o m  a s o l u t i o n  o f  t h e  t h r e e  e q u a t i o n s .  

To do t h i s ,  t h e  d i f f e r e n t i a l  e q u a t i o n s  d e s c r i b i n g  t h e  c o n c e n t r a t i o n s  o f  

CO, C02, and Hz i n  t h e  r e a c t o r  were s o l v e d  u s i n g  t h e  I B M  CSMP computer  

program. Values o f  ks  were chosen u n t i l  equ i  1  i b r i u m  o f  t h e  w a t e r  gas 

s h i f t  r e a c t i o n  was approached a t  abou t  t = 5 min .  A  v a l u e  o f  k S  = 10 

atm-2 - min-1 appeared t o  ach ieve  t h i s  f o r  a l l  r u n s  and was t h e n  h e l d  

c o n s t a n t  f o r  t h e  rema inder  o f  t h e  e v a l u a t i o n .  

W i t h  t h e s e  va lues ,  t h e  dynamic s i m u l a t i o n  o f  steam g a s i f i c a t i o n  was 

a b l e  t o  p r e d i c t  t h e  c h a r  consumpt ion versus t i m e  c u r v e  t o  w i t h i n  5% o f  

t h e  ~ i ieasured va lues .  A d d i t i o n a l  i n s j g h t  i n t o  the  va l  i d 1  t y  c f  t h i s  sin:u- 

: a t i o n  c.an a l s o  be o b t a i n e d  fl-om Tab le  7 ~ 1 1 ; i c h  show? a c01::parison i;f tile 

p r e d i c t e d  and measured p r o d u c t  gas r a t i o s .  

TABLE 7  

Comparison o f  P roduc t  Gas R a t i o s  

C O / C O i  C O / C a 2  H2/C02 ;i ,/ C02 
PRED. EXP. PRED. E X P .  

I 



I t  i s  i n t e r e s t i n g  t h a t  a reasona'ble match t o  the,  data i s  obtained except 

a t  higher char conversions and telnperatures and low PH 
20 ' 

Note a l s o  t h a t ,  

in these cases ,  the  experi~iiental H2/C02 r a t i o s  a r e  higher than predicted 

and the  C O / C O ~  r a t i o s  a r e  lower thanpred ic ted . .  This can be explained i f  

the  C02 g a s i f i c a t i o n r a t e  predicted by equation ( 5 1 )  i s  too low. Recall 

t h a t  t h e  C i l Z  gas i f ica , t ion  r a t e s  ~seasured here were lower by a f a c t o r  of 

about three  than those reported. by Eru-nha~n'~. ' One explanation was t h a t  

the  C02 released by the  mineral reac t ions  which accompanied C02 g a s i f i -  

ca t ion  in Hurnhani's experiments, -was surface a c t i v e  .and caused an increased 

g a s i f i c a t i o n  r a t e .  , I f  t h i s  i s  the case ,  the same pheno~.nena. could be occur- 

r ing here. Since the  shale  evidently catalyzes the  \plater gas s ! i i f t '  r-eactior.~, 

CO* would be produced on the  ac t ive  surface  and would presuriably bemore 

access ib le  to  f u r t h e r  r e a c t  with the char .  Additional evidence of t h i s  

wi l l  be given below during the discussion of k i n e t i c  i n t e r a c t i o n s .  

.Table 8 shows a comparison of the  steam g a s i f i c a t i o n  r a t e s  obtained 

froni t h i s  work (equations [58] and [59]) with those given by B ~ r n h a n i ~ ~  

(equations [30] - [32]) .  As t h i s  t a b l e  shows, ~urnhalil 'k r a t e s  a r e  any- 

where from 3 t o .  7 times higher with the discrepancy .being 1a.rger a t  t.he 

hisher temperature. The l a t t e r  i s  due t o  the very high ac t iva t ion  energies 

T A B L E  8 

COMPARISON O F  STEAM GASIFICATION RATES 

reported by Burnhani. There i s  no apparent explanation f u r  t h i s  d i sc re -  . 
pancy other  than the f a c t  t h a t  Burnham based h i s  r a t e  expression s c l e l y  

, . 

