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" - Abstract .

Recently, there has been an mterest in making electromc cash protocols more
practical for electronic commerce by developmg e-cash which is divisible (e.g.,
a coin which can be spent incrementally but total pur.chases are limited to the
monetary value of the coin) [DC94, EO94, 0092, Pai93, 0Oka95). In Crypto’95,
T. Okamoto presented the first practical divisible, untraceable, off-line e-cash
scheme, which requires only O(log /) computations for each of the withdrawal,
payment and deposit procedures, where A/ =(total coin value)/(smallest divis-
ible unit). However, Okamoto’s set-up procedure is quite inefficient (on the
order of 4000 “multl-exponentla.tlons and depending on the size of the RSA
modulus).

We formalize the notion of range—bounded commitment,” originally used in
Okamoto’s account establishment protocol, and present a very efficient instanti-
ation which allows us to construct the first truly efficient divisible e-cash system.
Our scheme only requires the equivalent of one (1) exponentiation for set-up,
less than two (2} exponentiations for withdrawal and around 20 for payment,
while the size of our coin remains about 300 Bytes. Hence, our withdrawal
protocol is 3 orders of magnitude faster than Okamoto’s, while the rest of our
system remains equally efficient, allowing for implementation in smart-cards.
Similar to Okamoto’s, our scheme is based on proofs whose cryptogra.phlc secu-
rity assumptions are theoretically clarified.

Keywords: Electronic cash, efficient, a,nonymii;y,' divisivbility', range-bounded com-
mitment, tracing, linking, provable, Williams integers.

1 Introduction

Off-line untraceable electronic cash has sparked wide interest among cryptographers
([CFN90, FY93, Oka95, PW92, Bra93b, DC94, EO94, 0092, Paid3], etc). In its
simplest form, an anonymous off-line e-cash system consists of three parties (a bank
B, a user U, and a receiver R) and four main procedures (account establishment,
withdrawal, payment and deposit). The user i performs an account establishment
protocol to open an account with bank B. To withdraw money, U/ performs a with-
drawal protocol with B over an authenticated channel. User I spends a coin by
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participating in a payment protocol with the receiver R over an anonymous channel.

R then perfortns a deposit protocol with the bank B, to deposit the user’s coin. The

system is anonymous if the bank B, in collaboration with the receiver R, cannot trace

the coin to the user. The system is off-line if during payment the receiver R does not
communicate with the bank B. However, if a coin is double spent, the user’s identity
is revealed with overwhelming probability.

More recently, there has been a strong effort in developing secure divisible un-
traceable off-line electronic cash protocols [DC94, EQ94, 0092, Pai93, Okads]. With
_ divisible e-cash a coin of value $z can be spent in several increments but the to-
tal amount can not exceed $z, unless the user is willing to be identified with high
probability. This paper develops a new efficient off-line divisible e-cash protocol.

In Crypto 95, Okamoto [Oka95] presented the first divisible e-cash scheme in
which all procedures can be performed efficiently (i.e., in O(log ), where N' =
(total coin value)/(smallest divisible unit)). Furthermore, all protocols, ezcept estab- -
lishing an account, are of comparable efficiency with the most efficient untraceable
off-line e-cash systems available. Hence, [Oka95] was a major break-through in elec-
tronic cash research. : o :

The protocol presented in this paper, in comparison, has an efficient “account
establishment” protocol, hence its functionality can be included in every withdrawal.
Therefore, unlike [Oka95], we have no trade-off between the degree of unlinkability
among coins and efficiency attained. Having no compromise between coin linkability
and practicality is a significant difference between ours and [Oka95]. As the name of
this paper “easy come / easy go divisible cash” suggests, our protocols are efficient
in providing the user with the coin, as well as efficient in allowing the user to spend
the coin. ' '

Efficiency of our scheme:

The major advantage of our system is that the construction of the electronic li-
cense (the bulk of the computation in {Oka95]’s “user account establishment” proto-
col) requires the equivalent of less than two (2) modular exponentiations of [Oka95],
while [Oka95] requires more than 4000. Furthermore, in contrast to our scheme,

the number of exponentiations in [Oka95] depends on the length of the RSA mod-
~ ulus (which is an insufficient 512 bits in their efficiency calculations), impairing the
scalability of the system. In our scheme, account establishment is used to exchange
authentication keys to be used later in withdrawal. Similar to ([Bra93b, EO94, 0092,
Pai93, CFN90], etc.) we put the functionality of licensing into the withdrawal proto-
col.

It should be noted, as noted by [PW92], the more the user uses the same license
the more likely he can be traced by other means (i.e., correlating various payments’
locality, date, type, frequency, etc.) The cost of not performing the account establish-
ment protocol at each withdrawal is that withdrawals of coins using the same license
can be linked. Hence efficient license generation impacts annonymity.

