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FY 97 Summary Report:

A Chaotic-Dynamical Conceptual Model to Describe Fluid Flow and
Contaminant Transport in a Fractured Vadose Zone

ABSTRACT

Understanding subsurface flow and transport processes is critical for effective assessment,
decision-making, and remediation activities for contaminated sites. However, for fluid flow and
contaminant transport through fractured vadose zones, traditional hydrogeological approaches are
often found to be inadequate. In this project, we examine flow and transport through a fractured
vadose zone as a deterministic chaotic dynamical process, and develop a model of it in these terms.
Initially, we examine separately the geometric model of fractured rock and the flow dynamics
model needed to describe chaotic behavior. Ultimately we will put the geometry and flow
dynamics together to develop a chaotic-dynamical model of flow and transport in a fractured
vadose zone.

We investigate water flow and contaminant transport on several scales, ranging from small-scale
laboratory experiments in fracture replicas and fractured cores, to field experiments conducted in a
single exposed fracture at a basalt outcrop, and finally to a ponded infiltration test using a pond of
7 by 8 m. In the field experiments, we measure the time-variation of water flux, moisture content,
and hydraulic head at various locations, as well as the total inflow rate to the subsurface. Such
variations reflect the changes in the geometry and physics of water flow that display chaotic
behavior, which we try to reconstruct using the data obtained.

In the analysis of experimental data, a chaotic model can be used to predict the long-term bounds
on fluid flow and transport behavior, known as the attractor of the system, and to examine the
limits of short-term predictability within these bounds. This approach is especially well suited to
the need for short-term predictions to support remediation decisions and long-term bounding
studies.

I.1 OBJECTIVES AND STRUCTURE OF THE PROJECT

Our primary objective is to determine when and if deterministic chaos theory is applicable to
infiltration of fluid and contaminants through the vadose zone in fractured rock. To the extent that




this theory is applicable we will develop algorithms for predicting flow and transport based on this
theory.

In classical analysis, the system components are commonly taken to be cubes of equivalent porous
media that tessellate the volume of interest. The rules used to describe multi-phase fluid flow are
commonly given by Richard’s Equation, a version of Darcy’s Law, which describes how much
fluid will be transferred as a function of the hydraulic head gradient and relative permeability.

For the case of infiltration in fractured rock, we will describe the geometry of the fracture network
and determine the rules describing how fluid is transmitted as dynamical processes. The result of
evaluating these processes will be an entirely new approach to the description of flow and transport
behavior. The objectives of this project will be achieved through the development of:

e A hierarchical description of fracture geometry that controls fluid flow and transport,
e A dynamical description of infiltration and transport of contaminants in single fractures,

e An algorithm for flow and transport that combines the hierarchical geometry and the description
of dynamical flow and transport,

e Appropriate techniques needed to detect chaotic behavior of flow in the field,
¢ Evaluation of deterministic chaos in laboratory and field experiments,

¢ Field investigations were conducted at the Box Canyon site in Idaho near the INEEL.

1.2 BACKGROUND INFORMATION ON CHAOTIC DYNAMICS AND FRACTAL STRUCTURES

One of the central problems in the prediction of water, heat, and mass transfer in soils and
fractured rocks is how to use past observations in order to predict the future. Field measurements
can only employ a limited number of probes that cannot collect all needed information.
Consequently, the quality of prediction using classical deterministic and stochastic differential
equations with a set of initial and boundary conditions and volume-averaged parameters may be
poor. One of the alternative approaches views a time series of data as a result of chaotic dynamics,
which can appear even in a simple deterministic system. Random-looking data may in fact
represent chaotic rather than stochastic processes. For predictive purposes, it is critical to
recognize which is which, because for chaotic systems often only short-term predictions can be
made. For example, it was shown that the weather predictability will approach zero for predictions
of more than two weeks (Lorenz, 1982).

The differences between regular (non-chaotic deterministic), random, and chaotic systems are
illustrated in Figure 2.1, which shows trajectories typical for each type of motion. Note that the
flow trajectories for chaotic systems are different from both regular and stochastic systems. In
general, the term chaotic process is used to describe a dynamical process with the following
features: random processes are not a dominant part of the system, the trajectories describing the
future states of the system are strongly dependent on initial conditions, adjacent trajectories diverge
exponentially with time, the information on initial conditions cannot be recovered from later states
of the system, and behavior is often characterized by an attractor that has a fractal geometry.
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Figure 2.1 Comparison of regular (i.e., non-chaotic deterministic), chaotic, and random behavior (modified
from Schuster, 1993).

