DOE/ER/25063-T L3

SUPPORTING DATA INTENSIVE APPLICATIONS WITH
MEDIUM GRAINED PARALLELISM

July 1, 1991 - February 28, 1992 DOE/ER/ 25063--T13

Progress Report DE92 015101

Submitted to:

Environmental Acquisitions Branch
Procurement and Contracts Division
U. S. Department of Energy
Oak Ridgz Operations
Federal Building
200 Administration Road
Oak Ridge, TN 37831-8758

Attention:

Ms. Barbara J. Jackson, AD-423
Contract Management Branch

Submitted by:

John L. Pfaltz, Professor
James C. French, Research Assistant Professor
Andrew S. Grimshaw, Assistant Professor
Sang H. Son, Assistant Professor

SEAS Report No. UVA/527435/CS92/101
April 1992

PREPARED FOR THE U. S. DEPARTMENT OF ENERGY
UNDER GRANT NUMBER DE-FG05-88ER25063 N‘ ADTE ?:%
IENIEN

i \‘ "
DEPARTMENT OF COMPUTER SCIENCE Stk

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessanily state or reflect those of the
United States Government or any agency thereof,

ENT IS UNLIMITED,
DISTRIBUTION OF THIS DOCUM § % SREN

A Progress Report
Grant No. DE-FG05-88ER25063

July 1, 1991 - February 28, 1992

SUPPORTING DATA INTENSIVE APPLICATIONS WITH
MEDIUM GRAINED PARALLELISM

Submitted to:

Environmental Acquisitions Branch
Procurement and Contracts Division
U. S. Department of Lnergy
Oak Ridge Operations
Federal Building
200 Administration Road
Oak Ridge, TN 37831-8758

Attention:

Ms. Barbara J. Jackson, AD-423
Contract Management Branch

Submitted by:

John L. Pfaltz, Professor
James C. French, Research Assistant Professor
Andrew S. Grimshaw, Assistant Professor
Sang H. Son, Assistant Professor

Department of Computer Science
SCHOOL OF ENGINEERING AND APPLIED SCIENCE
UNIVERSITY OF VIRGINIA
CHARLOTTESVILLE, VIRGINIA

Report No. UVA/527435/CS92/101 Copy No.
April 1992

NN bW

. Query Processing
. Prototype Implementation
. Synchronization and Reliability: Algorithms and New Paradigms
- Spatial DatabasCcs .oovcviiveii e s
. Dynamic Schema Modification and Metadata

. Future Research
R CICTCIICES ovtiirieiiie et ee ettt ettt et e e e e e e et ee e et b e eesaennans

Table of Contents

...

...

1.2, Major ACRICVCIMICIILS ©.iiviiiiiiiieireicses bbb e sresr e ener oo
1.3, PUBLICAtIONS vttt
BOOK ChaPICTS ©eiiireviieiiiceris et e e s ere s b ebe et
JOUMQAL QrLICICS voeveii e s
Conference proCeCdings oo
TechniCal TCPOTLS 1vviviiiciiie e e s
1.4. Student Participation

..

. Parallelization of Database Constructs and Operators ..ooovvvvciverevieiieinen,

2.1. Extensible File System
2.2, Parall.l Strcam 1/O

..
..

..

7.1. Shared Dictionary Development
7.2. Representation of Scientific Data

..
..

ii

o N W W N NN —

o \C ¢

20
22

1. Overview

ADAMS! is an ambitious effort to provide new database access paradigms for the
kinds of scientific applications that require massively parallel access to very large data
sets in order to be effective. Many of the Grand Challenge Problems fall into this
category, as well as those kinds of scientitic research which depend on widely distri-
buted, shared sets of disparate data.

The essence of the ADAMS approach is to view data purely in functional terms,
rather than the more traditional structural view in which multiple data items are aggre-
gated into records or tuples of flat files [PFGY2,Pfa9Y2]|. Further, ADAMS has been
implemented as an embedded interface so that scientists can develop applications in the
host programming language of their choice, often Fortran, Pascal, or C, and still access
shared data generated in other environments. The syntax and semantics of ADAMS is
essentially complete.? The functional nature of the ADAMS data interface paradigm
simplifies its implementation in a distributed environment, e.g. the Mentat run-time sys-
tem [Gri90], because one must only distribute functional servers, not pieces of data struc-
tures. However, this only opens up the possibility of effective parallel database process-
ing; to realize this potential far more work must be done in the areas of data dependence,
intra-statement parallelism [GPF90], parallel query optimization, and maintaining con-
sistency and reliability in concurrent systems [SSC91, SoC91}. Discovering how to make
effective parallel data access an actuality in real scientific applications is the point of this
research.

1.1. Research Foci

In Section 4 of our 3 year grant proposal, we outlined three major areas of research
to be pursued during the grant period. They were:
4.1.1 Parallelization of Database Constructs and Operators.
Part (1), "Explore the effect of object granularity on parallelization and
throughput in intra-statement parallelism” is discussed in Section 2. Parts
(2) and (3) which are more complex are under current invest gation.
4.1.2 Parallel Synchronization and Concurrency Protocols.
Part (1), "Model concepts of transaction correctness different from serial-
izability" and part (2) "Investigate the effects of performance of communi-
cation cost and topology for a set of selected concurrency control proto-
cols" are discussed in Section 5. We have obtairea several excellent prel-
iminary results.
4.1.3 Query Processing
Part (1) "Model possible vertical query decompositions, given a 1% order
predicate set characterization™ is described in Section 3. It extension to
full parallel query capability is under development.
In the same section, we noted that considerable development work still remained
before we would have a fully functional implementation. They were:

! Advanced DAta Management System.,

2 [PFG91] provides a preliminary introduction, and we have included current (unpublished) working
descriptions of both the syntax and semantics in this report.

4.2.1 Generating Parallel Code.
No substantial progress on either of these was made in this period. Tne
code generator was rewritten to clean up a number of gross inefficiencices,
but it has not yet been extended to automatically generate the kinds of
parallel code explored in Section 2. The storage manager is in the proce-s
of being rewritten to run on the Intel iPSC-2 hypercube under their con-
current file system.
4.2.2 Hierarchical Name Spaces.
Active investigation of part (1), "Investigate the benefits of generalizing
the dictionary to accommodate an increased, but fixed number of scope
levels”, has been deferred until later in the grant period. However, we
have begun to rewrite the dictionary interface to accommodate it, as
described in Section 7. This work will also be the basis of part (3) "Imple-
ment dynamic dictionary maintenance”, which has largely been accom-
plished.
We have cited the actual paragraphs of our grant proposal because we are using it as
a road map in planning and scheduling our on-going research. However, as is true will
all real research, we have encountered a number of interesting phenomena which were
unanticipated when we originally proposed this grant. Since these discoveries have
arisen directly from the research of this grant, we have described them in Sections 6 and
7.

1.2. Major Achievements
We are quite proud of the overall research and development results that we have

obtained during the grant period; but we recognize that some are only incremental, while

others we would categorize as major achicvements. The ones that we consider to be in

the latter category wre:

(1) the design and implementation of extensible file systems that provide the access
information needed for optimization on a class-by-class basis, described in Section
2;

(2) the implementation of parallel stream 1/O, described in Section 2;

(3) the development of new scheduling algorithms based on the idea of dynamically
adjusting the serialization order of active transactions, in Section 5; and

(4) the use of dynamic schema modification in database design, described in Section 7.