Our withdrawal protocol requires the user and the bank to perform the equivalent
of less than two (2) and one (1) exponentiations respectively. During payment, the
user and the bank perform around 20 exponentiations. The size of our coin remains
around 300 bytes. Hence, our scheme can be implemented in current (PC-based)
smart cards, while allowing for coins to be divisible.

As in the Okamoto scheme, our scheme is based on proofs whose “cryptographic
security assumptions are theoretically clarified”.




Organization: We present our range-bounded commitment in Section 2. We proceed
with an overview of Okamoto’s [Oka95] scheme in Section 3, focusing on the account
establishment and withdrawal protocols. In Section 4 we sketch our idea and present
our scheme in Section 5. Next we discuss the scheme’s security (Section 6), based on
a formal security model, and its efficiency (Section 7).

2 Rangé—bounded cominitrment

~ The idea of checking whether a number is in a specific range and a protocol for its

instatiation were first proposed by T. Okamoto in [Oka95] for the inefficient license

generation. We propose to call such protocols range-bounded commitments. Here

we formalize the notion of a range-bounded commitment and present an’ efficient

instatiation based on the Discrete Logarithm Assumption (DLA); informally, this is
a protocol between a prover, P, and a verifier, V, with which P can commit to a

string, z, and prove to V that z is in a predetermined range. Formally,

Definition 2.1 A range-bounded commitment scheme consists of a pair of prob-
abilistic polynomial-time interactive machines, denoted (P,V) (for prover and veri- -
fier), satisfying:
o Input specification: ' The private input to the prover is a string x for which
|z| < H. The common input is ¢ bit commitment b(z) on z, an integer k
presented in unary (the security parameter) an znteger H (the specified range)
and a fraction & (the accuracy).

o Completeness: The prover can prove that x is in the specified range. Namely,
for every x such that |z| < H and for every polynomial p(-),

1
p(k)’

where the probability is taken over the coin tosses of P and V.

Prob[(P,V)(b(z)) =1] > 1 -

e Soundness: The verifier is convinced that z is'in the range of H. Namely,
for every probabilistic polynomial-time machine P* (a cheating prover), every
z such that x| > (14 8)H and for every polynomz'al p(:),

Prob[(?’* V)(b(:z:)) =11< —< (k)

where the probability is taken over the coin tosses of P* and V.
o Secrecy: The verifier does not obtain any information about x, other than b(z):
for every probabilistic polynomial-time machine V* (a cheating verifier), there
erists a probabilistic polynomial-time machine M* (a simulator)} so that with

probability—taken over the coin tosses of P, V" and M™ —overwhelming in k
the following two ensembles are polynomaially indistinguishable

o {(P,V)(b(e)}ei<n, and
o {M*(b(2))}el<n

We now present an efficient range-bounded commitment protocol based on the
DLA. An interesting point to note is that while computations are normally performed




modulo a prime ¢} computations involving exponents are not'performed modulo @ —1
but on the integers, so that the range of the numbers can be checked.

Setup: Define security parameters H,S,k, 6 > (3k + 2)/H, k < ¢ < §H — 2k,
where S is the desired length of the output of the random oracle-like hash functron
if the protocol is made non-interactive, € is the length of the verifier’s challenge if
the protocol is interactive and the other parameters conform to the definition of the
range-bounded commitment above.
Given a prime @ with |Q| = 2(1 + §)H + 6, and X = ¢* mod @, prover ’P will

prove to verifier V that |2| < (14 6)H. :
The protocol:

(1) P picks u; €g {0,...,2+9#} and sends U; = g“i to V.

(2) V sends ¢; €g {0, ..., 2}

(8) P responds with u} = e;z + u;.

(4) V verifies g% = X U; and 0 < u} < 20+OH

The protocol can be collapsed to one move if e = ey ...¢; = 'Hg(X Uy,...,U;),
where j is the number of iterations. In thls case, it must be executed i=1[5/€] tlmes
to guarantee that |e} > S. :

Note that in each iteration the prover has a probablhty of 1/2¢ < 1/2* of in-
correctly convmcmg the verifier that z is in the specified range, by selecting u; =
—e;z + u} for some u} €g {0,...,200+OH}

The probablhty tha.t a legltlmate P (i.e., for which |m| < H) fails to convince V is
1—(1—2¢-%HY (the probability that for some i, u; > 20FOH —¢;2) je. <1—(1—
2‘2k)j , from the selection of ¢,8, H. According to [FGY96], whose second protocol
is a generalized case of ours, the probability that V can extract some information
regarding z is j278HH1+e (< jo-2k+1),

Formally, we can prove the following theorem

Theorem 2.1 Assuming ¢° (mod Q) is a secure bzt commztment on z, the above
protocol is a range-bounded commitment.

