skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Computer simulation of airflow through a multi-generation tracheobronchial conducting airway

Technical Report ·
DOI:https://doi.org/10.2172/381351· OSTI ID:381351

Knowledge of airflow patterns in the human lung is important for an analysis of lung diseases and drug delivery of aerosolized medicine for medical treatment. However, very little systematic information is available on the pattern of airflow in the lung and on how this pattern affects the deposition of toxicants in the lung, and the efficacy of aerosol drug therapy. Most previous studies have only considered the airflow through a single bifurcating airway. However, the flow in a network of more than one bifurcation is more complicated due to the effect of interrelated lung generations. Because of the variation of airway geometry and flow condition from generation to generation, a single bifurcating airway cannot be taken as a representative for the others in different generations. The flow in the network varies significantly with airway generations because of a redistribution of axial momentum by the secondary flow motions. The influence of the redistribution of flow is expected in every generation. Therefore, a systematic information of the airflow through a multi-generation tracheobronchial conducting airway is needed, and it becomes the purpose of this study. This study has provided information on airflow in a lung model which is necessary to the study of the deposition of toxicants and therapeutic aerosols.

Research Organization:
Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States). Inhalation Toxicology Research Inst.
DOE Contract Number:
AC04-76EV01013
OSTI ID:
381351
Report Number(s):
ITRI-146; ON: DE96008986; TRN: 96:002767-0004
Resource Relation:
Other Information: PBD: Dec 1995; Related Information: Is Part Of Inhalation Toxicology Research Institute. Annual report, October 1, 1994--September 30, 1995; Bice, D.E.; Hahn, F.F.; Hoover, M.D.; Neft, R.E.; Thornton-Manning, J.R.; Bradley, P.L. [eds.]; PB: 214 p.
Country of Publication:
United States
Language:
English