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Abstract

These proceedings contain a record of the talks presented and papers
submitted by participants of the 5™ Joint Russian-American Computational
Mathematics Conference. The conference participants represented three
institutions from the United States, Sandia National Laboratories (SNL),
Los Alamos National Laboratory (LANL), Lawrence Livermore National
Laboratory (LLNL), and two from Russia, Russian Federal Nuclear Center
— All Russian Research Institute of Experimental Physics (RFNC-
VNIIEF/Arzamas-16), and Russian Federal Nuclear Center — All Russian
Research Institute of Technical Physics (RFNC-VNIITF/Chelyabinsk-70).
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PARALLELING CALCULATIONS IN 3D ELECTROMAGNETIC
SIMULATION CODE

G. A. Adamkevich, G. V. Baidin, I. A. Litvinenko. V. A. Rotko,
RFNC-VNIITF, Russia

Abstract
Presentation touches upon the issues related to a structure of code for 3D simulation
of plasma electrodynamics problems which will enable to parallel the code efficiently on
available multiprocessors. Peculiarities of 3D calculations and hybrid description of

charge carriers are considered as elements specifying data and code structure, determining
specifics of selection of paralleling option.




PARALLELIZATION METHODS FOR NUMERICAL SOLUTION OF 3D
GROUP NON-STATIONARY EQUATION OF NEUTRON DIFFUSION
FOR NUCLEAR POWER PLANT SAFETY CALCULATIONS

A. V. Alexeyev, O. A. Zvenigorodskaya, R. M. Shagaliyev,
RFNC-VNIIEF, Russia

Abstract

The paper presents an iterative parallelization method for 3D diffusion
problems implemented in reactor program KORAT 3D. It is based on geometric
decomposition concept which provides the possibility of parallelization on a great
number of distributed-memory processors.

As it is known, the idea of geometric decomposition method is in the fact that
the initial problem solution domain is split into a number of subdomains (to be called
mathematical domains below) and the diffusion equation is solved separately by
mathematical domains. The interaction of solutions obtained in different mathematical
domains is accounted by the internal boundary conditions whose interchange takes place
on special iterations (on iterations by internal boundary conditions).

The parallelization method implemented in KORAT 3D program is peculiar for
the use of a special kind of internal boundary conditions. These internal boundary
conditions are a combination of a full flow function and the desired function with a
coefficient selected in this combination basing on a multidimensional analog of a limiting
run coefficient.

The paper presents the results of analytical estimations of the iterative process
convergence rate by internal boundary conditions along with the results of numerical
evaluations of parallelization efficiency exemplified on a 3D test problem for channel-
type reactor.




METHODS FOR IMPROVING ACCURACY OF THE FIRST-ORDER
APPROXIMATION SCHEME FOR SOLVING SYSTEMS OF
EQUATIONS FOR RADIATION TRANSFER

E. S. Andreyev, V. Yu. Gusev, M. Yu. Kozmanov,
RFNC-VNIITF, Russia

Abstract
Methods are considered to improve schemes of the first order of accuracy enabling
to achieve required accuracy using even a coarse spatial grid. Results are illustrated by the
examples. To build the scheme, principle of maximum {1,2] is used, a system of non-
linear difference equations obtained is solved with the method of iterations [3]. The paper
sets forth development of results presented at the previous conference of five nuclear labs
described in [4].

Reference

1. E.S. Andreyev, M.Yu. Kozmanov, E.B. Rachilov Principle of Maximum for a System
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2. M. Yu. Kozmanov Existence Theorem of Solution for Non-Linear System of
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Ser. Matematicheskoe Modelirovanie Physicheskikh Processov. 1989 Issue 2, pp. 47-50.
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ANALYTICAL AND NUMERICAL STUDY
OF ACCELERATED THIN LAYER INSTABILITY

S. M. Bakhrah and G. P. Simonov,
RFNC-VNIIEF, Russia

Abstract

New analytical solutions for Rayleigh-Taylor thin layer instability on a non-linear
in observer space process stage have been obtained presenting the main equations in
Lagrangian variables.

Analytical solutions have been obtained for a liquid layer and an elastic one with
both 2D and 3D pertubations present. Pertubation evolution dependence is studied in
respect of pertubation kinds (pertubation of middle surface, layer thickness and
pertubations in layer velocities) and of non-dimensional parameters determining the
pertubation nature. Both exponentially growing and bounded solutions exist depending on
the parameter values.

The relations of pertubation growth increment and critical acceleration have been
obtained for a thin elastic layer, the boundaries of solution limitation have been defined.
The relations determining the strength effect on pertubation growth, particularly on their
limitation conditions, have been obtained.

The 3D elastic layer pertubations (with a considerably large shift module) are
shown to grow no faster than the 2D.

The analytical solutions obtained are tested by means of a complete system of
conservation laws for a compressible continuum. _

The obtained thin layer pertubation growth regularities are observed to take place
in a semispace of compressible both liquid and elastic continuum.

The analytical solutions obtained are good tests for 2D and 3D numerical
techniques for continuum flow calculations.




A TECHNIQUE FOR RADIATION TRANSFER COMPUTATION WITH
ACCOUNT OF ANISOTROPIC EMISSION OF BOUNDARY SURFACE

S. V. Bazhenov and P. 1. Pevnaya,
RFNC-VNIIEF, Russia

Abstract
The technique is intended for the solution of radiation transfer equation in

optically-transparent domain in the case when boundary surface radiation intensity
distribution is arbitrary enough.

To solve the problem, the method based on angular coefficients is used.

The equation of radiation exchange between boundary surfaces is derived from the
expression for one-way radiation flux outgoing through the unit boundary area of surface.

The scheme of calculations proposed by the authors to solve the problem is
strictly conservative for a common case when the form of the boundary surface depends
on time.

While setting the boundary condition the technique gives an ability to use various
boundary condition types in different areas of the boundary surface.

The given technique is implemented by the RADIBS program.

Using this program one may obtain more exact values of geometric ranges which
will allow to compute radiation transfers in a domain of a small size (as compared to the
range length in the material) by the diffusion approximation technique.




VARIATIONAL DIFFERENCE FLOW-TYPE SCHEME FOR
3D DIFFUSION EQUATION ON GRIDS OF ARBITRARY
HEXAHEDRONS

S. V. Bazhenov, S. P. Belyayev, Yu. A. Bondarenko, V. V. Gorev,
T. V. Korol’kova, P. 1. Pevnaya,
RFNC-VNIIEF, Russia

Abstract

The presentation describes the construction of a difference scheme for 3D
equation of nonstationary linear isotropic and anisotropic diffusion by variational
technique using flow-type form of diffusion equation (generalization for 3D case of the
following technique: Tishkin V.F., Favorskii A.P., Shashkov M.Yu. Variational difference
schemes for heat conduction equation on nonregular grids./ Doklady of the USSR
Acad.Nauk .-1979, Vol.246, No.6, pp.1342-1346). An arbitrary grid composed of
hexahedrons whose bounds are ruled surfaces and edges are segments of straight lines is
used. Temperature values being averaged over hexahedral cell volumes are used. Flows
being used are determined at hexahedrons’ bounds, they are averaged over bound surface
values of flow components normal to bounds. The energy conservation law is being
approximated in each hexahedron in a standard manner. The relation between flows at

bounds and temperatures in cells is obtained from the minimality condition for the
functional

W) = | D-‘\vrvrdg -2fu- divWdQ
Q Q

which is approximated in a simplest manner and in which only flow components normal
to hexahedron bounds are varied. As a result, the difference between temperatures of two
neighboring hexahedral cells is expressed via some linear combination of flows through
these two cells’ bounds. Then temperatures in the upper layerare excluded using the
energy conservation law written in implicit form and this results in linear system of
equations for normal flows. After approximate calculation of the equation system
temperatures are being found from the energy balance equation. The scheme version for
anisotropic diffusion is developed for an arbitrary symmetric positively defined tensor of
diffusion coefficients and the minimized functional is modified correspondingly.

To solve numerically the obtained system of difference equations, iterations with
one-dimensional runs are used that always converge due to the strict convexity of the
minimized functional. The results of test and methodical computations are given.
Calculations on orthogonal and strongly oblique grids show that the number of such
iterations is approximately proportional to the square root from the Courant number.




NUMERICAL SIMULATION IN DIFFUSIVE-VACUUM
APPROXIMATION
OF RADIANT ENERGY TRANSFER IN THERMONUCLEAR TARGETS

A. A. Bazin, V. V. Vatulin, Yu. A. Dementyev, V. F. Mironova,
G. 1. Skidan, E. N. Tikhomirova, B. P. Tikhomirov,
RFNC-VNIIEF, Russia

Abstract

An approximated method of numerical solution for 2D and 3D problems of
radiant energy transfer in multilayer systems consisting of optically thick and thin areas
is considered. Radiation transfer in optically thick layers is simulated in sectoral
approximation by the equation of radiant heat conductivity and gas dynamics. The .
propagation of X-ray radiation through optically thin layers is described by integral
equation of radiation heat conductivity with account of photon delay.

The equations of radiant heat conductivity and gas dynamics are integrated by
finite difference method. Integral equation is solved either by a generalized zonal method
or by method of large photons. Visibility factors (a slope one and of average distances)
are calculated for meshes on vacuum area surface with varied geometry. To obtain
solution on a temporal layer a method of separate area calculation is used. Stable exchange
boundary conditions are set up between optically thick and thin layers.

An application of diffusive-vacuum method to inertial thermonuclear fusion
exemplifies its use.

The characteristics of X-ray radiation field in a construction of a cylindric target
for heavy ion fusion with converters placed at lateral surface are studied in 2D and 3D
cases.

The influence of target parameters and heavy ion beam on the uniformity of X-ray
radiation distribution field on capsule surface is studied.




MOLECULAR DYNAMICS OF SHOCK LOADING OF METALS WITH
DEFECTS

J. F. Belak,
Lawrence Livermore National Laboratory

Abstract

The finite rise time of shock waves in metals is commonly attributed to
dissipative or viscous behavior of the metal. This viscous or plastic behaviour is
commonly attributed to the motion of defects such as dislocations. Despite this intuitive
understanding, the experimental observation of defect motion or nucleation during shock
loading has not been possible due to the short time scales involved. Molecular dynamics
modeling with realistic interatomic potentials can provide some insight into defect motion
during shock loading. However, until quite recently, the length scale required to accurately
represent a metal with defects has been beyond the scope of even the most powerful
supercomputers. Here, we present simulations of the shock response of single defects and
indicate how simulation might provide some insight into the shock loading of metals.

Work performed under the auspices of the U.S. DOE by LLNL under contract No.
W-7405-ENG-48.
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COMPUTATIONAL SIMULATION OF NON-EQUILIBRIUMPROCESSES
DURING THERMONUCLEAR FUSION

I. M. Belyakov, S. A. Belkov, V. V. Vatulin, L. L. Vakhlamova,
O. A. Vinokurov, S. G. Garanin, V. F. Yermolovich, N. P. Pleteneva,
G. N. Remizov, V. Yu. Rezchikov, N. A. Ryabikina, I. D. Sofronov,

L. P. Fedotova, R. M. Shagaliyev,
RFNC-VNIIEF, Russia

Abstract

The paper presents the main possibilities of numerical simulation for the
processes of radiation and material energy transfer in 2D problems of thermonuclear
fusion implemented in the frames of SATURN and MIMOSA technique communication
and their application to solve some thermonuclear fusion problems.

