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I. INTRODUCTION

An historiec and central goal of physics has been the determination of the funda-
mental theory of the nuclear force. Incredibly, it appears that the search may
sell be over: Quantum Chromodynamics [1] (QCD), the SU(3).o1pr Ron-Abelian gauge
'theory of quarks and gluons appears to be the theory of the strong and nuclear
A édteractions in the same sense that quantum ele:trndvnnnics accounts for electro-
’\ ‘dynamic interactions. QCD solves many crucial problems: the meson and baryon
‘ spectra, guark statistics, the structure of the weak and electromagnetic currents
of hadrons, the scale-invariance of interactions at short distance, and most-
1ikely, color (i.e., quark and gluon) confinement at large distances. Many dif-
ferent and diverse rests [2] have confirmed the basic features of QCD although the
fact that che tests of quark and gluon interactions must be done within the con-
fines of hadrons, as well as various techmical difficulties, have prevented truly
quantitative confirmation of the theory. The structure of the theory satisfies
all prerequisites of elegance and beauty.

Despite the evidence that QCD — or something close to it — pives a correct
description of the structure of hadrons and their interactions, it seems paradoxi-
cal that the theory has thus far had very little impact in nuclear physics. One
reason for this is that the application of QCD to distances larger than 1 fm
involves coherent, mon-perturbative dynamics which is beyond present calculational
techniques. TFor example, in QCD the nuclear force can evidently be ascribnd to
quark interchange and gluon exchange processes. These, however, are as complicated
to analyze from a fundamental point of view as is the analogous covalent bond in
molecular physics. BSince a detailed description of quark-quark interactions and
the structure of hadronic wavefunctions is not vet well-understood in QCD, it is
evident that a quantitative first—principle description of the nuclear force will
require a great deal of theoretical effort.

Another reason for the limired impact of QCD in nuclear physics has been the
conventional assumption that nuclear inreractions can for the most part be analvzed
in terms of an effective meson-nucleon field theory or potentfal modsl in fsolation
from the detalls of short distance quark and gluon structure of hadrons. However,
in these lectures, 1 will argue that this view iIs untenable: inm fact, thete is no
“eorrespondence principle” which yields traditional nuclear physics as a rigorous
large-distance or non-relativistic limit of QCD dynamics. On the other hand, the
distinctions between standard nuclear physics dynamice and QCD at nuclear 4imensions
are extremely interesting and illuminating for both particle and nuclear ;hysics.
Far example:

{1} Meson and nucleon degrees of freedom are insufficient to describe nuclei -~
QCD: wixed color configurations appear as Fock components of ground state aucled
and as excited multiquark nuclear states. 1In fact, the hidden color wavefuaction
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components contribute to basic properties of nuclei including magnetic and quadru-
pole moments, charge distributions, etc.

(2) The usual impulse approximation formula for elastic form factars of nuclei,
2, . 2, _Body, 2
F,(Q )= FN(Q ) Fu (Q@%),

which is conventionally used to separate nucleon size effects from nuclear dvnamics
is incorrect in QCD because of off-shell and recoll effects. An alternative, QCD-
based formula is discussed in Section VIII. We also shall show (see Sec. IV) that
even so-called static properties guch as the nuclear magnetic moment which are
derived in the limit + 0 receive non-trivial recoil contributions.

{3) Since quarks are the ultimate carriers of the electromagnetic curremt im QCD,
the idencification of specific nucleon anti-nucleon pair production terms in the
analysis of the electromagnetic structure of nuclei cannot be justified.

(4) Conventional effective meson-nucleon field theories with nucleons coupled to
isovector p-mesons violate unitarity in tree graph (Born) approximarion. Since
such theories are not renormalizable they have no predictive comtent in higher
orders. A Ttenormalizable theory requires tri-linear and quartic vector meson cou-
plings and a spontaneous symmetry breaking mechanism to provide meson masses.

The real conflict between quark and nuclear physics is at a very basic level:
because of Lorentz invariance a conserved charge must be carried by a local (puint~
like! current; there is no consistent relativistic theory where fundamental con-
stituent nucleon fields have an extended charge structure.

The plan of these lectures is as follows. In Section lI we review the basic
structure and features of QCD. Light=-cone perturbation rheory is then introduced
in Section 111, This method can be regarded is an elegant relativistic generaliz-
ation of ordinary Schroedinger many body theory and it has many applications to
nuclear physics problems. Sections I1l through VI1 are intended as a general
introduction to QCD analysis and phenomenology with special emphasis on exclusive
and inclusive large momentum transfer reactions, and the atructure oi hadronic
wavefunctions.

The most dramatic and definitive ares of application of QCD to nuclear physics
is the short diatonce structure of the nuclear force and large momentum transfer
nuclear reactions, We will discuss these applications In detzil in Section VIII.
The importance of these predictions is mor only the asymprocic large momentum
behavior, but also the analrtic constraints placed on nuclear amplitudes. For
example, we give predictions for the power-law form of effective meson-nucleon
couplings as dictated by the underlying renormalizable gauge theory. 1In Sectiom IX
we conclude with a list of experiments which could flluminate QCD dynamics within
nuclei. The eventual goal i1a the complete synthesis of nuclear, hadronic and
quark/gluon dynamics. 1Indeed, if QCD 1s correct, it must account for all the
features and interactions of nuclel as well as mesons and baryons.

II. BASIC FEATURES OF QCD

In quantum chromodynamics the fundamental degrees of freedom of hadrons apd their
interactions aré the quanta of quark and gluon fields which obey an exact internal
SU(3) (color) symmetry. The spin-1/2 quarks are in the fundsmental (triplet)
representation of SU(3)., the spin~l gluons are in the adjoint (octet) represemta-
tion, apgd hadrona are identified with singlet states; e.g., mesons

> ~ El'q’-i’-) and bdbaryons [B> ~ T eijkhiqj"k . In addition, gluonium (color-

singlet bound states of 2 and 3 gluons) should exist. As we discuss in Section VI,
new types of "hidden color" nuclear states are also predicted in QCD. The different
cypes of quarks, u,d,s,c,b,...are distinguishable by their flavor labal and mass.



Ic 18 well known that the general structure of QCD meshes remarkably with che
facte of the hadronic world, especially quark-based spectroscopy (including the
charm and beauty quark Bystems); current algebra; the dimensional-counting parton-
model structure of large momentum transfers reactions (up to computable logarithmic
corrections to scale-invariance). Experiments at large momentum tranafer, both
exclusive and inclusiva, are consistent with the QCD postulate that the @lectro-
magnetic and wesk currents of hadrons are carried by point-like spin-1/2 quarks
which intcract via a Dirac coupling to spin-1 gluons. The wost important phenome-
nological evidence for QCD comes from inelascic lepton scattering, e¥e~ snmihilation
procasses, and those high momentum transfer exclusive and inclusive resctions where
the structure of perturbative quark and pluon subprocesses can be stuwdied in rela—
tive isolation from the bound state dynamics of the hadrons. From the theoretical
standpoint, the elegant structure of QCD makes it appear almost compelling as a
fundamental theory of hadronic and nuclear phenomena, even though many crucial
questions concerning quark and gluon confinement, and the effects of non-
perturbative phenomena remain unanswered.[3]

A critical feature of QCD is asymptotic freedom, [4] i.e., the logarithmic
decrease of the effective guark and glwon coupling constant us(Qz) with momentum
transfer which implies that the strong interactions become weak, and even cal-
culable in perturbative theory at shorct distance. The facc chat the annihilatiom
racio

R (s) = n(e+e- +_hadrons) .1

+ - - + -
e e u(e+e *uu)

is empirically (5] close to the zeroth order QCD predietion, R® =3 .2 fur energies

above the heavy quark thresholds, is a crucial check of asymptotic frasdom and the
color, charge, and spin assignments of the quark quanta in QCD. Critical features
of QCD are elso confirmed by the observed logarithmic bresking of scale-invariance
in deep inelastic lepton-scattering [2] and the measurements of two-jet and three—
jet structure of ete~ annihilation final states. [5) The recent observations of

jet structure [6] in two-photon reactions {consistent with yy = qg subprocesses),
and measurements [7]) of the photon structure funcrion alse provide fundamental
checks of predictions which are essentially unique to QCD. However, despite these
successes, there is no direct experimental evidence for (near) scale-invarianr
arark-quark, quark-gluon, ot gluon-gluon scattering amplitudes as predicted by QCD;
the cross section for large transverse momentum hadron production in hadron-hadrom
collisions appears to reflect much more complicated dynamical mechanisms. Omn the
other hand, as we discuss in Section IV, the fact that the proton form factor

64(Q?) scales as (G2)-2 reflects the fact thar the minimum Fock state in the nucleon
contains 3 quarks, and that the internal quark-quark interactions uhich control the
nucleon wavefynction at short distances are cansistent wich scale invariance. [8,9]
Thus far experiments are not sufficiently sensitive to distinguish a logarithmically
decreasing u,(Qz) from a constant; i.e., fixed point behavior. The sensicivicy of
the nuclean form factors ¢o the form of us(qz) is discussed in Section VI.

Although there have been remarkable technical achievements in perturbative QCD
calculations in the past few years, "1,2,10] there has also been the realization
that precise and detailad comparisom: with experiment vequire consideration of
effecta and phenomena not readily computable with present methods. There are, in
fact, only a very tew large momentum transfer processes which can be studied
rigarously to all orders ip perturbation theory such as Re.‘.‘_(s), (1] the meson
forn factors Fy(Q2) [11] (and Fy . u(Q2)), the two phaton processes [12] vy = MM
at large rromentum transfer, the photon structure function, [13] and the Q2-avelution
of the hadrun structure functions. Although, in principle, these processes can be
calculated to arbitrary orders in perturbation theory, in practice, there are
serious complications involving the dependence of predictions made te finite order
on the choice of renormalization scheme and the scale parameterization chosen for



the argument of og. [2,13] We shall discuss a new method [14] for avoiding these
ambiguities in Section II. Aside from this, there is always the question of the
radius of convergence of the perturbation expansion. Even for processes which can
be calculated to arbitrary orders in ag, there are (presently) uncalculable power-
law supprersed (higher twist) contributions [15] which maust be included in detailed
fits to experiment, especially at the edge of phase space. [16]

In the case of jet production, QCD-based predictions based on the elementary
features of e*e~ = qq and qg9g, Yv -~ 94, etc. must also take into account higher
twist contributions, wodel-dependent non-perturbative effects intrinsic to hadron
formation and decay, [5] and possibly dynamical effects due to quark confinement, (3]
In the case of some exclusive processes such as the baryon form factor there are non-
leading QCD contributions which are asymptotically suppressed by Sudakhov form
factors. [9,10] The precise evaluation requires amn all orders resumption of pertur-
bation theory. QCD predictions for elastic hadron-hadron scattering are complicaced
by the presence of Landshoff [17] pinch singularity contributions which are only
partially suppressed by Sudakhov form factors. [10] Despite these complications,
we can still derive gemeral properties for excluslive reactions such as hadron-
helicity conservation {18] and the leading power-law behavior. [19]

An even more interesting (and perplexing) situation occurs for all incluslve
high momentum transfer inclusive reactlons invelving hadronic initial states such
as Drell-Yan massive lepton pair production, direct photon production, and large
pr hadren production. As shown in Ref. 20, initial state interactions violate the
usual QCD factorization theorem order by crder in perturbation theory and affect
the normalization and transverse momentum dependence of the inclusive cross sec-
tions., In addition, final state interactions also affect the associated multi-
plicity and transverse momentum dependence of the outgoing jets in deep inelastic
lepton scattering reactions. A detailed report on these effects is given in
Ref. 20.

Perhaps the most serious complicaiien to QCD phenomenology 1£ the presence of

higher twist subprocesses, Since power-law supprossed contributfons can often

mimic {and thus confuse the identification) of rne logarithmic modifications pre=-
dicted for the leading twist contriburions. [16] Examples of this for deep in-
elastic structure functions and fragmentation cistributions are discussed in

[21] and [22] and Section V. 1In the case of three-jet production in ete~ amnihila-
.tion, higher twist terms give contributions [23] dNfdk? ~ (k)2 for the hadron
transverse momentum distribution in quark and gluon jets. These hard components
can complicate the separation of the ete~ + qgg and ete” + qq subprocesses. In the
case of hadron production at large transverse momentum, "direct-coupled™ higher
twist subprocesses such as gq = 7nq actually dominate [24] the leading twist

qq ~ qq + q7q subprocesses at large X7 = 2p /¥s. Evidence for direet-coupled

nq + y*q subprocesses in mp + ntpTx teaclions is discussed in Section V and Ref. 22,

Present QCD phenomenulogy is also incomplete in the sense that although much
attention is paid to the Q¢ evolution of hadron structure functions there is no
real understanding of the basic x—dependent form of the quark and gluon diseri-
bution in hadrons, or how to relate them to other hadronic phenomena. The relation
of the x ~ ] behavior of structure functions to the exclusive fixed W<, high q
domain is only roughly understood. [25]1 The x ~ 0 behavior of structure functions
and the connection to the photoabsorption cross section at fixed Q , high ., and
nuclear shadowing p is also not well understood. [26]

The main purpose of these lectures is to begin to extend QCD phenomenoclogy by
taking into account the physics of hadronic wavefunctions. [27] Our eventual goal
is to obtain a parsmeterization of the wavefunctions which will bridge the gap
between the mon-perturbative and perturbative aspects of QCD. The lack of know-
ledge of hadronic matrix elements is the main difficulty in computing and normaliz-
ing dynamical higher twist contributions for many processes.
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In Section III we emphasize the utility of a Fock state representation of thae
meson and baryon wavefunctions as a means not only to parameterize the effacts of
bound state dynamics in QCD phenomena, but also to interrelate exclugive, inclusive,
and higher twist processes. It ig particularly convenient to choose a momentum
space Fock state basis [19,27]

n n
L xnk s ) Ezi-l, 1):_‘ilgn-cl .

defined at equal "time" T = ¢ + 2 on the light cone. Rere x4 = ®° + k3)1I(p° +p
k 1, and 1{ specify the longitudinal and transverse momenta and spin projection Sz
of each (on-mass-shell) quark and gluon in the n—particle Fock state (n 2 2 for
mesons and n 2 3 for baryons). We also choose the light-cone gauge A* = A0 + A3 = 0
go that anly physical polarizations of the gluoma occur. The coler singlet wave-
functions are regulated so that they are finite in both the infrared and ultra-
violet regimes. [28)

3

There are a number of reasons why this representation of hadrons in terms of the
quark and pluon degrees of freedom is useful:
(1) In light-cone perturbation theory, the perturbative vacvum is also an eigenstate
of the total QCD Hamiltonian on the light-cone; perturbative calculations are enor-
mously simplified by the absence of vacuum to pair production amplitudes.

(2) All form factors, charge radii, magnetic moments, etc. have exact expressions in
terms of the yyn.

(3) The s&tructure functions Gq(x,Q) and Gg(x,Q) (and more general multiparticle dis-
tributions) which contral large momentum transfer (leading and higher twist) inclu=-
sive reactions, and the distribution amplitudes $(x.Q) which contrel large momentum
transfer exclusive reactions (and directly coupled inclusive reactions) are each
specific, basic measutes of the y,. Examples of these calculations are schemati-
cally 1llustrated in Figs. 1 through 3.

(4) Other ﬁhysical quantities such as decay amplitudes provide rigorous sum rule or
local constraints on the form of the valence components of meson and baryon wave-
functions. [2]
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Fig. 2 Baryon processes at large momen-
tum transfer in QCD and the connection
to the baryon Fock state wavefunction.
(a) Baryon form factors, (b) heavy
quarkonium decay T + pp, (c) deep
inelartic lepton-baryon scattering.

Only representative contributions are
shown, The inclusive cross sectiom and
structure function G /B(x Q) is computed
from the square of the baryon wavefunc-
tion summed over all contributing Fock
states.

Fig. 3 Examples of QCD-computable higher
twist "direct-coupled” subprocesses for
inclusive reactions. The subscript D
indicates that the hadronic wavefunction
is involved directly in the high momentum
transfer subprocesses. (a) Direct
praduction of high pyp mesons in hadron-
hadron cross secticn. The predicted
cross section 1is proportional to the
meson form factor Fy(py) times the lead-
ing twist cross section. (b) Higher
twist contribution to meson-induced
massive lepton pair production. Tha
predicted cross section is equivalent to
a contribution F,(x,Q2) ~ €/Q2 to the
longitudinal structure function of the
meson. (c) Direct meson production of
quark jets in mescn-baryon collisions.
All of the meson enetrgy is used to
produce jets at large transverse momen-
tum. The ¢ross section is proportional
to Fn(p%) times the leading twist qq -+
qq cross section., (d) Direct production
of anti-quark jets in BB collisions.
The Etoss section is prcportional to

pfY times the leading twist qgq -+ qq
cross section. In each case the direct
process dominates over the leading twist
contrihution ir a large x kinematic
region.



In the remainder of this section we will give a brief introduction to QCD and
asymptotic freedom, We then discuss a new method to avoid acheme and scale ambi-
guities in perturbative QCD predictions. Io Section III we give a detailed dis-
cussion of light—cone perrurbation theory and the Fock state expansion of hadromic
wavefunctions. The QCD equation of motion is also discussed. In Section IV we
discuss measures of the hadronic and nuclear wavefunctions (form factors, magnetic
momenta, ete.), and the QCD analysis of high momentun transfer exclusive_processes.
We also show how meson distribution amplitudes can be measured in yy + MM reactioms.
The conmection of the Fock state basis to leading and higher twist contributions
to deep inelastic scattering is given in Section V. In Section VI we discuse how
many different QCD processes are interrelated (as im Figs. 1 through 3) through
the hadronic Fock states. We also discuss a novel type of QCD subprocess — direct
coupled hadron-induced reactions. [29] A new prediction for the proton form factor
is also given. In Section VI we also introduce a simple phenomenology of hadron
wavefunctions and discuss present constraints on the form and normalization of the
valence meson and nucleon Fock states. An important conclusion is that the valence
Fock state as defined at equal time or the light cone appears to have a signifi-
cantly smaller radius than that of the physical hadron; [27) higher Fock states
thus play an essential rele in low momentum transfer phenomenclogy. Applications
to quark jet diffraction excitation {10] and the hidden heavy quark Fack state
structure of hadrons are also discussed. [31] The effects of 1initial and final
state interactions on QCD inclusive reactions are discussed in Ref, 2C.

A. The QCP Lagrangian

An essential feazure of QCD is that SU(3), 4s an exact local symmetry: sotations
in color space can be made independently at any space-time point. The mathematical
realization of this is the Yang-Mills non-Abelian gauge field theory. Tne QCD
Lagranglan densicy is [1]

-3 - 21 2
Py = 40P = m) 4 = 7 T F (2.1)
0" = 3 2" 1+ ga¥ 2.2)
FUY = a¥a¥ - aVaY + gral,aV: 2.
Here

qR(x)\
bx) = (qy(x)l

\"3(’”),
is the color triplet of quark fizlds, and a¥(x) = }° Aaa:(x) is the color
octet gluon field summed over the 3 x 3 traceless :::;ices A, satisfying (A ] =
1 fape A and Te(2®AP] = 248b, & is obviously a color singler. Locai gauge

CD
invariance and color symmecry follgus from the imvariance of Zqocp under the general
gauge transformation

vi{x) + Ux) ¥(x)- (2.4)
K+ v A e+ 1 ua (M) (2.5)

where the unitary matrix U(x) = exp 1 z laﬂa(x) i3 an arbitrary function of space

and time, Note chat the field stcrength F"“(x) -+ U(x) FW U’l(::) 18 not invariant




since it is in the adjoint representation of SU(3).. The local gauge invariance of
the Yang-Mills is an essential ingredient in proving the renormalizabilicy and con-

sistency of the theory. [1]

In general, a sum over quark flavors i = u,d,s,c,b... is understood in E‘an.
(In fact, the mass matrix myj is not diagonal when the weak and electromagnetic
interactions are taken into account. [32J) The findamental origin of the quark
flavars and their masses remains an ontstanding problem in hadron physics.

