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Abstract

A’ simple generalization of the multipe riphe ralv.model (MPM) and the
Mueller-Reggé Model (MRM) is given which has improved phenomgznological
éapabilities by explicitly incorporating resonance phenoi‘nena, and still is
simple enough to be an importanf theoretical laboratory.

The model is discussed both with and without charge. In addition, the
one channel, two channe-l, three cﬁannel and N channel cases aré explicifly
treated. Particular attention is paid to the constraints of charge conservation
and positivity in the MRM. The recently prover; equivalence between the MRM

and MPM is extended to this model, and is used extensively.




I INTRODUCTION

For many years the Chew-Pignotti multiperipheral model1 (CPM)has
been an important testing ground for various theoretical ideas. This is in
spite of the fact that it.is- fundamentally at odds with the data. 2, Recently it
has been proven that the N-channel multiperiphe;al model is totally equivalent.
to the N-channel Mueller-Regge model, and that one can derive either model’
from the other quitef simply.

We want to point out-a simpie generalization of the CPM and the
equivalent Mueller Regge model which: 1) provides a generalization of CPM

which has improved phenomenological capabilities, 2) still is simple enough
to be an i}nportant theoretical laboratory, 3) adds additional phenomena that
are expected on physical grounds.

This model has been known in gas dynamics for years as the é -function
interaction, but in high energy physics might justifiably be called a resonance
model. 4 AIn the ‘Veneziano model5 resénances are dual to an infinite se't of
Regge trajectories. In this model the § -function interaction? while not
identical to either real resonance or Regge exchanges, gives effects similar
to low mass resonances or to low lying Regge trajectories.

From the CPM point of.vview what this means is that one selects a sub-
set of the infinite set of trajectories and daughters to be treated in the normal
way and approximates the remaining trajectories by resonances (which we take
here to'be 6 -functions.

In section II we discuss the simple scalar model. Section II contains most

of the physics implications, withoutthe complications of the more detailed models

\



‘which are discussed in Sections III andVIV.' .In Secfién III, we generalize the
problem to N channels. with k channels containing normal Regge poles and
N-k channels containing § -functions. In Secfion IV, a séeciﬁé thrée‘channel
exa;_mplé with charge is worked out in great detail. Whereas in Section II we
star£ the discussiqn fr'om the multiperipheral model, deriving the equivalent
Mueller model in the end, in Section IV we start by contrast with the Mueller
Mociel, and in the end find the equivalent multiperipheral model. This is

instructive to the demonstration of the complete equivalence of the Mueller and

multiperipheral models.

II. PHYSICAL IMPLICATIONS

A. One Channel Model
Consider the one dimensional one-channel CPM model, written in terms

of the rapidity variables where Y = In (s/MZ), and where the longitudinal

| _ . ) - N
momentum of the it.h produced particle is p1 = Kisinh yiand Ki = (m;2+ <p;>) ¢
Then the prong cross seétion is given by
. v ¥ Y oy Y :
0'n+2(Y) =geh‘ ,fo dy'1 f dyz f dy3... f ' dyn
Yy Y2 Yh-t (2. 1)
Ky ) Kly,=y;) ... K(Yn-y.n;l)K(Y-yn)
where K(z) = geZp and B = 2 a, -1. This equation implies that
oy Yo oy ' L :
o (Y)=e f dy K(Y-Y) e’ o (¥ | - . (2.2)
0

Both of these integrals-,are.,diégorializ’ed" by Laplace transforms to



A () =g @™ @)

AT = KMaA @G I

. A ' Y
where An(J) is the Laplace transform.of e T 42 (Y)
)
A_(3) = {) dY'e

-(J-1)Y ' o
o'n+2 (Y), (2.5) |

and K(J) is the Laplace~transform of K(z),

K(J) = J—%E : - | (2. 6)
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From summing either (2. 3) or (2. 4) over n one finds that

2(0.;

1Yy
- 2.7
T oY) = 80 (2.7)
. . 1
where a0=2ain -1 + g. Another important result is that
<n>=gY ‘ (2. 8)

where < n> is the average number of produced particles of all types.

Experimentally it appears that is greater than 2. 0. 7 Assuming that

n
dY
q,0=1 for a constant Fotal cross section this implies‘ ,o'in < 0. On the cher
hand it is generally believed that the set of trajectories at J=1/2 must be
important in the inelastic process. Since the above a represents an average
pq‘s"ition of importa}nt trajectories there must be in addition to the trajectory
at 1/2 a range of J from 1/2 to -2 or -3 contributing.

Another problem of the CPM is that it predicts a Poisson multiplicity
~distribution for produced particles of all types. The experimental distribution,

even neglecting diffraction effects, is broader. Again this.is what one would

expect if a range of trajectories contributed. The lower trajectories would

contribute mainly to high multiplicities while the higher trajectories would

contribute mainly to lower multiplicities. This agrees with the obse rvation’




that the low multiplicity prong cross sections are dropping approximately like.
-0.8 : . A
s , more like a trajectory at ,1‘/2 than one below zero.

After this discussion it is obvious that a simple model which corrects
the above problems must in some way take into account the effect of lower
traje}c.tories., To illustrate this point let us consider the problem where we
add one lower trajectory. Although in general this would require more than

one channel, we will simplify to the one channel case here. The kernel for

such a model is

(2.9)

with Bi =~ 0 and [32 <0, (maybe [32 ~ -2). A considerable simplification results

by approximating the second term by a constant. Then

K(J) = ERS o (2. 10)

g
J-p

This can be obtained from (2. 9) by letting g, = -B, A and letting ﬁz go to - co.