SATURN program set computes the processes of spectral X-ray radiation
transfer, energy transfer by ions and electrons with account of environment non-
equilibrium, laser radiation energy tranfer and absorption and the ionization kinetics in
an average ion approximation.

Multicomponent non-equilibrium gas dynamics movements are calculated in
MIMOSA code.

Initial differential equations are approximated by grid (finite-difference and finite
element) methods. Non-orthogonal spatial grids are used allowing to account the
peculiarities of computed geometries with a required degree of detail. Special acceleration
methods are used to economize the computations.

The computations with a simultaneous account of all the processes named above
are carried out by special communication programs of SATURN and MIMOSA
techniques (as a contiuous data exchange).

The given program package finds a wide application in studymg different
constructions for thermonuclear fusion.

The possibilities of the given program package are demonstrated by some
numerical simulation results of heavy ion fusion target with elliptic chamber proposed by
a group of scientists from Frankfurt University under Prof.Marun I. leadership.

Numerical results by SATURN+MIMOSA codes have allowed to optimize the

costruction of ellipsoid target. If the radiation field assymetry on the capsule surface
reached 16% in the first construction versions, the improved version based on numerical
calculations gave the assymetry value of 1%.
The work is being continued. Basing on modern physics-mathematical models the progam
set implies the calculation possibility for the parameters of non-equillibrium
multicomponent multicharged plasma in an average ion approximation being taken into
account in a series of computations for an American LABYRINTH target. The first
preliminary results have been obtained.
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SOLUTION OF LARGE NONLINEAR QUASISTATIC STRUCTURAL
MECHANICS PROBLEMS
ON DISTRIBUTED-MEMORY MULTIPROCESSOR
COMPUTERS

M. Blanford,
Sandia National Laboratories

Abstract

Most commercially-available quasistatic finite element programs assemble element
stiffnesses into a global stiffness matrix, then use a direct linear equation solver to obtain
nodal displacements. However, for large problems (greater than a few hundred thousand
degrees of freedom), the memory size and computation time required for this approach
becomes prohibitive. Moreover, direct solution does not lend itself to the parallel
processing needed for today's multiprocessor systems.

This talk gives an overview of the iterative solution strategy of JAS3D, our
nonlinear large-deformation quasistatic finite element program. Because its architecture is
derived from an explicit transient-dynamics code, it does not ever assemble a global
stiffness matrix. I will describe the approach we used to implement the solver on
multiprocessor computers, and show examples of problems run on hundreds of
processors and more than a million degrees of freedom. Finally, I will describe some of
the work we are presently doing to address the challenges of iterative convergence for ill-
conditioned problems.
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MOLECULAR DYNAMICS MODELING OF SOLIDIFICATION IN
METALS

D. B. Boercker, J. Belak, and J. Glosli,
Lawrence Livermore National Laboratory

Abstract
Molecular dynamics modeling is used to study the solidification of metals at high
pressure and temperature. Constant pressure MD is applied to a simulation cell initially
filled with both solid and molten metal. The solid/liquid interface is tracked as a function
of time, and the data is used to estimate growth rates of crystallites at high pressure and
temperature in Ta and Mg.

Work performed under the auspices of the U. S. DoE by LLNL under contract No. W-
7405-ENG-48.
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ELIMINATION OF ARTIFICIAL GRID DISTORTION AND
HOURGLASS-TYPE MOTIONS
BY MEANS OF LAGRANGIAN SUBZONAL MASSES AND PRESSURES

E. J. Caramana and M. J. Shashkov,
Los Alamos National Laboratory

Abstract

The bane of Lagrangian hydrodynamics calculations is premature breakdown of
the grid topology that results in severe degradation of accuracy and run termination often
long before the assumption of Lagrangian zonal mass ceased to be valid. At short spatial
grid scales this is usually referred to by the terms “hourglass” mode or "‘keystone”
motion associated in particular with underconstrained grids such as quadrilaterals and
hexahedrons in two and three dimensions, respectively.

At longer spatial scales relative to the grid spacing there is what is
referred to ubiquitously as *'spurious vorticity", or the long-thin zone problem. In both
cases the result is anomalous grid distortion and tangling that has nothing to do with the
actual solution, as would be the case for turbulent flow. In this work we show how such
motions can be eliminated by the proper use of subzonal Lagrangian masses. and
associated densities and pressures. These subzonal masses arise in a natural way from
the fact that we require the mass associated with the nodal grid point to be constant in
time. This is addition to the usual assumption of constant, Lagrangian zonal mass in
staggered grid hydrodynamics scheme.

We show that with proper discretization of subzonal forces resulting from
subzonal pressures, hourglass motion and spurious vorticity can be eliminated for a very
large range of problems. Finally we are presenting results of calculations of many test
problems. ‘
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NUMERICAL PRESERVATION OF SYMMETRY PROPERTIES OF
CONTINUUM PROBLEMS

E. J. Caramana and P. Whalen,
Los Alamos National Laboratory

Abstract

We investigate the problem .of perfectly preserving a symmetry associated
naturally with one coordinate system when calculated in a different coordinate system.
This allows a much wider range of problems that may be viewed as perturbations of the
given symmetry to be investigated. We study the problem of preserving cylindrical
symmetry in two-dimensional cartesian geometry and spherical symmetry in two-
dimensional cylindrical geometry. We show that this can be achieved by a simple
modification of the gradient operator used to compute the force in a staggered grid
Lagrangian hydrodynamics algorithm. In the absence of the supposed symmetry we
show that the new operator produces almost no change in the results because it is always
close to the original gradient operator. Our technique thus results in a subtie manipulation
of the spatial truncation error in favor of the assumed symmetry but only to the extent
that it is naturally present in the physical situation. This not only extends the range of
previous algorithms and the use of new ones for these studies, but for spherical or
cylindrical calculations reduces the sensitivity of the results to grid setup with equal
angular zoning that has heretofore been necessary with these problems. Although this
work is in two-dimensions, it does point the way to solving this problem in three-
dimensions. This is particularly important for the ASCI initiative. The manner in which
these results can be extended to three-dimensions will be discussed.

15




PARALLEL DETERMINISTIC NEUTRONICS WITH AMR IN 3D

C. Clouse, J. Ferguson, C. Hendrickson,
Lawrence Livermore National Laboratory

Abstract
_ AMTRAN, a three dimensional Sn neutronics code with = adaptive mesh
refinement (AMR) has been parallelized over spatial domains and energy groups and runs
on the Meiko CS-2 with MPI message passing. Block refined AMR is used with linear
finite element representations for the fluxes, which allows for a straight forward
interpretation of fluxes at block interfaces with zoning differences. The load balancing
algorithm assumes 8 spatial domains, which minimizes idle time among processors.




A NEW 2-D, LIMITED, ZONE-CENTERED ARTIFICIAL VISCOSITY
TENSOR

M. R. Clover and C. W. Cranfill,
Los Alamos National Laboratory

Abstract

We have developed a fully 2-d(3-d) formulation of a linear, monotonic limiter for
use in conjunction with a new zone-centered Lagrangian Q (which we refer to as a
"discretization" viscosity) suitable for arbitrary connectivity. Rather than min-mod'ing
duw/dx from two adjacent cells onto a node, as in 1-d, we min-mod each eigenvalue of the
strain-rate tensor from all zones adjacent to a node. These are then used to calculate the
shock (or discretization) jump across the zone in that eigenvector's direction. We will
report results on various test problems (e.g. Saltzmann's piston problem, Coggeshall's
similarity solution, etc).
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QUANTUM MOLECULAR DYNAMICS SIMULATIONS OF DENSE
MATTER

L. Collins, J. Kress, N. Troullier, T. Lenosky, and I. Kwon,
Los Alamos National Laboratory

Abstract

We have developed a quantum molecular dynamics(QMD) simulation method for
investigating the properties of dense matter in a variety of environments. The technique
treats a periodically- replicated reference cell containing N atoms in which the nuclei
move according to the classical equations-of-motion. The interatomic forces are generated
from the quantum mechanical interactions of the (between?) electrons and nuclei. To
generate these forces, we employ several methods of varying sophistication from the
tight-binding(TB) to elaborate density functional(DF) schemes. In the latter case, lengthy
simulations on the order of 200 atoms are routinely performed, while for the TB, which
requires no self-consistency, upwards to 1000 atoms are systematically treated. The
QMD method has been applied to a variety cases: 1) fluid/plasma Hydrogen from liquid
density to 20 times volume-compressed for temperatures of a thousand to a million
degrees Kelvin; 2) isotopic hydrogenic mixtures, 3) liquid metals(Li, Na, K); 4) impurities
such as Argon in dense hydrogen plasmas; and 5) metal/insulator transitions in rare gas
systems (Ar,Kr) under high compressions. The advent of parallel versions of the
methods, especially for fast eigensolvers, presage LDA simulations in the range of 500-
1000 atoms and TB runs for tens of thousands of particles. This leap should allow
treatment of shock chemistry as well as large-scale mixtures of species in highly transient
environments.
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SOURCE DESCRIPTION AND SAMPLING TECHNIQUES USED IN
PEREGRINE MONTE CARLO CALCULATIONS OF DOSE
DISTRIBUTIONS FOR RADIATIONO NCOLOGY

L. Cox, P. M. Bergstrom, Jr., W. P. Chandler, S. M. Hornstein, A. E. Schach von
Wittenau, C. L. Hartmann Siantar,
Lawrence Livermore National Laboratory

Abstract

The goal of Lawrence Livermore National Laboratory's PEREGRINE project is to
provide accurate and fast Monte Carlo calculation of dose distributions for routine clinical
use in the radiation treatment of cancer. To attain this goal, an accurate and efficient
method of describing and sampling external radiation sources is essential. We combine
comprehensive simulations of accelerators with clinical measurements to determine
accurate, multiple-component descriptions of the patient-independent radiation field.
Monte Carlo simulations of the accelerators are performed with MCNP/4B and/or
BEAM96 based on detailed engineering information obtained from the linac
manufacturers. In this presentation, we describe the different source component models
available in PEREGRINE for defining complex patient-independent bremsstrahlung
sources emitted from commercially available linacs. The sampling techniques used with
the different source models are explained. PEREGRINE's methods of handling beam
modifiers -- such as jaws/collimators, blocks, wedges and multi-leaf collimators -- is
described. The important aspects of absolute normalization and dose monitor unit
calculations are discussed. Comparisons to clinical measurements and to standard clinical
treatment plans are shown.

