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FIGURE 1. OUARTER-SCALE MODEL OF THE PEGCPR SETUP FOR AIR-FLOW STUDIES 
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was used to m e a s u r e p r e s s u r e s throughout the mode l . The inlet piping was designed to 
provide a flat veloci ty profile at the en t rance to the mode l . P rov i s i ons were made for 
equalizing flow in the in le ts and out le t s . Fo r opera t ion with one loop , the inactive inlet 
and outlet we re blocked with p la tes ins ta l led between piping f langes. 

F igure Z is a verticti l c r o s s sect ion of the model showing the genera l a r r a n g e m e n t 
of the p r e s s u r e v e s s e l , the in le ts and ou t l e t s , the t h e r m a l sh ie ld , the upper and lower 
p l e n u m s , the c o r e , and the in te rna l ins t rumenta t ion . 

F igure 3 is a hor izonta l c r o s s sect ion of the model showing the a r r ange inen t of the 
t h e r m a l shield, the co re fuel a s s e m b l i e s , and the shield-pits sage ins t rumenta t ion . 

A i r , s imulat ing r eac to r coolant , en te red through one or both in le ts at the bottom 
of the model and through 61 nozz les in the top dome. The a i r which en te red through the 
Z9 con t ro l - rod nozz les and the il. f lux-scanning nozz les pas sed downward through the 
annular space between the t h e r m a l shield and the p r e s s u r e vesse l to the inlet plenum 
where it joined the flow from the inlet nozz l e s . About 3 p e r cent of the total model flow 
p a s s e d through tlie t he rma l - sh i e ld -coo lan t p a s s a g e . F r o m the inlet plenimi the coolant 
p a s s e d through 30 holes in the c o r e - s u p p o r t cyl inder into the lower plenum below the 
core and then upward through 248 uniformly orif iced s imulated fuel channels . Flow 
from the co re d i scharged into the upper plentiiTi and pas sed out of the model through one 
or both outlet nozz l e s . 

The model c o r e , as shown in F igure Z, cons is ted of two p a r t s separa ted at the 
tube sheets ju s t above the bottom flange of the mode l . The upper a s sembly contained 248 
s t ra ight a luminum tubes 3 /4 - in. in ID and 61 in. in length each simulat ing a fuel chan­
ne l . Each tube was grooved at the ends for O- r ings whicli sealed it into two tube shee t s . 
The tube sheets were a t tached a t the i r c i r cumfe rence to the plcistic co re cyl inder . The 
lower a s s e m b l y consisted of a single tube sheet into which 248 extension t ubes , each 
a.bout 16 in. long, were sc rewed and cemented with epoxy r e s in . The ends of ea.ch group 
of 16 tubes were disposed over a pa r t i a l spher ica l surface with i t s center in the fuel-
loading por t d i rec t ly below the cen te r line of the group. I h e p r e s s u r e l o s s of the core 
was es tabl ished by the d i a m e t e r s of Z48 ident ical sharp-edged o r i f i ce s , one in each tube. 
These or i f ices a r e also useA for flow m e a s u r e m e n t to detei-mine flow dis t r ibut ion within 
the c o r e . 

Each orif ice was a c i r c u l a r disk bored with a sharp-edged hole 0. 458 in. in d i am­
e te r and fitted with an O-r ing in a groove in the downs t ream s ide . These orif ice p ia te t 
w e r e at tached to the bottom tube sheet of the upper p a r t of the co re by two s c r e w s . 
t ightened for m e t a l - t o m e t a l contact . The u p s t r e a m side of the orif ice plate was sealed 
by enci rc l ing it with an O-r ing slightly th icker than the p la te . When the extension- tube 
plate was ins ta l l ed , these O- r ings were c o m p r e s s e d between the two tube p la tes so that 
the orifice was complete ly sealed aga ins t l eakage . With this a r r a n g e m e n t it was r e l a ­
t ively easy to repltice or i f ices to change flow r e s i s t a n c e s in va r ious p a r t s of the c o r e . 
However , such changes were not made dur ing this investigiition. Upstrea.m p r e s s u r e 
t aps were located in the extension tubes jus t u p s t r e a m from the or i f ice . Downst ream 
p r e s s u r e taps were located at the downstrecim ends of the core t ubes , so that the p r e s ­
s u r e s m e a s u r e d for each orif ice w e r e , e s sen t i a l l y , the upper -p lenum and lower -p lenum 
p r e s s u r e s at the tube location under flow condit ions. The ins t rumen t tubing from the 
orif ice p r e s s u r e taps -//as cr irr ied out of the model through b u r s t - s l u g de tec tor nozz les 
above the c o r e , which avoided in te r fe rence with flow in the t h e r m a l - s h i e l d coolant 
channel . 
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Hydrodynamic Design 

In making model s tudies of flow, it i s de s i r ab l e to have dynamic s imi l a r i ty of 
model and prototype to i n su re that data from the mode l will accura te ly p red ic t prototype 
p e r f o r m a n c e . By definition, dynamic s imi l a r i t y is achieved when the Reynolds number 
for flow in the prototype is equal to the Reynolds number for flow in a geomet r ica l ly 
s imi l a r m.odel. 

Fo r the P E G C P R prototype using hel ium as the coolant , the Reynolds number in 
the inlet n o z z l e s , which is r ep re sen t a t i ve of Reynolds n u m b e r s in the upper - and lower -
plenum r e g i o n s , is about 1,920,000, F o r the q u a r t e r - s c a l e flow model the in le t -nozzle 
Reynolds niunber was about 710,000 which is approximate ly 40 p e r cent of the prototype 
value . At th is value of Reynolds n u m b e r , which i s well into the turbulent r ange , dy­
namic s imi l a r i t y is a s s u r e d . However , in the t h e r m a l - s h i e l d - c o o l a n t p a s s a g e , prototype 
hel ium veloci t ies a re low, and Reynolds n u m b e r s in the range of 5000 to 7000 occur . 
Since these a r e c lose to the t r ans i t ion r a n g e , where flow effects m a y va ry cons iderably 
with Reynolds n u m b e r , it appeared des i r ab le to study flow in this region both with the 
p r o p e r propor t ion of flow through the reg ion , giving Reynolds n u m b e r s in the range of 
2000 to Z800, and with g r e a t e r flow to r a i s e Reynolds number s to ma tch those in the 
pro to type . 