2
Poles very low in the J plane contribute af the lowest subenergies and physically
account for the evxcess of the re s.onané,e coﬁ’tribution not included in the first
poles, t The (inverse) trapsforrn of eq. (é. 10) is

K (x) = gveBX+ X6 (x)\- | ” , N (2 t1)
s‘howingthat the total contribution of the );:-te;'m co'rnes at zéro rapidity
difference. Its presence in the kernel means that in the differential cross
section, two particles will have a probability \ .of having the same rapidity.

Since it can act repeatedly 3 particles have a probability )\2 of having the same

rapidity, 4 particles have probability X , ete. Obviously \ must be less than one.




We consider the sets of particles with identical ra';;i'dities to be-idealized versions
of real resonances. g Thé--probability of a "'re"sonar;Ce!" decéying into m '
particles is )\m-'i-“

We of course do not expect gr.odps‘ of'particles.with identical rapidities,
although the model as"it ié written implies that. One can imagine this as a.
resonance with zero Q-value or é resonance which decays purely transversely.
In a more realistic tréatment, one would include a decay distribution factor
for each resonance. If we omit these de cay distribution factors this model will
stili yield correct results for integrated quantities but for differential distri-
butions it will be in error.

We now investigate the properties of a model which has a kernel of the.

form (2.10), (there is no particular reason but convenience for using the same

g and \ in the end couplings)

gz - (2K (7)) -
=0

CA(z,J)

2 2 2
z g +z g\ (J-B).
(J-B) (1-2\) - zg

S (2.12)

. 8
where we have included the 'fugacity' parameter z. The imaginary forward

amplitude is obtained by setting z = 1; thus,

AT =gl +A)
where
Y - S
GO
a=p + 15 | | | (2.'13)



We aga.in; s.ee-ﬁt‘hat \ must be less than one. Nvotice an importa-nt fe;tﬁré of
this kernel; it generatgs an amplitucie that h;;fhe same foxA"mi of .tllw.e orig:iﬁal
kefnei, which in-facf has a number of obvious theoretical advantages and
implications.

To obtain the generafing function for this’ rﬁpdel we find the pole in

|
i

(2.12) as a function of the fugacity:

ale) S BHTLT - e

The asymptotic - forms of the moments of the multiplicity distribution are

r ! .
f1=<n>-= g: Y = —&Y—é (2.15 a)
L z=1] (1-))
a2 " 2gnY
T y - <8 (2.15 b)
2 5 2 . (1 )\)3 o
z2° 4
and in general
| - 4n' ‘Xn-i .
f =28% vy n>t (2. 15 ¢)
n. (1__.)\)n+1_

- To aid ones understanding of this model, .we note that dividing numerator

and denominator of (2. 12) by (1-z\) gives

. f{“(z,J) + 1?‘ ‘ . %
A(z,J) = zg — 2 S _[K(Z,J) + ii"—} | [K(Z,J)]n (2. 16)
1-K(z,J) “EM ) FZon
where .
_ (__g__ )
R(z,J) = ——2> (2.17)

J-p




Hence K (z,J) is the kernel to produce one reésonance. Since it is not

polyneminal in z: the resonance decays into an arbitrary number of

3

particles. By introducing a fugacity for the resonance, { , where

. .(1_)\) : , | : . R ‘2 o
T ; ( " )
we can write
¢ &
R (2,J) = —X o , . (2.19)
This shows that thé coupling constant for a résonancg‘ is 1_i . We also-can
find the average number of particles per re sonance
<n> = : = — . (2.20)

r 3z !
iz:i

The equation (2.19) implies also that all the results of the Chew Pignotti model
hold, except now for the resonances, not the particles. For instahce, the
multiplicity distribution for the number of resonances, n_, is Poisson with

<n_> - & v (2. 21)

Since the decay probability of the resonances are independent we have the relation-
ship that the average number of particlés-is .the avérage number per resonance
times the average number of resonances. |
<n>=<n> <n > - £ | e
(1-x)
" To obtain.the compléte gex.ie’r’atin'g functién \f}e‘. r’nus.t'also have the residue

of the pole in A(z,J) as a function of z:

: = L L (2.23)
(1-x 2)° o =

2
g z

r(z) =



Upon transforming back to energy (or Y) we have

'a(z Y)-r()‘“‘z’ by iz— exp {(p- py+£Ly @
- ' (1-x 2)2

which can be evaluated explicifly in terms of Laguerre polynomials Ln(x)

through the identities

7

()
L) e 2" = 1w (2. 25 a)
2 ! n :
n=0
' 1), . on#t [ |
' Rl - 2.25 b
‘ Ln (x) " L (x) | Lot (x) . ( )
sections )
n+1i
2 {B-1) Y (n+1)\ gY ¥
,crn‘+2 (Y)=g"e v {L g e T ey )} . (2.26)

To obtain the paré;rriéi:eré for the corresponding M-uelle'r-Regge"M‘odel

we note that

0 - : ) .
T A(2,3) = zg ¢ [z (J_-% + x)jn‘“' L (2.27 a)
n=0 i _
- - ,
. o , _ K(J) o i (z-1) K(J)
| - 2 K@ -, K@) (2.27 b)
/ 2 ® - : ']n+1
_ zZ \ -8 _ (G \
- Z_i,} & (z-1) G . L(z 1) J a+A) (2.27 ¢)

. . 2 :
This means that except for the factor -é— [z/(z-i)} , the generating function
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transforms into itself under the substitution .

z —-z-1

g§~G

(2. 28)

p—-a

A=A
[This is the transformation of the multiperipheral model into the Mueller
model in the simple one channel case. We will see more complicated exam-

ples of this later.] We, therefore, know immediately that the inclusive

cross sections are given by

o v ) ntt’
- or~ala-1) Y (n+1) A
Tyot Pn(¥Y) = 8Ge GY L

GY GY) 1y 1 oo
et o] oL |- A)} (2. 29)

where A(z,J) = 2z zn(z- 1)n ot pn(J) defines the inclusive cross sections.