Remark: Security can be proven based solely on the DLA as long as X = ¢
(mod Q) hides all information about z; in reality, however, even assuming the DLA
some minimal information about x is revealed given X. For applicability in our e-
cash scheme this leak of information is not important, since X is already known to
V; hence the range-bounded commitment protocol can be srmphﬁed by introducing
this stronger assumption.

3 The Okamoto scheme

In Okamoto’s divisible off-line e-cash scheme [Oka95] each user U generates a com-
posite number N = PQ, such that N is a Williams integer! associated with I/.

In the account establishment protocol' the bank B publishes its RSA public
keys {n1, K) and (n2, K) and also (a1, @2) as public keys. It also publishes prime
P and generator ¢ € P. A users license is (N,L; = (N + a1)1/K modny, Ly =

IN = PQ is a Williams integer if P,Q are prime, and P =3 mod 8, =7 mod 8.




(N + a2)'/¥ mod ny) where L; and Ly are blindly signed by the bank after the
user proves that input is of the correct form. In [Oka95] Okamoto shows that this
protocol takes approximately 4000 “multi-exponentiations”? modulo P, assuming 256
bit primes P and @ (i.e. an RSA modulus of 512 bits) and a security parameter of
k = 20 (i.e. the probability of misbehaving undetected is 1/22%). Furthermore the
number of exponentiations depends both on the security parameter (k) and the length
of the RSA modulus. -

Withdrawal of the coin is nothing more than an RSA blind signature [Cha83} on
H(NI|[b), where H is a one-way function, b is a random value and the bank’s public
RSA key is dependent on the value of the coin.

The coin (i.e., the value N) defines a tree such that the following rules are satisfied:

¢ Root route rule: Once spent, a node’s ancestors and descendants can not
be used.

e Same node rule: A node can not be used more than once.

(See [Oka95, EO94, 0092, Paid3] for details, and appendix B for a short descrlptlon)
The payment protocol consists of two parts:

e (Coin Authentication) U convinces R that the coin is a legitimate coin
(i.e. it is signed by B, and if N is factored then I is identified).

¢ {Denomination Revelation) U/ presents some data that are specific to the
node(s) of the tree that is/are being spent, in such a way that R is guaranteed
that (a) NV is a Williams integer and (b) 1f U violates the root route or the same
node rule then N can be factored :

The reader should note that the same N is revealea for each coin with the same
license. Hence, coins can be linked. Our system doeés not have this property.

4 The basic idea

Okamoto’s scheme is quite efficient. In fact it is only inefficient during the account
establishment protocol. To emulate the functionality of this protocol, all that is
needed is a method to provide a receiver R with an N, such that (1) N is a composite
of two numbers, (2) N is signed by the bank, and (3) R (and subsequently the
bank, at deposit time) is guaranteed that if N is factored, the owner of the coin
will be identified. Condition (1) is satisfied by the denomination revelation protocol
of [Oka95] which determines if N is a Williams integer and generates the tree as
discussed in Section 3. What we suggest is a new approach for withdrawal (i.e. signing
N) and coin authentication (i.e. proving the correctness of N to R).

Our idea is to use a modified Brands [Bra93b] protocol for withdrawal and coin
authentication. This can be done if an efficient range-bounded commitment is pro-
vided. ¥ has (at account establishment) associated his identity with I’ = g¥. At
withdrawal, he randomly generates N = pg and identifies the particular withdrawal
(hence himself) with Iy = ¢7. During withdrawal, / will end up with a message
(A = ¢7%¢%93%, B = [N]) and a signature on A, B:sign(A, B). Hence (2) above is

2Each multi-exponent is equivalent to xxx modular expdnents.




guaranteed. The correctness of A and the unforgeability of the signature are guaran-
teed by the protocol in [Brad3b].

To guarantee condition (3), we observe that during payment N is revealed and, if
the coin is over-spent, N can be factored in the denomination revelation phase, based
on the result in [Oka95], and as corrected in [?]. At coin authentication I proves
that A = gi¥ X for some X = g2 7. Since A = 97993937, this indirectly guarantees
that N = pgq, i.e. the factorization of N reveals I'. Notice that this only holds if we
guarantee that p, ¢ are small enough so there is no wrap-around in the modulus used
(ie.in gf? (mod @), pg < @ = 1); our range-bounded commitment is used for this
purpose. '

5 The scheme

Remark: There are actually two viable variants of our scheme. In one variant, u = 0,
i.e. only three generators (g, g1, g2) are used and the identifying mforma.tlon of the
user U is g, created by the user at each withdrawal and stored by the bank B. This
variant, apart from requiring less communication/computation from both Zf and the
bank B also allows us to prove the untraceability of our scheme with respect to an
assumption similar to one appearing in [Oka95].