This work was performed under the auspices of the U.S. Department of

Energy by the Lawrence Livermore National Laboratory under contract
number W-7405-ENG-48.
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BOUNDARY ACQUISITION FOR SETUP OF NUMERICAL
SIMULATION

C. Diegert,
Sandia National Laboratory

Abstract

We present a work flow diagram that includes a path that begins with taking
experimental measurements, and ends with obtaining insight from results produced by
numerical simulation. Two examples illustrate this path:

(1) Three-dimensional imaging measurement at micron scale, using X-ray

tomography, provides information on the boundaries of irregularly-shaped

alumina oxide particles held in an epoxy matrix. A subsequent numerical
simulation predicts the electrical field concentrations that would occur in the
observed particle configurations.

(2) Three-dimensional imaging measurement at meter scale, again using X-ray

tomography, provides information on the boundaries fossilized bone fragments in

a Parasaurolophus crest recently discovered in New Mexico. A subsequent

numerical simulation predicts acoustic response of the elaborate internal structure

of nasal passageways defined by the fossil record.

We must both add value, and must change the format of the three-dimensional
imaging measurements before the define the geometric boundary initial conditions for the
automatic mesh generation, and subsequent numerical simulation. We apply a variety of
filters and statistical classification algorithms to estimate the extents of the structures
relevant to the subsequent numerical simulation, and capture these extents as faceted
geometries. We will describe the particular combination of manual and automatic methods
we used in the above two examples.
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THE MOVING-LEAST-SQUARES-PARTICLE ~ HYDRODYNAMICS
METHOD (MLSPH)

G. Dilts,
Los Alamos National Laboratory

Abstract

An enhancement of the smooth-particle hydrodynamics (SPH) method has been
developed using the moving-least-squares (MLS) interpolants of Lancaster and
Salkauskas which simultaneously relieves the method of several well-known undesirable
behaviors, including spurious boundary effects, inaccurate strain and rotation rates,
pressure spikes at imapct boundaries, and the infamous tension instability. The classical
SPH method is derived in a novel manner by means of a Galerkin approximation applied
to the Lagrangian equations of motion for continua using as basis functions the SPH
kernel function multiplied by the particle volume. This derivation is then modified by
simply substituting the MLS interpolants for the SPH Galerkin basis, taking care to
redefine the particle volume and mass appropriately. The familiar SPH "kernel
approximation" is now equivalent to a colocation-Galerkin method. Both classical
conservative and recent non-conservative formulations of SPH can be derived and
emulated. The non-conservative forms can be made conservative by adding terms that are
zero within the approximation at the expense of boundary-value considerations. The
familiar Monaghan viscosity is used. Test calculations of uniformly expanding fluids, the
Swegle example, spinning solid disks, impacting bars, and spherically symmetric flow
illustrate the superiority of the technique over SPH. In all cases it is seen that the
marvelous ability of the MLS interpolants to add up correctly everywhere civilizes the
noisy, unpredicatble nature of SPH. Being a relatively minor perturbation of the SPH
method, it is easily retrofitted into existing SPH codes. On the down side, computational
expense at this point is significant, the Monaghan viscosity undoes the contribution of
the MLS interpolants, and one-point quadrature (colocation) is not accurate enough.
Solutions to these difficulties are being persued vigorously.
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EXPLOSIVE DECELERATION AND FRAGMENTATION OF
METEORITES IN THE ATMOSPHERE

V. P. Elsukov, D. V. Petrov, V. A. Simonenko, O. N. Shubin,
RFNC-VNIITF, Russia

Abstract

Currently there is a series of experimental facts of observed interaction of
meteorites with the atmosphere that have no consistent and logical explanation. First of
all this refers to the burst of Tunguska meteorite at some altitude. No meteorite substance
was found after this burst. Besides, flashes similar to a fireball of nuclear explosion with
the yield of 1-100 kT of TNT are recorded in the Earth's atmosphere regularly. They
evidence that under some conditions there exists a physical mechanism of explosive
interaction of meteorites with the Earth's atmosphere having characteristic features of
above-surface or high-altitude nuclear explosion. Moreover, there is no contradiction-free
theory describing fragmentation of meteorites in the atmosphere.

The paper describes simulation-theoretical model of explosive interaction of
meteorites with the atmosphere as well as fragmentation of meteorites. This physical
model can lead to two outcomes. In the first case meteorites with rather low density and
sizes less than critical one are able to reach only some critical altitude above the Earth's
surface. Judging by the consequences of Tunguska burst, final sizes of particles are
microscopic. In the second scenario when density of meteorite is high or sizes are rather
large, fragmentation process have no time to evolve deeply. In this case, chunks falling on
the Earth will be of macroscopic size.

Thus, Sikhote-Alin event was not of explosive nature.
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SIMULATION OF THERMOMECHANICAL FATIGUE IN SOLDER
JOINTS*

H. E. Fang, V. L. Porter, R. M. Fye, E. A. Holm,
Sandia National Laboratories

Abstract

Thermomechanical fatigue (TMF) is a very complex phenomenon in electronic
component systems and has been identified as one promment deoradati~~ mechanism for
surface mount solder joints in the stockpile. < r«%@-’:f ’ s coefficients of
thermal expansion (CTE) of the materials in J ot changes in the
ambient temperature. In this case different CT" ~_ _ cocarswanr T the assembly,
and this strain is concentrated almost entirely in the solder because it is the most
deformable portion of the system. Since solder alloy is at a significant fraction of its
melting point even at room temperature, the cyclical strain enhances mass diffusion and
cause dramatic changes in the joint microstructure over time. As the microstructure
changes, the joint weakens and eventually cracks when it can no longer withstand the
strain.

In order to precisely predict the TMF-related effects on the reliability of
electronic components in weapons, a multi-level simulation methodology is being
developed at Sandia National Laboratories. This methodology links simulation codes of
continuum mechanics (JAS3D), microstructural mechanics (GLAD), and microstructural
evolution (PARGRAIN) to treat the disparate length scales that exist between the
macroscopic response of the component and the microstructural changes occurring in its
constituent materials. JAS3D is used to predict strain/temperature distributions in the
component due to environmental variable fluctuations.

GLAD identifies damage initiation and accumulation in detail based on the spatial
information provided by JAS3D. PARGRAIN simulates the changes of material
microstructure, such as the heterogeneous coarsening in Sn-Pb solder, when the
component's service environment varies. g

In a complex electronic compone 4352 MET hybrid
unit which contains 348 solder joints, ea » } and PARGRAIN
calculation is computationally intensive although only part of the TMF phenomenon is
modeled. For example, running JAS3D on a single processor of Cray J90 to model strain
distribution in MC4352 under TMF would take about 1000 CPU hours to finish one
fatigue cycle, while many cycles must be simulated for a complete analysis. PARGRAIN
would need a day or more on Sandia's Intel Paragon supercomputer to model grain growth
in a volume representative of a solder joint, using the fast Monte Carlo grain growth
algorithm recently developed. The limits of computational power from conventional
supercomputers prohibited the full implementation of this methodology in achieving
realistic problem size, physical complexity, and numerical accuracy. Moving to multi-
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teraflop computing is the only solution which can enable the practical interactions
required for a full-physics model of a complex electronic system, where TMF in solder
joints must be assessed. The preliminary results from our exercises on the Teraflop
machine at Sandia show that after full implementations, JAS3D could gain 140-200 times
speedup and the run time of PARGRAIN can be shortened to only two hours. Similar
- performance increase is also expected for GLAD. With the support of US ASCI
(Accelerated Strategic Compfuting Initiative) program and advanced algorithm
development, the computational TMF model will enable scientists and engineers to
anticipate reliability and performance problems in aging weapon components. This
capability in turn will allow early identification of problems so that corrective

actions can be efficiently implemented.

* Sandia ia a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy
under Contract DE-ACO04-94AL85000.
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SOLVING THE TRANSPORT EQUATION WITH QUADRATIC FINITE
ELEMENTS: THEORY AND APPLICATIONS

J. M. Ferguson,
Lawrence Livermore National Laboratory

Abstract

At the 4th Joint Conferece on Computational Mathematics, we presented a paper
introducing a new quadratic finite element scheme (QFEM) for solving the transport
equation. In the ensuing year we have obtained considerable experieince in the application
of this method, including solution of eigenvalue problems, transmission problems, and
solution of the adjoint form of the equation as well as the usual forward solution. We will
present detailed results, and will also discuss other refinements of our transport codes,
particularly for 3-dimensional problems on rectilinear and non-rectilinear grids.
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COMPUTATION TECHNIQUE FOR ELASTIC-PLASTIC FLOWS
WITH ACCOUNT OF MATERIAL DESTRUCTION AND
FRAGMENTATION

A. V. Gorodnichev, G. P. Siminov, Yu. V. Yanilkin,
RFNC-VNIIEF, Russia

Abstract

The paper gives the description of the Lagrangian-Eulerian technique implemented
in the EGAK program set [1] and intended for flow simulation with account of elastic-
plastic properties of materials. The technique is intended for simulation of 2D flows in
multicomponent media whose essential feature is the presence of large deformations. To
calculate contact boundaries, the concentration technique is used.

Both simplest models based on the instant destruction with achieving critical
tensile stress and more complex models are used to calculate material destruction. The
latter include equations for parameters characterizing the degree of material porosity.

To calculate the process of fragmentation of the destructed material, concepts
developed in the works by Grady [2] and Ivanov and others [3] were considered.

Computation results are given for several problems: the problem of punching a
two-layer aluminum and textolite barrier by a steel ball; impact of two copper plates;
punching a plastic material barrier by a steel ball, etc. Fragmentation computation
techniques were tested on the last problem.

Computation results are compared to analytical solutions, experiment data and
results of computations using other techniques. The results of all computation runs are in
good agreement with analytical solutions and experiment data.

Reference

1. Yanilkin Yu.V., Shanin A.A., Kovalev N.P., Gavrilova E.S., Gubkov E.V., Darova
N.S., Dibirov O.A., Zharova G.V., Kalmanovich A.l., Paviusha I.N., Samigulin M.S.,
Simonov G.P., Sin’kova O.G., Sotnikova M.G., Tarasov V.1, Toropova T.A. EGAK
Program Set for Computation of 2D Multicomponent Medium Flows.// VANT,
ser. MMFP, iss.4, 1993.

2. Grady D.E. Local Inertial Effects in Dynamic Fragmentation // J.Appl.Phys.. 1985,
v.53, No.1, pp.322-325.

3. Ivanov A.G., Rayevskii V.A., Vorontsova O.S. Material Fragmentation during
Explosion. // Fizika Goreniya i Vzryva, 1995, v.31, No.2.
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PROVIDING SCALABLE SYSTEM SOFTWARE FOR HIGH-END
SIMULATIONS

D. Greenberg,
Sandia National Laboratories

Abstract

Detailed, full-system, complex physics simulations requiring 10*15 flops and
terabytes of data have been shown to be feasible on systems containing thousands of
processors. In order to manage these computer systems it has been necessary to create
scalable system services. In this talk Sandia's research on scalable systems will be
described. The key concepts of low overhead data movement through portals and of
flexible services through multi-partition architectures will illustrated in detail. The talk
will conclude with a discussion of how these techniques can be applied outside of the
standard monolithic MPP system.
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MATHEMATICAL METHODS FOR PROTEIN SCIENCE

W. Hart, S. Istrail, J. Atkins.
Sandia National Laboratories

Abstract

Understanding the structure and function of proteins is a fundamental endeavor in
molecular biology. Currently, over 100,000 protein sequences have been determined by
experimental methods. The three dimensional structure of the protein determines its
function, but there are currently less than 4,000 structures known to atomic resolution.
Accordingly, techniques to predict protein structure from sequence have an important
role in aiding our understanding of the Genome and the effects of mutations in genetic
disease. We describe current efforts at Sandia to better understand the structure of
proteins through rigorous mathematical analyses of simple lattice models. Our efforts
have focused on two aspects of protein science: mathematical structure prediction, and
inverse protein folding.

