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Abstract

A  simple gene ralization  of the multipe riphe ral.model  (MPM)  and  the

Mueller-Regge Model (MRM) is given which has improved phenomenological

capabilities by explicitly incorporating resonance phenomena, and still is

simple enough to be an important theoretical laboratory.

The  model  is  dis cus sed  both with and without charge. In addition,   the

one channel, two channel, three channel and N channel cases are explicitly

treated. Particular attention is paid to the constraints of charge conservation

and positivity in the MRM. The recently proven equivalence between the MRM

and MPM is extended to this model, and is used extensively.
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I.          INTRODUCTION

1
For many years the Chew-Pignotti multiperipheral model   (CPM) has

been an important testing ground for various theoretical ideas.  This is in

2
spite of the fact that it is fundamentally at odds with the data. Recently it

has been proven that the N-channel multiperipheral model is totally equivalent

to the N-channel Mueller-Regge model,  and that one. can ,derive either model

3
from the other quite sirriply.

We want to point out·a simple generalization of the CPM and the

equivalent Mueller Regge model which: 1) provides a generalization ·of CPM

which has improved phenomenological capabilities, 2) still is simple enough

to be an important theoretical laboratory, 3) adds additional phenomena that

are expected on physical grounds.

This model has been known in gas dynamics for years as the 6 -function

interaction,  but in high energy physics might justifiably be called a resonance

4                           5model. In the Veneziano model resonances are dual to an infinite set of

Regge trajectories.   In this rriodel the 6 -function interaction, while not

identical to either real resonance or Regge exchanges, gives effects s imila r

to low mass resonances or to low lying Regge trajectories.

From the CPM point of view what this means is that one selects a sub-

set of the infinite set of trajectories and daughters to be treated in the normal

way and approximates the remaining trajectories by resonances (which we take

here  to be 6-functions.

Insection II wediscuss the simple scalar model. Section IIcontainsmost

of the physics implications, without the complications  of the more detailed models
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which are discussed in Sections III and IV. In Section III, we generalize the

problem to N channels  with k channels containing normal Regge poles and
N-k channels containing 6 -functions. In Section IV, a specific three channel
example with charge is worked  out in great detail.     Whe reas in Section II we

start the discussion from the multiperipheral model, deriving the equivalent

Mueller model in the end, in Section IV we start by contrast with the Mueller

Model, and in the end find the equivalent multiperipheral model.  This is

instructive to the demonstration of the complete equivalence of the Mueller and

multiperipheral models.

II. PHYSICAL IMPLICATIONS

A.  One Channel Model

Consider the one dimensional one-channel CPM model, written in terms
2of the rapidity variables where Y = 1n (s/M ), and where the longitudinal

.thmomentum ofthei produced particle
i pll = Kisinki yiand Ki= (rn, + <p >) 2Then the prong cross section is given by

Y y y y-Y r
9           (Y) =ge

JO   dyi     fyi  dyz     f        dyj   .  ·     f          dyn
n+2

VZ Vn-1 (2.1)

K(yl) K(y2.-yl) '   ' ' K(yn-yin-1)K(Y-yn)

ZBwhere K(z) = ge and 13 = 2 a.  -1. This equation implies that1n

enCY) - e-Y   dy KCY-y) ey en-1 CY)* (2.2)
0

Both of these integrals are diagonalized' by Laplace transforms  to

*---I-g--Z
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An (J)  = g(K (J) ) (2. 3)
n+1

An (J) = K (J) An-1(J) (2.4)

where An(J) is the Laplace transform, of eYe (y)
n+2

00
-(J-1)Y

An(J)      =     ..f   dY
e 9     (y)                         (2.5)n+2   '

0

and K(J) is the Laplace transform of K(z),

K(J) 2 -y B
. (2. 6)

r
i

From summing either (2.3) or (2.4) over n one finds that

2 (a -1) Y
O-     CY)=ge 0 (2.7)
tot

i
where a =2a -1 + g. Another important result is that

0   in

<n> = g Y (2.8)

where < n> is the average number of produced particles of all types.                  1

d< n>                                     7
Expe rimentally it appears that is greater than 2.0. Assuming thatdY

al= 1  for a constant total cross section this implies  a.     < 0. Onthe  othe r
ln

hand it is generally believed that the set of trajectories at J = 1/2 must be

important in the inelastic process. Since the above a. represents an average
ln

position of important trajectories there must be in addition to the trajectory

at 1/2 a range of J from 1/2 to -2 or -3 contributing.

Another problem of the CPM is that it predicts a Poisson multiplicity

distribution for produced particles  of all types. The experimental distribution,

even neglecting diffraction effects, is broader. Again this.is what one would

expect if a range of trajectories contributed. The lower trajectories would

contribute mainly to high multiplicities while the higher trajectories would

contribute mainly to lower multiplicities. This agrees  with the obse rvation·7
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that the low multiplicity prong cross sections are dropping approximately like

-0.8s     , more like a traje.ctory at 1/2 than one below zero.

After this dis cussion it is obvious  that a simple model which corrects

the above problems must in some way take into accodnt the effect of lower

trajectories. To illustrate this point let us consider the problem where we

add one lower trajectory. Although in general this would require more than

one channel, we will simplify to the one channel case here. The kernel for

such a model is

gi        g2
K ( J) = (2. 9)

J-Bl   +  J- 2

with 131 -  0 and 02 < 0, (maybe #2 -  -2). A considerable simplification results

by approximating the Aecond te·rm by a constant.  Then

K (J)  = -AL-  +  X . (2.10)
3-0

This can be obtained from (2.9) by letting g2 - -132 X and letting #2 go to - 00.