If u # 0, on the other hand, the bank, upon tracing a doub]e—spender, only has
to perform a search in its account database (in order to locate I’ = g¥). In contrast,
in the first variant, it would have to store all identification values Iy = g% appearing
in withdrawal protocols, and then perform a search among them (note that this
does not increase the order of computation or storage needed by B, since B has to
store transcripts, and perform searches—at each deposit—of deposit protocols too).
The proof of this variant depends on a slightly more complex assumption, which we
nevertheless believe is an interesting number theoretic problem to be analyzed.

We present our scheme when u # 0. It is then easy to derive the first variant
(when u = 0). When we discuss our scheme’s security (Section 6) we present the
assumptions needed for both variants.

We use a generalization of the discrete logarlthm problem (DLP), the representa-
tion problem in groups of prime order; this is equivalent to the DLP [Bra93a]:

Definition 5.1 (The representation problem in groups of prime order)
Instance: A group Gg, a generator-tuple (¢1,-..,95),h € Gg.
Problem: Find a representation of h with respect to (g1, ..., gx).

5.1 Initialization

Bank Initialization (setup) procedure:

The bank B chooses the security parameters k, n, S, H = |p| = |¢] = |[N|/2, § >
(Bk+2)/H, n <k < e < 6H — 2k, and prime Q, with [Q] = 2(1 + 6§)H + 6. All
arithmetic is performed in Gg, except for the operations involving exponents, which
are performed in Zg. B chooses:

¢ Four generators g, g1, 92,93 of Gg,

e H,Ho,H1, ..., from a family of collision intractable hash functions,




e A private key = € Zg (a different key is used for every denomination).

B publicizes the description of Gg (i.e. @), the generator-tuple (g, g1, g2, 93), the
description of H,Hg, H1, ..., and its public keys h = ¢*, h; = ¢¥, i =(1,2,3).
User Initialization (account establishment) procedure:
The user Y shows (by physical or other means) his identity to the bank B and then
associates himself® with I’ = g¥ to B. The bank verifies that I’ # {1, g3}.

5.2 Withdrawal

The signature that is used by the bank to sign a coin is a variation of the Schnorr
signature [Sch91] and is also used in [Bra93b]. The signature sign(A, B) on the pair
. (A,B) € Gg x Gq, consists of a tuple (z,a,b,7) € Gg x Gg x Gg x Zg, such that:

g = hﬁ(A,B,k,d,b)a “and Ar: %’H(A,B,z,.a,b)b . (1) ‘

The withdrawal protocol _ .

At the beginning of the withdrawal protocol, the user creates an authenticated
channel with the bank. This is needed in all e-cash {and physical cash!) protocols to
guarantee that only the owner of an account withdraws money from it and that the
user is communicating with the real bank. If v # 0 (i.e. the second variant is used),
this functionality is included in our withdrawal protocol*.

e U: {'This step can be pre-computed.)

Select primes p=3 mod 8,¢=Tmod 38, |p|=¢| < H = (1Q1—6)/2(1 +8)] at
random, and calculate N = pq. ‘ : : v

Send Iy = ¢§ and I' = g¥ to B.

e U,B : Perform a Schnorr proof of knowledge [Sch91] that # knows the repre-
sentation of I’ w.r.t. g3. '

o U,B : Use the range-bounded commitment (base g1, with security pa.rame—n
ters H,S,k,8,¢) with Iy to prove—in an interactive way and with just one
iteration—that |p| < (1 + 6)H. '

o B: Set I = Iy I'(= g% g%), and check that Iw # {1,91}, Ig2 # 1.

Pick w €g Zg, and send a’ = g%, ¥ = (Ig2)” to U.

e U: Compute 2’ = (h1)Pha(h3)* [= (Ig2)® since by = gf, ho = g5, hs = g%].

This step can be pre-computed {or 2’ can be supplied by B).
Let A= (Ig2)! = gVglgy!, B=[N,Y =g¥], and z = 2'%.
Pick v; €g 7%, v2 €r Zg and compute a = a’"*g¥2 and b = ¥V A2,

Compute the challenge ¢ = H(A, B, 2,a,b), and send the blinded challenge
¢ =c¢/vy (mod Q) to B. ' . '

3In the first variant Z/ sends to B his public key —using any public key cryptosystem— so that
an authenticated channel can be created at withdrawal (I already has B’s keys from the bank
initialization protocol).

4The user U proves to the bank B that he knows the representation of I’ w.r.t. g3, and U is
convinced of B’s identity by checking the correctness of sig(4, B).




e B: Send the response r’ = dz+w (mod Q) to ¥, and debit U’s account.

o U: Accept iff ¢ = h%a’ and (Igz)f' — %y Compute r = vy +v2  (mod @),
to get the signature (z,a,b,7) on (4,B).

See appendix D for a graphical presentation of the protocol.

5.3 Payment & Deposit

Coin Authentication:

e U: Pickza € Zg. Compute Y = g%, Y3 = ¢4%, y3 = ¢3°, d = H1 (A, B, Y3, ys,date/time, IDz).
This is a non-interactive apprdach but one could add a random challenge from R

into the hash (M) if desired®. The non-interactive case allows for the payment -
protocol to be conducted in one move, from U to B.