The in te rna l design of the model co re was not geomet r i ca l ly s imi la r to that of tlie 
p ro to type , but was s imulated with round tubes containing or i f ices designed to provide 
core-f low dis t r ibut ion and p r e s s u r e drop equal to those which would be obtained with 
dynamic s imi l a r i t y . T h u s , although dynamic s imi l a r i t y was not achieved within the core 
s t r^icture , the effects on other components of the model were the same as those which 
would occur with dynamic s imi l a r i t y . 

Model Setup and Opera t ion 

The mode l was set up so that flow conditions could be c losely control led. Detai ls 
of piping and ex te rna l ins t r tunenta t ion m a y be seen in F igure 1, 

The inlet piping was designed to s imula te the prototype piping. A f low-measur ing 
nozzle in each inlet and an orif ice in each outlet pipe m e a s u r e d inlet and outlet flow 
r a t e s . A damper in each inlet and outlet pipe control led flow. Flow through inle ts and 
outlets was equalized for m o s t t e s t s . The approach piping, c a r ry ing a i r at p r e s s u r e s to 
4 ps i and t e m p e r a t u r e s to 180 F , was cons t ruc ted with turning vanes in the elbows to 
min imize flow d i s tu rbances approaching the inlet nozz l e s . 

P r e s s u r e t aps for the 248 f low-measur ing or i f ices in the co re and for 116 stat ic 
p r e s s u r e s throughout the model w e r e connected to a specia l ly cons t ruc ted manome te r 
board having 680 tubes each suitable for m e a s u r e m e n t of p r e s s u r e s of up to 160 in, of 
w a t e r . The m a n o m e t e r board cons is ted of six wel l - type m a n o m e t e r s , each having one 
leveling tank and a number of m a n o m e t e r tubes . The tubes were connected to h e a d e r s 
at the bottom of the board and the p r e s s u r e s to be m e a s u r e d were applied at the i r tops . 
The m a n o m e t e r tubes were made of t r ans lucen t polyethylene p l a s t i c . In u s e , p r e s s u r e 
d e p r e s s e d the leve l of the wa te r in individual m a n o m e t e r t ubes , and the taiik levels 
were adjusted to suitable heights for easy read ing . Each tank level showed on one 
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m a n o m e t e r tube , and the m e a s u r e d p r e s s u r e s w e r e the differences in height between 
this level and the reading of each tube in the m a n o m e t e r . Orif ice differentials and 
reading accu racy w e r e such that flow m e a s u r e m e n t s w e r e reproduced to ±0, 2 p e r cent 
in success ive t e s t s . 

In le t -plenum p r e s s u r e s w e r e obtained with two r ings of 12 s t a t i c - p r e s s u r e t a p s , 
as shown in F igure 2, Lower -p lenum p r e s s u r e s were m e a s u r e d with 24 s t a t i c - p r e s su re 
taps a r r anged in r ings of 12, 8, and 4 t a p s . Upper -p lenum p r e s s u r e s w e r e obtained 
with one r ing of 12 s t a t i c - p r e s su re t a p s . 

Flow d i rec t ions and veloci t ies in the t he rma l - sh i e ld - coo l an t passage were m e a s ­
u red with cyl indr ica l th ree -ho le yaw probes using inclined m a n o m e t e r s sensi t ive to 
0. 002 in, of wa te r . In stagnation a r e a s a ho t -wi re anemomete r sensi t ive to a velocity 
of about 0. 2 fps was used . 

Mixing s tudies were conducted by injecting m e a s u r e d concentra t ions of SO2 into 
one inlet and de termining tlie concentra t ion of SO2 in the a i r pass ing through each of the 
248 s imulated fuel a s s e m b l i e s in the c o r e . 

Flow p a t t e r n s in the upper plenum w e r e de te rmined by injecting TiCl^ smoke into 
the plenum and visual ly observ ing the flow p a t t e r n s . Flow veloci t ies and d i rec t ions nea r 
the wall we re m e a s u r e d using a t h r ee -ho l e cy l indr ica l yaw p robe . 

SEQUENCE OF MODEL ALTERATIONS AND TESTS 

Operat ion of the q u a r t e r - s c a l e flow model was begun on June 30, 1959, with a 
ca l ib ra t ion of the individual f low-measur ing or i f ices in the simxxlated fuel a s s e m b l i e s . 
In cal ibrat ion, a i r m e t e r e d by a m a s t e r or if ice was piped into each s imulated a s s e m b l y 
in the mode l . The flow ra t e was var ied from a s s e m b l y to a s s e m b l y to pi'ovJde the same 
s ta t ic p r e s s u r e at the en t rance to each a s s e m b l y . The reading of the m e a s u r i n g orif ice 
in each a s s e m b l y was obtained from the m a n o m e t e r pane l . This ca l ibra t ion provided 
the orif ice p r e s s u r e different ials which would be obtained with a uniform p r e s s u r e field 
at the en t rance and exit of the s imulated fuel a s s e m b l i e s . Any deviat ions obtained du r ­
ing iTiodel opera t ion ref lect nonuniform p r e s s u r e f ie lds . 

Following ca l ib ra t ion . T e s t s 5 , 6 , 7, and 8 w e r e run to obtain core-f low d i s t r i bu ­
t ion, mix ing , and smoke-s tudy data with a s h e e t - m e t a l c o r e - s u p p o r t cyl inder p o s i ­
tioned so that one of the sixteen 3-in. - d i a m e t e r holes in the bottom r ing was rota ted 
0. 7 deg clockwise from the cen te r l ine of one inlet . The c o r e - s u p p o r t cyl inder i s shown 
in F igure 2. 

The c o r e - s u p p o r t cyl inder was then ro ta ted so that one of the 16 holes in the upper 
r ing was in line with the inlet . T e s t s 9 , 10, 11 , and 12 were run to obtain core-f low 
d is t r ibu t ion , mix ing , and smoke-s tudy data . 

On T e s t 13 the c o r e - s u p p o r t cyl inder was posi t ioned so that one hole in the bottom 
ring was aligned with the inlet center l ine . The top r ing of holes was blocked. C o r e -
f low-dis t r ibut ion and p r e s s u r e - d r o p data w e r e obtained. 
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In Tes t 14, the posi t ion of the c o r e - s u p p o r t cyl inder remained the same as for 
Tes t 13 and the upper r ing of holes was unblocked. Core- f low-dis t r ibu t ion and p r e s s u r e -
drop data w e r e taken. 

