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List of Symbols 

cross-sectional area of sample 

celsius temperature units 

change in specific heat 

specific heat of phonons of frequency·w 

length of sample 

Planck constant divided by 2~ 

Kelvin temperature units 

Boltzmann constant 

average segment length of dislocation between pinning points 

net phonon mean free path 

phonon mean free path ascribed to scattering from sample surfaces 

phonon mean free path 

dislocation density 

heat flux 

temperature 

superconducting transition temperature 

temperature difference 

temperature at which t exhibits a minimum due to a resonant 
scattering process 

acoustic·phonon velocity 

. angles of phonon incidence 

phonon thermal conductivity 

electronic thermal conductivity 

phonon thermal conductivity of undeformed sample 

total thermal conductivity 

electrical resistivity 

mean lifetime between phonon scattering events 

phonon frequency divided by 2~ 

sp~ctral width 
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1. Introduction 

By 1950, an explicit effort had been launched to use lattice thermal 

conductivity measurements in the. investigation of defect structures in 

solids [1]. This technique has been highly successful, .especially when 

combined with the measurements of other properties such as optical 

absorption [2]. One exception has been the study of dislocations. 

Although dislocations have a profound effect on the phonon thermal con-

ductivity, the mechanisms of the phonon-dislocation interaction are poorly 
' 

understood. The most basic questions are still debated in the literature. 

It therefore is pointless to attempt a quantitative comparison between an 

extensive accumulation of experimental data on the orte hand, and the numerous 

theoretical models on the other. Instead, this c~apter will attempt to 

glean a few qualitative conclusions from the existing experimental data. 

These results will then be compared with two general models which incor-

porate, in a qualitative manner, most of the proposed theories of the 

phonon-dislocation interaction. 

It may well be asked, if the thermal-conductivity technique is so 

nondefinitive, why is it used? The answer is simple. Until very recently, 

measurement of thermal conductivity was the only meaps available to probe 

the interaction between phonons and defects at phonon frequencies above 

. 9 
the standard ultrasonic range of = 10 Hz. The following introductory 

paragraphs provide a brief review of the thermal-conductivity technique 

and the problems which are encountered in practice. There is also a brief 

presentation of the theoretical·models and the complications that may occur 

in more realistic situations. These introductory paragraphs are included 
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so that the reader may better understand why so little information 

has been derived from so much effort. 

1.1. The thermal-conductivity technique 

In a crystalline material free of defects, the phonons which make the 

largest contribution to the low-temperature phonon thermal conductivity K h 
. p 

have an angular frequency w-of w ~ 4kT/~, where Tis the absolute temper-

ature, k is the Boltzmann constant and ~ is the Planck constant divided by 

2n. This is the phonon analogue of Wien's displacement law in black-body 

radiation. In essence, a measurement of Kph versus T is equivalent to the 

use of a broad-band phonon spectrometer of spectral width 6w ~ 4kT/~ in 

which the central frequency w is varied by adjusting T. In this sense, 

the thermal conductivity of a crystal containing a defect may be used to 

infer the magnitude and frequency dependence of the phonon-defect inter-

action. 

1.1.1. Analysis of thermal conductivity data. 

The "dominant-phonon" concept outlined above, wherein w ::: 4kT/ft, 

is very useful and will be employed in this paper. But the concept is, 

in general, too simplistic and has led to erroneous conclusions in the 

past. It should be recognized that the low-tempPrature ~horton thermal 

conducLivity is a rather complicated property given by 

(1) 

where the sum is over the longitudinal and two transverse acoustic phonon 

modes, Ci(w) dw is the contribution to the specific heat by phonons of mode 

i in the frequency range between wand w + dw, and vi(w) is the velocity of 

'/_-"'/ / . / 
/ 

;;r. ( . 
"' 



mode i at frequency w. The term Ti(w) is the mean time duration between 

scattering events for phonons of frequency w and mode i. If a defect is 
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present, Ti(w) contains the desired information concerning the interaction 

between thermal phonons and that defect. 

Obviously,it is not possible, using Eq. 1, to deduce Ti(w) from the 

measured thermal conductivity unless a great deal of ancillary information 

is available concerning Ci(w) and vi(w). To reduce the amount of infor­

mation required,·the Debye approximation is generally adopted. In this 

approximation it is assumed that vi(w) is a constant, vi(w) =vi. As a 

2 2 3 2 X X -2 ·· 
result Ci(w) = (kw /2rr vi )x e (e -1) with x = .flw/kT. This approximation 

is reasonable for T S 10 K and, in an isotropic solid, requires only a 

measurement of the three vi at ultrasonic frequencies. In general, the 

integration over win Eq •. l-must be carried out explicitly. However, in 

the event that T_
1

(w) is a weak function of w, Kph:::: {1.36 x l0
12

T
3

) ~ Ti(w)v1-
1

, 

* in units of W/mK , with w = 4kT/~. This represents one form of the 

dominant-phonon approximation. 
' ' 

For a given defect, the phonon-defect interaction may not be the same 

for the three phonon modes. Hence Ti(w) may depend explicitly on i as well 

as w. In this situation it is possible that the most weakly scattered 

phonon mode will dominate the thermal conductivity, contrary to what is 

occasionally stated in the literature. It may not be possible to obtain 

any quantitative information concerning the stronger phonon-defect inter-

action. This problem will be encountered in Sec. 2.1.1. 

If all three phonon modes were to undergo the same int:eractluu with 

the defect, then Ti(w) = T(w) could be deduced from the measured Kph 

* All unit:s in t:his chapter are MKS. 



provided only one process of phonon scattering were dominant. Often, 

however, more than one scattering process may be present. It is then 

-1 -1 
assumed that T i (w) = r Tij (w), although this approximation does 

j 
occasionally fail [3]. To find a specific Tij it is essential to have 

detailed information about all other Tij' Generally this is not possible. 

The literature, unfortunately, contains many analyses in which several 

-1 
terms in E T ij are treated as adjustable parameters. Such an analysis 

j 
is a numerical exercise devoid of physical information. 

Thus far in this discussion the crystalline sample has been treated 

as isotropic. The anisotropy of the crystal does produce an important 

anistropy in Kph [4]. Furthermore, the phonon-defect interaction may 

itself depend on the direction of propagation of the incident phonon [5]. 

Hence Ti(w) becomes Ti(w, 9, ~). 

The foregoing paragraphs should convince the reader that it is dif-

ficult at best to obtain quantitative information about the phonon-

dislocation interaction from thermal-conductivity measurements. In view 

of the difficulties involved in the analysis of data, it should not be 

surprising.that disparate conclusions have been reached by different 

8 

authors. In addition, there is the underlying problem as to the reliability" 

of the data on which the conclusions are based. This question is discussed 

in the following section. 

1.1.2. The measurement of thermal conductivity 

Thermal conductivity is measured as a function of temperature. Other 

variables occasionally used, such as electric or magnetic fields, are not 

of interest here. A schematic e~perimental arrangement is shown in Fig. 1 



where R represents the refrigerator and S the sample. In one scheme 

B1 and B2 
are thermometers, separated by a distance G, which measure a 

temperature difference 6T created by a heat flow Q introduced by the 

electrical heater C. Then K t = QG/A6T, wher~ K is the total thermal to tot 

conductivity for the region between B1 and B2 and A is the cross-sectional 

area of the sample. Alternatively, B1 and B2 may be heaters and C a 

thermometer which· measures the temperature increase 6T when power Q is 

switched from B2 to B
1

• 

Errors in the measurement of Q, G and A are generally small and of 

little consequence. The most important error, in.practice, is in 6T. 

Errors in 6T have led to the publication of papers purporting to show 

anomalous variations in the temperature dependence of the thermal con-

ductivities of.vard.ous materials, variations which do not, in fact, 

exist [6,7,8]. The source of such an error is not always obvious. Some 
I 

experimentalists use carbon resistance thermometers which are known to 

drift with time [9]. Others rely on the calibration of commercial ther-

mometers. Such thermometers have been found to be in error by as much as 

50% [10]. Any low temperature measurement (at least prior to 1979), which 

relies on the calibration of ~ commerical thermometer, must be suspect. 