This step (except for the challenge, if an interactive approach is used) can be
pre-processed.

e l{ sends the coin to R: Send A, B = [N, Y], sign(4, B),Ys,ys, and respond
to challenge d with r3 = dug + zs. ’

¢ R verifies that the coin is legitimate:

1. Verify the signature sign(A4, B), and that Y # g5, Y # ¢, A £ 1,
Ys#gs, (-1/N)=1, (2/N)=-1.

2. Verify that U/ knows a representation of Y3 with respect to gs
using [Sch91]: ¢}* = ysY4. ' '

3. Prove that ¢ is chosen correctly: Use the range-bounded commitment
(base go) with Y, to prove that jq| < (1+6)H (the challenge e is computed
based on a hash function—as d above—so that even a collaboration of i/

-and R cannot forge the proof). [S/¢] iterations are performed as discussed
in Section 2.

4. Verify that A is correétly constructed: aNYYs <A

5. Limit the way I/ can misbehave: Check whether N is divided by the
first | V| primes that are congruent to 3 mod 8 or 7 mod 8. This addition is
necessary due to a flaw in [Oka95)’s denomination revelation protocol [?],
and simplifies identification of double-spenders, as shown in [?]. [?] also
describes the tracing protocol used by B in this case. We adopt this pro-
tocol, but omit its description due to space considerations.

Denomination Revelation: We use [Oka95]’s protocol, with the only modifica-
tion being the substitution of the coin (C, N) in the hash functions of Okamoto with
our coin, (A, B). This protocol guarantees that if one of the node rules (see Section 3)
is violated, then U has released enough information to allow B to factor N. Note that
if ¥ < k/4 nodes are spent, then 2- (k/4 — k)’ additional square roots of randomly

5In any case, A, B,Ys,y3,date/time, IDr must be included in the hash (as in the self-challenging
Schnorr proof of knowledge), so that even if R and f collaborate the subsequent proofs of knowledge
are still valid.




chosen numbers must be shown by the user; these are described in [Oka95)’s coin
authentication and are also performed here.

Deposit: R sends the payment transcript to B.

6 Security

We now present our security model and give an overview (due to space limitations)
of the proofs. :

As with [Oka95], our secunty model has been based on [FY93] and is modified to
work for divisible, unlinkable coins. To our knowledge, this is the first formal model
in the literature covering unlinkability. We will model the security of our scheme by
requiring that it satisfies four requirements, which are slightly stronger than the re- -
spective [Oka95] properties (included in brackets) that do not include unforgeability:
unreusability [No overspending), untraceability [No tracing), unezpandability [No forg-
ing and No swindling®], and ‘unforgeability. The use of a non-uniform, probabilistic
polynomial time machine (p.p.t. TM) in our model simulates user collaboration as
views to the TM. Thus, in establishing the security we prove that even a colla,boratlon
of users (and/or shops) cannot break the scheme.

Our proofs of security are based on the following assumptions:

e (when u = 0) (Factoring and Diﬂ‘ie-Hellma_nblI) Let @, po,go,pP1,q1 be
primes, Np = pogo, N1 = p1g1, and H = |po| = |go| = |p1] = |@a| <
(1@ — 6)/(2(1 + 8)) for some sufficiently large § > 0. Let the order of g in the
multiplicative group Zg be Q. Then, no p.p.t. TM M can, given @, §, g, [Yo(=
9% mod @), No(= pogo)], [Y1i(E ¢% mod Q), Ni(= p1g1)] and [[(= g7~ mod
Q) Li_.(= g~ mod Q)] (r €r {0,1}), compute r with probability better
than 1/2 + 1/H¢, for all constants ¢ and sufficiently large H (i.e. M cannot
compute r non-negligibly better (in H') than random guessing).

¢ (Withdrawal protocol)? If random hash functions exist, then our with- .
drawal protocol is a restrictive blind signature pratocol the message m =
Igs = ¢7'93°g2 is signed by the string A = gf gsgz, in such a way that
Ct‘/ﬁ— u177/;3— us.

e (Hash functions) Hash functions (K, 'Ho,'Hl, .) behave like truly random
functions.

Remarks: Remarks on these assumptions are provided in appendix A.

For our proofs we use the following lemma, which has been proven by [?], based on
our hash functions assumption:

8“No swindling” is guaranteed from unreusability and unexpandability: even a collaboration of
users/shops cannot over-deposit the withdrawn/paid coins.

"We ca.n reduce this to Brands’ original assumption from [Bra93b]. Assume it does not hold. Then
let g4 = g1 92,95 = g¥g2. Then, the original assumptxon, with either (g1,92 = g}), or (91,92 = g¥),
does not hold. The other direction is trivial.