on the  H 2  production r a t e .  As shown above, steani g a s i f i c a t i o n  i s  a t  

l e a s t  a s  complex.as the' t h ree  reac t ions  used in t h i s  ana lys i s .  Luti~piny 
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a l l  e f f e c t s  i n t o  one e m p i r i c a l  r a t e .  e x p r e s s i o n  can l e a d  t o  p r e d i c t i v e  

prob lems f o r  c o n d i t i o n s  d i f f e r e n t  t h a n  t h o s e  upon wh ich  t h e .  e x p r e s s i o n  

i s  based. Anot 'her f a c t o r  whi'ch shou ld  n o t  be over loo l (ed i s '  t h e  p o s s i b i l i t y  

t h a t  t h e  c h a r  used i n  Bur~nha~ i l ' s  s t u d i e s  was niore a c t i v e  t h a n  t h a t  used he re .  

A l t h o u g h  no e f f e c t  o f  assay wa.s observed i n  t h e  case o f  c h a r  o x i d a t i o n ,  t h i s  

was n o t  examined f o r  e i t h e r  Cop o r  steam g a s i f i c a t i o n .  S ince  Burnha111 used 

22 GPT s h a l e  and 50'GPT s h a l e  was used he re ,  t h i s  r e ~ l i a i n s  a  d i s t i n c t  p o s s i b -  

il i t y  and shou ld  be exall l ined f u r t h e r .  

C a t a l y t i c  E f f e c t s .  A t ho rough  d i s c u s s i o n  of m i n e r a l .  c a t a l y s i s  has -- 

a l r e a d y  b.een g i v e n  f o r  c h a r  o x i d a t i o n .  These e f f e c t s  were a l s o  examined 

f o r  steam g a s i f i c a t i o n  and a  compar ison o f .  t h e  g a s i f i ' c a t i . o n  o f  un leached 

and a c i d '  l eached  s h a l e  i s  g i v e n  i n  F i g u r e  2%. Note  t h a t  w h i l e ,  i n  t h e  case 

o f  c h a r  o x i d a t i o n  t h e r e  was, no e f f e c t  o f  a c i d  l e a c h i n g ,  t h e  same i s  n o t  

t r u e  here .  I n  f a c t  t h e  r e s u l t s  he re  a r e  v e r y  s i m i l a r  t o  t h o s e  r e p o r t e d  

by ~ u r n h a r n ? ~  f o r  CO2 g a s i f i c a t i o n  where HC1 leached  shale '  had o n l y  abou t  

1 . 0 h f  t h e  a c t i v i t y  o f  un leached ' sha le .  T'his p o i n t s  t o  t h e  p o s s i  b i l  i t y  

o f  a  d i f f e r e n t  c a t a l y t i c  e f f e c t  i n  t h e  case o f  c h a r  g a s i f i c a t i o n .  It 

was n o t  p o s s i b l e  t o  o b t a i n  unambiguous steam g a s i f i c a t i o n  r a t e  d a t a  i n  t h e  

presence o f  undecomposed c a l c i t e  because o f  t h e  h i g h  tempera tu res  r e q u i r e d  

f o r  g a s i f i c a t i o n .  A t  ' t h e s e  tempera tu res  c a l c i t e  w i  11 r a p i d l y  decompose t o  

CaO u n l e s s  t h e r e  i s  a  h i g h  enough C02 p r e s s u r e .  t o  p r e v e n t  i t .  A t  t h e s e  

tempera tu res ,  Pco2 va lues  i n  excess o f  0 .10 .atmospheres a r e  r e q u i r e d  and 

t h e  r a t e  o f  C02 g a s i f i c a t i o n  becomes s i g n f i c a n t .  T h i s  w i l l  be cove red  i n  

t h e  d i s c u s s i o n  o f  k j n e t i c  i n t e r a c t i o n s .  

I r o n  was ru l ' ed  o u t  as  a  c a t a l y s t  .For c h a r  , o x i d a t i o n  because HC1 

l e a c h e d .  s h a l e  (wh ich  removes i r o n )  had t h e  same o x i d a t i o n  r a t e  as u n l  eached 

s h a l e .  However, i t  i s  h i g h l y  p o s s i b l e  t h a t  i r o n  i s  t h e  o p e r a t i v e  c a t a l y s t  

f o r  c h a r  g a . s i f i c a t i o n .  I n  separa te  exper imen ts ,  dechar red  s h a l e  was ex-  

posed t o  CO and Hz a t  a  tempera tu re  o f  750C .and a  n o t i c e a b l e  mass l o s s  of  

abou t  50 nig was exper ienced .  I t  was conc luded  t h a t  i r o n  was b e i n g  reduced 