Poles very low in the J plane contribute at the lowest subenergies and physically

account for the excess of the resonance contribution not included in the first

1poles. The (inverse) transform of eq. (2.10) is

13x                                                             (2.11)K (x)  = g e + 1 6  (x)

showing that the total contribution of the X -term comes at zero rapidity

difference. Its presence in the kernel means that in the differential cross

section, two particles will have a probability X.of having the same rapidity.

2
Since it can act repeatedly 3 particles have a probability  X of having the same

3
rapidity, 4 particles have probability   k   , etc. Obviously  x  must  be  less  than  one.
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We consider the sets of. particles with identical rapidities to be-idealized versions

of real resonances. The· probability of a "resonance" decaying into   m
rn-1

particles is X

We of course do not expect groups of particles with identical rapidities,

although the model as it is written implies that.   One can imagine this as a

resonance with zero Q-value or a resonance which decays purely transversely.

In a more realistic trdatment, one would include a decay distribution factor

for each resonance.   If we omit these decay distribution factors this model will

still yield correct results for integrated quantities but for differential distri-

butions it will be in error.

We now investigate the properties  of a model which has a kernel  of the.

form (2.10), (there is no particular reason but convenience for using the same

g  and  X  in the end couplings)

00
2

A(z, J)  = g z (zK (J) )       =
ntt z gK

1-zKn=0

2 2   2
z g  t z g x  (J-B)

(2.12)(J-B) (1-zx) - zg

8where we have included the "fugacity" parameter z. The imaginary forward

amplitude is obtained by setting  z  =  1;  thus,

A(J) -g (- +A)
G
J-a

where

G = JL 2
(i-X)

a=B   +   (2.13)
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1-k

We again see that X must be less than one. Notice an important feature of

this kernel; it generates an amplitude that has the same form of the original

kernel, which in fact  has a number of obvious theoretical advantages and

implications.

To obtain the generating function for this model we 'find the pole in

(2.12) as a function of the fugacity:

a (z) = 13 +
Zg.

(2.14)
1-zk

The asymptotic forms of the moments of the multiplicity distribution  are

r-

aa 1- - gY
(2.15 a)

fl=<11>=,-az:z=·i   I - (i-x.)2
2

f -8_a Y     =     2 g x Y (2.15 b).1
c··-  z  (1-X)iz=l

-       -

and in general
n-1

fn   =  n!
g.x

Y.n a t . (2.15 c)
nti   '

(1-X)

To aid ones understanding of this model, .we note that dividing numerator

and  denominator  of  (2.  12)  by  (1 -z  X )     gives

_                      Z X
K (z, J) + - zil  p

A(z, J) = zg 1-zA .  =.zg lK(z,J) + -1-zAij     IK(z,J)]n (2.16)
1  - K (z, J) n=0

Whe re
( Zg  )
1-z X

K(z, J) = .I-0 (2.17)
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Hence K (z, J) is the kernel to produce one .resonance. Since it is not

polynominal  in z : the resonance decays into an arbitrary number of

particles. By introducing a fugacity for the resonance, 6, where

z (1-X) (2.18)6 = 1-zk   '

we can write

K (z, J) =
6 -I 

(2.19)
3-B

This shows that the coupling constant for a resonance· is -1.-E-    .   We also· can
1-X

find the average number of particles per resonance

8 61    1
<n>    = -i = - (2.20)

r Bz 1-X

 z= 1

The  equation (2.19) implies also that all the results of the Chew Pignotti model   ,

hold, except now for the resonances, not the particles. For instance, the

multiplicity distribution for the number of resonances, nr'is Poisson with

< nr   =-g  Y
1-X

(2.21)

Since the decay probability of the resonances are independent we have the relation-

ship that the average number of particles is the average number per resonance

times the average number of resonances.

<n>  = <n>    <n   >   =  1-Y- 2 (2.22)
r r

(1-X)

To obtain the complete generating function we must'also have the residue

of the pole in A(z, J) as a function of z:

2

r (z) =  g2z2  .     =  1&.L  (2.23)

(1-1 z)2     1.1



9

Upon transforming back to energy (or Y) we have

22
(a(z)-1) Y_g z gzy }e(z, Y) = r(z)e         -      2 exp {(p-1) Y + (2.24)1-Xz(1-Xz)

which can be evaluated explicitly in terms of Laguerre polynomials Ln(x)

through the identitie s

00·

-2LCU  (x)  zn.=  (i-z)      exp (xz ) (2.25 a)
n=0

ntt  f

L<1)(x)= -r  Ln(x) - Ln+1(x) 
(2.25 b)

00

n+2
Writing e (z, Y) =      . .   en+2 (Y).z   :   ,  we find for the exclusive cross

n=0

s e ctions     ,

n+1
2 (0-1) Y  (n+1) X0-  CY)= g.e           {L  (-KY). L (.EY)} . (2.26)

n+2 . gy ntt   X n X

To obtain the pararrieters for the corresponding Mueller-Regge Model

we note that

00

1 n+ 1
A(z, J) = zg

. .1        I' cit.   +  A ) 1

(2.27 a)
n=0

00 n
-

2       K (J) (z-1) K(J) 1
=Zg (2.27 b)

1 -K 1 J )        1 -0    l   1 -K (J)         ]

00

,    2               r           ,,ln+11 /G

- IfT .1 -&- (z- 1 )
G i

(z- 1 )  <  Yla   + Al |       (2.2 7   c)A= O   L

2

This means that except for the factor 2L (z/(z - i)   , the generating function
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transforms into itself under the substitution  .                       ,«

Z - Z- i

g-G
(2.28)