Lemma 6.1 (Schnorr signatures) Schrorr signatures [50591] are existentially un-
forgeable, even when the prover in the Schnorr tdentification protocol is queried poly-
nomially many times.

Theorem 6.2 Unreusability:

Let n be the security parameter. If the successfully deposited nodes of a coin wiolate
the route node rule or the same node tule, then the identity of the coin’s owner
can be efficiently (i.e. by a p.p.t. TM) computed (and subsequently proven} from ihe
transcripts of the withdrawal and the deposit protocols with overwhelming probability
Proof. The Withdrawal protocol assumption and lemma 6.1 (which themselves
require assumption Hash functions above), together with the verification done at the
coin authentication stage, guarantee that the element A (of the coin (4, B)) is of the
form ¢%? g3 g3? for some p, ¢, u (p, ¢ not necessarily prime) and where Iy = ¢f, I’ = g}
(mod Q). We will also show that p is a prime factor of the N included in B, and how
this leads to identification of I/, i.e. to Iy and I'.

Steps 2 and 3 in payment guarantee that i knows a representation of Y, Y3
w.I.t. g2, g3, respectively: ¥ = gb, Y3 = g2, for t, 15 € z4, [t < (1+6)H < |Q|. With
step 4, this proves that U knows (N, t,3), (u,p, ¢) such that: A = gl ghgl® = ¢9%g%g3?
(mod Q)

N # pg (mdQ—1), t # ¢ (mod @ — 1) or t3 # ug (mod Q — 1),
then i would know more than one représentation of 4 with respect to (g1, g2, 93),
which contradicts the representation problem in groups of prime order and hence
our Withdrawal Protocol assumption. Therefore, t = ¢ (mod @ — 1), t3 = ug
(mod Q—1),N=pg=pt (modQ@—1),andY =g, Ya=g3" (mod Q).

Assume that N = p’¢q i ,withp' =3 mod8,¢' =7 mod 8 primes, 7, j odd integers,
and that N (and therefore p’,¢’,4,j) is unique. Then p'*¢”’ = N =pt (mod Q- 1).
But |N| < Q] (since |p|, [t] < (1 + ) H, |Q| = 2(1 + 6)H + 6), hence N < @ — 1 and
p"¢? = N = pt. Since t|N, t is either N,1 or p” q , i <4,/ < j. But at coin
authentlcamon ’R, has verified that g5 =Y & {g2, g2 } (mod Q),ie t ¢ {1, N}.

Thus, t = p"* q and consequently, p = N/t = P d q'J =

[Oka95] proves, under the assumption that fa.ctormg is difﬁcult {which, in turn,
is included in assumption Factoring and Diffie-Hellman II above) and assumption
Hash functions above, that NV is guaranteed to be of the form p’*¢” with special p q ,
and if the route node rule or the same node rule are violated, then B obtains p’*, ¢"
Also, N is blindly signed by B at withdrawal (it is included in,'H(A, B,z,a,b)), hence
1t is unique.

The ammendment to [Oka95]’s coin authentication protocol proposed by [?] guar-

sif rgt

antees that B can, with an acceptable overhead, find i, ¢, j, j* such that g, = g5 *

(mod Q) <— ¢g=t= p’i'q'j’ (mod @—-1), p= p’i—ilq'j—jl (mod @ - 1), Iw =
@ (mod Q) and I' = AW /(¢Pgs) = AO /(gPg2) (mod Q), and the fact that
B now knows a representation of Iyy w.r.t. g; constitutes proof of double spending®.
Therefore, if U over-spends he is identified. ]

8Since the representation problem is equivalent to the DLA; but the DLA is implicit in [Bra93b]
and hence our withdrawal protocol assumption.




Theorem 6.3 Let n be the security parameter. WLOG we treat the collection of the
portions of a coin as being a single, indivisible, coin.

Unforgeability: No p.p.t. TM can, from the views of users of arbitrarily many with-
drawal and payment protocols, compute a single coin that does not embed the identity
.of at least one of these users and that will lead to two successful purchase (or deposit)
protocols, except with negligible probability (in n). '

Unexpandability: The probability that from the views of users and shops of N
withdrawal and of N payment protocols, a p.p.t. TM can compute an edditional coin .
that will lead to a successful purchase (or deposit), is negligible (in n).

We discuss the validity of the above theorem. In [Bra93b] it is proven, under
assumption Hash functions and lemma 6.1 above, that it is infeasible to existen-
tially forge a coin (unezpandability), even when performing the withdrawal protocol -
polynomially many times and with respect to different account numbers. It is also
proven, under assumption Withdrawal protocol, that every coin embeds the identity
of its owner (unforgeability) [Bra93a] shows that these proofs are valid even if U’s
identity is represented in more than one generator (as in our case, (g1,93)). Our
scheme restricts U’s power, in comparison to [Brad3b}: ¢’s secret numbers (p, q) have
to be factors of N, where |N| < |@|. Our scheme also proves (at payment time) that
U knows the representation of A w.rt. (g1,92,93) as in [Bra93b, Bra93a]. Hence,
the proofs of [Bra93b, Bra93a] carry along, and guarantee the unforgeability and
unexpandability of our scheme.