In a sense QCD can be regarded as the non-Abelian generalization of QED:

Logn = VOB - w) ¥ - T Fo (2.6)

Q
where 10" = 13" + eA", 'Y = a%a¥ - 3"A". From the point of view of formal per-
turbation theory there are close similarities in the Feynman rules aid treatment
of ultraviolet renormalization and infrared divergences. The Feynman rules for
QCD are given in Table I. 1In the case of covariant gauges one must formally in-
clude "ghost" scalar particles in loops, or else unitarity of amplitudes involving
the non-Abelian-couplings will be lost. In the case of axial gauges (n A = 0O
where n" is a fixed 4-vector) there are no ghosts, but renormalization 15" somewhat
more complicated, The color trace algebra for any Feynman diagram can be done
almest asutomatically vusing the graphical rules given by CVITANOVIC. [£33) The main
algorithm is that as far as color is concerned, the gluon propagator ~ in SU(N) is
equivalent to two quark lines ¥ minus 1/N times the identity (to remove the U(N)
singlet). The complete rules are given in Ref. 33.

Although QCD and QED perturbation theory have many similarities, there are non-
perturbative aspects of the non-Abelian theory which have no analog in electro-

Table I Feynman rules for quantun chromodynamics*

Farmion . g £ i 3
Prosagator ] p-meir U8

Gen . g e b -|[|',,-u--l-'€h];r‘fﬁ

Prepogatyr kB v oeie
Ghost M TR 1 3ap
$ropopaor » Wi
#9
Farmi: .
\':"'::“ ’ }\ sy Lep
T
Vu'::: ! L1 [',.. “tlgt tpain-rly

+ ggp U1y ]

Quortle ., & v .
Verls 2N -1 [1ae Teds (Opar g~ Uup v

rhd wc *face Inde (9urtop= Oy pivel
*lateTcde {9u0 9~ Vur S0 ’]

Verion 1{4 < 'ﬁ.c%

AFrom A. J. Buras, Ref. 1.




dynamics, €.8., c¢lassical ("instanton™) solutions to the pure gauge theory. These
solutions can have profound consequences for the QCD vacuum state, [34] Further-
more, the absence of asymptotic color stares implies thar, st best, the perturba-
tion rules are only valid in a far-off-shell short-distance regime,

Fortunately fcc¢ many processes of experimental interest it {s posaible to prove
factorization thevries which separate the long-distance dynamics associated with
the hadron wavefunction and color confinement from quark and gluon subprocesses
which only involve short distaace propagation of color. [35] 1If this factorization
can be proved te all orders in perturbatiom theory, it is reasonable to assume
that the corresponding perturbative predictions are legitimate predictions of the
complete theory. In the case of predictions dependent o hadronic fragmentation
from quark or gluom jets one has tc make an extra assumption that the essential
effects of color confinement are restricted to large distances, (3]

B, QCD Perturbation Theory

As in QED, one cgn suw the effects of vacoum polarization into a “running® coupling
congacant (as a gifan)

2
°5(Q0)

2.7
1 - o, @) [reed - =)

2
e (Q )=

where w(Q ) can be computed (in some gauges) from the single=particle=irreducible

contributions to the gluon prapagator. Given the gluon propagator at any sclle

Q1. one can use Eq. (2.7) to determine the effective interactics at the scale Q

To lowes: oEder in perturbation theory the quark and gluon loep insertions give
,Qa e omy is=1, 2"'nf

2
n(Q%) - 5@ = F 108 f? [2n- 1] + 06 (2.8)
0

i.e., for ng < 33/2, a (Q ) decreases with Q , exactly opposite to QED, More
generally, one can calculate the Q2 dependence of ag in higher orders

8
—L; 2dd 2.9
)

. — 0,602 + 8o (@D] - 2 o2eeD -

+ ...

vhere [15 59 = 11 - 2/3 ug, B) = 102 - 38/J n;. The solution for alez) at large
0% to two loop accuracy then has the form

2, @) "‘;' 5 {2.10)
g 1o39-+- tog log L
o8 3", 22

whare A is introduced as a constant of integration., The fact that a (Q ) decreases
at large momentum transfer [asymptotic freedom] is an ex:ra-ordinary feature of QCD
which in principle allows a systemaric computation of short distance processes. A
graph of a,(Q2) showing the effect of the By/Bg term is chown in Fig.4. 1t should
be emphasized that perturbation theory does not determine the form of ag at small
Q2 where its magnitude becomes large. As moted bv PARISI agd PETRONZ10, [36] con-
sistent calculations of perturbaiive loops demand that ag(Q%) remaine finite at

all values of :he loop integration. Thus far there is no girect experimental evi-
dence that na(Q ) decreases logarithmically.
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Fig. 4 The QCD coupling constant
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If we choose Q3 to be the ultjmate ultraviolet cutoff scale of QCD then aS(Q(z)) =
ag is the "bare charge" of the theory. We can then identify u5(Q°) as the effective
coupling constant which takes into account all vacuum polarization contributions of
invariant mass _,{(2: Q2 <AL < QZ. Similarly, we can define the running gquark mass
m(Q2) which takes into actount al self-energy insertions in the range Q2 < 42 < Qg.

Let us now define a cutoff Lagrangian ZEED density for .ZD by excluding all
intermediate states vitn,#Z > x4, The fact that the theory is renormalizzble
implies that

ISCD = E’(:Ira + alx)h - m(:)) v - %Tr F2 (2.11)

1 - Hv
—_ ) +
+ O .2 HI(K, Yo F 1} e

i.e., all effects of very high mass states ullz > KZ are completely contained in the
.effective coupling constant g(x)}, the gquark running mass m(x), and "higher twisr"
power-law suppressed 1/«2, 1/e4, etc. terms. If x? 1s taken at the ultimate cutoff
scale QB then 2’6‘05 is the bare Lagrangian. If «2 is chusen sufficiently large then
the higher twist terms are negligible in (2.11).

The classic perturbative calculation in QCD is thar of the annihilation cross
section 0 4 _ which can be computed from the hadronic absorntive part of
e’e” + hadrons

the forward ete™ + ete~ amplitude to order uz. Since there are no extermal color
charges there can be no gluon-mass infrared divergences or quark mass singularities.
Thus the only relevant scale is Q2 = 5 = E, .m,» and we can compute perturbativelv from

QECD with k2 = @2, Tr. result to order a£(Qd) is

\ e IR |
R+_(Q)-3Zeq 1+T+—2(B+Anf)+...‘| (2.12)
e e q - m

where the A ng term srises from virtual guark loops. An essential and unique pre-
dicrion of asymptoric freedom is that Qi n R(Q2) = 3 b eg = RP, the free gquark

- @
prediction. The specific values of B and A in Eq. (2.12) depend on the method of
implementing the ultraviolet cutoff. In the M5 acheme (a particular dimensional
regularization scheme) one finda [37] B = 1.98, A = -0.115. However, in analogy
to QED, it 15 clear that ths A D¢ term should be identified w.th cthe fermion loop
vacuum polarization contribucion to the running coupling constant In the ag(x)/n
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term; the particular numerical value for A is rather arbitrary since we conld have

thosen any scale x€ = £202 for the perturbation expansion. In QCD, as is essentially

a function of fg = 11 - 2/3 ng. Thus we write B 4 A nf = «3/2 gpA + C, where C =
(33/)A + B= 1.0823 must be schemc independent (9ince to ¢he order of interest the
cutoff schemes zan only differ by the definition of the scale constant A%). We thus

have che QCD prediction: [14]

2 2 2 ag (17%) “:

R - Q) =3 a |l1l+ + 0.0825 — + ... {2.13)
— q ] 2
e e q n

where f = fzz = @34 % 0.71 in the NS scheme. Let us imagine that eventually
measurements of LI (02) hedrons will be sufficiently aceurate that we can

choose-R(Qz) to define a "canonical” measurement of the QCP ruynning coupling
constant:

ofwdH =« [mﬁ;ﬂ][ - 0.0825 (5'—‘0)] - Bk | (2.14)
8 no Ro -3

Our goal is then to shew that all observables in QCD which have a perturbative ex-
pansion in ag can (in principle) be expressed in terms of n‘.‘(Qz) without any scheme
or scale ambiguity. We will define the scale parameter A = AN paing Eq. (2.10) for

Bs.

We thus propese the following prescription for making scheme and scale indepen-
dent perturbative QCD predictions: [143 For any observable 0(Q2) which has a
perturbative aéxpansion in u.a(Qz) one can compute in a givan renormalization scheme

. o@D al(eh
p(Q) = —5—+ (gp ng + Ba) 7t .- (2.15)
4

As in the case of R(Qz). we identify (-3/2)BgA, as the vacuum polarization correc-
tion to the running coupling constant in the ag/n term. Thus

2, _ e ()
0@ - E—+c(-2) +... (2.16)
where
A -
Q: St T M Q? (217
and
33
cn =5 At Bp (2.18)

are scheme—independent. The leading order prediction for 9(02) can thus be written
vnambiguously in terms of af. 1f C, ug/n is reasensbly small, them we can expect
that Eq. (2.16) gives a meaningful perturbative QCD predistion. An lumportant task
will be to carry out the above procedure to higher orders in ag.

As an example of the above method, let us consider the decay rate for pseudo-
scalar quarkonium states which is computed in terms of QQ ~ gg plus higher order
subprocesses. In the MS scheme: [29] (C is a known color factor)




',
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T'(n, = hadrons) c[;?(n’ )]z {1 . g;i 17.13 % nf) . } (2.19)

rncon Ne

o[(4(Com YT o e e ]

i.e.: the effective scale in the vacuum pnlauutum contributions is ~0.37
relative to the seale in a*e™ + ha--oms. If a = 0.2, then the correction term
in Eg. (2.19) givas only a 7% eorrection to the deternination of ay,. In the case
of the hadronic decays of = ] heavy quarkonium states, the eorreeuun to the
QQ - 3g decay amplitude appears to be very large so that the leading order expres-
sions may not be meaningful. One finds [40]

R
3 L)
I(T > hadrons) , _0(1_-._91 lc ('zzuT)z)] [1 - 13.96 =2+ ] 2.200

(T~ 81 e a2

For ag & 0.2, the correction temm gives a correction of order 30% to the determina-
tion of ag. Note that even in QED, the radiative corrections to orthopesitronium
decay are very large:

r
3‘!

{1-12.01 2] (2.21)
so this appears to be an intrinsic problem to this cype of decay process. Addi-
tionally, the QCD preaiction for quarkonium decay is complicated by some uncertain-
ties from relativistic and higher Fock state compcnents in the quarkoniun

wavefunction.

Gne of the mast imporcant pregic:wns from QCD 1s the logarithmic variation of
structure function moments, Mp(Q®) = jt" dx x"F3(x,Q). Using the above renormaliza-
tion procedure we find [14]

R
Y2 R[22 S
——-—mn(q)-—- (f Q)[l—ﬂ—c +]
dlo.Q % \'n a

where the y, are known anomalous dimensions (see Sec. IV). The coefficient C
varies from -0.27 to 1.1 for non~sirglets moments n = 2 to 10, thus giving reaaon-
ably seall corrections to the lowest order predictions. The monotonic decrease of
f, with p reflects the fact that the nodentum gcale for ;luon emission bscomes
increasingly restricted at large n ({1 ~ x> ~ 0(1/n)} due to phase-spac>

effects. [41] Purther spplications znd discussions will be given in Ref. l4. We
also note that in processes with several large momentum cransfe. scales, the effec-
tive argument for nn in the leading order predictions can be very comp icated. For
example in the case o! large pr jet production due to qq = qq scattering, the sub-
process scattering amplitude involves oo evaluared at the subproceas invariants t
and 0, vhereas tha evolution uf each hadronic structure function is sensitive to
its r:spectlvt x-dependent phase~space boundary as well as cthe quark momsntum
transfer.

111, RADRONIC WAVEFUNCTIONS IN QCD [27)
Even theugh quark and gluon perturbarive subprocesses are siwple in QCD, the com=

plete dascription of g physical hadronic process requires the consideration of many
different cohsrent and incoherent amplitudes, as well ag the effects of non-
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parturbative phenomgna associated with the hadronic wavefunctions and color con=
finement. DPespite this complexity, it is still possible to obtain predictions for
many axclusive and inclusive reactions at large somentum transfer provide: we make
the ansatz that the affect of non-perturbarive dynamics is negligible in the : horc-
distance and far-off-shail domain. (This assumpticn appears reasonable eince a
linear confining potential V ~ r is neglibible compared to perturbative 1/r contri-
butions.) For many large momentum transfer processes, such as deep inelastic lepton-
hadron scattering reactions and meson form factors, one can then rigorously isolate
the long-distance confinemznt dynamics fran the shorct-distance quark and gluon
dynamics — at 2east to leading ovder in 1/Q2. [35] The essential QCD dynamice can
thus be computed from (irveducible) quark and gluon subprocesses amplitudes as a
perturbative expansion in an asymptotically small coupling constant ag(Q2),

An esgential part of the QCD predictions is the hadronic wavefuncerions which
determine the probability amplitudes and distributions of the quark and gluons
wvhich enter the short distance subprocesses. The hadronic wavefuncrions provide
the link bhetween the long distance non-perturbative and short-distance perturbative
physiecs. Eventually, one can hope to compute the wavefunctions from the theory,
e.g.y from lattice or bag models, or directly from the GQCD equactions of motions,
as we shail outline below. Knowledge oi hadronic wavefunction will also provide
explicit connections between exclusive and inclusive processes, and will allow
the normalization and spacification of the power law (higher twist) corractions to
the leading impulse approximation results- As we shall discuss in Sec. VI, there
are a number of novel QCD phenomena assoclated with hadronic wavefunctions, includ-
ing the effects of intrinsic gluons, intrinsic heavy quark Fock components, dif-
fraction dissociation phenomena, and "direct" hadron processes where the valence
Fock state of a hadron enters coherently into a short-distance quark-gluon

subprocess.

The most convenient representation of a wavefunction in & relati .stic fleld
theory is to use a momentum space Fock state basis defined at egual time”
1 =t + 2z on the light cone (see Fig.5a): (42]

[V 8 I" T why
P',P‘-—(E s : .4

L AL
’P‘.'l'..‘."ll)
o)
® _/
:{ I

b [ %
I Yalo Fig. 5 (a) the n-particle Fock state amplitude
1 defined at equal 7. The state is off the p~
light-cone energy shell (see Eq. (3.12)).

e -E(ilen?)

= (: '__..-:) o~ i (b,c) Exanples of light-cone time-ordered per-
H — Yaie turbation theory calculations. The frame is
(X+ZF) o -« : chosen sa that k* > 0. (d) QCD equation of
? i sotion for the megson wavefunction.
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l‘nﬁ;i‘tﬁ ‘1’] .1
Momentum conservation requires
o, o
‘z_:lku-o. Qnitl, 0<x <1 . 3.2

The ¥, ; are the transverse momentum of the (on-mass-shell) constituents relative
to the bound state J-momentum P = P3. The xj are the light-cone momentum frac-
tions {k* = k0 + k3, A+ B = 1/2(a%8"+ A7BY) - & -3 )

O
x =2 5 (3.3)
P P°+ P

{In a frame where 93 + =, _the ii are the lnsgic inal womentum fractions.) The
mass shell condition is kZ = m » of K~ = (kf + m2}/k*. As we shall see, the
equal-T formalism i3 eguivalent to the usual Schroedinger equel-time theory in the

non-relativistic limit.

A unique and remarkable advantage of quantizing a relativistic theory at equcl 1
is the fact that the perturbative vscuum state |D> is also an aigenstate of the full
Hamiltonian., Matrix elements where particles are created our of the vacuum are
excluded because of the fact that all particles must have k','_' » 0, Furthermote, the
charge operator and the current Jt = JO + I3 are diagcaal in the Fock statg basis.
It is particularly advantageous to choose the light-cone gauge AT = A9 + A7 = 0
since unphysical dagrees of freedom do not appear. A comparison between time-
ordered and t-oydared parturbatrion theory is given in Table I1.

Thus at a given “time" we can define the (color singlet) basis

Jo> (3.4)
- + +
laq> = a b, e @
Lk LR

The piur state, for example, can be expanded as

q - a -, .
> = lag> ¥ 2 + age> i (3.5)

where ¥, = <n{n> is the amplitude for finding the Fock state |n} in |[n> at time 1.
The full Fock atate wavefunction which describes the n-particle state of a hadron
with 4-momengum P* = (P*,P", ') and constituents with momenta

(::f1 + 'I'E.L)2 + ol

e (00,8 - (,a*, L oF, 4 E;) (3.6)

and epin projeerim‘ A, is

i
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Table 2 Time-ordered perturbation theory

Equal t Equal * = ¢ 4+ 2z
* 2 2
X0 - fiz N '! particle K = k; o particle
wmass shell k+ nass shell
2 ¥ conserved z:l,k* conserved
e = Vab Ao = Yap
1
+zvu o _ go + i€ Veb + Z"ac z fk + 1€ cb
c
n! time-ordered contributions k > 0 only
Fock states #ﬂ(ﬁi) Fock states t {k 1% )
n n
E:-F.o x-— Ex -1, zi;].i.o
i is1 i=1
(0 < x, < 1)
. . .
¢=p®- 3 & e-r*(r'-?:lk;)
i=1 3
2 2
n fk| +mn
2 - o i
-B-é\’kz-l-mi HZ—EI( = )£
u(xin,x P +K i)l
¥ = X0k .3 A 3.7
2 "t ) L "

1

:(xiP+,x ? +B 1))‘

gluons v/x_;

Note that #,(x4, K, 1; Ay) is independent of P*, B,. The goneral normalization condi-
tion is

Zf[" k ]f["‘"“ Gk, g5 217 (3.8)

where by momentum conservation

l:d‘:ki] - 16 n* (f iZu) Jl 44 (3.9

and
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n n
[ax] = & ( -3 'xi) Il ax, (3.10)
i=1 1wl

In the non~relativistic limit the equal T = t + 2/c and equal time t theories
coincide. For example, for the Fock state wavefunction in the rest system we can

identify

(]

o 3
k +k om k7 (3.11)

-+—
* M M

and the off-shell light-cope energy is

n L k2 + mz
& =p"’[p‘-}: k‘] =M2-Z(—‘———— (3.12)
i=1 i=1 x 1

=2 [g“ - i (%g)i]

Thus, in the non-relativistic limit, the hydrogen atom wavefunction is

by = € 5 (3.13)
2 2. 22
[kl + (me - xi)° +a me]

Light-cone perturbation thcury rules can be derived by either evaluating stan-
dard equal-time time-ordered perturbation theory for an observer in a fast moving
Loventz frame (the "infinite momentum” method), (43] or more directly, by quantiz-
ing at equal t. The LCPTh rules are: [19,44]

(1) For each Feynman diagram assign particle 4-momentum kM such that k"’,'l:l is con-

perved at each of the n vertices. (This is the analogue of 3-momentum conservation.)

Since all particles are on the (positive energy) maas shell (k¢ = m ) we have

- klz +1n2
i -—+>0 (3.14)
k

(2) Construct all time orderings (up te n!) such that k+ > Q for all particles.