1.3. Publications

The work conducted on this project in the last 8 months has led to the following list
of technical reports, conference proceedings, and journal articles. Copies of each have
been included in this report. More are in preparation.

Book Chapters
S. H. Son, Y. Lin, and R. Cook, "Concurrency Control in Real-Time Database Systems”

in Foundations of Real-Time Computing: Scheduling and Resource Management,
A. Van Tilborg and G. M. Koob (Editors), Kluwer Academic Pubtishers, 1991,

[8]

R e —

il

pp 185-202.

J. L. Plaltz, "Forward", in /ntroduction to Object-Oriented Databases, by D.N. Chorafas,
and H. Steinmann, Prentice-Hall, 1992 (1o appear).

S. H. Son, R. Cook, J. L.ec, and H. Oh, "New Paradigms for Real-Time Database Sys-
tems" in Real-Time Programming, K. Ramamrithum and W, Halang (Editors),
Pergamon Press, 1992 (lo appear).

S. H. Son and S. Park, "Scheduling Transactions for Distributed Time-Critical Applica-

tions" in Advances in Distributed Computing: Concepts and Design, T. Casavant
and M. Singhal (Editors), IEEE Computer Socicty Press, 1992 (to appear).
Journal Articles:

P. Shebalin, S. H. Son, and C. Chang, "An Approach to Software Safcty Analysis in Dis-
tributed Systems", Computer Systems Science and Engineering, vol. 6, no. 2,
April 1991, pp 102-116.

L. Sha, R. Rajkumar, S. H. Son, and C. Chang, "A Recal-Time Locking Protocol" IEEE
Transactions on Computery, vol. 40, no. 7, July 1991, pp 793-800.

S. H. Son, "An Environment for Intcgrated Development and Evaluation of Real-Time
Distributed Database Systems”, Journal of Systems Integration, vol. 2, no. 1,
Feb. 1992, pp 67-90.

S. H. Son, J. Ratner, S. Chiang, "StarBasc: A Simulation Laboratory for Distributed
Database Rescarch”, Journal of Computer Simulation, (1o appear).

J. C. French, T. W. Pratt, M. Das, "Pcrformance Mcasurcment of the Concurrent File
System of the Intel iPSC/2 Hypercube", Journal of Parallel and Distributed
Computing, (submitted).

Conference Proceedings:

A. S. Grimshaw, V. E. Vivas, "FALCON: A Distributed Scheduler for MIMD Architec-

tures", Proceedings of the Symposium on Experiences with Distributed and Mul-
tiprocessor Systems, Allanta, GA, March, 1991,

S. H. Son, P. Wagle, and S. Park, "Rcal-Time Database Scheduling: Design, Implementa-
tion, and Performance Evaluation”, The Second [niernational Symposium on
Database Systems for Advanced Applications (DASFAA '91), Tokyo, Japan,
April 1991, pp 146-155.

H. Kang and S. H. Son, "A Hicrarchical Export/Import Scheme for Data Sharing in a
Federated Distributed Database System," The Second International Symposium
on Database Systems for Advanced Applications (DASFAA '91), Tokyo, Japan,
April 1991, pp 31-40.

A. S. Grimshaw, J. Prem, "High Pcrformance Parallel File Objects", Proceedings of the
Sixth Distributea Memory Computing Conference, Portland, OR., April 1991,

Y

S. H. Son, C. lannacone, and R. Beckinger, "Integrating Databases with Real-Time Com-
puting Systems," [EEE Southeastcon ’91, Williamsburg, Virginia, April 1991, pp
837-841.

R. P. Cook, S. H. Son, H. Y. Oh, and J. Lee, "New Paradigms for Real-Time Database
Systems," 8th IEEE Workshop on Real-Time Operating Systems and Software,
Atlanta, Georgia, May 1991, pp 103-108.

S. H. Son, C. lannacone, and M. Poris, "RTDB: A Rcal-Time Database Manager for
Time-Critical Applications," Euromicro Workshop on Real-Time Systems, Paris,
France, Junc 1991, pp 207-214.

A. S. Grimshaw, "A Softwarc Environment for High-Performance Parallel Computing”,
Proceedings 1991 Minnowbrook Workshop on Software Engineering for Parallel
Computing, July 1991,

S. H. Son and S. Chiang, "Evaluation of a Concurrent Checkpointing Algorithm for Dis-
tributcd Databasc Systems,” /nternational Conference on Parallel and Distri-
buted Computing and Systems, Washington, DC, October 1991, pp 125-129,

A. S. Grimshaw, E. C, Loyot Jr., "ELFS: Objcct-Oricnted Extensible File Systems",
Proc. 1991 Parallel and Distributed Information Systems Conference, Miami,
FL, Dccember 1991,

Y. Oh and S. H. Son, "Multiprocessor Support for Real-Time Fault-Tolerant Schedul-
ing," IEEE Workshop on Architectural Aspects of Real-Time Systems, San
Antonio, Texas, December 1991, pp 76-80.

J. L. Pfaliz, J. C. French, A. S. Grimshaw, R. D. McElrath, "Functional Data Representa-
tion in Scicentific Information Systems”, Iater. Space Year Conf. on Earth and
Space Science Information Systems, Pasadena, CA, Feb. 1992,

J. C. French, "An Environment for Passively Sharing Information”, Iater. Spuce Year
Conf. on Earth and Space Science Information Systems, Pasadena, CA, Fcb.
1992,

S. H. Son, J. Lee, and S. Shamsunder, "Real-Time Transaction Processing: Pessimistic,
Optimistic, and Hybrid Approaches," Second International Workshop on Tran-
sactions and Query Processing, Tempe, Arizona, February 1992,

S. H. Son, S. Park, and Y. Lin, "An Intcgrated Real-Time Locking Protocol," Eighth
IEEE International Conference on Data Engineering, Phoenix, Arizona, Febru-
ary 1992, pp 527-534.

R, Orlandic, J. L. Pfaltz, "A Highly Compressed B-tree Index for Long, Variable-Length
Strings", Proceedings DCC '92 Conf. Snowbird, Utah, March 1992, (1o appcar).

R. Orlandic, J. L. Pfaltz, "Retrieving Data Based on Long Kceys", Proceedings of the
Navy Environmental Systemys Workshop, Snowbird, Utah, March 1992, (1o
appcear).

Toda s

J. L. Pfaltz, "A Functional Approach to Scicntific Database Implementation”, 6" Interna-
tional Working Conf. on Scientific and Statistical Database Management, Zurich,
Switzerland, Junc 1992, (1o appear).

R. Orlandic, "New Quadtree Representation of Spatial Images and Its Application for
Spatial Scarch in Geographic Databases”, 6th SSPBM CONF on Scientific and
Statistical Database Management Switzerland, June 1992, (10 appear).

S. H. Son and J. Lee, "A New Approach to Real-Time Transaction Scheduling," 4th
Euromicro Workshop on Real-Time Systems, Athens, Greeee, June 1992 (to
appear).

Y. Oh and S. H. Son, "An Algorithm for Real-Time Fault-Tolerant Scheduling in Mul-
tiprocessor Systems," 4th Euromicro Workshop on Real-Time Systems Athens,
Greecee, June 1992 (1o appear).

S. H. Son, S. Yannopoulos, Y-K. Kim, C. lannacone, "Integration of a Database System
with Real-Time Kermel for Time Crilical Applications," Second International
Conference on System Integration, Morristown, New Jersey, Junc 1992 (to
appear).