- B. f 'i‘\;vo Channel Generalizati§n
In more general problems we treat each exéhg,nged o.bje?:t_ as a separé.te
channel. This is, of course, important when including charvge and .when con-
sidering more general éoupling schemes. We should point out that the pre-
vious problem could have been treated as a two-channel problem with the

propagator matrix F (using the notation of Ref. 3) given by

1 - i
=|— 0} 2.30
.0 1
and the coupling matrix |
G=| & “’g"\ . | (2. 31)
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As an example of this multi-channel approach let us consider the previous

problem within the more general framework. Now

F=|—— o|; G=/g h (2. 32)
' T-p h X\
0 1 .
and an end coupling vector D = d}'which means that we assume (for convenience)
there are no resonances on the ends. Then
0

: ' 2 | -1
Alz,J) = - DT F (zGF)" Dz = 2° D F.(I-2GF)” 'D. (2.33)
n=0

The position of the pole of A is determined from

Det (I-zGF)=0 . (2. 34)

This yields for the pole position
' .2 2
' 1- h
o=+ gz (1-xz)+ h z

.35
T\ z (2.35)

Notice again that if hz = N g-this reduces to the previous result. Here h
represents the coupling of two-particle resonances, and hZ)\h represents the
coupling for (2 + n)-particle resonances; g is the coupling for single particle
states. Thus with this s‘light generalization we have the possibility of-:having
a)'only resonances, g =-0;b)only stable particles and 2-particle resonances,
).\ = 0; or c) only 2 particle résonances; g'= \- = 0.

With only-a little' work we can show that the entire imaginary ar;rlplitgde
is

(2. 36)
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This transforms into

dz@z e(u.(z)-l')Y

o(z,Y)

2 th ( z
1-\2z

a%2” exp { (B-1)Y + (g - )} (2.37)

Y +
x ) 2Y

for the generating function of the cross sections, which has the same form as
the generating function proposed by Frazer, Peccei, Pinsky, and Tan(FPPT). 9

Following them '(‘their eqgs. (22-24) we may conclude that this leads to

n

. e . 2 2
_ g2 DY Y a0 vy RSy o
o () =d" e T Tl (L, R R U 1 (@ 38)

.2 :
where 7 = (g' -—};--) . For n =0, (2.38) differs-from (2. 26) due to the neglgc;t

in (2. 33) of resonances,c,oupling at the ends. Note alsothat we define L_l(x) = 0

It is interesting t-é point out theegfor in FPPT that gave them the above -
generating function -wifhout any 6 -function in?e raction. The point is that in.
the calculation of fﬂree body and higher cor'relations, FPPT neglect a-particular
contribution which .is zero if the meson Regge trajectory is r‘eplaced by a +
6 -function. .For example, the contribution to the 3 body correlation that was
neglected by FPPT is shown in figure 1, where the graphs are to bé integrated
over vy, < y2<y3 . When the meson trajectory is replace;i by a- 6 ~-function
in figure 1 the contribution is zero. Thus.neglecting .these terms as in FPPT

is equivalent to the 6 -function model.

III. N-CHANNEL FORMALISM

In this section we consider the case of N-channels, k. of which have poles



13._4 '

at finite J and N-k of which have é -function inter.actions. We neglect charge,
and by using the generating‘f{lﬁction;approach'obtain the transformation which
relates the Mueller Reégie (M'RM) and multiperipheral (MPM) models. This
is a generalizatiqh of prgv?._ous wo;ck(3) which discussed the e;luivalence when
only poles were involved. ' One might expect.that since. the resonance inter-
action can be treated as the limit of a normal pole 'g.oing' to infinity that the
result would be a trivial extension of previous work. This turns out not to

be the case. What was previously an orthogonal similarity transformation

relating the two models turns out now to be of the type. -

r-=sTas (3. 1)

. T -1 .
with S© # S = so that the class properties are reduced.. Because of these
complexities we proceed cérefully, even repeating previous parts for com-
pleteness. We start out in the multiperipheral framework, working in the

context of the N-channel, one dimensional model. 6 We have

0—n+2(s) - —s_An(s) ‘ (3.2)
which has as its Laplace transform
: T n
A (J) =D F (J) (GF(7) )"D S 33)

where F and G are the NXN.‘I‘S'ro‘ﬁagator and coupling matrices re spectively

and D is an N-dimensional vector. We form the generating function
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Q(z, J)

2 n_
SPIEN
.on

zZDT[F-i-zG] —lDA .. (3. 4)

We are considering that k of the N channels have normal Regge éingularities,
here approximated by poles, and that N-k of them are & -function interactions.

Thus the diagdn,al ""propagator matrix", F(J), has an inverse of the form

J-4 1 .
=1 . . ' . : .
F (J)= : : (3.5)
. . : * ’ 0
J-Ik .
it
0
- N

We block out G into Regge and resonance parts

‘- /%11 ‘Giz\) - (3.6)

21 922/ o

where G‘l‘l is a kxk.matrix, G, ,is a kx (N-k) matrix, ‘etc. Similarly D is put in

12
block form. .
To transform from the multiperipheral to the Mueller Regge picture, we

use the identity

. - . w )
S k- I W QERTR-HE -t L e
’ . n=0 , :

so that the gene rating function can be written '
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Q(z, J) = ZZZDT (F:-iG)-i[ (z-l)G(F‘-iG)-i] "D (3.8).

e
: . . . -1 -
To complete the transformation we need to diagonize F  -G. Defining the

projection'matrix that projects onto the Regge channels,
I 0\ | ‘
H( :/ _ _ (3- 9)
v \\0 0 . .

