
ANL/CP--7 4428 _'

DE92 001926

New Tools Using the Hardware Pertbrmaiihe

Monitor to Help Users Tune Programs on the

Cray X-MP*

D. E. Engert, L. Rudsinski J. Doak

Argonne National Laboratory Cray Research Inc.

September 25, 1991

Abstract

The performance of a Cray system is highly dependent on the the tuning techniques
used by individuals on their codes. Many of our users were not taking advantage of the
tuning tools that allow them to monitor their own programs by using the Hardware
Performance Monitor (HPM). We therefore modified UNICOS to collect HPM data
for ali processes and to report Mflop ratings based on users, programs, and time used.
Our tuning efforts are now being focused on the users and programs that have the
best potential for performance improvements. These modifications and some of the
more striking performance improvements are described.

1 Introduction

The Cray X-MP at Argonne National Laboratory went into production in January 1988
under the UNICOS operating system. Its purpose is to provide supercomputing capabil-
ities to the Laboratory.

The X-MP is, of course, capable of doing general-purpose computing. Its ease of use,

good network access, security, and large file systems make it attractive for almost any
type of computing. Our objective, however, is to use the X-MP as Argonne's scientific
batch compute engine. Interactive access to UNICOS is intended mostly for interactive

graphics, debugging, and simple data management. We encourage users to develop code,
read mail, and do word processing on other machines.

The strong point of the Cray X-MP for scientific computing is its ability to vectorize

floating-point calculations. Nevertheless, the performance of the X-MP depends heavily on

*Work sponsored by U.S. Department of Energy under contract number W-31-109-Eng-38

_i _,_ _', s'_g li ii,,ii mi, .r_/.

DISTRIDUTIONOFTHISDOCUMENTi8 t.INLIMITED

.... ... ,._,_-==._._.-_ ,,-o

i

code tuning. Currently we have about 500 enrolled users. Many of these users have simply
ported their code from other computers and have relied on the compiler optimization for

performance speedup. They have made little effort to use the Cray tuning tools to achieve

maximum performance.

Aware of this situation, our division director asked the question, "Can someone tell

me the megaflop (Mflop) rate of our X-MP?" Admittedly, the Mflop rating of a program is
only a relative indication of its effective use of the machine. Programs that are not floating-
point intensive may still be well suited for the Cray. They may be doing logical operations

or integer calculations, or even using the Cray for its I/O performance. And we are aware

that the Mflop rating can be artificially inflated. At one time we considered a "cpu
guzzler" surcharge for processes showing low Mflop performance, but soon realized that

that waz not a good idea and probably would not work, since all users would have to do
is add a small section of "do nothing" code that does vector additions and multiplications

just to raise their Mflop rate. A user who haz changed the HPM group from group 0, or
who adds a few extra multiplications by 1.0 or additions of 0.0 to his loops can change the

Mflop rating while not changing the overall CPU time of a process. (One such do-nothing

test case gets 304 Mflops on a machine with a peek rating of 235.)

Nevertheless, we believed that an overall Mflops count was certainly of interest. We al-

so knew that the Cray, unlike any other family of computers, haz a Hardware Performance
Monitor that can provide performance statistics on any user code. The HPM comprises of

four groups of counters, of which one group may be active at a time. Group 0 and 3 can
be used to count Mflops. At process switch time, the counters are read and reset. Three

sets of counts are kept by the kernel: an overall count, a process count, and a multitasking

group count. The user can invoke the hpm command to measure his individual program,
but no command existed to show the overall count.

2 New Tools

In December 1989, we asked our CRI analyst, Jeff Doak, to tackle the Mflop overall count

problem. Jeff changed the default ttPM group from 1 to 0. He then wrote hpmrpt, which
uses routines from hpm to report the Mflop rate since the last boot. The new command

reads from/dev/hpm_all to get the systemwide counts, instead of reading from/dov/hpm

which contains the data for a single process. A cron job and hpm'pt provides us with a
daily Mflop rate for the X-MP. UNICOS 6.0 now has the hpmall command, which is a
direct result of the work started here.

It soon became apparent that if we could get the overall Mflop rate and if a user could
get his own Mflop rate, we should be able to get the Mflop rate for each process. That

information would give us insight into how the machine was being used, who was using it
well, and--more important--who needed our help in tuning a code.

Again, no UNICOS 5.1 tool existed to provide this information. This time, Bob

Swanson of Cray's Libraries and Tools Group rescued us. He gave us a replacement
routine for hpmdump which is in libc and is linked with every module. Jeff changed

hpmdump to write one record per process to a common file only if it uses more than 15
seconds of CPU time. Each record contains userid, date, time, process name, process
number, and process HPM data. The access method is simple; we do not use file locks or

retry. Few access collisions occur, and the update of the common file takes just a fraction

of a second. Moreover, the user program size is increased less than 500 words by the
additional code to hpmdump. The new tool was installed in July 1990.

Since hpmdump is a process termination routine and part of the user's module, only

those modules linked _fter this date will record the statistics. When building new versions
of UNICOS, we install the hpmdump modification last, so that only the user programs and

not all of the UNICOS utility processes have this modification. This approach is taken
for performance and reliability reasons.

Jeff also wrote a new program mflops to read and report on the contents of the

common file. It reports, by default, the recorded programs run for the current user on the

current day. Options include reports on codes, users, specific dates, and CPU use. Our

report program mflops was the basis ibr the UNICOS 7.0 command hpmflop. Hpmflop
is our current report generator. Jeff has placed a version hpmdump and the report picgram
hpmflop on the crayamid in jdoak/hpm.cpio.

3 Cray Optimization Project

With the development of the mflops program, we were in a position to focus our tuning

efforts on programs that could benefit most from code optimization. In January 1991 we
formed the Cray Optimization Project, headed by Larry Rudsinski.