S. H. Son and S. Koloumbis, "Replication Control for Distributed Real-Time Database
Systems,” [12th International Conference on Dixtributed Computing ?yszcms
Yokohama, Japan, Junc 1992 (1o appcar).

J. L. Pfaliz, J. C. “rench, "Multiple Inheritance and the Closure o Sct Operators in Class
Hicrarchics", International Conf. on Data Theory, '92, Berlin, Germany, Oct.
1992, (submitted).

Technical Reports:

J. L. Pfaltz, J. C. French, A. Grimshaw, "An Introduction to thc ADAMS Interface
Language: Part i" /PC TR-91-06. Institute for Parallel Computation, Univ. of
Virginia April 1991,

S. H. Son and S. Koloumbis, "Pcrformance Evaluation of Replicated Control Algorithms
for Distributed Database Systems," Technical Report TR-91-11, Dept. of Com-
puter Scicnee, University of Virginia, May 1991,

S. H. Son and R. Beckinger, "MRDB: A Multi-User Real-Time Database Manager for
Time-Critical Applications," Technical Report TR-91-13, Depl. of Computer Sci-
ence, University of Virginia, May 1991,

A. S. Grimshaw and E. C. Loyot, Jr., "ELFS: Object-Oricnted Extensible File Systems”,
Technical Report TR-91-14 Dept. of Computer Scicnee, University of Virginia,
July 1991,

T. P. Cleary, "A Relational Interface to an Object Based System, or Translating SQL 10
ADAMS" [PC TR-91-009 Institute for Parallel Computation, Univ. of Virginia
Aug. 1991,

s

R. Orlandic, J. L. Pfaltz, "Qqrtrees: A Dynamic Structure for Accessing Spatial Objects
with Arbitrary Shapes", I1PC TR-97-010 Institute for Parallcl Computation, Univ.
of Virginia Dcc. 1991,

R. McElrath, "A Look at Two Pcrsistent Storage Models"”, /PC TR-91-011 Institute for
Parallel Computation, Univ. of Virginia, Dcc. 1991,

Y. Yang, L. Hsu, and 8. H. Son, "Distributed Algorithms for Efficicnt Deadlock Detec-
tion and Resolution," Technical Report TR-92-06, Dept. of Computer Science,
University of Virginia, February 1992,

1.4. Student Participation

In addition to the the principal investigators, we have attracted considerable student
interest, allowing us to select only those who we believe to be the most productive.
Many of these are Ph.D. candidates who expect to complete their dissertations in data-
base research. Below we have listed the 19 students who have been active in this project,
together with their expected degrees and primary area of contribution. It should be noted
that only a few of these students have been directly supported under this grant, Some are
self-supporting, others have received very minimal support to augment other sources; but
the research of all has been relevant to and has, in some way, been facilitated by this
grant,

Participating Students:

e David Baker (M.S. awarded December 1991), distributed transaction processing
» Robert Beckinger (M.S. awarded May 1991), multi-user temporal database

e Shi-Chin Chiang (Ph.D.), database checkpointing methods

¢ Gokul Das (M.S. awarded December 1991), index tree in multiprocessor databases
e Mriganka Das (Ph.D.), clustered retrieval

e Lana Durant (M.S.), document representation and retrieval

e Russell Haddleton (Ph.D.), parallel storage management

e Carmen Iannacone (M.S. awarded May 1991), imprecise database server

e Young-Kuk Kim (Ph.D.), OS kernel support tor database manager

e Spiros Koloumbis (M.S. awarded May 1991), replication contro. algorithms

e Juhnyoung Lee (Ph.D.), database scheduling and concurrency control

e Lindsay Loyd (M.S., awarded Aug. 1991), implementation of O-tree access, array
representation

e Edmond Loyot (Ph.D.), extensible file systemis

e Rodney McElrath (M.S., awarded Jan. 1992), run-time system

¢ Henry Oh (Ph.D.), fault-tolerant scheduling in multiprocessor systems
e Savita Shamsunder (M.S.), optimistic concurrency control

e Stavros Yannopolous (M.S.), real-time database server

6

e Fengjie Zhang (M.S. awarded December 1991), replication control evaluation
e Weifeng Zheng (Ph.D.) predicates and semantic databases

2. Parallelization of Database Constructs and Operators

Although, in our original proposal we thought it would be sufficie .t to obtain high
performance through simply establishing parallel threads of execution within individual
ADAMS statements (intra-statement parallelism), and then later between separate
ADAMS statements (inter-statement parallelism) we found that this by itself would not
be sufficient. A more effective, very low-level parallelism is also required.

2.1. Extensible File System

The problem is that contemporary high performance computer systems have
become increasingly unbalanced. CPU speeds have increased dramatically over the last
decade. At the same time I/O performance has improved only marginally. Thus, the per-
formance of many scientific applications is bound by the performance of the I/O system.

The advent of highly parallel architectures has made the problem even worse. For exam-

ple, the Intel 128 node iPSC/860 has a peak performance of 7680 double precision
mega-flops. Yet 10 latency is still in the 10-20 millisecond range, and the aggregate
bandwidth is only on the order of 2 MB/second for a 4 node 10 system. What this means
for scientific programmers is that their applications will be more 1/O bound than ever
before on the new machines, and they will be unable to fully exploit these new architec-
tures to solve ever larger problems.

Parallel disk arrays [PGK&8, PiP89] and disk striping [SaG&6] are seen by many as
the answer to this 1/O problem. However, the effectiveness of these techniques requires
the application to access the data in a sequential manner, or at the very least that the data
objects in the file are placed on disks in such a manner as to avoid disk conflicts (akin to
bank conflicts in memory systems).

A second impediment to high performance 1/O is the file system itself. Contem-
porary file system interfaces provide no mechanism for indicating how a file will be
accessed. Therefore, in order to make performance optimizations, the file system makes
assumptions about how the file will be used. But these are frequently wrong,

The ELFS (ExtensibLe File System) that we have beer exploring 1) provides high
bandwidth and low latency 1/O to applications programs on high performance architec-
tures, 2) reduces the cognitive burden faced by applications programmers when they
attempt to optimize their I/O operations to fit existing file system models, and 3) seam-
lessly manages the proliferation of data formats and architectural differences
[GrL91a, GrL91b]. The ELFS solution consists of language and run-time system support
that permits the specification of a hierarchy of file classes. Domain specific 1/0 opera-
tions can be specified for each class. High performance is realized by 1) permitting the
specification and implementation of caching and prefetching strategies on a class by class
basis, 2) using class specific optimization information (such as access pattern
specification) passed from the user to the class instance via member functions, 3) permit-
ting ELFES objects to be partitioned across multiple devices in a data and access pattern
sensitive fashion, and 4) supporting automatic asynchronous, pipelined, access to file
objects and thus permitting the overlap of /O and computation. The cognitive burden on
programmers is reduced by encapsulating optimizations in the class specification and by
providing high-level, class-specific, operations on files, e.g., read matrix by row or
column. Finally, data format heterogeneity can be encapsulated by ELFS file objects.