T e s t s 16, 17, and 18 were run with the c o r e - s u p p o r t cyl inder posit ioned so that the 
cen te r l ine of the inlet was midway between the cen te r l ines of the holes in the upper and 
lower r i n g s . Mixing data and core - f low-d is t r ibu t ion data were obtained. 

Tes t 19 was a duplicate of Tes t 17 run to check reproducib i l i ty of flow m e a s u r e ­
m e n t s . Data for 95 p e r cent of the s imulated fuel channels were reproduced within 
±0. Z pe r cent^ with remain ing data within 0. 3 p e r cent . 

In Tes t s 20, 2 1 , and 22 core - f low-d is t r ibu t ion data and lower-plenixm mixing data 
w e r e obtained with the c o r e - s u p p o r t cyl inder ro ta ted 2 .8 deg c lockwise , viewed from 
above , and with the two holes in the upper r i ng , one n e a r e s t each of the two i n l e t s , 
blocked. 

Following T e s t 22 an evaluation of data for a l l c o r e - s u p p o r t - c y l i n d e r configura­
t ions showed that al l configurations provided good flow condi t ions , although some were 
be t te r than o t h e r s . The configurations in which the two holes in the upper r ing n e a r e s t 
the inlets were blocked resu l t ed in cons iderab le reduct ion in impingement of high-
veloci ty j e t s on the bottom of the c o r e . As a bes t comLpromise between core-f low d i s t r i ­
bution, mixing p r e s s u r e drop, and impingement of flow on the bottom of the c o r e , the 
configuration studied in T e s t s 16, 17, and 18 was se lected. A p l a s t i c c o r e - s u p p o r t cy l ­
inder with the 1-in, prototype thicla iess and with th is opt imum hole pa t t e rn was then 
made and used for a l l subsequent s tud ies . This cyl inder was 4 6 - 3 / 4 in. in OD, 19-7/16 
in. h igh, and 1/4 in. thick. A r ing of 16 equally spaced holes of 3-in. d i ame te r was 
located with c e n t e r s 7 -3 /4 in. above the bottom of the cy l inder , and a second r ing of 
holes was located with c e n t e r s 15-1 /2 in. above the bot tom. The holes in the upper r ing 
were s taggered so that they were located halfway between those in the lower r i n g , and 
two of t h e m , one n e a r l y in l ine with each in le t , w e r e omit ted to avoid je t impingement 
on the bottom of the c o r e . The cyl inder was or ien ted so that a hole in the bottom r ing 
was displaced 1/128 of the c i r cu ju fe rence , or 2. 81 deg , from the cen te r line of the in le t , 
in a clockwise d i rec t ion as viewed from above , a s the i r or ienta t ion improved pe r fo r r a -
an9e over that for T e s t s 16, 17, and 18. 

Following ins ta l la t ion of the p las t i c c o r e - s u p p o r t cyl inder in the m o d e l . Tes t s 23 
and 24 were run to obtain core - f low-d is t r ibu t ion data for ope ra t ion with one and two loops. 

Tes t 25 was run to d e t e r m i n e the amount of mixing occur r ing in the lower p lenum. 

In Tes t 26 the t h e r m a l - s h i e l d - c o o l a n t flow r a t e was var ied from. 0 to 5 p e r cent of 
m.odel flow to de t e rmine the effect of shie ld-coolant flow on core-f low dis t r ibut ion. No 
m e a s u r a b l e effect was found. 

In Tes t 27 a study was made of t r ans i t ion from two-loop to one-loop operat ion to 
check the effect on core- f low dis t r ibut ion and flow stabi l i ty . 

Tes t s 28 and 29 were run at reduced flow r a t e s to m e a s u r e the changes in c o r e -
flow dis t r ibut ion and p r e s s u r e l o s s e s resu l t ing f rom reduced model Reynolds n u m b e r s . 
No effects were foujid. 
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Upper-p lenum flow studies using TiCl4 smoke to obtain flow pa t t e rns and u.'aing a 
yaw probe to m e a s u r e ve loci t ies nea r the surface of the dome were run with both one and 
two loops operat ing in Tes t s 30, 3 1 , 32, and 33. 

Flow veloci t ies a.nd d i rec t ions in the t h e r m a l - s h i e l d - c o o l a n t pas sage were meeis-
ured in Tes t 34 using a coolant-flow ra t e such that the shield Reynolds number equaled 
that in the prototype with a coolant flow of 3 -1 /2 p e r cent of r e a c t o r flow with two ioop.s 
opera t ing . 

In Tes t 35 shield coolant ve loci t ies and d i rec t ions were i neasu red at a Reynolds 
number equal to that obtained in the prototype with 2 -1 /2 p e r cent shield flow for two-
loop opera t ion . 

Tes t 36 was run with the same coolant-flow r a t e a s Tes t 34 except that only one 
loop was opera t ing . Since the prototype one-loop flow ra t e is a s sumed to be one-half of 
the two-loop flow r a t e , the shield Reynolds number equaled that in the prototype with a 
coolant flow of 7 pe r cent of r eac to r flow. 

Tes t 37 was run to obtain shie ld-coolant veloci t ies and d i rec t ions for opera t ion 
with one loop at a shield-coolant-f low ra t e of 3 -1 /2 pe r cent of model flow. 

In Tes t 38 flow veloci t ies were m e a s u r e d nea r the surface of the bottom dome in 
the inlet and loAver pleniuns for opera t ion with one loop. 

Ill Tes t s 39 and 40 t he rma l - sh i e ld - coo l an t veloci t ies and d i rec t ions -were m e a s u r e d 
with two loops operat ing using shield-coolant-f low r a t e s of 3-1 /2 pe r cent and 2 -1 /2 p e r 
cent of model flow, r e spec t ive ly . 

Tes t 41 was run to m e a s u r e flow veloci t ies and d i rec t ions in the lower plenum nra.r 
the junction of the bottom dome and the c o r e - s u p p o r t cyl inder with two loops opera t ing . 

Tes t 42 and 43 were run to m e a s u r e flow veloci t ies and d i rec t ions in the t h e r m a l -
shield-coolant pas sage using a ho t -wi re anemomete r probe in a r e a s where no m e a s u r e ­
men t s could be obtained with a conventional t h ree -ho le yaw p robe . 