A variety of methods have been proposed to predict the three-dimensional
structure of proteins from their amino acid sequence. Very few of these methods provide
the user with a measure of confidence in the predicted structure. We have developed
algorithms that generate protein structures in linear time whose energy is guaranteed to be
within a fixed fraction of the energy of the optimal protein structure. Our analysis has
focused on variants of the hydrophobic-hydrophilic model (Dill 1985), which abstracts
the dominant force of protein folding: the hydrophobic interaction. The protein is
modeled as a chain of amino acids of length n which are of two types: H (hydrophobic,
i.e., nonpolar) and P (hydrophilic, i.e., polar).

Although a variety of methods like these have been proposed to perform structure
prediction, this problem has been difficult to solve exactly in a robust manner. In fact, it is
still not known whether there exists an efficient algorithm for predicting the structure of a
protein from its amino acid sequence alone. This observation has prompted us to
characterize the computational complexity of protein structure prediction in simple lattice
models. We have shown that a two broad classes of structure prediction problems are
NP-hard. The first illustrates how structure prediction can be NP-hard for any reasonable
lattice. The second illustrates how structure prediction can be NP-hard for a broad class
of Lennard-Jones-like energy potentials.

Inverse protein folding is a complementary problem to structure prediction. It
concerns the identification of an amino acid sequence that folds to a given structure.
Sequence design problems attempt to avoid the apparent difficulty of inverse protein
folding by defining an energy that can be minimized to find protein-like sequences. We
have evaluated the practical relevance of two sequence design problems by analyzing their
computational complexity. Our analysis shows how sequence design problems can fail to
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reduce the difficulty of the inverse protein folding problem, and highlights the need to
analyze these problems to evaluate their practical relevance.
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MODELING BY VALUE IMPLEMENTED IN PRIZMA CODE

Ia. Z. Kandiev and G. N. Malyshkin,
RFNC-VNIITF, Russia

Abstract

PRIZMA code was intended for Monte Carlo simulation of linear radiation transfer
problems. The code has broad capabilities to describe geometry, sources, material
composition, obtain specified results. There is a capability to calculate path of particles
of different types (neutrons, photons, electrons, positrons and heavy charged particles)
taking into account their transmutations. Scheme of modeling by value [2] was
implemented to solve the problems which require calculation of functionals related to
small probabilities (for example, problems of protection against radiation, problems of
detection, etc.). The scheme enables to adapt algorithm of trajectory building to the
problem peculiarities.

Main components of the developed technique are the following.

Problem of any complexity can be presented in the form of combination of
(elementary) problems with simpler relations between the source and detector. Totally
four classes of elementary problem were defined:

1. Radiation propagation in optically thick medium.

2. Radiation propagation in optically transparent medium.

3. Problem of detection using detector located in vacuum or absorber.

4. Problem of detection using detector located in emitting or scattering
medium.

Schemes of non-analogous modeling and principles of building approximate value
function and appropriate non-analogous distributions were selected for each class of
problems.

Calculation of a specific problem is performed in the following way: problem
conditions are analyzed in order to understand peculiarities of the problem; based on the
peculiarities initial problem is split into elementary ones, each falling into one of four
classes; for each elementary problem approximate solution is built using appropriate
procedures and, if necessary, parameters of appropriate non-analogous distributions are
determined; modeling scheme obtained is described by initial data in addition to problem
conditions and calculation is performed.

References

1. Ia.Z. Kandiev, E.S. Kuropatenko, I.V. Lifanova et al. Monte-Carlo

Calculations of Particle Interaction with Matter in PRIZMA Code. Theses of
presentations at III Scientific Conference on Protection against Ionizing Radiation at
Nuclear Facilities.
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- Thilisi, 1981, p. 24.
2. J. Spanier, Z.Gelbard. Monte-Carlo Method and Neutron Transport Problems.
Moscow, Atomizdat, 1972, p. 207
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MONTE-CARLO SIMULATION OF BIOLOGICAL PROTECTION AT
REPETITIVE PULSE ELECTRON ACCELERATOR

Ia. Z. Kandiev and V. V. Plokhoy,
RENC-VNITF, Russia

Abstract

Bremsstrahlung dose rate was calculated. Bremsstrahlung results from the interaction
of electron beam of 1MeV accelerator operating in repetitive pulse mode with the foil of a
beam-exit hole and layer of air where beam is decelerated behind biological protection.

It is shown that high repetition frequency (~500 Hz) of pulses of accelerated
electrons leads to ~100cm width of concrete wall necessary to ensure personnel
protection against radiation.

Technique is described enabling Monte-Carlo simulation of bremsstrahlung dose
behind the obstacle with large optical thickness. This technique provides estimates with
rather small dispersion in acceptable run time. Calculations were performed using
PRIZMA code [1] which allows to consider the complete problem statement taking into
account combined electrons and photons transport in the real geometry.

To verify the results obtained, gamma-radiation dose from 60Co isotope source
scattered by atmospheric air was calculated at a great distance from the source for
geometry described in [2]. Calculation results are compared with "benchmark" experiment
results, thus enabling to test the technique developed to estimate bremsstrahlung dose
behind biological protection of the accelerator.

With the same purpose technique was tested for calculation of bremsstrahlung yield
and energy-angular distribution of photons by comparing measurement results given in [3]
with calculation results obtained using PRIZMA code.

References:

1. Ya.Z. Kandiev, E.S. Kuropatenko, I.V. Lifanova et al., Theses of presentations at
the III Scientific Conference on Protection against lonizing Radiation at Nuclear
Facilities. Thilisi, Tbilisi State University, 1981, p. 24.

2. R.R. Nason, J.K. Shultis, R.E. Saw and C.E. Clifford, "A Benchmark Gamma-Ray
SkyShine Experiment", Nucl. Sci. Eng., 79, 404-416, 1981.

3. D.H. Rester, W.E. Dance and J.H. Derrickson, "Thick Target Bremsstrahlung
Produced by Electron Bombardment of Targets Be, Sn and Au in the Range 0.2-

2.8 MeV", Journ. Appl. Phys., vol. 41, #6, pp.2682-2692, (1970).
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NUMERICAL SIMULATION OF EXPERIMENTS WITH FUEL PELLETS
AT PULSE REACTOR FACILITY

Ia. Z. Kandiev and R. M. Kozybayev,
RFNC-VNIITF, Russia

Abstract

To solve the problems related to numerical simulation of experiments performed at
pulse reactors, PRIZMA-D code which is a modification of the basic PRIZMA code was
developed at VNIITF.

Peculiarity of this code is in a special source - fission points distributed in
eigenfunction in the reactor core. To diminish constraints on applying non-analogous
simulation, process of determining source is distinguished from the process of modeling
trajectories to obtain necessary results. This structure of calculation cycle enables to
increase effectiveness of calculations. In addition, special method of modeling trajectories
of the particles implemented in PRIZMA code enables to obtain correlated results of
several problem versions during one calculation. To illustrate the code capabilities,
problems are considered related to numerical simulation of experiments with fuel pellets
at the pulse reactor.
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AN 8-NODE TETRAHEDRAL FINITE ELEMENT SUITABLE FOR
EXPLICIT TRANSIENT DYNAMIC SIMULATIONS

S. W. Key, M. W. Heinstein, C. M. Stone,
Sandia National Laboratories

Abstract

Considerable effort has been expended in perfecting the algorithmic properties of
8-node hexahedral finite elements. Today the element is well understood and performs
exceptionally well when used in modeling three-dimensional explicit transient dynamic
events. However, the automatic generation of all-hexahedral meshes remains an elusive
achievement. The alternative of automatic generation for all-tetrahedral meshes is a reality.
Unfortunately, in solid mechanics the 4-node linear tetrahedral finite element is a
notoriously poor performer, and the 10-node quadratic tetrahedral finite element while a
better performer numerically is computationally expensive. To use the all-tetrahedral
mesh generation extant today, we have explored the creation of a quality 8-node
tetrahedral finite element (a four-node tetrahedral finite element enriched with four mid-
face nodal points).

The derivation of the element's gradient operator, studies in obtaining a suitable mass
lumping and the element's performance in applications are presented. In particular, we
examine the 8-node tetrahedral finite element's behavior in longitudinal plane wave
propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar
impacts. The element only samples constant strain states and, therefore, has 12 hourglass
modes. In this regard, it bears similarities to the 8-node, mean-quadrature hexahedral finite
element. Given automatic all-tetrahedral meshing, the 8-node, constant-strain tetrahedral
finite element is a suitable replacement for the 8-node hexahedral finite element and "hand-
built" meshes.
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THE ENERGETIC ALPHA PARTICLE TRANSPORT METHOD (EATM)

R. C. Kirkpatrick,
Los Alamos National Laboratory

Abstract

There have been several methods applied to the problem of energetic (e.g.. 14.1
MeV DT) alpha particle transport in fusion plasmas as well as heavy ion transport in
high-Z radiation converters for ion beam fusion targets. In addition, the magnetic
confinement fusion community has treated the problem of transport in the presence of
magnetic fields. However, the problem of energetic charged particle transport in a
dynamic magnetized plasma has been inadequately explored. The research code EATM is
a first attempt to find an efficient method of treating the transport of energetic charged
particles in a dynamic magnetized (MHD) plasma for which the mean free path of the
particles ahd the Larmor radius may be long compared to the gradient lengths in the
plasma. The intent is to span the range of parameter with the effeciency and accuracy
thought necessary for experimental analysis and design of magnetized fusion targets.

One of the eariest examples of such targets is the Sandia National Lab Phi-target in
1977. However, about the same time Los Alamos was exploring the Fast Liner concept. a
larger cylindrical version.

More recently, Los Alamos and the All-Russia Scientific Institute for
Experimental Physics have collaborated on the MAGO experiments that are intended to
study target plasma formation for magnetized target fusion (MTF).