Lu a Io\;rer o x i d a t i o n  s t a t e  and t h i s  was p a r t i a l l y  v e r i f i e d  by, t h e  f a c t  

t h a t  a  50 mg w e i g h t  g a i n  was exper i 'enced when t h e  " reduced"  sample was 
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exposed . t o  a i r .  This phenollienon appeared t o  be t o t a l l y  r eve r s ib le  and H 
2 

reduction,was f a s t e r  and more complete than CO reduction. Oxidation, on 

the  o the r  hand, could a l so  be p a r t i a l l y  e f fec ted  using C02 although the  

r a t e  was much slower. I t  should be pointed out  t h a t  s imi la r  observations 
4 3 

have been made by Campbell in s tudies  of CO oxidat ion over spent shale  

samples. Obviously these  observations have s i g n i f i c a n t  implicat ions s ince  

CO, C02 and Hz a r e  a l l  present during steam g a s i f i c a t i o n .  Additional s tud ies  
of the  oxidat ion/reduction of iron a r e  necessary before a  coniplete under- 

standing o f ' c h a r  gas i f i ca t ion  can be obtained. 

Kinetic In terac t ions  

Up t o  t h i s  point a l l  of the  k ine t i c  data correspond t o  s i n g l e . r e -  

ac t ions  although other  react ions were found t o  play a  r o l e  during steam 
1 5  1 6  

gasi f i c a t i  on. Work conducted a t  Lawrence Li vermore Laboratories. ( L L L )  ' 

however, did consider  the  e f f e c t s  of steam and C02 on mineral decomposition 

and t h e i r  empirical r a t e  express-ions were discussed in the  B A C K G R O U N D  sec t ion .  

The possi bi 1 i t y  e x i s t s  t h a t  reac tant  mixtures, as  wou1.d be present in a  

comnierc.ia1 r e t o r t i n g  s i t u a t i o n ,  could r e s u l t  in a1 t e r a t i o n s  of s e l e c t i v i t y  

which would not be predicted by the combination of r a t e  expressions der.ived 

both here and a t  L L L .  This could be due, f o r  example, t o  'p referent ia l  a'd- 

sorpt ion s t eps  s ince  some, of the  r e s u l t s  point t o  the  existence of surface  

ac t ive  species .  

As a  r e s u l t ,  both non-isothermal .and.isothermal experiments were con- 

ducted using various reac tant  mixtures and the  data were compared t o  the 

predicti.ons 0.f a  dynamic niodel which was in turn based on the  k ine t i c  ex- 

pressions der ived.here  and a t  L L L .  The mineral decomposition r a t e  ex- 

pressions used in the  model were those given by L L L  (equations ( 8 )  - ( 1 6 ) ) .  

Even though the  r a t e  data obtained here f o r  dolomite /ca lc i te  decomposition . 

in the  presence of heli~unib.!ere found t o  b e  lower than t h a t  observed by L L L  

(Table 4 ) ,  only L L L  has accounted f o r  t h p e f f e c t  of steam on mineral d e -  

composition. Also, a t  the time the  k ine t i c  in te rac t ion  study was conducted, 

only LLL's steam. g a s i f i c a t i o n  r a t e  was .avai lable .  Consequently the model 

u t i l i z e d  LLL's react ion expressions f o r  those reac t ions  and the C02 gas i -  

f i ea t ion  r a t e  expression derived in t h i s  work (equations ' (51 ) , ( 5 3 ) ,  and  



( 5 4 ) )  I t  was'assunied t ha t  the l a t t e r  was inore representat ive in view of 

the large uncertainty associated with the C02 reaction order derived a t  

.LLL (eqwati'ons . (24)  - ( 2 6 ) ) .  - .  