Tes t 44 was run to obtain shie ld-coolant ve loci t ies and d i rec t ions for one-loop 
operat ion at a shield-coolant-f low ra t e of 2 -1 /2 pe r cent of model flow. 

RESULTS OF MODEL STUDIES 

Gore -F low ^ D is t r ibu ti on 

The core of the model contained 248 s imulated fuel channels as p rev ious ly 
desc r ibed . 

Each s imulated fuel a s s e m b l y in the model included an orif ice which provided the 
core p r e s s u r e drop and served as a f lowmeter . U p s t r e a m and downst ream orif ice 
p r e s s u r e taps were connected to a 680-tube wa te r m a n o m e t e r , shown in F igure 1. In 
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each t e s t , orif ice p r e s s u r e s were used to compute f low-dis t r ibut ion data by calculat ing 
the flow through each orif ice using coefficients obtained from an in-p lace ca l ib ra t ion , 
dividing each flow by the ave rage for the c o r e , and expres s ing the r e su l t s as percen tage 
of average flow for the c o r e . These ca lcula t ions were made using a digital computer . 

F igure 4 i s a plan view of the co re showing the identification n u m b e r s of the s imu­
lated fuel channels . Shading of annular a r e a s i s used to aid in t rac ing n t imbe r s , and has 
no physica l s ignificance. 

F igure 5 i s a m a p of the co re in which channel locat ions a r e m a r k e d with the value 
of flow through each channel for two-loop opera t ion . The g r e a t e s t deviat ions from 
average flow were +1. 0 p e r cent in channels 164 and 208, and - 0 . 8 p e r cent in channel 
125. 

F igure 6 is a m a p of the co re showing core- f low dis t r ibut ion for one-loop ope ra ­
tion. In this t e s t , flow for each channel was within +1 .3 and - 1 . 4 p e r cent of the 
average flow for the c o r e . 

Core- f low-d is t r ibu t ion s tudies w e r e made at two reduced model flow r a t e s . The 
lowest flow r a t e was 70 p e r cent of full model flow. Within the l imi t s of data a c c u r a c y , 
flow dis t r ibut ion in the co re was not affected by the reduct ion in Reynolds number of 
about 30 p e r cent . 

In the m o d e l , co re p r e s s u r e l o s s was 75 p e r cent of o v e r - a l l model p r e s s u r e l o s s . 
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plenum spaces than that for the pro to type . That i s , the model data a r e somewhat 
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Mixing Studies 

Mixing studies were conducted by injecting m e a s u r e d concentra t ions of SO2 into the 
Loop 1 in le t , and de te rmin ing the concentra t ion of SO2 in the a i r pass ing through each of 
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t r a v e r s e the en t i r e co re in about 1 day with frequent checks of inlet concentra t ion and of 
background leve l in the second in le t , which nominal ly contained no S02. 

The T i t r i l og , which was used to m e a s u r e SO2 concent ra t ion , is manufactured by 
the Consolidated E lec t rodynamics Corpora t ion . In this i n s t r u m e n t , SO2 is t i t ra ted with 
e lec t ro ly t ica l ly genera ted b romine at a po ten t iomet r ic balance point. A feedback ampl i ­
fier cont ro ls the r a t e of generat ion of reac t ing b romine above a set re fe rence level so 
that it i s at a,U t i m e s equal to the r a t e of absorpt ion of SO2 in the t i t ra t ion cel l . The 
c u r r e n t flow in the t i t ra t ion cel l s e r v e s as a m e a s u r e of SO^ concentra t ion. The in­
s t rument scale has a range of 0 to 10 ppm of SO2 with a reading accu racy of ± 1 . 5 p e r 
cent of fu l l - sca le reading . The threshold sensi t iv i ty i s 0. 1 ppm; about 10 sec i s requi red 
to r each equi l ibr ium after a change in concent ra t ion . 

The Ti t r i log and assoc ia ted ga s - con t ro l equipment a re shown on the table in 
F igu re 1, Di rec t ly above the T i t r i l og , at the top of the f igure , is the SO2 injector in­
s ta l led in the Loop 1 inlet piping. 

F igure 7 shows mixing data obtained with SO2 injected into the inlet of Loop 1. The 
figure r e p r e s e n t s a c r o s s sect ion of the core of the flow mode l with numbers indicating 
the pe rcen tage of flow in each s imula ted fuel channel coming fromi Inlet 1, the t r aced 
inlet . With per fec t mixing in the lower plenum a value of 50 pe r cent would be obtained 
in every channel . It will be noted, however , that the highest concentra t ions were found 
nea r the t r aced inlet and that concentra t ions d e c r e a s e d with d is tance from the inlet . A 
m a x i m u m value of 76 p e r cent was found. 

Studies of Thermal -Sh ie ld -Coolan t Flow 

As shown in F igure 2, the t h e r m a l shield i s a heavy l iner separa ted from, the p r e s ­
sure v e s s e l by a coolant pas sage which, in the m o d e l , is 0, 25 in. wide. The prototype 
shield is heated by core radia t ion and by hea t t r an s f e r from the 1200 F hel ium in the 
upper p lenum, and cooled by hel ium admit ted through annular p a s s a g e s surrounding each 
of the 32 f lux-scanning nozz les and 29 con t ro l - rod nozz les located nea r the center of the 
top dome. This p a s s e s downward through the shie ld-coolant channel to the inlet plenum 
and mixes with hel ium from the in l e t s . The shield coolant i s supplied from an ex te rna l 
sys tem in which it i s cooled and decontaminated. In o r d e r to avoid local overheat ing and 
resu l t ing d is tor t ion of the t h e r m a l shield, it is n e c e s s a r y that the en t i re surface be 
swept by coolant at adequate veloci ty. Accordingly, flow veloci t ies and d i rec t ions 
throughout the coolant pa s sage were studied. 

