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ABSTRACT 

In this letter we report the results of a 
linear radial eigenmode analysis o- dissipative 
drift waves in a plasma with magnetic shear and 
spatially varying density gradient. The results 
of the analysis are shown to be consistent with 
a recent experiment on the study of d ssipative 
drift instabilities in a toroidal steuarator. 
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Recently, Vojtsenya et al."*" have reported the results of 
an interesting experiment on the effect of magnetic shear on 
drift-dissipative instabilities in a collisionally dominated 
plasma in a toroidal stellarator. Their results indicate that 
drift waves are locali2ed near the maximum of the drift 
frequency w* (the variation of io4 arising due to a spatially 
varying density gradient) and are strongly reduced in amplitude 
when the shear in the magnetic field exceeds a critical value. 
In this letter we present the results of a linear radial eigen-

. 2 
mode analysis of dissipative drift waves in a plasma with 
magnetic shear and a spatially varying density gradient, and 
propose a possible interpretation of the above experiment. 

The local theory of dissipative drift waves is well known 
3 (see e.g., Kadomtsev ); this is applicable as such only to 

shaariess situations and with no spatial variation of the 
4 drift frequency co* . Moiseev and Sagdeev have carried out a 

radial eigenmode analysis including the spatial variation of 
w A but with no magnetic shear. The inclusion of shear strongly 
modifies their results. Further, the previous analyses ' with 
magnetic shear have been rather qualitative and incomplete. 

We consider a plane plasma slab with the density variation 
and magnetic shear along x direction; i.e., nQ(x) = 
n (0) exp[x/Ln(l - x2/3L^)3 and B(x) = B o U z + 1 x/Lg) . Here 
L , L , and L_ are the shear length, the density scale length, s n * 
and the scale length for variation of density gradient, 
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respectively. x = 0 is taken as the mode-rational surface; i.e 
surface on which k«B = 0 . For simplicity, we have assumed the 
density gradient to peak at x = 0 . As usual, we shall assume 
electron thermal conductivity parallel to the lines to be very 
large to justify using isothermal electrons and approximate 
the ions as a cold species (T. = OJ . If we use the linearized 
equations of continuity and motion for electrons and ions, take 
perturbations of the form <|>(x, t) = <£ (x) expCi(k y - wt)D and 
finally assume the quasineutrality condition n = n. , we 
obtain the eigenmode equation 

^-d-^-H-s-a- w 

where k,, = kj, x = k yx/L s , x^ = ^ / k ^ , ^ Q = k yp sC s/L n , 

4 = ^ e X ^ e T ' veT = V m e ' Cs = V m i ' ps = C
S/ wci 

and the other symbols have obvious meanings. The first term 
comes from the ion polarization drift, the coefficient 
2 2 2 x /(x - ix0) is a consequence of the resistive parallel 

2 2 dynamics of electrons and the x /x term has its origin in the 
4 parallel ion motion. Moiseev and Sagdeev solved Eq. (1) in 

the limit x < < :.x R , k x = k = constant (no shear) and 
x = ™ (ignoring the parallel ion dynamics). 
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We first examine the eigenvalue problem for L* = «> ; i.e., 
w* independent of x . After changing variables and rearranging 
the terms, Eg. (1) may be rewritten as 

/ 2 2 \ 
*- + <5 - %. - , A , <ft = 0 (2) . "2 ° " ~3 2" 

where £ = x exp(iiT/4)/X , X 2 = P sx g/2 , ? 2 = x R/X 2 , 

6 = i(A2/p^)Cl - u#/u + k 2p 2 - i(x 2/x2)] and 
2 2 2 2 2 

A = i(xR/ps)[l - o>*A) - i(x R/x g)] . When £ R = 2(11^/11^)^^/10*) 
(L /L ) << 1 , the eigenvalue problem associated with Eg. (2) s n 
may be solved by the following matching procedure. In the 
outer region K >> KR [so £ R may be neglected in Eq. (2)3 and 
the solution which properly decays away for x •*• °° and Im OJ > 0 
is given by 

|>0 = A o ( C 2 / 2 ) ( 2 o t + 1 ) / 4 U(a, b, ?2/2) exp(-?2/4) , (3) 

7 where U is Kummer's confluent hypergeometric function and 
a = -(1/2) (1 + 4 A ) 1 / 2 , b = 1 + a , a = (1/2)(b - 6) . In the 
inner region ? ~ ?„ << 1 and the solution may be approximated as 

* = (1 + C 2 A R > 1 / 2 CAjPj^/i^) + BjQ^/i^Ii , (4) 
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where the P and Q are the associated Legendre functions and 
v v 

the order v = -(1/2 + a) . The constants B̂ . and A are related 
by the parity condition at the origin, viz., 4>x(0) = 0 for odd 
modes and d<j> /d£| 0 = o for even modes. Matching the outer 
region solution <J> with £ « 1 to the asymptotic form of the 
inner region solution (for 1 >> £ >> £ R) , one gets the eigen­
value condition 

r(a) ( ±
 S R \ r(v)r[-(i/2) - v]r[(i/2) - v] 

r[a+v+(1/2)J \ 1 2 3 / 2 / r(-l- v) IT (1/2) +v]rC(3/2) + v ] 

— COtTTv) 1 + TT j± cotirv) (5) 

where r denotes the usual gamma function. Note the definitions 
of v, a, and other related quantities following Eqs. (4), (3), 
and (2), respectively. 