Mineral Decoinposi t ion in C02 Environment. A s e r i e s  of non-i sothernial 

experiments were conducted with C02 par t i a l  pressures varying froni 0.1 t o  

' 1 .0  atni. Since the rnaximuni temperatures reached. in these runs was about 

800°C, three reactions a r e  expected t o  fake  p'lacc: dolo~iii t e  decoiiiposi t ion 

t o  c a l c i t e  (equation ( Z ) ) ,  the forniation of s i l i c a t e s  (equation ( 4 ) )  and 
. . 

the C o p  gas i f i ca t ion  of char.  Coniparisons of the nieasured experiniental 

sam.ple .we-ights' with t ha t  predicted by the model are  shown in Figures 23 

and 24 f o r  C02 ba r t i a l  pressures of 1 . 0  a n d  0.2 a t m .  I t .  should be pointed 

out tha t  the heat-up r a t e s  given in these f ' igures a r e  only average values. 
A t  tinies the temperature prograninier cau'sed heat-up r a t e s  as high as 4. C/i;~i n. 

The computer ca lcula t ions  ]however, a re  based on the actual measured tempera- 

tu res .  

What i s  apparent from Figures 23 and 24 i s  t ha t  the model predicts  h i g h -  

e r  decomposition r a t e s  than.are  ~!leasurcd,with the discrepancy being higher 

a t  t he .  lower Pcc2. , Since the C02 gas i f ica t ion r a t e  expression used here 

(equation (51 ) ) ,  predic ts  l'ower ra tes  than LLL's expression, ' t h i s  cannot 

be 'the 'reason for the discrepancy. Evidently the  C02 concentrat ion has an 

e f f e c t  on mineral decomposition which i s  not predicted by the model. Recall 
t ha t  LLL's r e su l t s  (equations (8) - ( 1 1 ) )  predict  an inhibi t ion of s , i l . ica te  

formation by the presence of C02 as  long as  Pco2 i s  greater  than the CaC03- 

CaO equil i  brium constant .  This was t rue  in a1 1 of these runs except f o r  
the one. experinlent conducted a t  PCO2 = . I 0  atm where t h i s  was not the case 

a t  temperatures above 700 C .  Looking more c losely  a t  Figures 23 and 24, i t  
can be seen t ha t  t h e . r a t o  of weight loss  i s  close t o  t ha t  predicted by the 

model ' b u t  t h a t  the model predic ts  more s ign i f i can t  decomposition a t  the low- 

e r   temperature;^. Since only dolomi'te would be expected t o  decompose a t  these 
lower temperatures i t  i s  possible t ha t  . i t  i s  the dolomite r a t e  which i s  in 

e r r o r .  This i s  pa r t i a l l y  substantiated by the r e su l t s  shown in Table 9 

which gives the  experimental and predicted sample weights a t  the point in 

the r u n  where the predicted s i l  i ca te  formation has j u s t  reached' 1 mg (,C02 

evol ved).  
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TABLE 9 

Comparis,on o f  Model t o  Expe r imen ta l  Weight  a t  t h e  p o i n t  
. When Model P r e d i c t s  S i g n i f i c a n t  S i  1  i c a t e .  Fo rma t ion*  

PC0 Exper imen t  T i  me Temp. Expe r imen ta l  P r e d i c t e d  
(mi  n )  , ('0 Weight ;;eight (Ti 

T-2 1  . O  90 936 968 950 
. T -4  0.5 6 5. 920 967 958 
T-17 - 0.2 6 5  :900 981 978 
1-5 0 .1  5  0  900 985 . 982 

* More t h a n  1  lllg w e i g h t  l o s s  due t o  s i l i c a t e  f o r m a t i o n ,  

As i n d i c a t e d  j n  T a b l e  9, h i g h  C02 p a r t i a l  p r e s s u r e s  a r e  i n h i b i t i n g  d o l o -  

m i t e  , decompos i t i on  i n  some manner.. What i s  m i s s i n g  .and a p p a r e n t l y  needed 

i s  a  s e p a r a t e  d e t e r n i i n a t i o n  o f  do lon i i  t e  d e c o m p o s i t i o n  . r a t e s  as  a  f u n c t i o n  