. -1 . . .
we write F (J) = JI - L where'L = § ijzi for i,j=1,...,N. We remark that
2 K1 to £ N 2Te not independent parameters, but could be included in the

“couplings. For definitness, we can always define these parameters to be -1.

The "output' or inclusive pholes will be solution to the equation
SR - : R U
Det [ F "(J) - G] = Det | JIk-L-G] =0 (3.10)
and hence there will be k of them. Thus in the Mueller picture there will .
also be k Regge poles and(N-k) é -function channels. We can choose to have

, : -1
the poles first so that the diagonalized form of F (J) - G which we ,

call <I>-,1 will have the form

<I>-1(J)=J1k-A. | - (3. 11)

with A diagonal. We want to make this diagonalization with a J independent

. matrix, S such that
S [Jlk-L--'G] S=JI -A . (3.12)

‘ForSto be J iridependent it must satisfy both
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sTlL+G) s=aA (3.13 a)
STLkS 3 SN o - '('3..13 b)

- We construct S by writing it and the matrix L+G £ £ in the block form

s = 511 812\ ‘ o (3. 14)

\521 Sz

"“12\ \ . . (3.15)

22 / )
Since L and G are symmetric we héve £ =2, Y r -z T and 7, _ = < T
- : S B § 11 222 0 22 S 12 21
Then eq. (3.13 b) yields -
T .

Sy Sgq =1 . o (3. 16 a)

T o T T . . SR

S,,.S,. =8 511-51251‘2-0‘ | | (3.16 b)

11 712 12.

which implies. SIZ is zérb and S11 is orthogonal. 'Incorporating this with

(3.13 a) we find, since A is diagonal, the equations

N
S22 21511 ¥5559225,1°0 L (3. 17 a)
T .. <T _ A
511712522 ¥521 7225270 (3.17 b)
sT i s._.=a A (3.17 ¢)
S227%22%22 2 C g
T T, T . T ,
ng 4 i £ = . .
S11¥ 11511 511745850 551 Cpy Sy +551:45,8, 7 Ay (3.17 4)

117 11 711



17

We satisfy the first two of these éguatipns by requiring o

st
N o L
s;' - Snfﬂsufz'?_z;1 . - (3.18)
'.SAuBsti'tu't'ing this equation for s ’1 into (3. 17 d) yi:élds |
| S;ri Gﬁn ; 112‘\{22-1%1“);511”\‘1; - o (3.19)
whé ;'e A..“j is d1agona1 S1nce S11 is prthggpnal vc}e .m.ay_ trqnép_oée to ggt the

eigenvalue equation
’ : -1 . ' L
&4 fixizz;zz Lyg) Spg)y = 6yy); (3. 20)

. - . .th . .th . - ,
showing that S,, is the matrix whose i column is the 1t eigenvector of the

11
above equation. Notice that the eigenvalue equétiop

Detln1- (€, -X,,%,, £, =0 (3.2

is the same as the more normal form (3. 105,

Det()\lk-(L"rG)):O ’
even though the first is the dete rminant of a kxk matrix while the last is the
dete rmiﬂant .of é.n NxN‘m':.a.trix.

| Hairirig determined the eigenvalueé and eige‘nfunctions (3. 20)', and hence

21" 22 remalnlng

S11 s we use 'eq. (3. ‘18') to determine S Wé 6n1y have S
undetermined. - Equatioh (3.';17' .c)'

22822522 =4;,
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constrains 'S-22 but contains a iarg'e amount of freedom. We can hbﬁve?ér,
choose S22 to be orthogonal. We will discuss a,nother"qhoice in appendix A
as well as the question of finding the inver‘se.transforma.tion to '(3. 12). With

S22 orthogonal, (3.17 c) gives the eigenvalué equation

‘IZZ(SZZ)i "h®y o B2

where S2 is the matrix of the eigenfunctions,

2

' With S dete rmined, we now proceed to construct the equivalent Mueller

Regge theory. :Fro,m equétion (3. 8') we see that the.geneféfihg functior'x' caﬁ be

written as (note, however, -appendix B)

w N
Qz,0) =25 (@) P (3} | (3.23)
n=0 n :
where
P =aTe 0y (rema . (3. 24)

Because of the form of (3..12), T and A are given by
ST GS - ’ ' P o (3. 25)

sTp . | (3. 26)

r

| A
This gives us all the éompone‘nts of the IvI“RM, and therefore the full rpodel.
| From the multii)e ri};heral ‘I‘JOint of ;riev;/,v thAia;‘, complete; our 'd'iscus'gion
of the N chapnel model with k-poles. We have dt‘amor_lstra-te;i the equivalence
as well as éops'trﬁctiﬁé the ‘generating func‘tion.. Wben one starts fr-om the
Mueller p;cture, the m'odel must be supplle;m’ented:by positivity (and charge '

conservation when included) requirements. We discuss the formulation of
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these constraints briefly now. nT.hi's formuiation requires the %nyerse of the‘

transformatior; fhat we used»abov'e to c:)bt;ain MRM f;om MPM and is d.iscuss,ed
| in aﬁpendix A g

' We construct G f._vr‘Q'm r usmg '.thel.t“\ré;-ns.forma,t.ion S'_T.i (q. v. Eqs:.A9 -A12).