(3) For cach intermediate state assign a propagator

1 {3.15)
k; - 2 : k; + ic
initial intermadiate

and a factor 1/%" for each internsl line. (This 1a che analogue of

y( 3 E - E, + 1:) and 1/(2E} in TOPTh.)
initial intermediate

(4) For each loop integrate

2

4"k -
.( Lo f da* (3.16)
v 2(2m) 0




and sum over intermediate state spins and polarization.
(5) The vertex factors depend on the theory. In the case of sc?' interaction, assign
a factor g at each vertex, In jauge theories the gluon=farmion vertices are

gofu, -gVfv, gufv, -gVfu . {3.17)

The trigluen and quartic-gluon vertices are given in Table I.
(6) Finally, there are instantaneous gluon contributions in Afe0 gauge:

+ +
Y s.0 Y {3.18)

ah?
{analogous to Coulomb interactions) and instantaneous fermion cantributions Y+/2k+

(the remnant of backward-moving "Z-graph” fermion lines). For examnia, the
electron=electron scattering diagrams of Fig.5b give

2 uy¥u oy 2 uy'u wy'u
=t Uy, Gt uUyuuymu (3.19)
ee+ree k+b T3 ('k+)2

where the palarization sum is
Ve Y el B €m0, kre=D (3.20)
A=T,2
and tha light-cone and energy denominator is

D=p;-k--p;+:l: . (3.21)

Similarly, the Compton scattering diagrams of Fig.Sc give

- - - +
2 ‘“!e“:\ 8 ‘a“ 25, ¢ A
W4 = g ; r——— @ (3.22)
ye+wye i=1,2 ’in 2p+

D=k +p »p +ic

(This 18 analogous to the decomposition of the Feynman propagator (fd-m + :le)_l
into pogitive and negative frequency components.)

Calculations in light-cone perturbation theory are often surprisingly simple
since one can usually choose lorentz frames for the external particles such that
only a few time-ordevings need to be considered. All the variables have a direct
physical irterpretation. The formalism is also ideal for computing helieity
amplituder directly without trace projection techniques. A list of all the gluon
fermion vertices which are required as gauge theory calculations is given in
Tables I and II of Ref, 19.

It is straightforward to implement ultraviolet remormalization in light-cone
perturbation theory. We define truncated wavefunetions ¢* and a truncated
Hemiltonian H* such that all intermediat- states with IJT > ¢2 are excluded, [45]
Thus «~1 ig analogous to the lattice spacing in lattice field theory. Since QCD
is renormalizable the affects of the neglected states are accounted for by the
use of the running coupling constant o.(x2) and running ®mass m(x?), as long as x2
is sufficiently large compared to all physical mass thresholds. Completeness
lmplies
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a 2
> f [%,] franationg e s 3012 = 1 - 0(‘:—,) (3.23)
04
i

The equation of state for the meson or baryom wavefunction in QCD is a set of
corpled m)tiparticle equations (see Fig.5d):

n 2 2
’ 5T "-E vE L (3.24)
- E x i ¥n an' Yo' *

i=]

where Hz is the elgenvalue and V,,t is the set of diagonal (from instantanecus
gluon and fermion exchange) and off~diagonal {from the 3 and 4 particle vertices)

momentum-space matrix elements dictated by the QCD rules. Because of the x cutoff
the equations truncate at finite n,n'. In analogy to non-relativistic theory, one
can imagine starting with a trial wavefunction for the lowest |q'i) or |qqq> valence
state of a meson ot baryon and iterating the equations of motion to determine the
lowest eigenstate Fock state wavefunctions and mass M. TInvarisuce under changes in
the cutoff scale provides an important check onr the consisteacy of the results.
Note that the general solutiom for the hadron wavefunction in QCD is expected to
have Fock state components with arbitrary numbers of gluons and quark-antiquark

pairs.

The two-particle "valence" light-cone Fock state wavefunetion for mesons or
positronium can also be related to the Bethe-Salpeter wavefunction evaluated at

equal T

di” uty k) ¥y, K ) T
S Vpel(k;p) = wix,,k )} (3.25)
Zn YBs'** — f A

f A&

+ negative energy components,

vhere P catisfies an exact bound state equatian [19]

2,2
ktm (3.26)

vexg k)

[l

The kernel K is « vpuced from the sum of all two-particle~irreducible coactribu-ians

to the two-particle scattering amplitude. For example, the equation of wmotion for
the |ete~) Fock state of positronium reduces in the non-relativistic limit to

(t it ~ O@m), x = x, - &, ~ o(a)') M2 = 4n? + 4me

kf +le|
' -
n

Hﬂ-ﬁ-
x

2
e
'y -~ - . 2 -
—5 Rpk g vl ) vty 30

L

]‘i(x‘,kl) (3.20)

oty x,) ' d dzz‘ = ( )
= (dx.x yo wiy, .2
S j(z«ﬁ @ -D)f 4 x-pfal]
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The non-relativistic solution is (B = am/2) [19]

uwv, ~u v

2 ' 3
/2 ’1"2
,/nss 64w g xx,
¥ixpk) = VS 3 22, 21 | v¥ (3.28)
[;J_-b(xl-:z)n +B] 4" 4
&%,

for para and ortho states respectively.

More generally, we can make an (approximate) conmection between the equal-time
wavefunction of a camposite syst and the light-cone wavefunction by equating the

of f-shell propagator & = M- Zk) in the two frames:
i=1

n ° 2 n
‘(2“(1)) » 29 = 0o (3.29)
fu] i=1

fm

Hz_f‘(k ‘”’) TR 0 Yx e1lnc)

i=]

In addition we can identify

+ 3
k (qo +q )1 - - -
e T S P (3.30)

For a relativistic two particle state with a wavefunction which is & function of
the of f-shell variable & only, then we can identify (m:l =myem ox=x - xz) [27]

42 4 o2
kT 4+ x
1 2 + +2,
el 7T 2% T Yen@? (3.30)

ln I:he non~relativistic 1imit, this corresponds to the idencification
= kJ_, q% -x

1v. MEASURES OF HADRONIC WAVE FUNCTIONS

A. Form Factors of Cowposite Systems

1f we could salve the QCD equation of motion Eq. (3.24) for the light-cone wave-
functions ¢y of a hadron then we could (in principle) caleulate all of its electro-
magnetic properties. For example, to compute the elastic form factors <p|J¥{@)|p+¢>
of a hadron we choose the Lorentz frame [46]

¥ oa (F+tp-1;‘l) = (P+n i(Tz'_' ] 61) (4.1)

+ - 2p - +
Y oa {4 ,q :al) - (ov _P;_;SI qj.)
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where pz - (p+q)z - "2 and -qz = Qz - qz. Then the only ¢ime orderiung which con-
tributes to the <p|J*{p+q> watrix element 1s where the photon atcaches directly to
the eyl T+uj currents of the constituent quarks. The spin averaged form factor

is [46,19) see Fig.6a)
2 ~ 2 4 Fe [ *
F@Q%) -Eﬂ;ej [dx] [d kl];v‘; RS W Rl T TR (4.2)
i

1
where 'l:j -+ (1- xj)a"‘_'for the struck quark and l:i - xﬁ" (1 4 1) for che
spectator quarks. (The -x;q" terms occur because the arguments are calculated
relative to the direction of the final state hadron.) We choose «Z >> Q M, We
note here the special advantage of light-cone perturbation theory: the current JV¥
is diagonal in the Fock state basis.

Because of Eq. (3.23) the form factor is normalized to 1 at zerc momentum trans—
fer. We can also compute the helicity flip form factors in the same manner, [19,47]
For example, the ancmalous moment a = Fp(D) of any spin 1/2 system can be written (47]

2o e f[dx] ai vt Tox (L+ 1L)¢.‘ . 5.3)
M JE 1 [ ;] p+12;-3;| "“‘i 3": be

Explicit calculations of the electron anomalous moment In QED using this result are
given in Ref., 47. We notice that in general all Fock states P& contribute to the
anomalous moment of a system, although states with x2 much larger than the mean off-
shell energy <&> are not expected to be important. The general result (4.3) also
includes the effects of the Lorentz boost of the wavefunction from p* to (p+q)¥.
In particular, the Wigner spin rotation centributes to Fz(qz) and the ¢harge radius
Fl(qzj in the q2 + 0 limit and can only be neglected in the limit of non-relativistic
binding < &> << M2, This effect g.ves non-trivial relativistie corrections [48] to
nuclear magnetic moment calculations based on simple additivity ¥ = (Z L)

J -

B. Form Factors of Mesons

Results such as Bqs. (%.2) and (4.3) are formally exact but useless unless w. have
complete knowledge of the hadronic or nuclear wave function. However, by making
use of the impulse approximation and the smallness of the QCD running coupling con-
stant, we can calculate features of elastic and inelastic large momentum transfer
procesges [19] without explicit knowledge of the wavefunction. For example consider
the }qa) Fock state component contribution to the pion form factor. Choosing

Q“,

<2 = we have
1 Q dzk
@ - fa f —4 L)k 00,) (4.8
s .
+ higher Fock atate contributions .

The bound state wavefunctions are peaked at low transverse momentum, {.:., small
of f=shel) energy &, Thus the leading contribution at large Q2 come from the regimes
@) 82 << 3 and ) (£, + A-20F,)? << . Thus

1
F:')(Qz) = f ax ¢(x,Q) tq(x.(l-x)'ﬁl) 4.5)
o

where [19]
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P p+q
+q 02> me
‘| Fig. 6 (a) Calculation of current ma-
y trix elements in light-cone perturba-
_Q':_ tion theory. (b) Valence Fock state
. .02 l contribution to the large momeatum
{ * T”(""o ) y transfer meson form facter, TH is com-
¢”(l‘o) #ply,Q puted tor zero mass quarks q and §
(& i parallel to the pion momentum.
Qg4
(xrf — @Q(x k) . (4.6)
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I1 e simply iterate tlie_one-gluon exchange kernel Vi in the equation of motiom
for ., then for qf »> 1>

2 . Q
o (x. (t-x)g, iy. 5, )07 (v08))
Yy (10 n s /il
x.(2-x09,) & fdyf —% i .7

,1- Y
fd Vl(x( x)a, yD)

- QJ(I'X)IX

. @ .

Thus we can write the gluon exchange contribution to the form Ffactor in the
ferm; 111,191 (see Fig.6b)

1
F (@) = f dx dy 6°00,Q) Tyt @ oly,Q) 4.8)
0
where
lﬁ-c a (Q ) ez]
Ty = ) [(1 y)(l o -9

is the "hard scactering swplitude” for scattering collinear comstituents q and g
from the iaitial to the final direccion. The color factor {s Cp = (nl-1)/2n, =
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4/3. The “distribution amplitude” ¢(x,Q) 1s the amplitude for finding che |qq>
Fock state in the pion collinear up to the scale Q. (It is analogous to the wave-
function at the origin in non-relativistic calculations.) The distribution ampli-
tude enters universally in all large momentum transfer exclusive amplitudes and is
a process—~independent measure of the valence quark distribution in each hadron;
its (logarithmic) dependence on Q2 can be determined directly from the operator
product expansion or the light-cone or from an evolution equation, as we discuss

below.

Thus the simplest estimate for the asymptotic behavior of the meson form factor
18 Fy(Q2) ~ of(Qz)mz. To see if this is correct we must examine the higher order

correcticna: [19]

(1) Contributions from higher particle number Fock states jqigd>., {43q9>, etc. are
pover-law suppressed since (in light-cone gauge) rhe numerator couplings cannot
compensate the extra fall-off in Q2 from the extra epergy denominators.

(2) All infrared singularities and contributions from seft (%, = 0) gluons cancel
in color singlet matrix elements. (It is interesting to note that the quark
(Sudakov) form factor falle faster at large Q2 than Fy(Q2).)

(3) Vertex and vaguum Bolarizatlon corrections to the Ty are higher order in us(Qz)
since we chooge x4 = Q2. The efiective argument of ag in Ty is Q° = xyQ< or
¢1-2)(1-y)q? corresponding to the actual momentum transfer carried by the gluon.

(4) By definition, $(x,x2) sums all (reducible) contributions from low momentum
transfer gluon exchange in the qQf wavefunction. Hard gluon contributions with
|&#] > x4 and the irreducible (eross-graph, etc.) give contributions to Ty which
are higher order ag(Q2). By analyzing the denominators in Ty one can show that
the natural & eutoff for ¢(x,x) which minimizes higher order contributions is
k2 = Q: = % min {1’_‘1 . 1;"} .

(5) Although Ty is singular at x + 0,1, the endpoint behavior of ¢(x,Q2) ~ x‘..
(1-x)% (e » 0) 18 sufficient to vender this region harmiess.

C. The Meson Distribution Amplitude

The essential prediction of QCD for the pion form factor ie the power-law be-
-havior [8] F, ~ 1/Q?, with logarithmic corrections from the explicit powers of
0s(Q2) in Ty and the ol dependence of the distribution amplitudes ¢(x,Q2).

The variat of ¢ with Q2 comes from the upper limit of the fl integration
(since ¥ ~ 1/k{} and the renormalization scale dependence:

2@ Q@
tq(mz_‘) - 22%607 ¢ (=k,) {4.10)

due to the vertex and self-enerpy insertions. Thus

2

2 3 Q Q, = d 2

Q" = o(x,Q) = vi(x.q,) + ——5 log Z,(Q7) ¢(x.Q} . (4.11)
3q 161|z "' d log Q2 2

To ordev c.(Qz) we can compute Q%% from one-gluon exchange (as in Eq. (4.7)), and

d log 22(Q%)/d log @ = o (Q?)yp/én. Setting ¢(x,Q) = x(1-x) §(x,Q) = xyx99, we
obtain an “evolutional eguation™ [19]

3 -~ GB(QZ)I
m ¢(x Q) = % A [dy] ¥v(x..y,) #(y,Q (4.12)

xx,0°
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where
Vix,,y,) = 5, 80y = %)) 4 + (1 z)l .13)
(¥g) = K {7y 1 lh2 1%
(Ehlﬁz = 1 when the q and g helicities are oppesite) and
"‘;(yt‘Q) = E(yi.Q) - $(x1,Q) . {6.14)

The E(xl,Q) subtraceion is due to the Yp¢ term — i.e., the infrared dependence at
¥j = X§{ is cancelled for color singler badrons. Thus given the initial ccndition
3(xy.Qg). perturbation thecry determines the evolution cf 9(x,Q) for Q > Gg. The
solution to the evolution equation is [19]

» -y
Hx,,0) = %, g o (@) ¢32(x - x)(Log F1r%y " (4.15)

where the Gegenbauer polynomiale C3/2 (orthogonal on f [dalxyxy) are elgenfunctions
of V{x;,v{). The corresponding eigenvalues are the "non-singlet” anomalous

dimengions:

) C h2

. w<l
n 5 (+1i(n+2) 20 . (¢.18)

Ilwse results can also be derived by using the operator product expansion for the
distribution amplitude. [49] By definiiion

xe D = .r."'fiz’;— 2 12 sqoli@rem |0y | ) 2 6.17)
z =0, z .-z = ¢(-1/9°;

(' is the positive energy splnor projection operatar). 'l'he relative separation
of the q ard g thus approaches the light-cone 22 =« 0 as Q2 + =, Equation (4.16)
then follows, by expanding v(2)9{0} in local operators.

The coefficients a, are determined from ${xy,Qp):

2\ s 1
Q- __2{(2u+3) R 3z, _
a, (log "2) o s FTWIT Ty " d(x‘1 xz) c {xl xz) ¢(xi.Qo) . (6.18)

For Qz - =, only the leading " QO term survives

m #(2,Q) = a o*1%2 (4.19)

a
2. f 1x $(x,Q) = f dxf %k ) (6.20)
Q 1611

is the meron wavefunction at the origin as measured in the decay # + uv:

a4
,62. 1 £ (4.21)
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More generally, the leptonic decay «® e+e-. etc.) of each wmeson normalizes
fts distribution ampiitude by the "sum rule"

1 £
f ax gy =, (4.22)
0 W

¢

independent of Q. The fact that fy # 0 implies that the probability of Finding
the |q@> Fock state in the pion is non-zero. 1In fact all the Fock states wave-
functions v"(x .ﬁ )(Ial < x2) are well -defined, even in the infrared limit

x -+ 0 (slncc |€| - 'k )Ixi and (k > 1s non~zexo for a state of finite radius).

The plon form factor at high Q can thus be written [11,19,50]

1
F, Q%) = S as oty 0 00,0 4.23)

_1s%(0-ma- y)q)
T

T

(1-1)(1-YJQ
Thus
52
-y 2|2 16r 2D
7, @h = nz-:a“ log "'/’ F 5Q2 (4.24)
2
() ;2
x {1 + ﬁ(us ¢ ) + 6(5_)]
n QZ

where 52 3 <{1l-x) (l-y))qz. Finally, for the asymptotic limit where omly the
leading anomalous dimensiom con’ ributes: [51]

2 5@
A Feh) =16 F 2 (4.25)
Q

Q=

The analysis of the F. Y(Qz) form factor, weasureable in ee + een” reactions,
proceeds in a aimilar mamner (see Fig.la). An interesting result is [19]

F_(0%) e @)\
o(Q)-~--—---—-~— 1+6 --—;—” (4.26)
40” |7, (@ %2
vhich provides a definition of oy independent of the form of the distributlon
funetion ¢,. Higher order corrections to r,,(q ) and r“(q ) are discussed in
Ref. 50.

D. Layge Momentum Transfer Exclusive Processes [19]

The meson form factor calculation which we outlined above is the prototype for
the caleuvlation of the QUD hard scattering contribution for the whole range of
exclusive processes at large momentun transfer. Away from possible special points
in tha x; integrations (see below) a goneral hadronic amplitude can be written to
leading order in 1/Q2 aa a convolution of a connected hard-scattering amplitude Ty
convolutsd with the meson and baryon distribution amplitudes:
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. 2
lel<Q” 2 (4.27a)
Py (x Q) - 1 Q - .
e 1622 9T )
™
and 2
|l <a y
6 (x,,0Q) = 6,1 v, (x, % (4-270)
B LT 1" 'qgqittud’

The hard scattering amplitude Ty is computed by replacing each external hadren line
by massless valence quarks each collinear Hlth the hadrons momentum pi Xy Pl

For example, the baryon form factor at large Q has the form [2,19] (See Fig. 2a and
Fig.7.)

* a 2 O 4.4
GM(QZ) = ffdx][dy] ¢ (v, Q@ Tylx,y; Q) (5,0 (4.28)

where Ty is the 3g + vy + 3q" amplitude. (The optimal choice for Q is discussed in
Ref. 19,) For the proton and neutron we have to leading arder {(Cg = 2/3)

T = ‘——'—‘——128“2 C; T (4.29)
P |
o 12857 2

N W [Tl - ’]'2] (&4.30)

b)

u,‘g gzgfgz
{E==E+{E+=E+...

Fig. 7 ({a) Leading contributions to Ty for the barvon :
form factors corresponding to tne four terms of Eqs. (4.31) i
and {4.32), respectivelv. (b) Contributions to the kermel !
for the evolution of the baryon distribution amplitude.

vwhere !

oy, Q% a ((1-—x Y1-v)a ) o (4,00 a_((1-%) (2 - ¥)Q%)

3 > . (4.31)
xy(1-xy )? ¥ail-y,)” 2y (1 =x%,)7 yo(l~¥,)"

2 2
us(xzyZQ ) us(xzyzQ )
x2x3(1 - x3) y2y3(1 - yl)

]

and
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I a (XY ,i) n (13y3Q2)

. (4.32)
2 3(1'*1) YIY3(1'Y3)

T) corresponds tao the amplitude where the photon interacts with the guarks (1) and
(2) which have helicity parallel to the aucleon helicity, and T corresponds to
the amplirude where the quark with opposite helicity is struck. The running coupl-
ing constants have arguneats &2 corresponding to the gluon mcmentum transfer of
each diagrac. Only large Q2 behavior is predicted by the theory; we utilize the
parareter Mg to repraesent the affecr of power-lav suppressed terms f{rom mass in-
sertjons, higher Fock states, etc.