There is also a more subtle thermometry problem which is especially 

important in measurements of metals. The thermal conductivity of a metal 

may be written K = K + K where K is the contribution from con-tot . ph el, el 

duction electrons which must be subtracted from K to obtain the desired tot 

9 

Kp~· A measurement of the low-temperature electrical resistivity p provides 

-8 -1 a value for Kel by use of the Weidemann-Franz relation, Kel = 2.45 x 10 T p . 
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But it must be noted that the subtraction K - K 1 involves two dif-tot e 

ferent temperature scales. That in the Wiedemann-Franz relation is the 

thermodynamic, absolute temperature whereas K is measured using a tot 

laboratory temperature scale. This difference is significant since Kel 

and K have so nearly the same magnitude that small errors in K t are tot . to 

amplified by the mathematical subtraction. Until 1978, the only low-

temperature scale universally available was based on the vapor pressure 

of liquid helium. Even if the experimentalist managed to reproduce this 

vapor-pressure scale accurately, the vapor-pressure scale itself was in 

error by an amount ranging from 0.2% at 5 K to possibly::: 1% when extra-

polation toT s 0.1 K. The situation was improved in 1979 with the 

availability of precision superconducting thermometric fixed-points 

[11,12] based on a temperature scale of greater accuracy [13]. 

In summary, even if experimental errors have been successfully 

avoided, a measurement of Kph versus T can tell us little concerning a 

phonon-defect interaction in a crystal unless we also know the kinds 

.and densities of defects present and the phonon modes which interact 

with those defects. A definitive analysis and comparison with theory 

will tlunefore require additional measurements other than thermal con-

ductivity. 

1.2. Theoretical models of the phonon-dislocation interaction 

In the previous sections the approach has been to deduce Ti(w) 

from the measured Kph" The Ti(w) might then be compared with theoretical 

models. However, because of the complexity of phonon thermal transport, 

it is mathematically more simple to calculate a Kph by substituting the 

theoretical Ti(w) in Eq. 1 and then to compare the calculated Kph with 



11 

the experimental result. This latter approach will be adopted in this 

section. 

It is convenient to think of two general types of phonon-dislocation 

interactions, namely "static" and "dynamic". In the static interaction 

the position of the dislocation does not change, relative to the crys-

talline lattice, as a phonon passes. In the dynamic interaction ·the dis-

location, in some sense, moves relative to the lattice because of the 

influence of the time-dependent stress field· of the passing phonon. 

Within this definition, any dislocation which undergoes a dynamic inter-

action with a phonon will possess an associated localized-mode or vibration. 

This localized mode is absent for dislocations which undergo only a: static 

interaction. In the following paragraphs, ·several explicit models will be 

mentioned by way of introduction. The list of models is not exhaustive. 

1.2.1. The static interaction 

Kogure and Hiki (5] provide rec~t· calculations of the static inter-

action and review:the work of others, including the widely quoted work of 

Klemens [14]. The origin of this phonon scattering mechanism is the 

nonlinear elastic response of the strained region surrounding a sessile 

dislocation. 
. -1 

The calculation prF:'!d:f.cts a T proportional to w or, using 

Eq. 1, a Kph proportional"to T2 if this is the only scattering process 

present in the sample. The theoretical magnitude of the static inter-

action is somewhat uncertain as will be discussed·in Sec. 2.2. 

The static interaction is highly anisotropic relative to the direction 

of phonon incidence and depends on the phonon ·mode as well as the type of 

dislocation, i.e. edge or screw [5]. The interaction may also be modified 

by the presence of impurity atoms (Cottrell atmosphere) [15]. If the 



dominant-phonon wavelength becomes camparable to or larger than the 

distance between dislocations, the scattering magnit~de could be either 

reduced [16,17] or increased [18], depending on the arrangement of the 

dislocations. Hence, as the temperature is lowered, the temperature 

2 
.dependence of Kph may deviate from T • In like manner, special arrays 

af dislocations such as grain boundaries might cause a temperature 

dependence other than T2• Finally, the phonon-scattering behavior 

could be modified for an extended or dissociated dislocation [19]. 

1.2.2. The dynamic interaction 

The simplest approach is to view the dislocation as a stretched 

elastic string which can support the propagation of waves. A passing 

acoustic phonon of angular frequency w may.then induce on the string 

a traveling wave of the.same frequency. In this manner the dislocation 

absorbs the energy of the phonon and then reradiates this energy, or 

phonon, in a different direction, which constitutes a phonon-scattering 

process. The dislocation does remain in thermal equilibrium at the low 

12 

temperature of the measurements (s 10 K). Hence the amplitude of vibration 

of the dislocation is much smaller than a lattice constant {20], i.e. 
0 -10 

<< 3 A (<< 3 x 10 m). The amplitude of thermal vibration is also 

much smaller than the amplitude attained in ultrasonic investigations 

of dislocations. 

Ninomiya [21] has treated the case of the infinite, isolated dis-

location,. while Granato [22] has considered theenhanc~d scattering 

which o.ccurs when the dislocation is pinned at discrete points so as to 

leave segments of an average length L.free to flutter. A mechanical 
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resonance then occurs at a frequency of w : v/L and the phonon lifetime 

T would exhibit a minimum near this same frequency. In the dominant-

3 phonon approximation, Kph/T would have a minimum near T : ~w/4k : ~v/4kL 

as a consequence of the resonance. 

The frequency dependence described above could be further complicated. 

if the'local density of dislocations were sufficiently large to permit 

correlations between different scattering events as, for example, in a 

dislocation. dipole [23,24] or in a grain boundary [25]. Alternatively 

if individual, isolated dislocations were dissociated, there could occur 

internal degr~es of freedom and their related vibrational motions 

[26,27]. In addition, the dislocation motion may be influenced by the 

undulatory Peierls-Nabarro lattice potential experienced by the dis-

location which might, in turn, require the consideration of kink 

metion [28]. 

In the following sections, the scattering magnitude calculated by 

Granato [22] will be adopted as a theoretical value typical of all 

resonant dynamic processes. -3 
If the minimum in K hT occurs at T . p m1n 

because of the resonance, then T at T i is given, very roughly, by m n 

T ::: 10
12 

T i /N v 2, where N is the d:l8loc.ation density. This approximate . m n 

relation is applicable to the temperature range of Tmin ·~ 0.1 - 1 K. 

1.2.3. A comparison of the static and dynamic interactions 

In general, the dynamic process causes much stronger phonon 

scattering than the static mechanism, at least for phonons having fre-

quencies near the resonant frequency of the dislocation. The temperature 

dependence of K/T3 should be T-l for the static mechanism, whereas K/T3 

should display a minimum for the dynamic mechanism. These are signatures 
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which, if present in the measured thermal conductivity, suggest the type of 

interaction which may be present. However, as noted previously, other temperature 

dependencies could be associated with the phono~-dislocation interaction. 

2. Experimental results and comparison with theoretical models. 

The most thoroughly studied crystal system, the ionic alkali halides, will 

be discussed first. Next, covalent crystals and superconducting metals will 

be reviewed. Like the alkali halides, measurements on these materials are not 

encumbered by.a contribution from conduction electrons. Normal metals, the 

most difficult system to analy~e, will then be discussed, followed by a few 

miscellaneous examples. A comparison of the.experimental results with the two 

generalized theoretical models will be offered with each class of material. 

The few conclusions which can be gleaned from this presentation will be 

found in Sec. 3. In light of the past history of this subject, it is unlikely 

that these conclusions will be met with universal acceptance. Therefore, explicit 

indications are made as to where additional work could be constructive in 

providing more definitive information. 