M i n e r a l  Deco~nposi  t i o n  i n  H20 Env i ronment .  As m e n t i o n e d  e a r l i e r ,  t h e  

work conducted a t  L L L  p r e d i c t s  s i g n i f i c a n t  enhancement o f  m i n e r a l  decomposi - 

t i o n  r a t e s  i n  t h e  presence of H20. F i g u r e  25  shows t h e  r e s u l t s  o f  a  n o n -  

i s o t h e ' r ~ i i a l  exper i t i ien t  condu.cted i n  0 . 5  atni H 2 0  S i n c e  steain g a s i f i c a t i o n  

wou ld  n o t  o c c u r  t o  any a p p r e c i a b l e  e x t e n t  u n t i l  abou t  t = 100 t i i in, i t  ap- 

pears  as though  t h e  a c c e l e r a t i o n  o f  m i n e r a l  d e c o m p o s i t i o n  r a t e s  by stea1i.i 

i s  u n d e r e s t i m a t e d  by  ,LLLis r a t e  e x p r e s s i o n s .  Again-, s i n c e  i t  i s  p r i ~ i i a . r i  l y  

t h e  l o w  t e m p e r a t u r e  p r e d i c t i o n s  wh ich  a r e  in., e r r o r ,  t h e  prob len l  h e r e  t o o  

lliay be w i t h  an  ina.dequate r a t e  e x p r e s s i o n s  f o r  d o l o ~ n i t e  d e c o m p o s i t i o n .  I n  

t h i s  case,  i t  would seen1 t h a t  t h e  presence of H20 a c c e l e r a t e s  d o l o ~ i i i t e  de- 

c o m p o s i t i o n  t o  a  more s i g n i f i c a n t  degree t h a n  c u r r e n t l y  p r e d i c t e d . '  

M i n e r a l  Decompos i t i on :  k 2 0  - C02 ~ n v i r o n i i i e n t .  G iven t h e  r e s u l t s  above,  

i t  was d e c i d e d  t o  s t u d y  n i i n e r a l  .decnmposi t i o n  i n  a n  env i ronmen t  o f  . 5  atm 

, H i 0  and C O  The r e s u l t s  o f  a  non - i ' so the r~na l  expe r imen t  a r e  shown i n  F i g u r e  
2  ' 

26 and i n  t h i s  case t h e  model p r e d i c t s  a  s i g n i f i c a n t l y  h i g h e r  d e c o ~ ~ i p o s i  t i o n  

r a t e  t h a n  i s  a c t u a l  l y  observed.  Aga in ,  o n l y  dolonii,te deco~xpos i  t i o , n  ' i s  p r e -  

d i c t e d  t o  o c c u r  up t o - a  t i m e  o f  abou t  80  m i n u t e s .  S i n c e  . e a r l i e r  expe r imen ts  

i n d i c a t e d  t h a t  t h e  e x i s t i n g  r a t e  e x p r e s s i o n s  zdncleresti/!i~t;cI:! t h e  a c c e l e r a t i n g  

e f f e c t  o f  steam, i t  appears  as t h o u g h  t h e  p resence  o f  C02 n o t  o n l y  i n h i b i t s ,  

d o l o ~ i ~ i  t e  deconiposi t i o n  b u t  i t  a1 so p r e v e n t s  t h e  a c c e l e r a t i o n  e f f e c t  of .stealn. 

I t  i s  n o t  c l e a r  j u s t .  how t h i s  ~nechanisni  o p e r a t e s  and more r e s e a r c h  i s  needed 
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in order to  develop a s e l f  consis tent  doloniite decomposition r a t e  expression 

which can be sa fe ly  extrapolated t o  other condit ions.  

The e f f e c t  of C02 - H20 mixtures on the r a t e  of formation of s i l i c a t e s  

was a l so  examined in a s e r i e s  of isothermal experiments conducted a t  700 and 

765 C .  I n  every case there-has  excel l en t  agreement between the predicted and 

measured and thus i t  i s  t en ta t ive ly  concluded t ha t  the exis t ing r a t e  

expressions t o  predict  s i l i c a t e  formation are  adequate. 

Char Gasif icdt ion:  H 0 - -C02 E r ~ v  irorimer~l.. The r e su l t s  of separate, experi- 2-- 
ments t o  detennine the kinet ics  of C02 - char a n d  H20 - char gas i f i ca t ion  have 

already been discussed. In both cases ,  the r a t e s  observed here were l e s s  than 

those predicted by LLL's r a t e  expressions. In order t o  determine whether the 

two conipeting char reactions would behave the same during simultaneous react ion,  

i s e r i e s  of experiments were conducted using mixtures of C02 and H20 in the 

i n l e t  gas.  Figure 27 shows a comparison of the measured and predicted char 

convers ions for  an experiment conducted a t  PcoZ = P H ~ O  = 0 . 5  atrn. Also shown 

i n  t h i s  f igure  i s  the predict ion assulning t ha t  only C02 ga s i f i c a t i on  takes 

place. Note t h a t  an excellent  match t o  the experimental data i s  obtained i f  

the steam gas i f i ca t ion  r a t e  i s  s e t  equal t o  zero. Similar r e su l t s  a re  obtain- 

ed duri'ng isothernlal experi~llents as can be seen froni Figure 28. Table 10 

shows the average C O / H 2  r a t i d  i n  the e x i t  gas f o r  a se r ies  of isothermal runs 

conducted in various C02 - H20 concentrations. 