Dynamic sim.ilari ty in sh ie ld -passage s tudies r e q u i r e s specia l cons idera t ion 
because of the range of Reynolds n u m b e r s involved. Pro to type values of Reynolds 
number s vary from 5000 to 7000 if shield coolant is 2. 5 and 3. 5 pe r cent of r e a c t o r flow, 
respec t ive ly . These pe rcen tages of mode l flow r e su l t in model Reynolds n u m b e r s of 
2000 and 2800, which a r e in the t rans i t ion r ange . Accordingly , m.odel s tudies were 
c a r r i e d out a t both the p r o p e r pe rcen t ages of total flow above , and at higher flow r a t e s 
providing full prototype Reynolds n u m b e r s . It was found that flow pa t t e rns var ied with 
shie ld-coolant flow r a t e , because of in terac t ion between the shield flow and flow pass ing 
upward into the shield pas sage f rom the inlet p lenum. A stagnation region was found in 
eve ry tes t . The location of this stagnation region var ied with the am.ount of shield-
coolant flow; with high flow r a t e s the stagnation region was nea r the bottom of the shield 
p a s s a g e , and with low flow r a t e s i t was nea r the top of tlie p a s s a g e . The na tu re of the 
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FIGURE 7. MIXING IN LOWER PLENUM OF MODEL 

Number in each s imula ted fuel channel 
shows percen tage of a i r from. Inlet 1 
the t r a c e d inlet . 
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stagnation reg ion , and i t s effects on local heat t r a n s f e r , appeared s ini i lar for a l l flow 
r a t e s . Thus , the t e s t condition m o s t c lose ly r ep resen t ing the actual flow and velocity 
dis t r ibut ion in the t h e r m a l - s h i e l d - c o o l a n t pa s sage a p p e a r s to be that in which the p r o ­
por t ion of to ta l mode l flow pass ing through the shield p a s s a g e i s equal to that for tlie 
prototype. 

In the model s tud ie s , sh ie ld -passage a i r was supplied by an a i r c o m p r e s s o r , so 
that flow ra t e could be va r i ed . Air ve loc i t ies and d i rec t ions in the shield pas sage were 
m e a s u r e d using a t h r e e - h o l e yaw p r o b e , but in e a r l i e r t e s t s it was found that ne i ther 
veloci t ies nor d i r ec t ions of flow could be m e a s u r e d in the stagnation reg ions . This was 
pa r t ly because al l ve loci t ies were so low as to be nea r the lower l imi t of sensi t ivi ty of 
the yaw p r o b e , and pa r t l y because ve loc i t ies were in the form of local turbulence which 
was var iab le in d i rec t ion . A ho t -wi re a n e m o m e t e r probe of high sensi t ivi ty and having 
a d i rec t iona l c h a r a c t e r i s t i c was m.ade and used for subsequent t e s t s at the higher flow 
r a t e s . With this probe it was poss ib le to m e a s u r e turbulence leve ls in the stagnation 
regions equivalent to substant ia l ve loc i t i e s , but no d i rec t iona l effects could be observed . 

F igure 8 i s a data plot showing the d i rec t ions and veloci t ies of a i r flow in the 
thermia l -sh ie ld-coolant p a s s a g e with two loops opera t ing . The shield-flow r a t e was 8.5 
pe r cent of the total mode l flow r a t e , so that the Reynolds number in the model shield 
pas sage was equal to that for the prototype with 3. 5 pe r cent of r eac to r flow pass ing 
through the shield p a s s a g e . A r r o w s a r e at yaw-probe locat ions and indicate flow d i r e c ­
t ions; n u m b e r s indicate flow ve loc i t i es . Veloci t ies of hel ium flow in the protot3/pe a r e 
0, 266 t imes the a i r - f low veloc i t ies shown. As can be seen in the f igure , flow i s down­
ward everywhere except for stagnation regions immedia te ly above the in l e t s , where up­
ward flow from the inlet plenum m e e t s downward flow in the shield p a s s a g e . 

F igu re 9 shows the flow pa t t e rn in the shield pa s sage with two loops operat ing 
with 6.4 p e r cent of mode l flow pass ing through the shield pa s sage to provide a model 
Reynolds number equal to that in the prototype with 2 -1 /2 p e r cent shield flow. Veloci­
t i e s in the prototype shield p a s s a g e a r e 0. 244 t i m e s those shown. The flow is downward 
everywhere with a uniform veloci ty except in the stagnation regions d i rec t ly above the 
in le ts where upward flow from the inlet m e e t s downward flow in the shield p a s s a g e . 
Yaw-probe read ings could not be obtained a t the two m e a s u r i n g points above the in le ts 
due to rapidly fluctuating flow d i r e c t i o n s . 

A compar i son of F i g u r e s 8 and 9 shows that the change in Reynolds number did 
not affect shield-coolant-f low p a t t e r n s except n e a r the i n l e t s , where the change in down­
ward veloci ty changed the loca t ions of the stagnation regions separa t ing upward and 
downward flow; th is would appear to be a momen tum effect dependent upon the re la t ive 
ve loci t ies of upward and downward flow, r a t h e r than a Reynolds number effect. 

F igure 10 shows flow d i rec t ions and ve loc i t ies in the shield-coolant passage for 
one-loop opera t ion with 12 p e r cent of mode l flow though the shield p a s s a g e . At this flow 
condition the model Reynolds number is equal to the prototype Reynolds number with 
7 p e r cent shield flow. With only one loop opera t ing , flow d i rec t ions throughout the 
shield pas sage a r e affected by the upward flow from the operat ing inlet and the a r e a of 
upward flow extended m o r e than halfway up the cy l indr ica l por t ion of the p a s s a g e . 

F r o m these s tudies i t was apparen t that addit ional t e s t s with the shield-flow ra t e 
at the p rope r p e r c e n t a g e s of mode l flow r a t e w e r e needed. In this case the shield 
Reynolds n\mnber would be about 30 to 40 p e r cent of prototype value for two-loop 
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operat ion and about 60 pe r cent of prototype value for one-loop opera t ion , and would 
range from 2000 to 2800. 

F i g u r e s 11, 12, 13, and 14 show shield-flow pa t te rns with shield-flow r a t e s of 
2 -1 /2 and 3-1 /2 p e r cent of model flow. To m o r e fully explore the a r e a s where upward 
flow o c c u r r e d , 24 addit ional yaw-probe holes were added in the mode l . Flow veloci t ies 
and d i rec t ions were m e a s u r e d , where p o s s i b l e , with t h r ee -ho l e yaw p r o b e s , but at some 
locat ions no yaw-probe reading could be obtained due to rapidly fluctuating flow d i r e c ­
t ions . At these po in t s , ve loci t ies were m e a s u r e d with a special ly built ho t -wire anemom 
e te r ; in m o s t c a s e s no flow d i rec t ion could be de te rmined . The min imum velocity 
m e a s u r e d at any point was 2. 5 fps which o c c u r r e d with a shield-flow ra t e of 2- 1/2 per 
cent of model flow with two loops opera t ing . This i s equivalent to a hel ium velocity of 
1.6 fps in the pro to type . 