The Q."-evolutlcm of the baryon distribution amplitude can be derived frox the
operator product expansfon of three quark fields or from the gluom exchange kernel,
in parallel with the derivation of (4.12). The baryom evolution equation to lead-
ing order in ag is [19]}

3 % ~ G [ ~
e xJ! (xi.o) 33 —0 i.Q)l of [dyl V(x‘.yi) e-(y‘.Q) - (£.33)
Q

Here ¢ = XIXZX3;, % = log(log QZMZ) and (see Fig.7b)

é
¥ h.h
' 0 - - Z i 4
‘("1'-‘1 2"1"2 1 izﬂ:s(yi "1) 6(xk ) —l*j (——"in.,,,“i + >.‘_x1> (4,34}

= V(y oo i) .
Tne infrared singularity at x. » v_ is cancelled because the baryon ia a color
singler. The evolution eq-.lat*o is the gemeral scolution

= 2\ "o
- - I :
20x, Q) = xpau%g 2 i iz i (1os 2 - (4.38)

n=0

The leading (polynomial) eigensolution :n(xi) and corresponding baryon ancnalous
dizensions are given in Refs 19 and 52. Thus at large 3 the nucleon magnetic
form factors have the form (9,19]

) E 2 -':-Y: 2
. il s q 2, = )] ,
3,Q7) - b log ¥+ gl (@), = . (%.36)
(] Q" bt ( .,\2 ) [ ( 8 QZ

Ve can also use this result to obtain resulrs for ratios of various baryon and
isobar “orm factors sssuming isospin or SU(3)-flavor sympetry for the basic wave-
function structure. Results for the neutral weak and charged weak form factors
assuning standard SU(2) x U(1l) symmetry are ziven in Ref. 46.

As ve see from £q. (4.28), the integration over xy and y; have potential endpoint
singularicies. However, it is easilv seen thar any anomalous contribution (e.g.,
from :hz- region %2,23 ~ O(m/Q), x3 ~ 1 - O{m/Q)) is asymptotically suppressed at
large Q2 by a Sudakov form facter srising from the virtual correction to the Fvq
vertex vhen the quark legs are near-on-shell (p2 ~ O(wQ}). [19,54] This Sudakov
suppression of the andpoint region requires an all orders reaumltion of percurba-
tive contributions, [57] and thus the derivacion of the baryon form factors is net
as rigorous as for the meson form factor, which has no such endpoint singularity.
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The most striking feature of the QCD prediction (4.36) is the 1!0" power-law
behavior of G as Gjj. The power-law dependence [8) raflects:
(1) The essentfal scale-lavariance of the qq scattering subprocesses within Ty.
(2) The fact that chea minimal Fock state of a baryon is the l-quark state.

We will discuss the phencmenology of the baryon form facters and the resuiting
constraints on the baryon wavefuncrion in Sec. VI.

In the case of hadron scattering amplitudes A+B -+ C+D, photoproduction, Compton
scattering, etc., the leading hard scattering QCD contribution at large momentum
tranafer Q2 = tu/s has the form [19] (helicity labels and suppressed){see Fig.8)

Fig. 8 QCD contributions to
mefon-meson scattering at large
N { momentum transfer. Diagram (c)
Tq * + _22 + _2 2+ corresponds to the Landshoff
q pinch singularity which 1is sup-
presged by gquark form factor
e {a) (b} (e) PrITse effects.

My rn e cap@8 o) = [TaxdecG @ o, ® Tyixs 0le, 1) (43D

x ¢A(xa.5) ¢,(xb.&') .

The essential behavior of the amplirude is determined by Ty, computed where eac:
hadron is replaced by fts (collinear) quark constituents. We note again that "y 1is
“collinear irreducible," i.a., the transversi momentum integrations of all reducible
loop integration are restricted to kf > €(Q°) since the small k, region is already
contained in ¢. If the internal prapagators in Ty are all far-off-shell 0(Q3) (as
in Fig.Ba) then a perturbative expansion in ag(Q“) can be carried out. However,
this is not true for all hadron-hadron scattering amplitudes since on can have
multiple quark-quark scattering processes which allow near-on-shell propagation in
intermediate states at finite values of the xq4. [17] The classic example is meson-
meson scattering, where two pairs of quarks scatter through the same angle (see
Fig.7¢). However, the naar-on-shell region of integration is again suppressed by
Sudakov factors. (Physically this suppression occutrs because the near-on-shell
quarks must scatter without radiating gluons.) A model calculation by MUELLER L10]
for v~ scattering in QCD {usirg an exponentizted form of the Sudakov form factor)
shows that the leading contribution comes in fact from the off-shell region
k2] ~ @(Q2)l-€ uhare ¢ = (2c+1)7L, ¢ = BCr/{ll - 2/3 ng) (for four flavors

= 0.281). This region gives the contribution [10]

- a(qz)-:uz = ckn (2e+1/2c) (4.38)

W+ %2
= (Q2>-1.9ZZ

compared to (l:z)'2 from the hard scattering ]kzl ~ J(Qz) vegion.
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Thus, even when pineh singularities are present, the far-off-shell hard scatter-
dng quark and gluon processes dominate larze momentum transfer hadron scattering
awplirudes. Given this result, ve can abstract some general QCD features common <o
all exclusive proceasss at large monentum transfer:

(1) All of the non-perturbative bound state physics is 1solated in the process—
independent distribution smplitudes.

(2) The nominal power=law behavior of an exchange amplitude is (1/0)“"" wvhere n is
the number of external elementary particles (quarks, gluons, leptonas, photons in Ty).
This immediately implies the dimensional counting rules: [8

n-2
-"—‘t1 (A+B » C+D) ~(—15) £, o) (4.39)
Q » L]
wlnt'en-nA'an‘*nc'I‘nD. and
b
2 1\
Fy(@ ~(—z) (4.40)
q

whare Fy is the helicity-conserving [1B,19] form factor. These power-law predic-
tions are modified by (a) the Q2-dependence of the factors of ag ia Ty, (b) the
Q2-evolutrion of the di{stribution amplitudes and (c) a pessible small power associ-
ated with the almost complets Sudakev suppression of pineh singularities in hadron-
hadron scattering. The dimensional=ecounting rules appsar to be exparimentally
vall-established for a wide varisty of processes (sée Ref. 19 and Fig.9):

(o0

Pion, n=2

Proton, ne3

!
. Neuteon, ns3
€ o
i" 0 Oeuteron, n36
- '
g 102
Helium 3, nsS
102 .
Helium 4, nsi2
3 x0, |
107
|°-4 L P 1 [ [l 1
0 2 - 6 :1‘:-19 1l.=dm=.;2§oril factors
t b w=l, (R
-t q2 (Gevd) o Ref, E) Y o
cﬁmz) ~wgh? !‘(QZJ ~H?! (4.41)
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o ~ ) ~ (@7 (4.42)

alg

(p » ) ~ @H®

sle

(op + pp) ~ (@H™1°

ais

(w-bvp)/%% Gp + xp) ~ ¢

at fixed 0, p . The application to yy -+ MM processes is discus .. in Sec. IV-E.

(3) Since the distribution amplitudes ¢y and $p are Lz = 0 angulsr womentum pro-
jections of the hadrenic wavefunctions, the sum of the quark spin along the hadron's

momentum equals the hadron spin: [18]

2 stk (6.43)

(In contrast, in Inclusive reactions there are any number of non=-interacting fuark
and gluon spectators, so that the spin of the interacting constituents is only
statistically related to the hadron spin — except possibly at the edge of phase-
space % ~ 1,) Furthermere, since all progagacors in Ty are hard, the quark and
hadron masses can be neglected at large Q2 up to correcetions of order ~m/Q. The
vector gluon interactions conserve quark helicity when a.'l.l masses ars neglected.
Thus totel quark helicity is conserved in Tp at large Q2. Combining this with
(4.43), we have the QCD selection rule:

Ay = z (b.44) ‘
:Ln;al H fgl H ‘

i.a@., total hadron helicity is romserved up to corrections of order &(m/Q).

Hadron helicity conservation thus applies for all large momencum transfer
exclusive amplitudes involving light meson and baryons. Wotice that the photon
spin is noC importast: QCD predicts that yp + »p is proton helicity conserving
at fixed 8,4 , 5 ~ @, independent of rthe photom polarizatiom. Exclusive ampli-
tudes which involve hadrons with quarks or gluons in higher orbital angular
momentum states are also supy T s of the momeptum transfer. An im-
portant corollary of cthis rule is tlmt helicity-flip form factors are suppressed,

e.8.:
7@ /7@ ~ owlehy . (6.45)

The heliecity rule, Bq. (4.44), is onc of the most characteristic features of
QCD, being & direct consequence of the gluon’s spin. A scalar or tenscr gluon-
quark coupling flips the quark's helicity. Thus, for such theories, helicity may
or may not be conserved fn any given diagram contributing o Ty, depending upon
the number of interactions imvolved. Only for a vector theory, like QCD, can we
have a helicity selection rule valid to all orders in perturbation theory.

The study of timelike hadronic form factors using =¥e™ colliding beams cap pro-_
vide vory sensitive tests of this rule, since the vartual photon in e¥e~ = y* - hphy
always has spin £1 along the beam axi= ot high energies. Angular momentum conserva-
tion {mplies that the virtual photon can "decay" wich one of onlg two poasidle
angular _distributione in the center of momentum frame: (1 + cos<d) for IlA a3l=1,
and sin“d for IAA -3 J * 0 where ), g are the helicities of hadron hy,p. Wadronic
helicity connrvauon, Eq. (4.44), as required by QCD greatly restricts *he .
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possibilities. It fmplies that Ap + Ag = 0 (aince the photon carries no “quark
helicity™), or equivalently that Ay — Ag = 20y = ~2ig. Consequently, angular

momentuD conservation requires |3, ]| = |Ag] = 172 for baryons, and |2p) = [ag] = 0
for mesons; furthermore, the amgular digstributions are now completely determined:

T3 te'e” + 85) = 14 cos”0 (baryons) {4.46)
i ::se (e+e- + M) = sin%8 (mesons) (4.am

We emphasize that these predictions are far from t-ivial for vector mesoms and for
all baryons. For example, cne expects distributions like 1+ acoséd, -1 < a < 1,
in theories with a scalar or temsor gluon. So simply verifying these angular dis-
tributions would give strong evidence in favor of a vector gluon.

The p law depend in s of these cross sectlons is also predicted in QCD,
using the dimensional counting rule. Such "ali orders" predictions for QCD allowed
processes are summarized in Table III.

Table II1 Exclusive channels in ete~ annihilation. Ehe hAFmY* couplings in allowed
progesses are ~ie(ps - pp} F(s) for mesons, -ie¥(pg)Y G(s)u(p,) for baryems, and
~lee vpupuepp FHV(E) for meson-photon final states. Similar predictions apply to

decays of heavy-auark vector states, like the y,y',..., produced in ete“collisions.
- -
. - A )
e +h () Ra(r) Angular Distributi —_—
* ) Py gular Dis uron u(e+e" - u+u')
N sn’e ':ll'(l)[, ~ ole?
ot (007 (0) X sin’e W) ~ cre?
Miord Cr(eddnran'y L+ cos’d tra/21s| Fy ()] ~ ot
in Q@ a*s" + pGal)f(h) ,on,... 1+ cos’e lata)|2 ~ efo*
P EEH B, 3+ cos’p [6(|2 < ers
\ HEDEE 1+ con®s locadl? ~ c/u®
( e . T T e L. 1+ cass « ci?
etalle alie. .. ain’e < cté?
Buppreased
0G0 ) 9 4 pRDFEN) PR, stn’e < ch®
ple)3(s3) 83,0 1+ cosle «ctd®
LSS 28 TR sin’p < oo’

Processes suppressed in QCD are also listed there; these_all violate hadromic
helicity conservation, and are suppressed by powers of wl/s in QCD. This would not
necessarily be the case in acalar or tensc heories.

The exclysive decays of heavy quark atoms (¥,¢'....)} inte light hadrons can also
be analyzed in QCD. [18]1 The decay p + pp for exsmple proceeds via diagrams such
a8 those in Fig.7b. Since $'s produced in e¥e~ collisions musc also have spic zl
along the beam direction and since they can only covple to light quarks via gluons,
all the properties listed in Table III apply to ¥, ¥, T, T',... decays as well.
There are cousiderable experimental data for the § and $' decays. [55]
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Perhaps the most significant tests are the decays ¢,¢' + pp,nn,... . The pre-
dicted angular distribution 1 + 87 cos?8 is cmsis:mt. with published data. [35]
This is important evidaence favoring a vector gi: .om s.nce scalar or tensor gluon
theories would predict a distribution of sinl8 + @(ay), Dimensional counting
rules can be checked by comparing the { and §' rates into pp, normalized by the
total rates into light-quark hadrons so as to remeve dependence upon the heavy-
quark wavefunctions. Theory predicts

8
= M
BR(v + pp) [y’
BRGYT+ pp)  \ W, (4.48)
where
BR(w + pp) = I(y > pp) . (4.49)

T(y + light-quark hadrons)
Existing data suggest & ratio lH,‘,uIH,;,)“ withn ~ 6 % 3, in good agresment with QCD.

Many more examples of exclusive reactions which test the basic scalipng laws and ;
spin structure of QCD are discussed in Refs. 18 and 19. The essential polnot 1s ,
that exclusive reactions have the potential for isolating th¢ CD hard-scattering
subprocesses in sicuations where the helicitizz of all the irteca~tion constituents
are controlied. In contrast, in inclusive reactions the absence of restrictions om
the spectetor quark and gluons allows only a statistical correlation between the

constituent and hadronic helicities.
E. Two-Photon Procegsas [12]

One of the most important applications of perturbative QCD is to the two-photon
procrsses dofdt (yy + MH), M = n,c,p,w at large § = (ky + kz)z and fixed 8, .. -
These reactions, which can be studied in ete~ + ete™M¥ processes, provide a2 par- :
ticularly important laboratory for testing QCD since these "Compton” processes are, ;
by far, the simplest caleculable large-angle exclusive hadronic scattering reactions. i
As ve discuss below, the large-momentum—transfer scaling behavior, the helicity i
structure, and often even the absolute normalization can be rigorously computed for H
each two-ohoton channel.

Conversely, the angular dependence of the yy + MM amplitudes can be used to
determine the shape of the process-independent meson "distribution amplitudes,”
$M(%,Q), the basic short=distance wavefunctions which centrol the valence quark
distributions in high momentum transfer exclusive reactioas.

A crictically important feature of the yy + Mi amplitude is that the contributions
of LARDSHOFF (17] pinch singularities are power-law suppressed at the Born level —
even before taking into account Sudakov form factor suppression. There are also
no anomalous contributions from the x ~ 1 endpoint integration region. Thus, as in
the calculation of the meson form factors, each fixed-angle helicity amplitude can
be weitten to leading order in 1/Q in the factorized form [Q2 pr = tu/s; Q =
nin(xQ,{1=x)Q)] (ses Fig.9):

1 1 - -
My s i " j; dx fo dy éﬁ(y.Qy) TH(x.y; "e:.m.) ¢M(x.Qx) {4.50)

where "4 is the hard-scattering amplitude vy » {qq)(qq) for tlle productlon of the
valence quarks collinear with each weson and ¢(x,Q) is the (pr t)
distribution amplituda for finding the valence q and q with light-cm fractions
of the mason's momentum, integrated over transverse momenta k;, < Q. The contribu-
tion of nonvalence Fock states are power-law suppreased. Further, the gpin-
selection rule (4.44) of QCD predicts that vector mesons M and M are produced with
oppasite helicities to leading order in 1/Q and all orders in a s(Qz). i

et e



[P D S T et s s Phan tae e o an

32

Dimensionsl counting [83 predicts that for large s, s% do/de scales at fixed

t/s or 6, o up to factors of in s/A°, -
Some forty diagrams contxibute to the hard-scattering amplitudes for yy +~ MM
{for nonsinglet mesons). These can be derived from the four independent diagrams’

in Fig.10b by particle interchange. The resulting amplitudes for helicity zerc

nesons ared

2
T 167a {e, ~ e )" a
+| . 8 32ro 1 2 4.50)
T _ I35 x(1l-x)y(l-y) 1- cosze
c.m.
T, 16wa, 320 le, - ez)z(l -a) eleza(y(l ~y) + x(1- x))
e (4.52)
1" 3 -0yA-v | _ .. Za 222,
Culte c.m,

where a = (1=-x)(1-y) % xy, the subscripts ++,~-,.,, refer to photon helicities,
and ey, e, are the quark charges (i.e., the mesons have charges i(e; - ez)).

(o) L
Ky % ﬁ/
ID‘
(1-xlpy
@ = Ui-ylng
¥og
ka 9, %\
®s Fig. 10 (a) Factorized structure of the
YY * MM amplitude in QCD at large momentum

transfer. The Ty amplitude is computed
with quarks collinear with the ocutgoing
mesons . (b) Diagram contributing to
Ty(r + MM) to lowest order in ag.

(v)

P
To compute the YY + MM ampititude ~#3), (Eq.(4.50)), we now need only know the x-
dependence of the mason's distribution amplituvde ¢M(x,Q); the overall normalization
of ¢y ia fixed bv the 'sum rule' (n. = 3)

fl EH
dx o (x,Q) = % (4.53)
( e A .

where fyy is the meson decay constant as determined from leptonic decays. Note that
the dependence in x dnd y of several terms in T);, 1s quite similar to that appear-
ing in the meson's electromagnetic form factor (4,23):

o~ A o~
16na 1 4 (Ihox) $ (Y-Q )
- 8 . { M b4
yle) = 55 f e T P T ) (4.34)

when #y(x,Q) = $(19x,Q) is assumwed. Thus much of the dependence on #(x,Q) can be
removed from #1), by expressing it in terms of the meson form factor — i.e.,
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Moy [ (e, ~e )2
= 16mn0 FH(s) (1—22-)— (4.55)
oA 1-coss
-—”q... ) i ((el—ez) % 6)
= 16%0 Fy(s) | ==~ + 2¢e ;e g[8, , : ¢ .5
oy M 7 - coszﬂc_m_ [ [ li]J

up to corrections of order ag and /5. MNow the only dependence on #y, and indeed
the only unknosm quantity, iIs in the 6-dependent factor

1 " - —_—
0, (%, @ ¢, (v, a[y1-y) + x(1-2)
f ax dy M M [ ]
0

*x(1-x) y(1-¥) a2- b2 cosl
-b° cos ec'm.

8[fen.t o] f1 w0 e*(y.ﬁ) y (@57
0

dx dy ;u“‘x')"yu )

The spin-averaged cross section follows imuediately from these expresssions:

43 2 ___do );I.,q 12 {4.58)
de s d cosec.ml 161rs Ak

.f-“ §(e-=> L Kool

(1 = cos s .m_) 1 -~ cos 9 .o,

x s[ec.u\.= "H] * 2('1‘2)2 ‘z[ec.-.; °H] *

In Fig.1ll the epin-averaged cross sections (for yy = wn) are ploctted for several
farms of ¢y(x,Q). At very large energles, the distribution amplitude evolves to

the form

= lbﬂu

¢y (x.Q) ot e x(l-n) (6.59)

and the predictions (curve 5&)) become exact and patumcter-free, Howaver, this
avolution with increasing Q¢ is very slow (logarithmic), and at current energles
¢M could be quite different in structure, depending upon the details of hadron17
binding, Curves (h) and () correspond ta the extreme axamples ¢y = [x(1-x)1
and ¢y « 8(x = 1/2), respectively. Remarkably, the eress section for charged
mesons is essentially independent of the choice of gy, moking this an essentially
parameter-fyea prediction of perturbative QCD. By contrast, the predictions for
neutral helieity-zere mesons are quite sensitive to the structure of ¢y. Thus we
can study the X=depandence of the meson distribution amplitude by lenuring the
angular dependence of this process.