2.2. Parallel Stream 1/0

While ELFS can provide important low-level support at the file level, the way that
access commands to it is also crucial. The most commonly used data organization is that
of a flat file, or relation, in which a set of data values is represented as a record, or tuple

<V, Vo, Vo v

4’ V5>

" A file format, or relation schema, specifies the order of fields, or attributes, in the record

or tuple, together with their characteristics. In ADAMS, this is accomplished by simply
enumerating the desired attribute elements. Consequently the following sequence of
ADAMS statements is often found in applications programs; in this case they are embed-
ded in a C program.

schema <- (Al, A2, A3, A4, A5}

for each attr in schema do
printf (" %-10s |", name_of (attr) });
end for_each
printf ("\p--—~—mm e e \n"});
for each t in data_set do
for each attr in schema do
host_var <- t.attr
printf ("%10.3e |", host_var);
end for each
printf ("\n");
end for_ each

This sequence simply prints the data_set, or relation, in tabular form

Al | AD : a3 | Al | AS N
8.4630-01 | =1.2100-01 , -6.9130-0% | 7.3000-0% ' 2.408e102
-5.780e~01 | 7.602c-01 | -2.670¢-01 ! 1.300e-05 | 1.713¢400 |
3.001¢-02 1 4.5750-0" SLPe=T0 0 Y UBCGe-05 | %.039e-01 |
-1.37280-01 | -1.,2880-0~ P GHe=00 6.5000-08 1 3.6920401 |
4.445c-01 | -8.0830-01 i -35.4620-01 1 7.3000-U5 | 9.245:-02 |

It clearly illustrates the repetitive process by which each attribute of a tuple is accessed
individually.

Because there are no data dependencies in either of the for_each loops, one can
establish a parallel stream operation which returns the individual attribute values for all ¢
in data_set in five separate attribute streams. This is schematically illustrated in Figure
2-1. Here, sets and attributes are represented by triangles to indicate their functional
nature. Each is enclosed in a manager to suggest their implementation as server objects
on separate processors. This is the most basic form of parallel data access, and is the first
we have implemented. Implementation and analysis details can be found in [McE91].

After an initial latency (of approximately 13 msecs. in our implementation) to start
the streams, each invocation of the ADAMS statement

host_var <- t.attr

will find the desired t.arrr value immediately available. Timing tests on the iPCS/2
hypercube [McE91] have shown that with 4 separate storage managers the inner loop,

9

Clicnt Cide

start_stream

consume
stream

!

dita request

parallel
data
value
streams
attnibute
manager
-
AS
- | \J\
manager
data_set Sreamot nlnhu\
i Jdeme
| LILI‘HLIH mans 'LU
Eoand's
- ’\'

= /\ { _J
L_____I\

altribute
manager

4

Schematic Representation of Parallel Stream Access
Figure 2-1.

which simply gets all 5 attribute values ot a single tuple, iterates at a rate of approxi-
mately 5.46 msec. per tuple, as shown in figure 2-2 (solid line). This response time is
essentially independent of whether | or 6 aitribuie vzlues are evaluated. From 7 attri-
butes on, the response time climbs until with 12 attributes it is effectively doubled. If 8
storage managers are used (indicated by the dotted line), the access time for 1 to 7 attri-
bute functions remains approximately the same, but the subsequent increase is much less.
Tuples with 12 auributes can be delivered to the host program at a rate of one every 7
msecs.

Figure 2-2 illustrates observed performance of our atiribute access mechanism
schematically shown in Figure 2-1; but one would like to compare it against a theoretical
model. Monitoring our system shows that the service time of each storage manager is S

= 2.83 msecs, where this service time is close to optimal because other studies [FPD91]
have shown that the minimum time to deliver a block from the underlying Intel Con-
current File System (CES) is ~2.43 msecs. Lookup by each attribute manager, together
with message transfer time, consumes L = 2.14 msces. Consequently, the minimal time

1o

4-scrvers

10
9 |
8
7]
6 —
5]
4

8-servers
X

Response time
(in msec.)

I { 1 | 1 I I [|] I
1 2 3 4 s 6 7 8 9 10 11 12

Number of Attributes per Tuple

Response Time: msces. per tuple accessed
Figure 2-2.

to retrieve an attribute value in our implementation is ~4.97 msecs. The real bottleneck
occurs when so many attribute servers are making block requests to the storage managers
that these req. ests must be queued. Using the operational analysis techniques for queu-
ing systems [BuD78], one can show that queuing at the storage managers must occur
when more than 7.02 attributes are being accessed in parallel. At this point the response
time is entirely controlled by the average service rate of the N = 4 storage managers,
yielding an asymptotically optimal response time of S/N A, wherz A denotes the number
of attribute functions accessing storsze in parallel [McE91]. In Figure 2-3, this

d-servers
]

10—
9
§

Response time 7
(in msec.) B

6 —

5
4

I T [! I I I I I
3 4 5 6 7 & 9 10 11 12

Number of Attributes Returned

—
~> —

Comparison of Obscrved Performance
with Theorctical Optimal
Figure 2-3.

11

asymptotically optimal performance (dashed line) has been superimposed on the
observed performance of the system using 4 storage managers. The overall correspon-
dence is apparent. The differences appear to be due to non-uniformity in the distribution
of requests to storage managers (uniformity is assumed in the theoretical model) and to
message traffic contention (which we were unable to model accurately).

If N = 8 independent storage managers are available, the same analysis predicts that
14 attribute evaluations can be streamed in parallel before block requests must start being
queued. Unfortunately, while we get superior performance with 8 storage managers (as
shown in Figure 2-2), we have been unable to empirically verify the predicted behavior,
becaus > with only 4 /O nodes on our iPSC/2 disk farm the 8 storage managers cannot be
independent.

This mechanism for generating and managing parallel stream I/O appears to be
quite etfective. We w.ii be incorporating it into the code that is generated to implement
queries, and sequences of data independent ADAMS statements.

3. Query Processing

Query processing is often regarded as synonymous with data access. This is not
strictly true, because there are many ways of retrieving, or accessing, data besides that of
query retrieval. Nevertheless, it is an important way of obtaining data.

By a query, we mean access to data elements based on specified artribute values, or
a combination of such specifications. In an SQL query [KoS86,Mai83], these
specifications are treated as the where clause. In formal theory, they are regarded as a
predicate with one free variable. ADAMS more closely follows the theoretical approach:
Its syntax first defines the concept of a predicate, allowing both existential and universal
quantifiers, and then defines a retrieval_set to be

{ <free_variable> in <restriction_set> | <predicute>)
where the <restriction_set>, which may be an arbitrary set expression, ensures that the
retrieval is safe, or effectively computable.

One test of the generality of this query approach has been the implementation of a
complete SQL front end which parses arbitrary SQL queries (using yacc), generates
corresponding ADAMS retrieval expressions, and then executes them [Cle91]. This pro-
ject clearly illustrates one intended use off ADAMS — as a generic, easily distributed,
database manager over which various, more restrictive or more familiar, data interfaces
can be constructed.

Implementation of this general query capability was a major effort. It low level
indexing techniques employed O-trees [OrP8E, OrP89], which have been described in
earlier reports. It nature is best understood by examining a few representative examples.?
The following, relatively simple query, retrieves all CS majors in our student - professor
- course database (which has been described in a previous report) who have a gpa (grade
point average) greater than 3.0.

SAll cxamples have been taken from actual ADAMS programs, coded in C or Fortran, exceuting over
a varicty of test data scts.

(1) { x in undergrad union graduate | x.major = 'CS’' and x.gpa >= '3.0' }

The entire expression above denotes a set of elements. It may be assigned to an ADAMS
variable, or it may be used in any set expression precisely as any other set designator. Its
most notable feature is the use of set union as the restriction set. In the following query,
we retrieve all CS graduate students with 3.0 or better gpa and whose advisor is named
"Pfaltz’.
(2) { x in graduate | x.major = 'CS’ and x.gpa >= ‘3.0’ and
x.advisor.name = 'Pfaltz’ }

In this query, the ADAMS map advisor implements a rclational join, but much more
rapidly. To get the same students, but now any who have a tenured professor as adviscr,
one would use

(3) { * in graduate | x.major = 'CS’ and x.gpa >= ‘3.0’ and
(exists y in tenured) [y.rank = 'Prof’ and
x.advisor = y }

Bodh the existential quantifier and functional maps can be used to replace the rather
costly join operator.