The eleme‘»nt's of G must be pggitive, .The most straight fpryv%?d way. to-enforce
theée conditions is vsim'plyl to calculateGusing the known transformation and then
e:;plicitl'y e{nf,orc‘e it.. .it is 'aiso possible to impose some of thé conditions with-
out calé;.ﬁ.la.ting‘G, fu's.ing. o;ily the class propeArtA:ies of ‘S'-i.» Preparing for the
inclusion of ch;rgé; we add now an extra subs-crip't to G 'and .I‘, writing Gl,

and I‘llrespectively. The transformation (A7).gives, for GI,-“

.. . N e T . .

o4 T
ct = sh st

.. T \

= -1 i i T
P51 (s )21\5 ST Ty} Sy 0
= 4 | l } ; (3. 27)
I' i 1 l .\‘ '1 T ; '
0 S22/ \Tar Ta y \(s by 55,

i T i1 i T, o 1T L
S11T44Syq 54414, 8 oSy T FE )5 T,,5,,

{7 T AT i ot 1
|

(s )21Fz1511+(5 12172265 )z ,
|

]
!
i

1

i T 1 i T
S.7.2F21511+522‘ 225 )y 25,2125, L

From this matrix we obtain the submatrices G1 and G 2

T
G, {r;,}1s,,

- (3. 28 a)



20

. i 1": _1 'I‘ 1 A
Gy = Sqy Ty - F1z'(A"I‘)7_2 (A-F)“_ (A- 1“)12 (A- F)zz 2 (3.28 b)

+(A I‘)12 (A- 1")

22 22 (A r) (A'F)iz} §11

Since S“ and S22 are orthogonél trarisform'ations, the positivify of the elements

- of Cr11 and GZZ imply the following conditions on the bracketed terms:
Tr({ }7)=0 = (3.29)
'f'or'n =1toN

There are also the non-class constraints (i. e. those not related by similarity

transformation) that the elements of

i VR i 4 T .T
Gy1 75, (in w T (AT, (A-'r)iz)’sn ,
. (3.30 a)
i i 1 _T\.T
= 522 <r21'+ T2z ATy, F12) 511
and
i S ‘ iy LT |
G754y (Fn_ tIy, (A-T),, I1.22) S22 (3.30 b)
are positive. | The la'st conditions imply
i i i i 1T i | r 1T .
Gp1 Gip =Sl Ty # Ty, (AT, T, 1 [y, + Ty, (A- 1“)zz Ty l¥s,, (3.31a)
and
_ i i- i 4 T T
G1z Gz1 =S (LT, + Ty, (A- r).22 ry,0 [ Toy # T, (A1), Ty sy (3.31 1)

have positive elements, leading again to class constraints (3. 29) on the

bracketed quantities in (3. 31a) and (3. 31b).

IV. 3 CHANNEL MODEL WITH CHARGE

In this section we explicitly calculate a charge conserving 3 channel
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model starting from the Mueller picture. We have one isospin zero Regge
pole and two 6 -functions, one with a mixture of isospin zero and two,and one

witjh isospin ‘one.i The 'isc‘ispin of.‘flu'é o -fﬁ.nction is ithe“ is;ospin. ;f 'fhe Regge ex-
change that the 6 '-fu.nction }epiacéé. 'Thcle propagth;;:-matri‘;vcﬂifs'_ |
| | FIng 0 : o
@(‘J)f = 0 A, 0 | = JI, ‘A | (4. 1)
Q 0 SN, |

where I is the matrix with only 1 in the (11) element, and , is thé I= 0

6 -function. The coupling matrices to the various charge states are

/ go_ a1 ‘ az \ ‘ | - . o // e’:go .c 0.,
/ « - o _
r '=‘\ a, dy d, |; I = (I‘+)T; 1“°‘,=s' c f 0 . (4.2)
- - \ /
3, -4, 4 | 0 0 b/

The forms of the coupling matrices are determined by the quantum numbers
of the exchange. The fact we only allow G parity positive to be exchanged,
assumes the dominance of piéné. The full mﬁtrix; folic‘)v}ing Ref. 3, is

/go(2+e)“2a~-‘}-c 0o\

i
+ - o ‘ \
C=T +T +T°=| 2a4c . 2d,+f 0 . (4. 3)
0 0 2dg+h/ | ‘

where we will denote the elements of I" by Yij in what follows. To find the
: ' -1
MPM parameters, we must find an S = satisfying

L= 5T (a-mys7t (4. 4)




lSin‘ce S

where L i5 the diagonal matrix £ 16 ij B

-1

and o

st El
, \521

which implies

11

therefore

&,
“ | L2z

s12

522

|
j
-/

4 -1 :
In addition to (4.4), S must also satisfy

22

!

\

| s HT L -1

= . =T
812 = 0 and S.11

Si0=1 -

. -1 _
5,,= %5, £,,5,

1

ihTY 22

Bl

S™" by the same method discussed in the previous section. Then

0

Y12
PPy 0
I
=1
Su' .

is a 1x1 matrix, we find immediately that

- By the procedure discuséed in section III (see also eq. A10) we find

(4.

(4.

(4.

(4.

(4.

(4.

(4.

We use this equafibn to construct

10)

11)
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where
n = 1z . (4. 12)
N2 V22
The equatioh. that A_determines §22 (A9) is .
o 2y 2" Yoo 0 \ _ ¥ 2 0
55, . / S,, * | . (4. 13)
.0 0 £

N3~ V33 3 0 B

Since 522‘ is an ‘ort‘hogohal transformation and ¢ 2= 45 by charge symmetry,

then

NpTY¥pp T A3 V33T AT LyEN - ¥EL (4. 14)

Therefore, S.. has the following form in terms of the transformation angle

22
-9
cosf -sinf
5,, = : " : (4. 15)
sinf cos@.

