skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nonlinear tearing mode interactions and mode locking in reversed field pinches

Technical Report ·
DOI:https://doi.org/10.2172/369657· OSTI ID:369657

The nonlinear interaction of a set of tearing instabilities and plasma flow is studied in a cylindrical plasma. An analytic theory of mode locking is developed which includes the effects of the localized electromagnetic torques, plasma inertia and cross-field viscosity. The calculation is specialized for the case of mode locking on the Madison Symmetric Torus (MST) reversed field pinch. In MST plasmas, a set of m = 1 tearing instabilities become phase locked and form a toroidally localized, rotating magnetic disturbance. An evolution equation for the phase velocity of this magnetic disturbance is derived which accounts for two types of electromagnetic torques. The external torques describe the interaction of the tearing modes with static magnetic perturbations located outside the plasma region. The interior torques describe the nonlinear interaction of three tearing modes which satisfy a wave number resonance condition. For conditions typical of MST, the internal torques dominate the external torques, which suggest the nonlinear interaction of tearing instabilities play a prominent role in the momentum degradation and mode locking.

Research Organization:
Wisconsin Univ., Madison, WI (United States). Center for Plasma Theory and Computation; Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
FG02-85ER53212; FG02-86ER53218
OSTI ID:
369657
Report Number(s):
UW-CPTC-96-3; ON: DE96015001; TRN: 96:024947
Resource Relation:
Other Information: PBD: Jun 1996
Country of Publication:
United States
Language:
English