Using the Bibuographic Citations Query database, described in the following sec-
tion, one might use

(4) { ¥ in documents |} x.author = 'French’ and
(exists y in books) [y.editor = ’'Stonebraker’ and
y.includes = x ! }
to find any articles written by "French’ that have been included in any book edited by
’Stonebraker’.

Our final example comes from a fairly large database of tactical battlefield data.
The query;

(5) { u in units | | S_bndy float | <= u.lat <= | N_bndy float | and

| E_ bndy float | <= u.long <= | W_bndy float | and
; u.type = 'AR'’ and u.leval = ‘CO’ }

finds all armored companies within a specified geographical region. The spatial range
search illustrates how we employ host language variables, e.g. S bndy in ADAMS
queries, as well as the more general interval specification syntax which eliminates con-
junction on two simple comparators.

The reason for presenting so many examples is to drive home the point that most
queries are specified in terms of multiple attributes and/or maps. Because, in (1), major
and gpa are distinct attributes, one can retrieve those elements satisfying each condition
independently and in parallel using the techniques described in the preceding section.
Similarly, in (5), lat, long, type, and level are distinct attributes that can be verified in
parallel. One can find elements satistying all conjuncts as quickly as one can find ele-
ments satisfing a single comparative condition. We have hand coded such simple con-
junctive queries using the mechanisms described in section 2: however, inclusion of such
query optimization in the preprocessor requires substantial data dependence analysis
which we have not yet attempted.

Queries (2), (3), and (4) which employ maps that reference other data sets are more
complex. We are as yet unsure of the correct way to handle these. Moreover, all queries
must eventually require parallel set operations, such as union, intersection, and relative
complement. An initial approach to this problem has been described in [PFS89].

13

In the course of investigating parallel query implementation, we became aware of a
large class of interesting queries that can not be easily handled by any existing retrieval
mechanisms. They may be generally categorized as spatial queries. Query (5) is a spe-
cial case of such spatial queries in which a spatiai rectangle is given as one conjunct.
The search is constrained by a bounding rectangle. Many systems can handle this. But
consider a query of the form "find all armored companices in a <specified irregularly
shaped region>", or "find all images in a collection of medical images containing a dark,
convex blob of size greater than 10". We have begun to look at such more general
queries, which we discuss more fully in section 6.

4. Prototype Implementation

This project, the development of a "Bibliographic Citations Query System" uses an
ADAMS database along with a graphical front-end to provide a tool to users who wish to
perform queries on a collection of bibliographic citations. The motivation for the project
was two-fold: primarily, to design and implement a real, non-trivial application using
ADAMS; and secondarily, to produce a useful tool for retrieval of citations. We wanted
to build a real application to gain experience with the ADAMS language and to discover
whether there were any significant shortcomings in the language. By using a real appli-
cation we would be forced to overcome any language inadequacies that might be encoun-
tered in a satisfactory manner, and not just avoid them.

Building this application using ADAMS serves to (1) determine the adequacy of the
language for schema development and data representation, and (2) collect performance
measurements by establishing benchmarks for insertion and retrieval of data. The appli-
cation can also be used to stress test the ADAMS system by allowing the insertion and
querying of a large number of citations. We chose to use the bibliographic citations
because we have online access to a very large number of them and because they provide
a challenging environment for data representation and retrieval. If the system performs
adequately on a non-trivial, computationally intensive application such as this, then it
should perform as well or better for applications with simpler data structures. Hence, we
can infer more from testing the performance of this application than we might from a
simpler one.

Upon insertion into the database, each bibliographic citation causes the creation of
at least 3 new sets, 3 maps, and 12 attributes. In addition, there are at least 8 set inser-
tions per new citation. Already, this cne application has uncovered several run-time
errors that were invisible with smaller test applications, for example a serious "storage
leak" in which storage for temporary sets was not properly released on termination of a
run. Even our current data set of approx. 10,000 bibliographic citations generates over
100,000 small, but distinct sets. Since a majority of operations are set operations, we
expect this application will be of great use as a stress test of the ADAMS set capabilities.
We plan to use it to benchmark future versions of ADAMS, to compare future perfor-
mance with the current system putormanw, and to point out features that need to be
refined for future versions.

14

5. Synchronization and Reliability: Algorithms and New Paradigms

We have developed new scheduling algorithms based on the idea of adjusting the
serialization order of active transactions dynamically [SoL92]. This is the first successful
attempt to integrate benefits of the pessimistic and optimistic approaches for transaction
scheduling. When compared with conventional transaction scheduling algorithms (such
as the two-phase locking protocol), our algorithms significantly improve the system per-
formance.

In addition, we have evaluated optimistic concurrency control protocols. Our
results indicate that optimistic or hybrid approaches may outperform the pessimistic
approach in a wide operational range. Qur new algorithms and evaluation results have
been presented at the International Conference on Data Engineering [SPL92] and at the
International Workshop on Transaction and Query Processing [SLS92].

We have developed priority-ordered deadlock avoidance algorithms and deadlock
detection algorithms for distributed resource management [Y1S92]. They are based on
partial resource allocation graphs, which provide not only ransaction wait-for informa-
tion but also rescurce allocation information. It combines both path-pushing and edge-
chasing technique: for efficient resource management.

We also have developed new replication control algorithms. These algorithms are
very efficient for distributed database systems, in which.replicated resources should be
managed to support consistency, while providing high performance {SoK92]. Using our
prototyping environment, we have implemented those algorithms and demonstrated that
they provide higher level of concurrency and greater flexibiiity.

We have developed a new paradigm for multiprocessor database systems, and
implemented a parallel programming interface based on our paradigm [CSO91]. Our
new paradigm has created new research opportunities for operating systems and data-
bases for parallel computing systems. For example, using the new programming inter-
face, we have developed PRDB, an experimental relational database system that runs on
an emulated tightly-coupled, shared-memory multiprocessor system in our prototyping
environment. It provides a general paradigm for exploiting parallelisor and different
scheduling policies. This experimental system has been used for investigating imple-
mentation techniques for parallel database systems and the impact of multiprocessor
technology on operating systems design.

Fault-tolerant mechanisms and transaction scheduling techniques.should be used
together.to ensure that database systems continue 1o operate correctly even in the pres-
ence of processor failures. We have developed efficient scheduling algorithms for mul-
tiprocessor systems and evaluated their performance [Oh91].

We have investigated indexing tree structures for parallel database systems. A vari-
ant of the B-tree, called the B* tree is especially well suited for parallel database systems.
We have studied the B* tree and its variation, called the B-link tree. The B-link tree
guarantees that only a constant (small) number of nodes are locked by any update process
at any given time. We implemented protocols to manage those tree structures on BBN
Butterfly parallel machine for performance evaluation. Our results indicate that the
overall performance of the B-link tree protocol is superior than that of the B* tree proto-
col.