The cross sections shown in Fig.B are specifieang for vy + ™ where the pian
form faccor has been approximated by F,(s) ~ 0.4 GeVé/s., The n +r= cross section
is quite large at moderate s:
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(nb-Gev®)

e annl

Fig. 11 QCD predictions for yy—+ 7%
to leading order in QCD. The results
assume the pion form factor paran-
eterization F,(s) ~ 0.4 GevZ/s.
Curves (a), (L) and (&) correspond
to the distribution amplitudes ¢y =
x(l=%), [x(1-x)]2/4 and
§ §{x-1/2), respectively. Predic-
tions for other helicity zero mesons
are obtained by multiplying with the

Ll

)

I | i |

e 0.2 0.4 C.6 0.8 1.0 scale constants given in Ref. 15.
- 22 = cos2 (8) -~
do + - 2
a y vy 4R (e 0.6 cev*
T — 7 ~ 3 ac 8, = w/2 (4.60)
3 (rruwe) l-cos6, s o

Similar predictions are pogsible for other helicity-zers mesonms. The normalization
of yy - MM relative to the vy + 7n cross section is completely determined by the
.ratio of meson decay constants (fnlf.,,)" and by the flavor~symmetry of the wavefunc-
tions, provided only that ¢y and ¢, are similar in shape. Note that the cross
section for charged p's with helicity zero is almost am order of magnitude larger
than that for charged »'s.

Finally notice that the leading order predictions (Eq. (4.58)) have no explicit
dependence on ag. Thus they are relatively insensitive to the choice of renormali-
zation scheme or of a normalization scale. This is not the case for either the
form factor or the two~photon ammihilacion amplitude when examined separately.
However, by combining the two analyses as in Eq. (4.58) we obtain meaningful results
without computing O(ag) corrections. The corresponding calculations for halieity-
one mesons are given in Ref. 12. Hadronic helicity concervation implies that only
helicity~zerc mesons can couple to a single highly virtual photon. So Py, ., the
transverse form factor, cannot be measured experimentally. For simpliciry we will
agsume that the longitudinat and tramsverse form factors atve equal to obtaim a
rough estimate of the yy + .0, cross section (Fig.12}. Again we see strong depen-
dence on ¢y, for all angles except O, . ~ m/2, where the terms invelving g,
vanish, Coi'nuquently, a measurement of the angular distribution would be very
sensitive to the x~dependence of ¢y, » while measurements at €p g, = 1/2 determine
Fy (8). Notice also that the numbe? of charged p-pairs (with any helicity) is
much larger than the number of neutral p's, particularly near 9, ., ™ 7/2. The
cross sections are sgain quite large with
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] Fig. 12 QCp predictions for vy ~+
p,p, with opposite helicity =21 to
10! léaéing order in QCP. The normal-
| ] [ ization given here gusumes that
the p distribution amplitude is
C 0.2 0.4 0.8 0.8 1.0 helicity independent.

22 2 cos2(6)

.1.) H 5 G;\’ ) {4.61)
s

c/de (v + c:o 4
dosde (vv ~ wh =
(\ ) e::.m. =z

Resultc for other mesons are given in Ref. 12.

The vy + MM and 1‘1 + M processes thus provide detailed checks of the bdasic Born
structure of QCD, the scaling behavior of the guark and gluon propagators and inter-
actions, as well as the constituent charges and spins. Conversely, the angular
dependence of the yy -+ MM amplitudes can be used to determine the shape of the
process-independent distribution amplitude ¢y(-:,Q) for valence quarke in the meson
99 Fock state. The cosd_ ;, -dependence of the yy - MM amplitude letermines the
light cone z-dependence of the meson distritution amplitude in much the same way
that the xp, dependence of deep inelastic cross sections determines the light-cone
x-dependenceé of the atructure functions (quark probability functione) qu(x,q).

The form of the predictions given here are exact to leading order in us(QZ).
Power-law (m/Q)}#€ corrections 2anm arise from mass insertions, higher Fock states,
pinch singularitias and noaperturbative effects. In particular, the predictions
are only valid when s=channel resonance effects can be neglected. It is likely
that the background due to resonances can be reduced relative to the leading order
QCD contributions if ane measures the two—photon processes with at laast one of the
photons tagged at modarate spacelike mumentum g2, since resonance contributious are
expected to be strongly damped by form factor effects. 1In contrast, the leading
order QCD yiyp + MH smplitudes are relarively insensitive to tha value of qf or LT

for qul <<'s,

Finally, we note that the amplitudes given above have simple crossing propertiea.
In particular, we can immedistely analyze che Compton amplitude YM + yM in the

R
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region t large enough with 5 >> Jt] in order to study the leading Regge behavior in
the large momentum transfer domain. In the case of helicity :1 mesons, the leadin-
contribution to the Compton amplitude has the form (s >> |t])

> 4

M yu = 1676y (€) (ef + eg) 4.62)
4

= )Y v
U\' A‘ . AH - AH)
which corresponds to a fixed Regge singularity at J = 0. [56) In the case of
helicity zero mesons, this singularity actually decouples, and the leading J-plane
singularicy is at J a =2,

V. DEEP INELASTIC LEPTON SCATTERING

The crxucial evidence that the elactromagneric current within hadrons is carried by
point-like spin 1/2 quarks comes from deep-inelastic electron, muon and neutrino
scattering. At large womentum tramsfer, Q2 > 2 GeVZ2 the leptop-nucleon inelastic
cross section displays a scale-ianvariant behavior consistent with the simplest

type of impulse approximation — where the electron scatters directly against point-
like quark constituents of the target. [57] The deviations which are observed at
very large Q2 are consistent with the color radlatrive corrections predicted by QCD.
In addition ar low valuaes of Q2, there is evidence for power law “higher cwi.t”
cortections associated with coherent multiquark processes, interference effects,
and final state corrections — quite in analogy to the corrections to impulse
approximation expected in nuclear physics inelastic breakup calculations.

The Fock state representation we discussed in Sec. LII provides a particularly
simple and elegant basis for calculating the deep inelastic cross section in QCD.
We first consider the forward Compton amplitude Y®p + Y*p with virtual photon mass
qz = =92 < 0, and than calculate the ep ~ eX cross section from the abscrptive

part. An ideal Lorentz frame is

2
+ -
pe{pp.p, )" (p+. i, 31_) (5.1)
P
a=(a"a7q,) = (0. %9, 31) (5.2)
P

with qz--Qz and p*q ® My, For the diagram 13b which has no final state inter-
actions, the (light-cone) energy denominator between the photon interactions is

o] 1 0.q
( v -L) K'k ,.q ( . .L)
9 q 4L
H + q0e
Fig. 13 Calculation of the for-
A (|'0-L) ward virtual Compton am,:itude.
P P 1,0 | ¢ Diagram (b) gives the impulse
( ' 'L) "’( P 'U) approximation, neglecting fimal
e (€ - . {b) P :::::n:?d multiquark inter—
> e 22 {2 2
k, + + kT +
n-uz+zm-(‘ %) - . L In)-n-u (5.3
x \x
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vhere m 1is the struck quark mass, and the sum over 1 ¥ 1 gives tha spectacor quark
and gluon contributions. For staces with

2 2
k' +m
:J; - !Mz ~ ; (J“—)il << 2Mv and kf << Qz

X

we can write

2

PE - 9;- + 1c (5.4

(o L) (5.5
Tmp " = e O\ T e .

i.e., the electron scattering on 4 quark with ligat-ccie momentum fraction

[ 3 2
k +k . Q
x == E4 My :qu (5.6)
p +r

The corresponding impulse approximation cross section is (x - xBj)

$ (ip - i'X) @ Z Gyyp.Q 25 (i + t'q) (5.7)
dQ dx dQ”
P, = Xp
q
where {21]
T [ et Jraatofio
qup(x_q) » & f [d k}_][dx |,-n(x,kl)| G(x-xq) (5.8)

gives the probebility distribution for f1nd1ng the quark with fraccional light:

cone momentun collinear up to the scale kl < Q , e T < 2Mv. Unlike large momentum
transfer exclusive amplitudes, all Foex sta:es contribute te the incluaive cross
section. The subprocess cross section do/dQ2(2q + 2') is evaluated for a quark
collinear with the proton mometum ﬁ* = xpt, k, «0, Since all the loop corrections
to the subprocess cross section are hard (k‘- O(Qz)), it can be developed as a
poster serius {n e (Q ). Thus the only enrrection to perfect scale-invariance of
dao/dx dQ at large Q and fixed xpy come: from the Q2 dependence of the probabiliry
distribution C(x.Q ). Tris in turn can only arise from the wavefunction renormwali-
zatrion or from contributions ¥, ~ €7(1/k,) at large k,. In QCD these occur only
from the perturbative processes q - qg, and g ~ g8, & + GG, a6 illustrated in Fig.l4.

—%%—0&‘%

Fig. 14 Contribucions to the hadron Fock state wavefunction
which give v ~ llk at large k, and thus structure function
evolution.

In parallel to the derivation of the evolut  =n equation for the din:ributicg anpli-
tude, we then can derive evoluticn equarion.  or the distributions Gq,H(x,q } and
G IH(x,Q ) of the form [58,59]
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us(Q2> fl (x) dy
G(x,q) = (=) 6(y, Q9 - (5.9)
3 log Qz ’ 2r x y ¥

For example, for the "non-singlet" distribution

ql“(x’Q) qm(x.Q) = cﬁlﬂ(x.Q) (5.10)

we have to lowest order in uE(Qz). (C}. = 4/3)

2 2 ! 2
- 1+ 25 14z - 1+
Para® = (1 = ‘l cr[ 5 - 6 - 2) j; dx 5 x] (5.11)

(The subtraction term, which ensures finite behavier at xg = 0, arises from the
wavafunction renormalization, as in Eq. (4.14)). The Q2 dependence can be displayed
most simply by taking moments:

2 1 2. n
M Q) = G(x,Q°) = dx (5.12)
n 0
Then
S _ NS .2Y Loz 92/ 2\ v,
”: (%) (5.13)
log QOIA .

whera the y, are defined in Eq, (4.16). The higher order carrections to the Qz-
evolution of M, are discussed in Refs. 1 and 2. A critical feature [21] is che
fact that cthe higher loop cgrrections (e.g., from the higher Fock states) are con-
strained kinematically to k < (1-y)Q2 < (i- x)Q2 , where v is labelled in the
figure; i.e., the evolution'is reduced at large x and for large n, A detailed

discusaion is given in Ref. 41,

Equation (5.7) displays an essential fearure of the QCD predictions for inclu-
sive reactions: the faccorization of the physical cross section into & hard-
scattering subprocess.cross section, controlled by short-distance perturbative QCD,
convoluted with structure functions 6(x,Q2) which contain the long distance hadronic
bound state dynamics. Not:ice that the Q2-evolution of G(x,Q) is also completely
specified by the perturbative QCD processes and is independent of the nature of the
target.

All the corrvections to the perturbative QUD impulse approximacion from final
state interactions, finite kf effects, interference contributions, mass corrections,
etc, are of higher order in 1/Q2, at least when analyzed using perturbative mechods.
In the operator product analysis these contriburions correspond to matrix elements
of "higher twist" operators which have non-minimal dimensions. The most important
higher twist terms for deep inelastic lepton scattering are expected to correspond
to processes where the lepton scatters on multiparticle clusters in the carget
(qq, qq, virtual mesons, qg, etc.). We thus obtain a sum of contributions (see

Fig.15): (15}

do do
> Galll(x) —3 (ea » ea) ~ (5.14)
d4q"dx § 4 Py = *Py

where, in general doaldqz falls in Q2 according to the compositeness of a:
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e & Fax, G2) ~(1-x}?
y = + QCD evolution
+ ¢ [a02)]
(.’-II
F,{x, 02}~ =X
+ of ) n®
Fig. 15 QCD contributions to in-
elastic electron-nucleon scatter-
T ing, including radiative and
. F2(n,02)~ =%~ higher twist (diquark, triquark)
z:; G corrections.
<% (sa - (5.15,
dq Q

For example, the "diquark eqq + eqq gives a contribution ro ep - eX of relative
order {m?,Q2)2, Since the qq can carry a large fraction of the proton's momentum,
this contribution can be significant at large x. For a guide to this effect one
tan use the spectator counting rule: [60,8]

Zns-l
G_uy(x) ~ (1-x) (5.16)
a/d
x-rl
where ng is the minimum number of spectator quarks (or gleons) in the Fock state
required to srop at x + 1. The minimal Fock srates containing a gives the dominant

contribution.

The simp,ified rule (5.16) can bz derived from minimallv connected tree graph
diagrams, ignouring spin effects, or from simple phase space considerations if ome
ignores the spectator quark masses [6l] {se¢ 3ec. VI}. Using this simple counting
we can then classify the contributions to the hadron structure functions, as illus-
traced in Fig.l5. The diquark contribution is expected to give a large contribution
to the longitudinal structure function since it atis soherentlv as a boson current.
Tne order a.(Q ) contribution from tke hard gluon radiative corrections with
k~ > (1~ x)Q- also glves a significant contribution to oy

A detailed devivation of the behavior of structure functions at x ~ 1 from per-
rurbative QCD is given in Ref. 21. Ar x ~ 1 all of the hadron's =amentum sust be
carried by one quark, and each quark and gluon quark and gluon propagator -‘hich
transfers this momentum becomes far ofr-shell:

( k! + mz)
~ T .
Perturbative QCD predictions thus become relevant. An important result is chat at

large x the struck quark tends to have the same helicity as the target
nucleon: [21,62]

3 5 .
cq1/pt {(1-x)": chIpf ~ (l1-x) (5.17)
This type of spin correlation is consistent with the SLAC-Yale polarized elecrron/
polarized target data. Comhined wirh the SU{6) symzetry of the nuclecn wavefuncrion



40

this implies that the leading quark in the proton is five times more likely to be

an up quatk than a down quark, and thus [62] (Fz - z eixcq,n)
q

2
Fap (2.0 )Isz(x.QI) o (5.18)
For the case of mesons, the perturbative QCD gluon exchange prediction is [63]

G n'v(l-x)z {5.19)

q/

In addition, the same QCD analysis predicts a large C,’Qz contribution to the =eson
longitudisal structure function (see Fig.3b): (22,64)

2

Q
2
Fxoh -2 c f a? o o £_ad) ¢5.20)
~a/{1-x)

which numerically is Fp ~ leQz in (hs\'2 units. This concribution, which can domi~
nate leading twist quark distributions in mesons i3 normalized {n terms of the
meson distribution amplitude, wvhich in turn is normalized by the pion form factor.

The dominance of the longitudinal Structure functions in the fixed W liz=it for
masons 1s an essential prediction of perturbative QCD. Perhaps the most dramatic
consequence is in the Drell-Yan process #p -~ i*i“X; onc predicts [222 that for
fixed pair mass Q, the angular distribution of the !* (in the pair rest fraze) will
change from the conventional (1 + coaze,,) distribucion to sin'-'(e,,) for pairs pro-
duced at large xj. A Tecent analysis of the Chicago-Illinois-Princeton experi-
ment [65) at FRAL appears to confiram the QCD high twist prediction wicth about the
expected normalizarion, Striking evidence for the effect has also been seen in a
Cargamelle analysis [66) of the guark fragmentation functions in wp - 2*u~X. The
results yield 2 quark fragmentation distribution into positive charged hadrons
which is consistent uith the predicted form: d¥V/dady ~ B(1-2)2 + (C/Q2)}(1~-v)
vhere the (1-y)behavior corvesponds to 3 longitudinal scructure function. It is
.also crucial to check that the e*e™ + MX cross section becones purelv longitudinal
(s1n26) at large z at moderate ¢2, [62]

ing QCD contribution te the structure function before QCD evolution is applied;
.g., the results are valid for Fy(x,Q%} at @2 of order of <k2)y. The large Qi
behavior is determined by the ~volution equaricns (5.9), taking account of the
phase space limits of the radia.»d gluons at x ~ 1. {41]

The results (5.17) and (5.19) for Gg/n and Gqyy Bive the behavior of the lead-
2

Vi. THE PHENOMENOLOGY UF HADRONIC WAVEFUNCTIONS

Thus far, most of the phenosmenological tests of QCD have focused on the dvaamics
of quark and gluon suvaprocesses in inclusive high momenctun transfer reactions. The
Fock state’wavefunction l‘if,(n.f 1: Ag) which determine the dynadics of hadrons in
terms of cheir quark and gluon éegt«s of freedom are also of fundamental importance.
If these wavefunctions were accurately known then an extraordinary number of phe-
nomena, including decay amplitudes, etclusive processes, higher twist contributioms
to inclusive phenomena, structure functions, and 1ow transverse momentun phenamena
(such as diffractive processes, leading particle production in hadron-hadron col-
lisions and hegvy flavor hadron producrion) could be interrelated. Conversely,
these processes can provide phenomenclogical conscraints on the Fock state wave-
functions which are important for understanding the dynamics of hadrons in QCD.
In addicion, as we discuss in Sec. VII, the structure of nuclear wavefunctions in
SI‘:th essential for understanding the syntheses of nuclear physics phenomenslogy

th QCD.
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A. Measures of Hadron Wavefunctions

As we have shoun in Sec. I11 the central nmeasures of the hadron wavefunctions are
the distriburion smplitudes

s = [ dzk] W8x, % ) (6.1)
A 1) v i -
which control high comentum transfer forn factors and exclugive processes:

MHE Ne O Ty (6.2)

and the quark and givon structure functions

Q 2 N 2
6 i@ = ; f &k, fldxiis, Ge ok 2iT60x- ) 6.3
which control high momentum transfer inclusive reactions
=26 @ & (6.%)

Exanples are shown tn Figs.l chrough 3. A surmary of the basic properties,
logarithnic evolution, and power law behavior of these quantities is given in
Table IV.