0- a
X-A

[This is the transformation of the multiperipheral model into the Mueller

model  in the simple one channel  case.      We  will  see more complicated  exam -

ples of this later. ] We, therefore, know immediately that the inclusive

cross sections are given by

n+1

9    0 (Y) = gGe
{L„+ i  -A  -Ln 1--T  }  (2. 29)

(a- 1) y    (n+1) A 1 GYI /  GY I
tot ' n GY

where A(z, J) = z2 In(z- i)n ,     0  (J) defines the. inclusive cross sections.tot ' n

B.   Two Channel Generalization

In more general problems we treat each exchanged object as a separate

channel.  This is, of course, important when including charge and:when con-

sidering more general coupling schemes. We should point out that the pre-

vious problem could have been treated as a two-channel problem with the

propagator matrix  F  (us ing the notation  of  Ref. 3) given  by

r  =  1'1       0  
IJ-0   1 (2. 30)
\ O    1/

and the coupling matrix

G.1, 4'Al (2. 31)
gl  x  0.        . . 
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As an example of this multi-channel approach let us consider the previous

problem within the more general framework.  Now

F   =  1 1' 1,1-             :11,      G    =1:         :1

1

(2.32)

and an end coupling vector D =id which means that we assume (for convenience)

01. .
there are no resonances on the ends. Then

00

T         n       2  T          -1
A(z, J) = zD  F (zGF)· Dz = z. D F(I-zGF)  D. (2.33)

.-'

n=0

The position of the pole of A is determined from

Det (I-zGF)= 0                             (2.34)

This yields for the pole position

22
a= @t                                         (2. 35)

gz (1-Xz)th z
1-XZ

2                                                               2
Notice again that if h   =X g ·this reduces to the previous result.   Here h

represents the coupling of two-particle resonances, and hZ An represents the

coupling for (2 + n)-particle resonances; g is the coupling for single particle

states.   Thus with this slight generalization we have the possibility of· having

a)'only resonances, g = 0; b)'only stable particles and 2-particle resonances,

A   =   0;   or  c)  only .2 particle  re s onances,g  =   X·=   0.

With only a little wo'rk we can show that the entire imaginary amplitude

is

22
dzA(J, z) =      , ,                                    (2.36)J -alz)
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This transforms into

e (z, Y) =d  z2 2 e(a(z)-1)Y

2
2 2 h Y    z

=d z  exp {(p-1)Y + (g--··h-) zY + -(. ) } (2.37)1    1-X z

for the generating function of the cross sections, which has the same form as

the generating function proposed by Frazer, Peccei, Pinsky,  and Tan (FPPT). 9

Following them (their eqs. (22-24) we may conclude that this leads to

n
-           jj                                                 22 (0-1)Y VYe    (Y)=d e j I    An_ [ Ln-j<-k-- .-)-Ln-j-1(-1  1)]   (2.38)n+2

j=0 X

where 71= (g --- - ).  For n = 0, (2.38) differs from (2.26) due tothe neglect

in (2.33) of resonances coupling atthe ends. Note alsothatwe define L-1(X)- 0.
It is interesting to point out theerror in FPPT that gave them the above

gene rating function without  any 6 -function inte raction. The point  is  that  in

the  calculation of three  body and higher correlations, FPPT neglect a. particular

contribution which.is zero if the meson Regge trajectory is replaced by a ,

6 -function. .For example, the contribution to the 3.body correlation that was

neglected by FPPT is shown in figure 1, where· the graphs are to be integrated

over  Yi< Y2<Y3.  When the meson trajectory is replaced bya 6-function

in figure 1 the contribution is zero. Thus neglecting these terms as in FPPT

13
is equivalent to the 6 -function model.

III. N-CHANNEL FORMALISM

In this section we consider the case of N-channels, k of which have poles
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at finite  J  and  N-k of which have 6 -function interactions. We neglect charge,

and by using the generating function'approach obtain the transformation which

relates the Mueller Regge  (MRM) arid multiperipheral (MPM) models.     This

(3)
is a generalizatioh of previous work which discussed the equivalence when

only  poles were involved. One might expect that since, the resonance inter -

action can be treated as the limit of a normal pole going to infinity that the

result would be a trivial extension of previous work. This turns out not to

be the case.  What was previously an orthogonal similarity transformation

relating  the two models turns   out  now  to  be   of  the   type.

Tr = S GS (3.1)

T    -1
with S ts so that the class properties are reduced. Because of these

complexities we proceed carefully, even repeating previous parts for com-

pleteness. We start out in the multiperipheral framework, working in the

6
context of the N-channel, one dimensional model. We have

en+2 (s) =. -- .... An(s) (3. 2)

which has as its Laplace transform

A (J) = DTF (J) (GF(J) )nD (3. 3)
n            

  ....

where F and G are the NxN propagator and coupling matrices respectively

and D is an N-dimensional vector.   We form the generating function
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2 F  n
Q(z, J) = z

5  z     An (J ,

= zZDT[ F-1 - zG] -1 D . (3.4)

We are considering that k of the N channels have normal Regge singularities,

here approximated by poles, and that N-k of them are 6 -function interactions.

Thus the diagonal "propagator matrix", F(J), has an inverse of the form

J- f i
-1

F  (J) = (3. 5)
·                                           0

J -f k
-fkt i

0

-t
N

We block out G into Regge and resonance parts

G    G\
G     11

12 
(3. 6)

21     22 

where G isa kxkmatrix n isakx(N-k) matrix, etc. Similarly Disput in11                                     '     12.

block form.