EATM uses some piecewize analytic solutions and transformations to build
transport matricies for single computational cells, and then uses these matricies in a way
similar to equations of state or opacities to effect the transport throughout the
computational mesh. This approach should be most applicable to codes with fixed
orthognal meshes such as Eulerian algorithms or AMR codes.
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TIME DEPENDENT VIEW FACTOR METHODS

R. C. Kirkpatrick,
Los Alamos National Laboratory

Abstract
View factors have been used for treating radiation transport between opaque
surfaces bounding a transparent medium for several decades. However, in recent years
they have been applied to problems involving intense bursts of radiation in enclosed
volumes such as in the laser fusion hohlraums. In these problems, several aspects require
treatment of time dependence. These will be discussed and some examples will be
provided. Also, the limitations of view factor mathods will be discussed.
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IMPLEMENTATION OF NUMERICAL SIMULATION TECHNIQUES IN
ANALYSIS OF THE ACCIDENTS IN COMPLEX TECHNOLOGICAL
SYSTEMS

G. S. Klishin, V. E. Seleznev, V. V. Aleoshin,
RFNC-VNIIEF, Russia

Abstract

Gas industry enterprises such as main pipelines , compressor gas transfer
stations, gas extracting complexes belong to the energy intensive industry. Accidents
there can result into the catastrophes and great social, environmental and economic losses.
Annually, according to the official data several dozens of large accidents take place at the
pipes in the USA and Russia. That is why prevention of the accidents, analysis of the
mechanisms of their development and prediction of their possible consequences are acute
and important tasks nowadays. The accidents reasons are usually of a complicated
character and can be presented as a complex combination of natural, technical and human
factors.

Mathematical and computer simulations are  safe, rather effective and
comparatively inexpensive methods of the accident analysis. It makes it possible to
analyze different mechanisms of a failure occurrence and development, to assess its
consequences and give recommendations to prevent it. Besides investigation of the failure
cases, numerical simulation techniques play an important role in the treatment of the
diagnostics results of the objects and in further construction of mathematical prognostic
simulations of the object behavior in the period of time between two inspections.

While solving diagnostics tasks and in the analysis of the failure cases, the
techniques of theoretical mechanics, of qualitative theory of differential equations, of
mechanics of a continuous medium , of chemical macro-kinetics and optimizing techniques
are implemented in the Conversion Design Bureau #5 (DB#5). Both universal and special
numerical techniques and software (SW) are being developed in DB#5 for solution of
such tasks. Almost all of them are calibrated on the calculations of the simulated and full-
scale experiments performed at the VNIIEF and MINATOM testing sites. It is worth
noting that in the long years of work there has been established a fruitful and effective
collaboration of theoreticians, mathematicians and experimentalists of the institute to
solve such tasks.
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A TRANSPORT MODEL FOR COMPUTER SIMULATION OF
WILDFIRES

R. Linn,
Los Alamos National Laboratory

Abstract

Realistic self-determining simulation of wildfires is a difficult task because of a
large variety of important length scales (including scales on the size of twigs or grass and
the size of large trees), imperfect data, complex fluid mechanics and heat transfer, and
very complicated chemical reactions. We use a transport approach produce a model that
exhibit a self-determining propagation rate. The transport approach allows us to represent
a large number of environments such as those with nonhomogeneous vegetation and
terrain. We account for the microscopic details of a fire with macroscopic resolution by
dividing quantities into mean and fluctuating parts similar to what is done in traditional
turbulence modeling. These divided quantities include fuel, wind, gas concentrations, and
temperature. Reaction rates are limited by the mixing process and not the chemical
kinetics. We have developed a model that includes the transport of multiple gas species,
such as oxygen and volatile hydrocarbons, and tracks the depletion of various fuels and
other stationary solids and liquids. From this model we develop a simplified local burning
model with which we perform a number of simulations that demonstrate that we are able
to capture the important physics with the transport approach. With this simplified model
we are able to pick up the essence of wildfire propagation, including such features as
acceleration when transitioning to upsloping terrain, deceleration of fire fronts when
they reach downslopes, and crowning in the presence of high winds.
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ON SIMULATING FLOW WITH MULTIPLE TIME SCALES USING A
METHOD OF AVERAGES

L.G. Margolin,
Los Alamos National Laboratory

Abstract

We present a new computational method based on averaging to efficiently
simulate certain systems with multiple time scales. We first develop the method in a
simple one-dimensional setting and employ linear stability analysis to demonstrate
numerical stability. We then extend the method to multidimensional fluid flow. Our
method of averages does not depend on explicit splitting of the equations nor on modal
decomposition. Rather we combine low order and high order algorithms in a generalized
predictor-corrector framework. We illustrate the methodology in the context of a shallow
fluid approximation to an ocean basin circulation. We find that our new method
reproduces the accuracy of a fully explicit second-order accurate scheme, while costing
less than a first-order accurate scheme.
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HEXAHEDRAL MESH GENERATION VIA THE DUAL ARRANGEMENT
OF SURFACES

S. A. Mitchell and T. J. Tautges,
Sandia National Laboratories

Abstract

Given a general three-dimensional geometry with a prescribed quadrilateral surface
mesh, we consider the problem of constructing a hexahedral mesh of the geometry whose
boundary is exactly the prescribed surface mesh. Due to the specialized topology of
hexahedra, this problem is more difficuit than the analogous one for tetrahedra. Folklore
has maintained that a surface mesh must have a constrained structure in order for there to
exist a compatible hexahedral mesh.

However, we have a proof that a surface mesh need only satisfy mild parity
conditions, depending on the topology of the three-dimensional geometry, for there to
exist a compatible hexahedral mesh. The proof is based on the realization that a
hexahedral mesh is dual to an arrangement of surfaces, and the quadrilateral surface mesh
is dual to the arrangement of curves bounding these surfaces. The proof is constructive
and we are currently developing an algorithm called Whisker Weaving (WW) that mirrors
the proof steps.

Given the bounding curves, WW builds the topological structure of an arrangement
of surfaces having those curves as its boundary. WW progresses in an advancing front
manner. Certain local rules are applied to avoid structures that lead to poor mesh quality.
Also, after the arrangement is constructed, additional surfaces are inserted to separate
features, so e.g. no two hexahedra share more than one quadrilateral face.

The algorithm has generated meshes for certain non-trivial problems, but is
currently unreliable. We are exploring strategies for consistently selecting which portion
of the surface arrangement to advance based on the existence proof. This should lead us
to a robust algorithm for arbitrary geometries and surface meshes.
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3D UNSTRUCTURED-MESH RADIATION TRANSPORT CODES

J. Morel,
Los Alamos National Laboratory

Abstract

Three unstructured-mesh radiation transport coces are currently being developed
at Los Alamos National Laboratory. The first code is ATTILA, which uses an
unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular
discretization, standard multigroup energy discretization, and linear-discontinuous spatial
differencing. ATTILA solves the standard first-order form of the transport equatton using
source iteration in conjunction with diffusion-synthetic acceleration of the within-group
source iterations. DANTE is designed to run primarily on workstations. - The second
code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary
combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several
second-order self-adjoint forms of the transport equation including the even-parity
equation, the odd-parity equation, and a new equation called the self-adjoint angular flux
equation.

DANTE also offers three angular discretization options: $S n$ (discrete-
ordinates), $P_n$ (spherical harmonics), and $SP_n$ (simplified spherical harmonics).
DANTE is designed to run primarily on massively parallel message-passing machines,
such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES,
which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-
order form of the transport equation rather than a second-order self-adjoint form.

DANTE uses a standard $S n$ discretizaion in angle in conjunction with
trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the
within-group source iterations. PERICLES was initially desighed to run on workstations,
but a version for massively parallel message-passign machines will be built. The three
codes will described in detail and computational results will be presented.
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RECENT WORK ON MATERIAL INTERFACE RECONSTRUCTION

S. J. Mosso and B. K. Swartz,
Los Alamos National Laboratory

Abstract

For the last 15 years, many Eulerian codes have relied on a series of piecewise
linear interface reconstruction algorithms developed by David Youngs. In a typical
Youngs' method, the material interfaces were reconstructed based upon nearby cell values
of volume fractions of each material. The interfaces were locally represented by linear
segments in two dimensions and by pieces of planes in three dimensions. The first step
in such reconstruction was to locally approximate an interface normal. In Youngs' 3D
method, a local gradient of a cell-volume-fraction function was estimated and taken to be
the local interface normal. A linear interface was moved perpendicular to the now known
normal until the mass behind it matched the material volume fraction for the cell in
question. But for distorted or nonorthogonal meshes, the gradient normal estimate didn't
accurately match that of linear material interfaces. Moreover, curved material interfaces
were also poorly represented.

We will present some recent work in the computation of more accurate interface
normals, without necessarily increasing stencil size. Our estimate of the normal is made
using an iterative process that, given mass fractions for nearby cells of known but
arbitrary variable density, converges in 3 or 4 passes in practice (and quadratically - like
Newton's method - in principle). The method reproduce a linear interface in both
orthogonal and nonorthogonal meshes. The local linear approximation is generally 2nd-
order accurate, with a 1st-order accurate normal for curved interfaces in both two and
three dimensional polyhedral meshes. Recent work demonstrating the interface
reconstruction for curved surfaces will be discussed.
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NUMERICAL SIMULATION OF TURBULENT MIXING IN 2D FLOWS

V. V. Nikiforov, Yu. V. Yanilkin, G. V. Zharova, Yu. A. Yudin,
RFNC-VNIIEF, Russia

Abstract

The paper describes 2D multiparameter model of turbulent mixing developed
within the EGAK program package. The model use nine independent variables for which
evolution equations are solved. The variables are four components of Reynolds tensor,
full turbulent energy, viscous dissipation rate of turbulent energy, two components of a
velocity vector of turbulent mass flow and squared density pulsation. The model is the
two-dimensional generalization of the one-dimensional model of VIKHR’ technique.

The results of 1D computations using multiparameter turbulent mixing model
under gravitational instability are given. These results are in full agreement with
computation results using VIKHR’ technique.

The results of computations of 1D problem of shift instability are given in
comparison with already known experiment results and computation results using k-¢
model of turbulent mixing. Our results are in good agreement both with experimental
results and results obtained with k-¢ model.

The paper also includes 2D computation results of modeling instability growth at
the interface of two different -density gases and liquids and their subsequent turbulent
mixing. Results are being compared to experiment data obtained in laboratories headed by
Meshkov and Kucherenko. Additionally, the results are also compared to the results
obtained using k-e model of turbulent mixing and results of direct numerical simulations
without any turbulence models earlier conducted using other techniques within EGAK
program set. Good agreement of computation results using the proposed technique with
experiment data and results using other numerical techniques is achieved.

The calculations carried out showed that the multiparameter model has its
advantages over other models, the main of them is that it use the same semi-empirical
constants for all flows being simulated.
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SEISMIC IMAGING USING FINITE-DIFFERENCES AND PARALLEL
COMPUTERS

C. C. Ober,
Sandia National Laboratories

Abstract

A key to reducing the risks and costs of associated with oil and gas exploration is
the fast, accurate imaging of complex geologies, such as salt domes in the Gulf of Mexico
and overthrust regions in U.S. onshore regions. Prestack depth migration generally yields
the most accurate images, and one approach to this is to solve the scalar wave
equation using finite differences.

Current industry computational capabilities are insufficient for the application of
finite difference, 3-D, prestack, depth migration algorithms. A 3-D data set can be several
terabytes in size, and the multiple runs necessary to refine the velocity model may take
many years. The oil companies and seismic contractors need to be able to perform
complete velocity field refinements in weeks and single iterations overnight. High
performance computers and state-of-the-art algorithms and software are required to meet
this need.