The numerical data provided in the following pages· is often qualitative, 

but is generally accurate to within a factor of ~ 2. Also, some details of 

the experimental thermal conductivity results have been ignored. Tltese 

details may reveal the influence of more complex and subtle phonon scattering 

mechanisms. Nevertheless, we seek here to determine only if the dominant 

scattering mechanism is static or dynRmic in each example. 

2.1 Ionic crystals 

As indicated above, the .most thoroughly studied system has been the 

alkali halide crystals. Of this class, work on LiF has been the most 

fruitful. 
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2.1.1. LiF 

In undeformed, annealed crystals of LiF at temperatures below : 5 K, 

the phonons scatter only from the surfaces of the samples [28,29]. At 

higher temperatuees there may occur point-defect scattering from isotopic 

Li impurities [30]. When a LiF. crystal is deformed by shearing in a 

manner indicated by the inset in Fig. 2, the thermal conductivity is 

reduced to a fraction of its original magnitude because of the intra-

duction of dislocations irito the sample. This reduction is shown by 

curve A in Fig. 2, where the thermal conductivity of the deformed sample, 

Kph' has b~en divided by the thermal conductivity of the undeformed 

sample, K8 . This normalization proceedure has two advantages. First, 

it removes most of the temperature dependence. Thus the vertical scale. 

may be greatly expanded. Second, it emphasizes the changes caused by 

deformation or other treatment of the sample. 

The deformed LiF samples were next subjected at room temperature to 
. . 

.successive exposures of y-irradiation. The purpose of the y-irradiation 

was to introduce point defects which, from ultrasonic measurements [31,32], 

are known to pin the dislocations and hinder macroscopic motion. The 

curves H and C of Fig. 2 show that y-irradiatiun restores ~<: to the 
ph 

magnitude which existed prior to irradiation. 

Finally, the densities of isolated dislocations were deduced from 

etch-pit counts on both the (001) exterior surfaces of the samples and 

from interior (100) surfaces exposed by cleaving through the deformed 

region of each crystal. Etch-pit determinations of dislocation densities 

have been found to give good agreement with other techniques [33]. The 



density was :: 4 x 1011 m- 2 , and the dislocations were primarily edge 

type aligned perpendicular to the (001) face. 

The following experimental facts have been obtained from a series 

of measurements on LiF crystals deformed by "shearing". 

(a) The introduction of dislocations reduced Kph to 

roughly 50% of its magnitude prior to deformation. 

(b) This 50% reduction was independent of the density of 

dislocations. 

(c) The magnitude of Kph (at a given temperature) was 

proportional to the width of the sample in the 

deformed state as well as in the undeformed state. 

These three results can be explained in only one way. A fraction 

of the thermal phonons is scattered so strongly by the dislocations 

that this fraction makes essentially no contribution to K h' while . p 

another fraction is so weakly scattered by the dislocations that, for a 
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dislocation density of:: 1011 m- 2, this fraction continues to be sc~ttered 

only by the surfaces of the sample as in the case of the undeformed 

specimen. Hence this latter, weakly scattered fraction completely 

dominates Kph in the freshly deformed sampl~~ (for T <: 0. Ol1 K). 

The slow-transverse phonons in undeformed LiF contribute roughly 

45% of the thermal conductivity, while the fast-transverse phonons 

contribute :: 40% and the longitudinal :: 15%. These values are obtained 

from the three respective terms in Eq. 1. The reduction to ~ 50% of 

the magnitude of K h observed prior to deformation, and the fact that 
. p 

the Peach-Koehler relation [34] indicates that the slow-transverse 
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phonons should interact most strongly with the edge dislocations, suggest 
'< 

that the slow-transverse phonons may be the strongly scattered fraction. 

The thin layer of dislocations in these LiF samples 

would thus act like a filter responsive t.o the polarization vector of 

individual phonons. This behavior is analogous to the performance of a 

Polaroid filter in the field of optics. 

A direct test was made to determine if the slow-transverse phonons 

were being scattered most strongly [28]. On one end of a LiF sample a 

thin metallic electrical heater was vapor deposited. A fast-response 

thermometer or bolometer was applied to the opposite side. One short 

pulse of power to the heater created three phonon pulses,, one for each 

of the three acoustic phonon modes. The pulses propagated ballistically 

through the sample at their respective velocities. The thermometer then 

recorded three time-resolve~ spikes as shown in Fig. 3. When the sample 

was deformed by shearing, as in the inset of Fig. 2, the spike corresponding· 

to the slow-transverse mode decreased in magnitude relative to the other 

two modes as shown by the lower trace in Fig. 3. Exposure to·y-irradiation 

restored the slow-transverse spike. Hence there is d.irect evidence that, 

in LiF deformed by shear, the slow-transverse thermal phonons are scattered 

by the presence of edge dislocations with greater strength than the other 

two modes. 

Crystals of LiF were also deformed by bending about an [001] axis 

[29t35]. Etch-pit ~aunts again indicated.a dislocation density of roughly 

1011 m- 2, but with possibly 1/4 of these being screw dislocations. The 

results following deformation and following y-irradiation are shown by 

C\lnres D and E of Fig .• 2, respectively. The depressed thermal conductivity 

of a freshly bent sample, curve D of Fig. 2, has been shown to extend to 

25 K [ 35]. 



The three results (a), (b), and (c) listed above for sheared 

crystals were also observed for the bent crystals, but with one dif-

ference. The reduction in Kph was to about 40% of the magnitude of 

the undeformed crystal as may be seen in Fig. 2. A simple explanation 

is that both. the slow-transverse and the longitudinal phonon modes are 

strongly scattered by the different array of dislocations in bent 

samples, leaving only fast-transverse phonons to.carry the heat. This 

suggestion, however, has not been verified by using ballistic-phonon 

measurements. 
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An additional .fact may be obtained from the measurements on sheared 

and bent LiF crystals. 

(d) The temperature region above which the slow-transverse 

phonons are strongly scattered by dislocations is 

increased with increased exposure to y-irradiation. 

For.curve C of Fig. 2 the dislocations are still present, but the 

slow-transverse phonons are now scattered by the sample surfaces just as 

in the undeformed sample. Clearly the phonon-dislocation interaction has 

been significantly modified by the pinning effect of the y-induced point 

defects. The only explanation ~:nlva1rced thus far is that the i ntP.r.ac tion 

of phonons with, fresh dislocations is dynamic in character, and that 

successive y-irradiations push the dislocation resonances to higher 

frequencies. The increase in resonant frequency is perhaps caused by 

a reduction in the lengths of dislocations, between pinning points, 

which are 'free to flutter. 

Although the data are much less conclusive, it does appear that 

pinning of dislocations by heat treatment, that is, through pinning 



caused by the thermal diffusion of impurities to dislocations, produces 

essentially the same behavior below 1 K as does y-irradiation [29]. 

Earlier measurements on LiF obtained at temperatures above 1.5 K 

showed a reduction in Kph much larger than 50% following deformation by 

compression [35,36], see Fig. 4. However, the dislocation densities in 

i f - 1012 t,o 1013 m-2 , and the these samples were also larger, rang ng. rom -
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heat flow was along a [100] crystal axis. In Fig. 4, curves A and C represent 

freshly deformed samples with C having a factor of z 3 larger dislocation 

density than curve A. A mild heat treatment at 300°C reduced the density 

of dislocations by a factor of about 2, but also changed the temperature 

dependence as shown by curves B and D of Fig. 4. The ratio of curve B 

to curve A, or of D to C, in Fig. 4 has a similar temperature dependence 

as the ratio of curve E to D of Fig. 2. In brief, it would appear that a 

dynamic phonon scattering process occurs at the freshly produced dislocations 

in compressed crystals, just as in sheared or bent crystals, and that a mild 

heat treatment pins these dislocations and moves the resonance to higher 

frequencies as in the sheared or bent samples. 