F r o m the s tudies with model shield Reynolds n u m b e r s equal to pro to type-sh ie ld 
Reynolds n u m b e r s it was found that h a l f - s y m m e t r y exis ted . Therefore in the shield 
s tudies made with the c o r r e c t pe rcen tage shield-flow data were taken at only half the 
shield m e a s u r i n g points . M e a s u r e d data a r e shown as solid a r r o w s . The dotted a r r o w s 
show as sumed ve loc i t i e s , based on hal f -symmiet ry , where veloci t ies were not m e a s u r e d . 

F igu re 11 is a development of the t h e r m a l - s h i e l d pa s sage showing the d i rec t ions 
and veloci t ies of a i r flow with a shield-flow r a t e of 2 -1 /2 p e r cent of model flow with iwo 
loops opera t ing . The upward flow a r e a extends about t h r ee - fou r th s the height of the 
c o r e . Flow d i rec t ions could not be de te rmined a t the m e a s u r i n g locat ions shown without 
a r r o w s . The minimtun turbulence level m e a s u r e d in the stagnation a r e a was equivalent 
to a velocity of 2 ,5 fps which i s equivalent to a hel ium velocity of 1.6 fps. 

F igure 12 shows the flow p a t t e r n s obtained with a shield-flow ra te of 3 -1 /2 p e r 
cent of model flow for two-loop opera t ion . As with 2- 1/2 pe r cent flow al l a r e a s 
appeared to be adequately cooled. 

F igure 13 shows flow d i rec t ions and ve loc i t ies for one-loop operat ion with shield 
flow of 3 -1 /2 p e r cent of model flow. The a r e a of upward flow extended up to the outlet 
nozz le . The min imum turbulence leve l m e a s u r e d in the stagnation a r e a was equivalent 
to a hel ium veloci ty of 0. 9 fps based on an a s sumed one-loop flow ra t e of 2. 135 x 10^ lb 
p e r h r . 

F igure 14 shows the coo lan t -pas sage-flow pa t t e rns obtained with a shield flow 
ra te of 2 -1 /2 p e r cent of raodel flow for one-loop opera t ion . The a r e a of upward flow 
over tiie open inlet extended up to the cen te r l ine of the outlet nozz le . The minimtim 
turbulence leve l m e a s u r e d was equivalent to a hel ium veloci ty of 0, 8 fps. 

Compar i son of F i g u r e s 8, 9, and 10 with F i g u r e s 11, 12, and 13 shows that the 
flow pa t t e rns in the therm,al -shie ld pa s sage a r e probably not apprec iab ly affected by 
Reynolds number even though they were in the t rans i t ion range . The shift of the e leva­
tion of the stagnation r e g i o n s , where upward flow from the in le ts m e e t s downward flow in 
the shield p a s s a g e , appea r s to be a momen tum effect. The downward velocity of the 
shield coolant a p p e a r s to have a much g r e a t e r effect than any var ia t ions in shield-
pas sage fr ict ion which might occur in the t r ans i t ion range . 
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Upper -P lenum Studies 

Upper-p lenum flow was studied for both one-loop and two-loop operat ion to d e t e r ­
mine the flow pa t t e rn s in the upper plenum and the ve loci t ies a t the inner surface of the 
t h e r m a l shield. The flow pa t t e rn s were de te rmined by visual observat ion using TiCl^ 
smoke as a t r a c e r . Air ve loci t ies nea r the surface of the dome were m e a s u r e d using a 
t h ree -ho le yaw probe of conventional des ign. 

F igure 15 shows the flow p a t t e r n s in the upper plenum of the model with two loops 
operat ing. The d i ag ram in the upper r ight c o r n e r i s a development of one quadrant of 
the dome showing flow d i rec t ions and ve loc i t ies m e a s u r e d 1/4 in. from the inner surface 
of the t h e r m a l shield. F r o m the figure it can be seen that the flow in the upper plenum 
has a toroidal pa t t e rn with flows upward in the cen te r and down nea r the wal l . Super im­
posed on this is a slight clockwise (looking down) rota t ion probably c a r r i e d up through 
the core from the lower plenuin. As a r e s u l t , a l a r g e p a r t of the flow takes a hel ica l 
path into the out le t s . Veloci t ies were m e a s u r e d nea r the surface of the top dome at six 
locat ions in one quadrant . Air ve loci t ies m e a s u r e d 1/4 in. from the wall va r ied from 
35 to 69 fps. The cor responding hel ium veloci t ies in the prototype would be 0. 835 t imes 
these va lues , ranging from 29 to 58 fps. The smoke studies a lso showed tlia,t the nnaxi-
inum velocity sweeping the wall occu r r ed in the quadrant where m e a s u r e m e n t s were 
m a d e . 

F igure 16 shows the flow pa t t e rn s obtained in the upper plenxim with one loop 
opera t ing . Looking down, the fluid in the quadrant adjacent t o , and clockwise from the 
operat ing outlet flowed d i rec t ly into the outlet . Fluid in the remain ing tliree quadrants 
flowed clockwise around the plenum, into the outlet in a torodia l pa t t e rn . As for two-loop 
opera t ion , the h ighest surface veloci t ies o c c u r r e d in the quadrant where m e a s u r e m e n t s 
w e r e m a d e . The a i r veloci t ies va r ied from 22 to 43 fps m e a s u r e d 1/4 in. from the wal l . 
The cor responding hel ium veloci t ies would be 0.57 t i m e s the a i r ve loc i t i e s , and would 
range from 13 to 25 fps. 

L o w e r - P l e n u m Studies 

Velocity and d i rec t ion of flow were m e a s u r e d in the inlet plenum and the lower 
plenum nea r the junction of the c o r e - s u p p o r t cyl inder and the bottom dome for operat ion 
with one loop and two loops . These studies were run to obtain surface veloci t ies nea r 
this junct ion, which a r e needed to compute h e a t - t r a n s f e r r a t e s and resul t ing t he rma l 
s t r e s s e s in the junction region. 