Theorem 6.4 Untraceability:

Letn be the security parameter. WLOG we treat the collection of the portions of a coin
as being a single, indivisible, coin. Let W; be the set of all withdrawals (W) of user
U;. Then no p.p.t. TM M that can access all B’s views, and that possesses two coins
C;,Cj, two users’ withdrawal sets Wy, Wa (U1 # Uz) and withdrawals W;, W1, Ws,
such that C; is the coin originating from W; € Wi, and Cj is a coin originating
from either W1 € Wy or Wa € Wa, can distinguish (non-negligibly better (in n) than
random guessing) whether C; came from Wy or Wy. (This theorem also guarantees
unlinkability among coins of the same user).

For simplicity, we argue the theorem’s validity for u = 0 (first variant).

Since all random numbers of Uy, U, (that determine B’s views) are chosen inde-
pendently of the users’ identities, the fact W; € Wy cannot help M. Hence the above
problem is equivalent to saying that A cannot distinguish whether C; came from
W, or Wa, for any coin C; and withdrawals Wi, W,. '

We concentrate on the information revealed in the coin authentication protocol,
since the denomination revelation remains unchanged from [Oka95]. Assume that B
has access to an oracle that allows it to distinguish which withdrawal protocol the
coin C; came from. We show that B can use this oracle to break the Factoring end
Diffie-Hellman I a.ssumption. : »

,, Given [Y5(= ¢1° mod Q), No(= pogo)], [Y{(= ¢f* mod Q), Ni(= p1g1)] and [I(=

" mod @), I~ r( g1~ mod Q)] (r €r {0,1}), the bank calculates the views:

e W; (withdrawal view for (Iw); = I;, i € {r,1=r}):
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Pick w;, ¢} €r Zg.
Compute aj = g+, b, = (Ligs)™:, r} = ciz + w;. :
The range-bounded commitment can be simulated by setting U; = ¢ (Iw); *

e P; (payment view for Y/, Nj, j€{0,1}):

Compute Y; = (Y/ )’”I(" % mod @), where g2 = ¢¥. The range-bounded
commitment can again be s1mulated in the same way as above; in this case the
simulator also modifies the output of the hash function Mg, but since the latter
is a random oracle the simulation is computationally indistinguishable from the
real protocol (a similar technique is used in, e.g., [7]).

Compute A; _g1 Y, 2 = A%,

Pick f; €r Zg, and compute a; = ¢¥i,b; = A'f’
Compute ¢; = H(AJ,N],z],a],b )and r; = c,a: + fi.

It is easy to see that B’s views of the above protocols are valid. Furthermore, 1f
B can use the oracle to see which of W; corresponds to, e.g., Co, then it can break
the Factoring and Diffie-Hellman II assumption.

All we need to show now is that the views B constructed are valid views of coins,
i.e. there exists a set of choices that any user &/ could have made in order to obtain
coin C; (of payment P;) after engaging in W; (for some ¢ € {r,1 — r}). Then the
oracle does provide a valid response.

But for any pair (VVZ,P) U could choose vy, v, such that vy = ¢j/c} and f] =
w;vy + ve. Then it is easy to verify that & would end up w1th the same coin B
simulated in P;, after engaging in W;. '

7 Efficiency

The efficiency of our scheme and comparison to [Oka95], partially discussed in the
introduction and abstract, is fully discussed in Appendix C.

It is apparent that the storage, computation and communication requirements of
our scheme are well within the power of current smart cards, resulting in the first
untraceable divisible off-line electronic cash scheme that can implemented in practice.

The most important open problem (excluding extensions to tamper-resistant de-
vices and escrowing) is to find a way to break the linkability between portions of the
same coin. :
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figure=tree.ps

Figure 1: Tree for a $1,000 coin.

A Remarks on Assumptions

1. An assumption similar to Factoring and Diffie-Hellman II appears in [Oka95].
It implies that the Discrete Logarithm Assumption (DLA) holds and that fac-
toring is difficult, since if either can be solved the assumption doesn’t hold. If
u # 0, i.e. the second variant of our scheme is used, then this assumption needs
to be modified as follows:
(Multiple Factoring and leﬁe-Hellman) (Let @, H, 8, po, 905 21,91, No, N1, Yo, Y1, I, [
be defined as previously, and ug, u1 €r Z;). No p.p.t. TM can, given Q, 6, g, [Yo, No, Y4 (=
g“°? mod Q)], [Y1, N1, Y{(= ¢**?* mod Q)] and [I,., I/(= ¢*~ mod QL h-- I _ (=
g%t mod Q)] (r €g {0, 1}), compute r with probability better than 1/2+1/Hc
for all constants ¢ and sufﬁc1ently large H.