Still, the conductivity of the compressed samples is reduced by a factor 

of~ 20, versus a factor of~ 2 for sheared or bent crystals, and the magnitude 

of this depression in compressed crystals appears to be roughly proportional 

to the density of dislocations, contrary to conclusion (b) above for sheared 

or bent crystals. One possible explanation is that the fast-transverse 

:\i''' 
phonon~ in compressed samples continue to dominate Kph as in the sheared or 

bent samp.les, but are limited in mean free path by a relatively weak scattering 

from the dislocations. Only the larger dislocation densities found in compresseq 



samples in LiF permit the weaker scattering of the fast-transverse 

phonons to be detected. The effect of thermal pinning seen in Fig. 4 

would then indicate that·the interaction of fast-transverse phonons with 

freshly produced dislocatinns is also dynamic in character as for slow-

transverse phonons. An alternative explanation is that all three phonon 

-
modes in compressed samples undergo a dynamic scattering of ~oughly the 

same magnitude. Measurements of thermal conductivity on compressed 

samples at temperatures below 1.5 K would be helpful in resolving this 

question. 

In comparing the data with theory, we first focus on the samples 

which had been y-irradiated for the greatest length of time. The dis-

locations are still present, but a depression in Kph persists only in 

the temperature range above = 2 K (curves C or E of Fig. 2). If it is 

assumed that the reduction ]!!! 1-2 K is caused by the static scattering 

. d 2 . mechanism, which pro uces aT temperature dependence of K h' then the 
. p 

experimental lower limit on Kph due to sessile dislocations is Kph ~ 2 x 
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1013 T
2 

N-l where N is the dis~ocation density. This is a lower limit on 

Kph for the static interaction since the dynamic process may also be 

present. The static models of Koguri and Hiki [5] or·of Klemens [14], 

which are discussed in greater detail in Sec. 2.2, predict K h to be . p 

- 13 2 -1 within the range - (3-300) x 10 T N , the smaller values being pre-

fered by 'those authors~ Thus any residual scattering which may be present 

in the fully y-irradiated samples for T < 2 K is consistent with this 

model of static scattering. On the.other hand, a static model which has 

been developed by Ohashi f37]·to predict much stronger phonon scattering, is 

not applicable to LiF. 



We next turn to the .freshly deformed samples of Fig. 2 (curves A 

or D) and Fig. 4 (curves A or C). The static scattering model, such as 

that of Klemens, does not explain these results. Th~ temperature depen-
'· 

dences are wrong, the scattering magnitude is too weak by a factor of 

~ 100 and the pinning effect is not accounted for. An alternative 

static-scattering model, one which considers the scattering resulting 

from a spatial variation in crystal orientation associated with the 

3 
presence of dislocations, does purport to provide the T temperature 

dependence observed in Fig. 2 for freshly deformed LiF [38]. However, 

21 

it has been empirically demonstrated as discussed above that the observed 

T3 dependence is caused by scattering of a dominant heat-carrying fraction 

of the phonons from the sample surfaces. In brief, no static model explains 

the behavior of Kph in freshly deformed LiF. 

As mentioned in Sec. 1.2.2., the dynamic model gives T ~ 10
12 

T . /N v
2 

rn1n 

near a dislocation resonance (See also Ref. 39). This approximate scat-

tering strength is sufficient to explain the scattering of phonons observed 

near the average resonant frequency of the dislocations in LiF, provided the· 

scattering is indeed caused by the N individual dislocations observed in etch-

pit counts. The increase in resonant frequency with successive y-irradiations 

suggests that a "vibrating-string" model is·more appropriate than, for example, 

the internal resonance of a dissociated dislocation or a vibration controlled 

by the Peierls-Nabarro lattice potentiaL However, a quantitative comparison 

[24,29] using explicitly the vibrating-string model of'Granato [21,22] 

indicates that this dynamic mechanism scatters phonons:;wi thin a frequency 

interval which is much to narrow to explain the depression observed in Kph 

I. 



22 

over the broad temperature range of 0.05 to > 5 K. It has therefore been 

suggested [24] that edge-dislocation dipoles, which are assumed to be 

more numerous than isolated dislocations, may provide the strong dynamic 

scattering observed in these measurements. In this calculation the 

resonant frequency of a dipole depends both on the distance between 

pinning points and on the spacing between the two dislocations. A dis-

tribution in both quantities can provide the spectral width required to 

fit the the~mal conductivity data. 

One additional observation may be significant. The LiF samples 

deformed by bending were investigated more thoroughly above 2 K than were 

the sheared samples [29]. For the bent samples it appeared that the strong 

phonon scattering could not be suppressed at te~peratures above ~ 3 K by 

y-irradiation (Fig. 2) or by thermal pinning (Fig. 4). In the dominant-

11 phonon approximation this corresponds to frequencies ~ 3 x 10. Hz, or of 

.0 -8 
phonon wavelengths S lOO·A (S 10 m). It is not known whether this 

saturation in pinning reflects the maximum density of pinning'points which 

can collect on a dislocation [40], or if it reflects in some manner the 

microscopic topography of the dislocations. What is more important, the 

lack of a pinning effect for T > 3 K does not permit us, from experimental 

data alone, to determine if the phonon-dislocation interaction is static 

. 11 
or dynamic in character for phonon frequencies above 3 x 10 Hz. On the 

othe·r hand, in a comparison with the available theories, the magnitude of 

the strong phonon scattering which occurs above 3 K is compatible only with 

a dynamic mechanism. 

In summary, it seems certain that fresh dislocations in LiF scatter 

phonons by a dynamic proces~. The interaction is highly mode dependent, 
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and can be supressed at T $ 3 K by pinning the dislocations. This behavior 

is more readily accounted for by a "vibrating-string" model than by other 

existing models. Any static scattering that occurs at fully pinned dis­

locations .is consistent with the static model first investigated by Klemens. 

2.1.2. Other ionic crystals 

The influence of compressional deformation on the thermal conductivity 

has been measured for NaCl, KCl, and NaF crystals at temperatures above 

1. 5 K [ 35,41]. The results are similar to the behavior of T::iF samples 

deformed by compression. That is, the scattering magnitude is large 

relative to the magnitude expected from the static mechanism. On the 

other hand, measurements below 2 K on NaCl s~mples deformed by bending 

and then heat treated gave results compatible with the static model [25]. 

However, the heat treatment of. these NaCl samples at 250°C may have pinned 

the dislocations through the diffusion of impurities as in LiF. It is 

therefore suspected that a dynamic mechanism is present in these crystals 

for freshly produced dislocations, . although it would be useful to h~we a 

more convincing demonstration of this conclusion as in the case of LiF. 

2.2. Covalent crystals 

In no system-other than LiF is there sufficient experimental information 

from which t·o deduce the scattering of the individual phonon modes in a 

deforme·d sample. We shap therefore adopt the common but unsatisfactory 

approximation that all phonon modes are scattered with roughly the same 

intensity by dislocations, independent of whether the interaction is static 

or dynamic. Since an approximation is required, it is also convenient to 

make one additional., but less .. serious approximation, namely to derive and 
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plot the average intrinsic phonon mean free path ~. Plotting an empirical 

~ rather than Kph permits a comparison of phonon scattering to be made 

between samples of different dimensions. The intrinsic phonon mean free 

path ~ is extracted from the equation (see Sec. 1.1.1) K h = 1.36 X 1012 
p . 

T3 ~ r vi 
-2 

with ~ 
-1 ~-1 + ~ -1 where ~B is the mean free path that = n n B ' 

would exist if only boundary scattering were present [42], and~ is the 
n 

net mean free path due to all scattering processes. 

Measurements obtained at temperatures above 1.5 K from germanium 

crystals subjected to tensile deformation [43] are represented by the 

solid curve in Fig. 5. The relation Kph = 3.2 x 103 ~n T3 was used to 

obtain £. Independent measurements at temperatures below 1 K, on a 

sample deformed by bending, provided a lower limit on ~ [44]. The dis.­

location density was estimated to be ::: 1011 m- 2 fr.om the radius of 

curvature of the bend. 
. 13 2 

When scaled to a density of : 2 x 10 m-

appropriate to Fig. 5, this lower limit on ~ lies within a factor of 2 

of the data at higher temperatures as shown by the dotted line. 