F i g u r e s 17 and 18 show a c r o s s sect ion of the bottom of the model and developments 
of the inner surface of the bottom dome and the outside of the c o r e - s u p p o r t cyl inder . 
The data were obtained with conventional t h ree -ho le yaw p r o b e s at a d is tance of 1/4 in. 
from the su r f aces . In the f i gu re s , a r r o w s a r e at yaw-probe locat ions and indicate flow 
d i rec t ions ; n u m b e r s indicate flow ve loc i t i e s . 

F igure 17 shows the flow pa t t e rn s obtained with two loops opera t ing . In the inlet 
p l enum, a i r veloci t ies var ied from 88 fps on the surface of the c o r e - s u p p o r t cyl inder to 
15 fps nea r the r ight inlet . In the lower plenum the velocity var ied from 27 to 15 fps. 
The ra t io of hel ium velocity to model a i r velocity is 0. 61. 
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Quadrant A-B 
Surfoce Velocity, fps 

Top View 

Section A-O-B Stction A-C 
Flow Pattern Naar Wall 

FIGURE 15. FLOW PATTERNS IN UPPER PLENUM 
WITH TWO LOOPS OPERATING 

Arrows indicate flow direction and num­
bers indicate air velocity, fps. 

Helium velocities are 0.835 times air 
velocities. 
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Quodrant A-B 
Surface Velocities^ fps 

Top View 

Section A-O-B Section A-C 
Flow Pattern Near Wolf 

FIGURE 16. FLOW PATTERNS IN UPPER PLENUM 
WITH ONE LOOP OPERATING 

A r r o w s indicate flow d i rec t ion and 
n^xmbers indicate a i r ve loc i ty , fps. 

Hel ium veloci t ies a r e 0 .57 t imes 
a i r ve loc i t i es . 
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FIGURE 17. FLOW PATTERN IN LOWER PLENUM NEAR JUNCTION 
OF CORE-SUPPORT CYLINDER AND BOTTOM DOME 
FOR TWO-LOOP OPERATION 

A r r o w s indicate flow di rec t ion and numbers indicate a i r 
velocity fps. 

Hel ium veloci t ies a r e 0, 605 t imes a i r ve loc i t i es . 
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FIGURE 18. FLOW PATTERN IN LOWER PLENUM NEAR JUNCTION 
OF CORE-SUPPORT CYLINDER AND BOTTOM DOME 
FOR ONE-LOOP OPERATION 

A r r o w s indicate flow d i rec t ion and numbers indicate a i r 
velocity fps. 

Helium veiociLies a r e 0. 383 t imes aix- ve loc i t i es . 
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Figure 18 shows the flow d i rec t ions and veloci t ies iTieasured with one loop ope ra t ­
ing. Veloci t ies in the inlet plenum var ied from 128 to 51 fps and in the lower plenum 
the var ia t ion was from 35 fps to a value below the lower l imi t of the yaw p r o b e , which is 
about 3-1 /2 fps. 

Trans i t ion Studies 

In the prototype the re is the poss ib i l i ty that under some condi t ions , with two loop& 
opera t ing , the flow r a t e s through the two loops will not be equal . To invest igate the 
effects of unequal flow through the two loops t r ans i t ion from two-loop to one-loop ope ra ­
tion was studied in the mode l . The flow was va r i ed from 100 pe r cent through one loop 
to 50 pe r cent through each loop in nine s teps . At each step the wa te r m a n o m e t e r s 
showing al l mode l p r e s s u r e s were checked for p r e s s u r e fluctuations and for changes in 
core-f low dis t r ibut ion . With 80 to 90 p e r cent of model flow through one loop the f luc­
tuat ions in co re -o r i f i ce different ia ls i nc r ea sed to about ±0. 7 pe r cent from a no rma l 
fluctuation of about ±0. 4 p e r cent . O the rwi se , the mode l opera ted no rma l ly under all 
t e s t condit ions. 

P r e s s u r e - L o s s Studies 

In the a,ir-flow mode l of the P E G C P R , a i r sim\xlated the flow of helium in the p r o ­
totype. In o r d e r to conver t l o s s e s m e a s u r e d in the model to prototype condi t ions , the 
differences in densi ty and veloci ty m u s t be p r o p e r l y accounted for. This can be done 
readi ly by conver t ing a i r - f low data to d imens ion les s t e r m s suitable for use with he l ium-
flow condit ions. This is done in th is r e p o r t by expres s ing p r e s s u r e l o s s e s as h e a d l o s s e s 
o r loss coeff icients , which a r e obtained a s the ra t io of the l o s s to somie appropr ia te 
veloci ty head , in cons is ten t un i t s . That i s , the l o s s coefficient m a y be defined a,s: 

C - ^ 

where 

C is the l o s s coefficient 

AP is the p r e s s u r e differential 

q is the velocity p r e s s u r e , p—— 
2g 

g i s the gravi ta t ional constant 

V i s the veloci ty through the re fe rence a r e a 

p i s the fluid densi ty . 
If the l o s s e s a r e e x p r e s s e d as l o s s coefficients based on local veloci t ies in the 

flow reg ion , they a r e independent of s c a l e , ve loci ty , and fluid p r o p e r t i e s , so long as the 
Reynolds number is well into the turbulent range and no change in the mode of flow 
o c c u r s . 
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In ana lyses of p r e s s u r e - l o s s data from the P E G C P R flow m o d e l , loss coefficients 
based on local ve loci t ies were de te rmined . The p r e s s u r e of the a i r pass ing through the 
model changed from about 19 ps ia at the inlets to about 14. 7 ps ia at the outlets with a 
resul t ing densi ty change. T h e r e f o r e , the loss coefficients were computed using local 
densi ty . P red i c t ed prototype p r e s s u r e l o s s e s were then calculated using the local loss 
coefficient. These p r e s s u r e s a r e additive and can be used to p red ic t o v e r - a l l l o s s e s . 

In genera.1, al l l o s s e s a r e expressed as differences in total p r e s s u r e s at points of 
m e a s u r e m e n t . Total p r e s s u r e s were computed from m e a s u r e d stat ic p r e s s u r e s and 
computed veloci ty p r e s s u r e s . 

