skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ignition and burn in inertially confined magnetized fuel

Conference ·

At the third International Conference on Emerging Nuclear Energy Systems, we presented computational results which suggested that breakeven'' experiments in inertial confinement fusion (ICF) may be possible with existing driver technology. We recently used the ICF simulation code LASNEX to calculate the performance of an idealized magnetized fuel target. The parameter space in which magnetized fuel operates is remote from that of both conventional'' ICF and magnetic confinement fusion devices. In particular, the plasma has a very high {beta} and is wall confined, not magnetically confined. The role of the field is to reduce the electron thermal conductivity and to partially trap the DT alphas. The plasma is contained in a pusher which is imploded to compress and adiabatically heat the plasma from an initial condition of preheat and pre-magnetization to the conditions necessary for fusion ignition. The initial density must be quite low by ICF standards in order to insure that the electron thermal conductivity is suppressed and to minimize the generation of radiation from the plasma. Because the energy loss terms are effectively suppressed, the implosion may proceed at a relatively slow rate of about 1 to 3 cm/{mu}s. Also, the need for low density fuel dictates a much larger target, so that magnetized fuel can use drivers with much lower power and power density. Therefore, magnetized fuel allows the use of efficient drivers that are not suitable for laser or particle beam fusion due to insufficient focus or too long pulse length. The ignition and burn of magnetized fuel involves very different dominant physical processes than does conventional'' ICF. The fusion time scale becomes comparable to the hydrodynamic time scale, but other processes that limit the burn in unmagnetized fuel are of no consequence. The idealized low gain magnetized fuel target presented here is large and requires a very low implosion velocity. 11 refs.

Research Organization:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE; USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-36
OSTI ID:
5362195
Report Number(s):
LA-UR-91-2497; CONF-910626-4; ON: DE91016322
Resource Relation:
Journal Volume: 20; Journal Issue: 4P2; Conference: 6. international conference on emerging nuclear energy systems, Monterey, CA (United States), 16-21 Jun 1991
Country of Publication:
United States
Language:
English