From Fig. 5 it is observed that, in germanium for temperatures 

-1 
below ~ 10 K, ~ is proportional to T and hence Kph is proportional to 

2 2 
T . A similar result has been reported for silicon [5]. The T temper-

ature d~pendence of Kph is that expected from a static phonon-dislocation 

interaction. Indeed, a low-frequency resonance or dynamic interaction 
/ 

would not be expected in silicon or in germanium because of the large 

undulating Peierls-Nabarro lattice potential which is present. Irt brief, 

the dislocation would be expect~d to act somewhat like a long rod sliding 

from side to side in a quadratically-shaped trough of very steep sides. A 
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naive calculation of the resonant frequency of this motion in germanium 

gave ~ 3 x 10
11

Hz [44]. A single, slight depression in the measured Kph 

of germanium near ~ 15 K [43] indicates that the resonant frequency, if 

it does exist, must lie at a frequency near or above ~ 1012 Hz in the 

dominant-phonon approximation. Thus only a static interaction should be 

important at temperatures below ~ 15 K. 

A comparison of the measured conductivity of Kph T- 2 N : 3 x 10
13 

with theoretical values of the static interaction is not simple. Klemens 

corrected [14] his original calculation [45] of the static interaction by 

-2 reducing the theoretical value of Kph T N by a factor of 16. Klemens 

believes this factor to be reliable [46], but others are not convinced [5]. 

The corrected value for silicon is ~ 3 x 1013 . The calculation of Koguri 

and Hiki [5] gives : 300 x 1013 for silicon, but these authors argue that 

only the slow-transverse phonon contribution to Kph of the. deformed sample 

should be considered because this mode has the smallest velocity and hence 

makes the largest contribution to Kph· (See the discussion of the Debye 

approximation in Sec. 1.1.1). ~he transverse phonon fraction would be 

~ 30 x 10
13

, or possibly a factor of 4 smaller depending on the direction 

of heat flow relative to the crystalline axis. However, the effect of the 

smaller acoustic velocity was alre.ady included in their priginal value of 

300 x 1013• Hence the reduction by an effective .factor of 10 seems 

unwarranted. Finally, both Klemens.value and that of Koguri and Hiki might 

be_~educed by another factor of~ 3 for random orientations of dislocations 

[5,47]. The final theoretical values for silicon (and germanium) then lie 

13 13 13 ·between roughly 1 x 10 and 45 x 10 for Klemens, and 3 x 10 and 
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13 
300 x 10 for Koguri and Hiki. In each case, the respective authors 

argue for the smaller values. 
-2 - 13 . 

The value of Kph T N = 1 x 10 corresponds 

to a phonon mean free path rep!esented by the dashed line in Fig. 5; this 

value is in order-of-magnitude agreement with the measured mean free path. 

In summary, only the static phonon-dislocation interaction is expected 

to. occur in ·germanium at low temperatures. Hence germanium should be ·an 

ideal material for which the "static" theory and experiment may be compared. 

The experimental results do, in fact, agree with the smallest theoretical 

-2 values of Kph T N calculated for phonon scattering by the strain fields 

of isolated, sessile dislocations. For this reason the.smallest theoretical 

-2 values of Kph T N will be used hereafter. in this chapter in the comparisons 

with experimental' data. 

2.3. Superconducting metals 

In superconducting metals at temperatures well below the superconducting 

critical temperature, T , thermal transport is provided by phonons as in 
c 

nonmetallic crystals. As T ~s approached, two effects become important. 
c . 

First, the increasing density of conduction electrons scatters phonons. 

Second, the i'ncreasing density of conduction electrons contributes to the 

thermal conductivity •. As a result of these two effects, useful infurwation 

regarding the phonon-dislocation interaction is generally limited to 

T < T /4. . c 

2. 3.1.. Tantalum 

The mean free paths of phonons in tantalum, as limited by dislocation 

scattering plus conduction-electron scattering, are shown in Fig. ·6 [39 ,48]. 

3 3 
The mean free paths have been obtained from the equation Kph = 7.7 x 10 T tn. 
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The temperature dependence of curves A, B and C in Fig. 6 is indicative 

of a dynamic dislocation scattering mechanism, not a static mechanism. 

A bent sample, from which curve C was obtained, .was.sectioned in the 

11 -2 
deformed reg.ion to provide an etch-pit count of :: 3 x 10 m . At a 

resonance, the approximate relation ~ = v T :: 1012 T i /N v is obtained mn 

from the dynamic model (Sec. 1.2.2)~ This relation therefore predicts 

i ~ 6 x 10-4 mat Tmin = 0.33 K for curve C of Fig. 6. The measured 

value is 4 x 10-4 m, which agrees well with the value expected for a 

resonant interaction but is a factor of ~ 102 too small to be accounted 

for by the static mechanism~ In brief, there is good evidence that the 

phonon-dislocation interaction in superconducting tantalum is dynamic in 

nature. 

The resonant frequency of the dislocations in tantalum appears to 

increase slightly with increasing strain, as indicated by curves A, B, 

and C of Fig. 6. If the pinning were caused by the intersection of dis-

locations, the mean distance i between pinning points might be eXpected 

-1/2 r-to vary as N • Hence the frequency would vary as vN. Indeed, if the 

d 1 d f 
- . 11 -2 

is ocation ensity or curve A is - 1 x 10 m (similar to curve E, see 

. ) .11 -2 
below whereas that of curve C is z 3 x 10 m , the resonance should shift 

from 0.17 K for curve A to 0.3 K for curve C. The minimum in curve C 

falls at 0.33 K. The agreement is reasonable, butthe proposed explanation 

is highly speculative. 

The temperature dependence of curve D of Fig. 6, which is for a cold­

rolled sample, corresponds to Kph proportional to T2• This temperature 

dependence is indicative of a .static scattering mechanism, although the 

data are available for only a small temperature range. The density of 
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dislocations required to produce curveD would be·~ 1014 m- 2 if, again, 

the smallest theoretical value of Kph T- 2 N is adopted. A dislocation 

14 -2 density of ~ 10 m would indeed by reasonable for a cold-rolled sample. 

Hence the available data suggest that_the resonant frequency of dislocations 

in tantalum increases with increasing dislocation density N and, if N is 

sufficiently large, only the static mechanism remains for T s 1 K, i.e. 

for phonons of frequency s 1011 Hz. This suggestion is a1so highly 

speculative. Additional data below 1 K at large N would be helpful. 

It is difficult to prepare and insert an annealed, pure metallic 

sample into a cryostat without some dislocations being introduced accidentally. 

If the strong scattering resulting from a dynamic phonon-dislocation inter-

action is present, the thermal conductivity of a superconductor could be 

depressed below the value expected from boundary scattering alone. Obser-

vations of a depressed thermal conductivity in superconducting tantalum 

and niobium over a limited temperature range, such as curve E of Fig. 6, 

had led initially to the suggestion that some new, unknown phonon scattering 

center must be present [49]. However, when measurements are extended to 

lower temperatures where the dominant-phonon frequencies lie well below 

the dislocation resonance, it has been experimentally verified that scat-

tering by the sample surface does reappear, as expected, in tantalum [39] 

and in niobium [3]. Therefore, the postulation of a new scattering center 

is not warranted. 