To transform from the multiperipheral to the Mueller Regge picture, we

us e   the ide ntity
00

[ F   - zG] -[F- -G] L  [. (z-.1) G (F-1 -G·)-1.].Il (3.7)
-1       -1       1     -1  F<

n=0

s o  that  the gene rating function  can be written
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Q(z, J)= , zZDT (FliG)-1[ (z-1)G(F- G)-il
nD (3.8)

-1
To complete the transformation we need to diagonize F -G.  Defining the

projection matrix that projects onto the Regge channels,

It' =<                                                 (3.9)
I 0 

1,0      0.   j
-1

we write F   (J) = JI  -L where ·L =6 ..f. for i, j= 1, . . . ,N.W e remark that
1J 1

f k+1 to f N are not independent parameters, but could be included in the

couplings. For definitness, we can always define these parameters to be -1.

The "output" or inclusive poles will be solution to the equation

Det [ 2-1(J) - G] = Det [ JIk-L-G]  = 0 (3.10)

and  hence  the re  will  be  k  of them.     Thus  in the Mueller picture there  will

also  be k Regge poles  and (N-k) 6 -function channels.    We can choose  to have

i

the poles first so that the diagonalized form of   F- (J) - G which we .

call  $-,1 will have the form

$-1 (J) = J Ilc  - A (3.11)

with A diagonal.  We want to make this diagonalization with a J independent

nnatrix, S such that

ST[JIk  -L  -G]    S=JIk  -  A (3.12)

For S to be J independent it must satisfy both
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s [L+G]S= A                          '                              (3.13 a)

T
S  I S = I 

' (3.13  b)

We construct  S by writing it and the matrix L+G E.f  in the block form

S1

S = 11     12                                (3.14)21     22  
S   i

/.4           .4.        4
L+G= 1 1            -'-12

 

(3.15)

<21 2 2    1

+T 12 *, T    . TSince L and G are symmetric we have t   = 4 and  I        =  '..11   11 ' 22= 22     12  21

Then eq. (3.13 b) yields

S TS =I (3.16 a)11  11

ST S =S    S   =S T S =O (3.16 b)
T

11  12    12   11   12  12

which implies S is zero and S is orthogonal. Incorporating this with12            11

(3.13 a) we find, since A is diagonal, the equations

S T.7   ·S     +S T  j.     c =0 (3.17 a)22 21 11 22 22 21

sT   -      S      + ·ST   f      S     = O (3.17 b)1 1    -- 1 2 2 2 21  22 22

T
S      -,       S . =A (3.17 c)22  '  22   22       22

ST f    S    +ST·-,    S    +S T j             T+S t S =A (3.17 d)li ' 11  11    11  '·12  21    21 '21 Sit   21"'22 21   11 '
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We satisfy the first two of these equations by requiring

ST   Je          +  S T   £ ·   '   =011  12   21  22

or

S T     =   -ST  7    11
-1

(3.18)21           tri/-22

Substituting this equation for S    into (3.17 d) yields2i

T -A

S l i   6:Ill i    -   21 2   2 2-l Z 2 1)  Sit= A l i (3.19)

whe re A is diagonal. Since S is orthogonal we may transpose to get €he
11 11

eigenvalue equation

(r         -  Z       Z     -1  Z       )(S        )     =  1     (S ) (3.20)
11 12-72    21   11 i i 11 i

th                th
showing that S is the matrix  whos e i column is the i eigenvector of the

11

above equation. Notice that the eigenvalue equation

- 1 .o T.Det[ A. I- (f    -z z , J   = 0. (3.21)
11    12 22 3512

is the same as the more normal form (3. 10),

Det(AIk-(L+G))=0 ,
even though the first is the determinant of a kxk matrix while the last is the

10determinant of an NxN matrix.

Having determined the eigenvalues and eigenfunctions (3.20), and hence

S     we use eq.  (3.18) to determine S   .  We only have S remaining11' 21 22

undetermined. Equation (3. 17 c)

S 22 :222 S22 = A22
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constrains S but contains a large amount of freedom.  We can however,22

choose S    to be orthogonal.   We will discuss another choice in appendix A22

as well as the question of finding the inverse transformation to  (3.12).   With

S   orthogonal, (3.17 c) gives the eigenvalue equation22

 22 (522)i = A i (S22)i (3.22)

whe re S is the matrix of the eigenfunctions.
22

With S determined,   we now proceed to construct the equivalent Muelle r

Regge theory. From equation (3.8) we  see that the.generating function can be

written as (note, however, appendix B)

00

2'-                         Q(z, J) = z         (z-1)11 pn (J)
(3.23)       n=0

whe re

Pn J) =AT * (J)(r*(J) )na . (3.24)

Because of the form of (3.12), r and a are given by

r   =   ST   G S                                                          ,  '                                                             (3.2 5)

TA=S D (3.26)

This gives us all the components of the MRM, and therefore the full model.

From the multipe ripheral point  of  view, this completes our discus sion

of the N channel model with k-poles.     We have demonstrated the equivalence

as well as constructing the generating function.  When one starts from the

Mueller picture, the model must be supplemented by positivity (and charge

conservation when included) requirements. We discuss the formulation of
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these constraints briefly now. This formulation requires the inverse of the

transformation that we used above to obtain MRM from MPM and is discussed

in appendix A.

We construct G from r using the: transformation S.-1  (q. v. Eqs. A9 -A 12).