Chaotic flow behavior in heterogeneous fractured media may result from hydrodynamic
instabilities and a sensitive dependence of flow on (1) boundary conditions (precipitation, ambient
temperature and pressure, groundwater fluctuations, etc.), (2) initial conditions (distribution of
water content, pressure, and temperature), and (3) the current state of the system (water content,
pressure, and temperature). Flow depends upon coupled effects of several non-linear factors such
as the geometrical connectivity of the fracture system, air entrapment and its removal, clogging of
the conductive fractures, biofilms, kinetics of the matrix-fracture water exchange, variability of
effective hydraulic porosity and hydraulic permeability, and others.

The coupled effect of several non-linear processes in an unsaturated heterogeneous and fractured
material causes non-linear behavior, governed by non-linear ordinary and partial differential
equations, which may have bounded, nonperiodic solutions. These equations may be either: (1)
purely deterministic where no random quantities appear in the equations (Moon, 1987; Tsonic,
1992), (2) chaotic-stochastic, or (3) have a noisy component (Kapitaniak, 1988). Therefore, one
of the main problems in data analysis is to properly identify the type of the equation describing the
flow system.

There are numerous examples of dynamical systems that display non-linear chaotic behavior for
some system parameters. Some examples relevant to our study are: avalanche fluctuations




resulting from the perturbation of sandpiles of various sizes (Rosendahl et al., 1993), falling off of
water droplets (Cheng et al., 1989), atmospheric temperature, river discharge, and precipitation
(Pasternack, 1996; Pelletier, 1996), and oxygen isotope concentrations (Nicolis and Prigogine,
1989). One of the simplest examples is a dripping faucet (Shaw, 1984). Figure 2.2 shows a
conceptual model of flow in fractured rocks based on a model of irregularly dripping water through
a fracture, which produces non-periodic and non-repetitive behavior in both time and space.

infiltration

0 0

Porous tip of

N~

Horizontal
Fracture Plain

tensiometer, Py

Figure 2.2 Conceptual model of flow and measurement in partially saturated fractured rocks. P,m = matrix water
pressure; Py = fracture water pressure; P, = tensiometer water pressure

It has been recognized that fractal structure is a possible indication of chaotic behavior of a system
(Mandelbrot, 1977). Fractal analysis has been applied to many earth sciences problems, such as
topography, fault traces, fracture networks, fracture surfaces, porous aggregate geometry,
permeability distribution, flow and transport through heterogeneous media, erosion and chemical
dissolution, etc. La Pointe (1988) used fractal geometry to characterize fracture density and
connectivity. There are several papers in which the fractal properties of fractured tuff at Yucca
Mountain were investigated (e.g., Carr, 1989). Fractal analysis was also used to predict bypass
flow in rocks (Nolte et al., 1989; Cox and Wang, 1993) and clay soils with vertically continuous
macropores (Hatano and Booltink, 1992).

1.3 LABORATORY TESTS (LBNL)

1.3.1 Introduction and Motivation

Observations of water seepage in fractures in the laboratory have shown the pervasiveness of
highly localized and extremely non-uniform flow paths in the plane of the fracture (Geller et al.,
1996). These channels exhibit intermittent flow behavior as portions undergo cycles of draining
and filling, and small connecting threads snap and reform. This unsteady behavior occurs even in
the presence of constant pressure boundary conditions. These observations motivated us to study
dripping water between parallel plates as an idealized model of some of the flow behavior
characteristic of water seepage through fractured rock. This study extends the classic chaos



experiment of the “dripping faucet” to drips in the presence of capillary forces as they are affected
by the surface properties and the small aperture of the parallel plates.

The objective of these experiments is to collect data records that can be analyzed to determine
whether or not, and under what conditions, the dripping of water in parallel plates is chaotic,
random, or periodic. This work was further motivated by preliminary experiments that showed the
sensitivity of pressure measurements to the formation and release of water drops through a needle
in open air and inserted between parallel plates. Much of this year’s work was invested in
developing the experimental system to reliably obtain usable data records.

1.3.2 Experimental Results

Experiments were performed at a variety of flow rates to evaluate the system for chaotic behavior.
Four basic types of experiments were conducted. Type A are pressure fluctuations caused by the
28 gauge needle dripping water into open air. Type B measure the baseline pressure fluctuations
of the 28 gauge needle delivering water with a constant pressure condition at the needle outlet. (A
constant pressure at the needle outlet was maintained by submerging the needle tip under water.)
Type C use the 28 gauge needle to deliver water between smooth glass plates with a 0.35 mm gap
at an angle of 60 degrees from the horizontal. Type D are identical to type C except for the use of
rough glass plates. In each experiment, a constant flow rate of water was delivered as the
magnitude of the pressure at the syringe needle was measured.