T A B L E  10 

CO t o  H z  Ratio for  Isothermal Experiments 

Containing Various Concentrations of C02 and Steam 

Experiment Feed Gas Temp. Average 
Number Compos i  t i  on O K  C0,/H2 Ratio 







Note t h a t  t h e r e  i s  s t i l l  H2 produced even though t h e  model p r e d i c t s  a  b e t t e r  

match t o  t h e  c'har c o n v e r s i o n  when i t  i s  assumed t h a t  no steam g a s i f i c a t i o n  

t a k e s  p l a c e .  T h i s  c o u l d  be e x p l a i n e d  by  t h e  occu r rence  o f  t h e  w a t e r  gas 

s h i f t  r e a c t i o n  wh ich  wou ld  i n v o l v e  t h e  r e a c t i o n  o f  t h e  CO produced ( b y C 0 2  

g a s i f i c a t i o n )  w i t h  t h e  H 2 0 p r e s e n t .  Even s t i l l ,  t h e  CO/H2 r a t i o s  i n  Tab le  10 

a r e  a  f a c t o r  o f  10-1 00 h i g h e r  t h a n  i s  produced' when t h e r e  i s  an absence o f  C02 

i n  t h e  i n l e t  gas. O b v i o u s l y  t h e  C02 - c h a r  r e a c t i o n  i s  o c c u r r i n g  t o  an a p p r e c i -  

a b l e  e x t e n t .  

R e c a l l  t h a t  a l l  t h r e e  r e a c t i o n s  were used t o  d e r i v e  t h e  steam g a s i f i -  

c a ' t i o n  r a t e  e x p r e s s i o n  i n - t h e  work conducted here .  On t h e  o t h e r  hand, LLL 

c o r r e l a t e d .  t h e i r  g a s i f i c a t i o n  d a t a  i'n a  mo're e m p i r i c a l  -manner. Consequent ly  

one i s o t h e r m a l  exper imen t  was conducted a t  760 C w i t h  = .37 atm. and 

Pco = .09 a tm and t h e  r e s u l t a n t  c h a r  c o n v e r s i o n  d a t a w e r e  compared t o  t h e  p r e -  

d i c f i o n s  o f  e q u a t i o n s  (51 ) and (57) - ( 5 9 ) .  F i g u r e  29 shoWs t h i s  compar ison,  

and as can be seen, t h e  c h a r  consumpt ion r a t e  i s  inatched more c l o s e l y  t h a n  

i t  was when L L L ' s  steam g a s i f i c a t i o n  r a t e  e x p r e s s i o n  was used.  lllhat i s  more, 

i n  t h i s  case t h e  model p r e d i c t s  a  slower r a t e  t h a n  i s  measured. I t  i s .  s i g n i -  

f i c a n t  t h a t  i n  t h i s  case C02 g a s i f i ' c a t i o n  accoun ts  f o r  20% o f  t h e  c h a r  con- 

sun ip t ion  whereas i t  was necessary  t o  assume t - h a t  i t  accounted f o r  100% when 

L L L ' s  .steam g a s i f i c a t i o n  e x p r e s s i o n  was used.  

Tab1 e  11 shows a  compar i  sdn o f  t h e  measured and p r e d i c t e d . C O / H 2  r a t i s s  

u s i n g  t h e  steam g a s i f i c a t i o n  k i n e t i c  e x p r e s s i o n s  d e r i v e d  here .  