In summary, the full transformation is

1 0 o0

s"-i. =|.m cosf. -sinf . (4. 16)

0 sinf cosé
" and the position of the "i'}nput" R'egge' cut is (Eq A11:')

1 . o
Now let us use S  to calculate the coupling in the MPM from our coup-

lings in the MRM. The form that the coupling must have in'the MPM will enforce
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charge conservation and positivity:

A ‘ 2
ot Za..1 'q+ di'q

'-S(a1 + di”) - C(a’2.+ dzn)‘

where C =.'C4089 énd S = sinf .

A

B

Let us consider this solution

4

,and hence using (4 19 d),‘

C(a.1 + ndi) +_.-S(a2 + n_dz)
Cd

-d2 - C&d

°© BY) Bt U
00 d, 4,
0 0 4, 4

1

2. . 2 .
1+S d3, dZ-CSd

‘ 2. . 2
1+(.'JSd3 Cd3+Sd

- The solution to (4. 18) is

g0+2a1h

co‘sZ’G = si'n29' 4

-a

a 2

{ cos@ ' sin9

a Fo§6 -"az'sme >0

a_, cosf

2. 2y sing >0 o

in more detail. Firsf, (4. 19 c) implies

cosf + sinf

1 =23,

a

1

S (4.18)

Cla, + nd,)-S(a  + 1161)\i

¥ CSd /

N

(4.19 a) |

(4. 19 b)
(4.19 c)
. (4.19 d)
(4.19 e)

(4. 19 £)

(4. 20)

‘Since A + B = (a.1 + a.z) (cosf - sinGl)' is strictly positive,cosf and sinf must
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have opposite signs; a, and 52 must have the same signsA; cosf and a, must
have the same signs. Therefore we have two pos si_bilitiesﬁ '

cosf =+ 1/V2 - ‘cos'9 =-1/VY2
1/Y2

a,>0 a aé<0' | (4.21)‘

sind = -1/¥2  or &sind

2

Experimentally al_.and a, are the terms that govern the approach to scaling

2

and therefore should experimentally be negative to. have inclusive distributions

scale from below. 1 This completely determines S-iz
0 0 |
B : | A :
s n aanVz -y E (4. 22)
o w1/Vz 112 ’
A:B:-ai\/Z . _ (4. 23)

Now let us consider the neutral couplings

E 0 0 t n 0
G=[0 D ol=[0o -uvz Yz (4.24)
0o 0o D \ 0 51/\5-1/\5
€ 8y © 0 [ 0 0
s e ¢ of | n cuz anz
o o n/ \o w/¥2 Nz /.

,Soiving this as we did above we find

f=nh
D= f - (4. 25)
c= -nf.

2
E:Ego-nf
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We now assemble our results. Roughly, the constraints arise as follows:

ot

1) Constraints on the Mueller parameters due to charge conservation

- EREN . C sk

Ay=appdy=dy=dg=0ifshg
2t 422
C oz e ;g = (4. 26
N & TN (4.20)
Ny= A=\

e

2) Relations between Mueller parameters and _Multi_péripheral parameters,

and constraints of positivity

A

11

B:-aiﬁ_>o - (4.27)

'22 13= 1:,: )'\-ﬁ

yi

f

Ny gy (1 +e - £/(-\))

D>0

1=

E =gy (e -£/(-\))>0 -

The end co_u}ﬂings are determined sii;'nilarly' by rhéahs of

-1 T,

s at=p" . | (4. 28)

Therefore

b 0 b11 %12 fa3 °o 0 1

. - \ * . = . - . O .

6 1/Y2 1/\/2_" S,0 b5 By 4 o | (4.29)

- - B U A L . . 0

0 1/\/. 1/Y2 b3 63 b33 \0 O

(where dij and cl2 should not be éonf.used with the péramelt_grg .Aappea}ripg in (4. 2)

which we found to be zero). The solution is

8227 %237 %3 =._533_5 8420
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613=d;> 0,8 = -85 0= nd,/V2
631=d //2>0 621 - 31=-d2(\(2 N | (4..30)
and therefore,
a*s=[-a,/v2 0 0 (4. 31)

__\"-dz /,2 . ‘::0:.. o/
We solve for A and AO"ir_'l the same manner, and obtain for A (xyz) = xat +
y/_\- + zAO£

\{/g zd,, + 17 dz'(x+Y) y2 'yd1" +zn vdzz 2 xd +'znd,.

11 22
Azl -d 4, -z
V2| T4y ) 2452 "2%52 |
d, (x-y) zd_zzh -zd,, // (4. 32)

The generating function is (see Ref. 3)

. o : . . N -A— .. . 1 , N ..
Q (xyz J) = AT : : A (4.33)

Yoy - [ rhme1) + T y-1) + TO(2-1)]

where ZT = _AT (xe~y). Each element of the matrix Q is the generating function
for a éarticula;‘ initial state labeled by its ;harge. The. rows and.columns of

the matrix correspond to charge 0 +A -. respécti;/ely; to find the generating function
for initiafl charges a, b one takes the a b element. "This is”a result of the con-
ventions that . in the multiperipheral graph for &n(Y) particle b is flowing

out rather than in.