The smooth glass plates (type C) experiments were run at flow rates of 0.25, 0.5, 1.0, 1.5, 2.0,
and 3.0 ml/hr. Typical pressure data for these flow rates are shown in Figure 3.1. In Figure 3.2
the frequency of drips and height of the average pressure fluctuation are plotted against the flow
rates of the experiments in Figure 3.1. The experiments plotted in Figure 3.2 show a trend toward
more frequent drip events and decreased height of pressure fluctuation as the flow rate increased.
Visual observation of the drip events confirmed an increase in length of the thread of water as flow
rate increased. However, duplicate experiments at each flow rate demonstrated that both the height
of pressure fluctuations and the frequency of the drips vary between type C experiments with the
same flow rate. The formation of the threads appear to depend qualitatively upon the initial
condition of the plates. Some of the factors suspected to influence the drip frequency and length of
thread formation are the amount of moisture on the plates, whether the drip was following a pre-
existing flow path determined by a previous flow rate, and the cleanliness of the plates.
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Figure 3.1: Smooth parallel glass plates. Pressure fluctuations caused by dripping water between smooth parallel

glass plates at flow rates of 0.25, 0.5, 1.0, 1.5, 2.0, 3.0 ml/hr.
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Figure 3.2: Observed trends in frequency and magnitude.

Experiments in roughened glass plates were conducted to test the effect of surface variability on
drip behavior. Two types of plates were utilized: sand-blasted and shower-door glass (type D)
plates. Both plates were separated by 0.35 mm shims. The sandblasted plates had an overall
consistency of fine sandpaper with an even coating of fine (approximately 0.1 mm) irregularities
on the surface. When the water was introduced into the sandblasted plates, a halo developed on
the plate as the water advanced and film flow occurred, but drops did not form. The pressure
signature observed from the sandblasted plates was similar to that observed for the baseline
monitoring (see below).

The shower-door glass plates had larger, smooth irregularities or nubs on the surface (average
scale of 2-3 mm). When the drips were introduced into the shower glass plates, the larger spaces
between the nubs allowed drips to form at the end of the needle. The drops grew to different sizes
before they snapped off and moved down the plate. Occasionally, short threads formed before the
drop snapped off completely. After snapping off, the drop either moved quickly down the plate
and was removed from the system or it remained close to the end of the needle, held back by a
narrow throat formed by adjacent nubs. When the next drop formed, it tended to combine with the
previous drop and the new larger drop would travel down between the plates.

The pressure fluctuation from the drips of water from the 28 gauge needle into open air (type A
experiments) were recorded as a basis for comparison to the glass plate experiments. It was
determined that the presence of capillary forces induced by the glass plates causes a decrease in
drip frequency and a decrease in the height of the pressure fluctuation.

The experiments demonstrate the variation of observed pressure fluctuations and the importance of
both identifying and controlling initial conditions to achieve consistent results. Although
quantitative analysis of the results is not yet complete, these features suggest that chaotic dynamics
play an important role.

1.4 FrRACTURED ROCK OUTCROP EXPERIMENTS (INEEL)

The outcrop scale experiments were designed and conceptualized to fill a gap of knowledge
between the laboratory and field (Box Canyon, Idaho) scales of investigation. A research site was




selected at Hell's Half Acre Lava Field in Idaho where a single fracture could be studied. The site
consisted of a basalt outcrop approximately 1 m thick that extended approximately 1.5 m outward
from the rock wall. An infiltration gallery (0.5 x 1 m) was constructed above the fracture to
perform constant head infiltration tests. On the underside of the overhang, drip sensors were
installed to count and timestamp drops of water falling from the fracture. More traditional
monitoring parameters, such as tension, temperature, and barometric pressure were also collected.
Figure 4.1 shows the general site and instrument layout.
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Figure 4.1. Field site characteristics and instrument layout. Note figure not to scale.

The field site was instrumented to collect data that would be amenable to a chaotic-dynamical
analysis, which typically requires long time-series of data. Data collected included time stamping
individual drip events for 20 distinct drip locations (to perform an analysis similar to that in Shaw,
1984); measurements of the inflow and outflow rates into the system (to compare temporal and
spatial variability as well as do mass balance calculations); and moisture tension, temperature, and
barometric pressure (to examine and compare with flow and drip data).

I.4.1 Field Test Setup and Instrumentation

Field work at the site began in June 1997 and continued until October 1997. Seven ponded
infiltration tests were conducted, each with 4 to 48 hour duration and a varying amount of dry-out
time (hours to weeks) between tests. Individual drips were monitored as they landed, using an
array of specially designed piezo-electric sensors that sent a signal to the data acquisition system in
response to the pressure increase accompanying a landing drip.



1.4.2  Field Observations and Preliminary Data Analysis

Preliminary reductions indicate that between 0 and 20,000 drips were collected for each location
during each test. During the later tests (4-7) over 5,000 drip events were recorded at
approximately 50% of the drip locations. The parameters of moisture tension, temperature,
barometric pressure, and flow rates/water levels were collected at 1 minute intervals for the
duration of the tests.