The elements of G must be positive.   The most straight forward way to enforce

the se conditions is simply to calculateG using the known transformation  and  then

explicitly enforce   it.      It  is also possible to impose   some   of the conditions   with -

1

out calculating G, using only the class properties of S- . Preparing for the

inclusion of charge, we add now an extra subscript to G and r, writing G ,

and ri respectively. The transformation (A7) gives for Gl,

-1
T

i -1G i . (s .) r.s
11·T \.' i i  \    T

/  S i t    '         (S       )2 1       . r i t r12 j / Sit O\

.(3.27)l i         i l l  -1   T ar  I\ (s)s  i22 · , 21 22 ,7\
i  T            -1              i T -1 T ri ST '\s   r  s+srl   (s   )   +11 11 11 11 12   21   Sit.]712522 ·+ (S )21 22 22 ji

-l T  i T -1 T  i   -1
(S )21]721sli + (s, )21r'22(s )21

i       T                       .i           -1                           s        ri     S TSZZI,21511 + S22 r22(S )21 22. 22 22
,/

From this matrix we obtain the submatrices G and G  :
11 22

G     .=S        {ri }ST (3.28 a)22 22 22 22
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Git =sit dri. -.ri :(A-r)-1 (A-r)T - (A.r) (A-r)-1.ri (3.28 b)11    12      22      12        12      22  21

-1  i        -1      T.T
+ (A-r) (A-r) r (A-r) (A-r)  , S12 22 22      22 12' 11

Since S and S are orthogonal transformations, the positivity of the elements11     22

Of G and G   imply the following conditions on the bracketed terms:11     22

Tr  ( {  }n) 3 0 (3.29)

for n=l t o N  .

There are also the non-class constraints (i. e. those not related. by similarity

transformation) that the elements of

G;, = SZZ  r;, - r;-2 (A-r);  (A-r)i,1.SI,
(3.30 a)

/i              -1  T\T=S i r    +r l   (A-r)    r    i s22 \ 21 22 22  12/ .11

and

i        /i              -1  i\  TG =S ir    + r (A-r)   r i s (3.30 b)12    11 4 12    12 22 22/ 22

are positive.  The last conditions irriply

G;, Giz = szz{[ rl,·+ r;z (A-r)   riz 1 t rikz + riz CA-r),; r;zl}SI,  (3. 31 a)
and

i   i                        -1                       -1  T
G12 Gzi = sit{[ r 2 + r12 (A-r)22 r il [ r i + r -2 (A-r)22 riz ]}Sii  (3·31 b)

have positive elements, leading again to class constraints (3.29) on the
bracketed quantities in (3.3 ia) and (3.3 lb).

IV. 3 CHANNEL MODEL WITH CHARGE

In this section we explicitly calculate a charge conserving 3 channel
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model starting from the Mueller picture.  We have one isospin zero Regge

pole and two 6 -functions, one with a mixture of isospin zero and two,and one

with isospin one. The isospin of the 6 -function is the isospin of the Regge ex-

change that the 6 -function replaces. The propagator'matrix is

/ J-X   0    0
1 :3

*(1)-i=     0         -1 2 0 = JI  - A (4.1)
1

0         0       -13
where Il isthe matrix with only 1 in the (l i) element, and X2 isth6 I= 0
6 -function. The coupling matrices to the various charge states are

  go  al  a2                ,-/ Ego .c   0 \

r+ =1   at    di    d2  ) ;  r.- = (r+)T; ro =  c

f    0      .   (4. 2)
 _a2  -d2   d3 /                    <0     0   h /

The forms of the coupling matrices are determined by the quantum numbers

of the exchange.   The fact we only allow G parity positive to be exchanged,

assumes the dominance of pi6ns.   The full matrix, following Ref.  3, is

/  go(2+E )     2 ai+ c     0         \
4- -

r = r ' + r + ro=  2 al+c

2 d   +f       0               1                      (4.3)

0        0     2 d3+h /      '
where we will denote the elements of P by y..in what follows.    To find the

1J

MPM parameters, we must find an S satisfying

-it        -1
L = (S  ··)   (A-r) S      ,                          (4.4)
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where Listhe diagonal matrix  f.6.. . Weusethis equation toconstruct
r     -llj

-1
S    by the same method discussed in the previous section.  Then

0

< Al-Yll -Y 12

£1 i            <12                  1A-r- = , (4.5)

<21  22
1   -, 12 12-Y 22 0

i .0           0      13-Y33 ,
(- -

and
  sti 12 '

-1 : . .i .1
f

S .Ets- -S i
(4.6)

< 21  22 
-1

In addition to (4.4), S must also satisfy

-1 T      -i
(S  )   I   S   = I  (4.7)

which implies

-                     -T          -1
S   = 0 and S =S (4.8)12        it   11

Since S i s a i x i matrix,  we find immediately that
11

5 =1 (4.9)
t 1

Bythe procedure discussed insection III (see alsoeq. A10) we find

S21 -22 21 11= .9-1 Z  S

1    0

 -912
' (4.10)

i X2-Y 22

. \V 7 0  ,
1   3  - Y 3 3  11.     1                      ....

1

therefore

- /n1

S21 =  0  

(4.11)
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where

n   =   1      - v               '                                                          (4.12)
2  '22

The equation. that determines S      (A9)  is
22

1 X - V 0    \2  '22               22
-T                -
S                             S                             (4.13)

22   <

0                   X      -  v        1                     --1- k02      '03    1      1  ,3 '33

Since S    .i s an .orthogonal transformation and 1 2=  £3 b y charge symmetry,
22

then

X 2 - Y22 = X 3 - 933 = £ 2 = £ 3 = 1 - y = f (4. 14)

Therefore S has the following form in terms of the transformation angle'  22

.0:

-22 -   cos

8
- sin 8  

-     1

S                                                                                                                         (4.15)

sin e cos 0.  1

In summary, the full transformation is

/1  0   0 
i  /

S     =   -  n     cos.e.    -sin 8   (4. 16)