The exclusive formula (6.2) also includes applications to large modentum trans-
fer mulriparticle preduction [68,8) e*e™ - Hi...Hy with py Py~ £Q?), and the
elastic and inelastic weak and electromagnecic form factors. We also note that
hard scatrering higher twist subprocesses to Inclusive reactions such as yq - Mq,
86 ~ Mg, q§ ~ M%, qq - B§., etc. are absolucely normalized in terms of the distri-
bution azplitudes. [69] In particular, some azplitudes such as vyq ~ =q, 9§ ~ “§
and gg + 2q can be rigorously related to the pion fore factor since the same
integral

1
f = (x,0) (6.9)
o :

1-x

enters in each of the quantities. [70] The pT® processes [24] gq ~ Mg {see Fig.3a)
and qg + Mq are particularly interesting and important in high-pT meson production
processes such as pp + MX since the meson is produced direccly in the subprocess
withoutr the necess!tz for quark or gluon jet fragmentation. In fact, the contribu-
tions of standard pj“ scaling processes such as qq <+ qq, gq < 89, and gg ~ 8¢ tO
hadron production are strongly suppressed by two to three orders of magnitude
because of the suppression of jet fragmentarion Dy/q(z) at large momentus fraction
z and the fact that the subprocesses must occur at a significantly larger corentun
transfer than that of the eriggered particle. [71]

Despite much effort there fg at tui. | -- no systematic understinding of high
pT hadron production in QCD. A comprebensive attack must take fnte account not
only the leading twist subprorcesses and directly coupled higher twist contributions
such as those listed above, but also the effects of initial state multiple scat-
tering effects. Oue of the most important experiments which could clarify the
nature of these effects is the mensurement of the ratio of divect photon to meson
at high pr:  (x1 + 2pp//8)

de do
R, (3,88 ) = {pp -+ vX) (pp + nX) (6.6)
v/r"T e.m. dspIE /f/djplt

1w ©
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Table IV Comparison of exclusive and inclusive cross sections

Exclusive Amplitudes Inclusive Cress Sections
M~ ex,Q) @ Ty, (%, Q) do ~ i G(x_,Q) © dé(v.a.Q)
R PN T 6 )=2dek tix s’ oSoek,) 2
3(x,Q) = 1| Yuay 1%0K,? *.Q - L PR vplEeR,
Measure ¢ in ¥y + MH Measure G in 2p ~ iX
A, =2 ALt L
1§| 1 B 1);1 1=
EVOLUTION
a_“!‘.lﬂ% =a, f[dy]ﬂ(x.y)o(y) M:Q)_z =a, fdy P(x/v)G{y’
2 log Q 9 log Q
lim lim
quw $xQ) = ]:] %y * Celavor Qo GO = 80 €
POWER LAW BEHAVIOR
2n -1
(1-x.)

do T .
do - 1 —— (AB -~ CX) = —_—— =)
ax (A+B ~ C+D) a3 f(ﬁm) dzp[r_ 2 Tact 2 o

s )

“-nA+nB+nc‘nD nact=na’nh+nc+nd

- 2
IH: expansion in us(qz) da: expansion in c.(Q )

COMPLICATIONS

End point singularities Multriple scales
Pinch singularities Phase-space limits on evolution
High Feck states Hea-, quark thresholds

P.avy twist multiparticle processes
Inicial and final state interactions

For example, if leading twist QCD processes dominate these reactions then Ryr ~
fixp) ~ (1-:1-)'2 at €, o~ n/2, If directly-coupled pyocessas auch as gq ~ vq
dominate the meson proﬁﬁcitnﬂ then one predicts Ry/q ~ p4 at fixed xy and 8o p, [72]
Measurements of this ratio in nuclear targets are important for clarifying the con-
tribution of final state multiple scattering processes.

The photon probe plays a crucial role in high-pr hadron reactions since the
photon couples directly to the quark and gluon subprocesses at short distances.
The wost dramatic exsmple of these point-like phenomena is the recent observations
at PETIRA [6-8] of high transverse momeatum hadrous ia vy collisions. The results
at pr 2 3 GeV appear to be consistent with the scale invariant QCD prediction [73]
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d_.(u:_:le_t_ue_t). -3 EE , - ud,s,c (6.7

datyy » wh)
2
a_(pp) )]

These results also indicate that, unlike typica) mesom-induced reacrions, an iaci-
dent photon often produces high pp hadronic jets without leaving hadronic energy
in the beam fragmentation direction. [74] One also expects analogous results for
directly coupled photons in yp -+ HX and vp + Jet + X reactions. The point-like
behavior of on—shell photons is in direct contrast to the predictions of vector
meson dominance models.

A surprising feature of QCD is that even a hadron can produce jets at large pr
without beam fragmentation. [70] For example, the existence of high twist sub=-
processes such as Mg = gg and Mg ~ qq leads to high py jet events in meson-induced
collisions Mp + Jet + Jet + X where there is no hadronic energy left in the meson
beam fragmentarion direction (see Fig.3c). The inclusive cross section, which
scales as pfﬁ at fixed xp and B, 4 , 15 absolutely normalized ro the meson form
factor. As in the case of the photon-induced rveactions, the directly coupled meson
has no associated color radiation or structure function evolution. Ar experimental
search for these unique and highly kinematically constrained events ir very im-
portant in erder to confirm the presence of these subprocesses whick involve the
direct coupling of meson q@ Fock state to quarks and gluons ar short distance.

In general, we can repla.: any direct photon interaction by a direct=coupled
mason interacrion im the subprocess cross section by the replacement g & Fﬂ(p;).
Furthermore, one czn compute direct-coupled processes which isolate the valence
Fo~\ state of baryops. e.g., pp =+ pX {production of isolated large pr protons via
the qq + pg -ubproresses), and reactions pp + qq¥ (from gp + qq) (see Fig.3b),
pp + qqq% (f:vm g2q + qq1) ete., each of which produce jets at high py without beam
spectators c. fragmentation.

B. Zaonstraints on the Pion and Proton Valence Wavefunction [27]

The central unknown in the QCD analysis of hadronic matrix elements is the hadron
wavefunction in the non-percurbative domain xZ » 1 GeV2, For {llustration we shall
‘assume that in this region the Y, fall off exponentially in the off-shell emergy:

b"’cn
8 nKpsk ) = A e (6.8)

& = - Z(kz+-)i<o (6.9)

1=1

The parameterization is taken to be indepeudent of spin; the ful! wvavefunction is
then obtained by mulciplying by free spinors u/viF . The form (6.8) has the advan-
tage of analytic siwplicity: for example, rhe resulting baryen distribution

amplitude at small ¢ is

3 nz

2 i

b,
(6.10)

Q(xi,x) - A’ X, %X,%y &

At large «, ¢ is deternined from the evolution equation (4.33). At very large k,
the ¥, for non-valence Fbck states should match onto the power law fall-off krl
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predicted by perturbative QCD. It should be emphasized that the form (6. B) is
choaen just for simplicity. An equally plausible paremeterizatien is Ang"
with p = 3. vhich 18 suggested by the Schroedinger equation assuming . unear
potential and the correspondence given in Eq. (3.41).

In the casv of the plun we can derive two important constraints on the valence
wavefunction from the m - uv and -© = yy decay amplitudes:

fis  wvens iz ool

and {27)
i Zz(mz) /n_
¢,k = 0) ; = —f—c (6.12)
21(-: )

The derivation of the second consrraint assumes that the radius of the pion is
much smaller than its Compton length:

mg,m: < ;‘5 . (6.13)
L
Let us now assume the form
2 (kz + mz)
Y
. ae Vv Ax(l-x) R (‘2 1 Cevz) (6.14)
qq
whete
2 (Q2>l -1 (x““)z - b2 (6.15)
sz n 6 \'n v

is the contributicn to the slope of the meson form factor from the valerce Fock
state (see Eq. (4.2)). The two conditions (6.11) and (6.12) then determine
RIS = 0.42 fm, and [27]

Poare ./ o3 f df¥

Thus the probability that the pion contains only the valence Foek state at small
«2 18 less than 1/4, Furthermore, the radius of the valence state turne out to be
smaller than that of the total state: RE*PY = 0,7 fm. One can alsc verify that
the bound an,_, s 1/4 is also true for pouer law wavefunctions ¢ ~&P, p > 2.

The existence of other Fock states at equal t in the pion ia to be espected
considering the fact that its quarl and gluon constituents are relativist.c. The
existence of lurge Im,, and wy/oy spin splitrings (due to transverse-polarized
gluon exchange) .vl.su implies tﬁa: there is a non=-zero gluon component irtrinsic
to both meson and nucleon bound states.

2, DY

5 . (6.16)
zz(m“)

&=
n
F YT

H/*(x k }

In the ease of the baryon wavefunction, one can obtain non-trivial comstraints
on the form of the 3-quark valence wavefunction by making a simultaneous analysis
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of the proton and neutron form factors and the 3 - pp decay amplitude, zssuming

the ¢ decays via a 3-gluen intermediate state (see Fig.6). The observed angular
digtribution [53] for ¢ + pp is in fact consistent with the predicted form

1+ 82 coals (where B 1s the nucleon velocity) and i{s a non-trivial check of hadron
helicity conservation for exclusive processes in QCD.

The ¢ - pp ratio is given to leading order in ag by (Fig.1lb} (18]

- - -
iy » 3g + pp) 6 3 lpgyl 12
T(s = 3g ~ al) ' 2 X107 e (s — =Ty (6.17)

here 'PCMi//;>= &, s = 9.6 Gev~, and

! Plyges? %Yy * X4¥
T (dx1ldy] Y2 (% C 1-5,) + v (- %] [#501-v5) F ¥501- ;1]
0 1Yy [x LS SRS | 1] [3i-vy) + vy 3

=(x1.s)

(6.18)

=

Xllez

is 8 well defined function of che barvon distriburion amplitude. 1In the case of
the nuclear form factors (see Eqs. (4.31, 4.32)) it is important to use the cor-
rect argument for each ag in the hard scarrering amplitude Ty corresponding to

the wecuel momentum transfer which flows through each exchanged gluon in Fig.7b.
This effect is expected to yield the most important contribution to next to leading
order in ug and is an integral part of the QCD predictiens. 1t is interesting to
note that if ¢p = Ayx1x2x3 and if all the ag have the same argument (which 1s, in
fact, the situation in the asymptotic Q2 - = limit [9,19]) then Eqs. (4.28-4,32)
give Q%{FG GQ(QZ)/GQ(QZ) = 0. However, the fact that ag is not a constant and has
different arguments for each diagram in T, allows one to obtain empirically con-
sistent results for the normalization [75] of Gﬁ(qz), Gg(ql) and the § -+ pp decay
rate. To firat approximation one requires [27]

2

us(xiyiqz) uleZN) 2
= ~1.5 to 2.0 at Q° & 10 GeV . (6.19)

3,(0-xpa-ye?) o ted?rn)

The QCD predictions (4.28-4.30) for the proton and meutron form factors are oanly
valid at large Q° where the effects of mass corrections, higher Fock states and
finite transverse womentum can be neglected. In order to understand these effects
we extend the parameterization of the 3 quark valence Fock state contribution by
using (Q2 + MD=Z in the denominators of (4.29, 4.30) and replacing as(Q?) -
2g(02 + M2) = 4x/gy log {(Q2 + M2)/42) to reflect the Fact that ar low Q2 the trans-
verge sopenta intrinsic to the bound state wavc.unctions flow through all the

propagators.

Although we have not tried to optimize the parameterizations, a typical Fit
which is compatible with the proton anu neutron form factors (see Fig.16) and
y = pp decay data are Mg = 1.5 GeV, u = 450 MeV, mq % 300 MeV, and A = 280 MeV, so
that :S(Qz e 10 Gev2) = 0.29. (Analyses [501 of higher order QCD corrections to
the meson form factors suggest that one can identify the A used here with Agpom *
2.16 Ag2.) The computed radius of the 3-quark valence state {computed from G¥ via
Eg. (4.2)) 1s, however, quite small: Ry = 0." : ° , and the valence Fock state
prohubility is Pygq/p 2 1/4. 1If this preliminary analysis is correct, then, as in
the meson case, the valence state is wuch smaller in transverse size than the
physical hadron (which receives contributions to its charge radivs from all Fock

states).
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Fig. 16 Fit to nucleon form factor
10 30 30 data described in the text. (From

Q ww  Ref. 27.)

The most crucial prediction from this analysis is that Q“GE(QZ) should decrease

by a factor of 2 for Q2 = 10 to Q2 = 40 GeV2, a trend not st all indicated by the

data! Further measurements of GH(QZ) are clearly crucial in order to check this

essential prediction of asymptotic freedom.

Givan the above parameterization of the nucleon valence Fock state we can use
Eq. (5.8) to compute the 3-quark non-perturbative contribution to the proton struc-

.ture function at large x (see Fig.17)

2 2 2
-2|n h
q,p(x,qo) . x(1~x)7 *1%) (6.20)
0.4 ++ T T T )
{ t ' Q2 = 3.5 Gev2
0.3 ¢ .
- 4
g '
= 02 | ¢ -
& ~==¥
e \\
0l // —
Vi Y
’ Mo Fig. 17 Predicted valence quark
o R . . Sa contribution to the proton struc-
ture function. Evolution and
o 0.2 04 0.6 o8 1.0 higher Fock states are not in-

" X on  gluded. (From Ref. 27.)
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Sinca 4 mzbz ~ 0.05, the exponential factor is not very important away from the edge
of phase sgace and so it is difficult to distinguish between the non-perturbative
and (1-x)3 perturbative contributions at large x (see Sec. V). Higher Fock states
lq998>, {999 43> are axpected to give the dominant contribution at lower x, Daspite
the freedom in this parsmeterization it is reassuring that one ean simultaneously
fit a number of diverse nucleon properties with QCD formulae and parameters which
are in the expacted range.

At low Q2 the exact formula (4.2) can be used as a further constraint on the
baryon Fock .ates. Eventually one hopes to extend the predictions to other domains

of baryon phenomenology such as the baryon decay amplitude in grand unified models
and the normalization of higher twist subprocess contributions to inelastic lepton-

nucleon scattering.

C. Quark Jer Diffractive Excitatiom {30]

The fact that rhe wavefunctiom of a hadron is a superposition of (infrared and
ultraviolet finite) Fock amplitudes of fixed particle number but varying spatial
and spin structure leads to the prediction of a novel effeet in QCD. [30) wWe first
note that the existence of the decay amplitude m + uv requires & finire probability
amplitude for the pion to exist as a quark and diquark at zero transverse
separation:

#(x,F, = 0) = & Vo] x(1-x)f (6,22)

In a QCD-based picture of the total hadron-hadron cross sectian, the components of
a color singlet wavefunction with small transverse separation Interact only weakly
wich the color field, and thus can pass freely thraough a hadronic tarpet while the
other conponents interact strongly. A large nuclear target will thus act as a
filter removing from the beam all but the short-range componenta of the projectile
wavefunction. The associated cross section for diffractive production of the
inelastiec states described by the siort range components is then equal to the
elastic scattering cross section of the projectile on the carget multiplied by the
prebablilicy that sufficlencly small transverse separation configurations are
present in the wavefunction. In the case of the pilon interacting in a nucleus one
conputes the cross section

"’2 = u:‘: 122 £2 x2(1-0)? (6.23)
dx d T, r2~°
Py

corresponding to the production of two jets just outside the nuclear volume. The
x distriburion corresponds to do/d cosd ~ sinZ6 for the jet angular distribution
in the qg center of mass. By taking into account the ajsorption of hadrons in the

nucleus at T, # 0 one can also compute the k; distribution of the jets and the
mase spectrum of the diffractive hadron system. Details are given in Ref. 30,

D. The "tnveiling" of the Hadronic Wavefunction and Intrinsic Charm

The renarma;izabill:y of QCD implies that all of the dynamice of the hadron wave-
functions Wn(“i-uli) at scales «? much larger than mass threshalds is completely
contained in the structure of the running coupling constant ag{k<) and running
mass m(x2) and che quark and gluop external line remormalization consrants.
Nevartheless, the [act that there are different hadronic scales and thresholds in
QCD does imply non=trivial dynamical structure of the wavefunctions. In the case
of Compton scattering, Yp -+ YP, the energy denominators (e2e Eq. (5.3)) are a
function of 2Mv - &, 8o that the cross section is sensitive to wavefunctions up
to the scale x2 ~ 2Mv,
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As an example of the change of wavefunction physics with the resolution scale
let us consider a deuteron target. For very low k< << 2Mcp g, the deuteron acts
as a coherent object. At the scale «Z >> Meg p., the wavefunction corresponds
to a n-p bound state. As the scale increases to «2 2 1 GeV2, the quark degrees of
freedom become velevant and the deuteron wavefunction in QCD must be described in
terms of six quark (and higher) Fock states: [76]

[0> = al (uud), (ddu),> + b] (uudy (ddu) > + el (uu} (ddd) > + d] (wuu) g (dad) o>

+ 4o (6.24)

The [irst component corresponds to the usual n-p structure of the deuteron. The
second component corresponds to "hidden color" or "color polarized" configutations
where the three-quark clusters are in color-octets, but the oveérall state is a
color-ainglet. The last two components are the corresponding isobar configura=
tions. If we suppose that at low relative momentum the deuteron is dominated by
the n-p configuration, then quark-quark scattering via single gluon exchange gener-
ates the color polarized states (b) and (d) at high k,; i.e., there must be mixing
with color-polarized states in the deuteron wavefunction at short distances. [67]

The deuteron's Fock atate structure is thus much vicher in QCD than it is in
nuclear physics where the only degrees of freedom are hadrons.

It ie interesting to speculate on whether the existence of these new configura-
tions in normal nuclei could be related to the repulsive core of the nucleon=
nucleon potential, [76] and the enhancement [77] of parity-violating effects in
nuclear capture reactions. One may also expect that there are resonance states
with nuclear quantum numbers which are dominantly color-polarized. The mass of
these states is not known. It has also been speculated [78] that such long~lived
states could have an anomalously large interaction cross section, and thus account
for the JUDEK [79] anomaly in cosmic ray and heavy ion experiments. [80] Indepen-
dent of these speculations, it is clearly important that decailed high-resolution
searches for these strtee be conducted, particularly in inelastic electron scat-
tering and tagged photon nuclear target experiments, such as yd - yd scatter at
large angles.

The structure of the photon's Fock states in QCD is evidently richer than that
expected in the vector meson deminance model. [81] For example, consider the one-
gluon exchange corrvection to the y + qg vertex. For l.f > (k<) the vertex cor-
rection renormalizes the point-vertex. For the soft domain lf < OJ(x%) one expects
large corrections which eventually by dispevsion theory correspond to the usual p,
Wy $, .o+ interpolating fields. The soft corrections thus give the usual hadron-
like component of real photon interactions. Nevertheless, the point-like component
survives at any momentum scale, [81] producing point-like corrections to photon
shadowing, J = 0 fixed pole phenomena in the Compton amplitude, and the “anti-
scaling” OCD structure function of the photon. [13] As the regsolucion scale k2
incresses past the heavy quark thresholds, one adds the y -+ ¢¢, bb, etec. components
to the photon's wavefinctions.

It {s also interesting to consider the dynamical changes to the nucleon wave-
function as one passes heavy quark thresholds. For «2 > 4m the proton Fack
state stracture contains charm quarks, e.g-, states |pd ~ |oud e>. We can dis-
tinguish two types of contributions to this Fock atate. (311 (1) The “extrinsic*
or interac:ion-dependent component generated from quark self energy diagrams as
ghown in F.g.18b — a component which evolves by the usual QCD equations with the
photon mass scale Q%; snd (2) the “intrinsic" or interaction-independent component
which 18 gunerated by the QCD potential and equations of motion for the proten,
as in Fig.l8a — s component which contributes to the proton Fock state without
tegard to QCL evolution., Since the intrinsic component is maximal for minimum off~
shell energy
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& -Zij [(kf + ntyal,

the charm quarks tend to have the largest momentum fraction x in the Pock state.
(This alsoc agrees with tha physical picture that all the constituents of a bound
state tend to have the same velocity in the rest frame, i.e., strong correlations
in rapidity.) Thus, heavy gquarks (though rare) carry most of the momentum in the
Fock state in which they are present — in comtrast to the usval partonm model as-
sunption that non-valence sea quatks are aiways found at low X. One can also
estimate using the beg model and perturbative QCD that the probability of finding
intrinsjec charm in the proten is ~1-2%. [82]

ic

) T
| 2L, |
1
P - I Fig. 18 Iatrinsic (a) and
! ! extrinsic (b) contributions to
w4 {a) {b) «ms  the proton |uude® Fock state.

The diffractive dissociation of the proton's intrinsic charm state [30,31)
provides a simple explanation why charmed baryons and charmed mesons which contain
no valence quarks in common with the proton are diffractively produced at large xp
with sizeable crose sections at ISR energies, Further discussion may be found in

Ref, 31,
VII. THE SYNTHESIS OF QCD AND NUCLEAR PHYSICS

In this section we will discuas applications of quantum chromedynamics to nuclear
physics where the basic quark and gluon substructure of hadrons plays an essential
role at the nuclear levael. [83] Because of asymptotic freedom we can make detalled
predictions for nuclear form factors and ouclear scattering processes at large
momentum transfer, as well as predict the asymptotic short~distance featuraes of

the nucleon-nucleon interaction and nuclear wavefunctions. [84,85] We shall also
diseuss areas where QCD places constrainic on or actuvally conflicts with standard
nuelear physics models. In particular, tne fact that the nuclear wavefunction has
"hidden coloxr™ Fock components [86] implies that the conventional meson and nucleon
degrees of freedom of nmuclear physics are not sufficient to fully describe nuclei
in QCD.