From the mflops statistics we selected the top ten users whose c_des were using the
most CPU time on the Cray and whose Mflop rate was less than 25. We contacted these

users and discussed with them the performance of their code. Throughout, we emphasized
how an improvement in performance would allow them to do more science--or even new

science--for the same computer cost. Our approach was to make the offer so good that
the user could not turn it down.

Admittedly, most scientists that we contacted were a bit apprehensive that some
stranger was going to obtain a copy of their code and analyze it. But we continued to

play down this point by stressing that we provide the computer performance insight and

they provide the scientific insight. And yes, the real selling point was that the service was
free.

After gaining the support of the scientist, we obtained a copy of the source code and all

data files needed to run a representative case. Generally, this involved creating a directory

in/trap (i.e.,/tmp/ler), setting the permissions so everyone can read and write into the
directory, having the scientist copy the files to that directory and give read permission to

the files, and then storing the needed files in a working directory. This approach might
seem cumbersome, but it is certainly less _nnoying than finding out that some essential

file is read protected or missirg.

Once all the needed files were in the working directory, we created a subdirectory for

the source code. We used the Cray tool Fmaker, which splits the source file into several
files, with each subroutine or function contained in its own file. Fmaker then builds the

make file needed to build the executable (i.e., a.out) file. The parameters for both the
compiler and loader can be set on a single line in the make file. After the first use of make,

only the routines that are being changed need to be recompiled, thus reducing compilation
time and cost.

4 Challenges Met

An early challenge in the Cray Optimization Project was scaling down a production

run to get a reasonable test case. We needed to execute the code long enough to get

meaningful statistics and yet not consume significant Cray resources. Even when the
file itself executed in only 10 minutes, the additional overhead needed for accumulating
statistics from the analysis tools such as PERFTRACE and PROF would cause the NQS

time limit to be exceeded and the statistical output from PERFTRACE or PROF to

be lost. Therefore, we needed a way to generate performance statistics even if the code
terminated with a time limit. Otherwise, the run was a waste of our time as well as Cray
CPU time.

Jeff responded by writing two routines: cleanstop.c and cleanstopf.f. When the task

time limit is reached, cleanstop receives the sigcpulim signal and terminates the code

gracefully, saving the statistical output from PERFTRACE or PROF. The two routines

have been placed on the crayamid in jdoak.

The statistics generally indicated that two or three routines were consuming most of

the execution time. We typically used various tools from the Toolpack library (A library

of Fortran 77 tools developed at Argonne) to clean up these routines--indenting do-loops
and if-structures, resequencing statement labels, and rewriting IF-G0 TO Fortran syntax

to the more readable IF THEN ELSE ENDI_ format. The routines were then compiled with

cft77 using the m option. This option annotates ttle listing file, indicating which loops
vectorize and which ones do not. Finally, we made the appropriate optimization and

vectorization changes.

In making such changes, it is important that we can tell not only how much the

changes decrease the execution time, but also how much they increase the Mflop rate for

• !J

that particular section of code. Again, Jeff wrote a small C program, called floprpZ,

that provides the desired information. The., code of interest is bracketed by two calls to

floprp%. The first call, with zero as an argument, initializes the Mflop counters; the

second call, with an argument of one, prints the results from the first cml. The following

is an example of the code and the results from using floprp%.

parameter (ndim=75)

dimension a(ndim), b(ndim), c(ndim)

data s /.25/

data n /ndim/

write (6,*) n
c

do I i=l,n

b(i) = lO.O*ranf()

c(i) = 23.2.ranf()

1 continue

c

call floprpt (0)

do 2 i=l,n

a(i) = b(i) + s*c(i)
2 continue

call floprp% (1)

write(6,*) a(1) ,a(n)

stop
end

Y,hpm a.out

add/mult/recip/clocks/mflop" 50 50 0 140 84.03

We mention a caveat in measuring small loops in a test case as shown here. When the

compiler compiles loop2 in the main program, if it does not think the output from the

loop is ever used, it does not generate any code for that loop. Thus, we added the write

statement to write out the first and last element of the array a.

5 A Win-Win-Win Situation

The results of the Cray Optimization Project have been exce)lent. After we obtained the

various statistics and discussed with the users where their code was spending most of its

time, several users completely rewrote the routines, gaining significant improvement in

• • ,r

performance and much better Fortran. In other cases, only minor changes were necessary
to get the compiler to do a better job of vectorizing the code. We have worked with over

ten users in the first eight months of the project, seeing improvements from factors 1.5 to
over 11 in the execution time.

The project has proven to be a WIN - WIN - WIN situation. The users WIN by

having codes that perform better, thus allowing researchers to do more science for the
same cost, with better turnaround. The computer center WINs by having better rapport

with our users and by having more computing capacity available for them. CRI WINs by
having codes that are tuned for their computers, thereby strengthening CRI's position as

the supercomputing market leader and putting the organization in ,_n excellent position
for future _.cquisitions.

In fact, anyone can WIN who has a diverse user community where little is known

about the users or their codes. These modifications can be obtained by a center's CRI
analyst from the crayamid system. They are located under jdoak.

Note

Jeff Doak is no longer our site analyst but has moved on to another assignment within

CRI. We thank Jeff for his hard work on this project and expect to see his name on other
Cray improvements in the future.

For more information we can be contacted by email at:

Doug Engert blTZ83@anlvm.ctd.anl.gov

Larry Eudsinski b26605Cachilles.ctd.anl.gov
Jeff _oak jdoak©birch.cray.com

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-

bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

process disclosed, or represents that its u_ would not infringe privately owned tights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

mendation, or favoring by the United States Government or any agency thereof. The views

and opinions of authol expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

r
\