1  0     sin B COS 8

and the position of the "input" Regge'cut is (Eq. All)

7    =   1      +  y'     -  9                    -                                   '(4.  1 7)
1    1 11 12 17

-1
Now let us use S to calculate the coupling in the MPM from our coup-

lings in the MRM.  The form that the coupling must ha*e in the MPM will enfdrce
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charge conservation and positivity:

O  O B 
-1  T        0         a i          a2           -1

G+ = 1 =.(S  ) 1 S    (4.18)

A  O  Oj    ,  <at-  did2

0  0 0/ 1-a -d    d
\2 2 3

2

 %0 + 2ai 71.+ di
71 C(al + 7 di) +..S(a2 + ild2)   C(a2 + 7 d2)-S(al + rldi) 1

G d. + S2d d  C Sdif Csd3     
=  C(al+dir))-S(a2 + d271)

13

 \-S(at + di 71) - C(82 + d24)    -d2 - CSdi + CSd3 C d +S d22
3 1/

where C = cos8 and S = sinG. The solution to (4.18) is  

di=d2=d3= 0
(4.19 a). 1

go +2ain =0 . (4.19 b)

22
cos 8 - sin 8 (4.19  c)

at cose  -a2 sine (4.19 d)

A = at cose - a2 sine >0 (4.19 e)

B  =   a: ,   cos 8    -  a     s i n e >0 (4.19 f)
-.

Let us consider this solution  in more detail. First,   (4.19 c) implie s

cose = f sine

and hence using  (4.19  d),

a  = ta, (4.20)
1

Since A +B= (at t a2) (cose  - sine ) is strictly positive, cose  and sine must
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have opposite signs; at and a2 must have the same signs; cosB and at must

have the same signs. Therefore we have two possibilities:

cose = + 1/·V-F cose  =·-1 /,FI

sine = -1/ 2-   or  sine = 1/ 2
a=a>0 a=a<0 (4.21)12   12

Experimentally  at   and  a2  are the terms   that  gove rn the approach to scaling

and therefore should experimentally be negative to have inclusive distributions

11                             -1
scale from below. This completely determines S  :

 1     0      0

1/
S   =  1 7     -1/'/2- -1/ '/2, (4.22)

l O       +1 /6 -1/Vi-

A  =B  = -a i Vi- . (4.23)

Now let us consider the neutral couplings

<E      0 0  < 1     71      0

GO=  O Do =     l      O              -11   11    1 f'fi (4.24)

<O 0 D  \O - 1 / fi-- 1/'/7

c go C
O 1 0 0

X                 c               f               0                                11            -1 / 9I     - i / Vi-

0 Oh O           +1/4 2        -1/j'2-        .

Solving this as we did above we find
f=h

D= f (4.25)

C =  - 7 f
2

E= E gl - 7 f
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We now assemble our results. Roughly, the constraints arise as follows:

1) Constraints on the Mueller parameters due to charge conservation

at·= a2; di =d   ='dl.6 0; f=h;
2a f 4a 2.1             1

4 'c

=  t- x)         ;      go=     ( -x)
; (4.26)

12= 13= 1

2) Relations between Mueller parameters and Multiperipheral parameters,

and constraints of positivity

A=B= -alNT> 0 (4. 27)

1=1=f= 1-i23'

'f:ia A 1- go (1 +6 - f/(-A ) )

f =D>0

E = gl A  - f/(-1) )> 0  .

The end couplings are determined sifnilarly by meahs of

-1 T, +   +
(S  )  A =D (4.28)

Therefore

< 0   _111T flifi   1 6       6       6

71   0     <<611  612  6.13     0   0  di
 

21 22     23       d2   0
0 (4.29)

   O             -1/ '/2-- -1/ fi /          6                       6                       6                                   0                0             0\ 31 . 32     33

(where di and d2 should not be confused with the parameters appearing in (4.2)

which we found to be zero). The solution is

622=623=632=633 612=0



27

6  i 3  =  d i>  0,  6  1 1   =   -6 2 1 1 1  =   nd2/ Ni-        .

'631 = d /12 > 0,621 = -631 = -dZ< 2 , (4.30)

and therefore,

-

: ..     /+dz 71/I\/2 .  0     dl
+ i

a     =   1-d /NT 0 0 (4.31)i 2
-<d2/-'*

2. 0. 0

We solve for A- a-nd Zi' i# the sa me manner, and obtain for A (xyz) E xa  +

ya-  +  z 60:

 < < zdi i  +  71; d2.(x+y)    ,/2 ydi + z ri d 42  x d i   +  z nd22               22

a vr   -d2 (X+Y)                        -zd22                              22

-zd

d2
(x-y)

zd22 -zd22
/       (4.32)t

The generating function is (see Ref. 3)

- T                         -                  1' Q  (xyz Z J)  =Ej                        ·                                                                                                     a            (4.  3 3)

r *-1(J) - [ r+(x-1) + r-(y-i) + r'(z-i)]

-T  T
where LJ   = LJ  (x.-y). Each element of the matrix Q i s the generating function

for a particular initial state labeled by its charge.   The rows and columns of

the matrix correspond to charge 0+ - respectively; to find the generating function

for initial charges a, b one ·takes the a b element. This is.a result of the con-

ventions  that  ,    in the .m.ultiperiphe·ral graph for  e n(Y) particle  b is flowing

out rather than in.

At this point we believe it instructive to illustrate some of the above results
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and conventions by means  of an explicit example. We treat the  case  of an initial

state of two positive particles, for which the cross sections and inclusive rates

will be the "23" matrix element of the appropriate terms in (4.33).  The

generating function is also given by the "23" element, and after some algebra,

is  found to  be (the following calculation  can be done easily in the MPM formalism)

d z \2
22    \\2 471    .. 