The eigenvalue condition (5) is, in general, difficult to 
solve analytically for the complex frequency to . However, 
approximate results may be obtained in certain interesting limits. 

2 2 
When k p << L /L , Cwhich may bs rewritten as 
IA | - k 2pf(LVL )|C^I << 1] one finds v = A . Evaluating B T/A T s s n K i i 
for even parity modes, one obtains the approximate eigenvalue 
condition 
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_ , , -, *n+l --3/2 IT A n , 
n + ( _ 1 ) 2 gRrCd/2) - n] ; n = 0 ' 1 ' - - -

For the lowest mode we then obtain the dispersion relation 

Equation (6) leads to the surprising result that in a sheared 
geometry, resistivity only erhances the shear damping of drift 
waves by a factor proportional to v ' and that no unstable 

2 mode exists. A detailed analysis shows that the expected 
growth terms are proportional to v . and are always subdominant 
to the resistivity induced enhancement of shear damping. For 
k p >> L /L , the other simple and instructive limit |A] >> 1 s n s e 

can be used. Here again one finds for the lowest mode 
v « A ' - 1/2 , a = -h ' and the approximate dispersion 
relation 

1/2. 
1 = -k p fk p + (1 + i)|2 -£ -Si) . (7) 

Even in this limit, no unstable eigenmodes exist. 
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Our analysis thus leads us to the surprising result that 
for (m v .L /m.iô L ) << 1 , electrostatic drift waves in a e ei s 1 * n 
plane plasma slab with magnetic shear only exist as damped 
eigenmodes. We have verified this result by a direct numerical 
integration of the differential Eq. (2) using a shooting method 
and also by a complex WKB treatment. The numerical calcula­
tions show that the modes are stable even in the range 
(m v .L /m.co*L ) > 1 . Details of these investigations will be e ei s i n 

2 
separately published. None of the above investigations, how­
ever, forbids a convective amplification of wave-packets of 

o 

drift waves. Physically the eigenmodes are damped because of 
a resistivity induced enhancement of shear damping. An obvious 
way to recover growing eigenmodes is thus to make shear damping 
ineffective. This may be done by introducing a proper profile 
for ui* , i.e., by discussing the case with L... jt °° . 

Equation (1) may be rewritten as 

/ ,2 2 A \ 
(-T2 + 6o ' V - T - T 7 •«"> - ° <8> 
\dn n - m R / 

where n = x/AQ , A 2 = X Q P S / 2 , x^2 = (u^/oiJL;2- X^ 2 , n R = X R / X Q , 

6o = - ( V P S ) 2 C 1 " ( a ) * o / u ) + ky ps + i ( x R / x o ) : ' 
Ao = i ( xR /' ps ) ^ " < w * o / ( o ) + i ( xR' / xo )^ * T o n u l l i f y shear 
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damping, we must require that R (x~2) > 0 ; i.e.. 

L * < x
s< u* 0/«>> • (9) 

2 
Por jrirjl << 1 , we can use the same matching procedure as 
above. The analogue of Eg. (6) is 

• ^ • ^ • ^ - " t e ^ n •»> (1). / - - n l T 1 / 7 / \ > m T / ' n \ l / 2 " 

1 - Jl° 
0) 

Equation (10) shows that shear damping is absent and that 
resistivity contributes to growth of the eigenmode. For 
shorter wavelengths, the analogue of Eq. (7) takes the form 

'IV-n/Wo mi/ 
U* in /P -Li \ /V . Itl V ' 

1/2 which again shows an eigenmode growth rate «= v g^ . It is 
clear that inequality (9) is the critical condition for the 

existence of growing eigenmodes. When it is not obeyed, we 

again revert to •"he previous case of shear damping only. 
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The experiment of Vojtsenya et al. was done on an argon 
plasma in a stellarator with typical parameters: T = 6 eV , 
n z 2 x I O 1 1 cm - 3 , T >> T. , B =3.1 kilogauss. This e e l o 
justifies the use of electrostatic drift wave model to describe 

2 
their experiment, since 3 = 87mT/Bo < (m /m.) . Our assumption 
of cold ions is also obviously good. The experiment demon­
strated the excitation of dissipative drift waves 
(u> ~ m^ < v .) localized in the neighborhood of a maximum of 
u^ . It was also discovered that when the shear parameter 6 = L /L > 0.05 , a substantial reduction in the level of n s 
drift wave oscillations takes place. We now propose that the 
transition from a growing eigenmode to a stable one, may lead 
to a similar reduction in the oscillation level. In the former 
case, the instability keeps growing until nonlinear effects 
saturate the waves. In the latter case, there is only convec-
tive amplification of waves and they may saturate even at low 
levels, by simply convecting out of the unstable region. In 
the experiment, the transition can occur because inequality (9) 
switches as 6 = L /L is increased. The condition of shear 
stabilization of density gradient localized drift waves may 
thus be written {L̂ /p ) > A9 , where A is a numerical factor 
taking account of the fact that (i) the experimental density 
gradient variation is not parabolic, (ii) the transition to a 
low saturation convective mode does not occur exactly at (9), 
and (iii) inaccuracies in our estimates of various parameters. 
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For an L* = 2 cms and the other experimental parameters given 
above, we find agreement with the experimental value of 
6 =0.05 , if we choose A ~ 1/5 . Considering the above 
uncertainties, this seems pretty reasonable. 
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