At this point we believe it instructive to illustrate some of the above results
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and conventions By meains of an ekplicit example. We t}r‘eat the case of an initial
state of tAwo.pos.itive pa;ticles, for‘which tl"le cross sections and inclusive rates
will bé the "23" matrix element of the appfbpria;te teﬁns fn (4. 33)4‘. The
geﬁerating fﬁﬁction is also‘given'by the ''23" elemeﬂt, and aftex; 'som.e algebra,

is found to be (the;, following calculation can be done easily 1n the M?M formalism)

- Bp 9% \?2

. \‘\ e - - ‘-A' .
2 4 2 X | (4. 34)

Qy,z [1)= x4y + T

- 2 2
-\, -g - (xy-1) + (/- X)" (2-1)
TNy -ggle(z-1) + 1) ) )

We can also calchate ‘the inclusive cross sections directly, by setting x=y=2=1

in A, and by using (3. 24). For example, the ++ cross section (in the j-plane)

is
. _0 =T :
Plop) © (3% &) 5y (4. 35)
== (V2d, + 'y dypr = dypr dy)) ['ETI 1 V2 4, +md,,

oy 422
- A 422

As a cross check Q (111.' J) = P:)_H_)

The’ genefating function for the (++) cross sections is obtained from (4. 34)

and of course(4.35)and (4. 34) agree.

by perforrhing' the inverse Laplace transform. Normalizing the génerating

function to unity when x=y=z=1, we find
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: d z V2
2 2 NGN i 6
I(x,y,z|Y).=Ax =_c11+1 ) G ¢ (4. 36)
SO S 1)+ (£/(- x)) (z-1)°
1 ( -1 (xy
- exp gOY\ € (z )+ PRV V)
q Mgo 22 2 ' .
i 2 “YZ')\) ’
As with the simple models of Sec. II we agaih see a number of interesting
properties.” The function g
1 (4. 37)

T-(z-1) (E/{(-X))

indicates the preéehée of the fésonanceé, which decay into any number of

. ‘neutrals with the production probability for n being (f/-)\)n. As mentioned

earlier, \ is not an independent parameter but rather always occurs in con-

junction with the § -function couplings fand d Because of the simple de-

22’
pendence of the generating function on x and y we see that our resonances can
| 1
decay into any number of neutrals but only one +-pair. This represents a
possible short coming of the model from a phenomenological point of view. We
remark that this model, taken as a crude .approximation to more realistic .
MPM's, is in rather good agreement with the integrated values of the correla-
(12)

tion parameters at present energies’' . For example, note that if we only

look at the negatives (i.e. x = z = 1), then

4 g,Y (y-1)
I(l,y,1|Y)=e , . (4.38)

which is of course a Poisson distribution for ¢ . Also the fact that the

generating function has no Y term indicates that

f2=0 , A | (4. 39)
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a result that is difficulfl to o“btain frorr; a mﬁltiperiphé.ral model of the normal
type.: These results certginly é.gree wifh the trend of present data. Similarly
the average. nur'nbér‘ oflne:gative-.sv 1s |

<n_>= goY . | , | (‘.1. 40)
T9 .obtain an e_stifnate of g, recall that the position of the input cut is |

Y 1/=2ain.7-1= ?\1 -goi(i +‘e-f/(')\,)).. o (4. 41)

It is generally expected that a, = 1/2 and )‘1 ~ 1. Therefore

1

gy = T e 1710 ;o (4. 42)

from other p};enomenblogical considera}tions“e«-._ i aﬁd £/(-\) = 1/2
implying g, ~ 2/3 which is quite Areasonablé, considering the crudeness of
the model. One should note that since resonances cannot bg produced
among m charged particles 'for fn> 2, thg spec;ific rﬁodel ‘considere'd in this
section iﬁlprincipie suffers from some of the same criti'c':is'm as fhé original
CPM. Namely, if the data were to -fav_c'>'r a large v'alue' of g02 4/3, then

a in woﬁld have to be negative.' New}é r'thel‘ess, present data favor d<n>,/EiY

~ 2-3, sothat g_~ 2/3-1 and the model is in no trouble.
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APPENDIX A. }Iriver'se.Transformation

We want t:) consider the question of the__ t_‘r'angf—bx:;paticns preserving unity
of the lower diagonall eljé_m'ents 6f F(J)~in the tra.n:sformation to & (J). This
;x;ill be related to thé que stions'.: ‘of inve rs:e;s: SO v?e t!ake th1s £opic up first.
Temporarily we as sume that" neithe.r the lower diég'onal -e‘l'e'brr:ley'nt's _-of' For &
are unity.but only that the transformation which relates them is orthogonal.
That is, using the results of Sec. III,

T

S (L+G) = A (A1)

22 22 522 22
T -1 |
Szz - szz (A2)
s -L+G_1LGTS‘4 - | A3
214 LGy, (LHG) 5 Sy (A3)
sT 1 (L+G) -.(L+G) LGl e Tl s, =a (A4)
pql (B4G) 12 (E¥G),, 120 8117841
T -1 L
s“.- =8, - o s (A5)
8,5 =0 o S (A6)

12
These are the quua.tionvs dete rmining'v'Sv if'qne starts with the_. MPM. Then of
course | ‘
r-sies j (a7)
and A determined in the previous equations determines a MRM. Starting from

the MRM one can also determine the transformation to the MPM, namely S-i.