2.3.2. Aluminum 

The phonon mean free paths in superconducting aluminum samples, measured 

by two very different techniques, are shown in Fig. 7 [SO] where the 



3 relation K h = 2.7 x 10 i p n 
T3 has been used. The temperature range for" 

aluminum is severely limited by the low T of 1.2 K. 
c 

The dislocations of curve A in Fig~ 7 were introduced by bending the 

sample at room temperature, while those of curve B were introduced at low 

temperature by differential thermal contraction. The bent sample 

was sectioned to obtain an etch-pit count; a dislocation density of 

N ~ 1010 m- 2 is · i A appropr ate. to curve • Although one might argue that 

-1 the te.mperature dependence seen in Fig. 7 is close to the T expected 

from the static phonon-dislocation interaction, the measured density of 

dislocations is too small by a factor of ~ 104 The dynamic model, on 

the other hand, is more consistent both with the observed temperature 

dependence and with the observed magnitude. Using the approximate 

relation ~ = T v ~ 1012 T i /N v at the resonance gives i : 10- 2 m 
m n 

if Tmin "' 0.2 K. This is only a factor of 10 larger than the value of 

·~ 1 x 10- 3 m measured near 0.1 K. 

2.3.3. Lead 
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Lead has a conveniently high T of 7.2 K. However, a pure lead crystal 
c 

can deform under its own weight, and it will also anneal at room temperature. 

Thu~:; it is difficult to control the densi.ty of dislocations. Data from 

three laboratories are shown in Fig. 8 [39,51,52]. The relation K h 
p 

3.4 x 104 
i T3 was used to obtain ~. The dislocations in the samples 

n 

represented by curves C and B were introduced at low temperatures by 

bending or by tension, respectively. Those of curve A were introduced at 

room temperature by bending. Only the sample of curve A was sectioned 

11 -2 
to obtained an etch-pit count, the result being : 6 x 10 m . 



Clearly the static model does not apply to lead. Not only is the 

observed temperature dependence wrong, but the density of dislocations 

required to explain the magnitude would be > 1014 m- 2 for curve A as 

d d d i Of ~ 6 x 1011 m- 2 compare to a measure ens ty On the other hand the 

dynamic mechanism, represented by the dashed line in Fig. 8, agrees 

rather well with the data. This calculation used explicitly the. 

vibrating~string model of Granato, the measured dislocation density of 

curve A, and E£ adjustable parameters [22]. The calculation assumes 

only that the dislocation resonance lies below 0.05 K, i.e .. below 

9 5 x 10 Hz. The difficulties in working with lead, and the quantitative 

differences in data from the three laboratories, do suggest caution in 

accepting the conclusion that a dynamic phonon-dislocation interaction 

is dominant. 

2. 3. 4. Niobium· 

I 

Phonon mean free paths associated with dislocation and electron 

scattering in niobium are shown in Fig. 9 [3,53]. The relation Kph 

3 6.8 X 10 Jl. 
n 

T3 was used to obtain !/., In some measurements (curves A 

and B), the dislocations were·introduced accidentally by bending the 

sauq)les despite careful handling. Etch-pit counts were not mnde on 
. ) 

these samples, but an estimate of the dislocation density based on the 

radius of curvature of the bent crystals [54] gave a lower limit of 

~ 2 x 10
10 

m-
2

. (The actual density probably lay between 2 x 1010 and 

2 x 10
11 

m-
2 

[39]). The decrease in Kph or !1. was roughly proportionai 

to strain •. The temperature dependence of curves A and B is suggestive 

of a dynamic phonon-dislocation interaction. The relation 
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t ::: 1012 Tmin/N v (Sec. 1.2.2) gives t ::: 3 x 10-3 m if the resonance falls 

-3 near 0.5 K, which is in agreement with the measured value of z 2 x 10. m. 

The static interaction would require a dislocation density of ::: 1013 m- 2 

which is much larger than the estimated density of ·~ 2 x 1011 m- 2 

* In samples deformed under tension [53] , such as curve C of F!g .. 9, 

the temperature dependence of Kph changed from roughly T3 to roughly T2 

as the deformation increased, ·at least in the restricted temperature 

range above 0.3 K. (See also Ref. 51). After the final deformation, 

a dislocation density of : 1014 m- 2 was obtained for the sample of curve 

c from electron-microscope studies follOwing heavy neutron irradiation 

and thinning of the sample. Both the temperature dependence and magnitude 

of curve c are consistent with the static mechantsm of phonon scattering. 

" Although the accuracy of the commercial thermometry used at the lowest 

temperatures for these measurements is questionable (See Sec. 1.1. 2), 

the general trend from a T3 to a T2 behavior in these data should .be 

reliable. This apparent trend at T ~ 1 K from a dynamic phonon scattering 

mechanism to a static mechanism as the density of dislocations increases 
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was also noted for tantalum in.Sec. 2.3.1. Possibly the resonant frequency 

is ·increased with increasing dislocation density [55] so as to shift the 

resonance above 2 K, i.e. above 2 x 1011 Hz. Additional data are needed 

on superconducting niobium at large and intermediate dislocation densities 

and at temperatures below 0~3 K. 

* Several misleading comparisons appear in the discussion section of Ref. 53. 
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2.3.5. Summary 

The preponderance of evidence indicates that a :dynamic. phonon-

dislocation interaetion is present in some superconducting metals, at 

least at small dislocation densities. In view of the work on tantalum 

and niobium, it is clearly important to trace the scattering behavior 

over a broad temperature range as the density of dislocations is 

systematically increased. Such measurements would help to determine if 

the character of the phonon interaction does in fact change with increasing 

dislocation density. 

2.4. Normal metals 

In a typical metal, the conduction electrons completely dominate K tot 

unless impurities are added to reduce the mean free paths of the electrons. 

Thus most measurements are made on single-phase alloys, such as 15% (atomic) 

or less aluminum in copper. Even so, as discussed in Sec. 1.1. 2, severe 

problems remain in attempting to extract the phonon-dislocation interaction. 

Of the numerous papers on alloys which appear in the literature, only those 

which make some independent estimation of the dislocation density will be 

discussed here. 

2.4.1. Copper and Aluminum alloys 

Several measurements at temperatures above 1 K on copper alloys deformed 

d i . ph = 3 x 1013 T2 N-l, f d' 1 . un er tens on g1ve K as an average, or 1s ocat1on 

densities ranging from 1013 to 1015 m- 2 [56_:60]. A similar result has been 

found for aluminum alloys deformed by swaging [ 61]. The corresponding 

phonon mean free path for the copper alloys is shown as curve A in Fig. 10, 

= 5.7 x 103 
t T3• 

n using Kph In Fig.· 10, the phonon mean free path R. has 



been multiplied by the dislocation density N so that the average phonon-

dislocation interaction measured in different laboratories may be compared 

more simply. 

The tempera~ure dependence and magnitude of curve A are both in good 
. . . 

agreement with the static scattering mechanism. This curve represents 

. 14 -2 
samples of large dislocation densities, N ~ 10 m Curve B, on the 

other hand, was obtained from betlt samples [·6] having a measured dis­

location density of only : 1012 m- 2• The magnitude of i N for curve B 

is much smaller than predicted by the static mechanism (essentially curve 

A of Fig. 10), and the temperature dependence suggests the occurance of a 

resonance near 1 K. The approximate relation i : 10
12 

Tmin/N v for the 

dynamic mechanism near a resonance predicts i N ~ 3 x 108 m-l compared to 

the measured value of 0. 6 x 108 m-l at T = 1. 0 K. Thus there is again a 

suggestion, as in tantalum and niobium, that a dynamic mechanism occurs 

for a small dislocation density and that, for a high density, the static 

mechanism dominates. 

'· The possibility of a transition from a dynamic to a static scattering 

mechanism with increasing dislocation density encounters a problem with 
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curve C of Fig. 10. This sample [62] contained a_large dislocation density 

14 -2 
(= 10 m ) and was treated in the same manner as the samples of curve A, 

in particular that of Ref. 59.. Yet the magnitude and temperature dependence 

are well explained by the dynamic scattering mechanism. (See also Fig. 4 of 

Ref. 63). This paradox requires further investigation. A collaboration 

between laboratories in the exchange of samples would help eliminate questions 

concerning the ~alidity of such, apparently, incompatible data. 