As the data analysis has yet to be conducted, a detailed discussion of the results cannot be
presented at this time, however the following were observed during the testing:

e Flow rates were observed to vary between and during tests, ranging from near negligible
inflow rates to as high as 0.8 I/min;

e The ambient moisture conditions in the basalt may exhibit some control on the flow through the
fracture;

e Temporal and spatial variability was observed in the location of the first appearance of drips.

15 Box CANYON PULSED PONDED INFILTRATION EXPERIMENT (LBNL)

The Box Canyon, Idaho experiment consists of a series of pulses of ponded infiltration, in which a
fixed volume of water containing a known concentration of tracer (potassium bromide) is added to
the pond all at once, allowed to infiltrate for two days, then pumped out of the pond, allowing air
to enter the subsurface. This sequence of water and air boundary conditions is believed to be
conducive to the development of chaotic flow and chemical transport behavior in the fractured
basalt. In addition to monitoring water infiltration and evaporation rates from the pond, two types
of measurements were conducted in the subsurface below the infiltration pond in order to study the
flow and transport behavior in fractured basalt. First, time series of measurements at point
locations were collected, to study the local dynamics of flow and transport and examine it for
chaotic behavior. Second, snapshots of the spatial distribution of moisture and tracer movement
were collected with geophysical techniques, to study the geometrical pattern of flow and transport
and examine it for evidence of fractal geometry.

L.5.1 Infiltration Tests and Pond Data Collected

Three pulse infiltration tests of approximately 48 hours each were conducted in September-October
1997. Table 5.1 shows specifics for each test.

Table 5.1. Pulsed ponded infiltration tests conducted at Box Canyon in 1997.

Beginning of Test Volume Duration of Volume infiltrated and
ponding number added (m’) ponding (days) evaporated (m®)
9/11/97 12:15 1 11.23 2.02 5.55

9/18/97 14:56 2 11.03 2.08 5.37

10/2/97 1540 3 11.00 2.01 4.63

Potassium bromide slurry was added to the tanks before each test resulting in a concentration of
approximately 3 mg/L. Water samples were taken from the tanks and the pond once infiltration
began to check for uniformity of concentration. Analysis of these water samples is ongoing.




Water levels in the pond were measured and cumulative infiltration rates accounting for evaporation
were calculated for each test. Evaporation was monitored using a pool within the berm walls. As
can be seen from the final column of Table 5.1, the cumulative flow rate into the pond decreased
from pulse to pulse.

1.5.2 Point Measurements

Time domain reflectometry (TDR) measurements were taken during the three infiltration tests and
during dormant periods. During infiltration, measurements were taken every 15 minutes, and
during dormant periods, every 1 or 2 hours, depending on the length of time between the tests.

Electrical resistivity (ER) measurements using miniature ER probes were taken at 15 minute
intervals during and between tests. Forty-five existing probes installed at multiple depths in 5
wells were used as well as newly installed single probes placed in the bottom of 3 wells. Thirteen
probes were placed within the pond, and 1 probe was placed in the water tank.

Tensiometry measurements of water pressure were done using 26 tensiometers installed within and
outside the pond.

Water sampling was conducted using suction lysimeters installed in boreholes. Sampling was
carried out a total of 17 times. The purpose of the sampling was to detect the movement of the
bromide tracer, and construct breakthrough curves as the water infiltrated downward through the
fractured basalt. Analysis of the water samples is ongoing.

L1.5.3 Geophysical Measurements

Neutron well logging provides a one-dimensional picture of moisture distribution. It was carried
out in 7 wells 10-12 times before, during, and after each ponding period. Preliminary results
indicate increases in water content during infiltration in wells located within and close to the pond.

Cross-borehole ground penetrating radar (GPR) provides a two-dimensional tomogram of
moisture distribution by using variations in the velocity of electromagnetic waves with dielectric
constant. GPR surveys were conducted between six different well pairs. Preliminary analysis
confirms that ambient conditions are wetter this year than last year, but radar tomograms still
identify the central fracture zone and the rubble zone as low velocity zones.

Electrical resistivity tomography (ERT) provides a three-dimensional picture of the subsurface
electrical conductivity distribution, which may be related to moisture distribution. ERT
measurements were provided by Steam Tech, Inc. These measurements involved the development
of special ER probes installed in three deep (20 m) boreholes outside the pond, three shallow (2 m)
boreholes within the pond, and 15 surface ER probes. The data analysis is ongoing.