. . -1
Since the equation for S = analogous to (3.13a) is
T .
-1 -1
L=(") (A-D)s™ , (A8)
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the equations.one would get starting from the_._MRM.j‘a're

ol T o el L | |
(8 M)y, (AT, (8 )pp = Fzz ' (A9)
(57N, = - aemy, e, Ty (A10)
HT LAY, - (AT, AT, (AT, ] 670 =Ly - (A1)

In considering whether these are consistent with (A_I-Ab) we note that:since

S has the form | : "S11 0 \
S = .
S21 SZZ)
 then
| st 0
. 11 . :
S = 4 1 ‘ (A12)
. (5 )y - S22
-1 4 -1 N ‘ L .
where (S ),,=-5,,5,,S Equations (A1) and (A9)are obvmusly consistent,

21 22721711

After writing out the submatrices of eq. (A7), making freqﬁent use of eq. (A3)
one can shdw that eqs. (A9) 4- (A12) are cronsistent with eqs. (A1) - (Aé).
AHaving shovyn for transformations with.SZ2 orthogonal that the ipverse
transformation (MRM - MPM) is the inverse of the transf_orﬁation (MPM —
MRM), we pfoceed to examine the transformations where we give up the

_orthogonality of S__ in order to preserve a simple form for the prbpagator

22

matrices. Suppose F h;is for its ''22" complbner;t the identity matrix. We .

denote by %ihe‘ orthogonal transformation from F to <I>,' with 'F22 = I and with

(IJZZ determinéd-from the eigenvalues, i.e.
‘ N :
-1 _ . k+1 : ,
6,,=h,, =/ T o | (A13)
0
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We denote byag the transformation which makes @22 the identity. Cogsider

the matrix, assuming \,< 0 for j = k+i,

; cea My,
1 :
8225/ w1 o \ ‘- (al4)
o
) i
o |
Vo /
e 1 1
. "‘[' _ -2 ' . 2
Then .obv1pus/1~y,.1\_‘)22 = S~22A'22‘ .+ I not a.llli)\i s a:,r'e' negative then AZZ has t'c'>

be modified accordingly, and one obtains for AZZ a diagonal matrix with elements
+1 or -1. Call this latter type matrix Ii

One might also wish to start the Mueller Regge theory with A, = I:t and

use an orthogonal transformation to get to the multiperipheral model which,

of course, would not have L

= - =4
22 I but rather L i é i

22 For i>k, i‘i is

determined from the eigenvalue equation,

Aoz = Tag) (Top); =45 (Too)

where T22is anorthogonal matrix.

/

By constructing

e ——

- \
2oy Lt o
22 - ' -

(A15)

. 0 N

we then obtain a transformation converAt.ing & into F with F22 = I. Note that
the 4 ; must be negative if they are to be interpreted as the result of low lying
trajectories, due to the positivity of the c'ouplhi{ng matrix. Wfiting

1 I 0

5 :

L k [ (A16)

2 .
1 :

il

z |
0 L22 J




we have

U
G = L;GL?'::I rJ
where
3= TL,

The inverse transfo_rfnatiohs, 'as_surriing now 'bot:h_l\.2

The connection betwe_en“g and J is

: jz/g'i |

or equivalently -

Schematically we have ,the»pictufe' in Fig. 2.

2

= ;Ii apd 'LZZ

(A17)
(A18)
.5-1, are
- (A19)
‘(A20)

(A21)

(A22)

_(A23)
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APPENDIX B. End Couplings in the MRM

In Ref. 3 the:general equivalence between the Mueller Regge. (one dimensional)
model and the multiperipheral (one.dimensional): model is displayed. :However,
the "leading particles."fwere never treated in-a truly inclusive manner..' In their

- eqs. (5) and (6)

- n=0 |
w |
, :":'ZZ : (.Z',i‘)-np Iy - (B2)
n=0 - noo :

where Qn(J) is the Laaplace transform of s times the exclusive cross section
for producing n particles (n+2 particles in the final state), one éegs that
Pn(J) are the (transforms of the) integrals of the n-particle inclusive cross

sections onlyover the pionization particles and not over the leading particles.

The same as sumption . is made in the présent paper in Section II.

One way to state this problem is to note that in the final prescription given
in Ref. 3 for calculating the contribution of Pn (J) to Q (z,J), the end couplings
A are multiplied by z . Actually for only one kind of particle this is not so bad,
but for charged particles it is worse since A (x,y,2) = xA+ + yA- + on. There
should be therefore, a prescription in the Mueller Regge theory for calculating
.the -totally inclusive distributions, summed over all final particles, leading or

not. We shall give such a prescription here. First we write A (x,vV, z) as
‘ + - o)
Alx,v,2) = A+ (x-1) A +(y-1) A +(z-1)A . (B3)

where A = A+ + A" +A° . In Mueller Regge diagrams, A is the conventional
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end coupling, Fig. 3a, and A+, A" or A° is the .‘"drégbnﬂ'y'v‘ertéx, " Fig. 3b,

where-a ""leading":particle of charge +, -, or o is emitted respectively. Then

-‘to calculate the average multiplicity.of type i, we sum the set of diagrams. in

Fig. 4; correspondingly the integrated two particle inclusive cross section

(<n(n-1)>i) is given in Fig. 5. Analogous to these drawings are the eqﬁations

‘in a true Mueller Regge theory (entirely inclusive instead of mixed exclusive-

inclusive) which lead to
T C n+ n_ ' ho
Q(x, v, 47) = ) P (x=1) Ty-1) T (z-1) (B4)

nnn + -0
- O

_ where Pn A n (J) includes all"diagram-s, with'the_ proper number of positive, .

+ -0 . : _ .
negative or neutral particles, leading or otherwise.
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Figure Captions

One of the graphs left' out of FPPT. This c0ntributioxi to C3 vanishes
in the § -function model.

Schematic connection between MRM and MPM in the N channel model
containing 6 -function interé.ctions. "Ortho.gonal"v reférs to the '22!
components of matrices.

MRM end couplings: a) represents the conventional end coupling A in
Appendix B; b) give s.the end coupling Ai.'

Diagrams contfiButing to the average multiplicit;r aé discussed in
Appendix B.

Diagrams contributing to the second .morr;ent <n(n-1)> as discussed in

AppendixA B.
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