To compute p r e s s u r e l o s s e s the model was divided into six r eg ions . A d iscuss ion 
of each loss and i ts de te rmina t ion fol lcws. 

Region 1 extends from the inlet nozzle to the inlet p lenum. The a i r en tered the 
model through two 5. 81-in. - d i a m e t e r nozzles spaced 180 deg apa r t and flowed in both 
d i rec t ions around the inlet p lenum. At points about halfway between the inlets the 
s t r e a m s from the two inlets me t and formed stagnation poin ts . The stat ic p r e s s u r e s at 
the stagnation points were used as the total p r e s s u r e in the inlet p lenum. 

Region 2 extends from the inlet plenum through the c o r e - s u p p o r t cyl inder to the 
lower plenuin.. The highest static p r e s s u r e on the surface of the dome inside the c o r e -
support cyl inder -was used as a total p r e s s u r e . 

Region 3 extends from the lower plenum to the u p s t r e a m orifice p r e s s u r e taps in 
the core tubes which s imulate core fuel channels . The total p r e s s u r e ups t r eam of the 
or i f ices was calculated using the average s tat ic p r e s s u r e and a computed velocity 
p r e s s u r e . 

Region 4 extends from u p s t r e a m to downs t ream orifice p r e s s u r e t aps . 

Region 5 extends from the downstreami orif ice p r e s s u r e tap nea r the outlet end of 
the tube to the upper p lenum. The total p r e s s u r e in the upper plenum was a s sumed equal 
to the stat ic p r e s s u r e m e a s u r e d on the top dome d i rec t ly above the c o r e . 

Region 6 extends from the upper plenum to the outlet nozz le . The total p r e s s u r e 
in the outlet nozzle was computed using a m e a s u r e d stat ic p r e s s u r e and a computed 
velocity p r e s s u r e . 

Table 1 l i s t s the exper imenta l l o s s coefficients obtained from the a i r - f low model . 
Loss coefficients a r e r epor t ed for th ree flow r a t e s when operat ing with two loops and 
for one flow ra te with one loop operat ing. A compar i son of the data for two-loop ope ra ­
tion shows that the l o s s e s a r e independent of Reynolds number within the l imi t s of 
accuracy of the m e a s u r e m e n t s . 



TABLE 1. LOCAL PRESSURE-LOSS COEFFICIENTS MEASURED IN MODEL 

Region 

Flow A r e a on Whicli 
Loca l L o s s Coefficient 

Is Based 
Descr ip t ion 

of L o s s 
Inlet l o s s 

C o r e - s u p p o r t -
cyl inder l o s s 

C o r e - t u b e -
en t rance l o s s 

Orif ice l o s s 

C o r e - t u b e -
exit l o s s 

Locat ion 
Inlet nozzle^ p e r 

nozzle 

C o r e - s u p p o r t 
cyl inder holes 

Core - tube 
flow a r e a 

Core - tube 
flo'w a r e a 

Core - tube 
flow a r e a 

Area^ 
ft2 

0,184 

1.473 

0.761 

0.761 

0.761 

Expe r imen ta l Local Model L o s s Coefficients for 
Indicated Inlet Nozzle Reynolds Number 

Two Loop One Loop 
7 . 1 0 x 1 0 5 6.46 x l 0 5 5 . 3 5 x l 0 5 10. 8 x 105 

0.86 

3. I I 

0.93 

12. 24 

0.71 

0.85 

3. 15 

0.90 

12. 14 

0.70 

0.85 

3.33 

0.95 

12.01 

0.69 

0.84 

4 .28 

0.97 

12.03 

0.74 

Outlet l o s s Outlet nozzle 0. 196 0. 12 0. 12 0. 13 0. 13 
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PROTOTYPE PRESSURE LOSSES 

The p red ic ted p r e s s u r e l o s s e s in the prototype were de te rmined as the product of 
the local l o s s coefficients^ from Table 1, and the appropr ia te prototype local velocity 
p r e s s u r e . The calcula t ions w e r e based on the following prototype operat ing condit ions: 

Coolant 
Two-loop flow rate^, lb p e r h r 
One-loop flow r a t e , lb p e r h r 
Inlet p r e s s u r e , psia 
Inlet t empera tu re^ F 
Outlet t e m p e r a t u r e , F 

Helium 
4. 27 X 10^ 
2. 135 X 105 
315 
510 
1050 

Since axial-flow c o m p r e s s o r s will be used in the prototype ins ta l la t ion , the one-
loop flow ra t e will be between 50 and 55 p e r cent of the two-loop flow r a t e . Thus for 
calculat ion purposes one-loop flow ra t e was a s sumed to be one-half of the ra ted two-loop 
flow r a t e . 

Table 2 s u m m a r i z e s the pred ic ted prototype p r e s s u r e l o s s e s excluding the fuel-
region p r e s s u r e l o s s . In the model the fue l - region p r e s s u r e l o s s was s imulated with 
or i f ices having approximate ly the c o r r e c t p r e s s u r e drop^ cons idered as a loss coefficient 
based on velocity in the model in le t s . However , the actual p r e s s u r e loss for the fuel 
a s s e m b l i e s is to be m e a s u r e d in another p r o g r a m . F r o m the table it can be seen that 
the inlet l o s s i s a ma jo r por i t ion of the total r e a c t o r l o s s excluding fuel-region l o s s e s . 

TABLE 2. PREDICTED PROTOTYPE Pi?ESSURES LOSSES BASED ON MODEL DATA 

Region 
Description 

of Loss 

Flow Area Used in Obtaining 
Local Velocity Pressure 

Area, 

Location ft2 

Predicted Prototype Pressure 

LossC*), psi 

Two Loop One Loop 

Inlet loss 

Core-support-
cylinder loss 

Core -tube -

entrance loss 

Core-tube-

exit loss 

Outlet loss 

Inlet nozzle 2^948 

Core-support- 23 .66 
cylinder holes 

Core-tube 39 .11 
flow area 

Core-tube 34 .88 

flow area 

Outlet nozzle 3.142 

Total (excluding fuel-region loss) 

0.30 

0,07 

0.01 

0.01 

O.OD 

0.45 

0.29 

0.02 

0.002 

0.003 

0.07 

0.385 

(a) Based on total helium flow of 4 .27 x 105 lb per hr for two-loop operation and 2 .135 x 105 lb pel hr for one-loop operation. 
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