6. Spatial Databases

One of the important advantages we have claimed for the functional approach of
ADAMS is that it simplifies the manipulation of non-traditional data such as images and
other spatial data. For this reason we have begun to examine the problems of accessing
spatial data, in general, and images, in particular. Morcover, the processing of these usu-
ally large data sets is a natural area for parallel processing, and, in fact, many of the
Grand Challenge Problems [OOQ91] that have driven the High Performance Computing
initiative are spatial in nawure,

Image access, and other forms of spatial access, clearly require high bandwidth 1/0
performance. But, the major problem is not just that of 1/O. Retrieving the "correct"
image is more difficult. Existing query languages and indexing methods just don’t seem
to work very well. Yet, spatial retrieval naturally occurs in many advanced computer
applications, whenever it is beneticial to process objects according to their positions in a
D-dimensional space. Traditionally, it has been associated with computer-aided design
and geographic applications, but more recently the number of applications that require
the spatial-search capability has grown substantially. They include robotics, computer
vision, natural-resource management, environmental studies, medical imaging, etc. The
types of "spatial queries" that are most useful for these applications require the ability to
search efficiently for D-dimensional objects which:

(1) contain a specified point in space (point query);

(2) intersect a specified region in space (region intersection);
(3) enclose a region in space (region enclosure); or

(4) are enclosed by a region in space (region containment)

[SeK88].

Many spatial retrieval algorithms assume the simplest spatial representation of
objects using minimal enclosing rectangles. As noted in [SeK88§], they can be organized
into three groups: (1) transformation techniques handle spatial queries by mapping each
object to a single point in a multi-dimensional space; (2) overlapping-region schemes use
hierarchical organization of overlapping rectangles, where each higher-level rectangle
encloses several low-level regions; and (3), clipping methods perform decomposition of
rectangles along vertical and horizontal lines (or hyperplanes of a higher-dimensional
space). Each class of methods appears to have its advantages and disadvantages; but all
suffer from imprecision, most spatial objects of interest are not rectangular in nature,
More complex vector representations of enclosing polygons with arbitrary sides have
been considered, as have pixel-by-pixel representations, which are precise but extremely
inefficient in terms of their storage requirements.

Quadtrees and octtrees [Sam84] reduce this overhead by decomposing objects into
constituent squares or cubes, respectively, with variable size; but they too have problems,
they are not easy to manipulate. We have been experimenting with a variation of the
quadtree concept that makes use of our O-tree indexing mechanism [OrP88], which we
call a Q-tree [OrP91]. It provides the kind of efficient represcntation that quadtrees do,
but compresses them somewhat, while simultancously allowing dynamic manipulation,
such as object insertion, deletion, directly on the tree representation itself. We hope that
this method of representing spatial data will eventually lead to nore efficient retrieval
mechanisms as well.

16

Our current research is comparing the Q-tree approach with the many other spatial
representations, such as grid files [NHS84] hB-trees [LoS90], R-trees [Gut84] R+-trees
[SRF87], k-D-B-trees [Rob81], multi-level grid files {SiW88], and zkd B-trees, [OrM84].

In this report we introduce a dynamic index structure for spatial retrieval, called a
Qo-tree, which has none of these disadvantages. So far, Q ¢-trees appear to constitute a
dynamic index structure for spatial retrieval that avoids the kinds of inefficiencies found
in other mechanisms. It provides a fast point search along a single path in the structure,
involving only 2 or 3 disk accesses in most realistic situations. It supports arbitrarily
shaped objects and search regions, and incurs no false drops, neither with respect to the
objects themselves, nor with respect to higher-level blocks within the structure. No entry
representing a region that does not overlap the search region will ever be examined to
answer a spatial query. If a block of the structure has been accessed, than it contains at
least one entry whose corresponding region overlaps the search object. Finally, the index
structure itself contains a complete representation of the original image in a much more
compact form, and supports various operations on images accurately and efficiently. In
that sense, Q-trees are both the spatial structures and the isomorphisms of their
corresponding raster images, which eliminate the need to explicitly store the images.

7. Dynamic Schema Modification and Metadata

Dynamic schema modification and the representation of metadata are functional
capabilities that we have claimed for ADAMS in the past; but we had neither realized
their true importance, nor fully tested their implementation until we began reworking the
dictionary that implements our shared nume space. It turns out that they are extremely
important in the development of database systems, in general, and representing scientific
data, in particular. ‘ ' o

7.1. Shared Dictionary Development

Crucial to the implementation of ADAMS, or for that matter any database system, is
the existence of a “dictionary" which maintains basic information about its name space,
that is about the database itself. In a relational database system, the dictionary will main-
tain, at least, the names of constituent relations and their schema, because relations and
attributes can be named by the user. In a functional database, such as ADAMS, in which
classes, sets, attributes, maps, codomains, and instantiated elements can be named, the
dictionary is even more important and more complex. Usually, the database dictionary is
a utility with its own files and storage that are separate from the database it describes.
This is the way that we have implemented ADAMS; its dictionary utility was coded in C
with its own file space, while the run-time system is coded in C++ using distributed
storage managers. The run-time storage system has been carefully designed and imple-
mented to run in parallel in distributed memory environments. Its data is easily shared.
This is not true of our dictionary.

A major goal of the past 6 months has been to implement the dictionary itself as an
ADAMS database. This will yield superior performance, because dictionary access can
then be performed in parallel, because any improvements to the run-time system will
automatically be included in the dictionary utility, and because the dictionary can itself
be distributed to avoid having a centralized bottleneck in the system as a whole.

17

Wl

-

Moreover, dictionary maintenance will be simplified, because its code will be written in
high-level ADAMS statements, rather than C or C++.

But this is a non-trivial task. One can not define the ADAMS dictionary structure
until there is a dictionary to record it!

What is needed is a bootstrap process, with a hand-coded, minimal dictionary
defining only the most primitive concepts upon which a more sophisticated dictionary
can be constructed. This is best illustrated with an example. A fundamental element in
the ADAMS dictionary is an entry of the form

DICT ENTRY isa CLASS
having attrs = { entry string, entry type }
having maps = { class_def, instance_def, codomain_def }

However, an attribute such as entry string or a map such as class_def can not be defined
until we can instantiate a dictionary entry in the class DICT_ENTRY to record its name.
Our approach instead has been to make a preliminary DICT_ENTRY class of the form:

DICT ENTRY 4isa CLASS
having attrs = { dummy attr }
having maps = { dummy map }

where dummy_attr and dummy _map are primitive string attributes and generic "classless”
maps respectively. Once a rudimentary DICT_ENTRY class has been declared, and
once an initial entry_string attribute has been instantiated and represented in the diction-
ary using the initial DICT_ENTRY structure, our existing pre-ptocessor allows us to exe-
cute the statements

<< insert entry_string into DICT_ENTRY->attrs >>
<< delete dummy_ attr from DICT ENTRY->attrs >>

The schema of a DICT_ENTRY has now been dynamically modified to read

DICT ENTRY isa CLASS
having attrs =
having maps =

entry string }
dummy map }

{
{
In this way we able to incrementally bootstrap the definition dictionary structures, until
the final schema of each is attained.

7.2. Representation of Scientific Data

In scientific databases, knowledge based systems, and computer aided design and
manufacturing systerns, it is seldom the case that either the procedures that will be used,
or their persistent data requirements, can be specified with complete accuracy at the time
of design. The latter two technologies presume a kind of indeterminism in which it is
expected that the system itself will help the user discover just what data and which
configurations are appropriate to the problem at hand. And scientific enquiry is far more
than simply collecting data that conforms to a prespecified model. It can be argued, that

18

its very essence is just the reverse, that science is the discovery of models, configurations,
or structures, which make sense of the observed data at hand. One must create and/or
dynamically modify the representational structures in response to observed data or
changing scientific goals, that is on-the-fly, in a manner similar to our dictionary
modification.