1.6 NON-LINEAR DYNAMICAL PROCESSES IN UNSATURATED FRACTURE FLow (UNR)

Systems exhibiting chaotic behavior are characterized by the ability to make short-term predictions.
Long-term predictions are impossible because of an exponential loss rate of information on the
system state. We identify and develop the conditions under which chaotic behavior in unsaturated
flow can be expected so that realistic limits can be placed on predictions about the future state of the
system. We cast the problem in terms of thin film flow in fractures with aperiodic saturation
events using Navier-Stokes governing equations. Initial conditions consist of constant inflow rates
at the top of the fracture. If the rates are small enough and surface tension dominates, the thin film
will reach a steady flow rate. Above a certain threshold flow rate, as gravity begins to dominate,
periodic solitons develop. Above still another threshold, aperiodic solitons take over, and the flow
characteristics are chaotic.
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L7 ESTIMATING TOTAL MASS OF CONTAMINANT PLUMES FROM SPARSE WELL DATA
(LBNL)

A major problem we encounter in trying to develop models (chaotic or otherwise) for flow and
transport in fractured basalts is that it is extremely difficult to develop a picture of the overall spatial
structure of these processes from isolated point measurements, due to the extreme heterogeneity of
the system.

We consider the estimation of the total mass of a contaminant plume as a model problem to
investigate means of using sparse data effectively. Generally, the estimation of the volume or mass
and shape of the plume is based on sampling and analyzing water and soil. We have generated
several complex hypothetical contaminant plumes. We then test the ability of different prediction
methods and different sample spacing to estimate the mass of the contaminant plume. Comparisons
among the methods should tell us something about the performance of different estimation methods
for different types of complex distributions. They should also indicate what resolution of sampling
is required to make an acceptable mass estimation.

L7.1 Methods

We approach the problem of sample minimization by using several simulated heterogeneous
distributions obtained from fractal generating algorithms, and a real distribution obtained from a
fracture infiltration experiment. We initially select 15 well locations, based on a quasi-random
scheme, along a two-dimensional cross-section. The extension of this approach to three
dimensions would involve taking several two-dimensional cross-sections. The wells are sampled
at equally spaced vertical intervals. Sequential predictions of the total mass of contaminant are
computed as each successive well is sampled. Figure 7.1 shows the fractal plume and the wells
used to sample the field. The numbers indicate the sequence in which the wells are sampled.

Figure 7.1. Synthetic contaminant plume with fractal geometry and locations of sampling wells.

We use several estimation techniques such as simple averaging, spatial integration, fractal and
neural network models, to predict the total mass of the plume from the sample data. Parameters of
the concentration distribution for the plume determined from the sparse well data were compared to
those for the computer-generated plume. The convergence of the estimated plume mass to the

11
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actual known mass, as well as the number of wells required for convergence, were used as criteria
to compare the different methods.

L.7.2 Preliminary Results

Analyzing the concentration distribution, we found little or no spatial correlation between samples
collected from adjacent wells, indicating that the wells are far enough apart to provide independent
information. In general, for the examples we studied simple averaging, spatial integration, and
neural network predictions performed comparably well and estimates of total mass did not
significantly improve after five wells had been sampled. In contrast, the fractal-based methods
proved less successful, in part because they depend strongly on the value of the fractal dimension
of the plume, which is very difficult to determine from sparse well data. A comparison of some of
the estimation methods is plotted in Figure 7.2 for a synthetic fractal plume with a fractal
dimension prescribed to be 1.5. This plot shows how the estimation changes as each additional
well is sampled. The bar indicates a perfect estimation. Interestingly, the least successful method
is a fractal-based method that assumes a fractal dimension of 1.5, supposedly the actual fractal
dimension of the plume. The much better performance of a fractal method that uses a fractal
dimension of 1.3 suggests that perhaps the algorithm used to create the plume does not actually
produce the desired fractal dimension. This topic is currently under investigation.

Comparison of Prediction Methods
10 wl‘. | S N S S S S S - S S0 S G ) = ': > o o |

i | —— P Calc, gration hod
[ A —~@— Predicted/Cale, C ive Power Method
B ~= [~ = Pre/Calc, Running Average
8 \ ~— B~ - Pred/Calc, Fractal Method, D=1.5
‘ —A-~ - Pred’Calc. Fractal Method. D=1 3
o L \ i
3
= \ .
E: 6 \
S - J
s [ ; -
a \
] . J
= 1
34 \
§ M A—dc A—~A \ b
I

. [ Ml-l-!—l—l—l—l—. .

Actual Mass|
—
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Number of Wells

Figure 7.2. Summary of predictions for a fractal plume with a fractal dimension prescribed to be 1.5.
The curves labeled cumulative power method, fractal 1.5, and fractal 1.3 all use various forms of fractal-
based approaches.
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1.8 Torics or ON-GOING RESEARCH

1.8.1 Theoretical

e Study the physics of water flow and chemical transport in fractured rocks using dynamical
models of chaos theory, fuzzy logic, and a combined fuzzy-chaotic approach (a tool for
managing and optimizing remediation activities under conditions for which chaotic processes
are important).

o Use fractal and neural network approaches to determine three-dimensional spatial distributions
of properties or processes in soils and fractured rocks from point-type measurements in
boreholes.

e Apply the theory of linguistic variables to lithological analysis of data from boreholes.
¢ Re-examine water flow and tracer transport in fractured basalt from the Large-Scale Infiltration
Test in light of chaotic dynamic models.

e Compare laboratory and field methods for the determination of quasi-saturated hydraulic
conductivity of soils, and use a deterministic-chaotic model to describe a variable hydraulic
conductivity within the zone of fluctuation of water table.

e Examine the relationship between the spatial structure of geologic heterogeneity (using methods
of fractal geometry) and chaotic dynamics, as related to infiltration through a fractured basalt
vadose zone.

e Construct and investigate fractal structures created with iterated function systems (IFS), which
can simulate realistic characteristics of natural fracture patterns in basalt.