Q     (x, y,.z   |J)=    x2   <d.
+ (4.34)

1   1-(z-1) (f/(-k) ) 
(xy-1) + (f/-k)2 (z-1)2

J-A 1 -go { € (z-1) + 1-(z-1) (f/- X)

We can also calculate the inclusive cross sections directly, by setting x=y=z=1

in a, and by using (3.24). For example, the ++ cross section (in the j-plane)

is

po  = ( T* a) (4.35)(++) \ ' 23

1

=-; ( di + rl d      - d      d   )  i -1 '1/2-di    +     71    d          22' 22' 22 J-1   1                   22
-1

1
-a:·                                                                                                                               22

-X -A
-22

.f---d22

(11.-V+ =·0,
J-Xl

Asacross   che ck Q  (ill    J)  =  P'           and of course(4.35)and (4.34) agree.(++)
The generating function for the (++) cross· sections is obtained from (4.34)

by performing the inverse Laplace transform. Normalizing the generating

function to unity when x=y=z=1, we find
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'Ix,y.,1  Y)   =   .,          ,     -)1 4--    V---22,              1

2

(4.36)1  :1-(z-1) (f/(-X) )4
-

-/                                                                                                                    2(xy -1)  + (f/(-1 ) )2(z-i)       

11«, */f'02- ip, 12-   2    exp   -gOY' c  (,-1) +   1- tz-,) (f/ 1 )
(f/(-X)}.          .     / -

As with the simple models of Sec. II we again see a number of interesting

properties. The function

i                                          (4.37)
1-(z-1)(f/(-1 ))

indicates the presehce of the resonances, which decay into any number of

neutrals  with the production probability for n being  (f / -X )n. As mentioned

earlier,  X is not an independent parameter but rather always occurs in con-

junction with the 6 -function couplings f and d22 Because of the simple de-

pendence of the generating function on x and y we see that our resonances can

11

decay into any number of neutrals but only one +-pair. This represents a

possible short coming of the model from a phenomenological point of view.  We

remark that this model, taken as a crude.approximation to more realistic

MPM's,  is in rather good agreement with the integrated values of the correla-
i

(12)
tion parameters at present energies    ,. For example, note that if we only

look at the negatives (i. e.  x=z=i),  then

gOY (y-1)
I (t, y, 1  Y)= e                                           (4.38)

which is of course a Poisson distribution for 1 . Also the fact that the
n-

2
generating function has no Y term indicates that

f-=0 (4.39)
2
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a result that is difficult to obtain from a multiperipheral model of the normal

type. These results certainly agree with the trend of present data. Similarly

the average number of negatives is

<n-> = g()Y . (4.40)

To  obtain  an e stimate  of go, recall  that the position  of the input  cut  is

1  1   =  2  a.      -1   =   A l   -go   (1   +c   -f/ ( -1) ) . (4.41)1n

It  is  generally  expected that  a.    5   1/2  and  11   -- 1. Therefore
ln

1

 0- i + - f/(-A) ; (4.42)

1ifrom other phenomenological considerations  €-- 1 and f/(-X) 7 1/2

implying gl 2 2/3 which is quite reasonable, considering the crudeness of          I

the model. One should note that since resonances cannot be produced

among m charged particles for m> 2; the specific model considered in this

section in principle suffers from some of the same criticism as the original

CPM.  Namely, if the data were to fav6r a large value of g  2 4/ 3, then

a .  would have to be negative. Nevertheless, present data favor d <n>.41Yln

- 2-3, so that g  - 2/3-1 an'd the model is in no trouble.
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APPENDIX A. Inverse Transformation

We want tb consider the question of the transformations preserving unity

of the lower diagonal elements of F(J) in the transformation to 0 (J).  This

will be related to the questions of inverses so we take this topic up first.

Temporarily we assume that neither the lower diagonal elements of F or 0

are  unity: but  only  that the transformation which relates  them is orthogonal.

That is, using the results of Sec. III,

T
S22  (L+G)  S =A (At)

22 22 22

T     -1
S =S (A2)
22    22

-1      T
S     = -(L+G) (L+G) S (A3)
21         22      12  11

Sil[ (L+G)it.- (L+G)12 (L+G)2  (L+G)i2] St i =Al i (A4)

T     -1
S S (A5)
11 =  it

S =0 (A6)
i 2

These  are the equations dete rmining S  if one starts with the  MPM.     Then  of

course

T
r =S GS      -                    (A7)

and A determined in the previous equations determines a MRM. Starting from

1

the MRM one can also determine the transformation to the MPM, namely S

-1
Since the equation for S analogous to (3. 13 a) is

L = (S- 1)'r (A-r) S- 1 ,                    (AB)
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the equations one would get starting from the MRM are

-1   T          -1
(S ) (A-r) (S ) =L (A9)

22       22     22    22

-1     -1  T -1
(S         )           =    - (A-r) (A-r) (S ) (Alo)

21         22        12      11

-1 T                         -1      T     -1
(S  )  [.(A-r)   - (A-r) (A-r) (A-r)  ] (S  ) =L (All)

11       it        12   .  22      12 11 11

In considering whether these are consis.tent with (Al-A6) we note that since

S has the fornn                   /S       0

  11
S=CS S I

4 21 22/

then
-1

(Sit   .  O

s-i =   (At 2)
1 -1       -1

<(S  )21  S22

-1       -1     -1
whe re (S ) = -S     S    S      .  Equations (At ) and (A9)are obviously consistent.