As part of an ongoing ACTI project funded by the U.S. Department of Energy,
we have developed a finite difference, 3-D prestack, depth migration code. The goal of
this work is to demonstrate that massively parallel computers can be used efficiently for
seismic imaging, and that sufficient computing power exists (or soon will exist) to make
finite difference, prestack, depth migration practical for oil and gas exploration.

We have had to address several problems to get an efficient code for the Intel
Paragon. These include efficient I/O, efficient parallel tridiagonal solves, and high single-
node performance. Furthermore, to provide portable code we have been restricted to the
use of high-level programming languages (C and Fortran) and interprocessor
communications using MPI. We have been using the SUNMOS operating system, which
has affected many of our programming decisions.

We will present images created from two verification datasets (the Marmousi
Model and the SEG/EAEG 3D Salt Model). Also, we will show recent images from real
datasets, and point out locations of improved imaging. Finally, we will discuss areas of
current research which will hopefully improve the image quality and reduce
computational costs.




MOLECULAR DYNAMICS COMPUTER SIMULATION OF
PERMEATION IN SOLIDS

P. 1. Pohl, G. S. Heffelfinger, D. K. Fisler and D. M. Ford.
Sandia National Laboratories

Abstract

In this work, we apply classical mechanics and molecular dynamics to better
understand the phenomena of atomic and molecular movement in dense and slightly
porous solids. Lennard-Jones interaction potentials are used and supplemented with
quantum mechanical adjustments where necessary. Novel simulations techniques such as
Grand Canonical Molecular Dynamics, transition state theory and diffusion pathways are
utilized to understand permeation, diffusion and diffusive pathways. Applications of
this theoretical work include development of membranes for gas separations, predictions
of oxygen permeation and subsequent oxidation in support of materials degradation
research and understanding cation diffusion in mediorite minerals to assess the probability
of organic life on the planet mars.
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PARALLEL MONTE CARLO TRANSPORT MODELING IN THE
CONTEXT OF A TIME-DEPENDENT, THREE-DIMENSIONAL MULTI-
PHYSICS CODE

R. J. Procassini,
Lawrence Livermore National Laboratory

Abstract

The fine-scale, multi-space resolution that is envisioned for accurate simulations
of complex weapons systems in three spatial dimensions implies flop-rate and memory-
storage requirements that will only be obtained in the near future through the use of
parallel computational techniques. Since the Monte Carlo transport models in these
simulations usually stress both of these computational resources, they are prime
candidates for parallelization. The MONACO Monte Carlo transport package, which is
currently under development at LLNL, will utilize two types of parallelism within the
context of a multi-physics design code: decomposition of the spatial domain across
processors (spatial parallelism) and distribution of particles in a given spatial subdomain
across additional processors (particle parallelism). This implementation of the package
will utilize explicit data communication between domains (message passing). Such a
parallel implementation of a Monte Carlo transport model will result in non-deterministic
communication patterns. The communication of particles between subdomains during a
Monte Carlo time step may require a significant level of effort to achieve a high parallel
efficiency.

This work is performed under the auspices of the U.S. Department of Energy at the
Lawrence Livermore National Laboratory under Contract Number W-7405-Eng-48.
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CALCULATION TECHNIQUE FOR 3-D GAS DYNAMICS PROBLEMS
ON NONREGULAR LAGRANGIAN GRIDS

V. V. Rasskazova,
RENC-VNIIEF, Russia

Abstract ‘

The technique offered uses both Lagrangian gas dynamics equations and a
difference calculation grid connected with a material and moving with it.

The space is filled with figures as computational grid meshes without folds and
gaps by nonregular method using convex Dirichlet-Voronoy polyhedrons at initial
moment of integration.

To avoid Lagrangian grid calculational distortions during numerical experiment the
means of preserving convex trihedral angles are used together with a local grid
reconstruction by cutting separate meshes or by spating two neiboring.

The technique and its software can be used for solving problems in the following
practical areas:

- ecology problems which need to know the material particles location

and pathway;

- calculation of directed explosions when it is necessary to know and be able to

define the direction of material-ground being burst out;

- meteorology problems;

- calculation of body co-impact in space and their penetration within

each other.
The problems for demonstration of this method capabilities are offered.
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AN IMPLICIT FAST FOURIER TRANSFORM METHOD FOR
INTEGRATION OF THE TIME DEPENDENT SCHRODINGER EQUATION

M. E. Riley,
Sandia National Laboratories,
and
A. B. Ritchie,
Lawrence Livermore National Laboratory

Abstract

The potential of the new massively-parallel-processor computers to perform ‘“bare-
knuckle” numerical solutions of difficult full-dimensional problems prompted us to
investigate some modern finite-difference methods for solution the time-dependent
Schrodinger equation. One of these is the exponentiated split operator procedure, based on
the use of the fast Fourier transform, which has been successfully used for vibration-rotation
spectral analysis and molecular dynamics.

Electronic processes such as charge transfer, excitation, and ionization involve the
Coulomb interaction which makes the numerical representation of the wave function more
difficult than in the previous molecular dynamics studies. We have found that the
exponentiated split operator procedure is subject to difficulties in energy conservation when
solving the time-dependent Schrodinger equation for Coulombic systems. Stability with
respect to time increment variations is a problem for these interactions. We have rearranged
the kinetic and potential energy terms in the temporal propagator of the finite difference
equations to find a propagation algorithm for three dimensions that looks much like the
Crank-Nicholson and alternating direction implicit methods for one- and two-space-
dimensional partial differential equations. Stability is greatly improved. We report
comparisons of this novel implicit split operator procedure with the conventional
exponentiated split operator procedure on hydrogen atom solutions.
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PROPAGATION OF AN ULTRA-SHORT, INTENSE LASER IN A
RELATIVISTIC FLUID

A. B. Ritchie and C. D. Decker,
Lawrence Livermore National Laboratory

Abstract

A Maxwell-relativistic fluid model is developed to describe the propagation of an
ultrashort, intense laser pulse through an underdense plasma. The model makes use of
numerically stabilizing fast Fourier transform (FFT) computational methods for both the
Maxwell and fluid equations, and it is benchmarked against particle-in-cell (PIC)
simulations.

Strong fields generated in the wake of the laser are calculated, and we observe
coherent wake-field radiation generated at harmonics of the plasma frequency due to
nonlinearities in the laser-plasma interaction. For a plasma whose density is 10% of
critical, the highest members of the plasma harmonic series begin to overlap with the first
laser harmonic, suggesting that widely used multiple-scales-theory, by which the laser and
plasma frequencies are assumed to be separable, ceases to be a useful approximation.




COMPUTATIONAL MODELING OF JOINT U.S.-RUSSIAN
EXPERIMENTS RELEVANT TO MAGNETIC
COMPRESSION/MAGNETIZED TARGET FUSION (MAGO/MTF)

P. T. Sheehey, R. J. Fachl, R. C. Kirkpatrick, and I. R. Lindemuth,
Los Alamos National Laboratory

Abstract

Magnetized Target Fusion (MTF) experiments, in which a preheated and
magnetized target plasma is hydrodynamically compressed to fusion conditions, present
some challenging computational modeling problems. Recently, joint experiments relevant
to MTF (Russian acronym MAGO, for Magnitnoye Obzhatiye, or magnetic
compression) have been performed by Los Alamos National Laboratory and the All-
Russian Scientific Research Institute of Experimental Physics (VNIIEF). Modeling of
target plasmas must accurately predict plasma densities, temperatures, fields, and
lifetime; dense plasma interactions with wall materials must be characterized. Modeling
of magnetically driven imploding solid liners, for compression of target plasmas, must
address issues such as Rayleigh-Taylor instability growth in the presence of material
strength, and glide plane-liner interactions.

Proposed experiments involving "liner-on-plasma" compressions to fusion
conditions will require integrated target plasma and liner calculations. Detailed
comparison of the modeling results with experiment will be presented.

LA-UR-97-2291
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MPDATA: A POSITIVE DEFINITE SOLVER FOR GEOPHYSICAL
FLOWS

P. K. Smolarkiewicz and L. G. Margolin,
Los Alamos National Laboratory

Abstract

This paper is a review of MPDATA, a class of methods for the numerical
simulation of advection based on the sign-preserving properties of upstream differencing.
MPDATA was designed originally as an inexpensive alternative to flux-limited schemes
for evaluating the transport of nonnegative thermodynamic variables (such as liquid water
or water vapour) in atmospheric models. During the last decade, MPDATA has evolved
from a simple advection scheme to a general approach for integrating the conservation
laws of geophysical fluids on micro-to-planetary scales. The purpose of this paper is to
summarize the basic concepts leading to a family of MPDATA schemes, review the
existing MPDATA options, as well as to demonstrate the efficacy of the approach using
diverse examples of complex geophysical flows.
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ARCHITECTURE OF A MULTICOMPUTER’S COMMUTATION
NETWORK AND OF DIFFERENCE GRID FOR COMPUTATIONAL
PHYSICS PROBLEMS

I. D. Sofronov,
REFNC-VNIIEF, Russia

Abstract

One of the main reserves of increase of computer system performance is the wide
calculating process paralleling when one large problem is being solved using a great
number of PEs simultaneously.

Evidently, the efficiency of paralleling process depends on a capability of an
algorithm to be paralleled, as well as on specific features of architecture of a
multiprocessor computer system in use.

The presentation considers algorithms for solving evolutional problems in
computational physics discretized over difference grids having the architecture of p-
dimensional matrix, and peculiarities of these algorithm implementation on multiprocessor
computer systems which have a commutation network either with matrix or hypercubic
architecture.

In particular, it is shown that with matrix architecture of a commutation network
the loss of a middle load of PEs is inevitable if a number of PEs is large enough. With
regard to this parameter a hypercubic commutation network has an advantage as
compared to a matrix commutation network. Some theoretical estimations have been
verified by solving test problems on multiprocessor supercomputers of several types.
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3-D PARALLEL PROGRAM FOR NUMERICAL CALCULATION OF
GAS DYNAMICS PROBLEMS WITH HEAT CONDUCTIVITY ON
DISTRIBUTED MEMORY COMPUTATIONAL SYSTEMS (CS)

(Calculation results obtained on MP-3 CS, Meiko CS-2 and SP2)

I. D. Sofronov, B. L. Voronin, O. I. Butnev, A. N. Bykov,
A. M. Yerofevev, and A. 1. Skripnik, VNIIEF, Russia
D. Nielsen. Jr.. N. Medsen, R. Evans, and S. Brandon,

Lawrence Livermore National Laboratory

Abstract

The aim of the work performed is to develop a 3D parallel program for numerical
calculation of gas dynamics problem with heat conductivity on distributed memory
computational systems (CS), satisfying the condition of numerical result independence
from the number of processors involved.

Two Dbasically different approaches to the structure of massive parallel
computations have been developed. The first approach uses the 3D data matrix
decomposition reconstructed at temporal cycle and is a development of parallelization
algorithms for multiprocessor CS with shareable memory. The second approach is based
on using a 3D data matrix decomposition
not reconstructed during a temporal cycle.