A. The Deuteron Form Factor and Nuclear States at Short Distances

The most direct application of perturbative quantum chromodynamics te nuclei is
the structure of the Fock state wavefunctions and tha form factors of nuclel at
large womentum transfer. In analogy with the meson and nucleon form factor calcu=-
lations diacussed in Secs. I11 and VI we can write the deutaron form factor at
large momentum transfer in the factorized form (see Fig.19): [851]

1 1
2
Fy(Q) - j; [d:':] j; [dy) W(x .0 Tyx,y5 @ (7. Q) .1

vhere Ty ~ [as(qz)lqzﬁ i8 computed from the sum of hard scattering diagrams
6g + y* + 6q where the inicial and final quarks are collinear with the initial
and final deuteron momentum p and p+q, respectively. The distribution amplitude

$
°D(xi; Q) 'f [dzk*] w&q(“i"’;i) (7.2}
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Fig. 19 QCD factorization of the deuteron form factor at
large momentun transfer. Ty is computed for six quarks
collinear with the incident and final directions.

is defined in terms of the deuteron’s six—quark valence wavefunction evaluated at
equal time on the light cone, As in the case of the meson and baryon distribution
asuplitudes, the log Q2 dependenca of $p is deternined from am evolution equation
of the form (4.33) where to leading order in ag(Q2), the {nteraction kernel is
determined from the sum of single gluom exchange amplitudes.

Because of the helicity-selection rules, the leading form factor of the deuteron
corresponds to the helicity zero — helicity zero electron deuteron scattering

amplitudat
2
r0h =i h .
The other deuteron form factors are suppressed by at least one extra power of Qz.
As in the case of the meson form factors, the leading deuteron form factor is not

affected by endpoint singularities in the xy and y4 integration. Thus asymptoti-
cslly, to leading order in m2/Q2 and ag(Q2) we have

295 = b__D
a_(Q") 2l -
Fpidd) = [ ’QZ ] z : 4 [1o; %] non (1.3

n, n=0 mm

where the deuteron anomalous dimensions 12 can be computed from the eigenvalues of
the evolution equation for ¢p(xj,q) or the operator product expansion for six fer—
mion fields near the light cone.

The nominal QCD power law predietion Fp(G2) ~ ng)'s at large Q2 1is consistent
with the dimensional counting rule [8] F(Q2) ~ (Q2)"=1 uhere n is the minimum
number of elementary-constituents in the Fock state. The ppediction thus reflects
the QCD substructore of the nucleus and the essential geale-invariance of the
renormalizable quark interactione ir. the tree graphs for Ty. A comparison with
data [87) for u, p, w, D, HJ and RS 's shown in Fig.9.

As we have Lludicated in Fig.20, the deuteron form factor receives contributions
from six quark wavefunction components which are in both the standard color
[Cuud) 3 (udd) 1> &nd "hidden colot" |(uud)g(udd)gd configurations (see Sec. VI).

It should be emphasized that the QCD equation of state for V6q automatically leads
to mixed color components, at least at short distances. For example, if we impose
the boundary condition that the deutersn is effectively an n~-p bound state at large
distances then the one gluon exchange kernel in the avolution eguation for ¢p(x,Q)
automatically leads to hidden ecolor components at large Q<.
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Fig. 20 Hard-scattering contributions to

off-sheil the deuteron form factor. The contribu-
-] P tions of diagram (a) require an internal
n n} hidden color state. Diagram (b) corre-
sponds to quark interchange. Diagram (c)
shows the relationship of the deuteron
form factor to the N-N off-shell scatter-
ing amplitude.

Top=np

- {c) sarsan

The perturbative strcture of the QCD equation of state for yp at large k; also
determines the power law and anomalous dimenrsion sStructure of the valence wavefunc-
tion. [47] For example, if one quark has lzrge k, relative to the deuteron, then
wplxyg,k) ~ (kf)'l. On the other hand, 1f we consider the deuteron as two nucleon
clusters, then at large transverse separation we have

1 3
wD(xi‘kLi) ~<RT) {7.4)
LN

This power law reflects the fact that the effective nucleon-nucleon interaction
large momentum transfer is Tp,, pp ~ (1/Q2)4, which is again consistent with
dimensional counting.

The specific connection of the asymptotic deuteron form factor to the nucleon-
nucleon interaction is as follows: [84] the deuteron form factor is the probability
amplitude for the deuteron to remain intact after absorbing a large momentum trans-
fer » + p+q. 1f we consider the deuteron to be a loosely bound n-p system, with
ez. . .onscituent sharing almost equally the deuteron-four momentum, then each
nuciuon scatters from ~p/2 to ~(p+q)/2. The coupling of the electromagnetic
current ta the struck nucleon is effectively point-like as in the case of deep
inelastic secattering at large q2, since the intermediate nucleon state (p/2 + q)2 ~
q2/2 is far~off-shell. The required n- p scattering amplitude {evaluared at t =
q2/4 = u, with one leg space-like at p% = q2/2) scaies at Tpp+qp ~ (1/Q2)4. This
scaling, combined with the off-shell propagator then gives the results Fp{Q2) ~
(Q2)-5, The normalization of Fp{Q?) can then be related to the non-relativistic
deuteron wavefunction at che origin (see Ref. 84). It should be emphasized that
the relativistic calculation of the deuteron form factor is .ncompatible with the
conventional nuclear physics parameterization [88]

2, 2 2
FD(Q ) F"(Q ) Fnody(q y oo (7.5)
In the case of (static) uon-relativistic models this form removes the structure
of the struck nuclepn. Equation (7.5) is, however, incorrect im the large Q
domain since rhe struck nucleon cannot be on-shell both before and after the inter-

action with the electromagnetic current.

B. Reduced Form Factors [84]

For a general nucleus, the asymptotic power behavior for the minimal helicity-
conserving form faetor is FA(QZ) ~ (g2)1-3a reflecting the fact that one must pay
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a penalty of ns(Qz)/(Qz) to move e¢ach quark constituent from p to p+q. The fact
that the momentum transfer must be partitioned among the constituent: implies that
the asymptotic domain increases with the nuclear number A.

However, as we shall now show, the introduction of the reduced form factor 'FA(QZ)
will allow inceresting QCD predictions to be made even at relatively Jow momentum
transfers. The basic¢ idea is as follows: the deuteron from factor Fp(Q¢) is the
probabilicy amplitude for the nucleus to remain intact after absorbing momentum
tranafer Q. Clearly Fp(Q2) must fall at least as fast as Gg(Qallo) . Gﬂ(QZIA) since
each nucleon must change momentum from p/2 to (p+q)/2 and stay intact. Thus we
should define the "reduced form factor" fp(Q?) via

2
2, _ 2fq 2
F(Q7) = FN(A) fp(Q7 (7.6)

Note that ED(QZ) must 1tself decrease at large QZ since ir can be identified as
the probability amplitude for the n-p system to remain a ground state deuteron.
In fact, the uimensional countcing tules FD(QZ) ~ (q2)-5, FN(QZ) ~ (Q2)~2 implies
the asymptotic behavior fp(Q2) ~ (Qz)'l. This 1s precisely what one expects for
a composite of two elementary systems once the nucleon structure has been removed.

We can also understand the origin of the simple result for fn(Qz) frem Ty
diagrams such as Fig.20c where a gluon immediatelv transfers momentum 1/2 q¥ to
the other nucleon. Such dlagrams give contributions of the form

2
2y o _(Q7/4)
2, & p2(2) L0
FAQ)EF (7.7)
D N(é) 1+Q2/m2

Th2 mass parameter can be estimated from the corresponding parameters in the meson
and nuclecu form factors and is expected to be small, m2 = 0.3 GeVZ, The compari-
son of the data for fD(Qz) with the prediction (Q2 + 0.3 Gev2) fD(QZ) + const. is
given in Fig.2l. Remarkably, the predicted flat behavier for szD(Qz) appears to
be accurate from Q2 below 1 GevZ out to the limits of the data., The prediction is
also verified at larger Q2 when one uses inelastie deuteron form factor data at
fixed mass (p+q)2.
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*
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= ‘\';1**'-- * .
0.1 ¢ ]
Ie} 1 | | 1 !
) I 2 3 q 5 6 7
- a®  (Gev?d) -

Fig. 21 Comparison of deuteron form factor data with
the QCD prediction (1+Q2/m2)fp(Q2) + const. at large
Q2. The data are from Ref. B7.
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In general, we can define reduced nuclear form factors [84]

2
F Q%)

2
Q) =
A Irxcqzmzli“

QCD then predicts the power behavior fD(Qz) ~ (@11 {as if the nucleons were
elenentary)., Comparisons with data for Hg and B are given in Ref. 87. The defini-
tion of the reduced form factor takes into account the correct partitioning of the
nuclear momenta, and thus to first approximation represents the nuclear form factor
in the limit of point-like nucleon constituents. One can also extend the definition
to reduced elastic nuclear scattering amplitudes

(7.8)

2
T,0Q%)
t (QZ) s A (7.9)
A 2,.27A
[rut®ra®]

e.8., In meson-deuteron elastic scattering at large momentum transfer. It should
be of interest to see whether a consistent parametcrization of nuclear amplitudes
can be obtained 1f {n each nuclear scattering process, reduced "point" amplitudes
are defined by dividing out all of the constituent nucleon form factors at the cor-
rect partirioned momeatum, Again, we emphasize thar rhe standard method based en
Eq. (7.5) is invalid in a relativistic rheory. The measurements of hadron-nucleus
elasti~ scattering are also interesring from rhe standpoint of testing basic QCD
scattering mechanisms, [84] For example, the K*- A scattering amplitude should
scale as A+Z at large momentum transiers if the scattering is dominated by u-quark
interchange.

C. The Nucleon-Nucleon Interaction at Short Distance-

The basic measure of the nuclear force is nucleon-nucleon scattering. As we have
discussed in Sec. IV, two general features of rthe N-N amplitude at large mumentum
transfer can be predicted from perturbative QCD: hadron helicity conservation and
power law acaling at fixed angle. In general chere are five independent paricy-
conserving and time reversal invariant helicity amplitudes. The QCD selection
rules (i8] hypitial = bfinal Implies thoi A {(++ + +-) and W (— -~ ++) are power
law suppressed relative to J#(++ — ++), N (4- - +-), . H(—+ =~ +~). The helicity
conserving amplitudes thus are predicted in first approximation to scale as
Mppag ~ (Q2)-8, yielding the dimensional counting prediction

104 (a0 ) = Feo,) (7.10)
for nucleon-nucleon scattering at fixed angle and s >> M2, More precisely, che
nominal power-law is slightly modified by the Landshoff pinch singularity contribu-
tions and the logarithn factors from 10 povers of ag(QZ) and the anomalous dimen-
sions of the distrilution amplitudes. Remarkably, the pp -~ pp data is comsistent
(within a faccor ~2) with the fixed angle scaling predicted by (7.10) as the cross
secrion falls more than 4 decades in the range 4 < pf < 12 GevZ, 38° < 6, < 90°,
{(See Fig.22.) The simplest interpretation of the results is that the variation

of ®4(02) is very slcw in this domain, as in the case of the QYGy(Q?) scaling ot
the nucleon form factors. The presence of the Landshoff pinch singularities,
however, could act to compensate for the fall-off of og. In addition, there is
some evidence [90] that the data is systematically oscillating about the s1®do/dt
const prediction, possibly suggesting the presence of am interfering subasymptotic
amplitude.

The computation of the angular dependence and normalization of each of the
helicity~conserving N~ N amplitudes in QUD is a formidable task since, even to
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Fig. 22 Differential cross sections for pp = pp scattering at
large genter of mass angles. The straight lines correspond to
the predicted power~law £all~off at 1/s10, The data compilacion
15 from Ref. B3.

lowest order in a5, there are of the order of 3 = 108 conneczed Fevaman disgrams in
which five gluons interact with six quarks; [91] in addition a deta{led representa-
tion of the Sudakov suppression {s needed in crder to integrate over the Landshoff
singularicies. [92) Considerable phenamenological progress has, however, been made
simply by assuming that the dominant diagrams involve quark interchanpe; [15]) i.e.,
exchange of tha common valence quarks. This ansatz seems to vield a good approxi~
nmation to the obsarved large angle mesom=-baryon and baryon-baryon scattering
anplitude angular discriburions, as well as the correct crogsing behavior between
the hadronic amplitudes, including pp = pp to PP = §p. A upeful analytic form
for the interchange amplitude in terms of light-cone Fock state wavefunctions is
given in Raf. 93. A simple mode]l for the quark inrerchange amplitude for pp = pp
vhich has such properties 1s ¥ = cﬁ(:)rsﬁ(u).

The post senzitive tests of the hard scattering QCD prediction involve the
polarization effects. The spin asympetry Axy is defined as
do do do do ..
S R 13 {is) - ac () -5 G

dg
at

- . {7.11)
L %% (tt) + o) +§~°€- (¥3) *+ % (+*)
which weasures the differvence «f cross sections when both nucleons are polarized
parallel to the normal (&) of the scattering plane or are anti-parallel. Similarly
refers to the polarization pavmmerry where the initial spins are polarized
= che laboratory beam direction (2) versus anti-parallel spins, and Agg refers
. initial spins polarized (sideways) along the third divection (¥).

For the scattering of identieal particles at 902 all amplitudes involving a
single helicity f1ip vanish, e.g., (+ ~ +=~). This {mplias the sum rule [97,98]

A T Ay “Agg 1l (B - $0%) . (7.12)
If in addition the double-flip amplitude (++ - —-) vanishes, as in the case of the

percurbative QD predictions, then we have Agyy = ~Ags (all angles) and the above
sum rule hecomes
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Wy = Au_ -] (ec... = 909) (7.13)

The striking CRABB et al., Argonne measurenents for Axy (see Fig.23) can now be
canbined with preliminary results [96] for ALL at 90° and pyap ™ 11.75 GeV

(Pr = 2.4 GeV): 2ANN = App = 2¢0.58 = 0.04) - (0.18B = 0.09} = 0,98 = 0.17, which
is consistent with helicity comnservation. On the other hand, it should be noted
that the change of Ayy is very rapid: Axy = 0.05 at 6c,g, $ 60° to Axy = 0.60 at
Be.m. 2 70°, vhich I8 in marked contrast to the generally smooth behavier predicted
from caleularions of Ty for proton-proton scartering. For example, hard scattering
diagrams with only quark interchange (see, e.g., Fig.20b) between the nucleons
(which gives a good representarion of the pp + pp angular distribution and crossing
to pP ~ pP) leads to the simple predition [97.98]

Mg " hyg thgg t V3 (e o - ) 710

with a very slow variation (<2%) over al. §. o . Diagrams with quark interchange
plus gluon exchange between nucleons give a smaller value for Ay, [99) The angular
distribution predicted for diagracs with only gluon exchange is incompatible with
the large angle data; furthermore, if these amplitudes are nor=alized to the s=all
angle ragime then they are negligible ar 90°. {19

Pop  (Gewrel
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P M Fig. 23 Data for the spin asym-

o metry Agy (normal to the
0 1 2 3  scattering plene) for pp scatcer-
p20°  Gevrc) ing at 90° as a function of py,p
- 1 =™ and py. From Ref. 95.

At this stage, there does not seem to be a convineing expianation of the nucleon-
nucleon polarization effects at large angle. [100] It seems posaible that whatever
interference of amplitudes causes the oscillation of dg/dt around the smooth s~10
behavior can also lead to striking interference effects in the polarization
correlations. [90,97) One possibility is that the quark interchange amplitude is
asymptotically dominant, bulb that in the present experimental range there is sig-
nificant interfarence with multi-Regge exchange contributions. [97] An important
point 1z that the lLandshoff pinch contribution for pp + pp scattering includes
three sequential q@q + qq scatterimgs each at approximately the same momentum trans-
fer t ~ 1/9. Since. |El < 1.1 GeVZ s nor very large, ordinary Reggeon exchange
could still be playing a role im the cuark-quark scattering amplitude, Unfortumately,
the introduction of such contributions necessarily includes extra parameters and
considereble model-dependence. Nevertheless, a simple estimate of the rotating
phase assuciated with triple Regge exchange is consistent with the interference
pattern indicated by the pp ~ pp large amgle data. [91]
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D. Continuity of Nuclear Physics and Quantum Chromodynamics

The syntheses of nuclear dvnamics with QCD is clearly an important and fascinating
fundamental problem in hadron dynamics. The short distance structure of the
nucleon-nucleon interaction as determined by perturbative QCD mmst join smoothly
and analvtically with the large distance constraints (meson-exchange dynamics) of
the K- % potential. The length scale of QCD is comparable with the inverse nucleeon
radius so it is difficulc to find a specific domain where nuclear physics can be
studied in fisolacion from QCD.

The grand goal of QCD would be to actually derfve the nuclear force frem funda-
mental QCD interactions. The difficulty is that the nucleon-nueleon interaction
in QCD is a remnant of the color forces and is analogous in complexity to calculat-
ing the molecular force between neutral atoms, e.g., positronium. The basic
ingrediemts are quark interchange which is evidently related at long distances ta
pion and other =eson exchange, and wultiple gluon exchange, which despite the zero
oass of the gluon gust have an inverse range shorter than the mass of the lowest
lying gluonium state. It is possible thar numerical resules for the N- N potential
will eventually be cbtained from lattice gauge theory calculations. Model calcula-
tions of these exchange forces have also been given in the comtext of bag [101. and
potential models. [102]

The constraints of asymptoric JCD behavior, especially its pawer-law scaling and
helicity selection rules have only begun ro be exploited. For example, dispersion
relations and superconvergent relarions for the nuclear-nuclear helicitry amplicudes
should yield sum rules and constraints on hadronic couplings and their spectra.

One could try to enforce a form of duality which equartes the q=§-g exchange ampli-
tudes with tha sum over meson-exchange degrees of frewdom. However, this cannot be
strictly correct since the existence of hidden color configurations — whether mixed
with ordinary nuclear states or appearing as resonance excitations — implies that
duslity in terms of the low-lying hadrons cannot be a true identity.

One missing ingredient in nuclear physics model calculaticns of meson exchange
amplitudes and currents is the form of the effective off-shell meson-nucleon-
nucleon vertices. In principle, the effective form factors of these couplings is
determined by QCD. Let us return to the form of the ultraviolet regularized QCD
Lagrangian density discussed in Sec. I1. If the cutoff «? s comparable to hadronic
ccales then extra contribucions will be gemerated in the effective Lagrangian:

- 14 GISK! s 1]
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uhere S?o is the standard contributfon and the higher twist terms of order ¢ z.
k"9, «.. are schematic representations of the quark Pauli form factor, the pion and
nucleon Dirac form factors, and the n=N-N coupling. The pion and nucleon fields
Tepregent compesite operators constructed and normalized frow the valence Fock
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amplitudes and the leading interpolating quark operators. Our main point for

wricing dosm Eq. (7.15) 1a just to estimate :he ef fective asyaptotic power law
behaviors of the couplings, e.g., l-‘:ﬁ: ~ IIQ F o~ leqz GH ~ EZIQ and the
effective © }hsn F - coupling: m(Qz) -~ nxt'zf IQ « The net p:lun exchange
amplitude thus falls off very rapidly at large momentum transfer Hm o w7,

much faster than the leading quark interchange amplitude M;;"_. ~ (@)~4,
Similarly, cthe vector exchange contributions give contributions H““_. -~ (Q )

Thus, meson exchange amplitudes and currents, even summed over their excited
spectra do not contribute to the leading asymptotic behavior of the N-N scattering
amplitudes or deuteron form factors, once proper account is taken of the off-szhell
form factors whieh econtrol the meson-nucleon-nucleon vertices.