TABLE 11 

Measured and P r e d i c t e d  CO/H2 R a t i o s  (Avg . ) 
760 C ,  P 

.!,O 
= 0.37 atm 

PCO 
(a  tlli 

0  

0.09 

Exper imen ta l  

0 . 0 3  

0.33 

- 
P r e d i c t e d  
- 

0  .'04 

0 .22  
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Steam G a s i f i c a t i o n  i n  t h e  Presence o f  C a l c i t e  

a d a t a  - p i - e d i c t i o n  



As can b e  seen, reasonab le  matches t o  t h i s  r a t i o  a r e  a l s o  o b t a i n e d .  The 

d i f f e r e n c e s  between t h e  measured and p r e d i c t e d  r a t i o s ,  as w e l l  as  t h e  d i s -  

c r e p a n c i e s  i n  t h e  p r e d i c t e d  c h a r  c o n v e r s i o n s  a r e  a t t r i b u t e d  t o  a  l a c k  o f  

comp le te  unders tand ' ing  o f  t h e  w a t e r  gas s h i f t  r e a c t i o n  r a t e  and t h e  r o l e  

o f  t h e  o x i d a t i o n  s t a t e  o f  . i r o n  i n  c a t a l y z i n g  t h i s  r e a c t i o n .  I n  any case 

i t  appears t h a t  t h e  steam g a s i f i c a t i o n  r a t e s  d e r i v e d  by  LLL a r e  i nadequa te  

i n  t h e  presence o f  C02 - H20 env i ronments .  



C O N C L U S I O N S  

In view of the  breadth of the  material  j ive?  i n  t h i s  repor t  i t  is. best 

t o  6a tegor ica l ly  1  i s t  the  conclusions which have been reached. 

~ e t o r t i  ng. .  . . . 
The char producedwhen the  shale  was re to r t ed  a t  a  .slo\v r a t e  

.(0.3"C/min) and in a-1,ow veloci ty  purge strea~ii  ( 4  cln/inin) was 

about, '40% l e s s  ac t ive  than <bar produced when si ther  the  r e t o r t  

o r  purge gas r a t e s  were h igher . '  

Assay..  . . . 
There was no separa te  e f f e c t o f  shale  assay ('15-50 G P T )  on the 

char '  oxidat ion k ine t i c s .  Assay was not exa~~iined hi t h  respect  

t o .  char g a s i f i c a t i o n  or  mineral deco~iiposi t ion  reac t ions .  

Char ox ida t ion . .  . . . ' 
1 .  The following k'inetic expression represents  the i n t r i n s i c  

k ine t i c s  of shale  as' long as  i t  i s  not thenilally decarbonated 

2. Strong evidence e x i s t s  t o  ind ica te  t h a t  CaO cata lyzes  char 

oxidat ion ,  perhaps by p re fe ren t i a l  chemisorption of oxygen. 

3. The e f f e c t i v e  d i f f u s i v i t y  of oxygen through the decharred 

mineral niatrix was about three  times lower f o r  d i f fus ion  

perpendicular to  the  bedding plane than f o r  d i f fus ion  par- 

a l l e l  t o  the bedding plane. 

4 .  For la rge  shale  p a r t i c l e s ,  gas-sol id  mass t ranspor t  appears t o  

cont r ibute  a  niajor portion of the  char oxidat ion r e s i s t a n c e  

un t i l  about 40% of the  char i s  consumed. 

Mineral Decomposition . . . . .  
1 .  Recarbonation of c a l c i t e  appears t o  be surface  a c t i v e  and 

proceeds much f a s t e r  i f  C02 i s  ava i l ab le  on the surface  

( say ,  f ro4  char ox ida t ion) .  

2. Separa te  c a l c i t e  recarbonation k ine t i c s  experi~llcnts y ie lded a  

r eve r s ib le  r a t e  expression which d i f f e r s  from tha t  derived ' a t  

. Lawrence Livermore Laborator.ies ( L L L )  . . 
. 3 .  Ther.e i s  evidence t o  suggest t h a t  the presence of Ca2 nlay 



i n h i b i t  d o l o m i t e  decon lpos i t i on  and a l s o  p r e v e n t  steani f rom 

enhancing t h e  decompos i t i on  r a t e .  

4. Based on t h e  1  i m i  t e d  exper i l i ien ts  conducted he re  i t  appears  t h a t  

ra te '  express ions  d e r i v e d  a t  LLL u n d e r e s t i m a t e  t h e  e f f e c t .  of 

'steam .on m i n e r a l  decorriposi-Lion r a t e s  bu.t do s  good j o b  o f  p r e -  

d i c t i n g  s i l i c a t i o n  r a t e s .  