The program was developed on 8-processor CS MP-3 made in VNIIEF and was
adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL
staffs.

A large number of numerical experiments has been carried out with different
number of processors up to 256 and the efficiency of parallelization has been evaluated in
dependence on processor number and their parameters.
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ALEGRA--A MASSIVELY PARALLEL H-ADAPTIVE CODE FOR SOLID
DYNAMICS

R. M. Summers, M. K. Wong, E. A. Boucheron, J. R. Weatherby,
Sandia National Laboratories

Abstract

ALEGRA is a multi-material, arbitrary-Lagrangian-Eulerian (ALE) code for solid
dynamics designed to run on massively parallel (MP) computers. It combines the
features of modern Eulerian shock codes, such as CTH, with modern Lagrangian structural
analysis codes using an unstructured grid. ALEGRA is being developed for use on the
teraflop supercomputers to conduct advanced three-dimensional (3D) simulations of
shock phenomena important to a variety of systems.

ALEGRA was designed with the Single Program Multiple Data (SPMD)
paradigm, in which the mesh is decomposed into sub-meshes so that each processor gets
a single sub-mesh with approximately the same number of elements. Using this approach
we have been able to produce a single code that can scale from one processor to thousands
of processors.

A current major effort is to develop efficient, high precision simulation capabilities
for ALEGRA, without the computational cost of using a global highly resolved mesh,
through flexible, robust h-adaptivity of finite elements. H-adaptivity is the dynamic
refinement of the mesh by subdividing elements, thus changing the characteristic element
size and reducing numerical error. This provides for increased resolution wherever and
whenever higher precision is necessary to adequately simulate regions of large
deformation and transient features such as shocks, burn fronts, and pressure stagnation
areas. The h-adaptive version of ALEGRA is called HAMMER.

We are working on several major technical challenges that must be met to make
effective use of HAMMER on MP computers. One is efficient parallelization of the
basic refinement and unrefinement algorithms. Another is the development of dynamic
load balancing techniques to prevent severe overloading of one or more processors as
adaptive refinement progresses. Also, appropriate error estimators or refinement
indicators must be developed for various physics, and how they should be applied in a
multi-physics calculation must be determined.
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EFFICIENT SINGLE SCATTER ELECTRON MONTE CARLO
SIMULATION

M. Svatos and J. Rathkopf,
Lawrence Livermore National Laboratory

Abstract

A single scatter electron Monte Carlo code (SSMC), CREEP, has been written
which bridges the gap between existing transport methods and modeling real physical
processes. CREEP simulates ionization, elastic and bremsstrahlung events individually.
Excitation events are treated with an excitation-only stopping power. The detailed nature
of these simulations allows for calculation of backscatter and transmission coefficients,
backscattered energy spectra, stopping powers, energy deposits, depth dose, and a
variety of other associated quantities. Agreement of these quantities with experimental
values will be shown and is generally excellent.

One application of this code is the generation of probability distribution functions
(PDFs) to describe the phase space of a single electron emerging from a sphere of a given
material and radius. A library of data sets for such spheres (or "kugels") is being
computed for a variety of incident energies, material types, and sizes. These results are
stored for subsequent sampling from another electron transport code, Steppenwolf. The
goal of this work is to achieve exetremely accurate transport results with a efficiency that
is similar to condensed history methods. Comparisons of Steppenwolf with CREEP and
condensed history codes will be shown.

CREEP, and Steppenwolf, rely on sampling the Lawrence Livermore Evaluated
Electron Data Library (EEDL) which has data for all elements with an atomic number
between 1 and 100, over an energy range from approximately several eV (or the binding
energy of the material) to 100 GeV. Compounds and mixtures may also be used by
combining the appropriate element data via Bragg additivity.
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TRANSVERSE ISOTROPIC MODELING OF THE BALLISTIC
RESPONSE OF GLASS REINFORCED PLASTIC COMPOSITES

P. A. Taylor,
Sandia National Laboratories

Abstract

The use of glass reinforced plastic (GRP) composites is gaining significant
attention in the DoD community for use in armor applications. These materials typically
possess a laminate structure consisting of up to 100 plies, each of which is constructed of
a glass woven roving fabric that reinforces a plastic matrix material. Current DoD
attention is focused on a high strength, S-2 glass cross-weave (0/90) fabric reinforcing a
polyester matrix material that forms each ply of a laminate structure consisting anywhere
from 20 to 70 plies. The resulting structure displays a material anisotropy that is, to a
reasonable approximation, transversely isotropic. When subjected to impact and
penetration from a metal fragment projectile, the GRP displays damage and failure in an
anisotropic manner due to various mechanisms such as matrix cracking, fiber fracture and
pull-out, and fiber-matrix debonding.

In this presentation, I will describe the modeling effort to simulate the ballistic
response of the GRP material described above using the transversely isotropic (TI)
constitutive model which has been implemented in the shock physics code, CTH. The
results of this effort suggest that the model is able to describe the delamination behavior
of the material but has some difficulty capturing the in-plane (i.e., transverse) response of
the laminate due to its cross-weave fabric reinforcement pattern which causes a departure
from transverse isotropy.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy
under Contract DE-ACO04-94A1.85000.
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SPALLATION STUDIES ON SHOCK LOADED URANIUM

D. L. Tonks, R. Hixson, R. L. Gustavsen, J. E. Vorthman, A. Kelly, A. K. Zurek. and W.
R. Thissell,
Los Alamos National Laboratory

Abstract

Uranium samples at two different purity levels were used for spall strength
measurements at three different stress levels. A 50 mm single-stage gas-gun was used to
produce planar impact conditions using Z-cut quartz impactors. Samples of depleted
uranium were taken from very high purity material and from material that had 300 ppm of
carbon added. A pair of shots was done for each impact strength, one member of the pair
with VISAR diagnostics and the second with soft recovery for metallographical
examination.

A series of increasing final stress states were chosen to effectively freeze the
microstructural damage at three places in the development to full spall separation. This
allowed determination of the dependence of spall mechanisms on stress level and sample
purity.

This report will discuss both the results of the metallurgical examination of soft
recovered samples and the modeling of the free surface VISAR data. The micrographs
taken from the recovered samples show brittle cracking as the spallation failure
mechanism. Deformation induced twins are plentiful and obviously play a role in the
spallation process. The twins are produced in the initial shock loading and, so, are
present already before the fracture process begins.

The 1 d characteristics code CHARADE has been used to model the free surface
VISAR data. The spallation modeling is micromechanically based and involves brittle
crack breakout, growth, and coalescence. Calculated free surface particle velocity profiles
are compared with the data and conclusions drawn. The results show that the brittle crack
model can explain the spall features of the data, except for the very late time behavior.
The late time behavior is more complicated because it involves close interactions and
couplings between cracks. A preliminary modeling result for the 81 kbar shot is shown in
Fig. 1.
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APPLICATION OF CHAD HYDRODYNAMICS TO SHOCK-WAVE
PROBLEMS

H. E. Trease, P. J. O'Rourke, and M. S. Sahota,
Los Alamos National Laboratories

Abstract

CHAD is the latest in a sequence of continually evolving computer codes written
to effectively utilize massively parallel computer architectures and the latest grid
generators for unstructured meshes. Its applications range from automotive design issues
such as in-cylinder and manifold flows of internal combustion engines, vehicle
aerodynamics, underhood cooling and passenger compartment heating, ventilation, and air
conditioning to shock hydrodynamics and materials modeling.

CHAD solves the full unsteady Navier-Stoke equations with the k-epsilon
turbulence model in three space dimensions. The code has four major features that
distinguish it from the earlier KIVA code, also developed at Los Alamos. First, it is based
on a node-centered, finite-volume method in which, like finite element methods, all fluid
variables are located at computational nodes. The computational mesh efficiently and
accurately handles all element shapes ranging from tetrahedra to hexahedra. Second, it is
written in standard Fortran 90 and relies on automatic domain decomposition and a
universal communication library written in standard C and MPI for unstructured grids to
effectively exploit distributed-memory parallel architectures. Thus the code is fully
portable to a variety of computing platforms such as uniprocessor workstations,
symmetric multiprocessors, clusters of workstations, and massively parallel platforms.
Third, CHAD utilizes a variable explicit/implicit upwind method for convection that
improves computational efficiency in flows that have large velocity Courant number
variations due to velocity or mesh size varnations. Fourth, CHAD is designed to also
simulate shock hydrodynamics involving multimaterial anisotropic behavior under high
shear.

We will discuss CHAD capabilities and show several sample calculations showing
the strengths and weaknesses of CHAD.
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ESTABLISHING CONFIDENCE IN COMPLEX PHYSICS CODES:
ART OR SCIENCE?

T. Trucano,
Sandia National Laboratories

Abstract

The ALEGRA shock wave physics code, currently under development at Sandia
National Laboratories and partially supported by the U. S. Advanced Stategic
Computing Initiative (ASCI), is generic to a certain class of physics codes: large, multi-
application, intended to support a broad user community on the latest generation of
massively parallel supercomputer, and in a continual state of formal development. To say
that we have "confidence" in the results of ALEGRA is to say something different than
that we believe that ALEGRA is "predictive." It is the purpose of this talk to illustrate
the distinction between these two concepts. I elect to perform this task in a somewhat
historical manner. I will summarize certain older approaches to code "validation". I view
these methods as aiming to establish the predictive behavior of the code. These methods
are distinguished by their emphasis on "local" information. I will conclude that these
approaches are more art than science. It then will follow that newer approaches

*This work performed at Sandia National Laboratories supported by the
U. S. Department of Energy under contract number DE-AC04-94 A1.85000.
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DEVELOPMENT OF DIFFERENCE SCHEMES FOR COMPUTING
MULTIDIMENSIONAL NON-STATIONARY ELASTIC-PLASTIC
FLOWS ON THE BASE OF THE MUTUAL TRANSITION LAW FOR
KINETIC AND INTERNAL ENERGIES

V. B. Vershinin, V. I. Delov, O. V. Senilova, I. D. Sofronov
RFNC-VNIIEF, Russia

Abstract

The paper proposes the approach to develop conservative difference-differential
equations describing non-stationary elastic-plastic flows via Lagrangian variables. The
given technique is the outgrowth of 2D technique of constructing spatial approximations
of gas dynamics motion equations. /1/, /2/ for elastic-plastic media. Its distinctive features
are simplicity and quickness of obtaining difference motion equations which are close to
equations obtained using variational approaches by their structure and quality.

The proposed technique serves for elimination of one of the main drawbacks of
Whilkins scheme in the case of axial symmetry related to nonconservation of full system
energy.

In the given paper the kinetic energy matrix determining the way of pressure
gradient approximation is used in its canonical form being used traditionally in gas
dynamic techniques.

The paper includes difference formulas for strain rate tensor components and
obtained difference approximations to compute derivatives of components of stress
tensor deviator .

There is an information about computation results using the developed difference
scheme in which grid value distribution in time is used in the same manner as in “D”
technique /3/, time derivative being approximated with the second order.