1.8.2 FExperimental

e Evaluate the performance of tensiometers in fractured rocks, using laboratory cores and
modeling, taking into account the interaction between the matrix and fractures.

e Use ground penetrating radar to investigate flow in soils and fractured rocks.
e Use 2-D and 3-D ERT to evaluate zones of preferential flow in fractured rocks.

e Conduct a series of pulsed infiltration tests at Box Canyon and Hell’s Half Acre field sites in
Idaho.
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II.1

BOX Canyon Infiltration Test
Summary of 1996-97 Results

Boris Faybishenko and Michael Steiger

Goal: Develop a conceptual model of geometry and physics of liquid flow
and chemical transport for an intermediate scale of investigations in
unsaturated-saturated fractured basalt
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1.2

Radar Results at Box Canyon

John Peterson
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FIGURE 7: Pressure fluctustion from open drips
and smooth parallel giass plates, 0.25 mUhr flow rate

oh10997 0.25 ml/hr, drips, 28g, sstube, beg 10/9/97
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FIGURE 6: Parallel shower-door gitss plates, 0.5 and 0.28 mUhr.
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Modes of dripping in "shower-door" plates

Initially dry plates
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Numerical Model

Massive Basalt

Sail

Veslcular Zone

Other Fracture

Horlizontal Fraoture

Secondary Vertioal Fraoture
Central Fraoture Zone

d Contral Fraoture Zone (vesloular)
| Primary Vertical Fracture

t Rubble Zone
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Distance Along Pond Diagonal (m)
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‘ Ponded Infiltration Results
Model with No Air Entrapment

One WeekX Infiltration Two Weeks Infiltration
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Ponded Infiltration Results
Model with Entrapped Air
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Natural State ,
Model with Capillary Pre§sure and Background Infiltration
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Ponded Infiltration Results :
Model with Capillary Pressure and Background Infiltration

Initial Conditions
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Liquid Flow Field

Ambient Infiltration of 0.2 mm/day

Material

Massive Basalt

Sail

Vesicular Zone

Other Fracture

Horizontal Fracture
Secondary Vertical Fracture
Central Fracture Zone
Central Fracture Zone
Primary Vertical Fracture
Rubble Zone
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Liquid Flow Field

Two Weeks Ponded Infiltration

Material

Masslve Basalt

Soil

Vesicular Zone

Other Fracture

Hoarizontal Fracture
Secondary Vertical Fractur
Central Fracture Zone
Central Fracture Zone
Primary Vertical Fracture
Rubble Zone
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Depth (m)

Gas Flow - One Week |

nfiltration
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- Model with Entrapped Air

Model Prediction for Well T-5
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Flow Rate (cm/day)
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IL."7

Estimating Total Mass of Contaminant Plumes
from Sparse Well Data

Masoud Nikravesh, Lea Cox, Boris Faybishenko
Lawrence Berkeley National Laboratory, Berkeley, CA
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« test and compare different
methods for interpolating
distribution of contaminants

1) simple averaging

2) fractal methods

3) neural network

* minimize number of wells needed
to estimate the total mass of
contaminant
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Generation of Fractal
Plume

fractal surface generator software
(Russ, 1995) with midpoint
displacement option

fractal dimension of 2.5

256 x 256 pixels

cutoff of 50 to simulate detection limit
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Simple Averaging: Case 2
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Simple Averaging: Case 3
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Fractal Plume #2, D=2.75
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Yucca Mountain Fracture
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Fractal Methods
« Total Mass ~ (a) (r)P

* Uncertainty in “a” and in “D”

sparse data

variations with each well

methods of measurement

Conclusion: Fractal Methods not
useful for this type of problem

Method of Case #1 Case #2 Case #3
Measurement |(D=2.5) (D=2.75) (D=2.25)
Slit Island 2.31 2.60 2.14
Kolmogorov Box [2.49 2.68 2.37
RMS versus Area [2.19 2.37 2.17
Minkowski Cover|2.19 2.42 2.10
Hurst 2.57 2.67 2.36
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Neural Network Model

each node is a processing unit
and manipulates the input vector
to give output

utilizes weighting factors,
internal thresholds and transfer
functions

prespecify the topology of the
node connections

use statistics and probability to
reduce the output error

interpolation and extrapolation
confined to the region defined by
the measurements