In addition to dynamic modification, the role of metadata in the design and imple-
mentation of scientific databases is becoming increasingly more important. Everyone
recognizes that files, relations, or arrays of data values, such as real numbers, are by
themselves of little use. Some additional information, called metadata, is required to
interpret the data [FJP90]. Unfortunately, there is no common agreement as to precisely
what constitutes metadata. One type of metadata comprises that additional information
needed to exchange data. This includes the datum type (e.g. integer, real, string) and the
datum length. This metadata, which describes the physical representation of data, is typi-
cally encapsulated in the dictionary.

A very different type of metadata comprises that additional information needed to
interpret data. This includes, at least, those attribute names occurring in a class, or
schema, declaration und which can be extracted from the dictionary. But, one interprets
a real number quite differently if it denotes the attribute a/ than if it denotes the attribute
a2. While these attribute names are themselves essential metadata, they are frequently
insufficient by themselves to correctly interpret the associated datum in a scientific data-
base. At the very least a researcher reviewing the data would like to know the units of
measurement. Note, that normally this is a property of the attribute itself; e.g., we expect
that all mass observations will be measured in the same units. Since in a functional
approach each attribute has its own identifying uid and can itsclf be treated as a data ele-
ment, we can consider attributes of attributes. This has always been a feature of the
ADAMS syntax, but until now it has been unused. Consider, for example, the definition
of a REAL_QUANTITY as

REAL ATTR isa ATTRIBUTE, with image REAL

units instantiates_a STRING_ATTR

REAL QUANTITY isa REAL ATTR, having attrs = { units }
al instantiates a REAL QUANTITY

al.units <- 'grams’

printf ("%13.6e $s(), =x.al, al.units);

will not only print the current a1 value of the element x, but also its units of measure-
ment. If a2 is a linear measurement, it might be instantiated with

az2 instantiates_a REAL_QUANTITY

a2.units <- ‘'‘meters’

Or, if the precision of the measurement is important, we might dynamically add the real
attribute precision to the concept of i REAL_QUANTITY by the sequence

praecision instantiataes_a REAL_ATTR
insert precasion into REAL_QUANTITY->attrs

al.praecision <- 0.0l
a2.precision <- 0.5’

A functional approach to the representation of scientific data does not solve the interpre-
tative metadata problem. But dynamic class modification, attributes of attributes, and
attribute class inheritance do provide useful tools by which issues of data interpretation
can be more easily attacked. When the ideas above were presented at the Earth and
Spaces Sciences Information Systems ’92 Conference [PFG92] they were very well
received.

8. Future Research

Much of the more important research discoveries we have made have been in the
context of a testbed environment. This is often sufficient to establish a proof of concept.
More importantly, one often needs a carefully crafted testbed in order to be able to accu-
rately monitor performance. However, it is one thing to implement, say paraliel stream
1/0, in a hand crafted environment, it is quite another to provide the same parallel perfor-
mance in user programs. The goal of ADAMS from its inception has always been to
create a complete, usable database facility for general computing. Consequently, we
must integrate several of our new discoveries into our working system, while at the same
time pursuing new avenues of research that will enhance the access to, and use of,
scientific data in high-performance computing systems.

More specifically:

(1) We will combine the low-level file access and manipulation capabilities of ELFS
with the stream I/O operations described in Section 2. Then both must be integrated
into the ¢»de generator, using source code data dependence analysis. This latter
may be hard.

(2) Most synchronization and data concurrency control mechanisms assume serializa-
bility as their model of "correct" computation. Even though we have developed
scheduling algorithms that minimize the impact of serializability, it can be demon-
strated that this model is still unnecessarily restrictive in a parallel environment. In
preparation is a graph-theoretic model of synchronization which subsumes both
serial and SIMD models as "correct”. We will be extending these more general
models of synchronization, and then expect to implement them in the ADAMS tran-
saction manager.

(3) We have created several large databases which we used to test the basic capabilities
of our ADAMS implementation. But they do not exercise all of its possible con-
structs fully. We should implement at least two more very large scientific data-
bases.

(4) As more and more scientific databases become involved with spatial data, images,
spectral data, and other non-traditional data forms, it becomes important to continue
work with these data types. We will continue investigating spatial data representa-
tions, as described in Section 6, with particular emphasis on parallel 1/0.

20

| I TRt Ao o ity i A—

5)

(6)

Progress in parallel query algorithms has been disappointing, primarily because we
need new algorithms for parallel set manipulation, specifically union, intersection,
and relative complement. It will be central on our agenda for the coming year, but
without a really significant research breakthrough may be slow. In addition, we will
be trying to understand and develop new range search capabilities, which assume
on'v nartial, rather than total, orders.

The implementation of the dictionary in ADAMS itself should be completed by the
end of the summer. Once this is complete, we will create multi-level dictionaries.
Also, we intend to explore browsing capabilities based on meta-data and dictionary
search. ‘

9, References

[BuD78]

[Cle91]

[CSO91]

[FIPO0]

[FPD91]

[GPF90]

(Gri90!

[GrL91a]

[GrL91b]
[Gut84]
[K0S86]
[LoS90]
[Mai83]
[MCE91]

[NHS84]

[00091]

J. P. Buzen and P. J. Denning, The Opcrational Analysis of Qucucing Nctwork
Modecls, Computing Surveys 10,3 (Scp. 1978), 255-261.

T. P. Cleary, A Relational Interface to an Object Based System, or Translating SQL
to ADAMS, IPC TR-91-009, Institutc for Parallel Computation, Univ. of Virginia,
Aug. 1991.

R. P. Cook, S. H. Son, H. Y. Oh and J. Lee, New Paradigms for Real-Time Database
Systems, 8th IEEE Workshop on Real-Time Operating Systems and Software,
Atlanta, GA, May 1991, 103-108.

J. C. French, A. Jones and J. L. Pfaltz, A Summary of the NSF Scicntific Database
Workshop, IEEE Data Engineering Bulletin 13,3 (Scp. 1990), 55-61.

J. C. French, T. W. Prait and M. Das, Performance Mecasurement of a Parallel
Input/Output System for the Intel iPSC/2 Hypercube, Proc. 1991 ACM Sigmerrics
Intern’'l Conf. on Measurement and Modeling of Computer Systems, San Dicgo, CA,
May 1991,

A. S. Grimshaw, J. L. Pluitz, J, C. French and S. H. Son, Exploiting Coarse Grained
Parallclism in Database Applications, PARBASE-90 International Conf. on
Databases, Parallel Architectures and their Applications, Miami Beach, FL. Mar.
1990, 510-512.

A. S. Grimshaw, The Mentat Run-Time System: Support for Medium Grain Parallel
Computation, Proc. Sth Distributed Memory Computing Conf., Charleston, SC, Apr.
1990.

A. S. Grimshaw and E. C. Loyot, ELFS: Object-Oricnted Extensible File Systems,
Proc. 1991 Parallel and Distributed Information Systems Conf., Miami, FL, Dec.
1991.

A. S. Grimshaw and E. C. Loyot, ELFS: Objcct-Oricnted Extensible File Systems,
Tech. Rep. TR-91-14, Dpt. of Computer Science, Univ. of Virginia, July 1991,

A. Guttman, R-trces: A Dynamic Index Structure for Spatial Searching, Proc. ACM
SIGMOD Conf. on Management of Data, Boston, MA, 1984, 47-57.