It might be expected that a resonant mode of a dislocation in an alloy 

would be influenced or suppressed by a segregation of solute atomo about the 
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dislocations, much as occurs for impurities in LiF. (Sec. 2.1.1). However, 

there is at present no definitive evidence that alloys deformed at low 

temperatures exhibit a more dynamic type of interaction than those deformed 

at room temperature [60,64]. Atomic diffusion would be prevented for a 

deformation performed at sufficiently low temperatures. 

The static interaction in alloys may also be influenced by the 

segregation of solute atoms about dislocations [15]. Limited data obtained 

on copper-aluminum alloys initially deformed under tension at low temper-

atures [64] suggest that segregation may decrease R. or Kph by a factor of 

~ 4, i.e. the scattering of phonons is stronger after segregation. 

Unfortunately, the measurements did not establish a temperature dependence 

of the measured Kph which would have helped establish whether the assumed 

static mechanism was in fact present after a low-temperature deformation. 

In summary, the situation for normal metallic alloys is opaque. The 

measurements are very difficult. At present the bulk of data suggest that 

the static mechanism is present, at least for large dislocation densities. 

Useful data would be provided by measurements over a broad range of temper-

atures and dislocation densities for alloys deformed at both high and low 

temper:atures. 

2. 4. 2. Bismuth 

The principle carriers of heat in bismuth at low temperatures are 

phonons. Thus the problem of subtracting the electronic contribution is 

largely avoided. A dislocation density of: 1011 m- 2 , introduced by a 

compressive strain, produced Kph ~ 9 x 103 T
2

' 2 within the limited mea-

2 
surement range of 1. 5 - 4 K [65]. This is close to the T temperature 

dependence expected for•. the static phonon-dislocation interaction, but 



the magnitude of the measured Kph is a factor of ~ 20 too small. The· 

authors conclude that a dynamic interaction is present, but data to 

lower temperatures would provide more convincing evidence. 

2.5. Related measurements 

Several diverse properties may provide additional insight into the 

interactions between thermal phonons and dislocations. 

2.5.1. Scattering from grain boundaries 
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A grain bound~ry may be considered to be an ordered array of dis­

locations. Early measurements on low~angle grain boundaries in NaCl [66] 

and silicon [67] indicated a strong and possibly dynamic scattering of 

thermal phonons. However, more recent systematic measurements of Kph· in 

samples of LiF and NaCl containing measured densities of low-angle grain 

boundaries failed to detect any phonon-scattering mechanism stronger than 

that which would be expected for a static interaction [25]. The same 

results were obta1med from measur.ements involving ballistic phonons in 

crystals of silicon containing a single grain boundary [68]. It is 

possible that the dislocations in the grain-boundaries of the NaCl and 

LiF samples were fully pinned by impurities during the thermal treatment 

used to form the boundaries. Hence, any dynamic interaction would be 

'repressed, see Sec. t.1.1. For silicon, attempts were made by heat 

treatment to disperse any impurities which might pin the dislocations 

on the arain boundary~ bv.t: the l'honon scattering magnitude did not change. 

In brief~ there i$ no conclusive evidence that dislocations in grain 

boundaries scatter thermal phonons by other than the static mechanism. 



2.5.2. Scattering from sample surfaces 

The scattering of ~honons from the surface of a sample is diffusive 

in both direction and energy if the surface has been slightly. abraided. 

That is, the surface is "black" to phonons in an optical sense [42]. 

There is considerable evidence that much of the diffusive scattering is 

caused by defects, such as dislocations located immediately beneath the 

surface [42], rather than by the topographic roughness of the surface 
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as is generally assumed [69]. Indeed, such diffusive boundary scattering 

has not been detected ,at the abraided surface of glassy materials [ 42], 

materials which do not s~pport ordinary dislocations. Also, a room 

temperature y-irradiation can reduce the diffusive boundary scattering 

in NaCl [70] and in LiF [29]. These facts suggest that a dynamic phonon-

dislocation interaction is active in "boundary" scattering in crystals, 

the dislocations having been introduced by abrasion. 

2.5.3. Specific heat measurements 

The presence of'·. a dynamic phonon scattering process requires that the 

local:i,zed vibrational mode of the dislocation contribute to the specific 

heat. 
I 

Several measurements have been made on pure metals at large dis-

location densities [71]. The change in specific heat caused by cold-

rolling a sample is small, :: 1%. The results for copper [72] are shown 

by the solid curve in Fig. 11. The dashed line has been calculated from 

the vibrating-string model of Granato using the measured dislocation 

density of ~ 2 x 1015 m- 2 The average length of dislocation segment 

-8 
free to flutter which is obtained from this fit is L :: 3 x 10 m. This 

-8 value is close to the estimate of 3.5 x 10 m assuming that dislocations 
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. di 1 i 1 di 1 i d i i .i· L = N-l/ 2 p1n· s ocat ons at arge s ocat on ens t es, .e. . This 

value of L is also similar in magnitude to those deduced from other 

measurements at thermal vibrational amplitudes, such as thermal con-

ductivity measurements on deformed LiF [28]. 

If bhe above interpretation is correct, the dislocation resonance 

can persist at very large dislocation densities. This is contrary to 

the conclusion derived from most thermal conductivity measurements. It 

would suggest that the dynamic phonon scattering process itself is in some 

way weakened by large dislocation densities, which is equivalent to stating 

that the local vibrational mode associated with the dislocation thermalizes 

or retaxes less rapidly to the phonon.bath. Hence only the static-scattering 

process would be observed in the thermal conductivity measurements of highly 

deformed samples. 

2.5.4 •. Amorphous materials 

Several authors [73] have saggested that the amorphous state is 

basically the crystalline ~tate containing a very large density of dis­

locations, N ::: 1018 m- 2• Indeed the thermal conductivities of _glassy 

2 ' 
materials do vary as T below 1 K [74], and it has been: suggested that this 

is due to the static p~onon-dislocation interaction l75,7b) even though a 

deviation 1from a T2 dependence might be expected as such large dislocation 

densities (See Sec. 1. 2.1). It is also observed ·that the specific heats 

of amorphous materials are anom~lously large below 1 K [74]. Since the 

specific heat of deformed capper (S~c. 2.5.3.) indicates that dislocation 

resonances may persist to large N, the anomalous specific heats of glasses 
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might be explained by dislocation resonances of .the vibrating~string 

type [76]. Nevertheless, available information [77,78] suggests that 

the small Kph' the large specific heat and several other unusual pro­

perties of glasses are all caused by the same set of localized excitations 

which have only two allowed energy levels. Such excitations are not 

.compatible with the classical mechanical oscillator intrinsic to a 

vibrating-string model. 

2.5.5. Ultrasonic measurements. 

The damping of dislocation motion at high temperatures (80-300 K) 

and at ultrasonic frequencies and amplitudes can be interpreted in terms 

of the scattering of thermal phonons by the moving dislocations. The 

results for NaCl [32, 79], LiF [32], and copper [80] are in qualitative 

agreement with the static scattering model in which, as in earlier Sections 

of this chap.ter, the largest interaction between phonon and dislocation is 

utilized. Only the static interaction is expected to be important in these 

ultrasonic measurements at high temperatures. This is because the frequency 

dependence of the phonon-dislocation interaction for thermal phonons in the 

static interactio~ varies as w
1 while that of the dynamic interaction., well 

. -z 
above the resonance; varies as w , z > o [81]. Hence, in the dominant-

.Phonon approximation, dynamic scattering of high frequency thermal phonons 

appropriate to a measuring temperature of :<? 80 K should be negligible. 

2.5.6. High-frequency resonances 

·Infrared measurements have revealed in LiF (and other materials) a 

local vibrational mode at a frequency of~ 1013 Hz believed to be'associated 

with dislocations since, to detect this mod~, the incident electromagnetic 
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radiation had to be polarized parallel to the dislocation slip plane [82]. 

These high frequency resonances should provide information on the micro-

scopic topology of dislocations. However, the frequencies are too large 

to influence the scattering of low temperature phonons. 