no sharp boundaries
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Conclusions

simple averaging predictions
show sensitivity to initial wells
selected

higher resolution sampling does
not always lead to a better
prediction

simple averaging predictions did
not improve after 5 wells were
drilled

fractal methods not applicable to
this type of problem

neural network approach can
help optimize the location and
number of wells
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Pathfinder Code

very simple and fast approach to
simulating infiltration into
complex geometries

complementary to more complex
codes such as TOUGH2

easy to modify parameters and
initial conditions

given a map of permeabilities,
finds the channel of least
resistance
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Find largest aperture with no water at top
boundary(active site); fill with water

identify nearest neighbors to active site

compute capillary pressures between active
site and nearest neighbors

compute gravity pressure between active site
and nearest neighbors

summation of pressures between aclive site
and nearest neighbors

identify new active site(the neighbor with the
maximum combined capillary and gravity
force); fill with water

calculation of area and volume: repeat

steps until flow stops (trapping or bottom

boundary)

Return to top boundary; select next largest
aperture; continue until no more paths are
available or until a designated infiltration
volume is exceeded
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meters

Depth,

Box Canyon Simulation

Infiltration Paths
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I11.9

2-D modeling of the ERT
performance to predict fracture
geometry

Jeong-Seok Yang

Purpose of this research:

fracture imaging
resolution of result

different fracture combination modeling
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Regular Motion

Initially adjacent
points stay adjacent

b 1 oexp(

ot)

>t

Chaotic Motion

Initially adjacent
points become
exponentially
separated

Random Motion

Initially adjacent
points are distributed
with equal probability

T TS byl

236

0



awi} _
0clL 001 08 09 ()4 0¢ -0

T

g

....................................................................................................... - mo.o

-

........-..-..--.-..-.--....-..-..-.-.-n...-......-.--.....-...-........-..-......-..----........-....”l —..O

..... M R R LR m_‘.o

237

Byl

............................. R T R e S ERARTERTE ERR | 7 :
SUURRR | B || N IR | | O A }szo
................ LTI T AL L .

| | TV “ |

Geo



.

(u)x=(}+u)x

jseueg
eoeds-eseyd MW

eAINO Buyl4 ——
eseyd-opiesd @

§¢'0

SL'0

L0

Ld

[l

[

1

v
' } ' ' '
[ ' ' L : .
' ' ' [ ' ' '
0 ' 1 [ . [ '
' ' ' ' D 1 '
. ' 1 4 0 '
0 T T T ' ' .
' ' ' 0 . ' '
' ] v ' 1 ' '
‘ b v . ' ' .
. ’ . ' ' [ .

........... vl-. .- R REEER] IR RE S e N AL I I AP SR SRR IR S R B AR I A T B

0 [ . ' '
. h A [l 0 . '
[ 1 ' ' . ' '
' ’ 1 ) ' .
! ' ) ' '
[ 0 v [ ' '
. [ [ [ ' ' v
[ ' ' [l ' . '
) 1 ' ' v ' .
. ' ’ ' . ' f
1 L " L X A "

(1+u)x

238



0

(L'0=0 B39yl —
G,0°0=0 B9yl -~
(50°0=0 BI9YyL—
(52070=0 BIOYL —

sug

|||||||||||||||||||||||||||||||||||||||||||

e

dwil] "SA BJaY] JO SUOIJIPUOI [eljIul 0} aduapuadap SAISUIS

o

239

3 e g, e =

VoV mr— v . p—— b e - Wy ey m——

- e



0.4
0.35
0.3
0.25

N

.

o

(L+u)x

0.156

240

0.1
0.05

0.4

0.35

0.3

0.256

0.2

0.15

0.1

0.05



waIsAs o) Jo senradoxd
A9 10919p 01 yoroidde [opowI-10TId-ON e

WAISAS o Jo siojouwrered
[eo1sAyd ()0 9WoS IN0ge UOIJBULIOJUT
9Y) Surejuod ‘(3)X ‘39S ejep [RUOISUSUWIIP-IU() o

SISAJeUY SOLIOS QW]

241




:7——-.& e /%7 ;S7‘/‘C d c.fa?é/’e ﬂ?L/'q / @7“4+0'01f

N Y
() (1)

S aua./odaus +o  the /od:r‘s'/"‘c db/]é&‘“ce

ez/uq-/-;oa

= Y
Inee =P (1-2n (2)
ﬁﬂ .yn-l-?-yn .
At ~ L/
S =1+thr, J(.::(!-t-hr)K/h,,
un ‘-""yh/’(

deterministy
Calée

U n+l‘=fan (4‘4(»)

242



noisy /oop's%,‘c map
Une =[:F+ }(”)’J U n [{-—L(..)