H. F. Korth and A. Silberschatz, Database System Concepts, McGraw-Hill, New
York, 1986.

D. Lomet and B. Salzberg, The hB-Tree: A Multi-Attribute Access Mcthod with
Good Guaranteed Performance, Trans. Database Systems 15,4 (Dec. 1990), 625-658.
D. Maicr, The Theory of Relational Databases, Computer Science Press, Rockville,
MD, 1983.

R. McElrath, A Look at Two Persistant Storage Models, IPC TR-91-011, Institute for
Parallel Computation, Univ. of Virginia, Dec. 1991,

J. Nicvergelt, H. Hinterberger and K. C. Scvcik, The Grid File: An Adaptable,
Symmetric Multikey File Structure, Trans. Database Systems 9,1 (Mar. 1984), 38-
71.

Grand Challenges: High Performance Computing and Communications, A Report by
the Committee on Physical, Mathematical, and Engincering Scientists, Office of
Science and Technology Policy, 1991,

(Oh91]
[OrM84]

[OrPg88]

[OrP89]
[OrP91]
[PGK88}
[PFS89]
[PFGI1]
[PFG92]
[Pfa92]

[PiP8I]

iRobS 1]

[SaG86]
[Sam{4]

[ScK88]
[SRF87]

[SSCI1]

Y. Oh and S. H. Son, Multiprocessor Support for Rcal-Time Fault-Tolerant
Scheduling, 1EEE Workshop on Architectural Aspects of Real-Time Systems, San
Antonio, TX, Dee. 1991, 76-80.

J. A. Orenstein and T. Merret, A Class of Data Structures for Associative Scarchiz .,
Proc. ACM SIGACT News-SIGMOD Conf. Principles Database Sys., Wutcr'}:to.
Canada, 1984, 181-190. :

R. Orlandic and J. L. Pfaltz, Compact 0-Complete Trees, Proc. 14th VLDB C()nf
Long Bceach, CA, Aug. 1988, 372-381.

R. Orlandic and J. L. Pfaltz, Analysis of Compact O-Complete Trees: A New Access
Mecthod to Large Databascs, in Proc. 7th FCT Conf., Szeged, Hungary, Sprm;_.,cr-
Verlag, Berlin-Heideiberg-New York, Aug. 1989, 362-371,

R. Orlandic and J. L. Plaliz, Q-trces: A Dynamic Structure for Accessing Spatial
Objects with Arbitrary Shapes, IPC TR-91-010, Institute for Parallcl Computation,
Univ. of Virginia, Dec. 1991,

D. A. Patterson, G. Gibson and R. H. Katz, A Casc for Redundant Arrays of

Inexpensive Disks (RAID), Proc. of INTER Conf. on Management of Data, Junc
1988, 108-116.

J. L. Plaltz, J. C. French and S. H. Son, Parallet Sct Operators, Proc. 4th Conf. on
Hypercube Concurrent Computers and Applications, Montercy, CA, Mar. 1989,
481-486.

I, L. Pfaltz, J. C. French and A. Grimshaw, An Introduction to the ADAMS Interface
Language: Part I, IPC TR-91-06, Institute for Parallel Computation, Univ. of
Virginia, Apr. 1991.

J. L. Pfaltz, J. C. French, A. S. Grimshaw and R. D. McElrath, Functional Data
Representation in Scientific Information Systems, Intern’l Space Year Conf. on
Earth and Space Science Information Systems (ESSIS), Pasadena, CA, Feb. 1992,

J. L. Plaltz, A Functional Approach to Scientific Database Implementation, ot
Intern’l Working Conf. on Scientific and Statistical Database Management, Zurich,
Switzerland, June 1992, (to appear).

P..Picrce and J. L. Pfaltz, Evaluation of Complex Lince Intcgrals, Comm. of the ACM
5,2 (Junc 1962), 345. |

J. T. Robinson, The k-D-B-Trce: A Scarch Struuurc for Lalgc Mu]udnmdnsmndl
Dynamic Indexces, Proc. ACM SIGMOD C()nf on Mcmuguncm of Data, Ann Arbor,
MI, 1981, 10-18.

K. Salem and H. Gm’ciu-Molinu Disk Striping, /nternational Conf on Data
Engineering, Los Angeles, CA, Feb. 1986, 336-342. \

H. Samect, The Quadtree and Related Hicrarchical Data oll‘ULlulCS “Computing
Surveys 16,2 (June 1984), 187-260.

B. Sceger and H. Kricgel, Techniques for Design and Implementation of Efficient
Spatial Access Mcthods, Proc. [4th VLDB Conf., Long Beach, CA, Aug. 1988, 360-
371.

T. Scllis, N. Roussopoulos and C. Faloutsos, The R+-Tree: A Dynamic Index for
Multi-Dimensional Objects, Proc. [3th Conf. on VLDB, Brighton, England, 1987,
507-518.

P. Shebalin, S. H. Son and C. Chang, An Approach 1o Software Safcly Analysis in
Distributed Systems, J. of Computer Systems Science and Engineering 6,2 (Apr.

23

[Siw88]

[SoC91]

[SoK92]

[SPL92]

[SoL92]

[SLS92]

[YHS92]

1991), 102-116.

H. W. Six and P. Widmaycr, Spatial Scarching in Geometric Databascs, Proc. Conf.
on Data Engineering, 1988,

S. H. Son and S. Chiang, Evaluation of a Concurrent Checkpointing Algorithm for
Distributed Databasc Systems, International Conference on Parallel and Distributed
Computing and Systems, Washinglon, DC, Oclt. 1991, 125-129,

S. H. Son and S. Koloumbis, Rcplication Control for Distribuicd Real-Time
Database Systems, 12th [International Conference on Distributed Computing
Systems, Yokohama, Japan, Junc 1992, (to appcar).

S. H. Son, S. Park and Y. Lin, An Intcgrated Rcal-Time Locking Protocol, Eighth
IEEE International Conference on Data Engineering, Phoenix, AZ, Fcb. 1992, 527-
534.

S. H. Son and J. Lee, A New Approach to Real-Time Transaction Scheduling, 4th
Euromicro Workshop on Real-Time Systems, Athens, Greeee, June 1992, (Lo appear).

S. H. Son, J. Lee and S. Shamsunder, Rcal-Time Transaction Processing:
Pessimistic, Optimistic, and Hybrid Approaches, Second International Workshop on
Transactions and Query Processing, Tempe, AZ, Feb. 1992,

Y. Yang, L. Hsu and S. H. Son, Distributed Algorithms for Efficient Decadlock
Detection and Resolution, Technical Report Tech. Rep.-92-06, Dpt. of Computer
Science, Univ. of Virginia, Feb. 1992,

DISTRIBUTION LIST

1-3* Environmental Acquisitions Branch
Procurement and Contracts Division
U. S. Department of Energy
Oak Ridge Operations
Federal Building
200 Administration Road
Oak Ridge, TN 37831-8758

Attention: Ms. Barbara J. Jackson, AD-423
Contract Management Branch

4-5 Dr. Thomas A. Kitchens
ER-7 Office of Energy Research
U. S. Department of Energy
Washington, DC 20585

6-7 J. L. Ptaitz
8 J. C. French
9 A. S. Grimshaw
10 S. H. Son
11 A. K. Jones
12 - 13 E. H. Pancake
o SEAS Postaward Administration
14 SEAS Preaward Administration Files

*QOriginal, unbound and reproducible, plus 2 bound copies.
**Cover letter

JO#4734:ph