An unsuccessful attempt was made to detect the possible dislocation 

resonanc·e in aluminum by measuring the electrical resistivity in the 

normal metal [83]. A resonance would bccur near 1 Kin the dominate-

phonon approximation (Sec. 2.32). The dynamic electron-dislocation 

interaction, if present, ~as too weak to detect. On the other 

hand, measurements of electrical resistivity in copper and aluminum (and 

their alloys) have revealed an anomaly near 25 Kin deformed samples [84]. 

This has been interpreted as arising from the scattering of conduction 

electrons by a vibrational dislocation mode occuring at a frequency of 

~ 2 x 1012 Hz. However, it is more likely that the electrons are scattered 

by localized electronic levels ·associated with the dislocations [85]. 

3. Conclusions· 

There is convincing experimental evidence that the phonon-dislocation 

interaction ~n LiF is a dynamic mechanism for fresh, unpinned dislocations . 

. The effect of pinning suggests that the dynamic mechanism involved is a 

fluttering of dislocation segments as depicted in a vibrating-string model. 

The phonon-dislocation scattering mechanism in many superconducting 

metals containing a small density of dislocations is desc.ribed in temper­

ature dependence and in magnitude by a dynamic interaction. There is not, 

however, sufficient experimental information to distinguish between the 

various suggested dynamic mechanisms, i.e. a string model [22], an internal 

mode of a dislocation dipole [23,24] or a dissociated dislocation [26,27], 
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a quantumrmechanical tunneling [86,87], or oscillations in a Peierls-

Nabarro lattice potential [28]. As the dislocation density increases, 

.the phonon-dislocation interactions in tantalum and in niobium seem to 

be.come more characteristic of the stati·c mechanism. 

The phonon-dislocation interaction in .. covalently bonded germanium 

and silicon crystals is characteristic of static scattering. By static 

scattering we mean explicitly the model in which the phonon scatters 

from the stat-ic strain fields of isolated; sessile dislocations. An 

appropriate example is the calculation by Klemens. The magnitude of 

the scattering is in remarkably good agreement with this theory if the. 

largest theoretical scattering cross-sections are utilized. However, 

selection of the largest theoretical cross-section appears to be somewhat 

arbitrary and is worthy of a clarifying theoretical investigation. 

In metallic alloys, most data at large dislocation densities suggest 

that the static mechanism of phonon scattering is present. Again, there 

is good agreement with the theoretical static-scattering model provided 

the largest theoretical cross-sections are adopted. ·Also, there is a 

questionable indication that the interaction becomes more dynamic in 

' character as the dislocation density is reduced. 

If, in fact, the dynamic interaction is suppressed at large dis-

location densities, it is. not obvious how this may occur. Measurements 

of the specific heat of deformed copper indicate that the localized 

vibrational modes of the dislocations may persist at large dislocation 

densities. A reduction iri the dynamic phonon-dislocation scattering 

cross-section at large dislocation densities ~ould then be required to 
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explain why only the static interaction is observed in the thermal con­

ductivity. Alternatively, measurements of thermal conductivity in deformed 

tantalum suggest that the resonant frequency.of the dislocation.mode is 

increased with increased dislocation density. Thus, for large dislocation 

densities, the resonance may be pushed to very high frequencies leaving 

only the static mechanism to ~catter the low frequency phonons.which are 

dominant at·temperatures below::: 2 K. 

It has been stated in the literature that the thermal conductivity 

technique is a highly desirable, nondestructive method for studying defect 

structures in solids. Unfortunately, and contrary to the claims _.of some 

authors, the present understanding of the phonon-dislocation interaction 

is too primitive to allow the thermal conductivity of deformed bodies to 

be used as a. definitive,diagonistic tool. Additional experimental and 

theoretical efforts need to be directed to a delination of the basic 

phonon-dislocation interactions. 
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Figure Captions 

Fig. 1. Schematic arrangement of a sample mounted for thermal conductivity 

measurements. The symbols are discussed in the text. 

Fig. 2. Thermal conductivity, K h' of deformed LiF crystals, divided by 
. p 

the thermal conductivity KB of the undeformed sample. The dashed 

line at 1.0 indicates no change relative to the undeformed state. 

A, deformed. by shearing as indicated·by the inset to the figure, 

no y-irradiation; B, sample A following deformation and 1000 R of 

y-irradiation; C, 136,000 R (from Ref. 28). D, deformed by bending 

about [001], no y-irradiation; E, sample D following deformation 

and 180,000 R of y-irradiation (from Ref. 29). Such irradiation 

does not change the Kph of an undeformed sample. 

Fig. 3. Bolometer output versus time for ballistic phonons excited by a 

heat pulse in LiF. The arrival times of the longitudinal 

(L), fast-transverse (FT) and slow-transverse (ST) acoustic phonons 

are indicated by the arrows. A, undeformed sample; B, sample 
I 

deformed by shearing as in the inset of Fig. 2. The dotted lines 

indicate the magnitude of the background signal caused by the 

diffusive acattering of longitudinAl and fast trans~erse phonons. 

From Ref. 28. 

Fig. 4. Phonon thermal conductivity, Kph' of deformed LiF, divided by the 

thermal conductivity KB of the undeformed sample. Note that the 

vertical scale is logarithmic, whereas that in Fig. 2 is linear. 

The solid and dotted curves represent two different samples with 

different dislocation densities. A, C, deformed by compression; 

B, D, the samples A, C, after thermal treatment at 300°C (from 

\ . 



Ref. 36). The curves rise at T ~ 10 K since other phonon-

scattering processes that occur above the peak in K h begin 
'P 

to mask the scattering caused by dislocations, see Ref. 29. 

Fig. s. Phonon mean free path t in germanium related to an increas~ in 

dislocation derisi'ty of ,; 2 x 10
13 

m- 2 Solid curve, from 

Ref. 43; dotted line, lower limit on t deduced from Ref. 44; 

dashed curve, calculated from the static-interaction model. 

The more rapid decrease in the solid curve .near 10 K is caused 

by other phonon scattering processes which begin to appear near 

the peak in Kph' 

Fig. 6. Phonon mean free path t in superconducting tantalum. The ph9non 

scattering at temperatures below 1 K is caused by dislocations, 

that above ~ 1 K is due to conduction electtons. A, B, C, from 

Ref. 39, deformed by bending; D from Ref. 48, cold-rolled; E 

(solid curve), from Ref. 49, not intentionally deformed but con­

taining a dislocation density of: 1011 m- 2 . 

Fig. 7. Phonon mean free path t in superconducting aluminum. Curve A, 

two different measurements on a rod deformed at room temperature. 

Curve B, foil deformed at low temperature. From Ref. SO. 

Fig. 8. Phonon mean free path t in superconducting lead. A, deformed at 

room temperature, Ref. 39. B, deformed at low temperature, Ref. 

U. C, deformed at 4 K, Ref. 52. The dashed line is,the pre-

diction of the Granato vibrating-string model for a dislocation 

density appropriate to curve A. The abrupt decrease in 2 above 

2 K is caused by conduction electrons. 
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Fig. 9. ·Phonon mean free path R. in superconducting niobium. A, B, two 

rods deformed by bending at room temperature (from Ref. 3). 

C, rod deformed at 195 K;rods deformed at 300 K and 470 K gave 

similar results (from Ref. 53). The abrupt decrease in R. above 

2 K is caused by phonon scattering by conduction electrons. 

Fig. 10. Phonon mean free path R. in copper alloys, multiplied. by the 

measured dislocation density N to simplify comparison. A, 

composite of several measurements on highly deformed samples; 

B, composite of several measurements from Ref. 6 on slightly 

bent samples (small N, hence scattering caused by electrons 

has been subtracted); C, from Ref. 62. 

Fig. 11. The increase in specific heat, 6C, of copper caused by cold 

rolling. Solid line represents the experimental results 

from Ref.• 72. The dashed line is a fit to the data using the 

Granato vibrating-string model. 

44 
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