%n i cates "ﬂ\evf/uc Yug Hiotes g
“ne f /oal‘ame'l‘er’

TIVIZ NT L LT YT VAR L R B M e s gy S e meT e R TN, N (eper s v pe—— e t— T N—— e e o,



QOUBSIOAIP JO SJBI OFBIOAL =Y

13+ PUB ‘X ‘S9lels [enIul SULIQJJIP
APYST[S 0M] WOIJ SUTAJOAD ST WIISAS AT, o

yuouodxo aoundeAT

244



Z.yapuh'ov exponen t
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Hurst exponen’
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20 20 60 80 100 120

Time

Figure 5.7 : (a) t=80.0 , {b) t=120.0

030 PhxutsT) 03Pt
.«..'7-"""" RS

026 A 026

! Plxqt) ' Plx.t)

026 0% 026 030
030 P{xt+7) 030FP(x 1) .x,=05

'\'( ‘X=10
026 @ 026F -, o

_ 7 Pixd) U Plxd)

026 030 026 030

Figure 5.8 : (a] xy=1.0 , (v) ‘X1'0-5 » (¢) x,=0 » (2) = ()
. chaotic behaviour, {d) regular behaviour,T=5.
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A= Llyapunov expone it
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I11.

Life Cycle Planning for Chaotic-Dynamical

Research Project

1°* Year (completed)

INEEL

Hells Half Acre

Box Canyon

LBNL
Lab

Box Canyon

Reno

Focus of the research effort was to collect a data set on a small scale field
site of sufficient quality and size in order to perform chaotic-dynamical
analysis. This data was supported by tensiometer, temperature, head and
flow data and instrument development.

Supported Box Canyon tests.

Understand the physics of flow in fractures, and collect data of sufficient
quality and size in order to determine if flow in fractures is a chaotic-
dynamical process.

Investigated impact of tensiometer on measurements in a fracture using
core study

Evaluated possible preferential flow using geophysics

Understand the impact of monitoring approach on data collected
Repeated infiltration tests using tracers and electrical resistivity
Modeled flow using TOUGH?2

Data analysis using chaotic-dynamical approach (may lead to a transition
from chaotic model at the small scale to a stochastic model at larger field
scale)

Develop a theoretical approach for data analysis based upon the Navier-
Stokes equation
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2™ Year

INEEL

Hells Half Acre
Repeat small scale test at one or more sites and modify the test approach
based upon the analysis of 1997 data, laboratory testing and instrument
development. New testing will involve the use of tracers and geophysics.
At the end of the field season a tested fracture will be excavated intact and
shipped to Berkeley Lab for further testing

Lab Verification of monitoring equipment and testing of new instruments

LBNL

Lab Data analysis

Testing will be performed on a variety of plate textures

Testing on fractured core

Tracer testing

Testing on etched glass (etching patterned after Box Canyon Outcrop)

Box Canyon Pulsed infiltration
Ponding concurrent with drainage
Geophysics (use slanted wells and ER probes )
Development and testing of flow meter for fractured rock (saturated)

Modeling HHA modeling?
Lab scale modeling?
Coordinate modeling with geophysics (use moisture content from
TOUGH?2 for inverse modeling?)
Develop approach and software for chaotic-dynamical modeling
Use CPN moisture content for modeling?

LSIT Revisit data set using chaotic-dynamical approach?

Instrument Development
Impact of monitoring device on the data collected
Fractured core tensiometer experiment
Passive/active monitoring approach
Flow meter for saturated fractured rock and for vadose zone
Piezo-strips in slanted wells - dripping or flowing along the borehole

Reno To be included
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3" Year

INEEL
Hells Half Acre
Focus on building ties from lab-scale to small-scale to intermediate-scale to
full scale
Continued data analysis
Instrument development
Additional Hells Half Acre Testing based on data needs
General
Work with problem holders to develop strategies for implementation of
technical proposals
Lab Verification of monitoring equipment and testing of new instruments
LBNL
Lab Continued data analysis
Testing of Hells Half Acre fracture using test approaches developed in
year 2
Analysis of fracture sediment infilling
Evaluate geometry of field added dye
Cross-comparison of lab results to INEEL Hells Half Acre field
measurements
Box Canyon Possibility of limited field testing at Box Canyon site
Basic monitoring of drain-out from year 2 tests and natural wetting and
drying events
Modeling Modeling at different scales - this may involve a chaotic-dynamical model

at small scale and a deterministic model at a larger scale. Probably multi-
component. May require some code development.

With problem holder involvement do a preliminary comparison using new
chaotic-dynamical approach to evaluate flow and transport from CERCLA
site and contrast to the results from a RI/FS fate and transport model
using conventional equivalent porous media approach

Instrument Development
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Produce demo quality prototype instruments and a conceptual approach
for potential application at “live” site

Develop an “Instrumentation Strategy” including:

Instruments, passive/active components, hydrogeological and geophysical

components
Reno
To be included
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