We believe that this assumption represents an interesting number theoretic
problem to be studied.

2. An assumption equivalent (see footnote on this assumption) to Withdrawal pro-
tocol appears in [Bra93b]. Although it is stronger than the DLA, there are
convincing arguments that suggest that breaking it requires breaking either the
Schnorr signature scheme or the DLA. '

3. The Hash functions assumption is difficult to guarantee. As suggested by [Oka95]
it requires tamper-free devices. [BR93] suggest an implementation using MD5
in a special manner. We use it because it clarifies our scheme, and, for all
practical purposes, commonly available one way hash functions can be used.

B Binary tree approach'

In all anonymous off-line truly divisible e-cash schemes, a binary tree approach is used.
Each node of the tree represents an amount; the root represents the whole amount,
its children half of the amount, its gra,nd—children” a quarter of the amount, etc.
This approach limits the size of the coin, by reqmnng that the bank authentlcates
only the root of the tree.

For example, in figure 1 we show a tree for the coin n. In this tree if, say,
ngy = $1,000, then ngo = no1 = $500 and ngoo = noo1 = Mo10 = noy1 = $250.

For a tree construction to work properly, we must ensure that the same node rule
and the root route rule (see Section 3) are satisfied. These two rules guarantee that a
user cannot spend more than the total value of the coin (i.e. the denomination of the
tree’s root). In the context of off-line electronic cash, “cannot spend” means that if
these nodes are spent, then the user’s identity is revealed. :




C Efficiency

We examine the efficiency when H = |p| = |q| = 256, n = k = ¢ = 40, § = 160,
IN| = 512°, |Q] = 640 (i.e. § = 0.24), and the binary tree has 18 levels, i.e. the
divisibility precision is 2'7, hence sufficient to divide a $1,000 coin down to 1 cent.
We assume the existence of fa.st, random hash functions. No pre-processing is assumed
(unless explicitly stated). In practice several of the steps can be pre-computed. We
calculate for u = 0. A * marks the numbers that have been used in the abstract and
iniroduction. :

Storage requirements: The information/ needs to store for one coin (p, ¢, (a, b, 7))
is 304 Bytes (up to 464 Bytes if U stores, rather than recalculatlng before each pay-
ment, A and/or z, and plus 80 Bytes if u # 0). In comparison, the coins in [Oka95]
are 264 Bytes and in [Bra93b] 384 Bytes, when the same parameters are used.
Computation and communication: Our exponentiations are 5 times less costly -
than [Oka95]. The exponentiations in our range-bounded commitment are 10 times
less expensive. At withdrawal I performs the equivalent of less than 2* exponen-
tiations of [Oka95] (and B less than 1*). U sends 440 Bytes, and B 306 Bytes. U
also needs to calculate one Williams integer, but he can pre-compute one any time
before withdrawal. In contrast, in [Oka95] Y needs to perform more than 4,000*

“multi-exponentiations” for the same functionality.

In the coin authentication phase, ¢/ transmits 664 Bytes to R. U needs to perform
the equivalent of less than 1* exponentiation of [Oka95] (if he re-computes A and z)
and R 1* (the |N| divisions are as costly as 3 exponentiations, or 3/5 exps of [Oka95]).
_ In the denomination revelation phase!?, 9 nodes (on average) are paid. For each

node, two 512 bit values are sent to R, for a total of 1,152 Bytes. In addition, about
320 Bytes (on average) are sent for verifying that N is a Williams integer. Both U
and R compute approximately 19* roots (mod N) (we include the Williams integer
verification), where each root computation is similar to an exponentiation (mod N).

2 Although we believe that 512 bits are not sufficient for an RSA modulus, we use this value for
comparison with [Oka95]. However our coin remains small if, e.g. |N|= 1024 (4300 Bytes).
10We adopt the calculations of [Oka95].
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D The withdrawal protocol
The user U » The bank B

p=3mod8,¢=7mod8

B=[N=p,Y=gllIw=g, Ly I=Iwl
? ?

Iw #{l, a1}, Ig2 # 1

Proves knowledge of

representation of I’ w.r.t. g3 —_— Verifies knowledge

Proves Iy is a bounded commitment ——— Verifies proof

wER ZQ

A= (Iga)? @ @ = g°, ¥ = (Ig5)"

2= 2 = KBRS [= (I9o)"" C

v1,v2 €R Zg ‘

a=a"g"

b — b/quAvg

c=H(A,B,z,a,b)

¢ =efv . L.

CHECK? il r=det+w

gr' — hc'al .

(Igg)r’ = <'p
Compute: 7 = r'vy + v
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