There is a f-rther difficulty extending nuclear physics models based on an
effective nucleon-nucleva~meson field theory. 1If one uses pointlike NN isospin
invariaat couplings of the nucleons to the rho meson thea the theory is not
renormalizable wituour the full apparatus of non-Abelian gauge theories, including
triple p and four-point ¢ meson ceouplings, and a spontanecus symmetry breaking
mechanism to generate the p mass. We emphasize that a non-renormalizable field
theoretic model requires a new 2utoff in each order of perturbation theory and
thus is not predictive.

In addition to the above problems, it is difficult to understand within the
context of QCD the role of NN pair production contributions as conventionally used
In nuclear physics model calculations of electromagnetic exchange currents, etc.
Nucleon pair (i.e., qqqqqq) terms are far-off-shell and highly supg ~essed by off-
shell form factors in QCD. On the other hand, anomalous contact" terms are auto-
natically generated in QCD time-ordered perturbation theory for the Z-graph term
in the quark electromagnetic current. In the case of light-cone perturbatiom
*hesry these are the instantaneous quark propagator terms described in Sec. IlI.

E. Structure Functions of Nuclei

1f the nucleus were simply a loonsely bound collection of nucleons, then che nuclear
structure functions should reflect simple additivity:

qu(x.q) =2 qup(x.Q) + (A-2) cql“(x.q) (7.16)

Gg/al@ = A G,/ (,Q)
where x = A(k°+k3{pA+pA) is the quavk light-cone momentum fractioa scaled to the
nucileon momentum. The interesting phyvsics is the derivation from simple addicivity,
which arises from the following sources:

(1) The auclear structure functions G /A and G /a 4o not vanish at x = 1 but extend
kinematically all the way out to x = A where cme quark or gluon has the euntire
available light-cone momentum of the nucleus. For x 5 1 this is related to ordinary
fermi motion. At larger x the structure functions are sensitive to far-off-shell
QCD dynamics. [B84,103,104] MWodulo logarithms, the power behavior of perturbative
QCD contributions to the inclusive distriburions is given by the spectator counting
rule [60] (see Fig.24)

2n

¢ oSN o, a-xy T (717
a/A dx, x v A

vhere ng is the number of epectator (quark) constituents im the bound syatem A
forced to carry small lighc-cone momentum fraction: x, + 0. The power law is
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A —— Fig. 24 Application of spectator counting rule to
}"‘ general composite or nuclear eystams. The subsystem a
hag light-cone momentum fraction x, = k3/pi. There
1-e2 4153A78  are ng quark spectators.

derived by simply counting the minimum mmber of off-shell propagators (£ = -= as
X + Xmay) which are required co transfer all che momentum of A to a. Since the

end rasult only depends on the ber of spectators, it is easily shown that the
system a can be a quark, gluon, or multiparticle cluster of constituents. However,
the rule (7,17) holds only for the case where the helicities of a and A are
identical; otherwise there are additicaal power-law supprespions. Examples of the
spectator counting rule are dN/dx ~ (1-x)3 for q/p, (3-x)15 for q/Hd and (3-x)11
for p/EZ. These rules can be tested not anly in deep inelastic leptem-nucleus
scat:ertng. but also in forward inclusive nuclear scattering reactions where had-
rens are produced with large longitudinal momentum fractions; e.g., dN/dx (A) +4A2 »
p+X) ~ dN/dx (P/A;). [103,105) The data for large x for these reactions does
appear tc be generally consisteat with the power-law fall-off predicted by QCD
spectator counting. Further discussions and tests ecan be found in Refs. 83, 103,
and 105. In the case of che deuteron (and other even spin nuclei) the mismatch
between the quark and muclear halicity implies that the deuteron structure function
vanishes at the kinematic limit as [106] Fap ~ Gg/p(x) ~ (2=x)10 rather than
(z2-%)%. (In each case, the power i logarittmically increased by QCD evolutian.)
One also axpects an anomalous contribution to FLD at x ~ 2 analogous to the pion
longitudinal structure function. Such contributions cannot be abtained from
simple convolutions of the nucleon structure functions with nuclear distributions.
The testing of these predictions is, of course, difficult because of the rapid
fall-otf of the structure functions, and the necessity for high Q2 in order to
avoid higher twist contributions. As we have discussed in Sec. V., we expect, in
general, a sum of impulse approximation contributions [84,107]

d

N
alA
= (7.18)

2 d

L (ta v =Y 4L (00 3%9)
aQ dx a2 d0Q
reprasenting incoherenc contributions, each of which correspond to lepton scatter=
ing on one quark or clusters of quarks in the nuclear target. We also note cthat
the transverse momentum distributions dNg/a/d?k, can also be predicted from the
perturbative Q€D processes which contrcl the high momentum tail of the bound state
wavefunctions.

(2) The deviatious from simple additivity of G, &t x ~ 0 are related to the impor-
tant question of whether the leading twist nucleon structure functions are

shadowed; 1.e., Faalx,0%) ~ A% ®p (2 0% at large Q2, with a(x,0%) < 1 (see
Fig.25). A simple duality argument [15§J based on the assumption of continuity of
the structure function at x = xgj = 02/2Mv» 0 with the photoabsorprion cross section
cTA(v) (which is shadowed because of coherent vector meson phatoproduction processes)
obviously implies shadowing of Fu(x,Qz). However, as emphasizged in Ref. 110, the
QCD wmomentum sum rule then implies that a region of X must exist (probably at

X ~ my/Hy) where the structure function obeys "anti=ghadowing," i.e., x(x) > 1,

The existing data on lepten~nucleon scattering [108] clearly show shadowing at low x
and low Q2, bur the data are not sufficient to demomstrate whether the shadowing
occurs in the leading twist Bjorken-scaling contributions to the structure funetiom,
rather than in higher twist contributions associated with vector meson electro-
production.

There are several arguments which indicate that QCD actually predicts the
ghsence of shadowing for the leadfmg twist structure fuactions, fi.e., a(x,Q2) ¥ 1
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Fig. 25 Schematic representation of the
b deep inelastic ouclear structure function
\ normalized to its nucleon components.
— N (a) The case of zero shadowing.

Fn | A (b) Shadowing and anti-shadowing.

at Q2 » » and fixed x < 1, Bince shadowing is associated with initial state
(Glaubar) intersrtisns, [20] let us consider the represantative initial state con-
tributions to the virtual photo-absorption cross section u.'!(x,Qz) phowm in Fig.26.

Fig. 26 Example of an iaitial state
scattering correction to the nuclear

rh N b q photo-absorption cross section lead—
ing to Glauber corrections and
+ chadowing of the nuclear structure
functions, The contributions of (a)
A {o) A (b) and (b) cancel for Q2 large compared
-n

asur to the momentum transfer of tha
exchangad gluon.

At low Qz, soft vector gluon exchange (finite transverse momentum £;, and small
light-cone momentum fraction &+~@(1//s) between the incident quark and the nuclear
quark apectators gives an energy independent initial state correction to the photon—
nucleus crass section as in wmeson~nucleus reactions, However, at high Q2> Lg, the
contributions of Figs.26a and 26b exactly camcel — corresponding to the vanishing
of the hadronic radius of the photon. A cowplimentary argument for the absence of
shadowing corrections based on explicit comsideration of coherent shadowing contri-
butions and their damping at large Q2 is given in Ref. 105.

(3) In addition to the above considerations, simple additivity of the nuclear struc-
turg functions will be violated by the fact that the nuclear Fock atatae spectrum is
more ccmplex than that of the individual nucieon. For example, the nuclear binding
associated with meson exchange contributions leads to a modification to the gea
quark and antiquark distributions in the nuclear structure funcrions. The number
of strange quarks in the a=nucleus structure function may be diffarenr than the
extyrapolation from a nucleon target. We also emphasize that the existence of hid-
den cclor components in the Fock state expansion of the nuclear state also implies
new contributions to the nuclear structure functions, particularly in the x > 1
far=off=-ghell domain.

The definitive experimental identification of additivity violating effects in
the nuclaus will also raquire 2 careful study of the nuclear target dependence of
lepto~production channels, e.g., the reaction eA + ek vhich is sensitive to the
intrinsic strange quark cowposition of the nucleus, i.e., contributions not due to
QCD gvolution (see Sec. VI). The identification of specific ed -+ eWAN* channels
in alectron-deuteron scattering may be an important clue to the AA and hidden color
Fock states of the deuteron as in Eq. (6.24).

F, HNuclai as Probes of Particle Phyaics Dynamics

Thus far in this section we have discussed applications of QCD specific to the
dynamice and structure of nuclei. Conversely, there are numerous axamples where a
nuclear target can be used a8 a tool to probe particular aspects of particle
physice, Ws will only mention a few applicarions here.
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(1) Parity violatifonm in hadrenic or nuclcar processes., The exchange of a weak W
or Z boson between the quarks of a hadron er nucleus leads to a high momentum

component in tha Pock state wavefunction

8o, X)) ’-kf—:ﬂ‘,i ¢(x,n§) (7.19)

as in the derivation of the distribution amplitude evolution equation, [19] The
interference of these amplitudes with normal QCD contributions leads to parity vio-
lation in processes such as photodisintegration yd + np and total hadronic cross
sections. [111]

(2) The nuclaus as a color filter. As we have discussed in Sec. VI, ome can study
a new clags of Jiffractive dissoclative Jer production processes in nuclel which
isolate the valence coaponent of meson wavefunctions. [30] One can also use the A
dependence of the nuclear croes section to separate central and diffractive mecha-
nisms for heavy flavor production (open charm, ete.). [30,31]

{3) Nuclear corrections to inclusive QCD reactions. When a hadron traverses a
nucleus, its Pock state structure would be expected to be modified by elastic and
inelastic ¢collisions. An analysis based on perturbative QCD is given in Ref. 20.
We show that multiple scattering in the nucleus iner the er TSE um
fluctuationg of the quark and glucn constituents in the hadron, implying a nuclear
enhancenment for the rate of hadron and photon production at large transverse
momentum. Af very large py the direct photon production cross section in nuclei
should have the form

1/3
3 pa > YK = A E N0 |1 ro(A) (7.20)
d°p/E a7p/E Pr

In the case of the Drell-Yan cross section do/dQ? szJ. (pA » yHy~X) the trans—
verse momentum Q, distribution of the produced lepton’pair is predicted to

broaden due to multiple scattering in the nucleus of the quarks in the initial
state. Nevertielass, the iIntegrated cross section de/dQ2 (pA -+ pH~X) is propor-
tional to A. Furthermore, as shown in Ref. 20, the light-cone x distribution of a
fast quark is not effected by inelastic processes induced by multiple scattering
in the nucleus as long as the quark momentum is large compared to & scale propor-
tional to the length of the target. This effect is related to the formation zone
analysis of LANDAU and POMERANCHUK [112] which shows that radiation from a clas-
sical current propagation between fixed rarpet centers is limited at high energies.

{4) Propagation of quark and gluon jets in nuclear targets. In the conventional
parton model picture based on the impulse approximation, the multiplicity of
hadrons produced in deep inelastic lepton scattering or a nuclear target is expected
to be identical to that on a single nucleon, since only onme nucleon is "wounded" at
large momentum transfer. In fact, the soft gluons radiated by rhe secattered quark
jet in the deep inelastic process can interact in the nuclear target and preduce
extra associated multiplicity in the target-fragmentation and central rapidity
regions. [113] As shown in Ref. 20 only fast quanta are prevented in QCD from
interacting inelastically in & nuclear target. The ptudy of the initisgl and final
int.ractions of the hadrons and jets in nuclear target, specifically the wodifica-
tion of longitudinel and transverse momentum distributions, can provide important
insights into the nature of QCD dynamics.

VIII CONCLUSIONS

In these lectures we have discussed the application of QCD to hadron and puclear
dynamics at short distances where asymptotic freedom allows a systematic pertc :ba-
tive approach. We have shown that it ic passibla to define the perturbative
expansion in ag{Q2?) in such a vay as to avoid ambiguities due to choice of
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renormalization scheme or scale, at least in the first non-trivial orders. [1l4]
Our main emphzsie in these lectures, however, has been on how to systematically
incorporate the effects of the hadronic wavefunction in largs momentum transfar
exelysive and inclueive reactions — thus leading to a broader testing ground for
QCl. We have particularly emphasized the Fock state wavafunctions wn(xi.kli. A1)
vhich define the hadron or nmuclear state In terms of its quark and gluon degrees
of freedom at equal time on the light~cone. It is clear that a central problem
of QCD 1is to determines mot cnly the spectrum of the theory but also the basic
bound state wavefunctions of the color singlet sector. Such solutions may be found
in the near future using lattice numerical methods, particularly by quantizing at
equal time on the light-cone, or by more direct attacks on the QCD equations of
notion for the ypn, as diacussed in Sec. III.

Even without explicit sclutions for the ¢, we can make & number of basic and
phenomenvlogical statements concerning the form of the wavefunctions: [27]

(1) Given the ¥ we can compute the single and wultiple quark and gluon distribution
amplitudes and structure functions which appear as the coafficient functions in the
QCD predictions for high momentum transfer exclusive and inclusive reactions,
including dynamical higher twist contribL oms. We have also emphasized general
features of these distributions, includim, nelicity selection rules, Lorent2
properties, connections with the Beche-Salpeter amplitudes, renormalization
properties, and correspondence limits in the non-relativistic weak binding approxi-

mation.

(2) The perturbative structure of QCD leads to predictions for the high k , x » 1
and far-off-shell behavior of the wavefunction. In particular, the large k; power-
law behavior yy ~ ki* of the valence wavefuncrions and the l¢|2 ~ k72 behavior of
the higher Fock stata contributions leads to QCD evolution uquations and light=-cone
operator product expansion for the essential measures of the wavefunctions, the
distribution amplitudes ¢M{x,Q), ¢p{xi.Q), ¢p(x4,Q) and the structure functions,

We have also emphasized the fact that the valence wavefunction behavior ¢y ~ ki
1mplies that the high kf behavior of quark and gluon jet distributiona dNIde is
~1/k , not exponential or gaussian.

(3) Important boundary values and comstraints on hadronic wavefunctions are cbtained
from the weak and electromagnetic decay amplitudes, including ¢ -+ BB, The meson and
baryon distribution amplitudes are measureable in detail from the angular behavior
of the yy - MN and [114] yy + BB amplirudes.

(4) By assuming simple analytic forms for the valence wavefunctions in the noa-
perturbative domain, we have found consistent parameterizations which are compatible
with the data for hadron form factors, decay amplitudes, etc. An important feature
which emerges from these studies is that the valence state is more compact in
transverse dimensions than the physical hadron. Even at low momentum transfer
scale, higher Fock states play an impertant role, i.e., there i{s no scale where

the proton can be identified as a 3-quark valence state. This observation may be
compatible with the traditional nuclear physics picture of the nucleon as a central
core, surrounded by a light-meson cloud. [115]

{(5) The fact that there is a finite probability for a hadron to exist as its valence
state alone, implies the existence of a new class of "directly-coupled” gemi-
inelusive processes where a meson or baryon is produced singly at large transverse
momentum, or interacts in a high-somentum transfer reactions without accompanying
radiation or structure function (volution. {291 As in the case of directly-coupled
photon reactions, the hadron can interact directly with quark and gluons in the
short=distance subprocess, with a normalization specified rigorously in termes

of the_distribution amplitudgs or form factors. Examples of these subprocesses are
qq - Bq, gq -~ Mg, Mg + qq, Bq + qq. We have also discusleg an important contribu=
tion to the longitudinal meaon atructure function T L~ c/Q*, involving direct-
coupling of the meson, somewhat analogous to the photon-struc:ure function. The
finite probability for a meson to exist as a qq Fock gtate at small separation also
implies a new class of diffractive dissociation processes. [30]
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(6) The Fock state description of hadrons in QCD als¢ has interesting implicatioms
for nuclear states, especially aspects involving hidden color configurations. More
generally, we have emphasized the idea that the far-ofi-shell components of hadron
wavefunctions can be "unveiled" as the energy resolution scale 1s increased. For
exanple, the existence of heavy quark vacuum polarization processes within the
hadronic bound state implies finite probabilities for hidden charm Fock states
even in light mesons and baryons. The diffractive dissoclattfons of these rare
states appears to provide a natural explanation of the remarkable features of the
charm production cross sections measured at the ISR, {31]

(7) Wa have also emphasized the importance of initial atate interactions in all
inelusive reactions involving hadron-hadron collisions. The initial state inter-
actions disturb the color coherence, k, distributions, and at low energies the x-
depandence on the incoming hadronic distriburions. Despite these profound effects
on the hadronic Fock states, many of the essential features of the QCD predictions
still are retained. [20] We have alsc discussed many examples where a nuclear tar-
get can be used to analyze the propagation of quarks and gluons through a hadronic
medium.

(B) In Sec. VII of chese lectures we fotussed on the role of QCD at nuclear dimen—
sions and its implicacions for fundamental nuclear interactions. The existence of
hidden color Fock state components in the nucleon wavefunction implies that the
standard nucleon and meson degreea of freedom are not sufficlent to describe nuclei.
The mixing of the ground state of a nuclens with the extra hidden color states will
evidently lower its energy and thus influence the nuclear magnetic woment, charge
radius, and other properties. We expect that the hidden color compoments will be
most gignificant in large womentum tratsfer nuclear processes and reactioms such

as the parity-violating terme Iin the photon-disintegration of the deuteron, which
are pengitive to the structure of the nuclear wavefunction at short distances..
Conversely, the new QCD degress of freedom should also imply the existence of ex-
cited nuclear states which are predominantly of hidden color. These states may
have narrow width if they are below the pion decay threshold. The six-quark
excitation of the deuteron could possibly be found by a careful search for amomalous
resonant structure in yd + yd scattering at large angles. Other speculations [86]
concarning the phenomenclogy of these states are discussed in See, VI,

The fact that QCD is a viable theory for hadronic interactions implies that a
fundamental description of the nucleay force is now possible. Although detailed
work in the synthesis of QC) and nuclear physics is just beginning it is clear from
the structure of QCD as a relativistic field theory that several traditional con-
cepts of nuclear physics will have to be modified. These include conventional
treatments of meson and baryon-pair contributions to the electromagnetic current
and anslyses of the nuclear form factor in terms of factorized om-shell nucleon
form factors. On the other hand, the reduced nuclear form factora and scattering
matrix elements discussed in Sec. VII give a viable prascription for the extrapola-
tion of nuclear amplitudes to zero nucleon radius, There 1s the pessibility that
tha present phencmenology of nuclesr parameters will be significantly modified.

Independent of the specific dynawmical theory, we have emphasized the utility
of light-cone perturbation theory as an elegant but calculationally simple exten—
alon of non-relativistic quantum mechanics to the relativistic domain. The number
of possible applications of this tool to nuclear physics [116] is extensive since
quantization at equal time on the light-cone allows a consistent definition of
relativistic Fock state wavefunccions, their equations of state, and a completely
relativiscic treatment of the dynamics of elementary and composite systems.

Thus, in summary, we have found that the testing ground of perturbative QCD
whare rigerous, definitive testa of the theory can be made can now be extended
throughout a large domain of large momentum transfer exclusive and inclusive
lepton, photon, hadron and nuclesr reactions. With the possible exception of inclu-
8ive hadron production at large transverse momentum, a consistent picture of these
reactions 1s now emerging. By tsking into accourt the structure of hadronic wave-
funcrions, we have the opportunity of greatly extending tests of QCD, unifying the
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short and long distance physics of the theory, and making an eventual synthesis
with the realwm of hadronic spectroscopy, low momentum transfer reactions and

nuclear physics.
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