21   '22 21 11

After writing out the submatrices of eq. (AT), making frequent use of eq. (A3)

one can show that eqs. (A9) - (A12) are consistent with eqs. (Al) - (A6).

Having shown for transformations with S orthogonal that the inverse
22

transformation (MRM - MPM) is the inverse of the transformation (MPM-

MRM), we proceed to examine the transformations  whe re  we  give  up  the

orthogonality of S in order to preserve a simple form for the propagator
22

matrices. Suppose F has for its "22" component the identity matrix.  We

denote by :  he orthogonal transformation from F t o t,  with F    =I and with22

0    determined from the eigenvalues, i. e.22

- 1                                       /        kt i                  

/X

022 =A22 =
 

(A 13)

0

.1   

n .
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We denote by   the transformation which makes $ the identity. Consider
22

the matrix, assumingk.<0 for j= k t i, . . . ,n,
3

1

(A14)
22 "k+1  0.  

0.   
N=11

).

1                                                                                                           1
. .                                           -                                                                                                                                       --2Then obviously.,6   =S A .  If not all Xi' s ar-e negative then A2  has to22   ·22  22              ·                          22

be modified accordingly, and one obtains for A a diagonal matrix with elements
22

+  1   or   -1.       Call this latter type matrix   I .
One might also wish to start the Mueller Regge theory with A = I and

22   f

use an orthogonal transformation to  get  to the multipe.riphe ral model which,

of course, would not have L    = -I but rather L    = 1   6    .   For i>k, f i is22       22 i ij
determined from the eigenvalue equation,

(A    -r   ) (T   )  =f  (T   )22    22   22 i i  22 i

where T is anorthogonal matrix. By constructing22

L / V-1 k+1        0      ii (A 15)
22

f 0
.

fr In/

we then obtain a transformation converting $ into F with F = I.  Note that
22

the f. must be negative  if they  are  to be interpreted  as  the  re sult  of low lying
1

trajectories, due to the positivity of the coupling matrix. Writing

1 I 0 "
5       k

LZ E             !                         (Al 6)
1

0    LT  '22 1
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we have

-U         TG=T r T

G   =    L-2 GL-2   =  i' r J (A17)

where
1

j =  T L  I . (A 18)

The inverse transformations, assuming now both A    =I  and L =-I, are22 f 22

-          Tr = S GS (A19)

--1-    -2     0 T
1                                                                                   '

r =Ar A =A G 2          2

where analogously we have defined

2 =  /Ik   0 \ (A20)

2   lt,   A-, 1
1  1

22,

1

-2

1 -  S Az (A21)

The connection between   and  3  is

3  =  /i  -
1

(A22)

or equivalently
1 -1 +

,.

T = AI S L' (A23)22

Schematically we have the picture in Fig.  2.
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APPENDIX B. End Couplings in the MRM

In Ref. 3.the general equivalence between the Mueller Regge (one dimensional)

model and the multiperipheral (one:dimensional)·model is displayed. , However,

the "leading particles",were hever treated in a truly inclusive manner.· ' In their

eqs. (5) and (6)  „  ..   0
00

n+2
Q(z, J)  =

.
z  Q (J)

'
(Bl)

n-60
n

.,                             .  ...

00

,  =..z2 :  .  (z-1.)Il pn(J)   : (B2)
n=0

where Q (J) is the Laplace transform of s times the exclusive cross section

for producing n particles (n+2 particles in the final state), one sees that

P  (J) are the (transforms of the) integrals of the n-particle inclusive cross
n

sections onlyover the pionization particles and not over the leading particles.

The  same as sumption is made in the present paper in Section II.

One way to state this problem is to note that in the final prescription given

in Ref.   3 for calculating  the c ontribution  of Prl (J)  to  Q  (z, J),  the end couplings

A  are  multiplied  by   z . Actually for  only  one  kind of particle  this  is  not  s o  bad,

but for charged particles it is worse since a (x, y, z) = xa  + ya- + zao. There

should be therefore, a prescription in the Mueller Regge theory for calculating

the totally inclusive distributions, summed  over all final particles, leading  or

not. We shall give such a prescription here. First we write A (x, y, z) as

a(x, y, z) =a t (x-1) A+ + (y-i) a- + (z-t)ao (B3)

+0
whered=A +A- +A . In Mueller Regge diagrams, a is the conventional
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end coupling, Fig.  3a,  and a ,  A- or a' is the "dragonfly vertex, " Fig.  3b,

where' a "leading!' particle of charge  +,   -,   or ois emitted respectively.     Then

to  calculate the average multiplicity  of type  i,   we  sum the  set of diagrams  in

Fig. 4; correspondingly the integrated two particle inclusive cross section

(<n(n-i)>i) is given in Fig. 5. Analogous tothese drawihgs are the equations

in a true Mueller Regge theory (entirely inclusive instead of mixed exclusive -

inclusive) which lead to

n                     n                     n

Q(x, y, z J) =   I·1 n n   Pn n n<J)     (x-i)  + (y-1)  - (z-1)  0         (B4)
+

where P (J) includes all diagrams, with the proper number of positive,n n n
+ -0

negative or neutral particles, leading or otherwise.

-
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Figure Captions

1.        One  of the graphs left outof FPPT. This contribution to C3 vanishes

in  the 6 -function rnode 1.

2. Schematic connection between MRM and MPM in the N channel model

containing 6 -function interactions. "Orthogonal" refers to the '22'

components of matrices.

3.     MRM end couplings: a) represents the conventional end coupling a in

i

Appendix B; b) gives the end coupling A .

4. Diagrams contributing to the average multiplicity as discussed in

Appe ndix  B.

5. Diagrams contributing to the second moment <n(n-1)> as discussed in

Appendix B.
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