Char G a s i f i c a t i o n  . . . . .  
1.  An e x c e l l e n t  match t o  C02 g a s i f i c a t i o n  r a t e s  was o b t a i n e d  w i t h  

t h e  f o l l o w i n g  r a t e  express . ion  

T h i s  e x p r e s s i o n  p r e d i c t s  a  r a t e  wh ich  i s  a  f a c t o r  o f  t h r e e  ' less 

than .  p r e d i c t e d  by LLL. 

2 .  The presence of CO was found  t o  s i g n i f i c a n t l y  i n h i b i t  C02 g a s i -  

f i c a t i o n  a l t h o u g h  no a t t e m p t  was made t o  q u a n t i f y  t h e  degree o f  

i n h i b i t i o n .  

3.. Steam g a s i f i c a t i o n  was found  t o  i n v o l v e  t h r e e  r e a c t i o n s  i n  an 

i n v o l v e d  s e r i e s  - p a r a l l e l  r e a c t i o n  sequence.  he r a t e  of t h e  

f i r s t  r e a c t i o n  s t e p  (C t H, 0 -' CO + H*)  c o u l d  be d e s c r i b e d  by  
L 

. . 4. The w a t e r  gas s h i f t  r e a c t i o n  has found t o  proceed a t  f a s t  r a t e s ,  

app roach ing  e q u i l i b r i u m  a f t e r  abou t  20% o f  t h e  c h a r  had been 

consumed. The CO/C02 r a t i o s  i n  t h e  make-gas were t y p i c a l  l y  on 

t h e  o r d e r  o f  0.05. I r o n ,  p r e s e n t  i n  n a t u r a l l y  o c c u ' r r i n g  anke- 

r i t e ,  was e a s i l y  reduced by  CO o r  ' H ~  and c o u l d  be c a t a l y z i n g  

t h e  w a t e r  gas s h i f t  . . r e a c t i o n . .  

5. An enipi r i ' c a l  steam g a s i f i c a t i o n  r a t e  e x p r e s s i o n  d e r i v e d  a t  LLL 

p r e d i c t s  r a t e s  wh ich  a r e  3 t o  10 t i t i les  h i g h e r  t h a n  t h o s e  ~ i i easu red  

I?e\.e. I n  s d d i  t i o n ,  t h i s  r a t e  er;press.inn predicts n w h  f a s t e r  

c h a r  co l isumpt ion  r a t e s  i n  C02 - H20 m i x t u r e s  t h a n  were measured 

.here. T h i s  i s  a t t r i b u t e d  t o  t h e  . e m p i r i c a l  n a t u r e  o f  t h e  exp res -  
. . 

s i o n  wh ich  does n o t ' a c c o u n t  f o r  t h e  i n f l u e n c e  of  t h e  w a t e r  gas 

s h i f t  re 'ac t i on .  
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NOMENCLATURE 

a  

C 

c c  
Co 

, D  

, E*. 

F ( t )  

k  

Keq s  

MC03 

P i  

R 

Act ' i  v'i t y  

Char q u a n t i t y  

Char c o n c e n t r a t i o n  

I n i t i a l  cha r  q u a n t i t y  
2 E f f e c t i v e  d i  f f u s i v i  t y  o f  O?., . M /sec 

A c t i v a t i o n  energy, kcal /mol e  

D i l u t i o n  t ime f u n c t i o n ,  eq. . (37) 

Rate cons tan t ,  m i  n - l  

Mass t r a n s f e r  coe f f i c . ien t . ,  cm/sec 

Adsorp t ion  cons tan ts ,  atm-I  

C a l c i t e  e q u i l i b r i u m  constant ,  atm 

Water gas s h i f t  e q u i l i b r i u m  cons tan t  

Moles ' CaC03 p resen t  

P a r t i a l  p ressure  o f  "in, atm 

Gas 1 aw constant ,  kca l /mole-OK 

Char r e a c t i o n  r a t e ,  q t y l m i n  

Water gas s h i f t  ' r e a c t i o n  r a t e ,  moles/min 

Steam g a s i f i c a t i o n  r e a c t i o n  r a t e ,  q t y l m i n  

A c t i v e  s i t e  . . 

React ion , t ime, min 

Average res idence  t ime,  min 

Temperature,. O K  

X F r a c t i o n  cha'.r conver ted  
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