Obvious advantages of the developed difference scheme are shown for the
problem of elastic membrane oscillations in comparison with the classic Whilkins scheme.

Opposite to the difference scheme for gas-dynamic computations /4/ obtained
using the same approach to the development of difference schemes, the scheme from the
work /2/ and the difference scheme proposed here do not require iterations on the time
step to achieve the second order accuracy in time.

Reference

1. Isayev V.N., Sofronov I.D. Development of Discrete Models for Gas Dynamics
Equations on the Base of the Law of Mutual Transition of Kinetic and Internal
Continuous Medium Energies. / VANT, Ser. Metodici i Programmy Chisl. Resh.
Zadach Mat.Fiz., 1984, iss.1(15), pp.3-7.
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NONREGULAR FREE-LAGRANGIAN "MEDUSA" TECHNIQUE

S. G. Volkov, B. M. Zhogov, V. D. Malshakov, 1. D. Sofronov
RFNC-VNIIEF, Russia

Abstract

"Medusa" technique refers to 2D Lagrangian gas dynamics techniques on non-
regular grids adapting to the nature of occuring processes. Using a universally accepted
terminology we may refer it to a free-Lagrangian technique class.

The paper gives a brief historic information, describes "Medusa" gas dynamics
technique difference scheme, gives a list of physical processes being calculated, describes
parallelization methods of calculating the problems on multiprocessor computational
systems and gives calculation examples.

The first part tells about "Medusa" technique development, about its
implementation on different computers, tells about some interesting calculations
performed by this technique and about modemn technique implementation.

The second part describes the problem digitization, the obtained difference
equations, stresses the main technique peculiarities such as the use of mixed meshes and
grid local interpolation.

The third part gives the method of obtaining difference equations to solve a heat
conductivity equation on a non-regular grid. Here an approximated method of solving the
obtained system by means of balance iterations is given, the one presenting good results
even in case of iteration cut resulting from their great number.

The forth part marks the technique peculiarities allowing to parallelize gas
dynamics calculations. Different means of splitting the point sets in the problem for
parallel calculations and the peculiarities of parallelization connected with this splitting
are considered.

The final part describes the technique application area and calculation results.
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NUMERICAL SIMULATION OF CLOSE AND REMOTE ZONES OF
ACCIDENT OUTBURST AND EXPLOSION

Yu. V. Yanilkin, V. N. Sofronov, V. 1. Tarasov, V. P. Statsenko,
V. N. Piskunov, N. P. Kovalyov, O. A. Dibirov, A. L. Stadnik,
T. A. Toropova, G. G. Ivanova, A. A. Shanin,
RFNC-VNIIEF, Russia

Abstract

The paper describes a 3D program package designed for numerical simulation of
accident explosion and outburst dynamics and their consequences in a regional scale. The
package is implemented in the frames of TREK program complex.

The simulation of a full-scale problem involving accident outbursts is an intricate
problem due both to a large number of physical processes to be taken into account and
scale diversity of flows at different process stages. The package includes two stages of
the considered process: the explosion cloud lifting to the height of stabilization and
aerosole tranfer in atmosphere above an orographically and thermally non-uniform
underlaying surface.

The simulation is based on a joint solution of the following physical processes:

at the first stage
- gas-dynamical flow of polydisperse environment;
- turbulent agitation;
- variation of aerosole particle disperse composition due to coagulation;

at the second stage

- atmosphere hydrothermodynamics;
- particle transfer and turbulent diffusion.

The equation approximation is made in Decartes coordinate system on arbitrary in
general case non-rectangular, Eulerian and Lagrangian-Eulerian grids. Such approach allows
to use the grids most adapted to the considered flows: first, those accounting local
orography and, second, those moving with aerosole cloud. The approach considerably
reduces the number of grids used in calculations and the calculation diffusion intrinsic in
Eulerian
methods as well.

Implicit difference schemes are used to calculate gas-(hydro-)dynamics and
diffusion; concentration and FCT methods are used to calculate convective transfer;
original aigebraic and (k-€) -models are used to account turbulence. Multicomponent
versions both of carrying and dispersed phases with their unlimited number are assumed.

63




The examples of numerical solution for several test problems are given:

- spherical cloud transfer;

- Prandtl problem:

- Eckmann problem;

- aerosole propagation with a constant wind, diffusion coefficient and
sedimentation coefficient.

The calculation results of real problems are given:

- cloud lifting with account of wind and without it;

- aerosole transfer over the rugged country;

- radiation contamination propagation in the Ural accident.
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THREE DIMENSIONAL FINITE ELEMENT FORMULATION FOR
THERMOVISCOELASTIC ORTHOTROPIC MEDIA

M. A. Zocher,
Los Alamos National Laboratory

Abstract

This presentation shall be concerned with the development of a numerical
algorithm for the solution of the uncoupled, quasistatic initial/boundary value problem
involving orthotropic linear viscoelastic media undergoing thermal and/or mechanical
deformation. The constitutive equations, expressed in integral form involving the
relaxation moduli, are transformed into an incremental algebraic form prior to development
of the finite element formulation. This incrementalization is accomplished in closed form
and results in a recursive relationship which leads to the need of solving a simple set of
linear algebraic equations only for the extraction of the finite element solution. Use is
made of a Dirichlet-Prony series representation of the relaxation moduli in order to derive
the recursive relationship and thereby eliminate the storage problem that arises when
dealing with materials possessing memory. Several illustrative example problems will be
presented for the purpose of demonstrating the ability of the formulation, which has been
implemented into a three dimensional finite element code, to accurately predict the
solution to the class of thermoviscoelastic problems addressed.
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Analytical and numerical study of accelerated thin layer
instability

S.M.Bakhrakh, G.P.Simonov

(RFNC-VNIIEF, Sarov (Arzamas-16), Russia)

Using the representation of the governing equations in Lagrangian
variables new analytical solutions are found for problems of Rayleigh-
Taylor instability of a thin accelerated layer at the process stage non-
linear in the observer's space. The analytical solutions are obtained for a
liquid layer and an elastic layer, given both 2D and 3D perturbations.

The analytical solutions found have been verified with solving the
complete system of conservation laws for compressible continuum.

Through numerical experiments the found mechanisms of thin
layer perturbation growth are shown to take place for a finite thickness
layer and compressible continuum half-space.

The analytical solutions provide a deeper insight into the
instability nature and mechanisms and constitute good tests for numerical
techniques of computing continuum flows.

Studying the Rayleigh-Taylor instability (RTI) is of interest in connection to a

number of important and urgent problems which include but are not limited to the
following: high-velocity throwing, inertial thermonuclear fusion, structure stability, etc.
For theoretic study of the initial RTI phase representation of the initial equations in
- the Lagrangian variables proved fruitful. This is related to the fact that in some special
cases the equations of motion of an accelerated thin layer in the Lagrangian variables
appear linear at large displacements as well [1]. This allows to analyze them in order to
describe the perturbation evolution stage non-linear in the observer's space. Thus, refs.[1-
4] studied evolution of 2D and 3D perturbations of thin liquid layer shape and thickness;
ref.[5] did 2D perturbations of elastic layer thickness.
This paper uses such an approach to study thin elastic layer surface RTI, given
both 2D and 3D perturbations.
Analytical study. The linearized equations of motion of accelerated thin elastic
layer are
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Here the median surface of the layer in the unperturbed state is assumed to
coincide with the surface z=0. Next, it is taken that x,=x-£, y,;=y-n, where £ n are
Lagrangian coordinates of the layer particles. The acceleration is a=p/phy where p is
retaining pressure; hy, p are initial thickness and density of the layer, respectively. The
values Cob, Csd, A characterize the elastic properties of the plate matenal:

¢t =G/p , ¢ =2G/(p(l-v)=2c} /(1-v) ,a=c}h*/12. (2)

where G - shear modulus, v - Poisson ratio.
Consider the solution to system (1) of the form

x;=A e cos(kE Ycos(m) ; yi=A,esin(kE )sin(nm) ; z=A;e®sin(kf )cos(nm).  (3)

It is possible to show that the increment o is determined by the equation (A=0%):

hechki el —chkn ak
!! _C:dkn cib n’ +C:dk2 -an =0 . @)
ak -an A+c(k?+n?)?

At sufficiently large accelerations @ governing dispersion equation (4) has real
positive roots A correspondent with exponentially growing solutions.

In this problem, like in the problem of elastic half-space RTI [6], the notion of
critical acceleration arises. :

We define the critical value of acceleration a. as acceleration correspondent with
zero value A=@=0. Assume A=0 in characteristic equation (4) to arrive at the relation for
determination of the critical acceleration a.:
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At n=0 we obtain the layer stability criterion given 2D perturbations. In this case
the critical acceleration is determined by relation

== - 6)

At small layer thickness h the crtical acceleration determined from (6) is
noticeably less than the critical acceleration for elastic medium half-space [7] a-==2Gk/p.

From comparison of (5) and (6) it follows that under certain conditions
perturbation introduction along the second direction can lead to total perturbation
stabilization, with the material working for strength more intensively. For example, at n=k
the ratio q of critical acceleration determined by relation (5) to appropriate value from
relation (4) g leads to relation g =1+(2-v)?, that is g>1.

The stabilizing effect of perturbation along the second direction is specific for
media with strength; in the case of a liquid layer the inverse effect of growth increment
increase takes place [4].

Numerical studies. To verify the above-described analytical solutions, numerical
computations in the continuous compressible elastic medium approximation were
conducted. The computations were done in the 2D formulation with technique [8]
designed for computation of elastic-plastic continuum flows and in the 3D formulation
with the technique extending method [9] to three dimensions. The computations varied the
principal parameters of the problem.

It was assumed that k=1, v=0.28, n=0 at setting 2D perturbations and n=1 for 3D
perturbations. The equation of state was taken in the Mie-Grueneisen form: p=7.8, co=4.6.
Acceleration, shear modulus G and layer thickness were varied. At the initial time for the
- equithick shape-unperturbed layer velocity perturbations with r;=-1 were given. At the
layer boundaries pressure p;=p and p;=0 was given at the "lower" and "upper" boundaries,
respectively.
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At varying thickness h the computations proportionally varied the appiied
boundary pressure, so that acceleration a=p/ph remain invariable. In the first series of 2D
computations a=1, G=5 were assumed. '

In the layers with h=0.01; 0.025; 0.1 the perturbations grow. However, the
perturbation growth is noticeably less than that in the gas-dynamical (strength-free)
computation. The computed data for h=1 and h=2 differ considerably from others. At h=2
the perturbations appear stable; the case of h=1 is at the stability boundary.

It is interesting to compare h=2 layer perturbation growth rates at vanous
accelerations, a=0.33; 1; 2. The critical acceleration for such a layer is a~=1.028. The
results of the computations under discussion confirmed the theory conclusions.

Computations of a thin layer with 3D perturbations in the continuum
approximation also agree with the above analytical solutions.

The work was supported by Russian Fundamental Research Foundation, Project
96-01-00043a.
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Architecture of a Multicomputer’s Commutation Network and
a Difference Grid for Mathematical Physics Problems

Sofronov 1.D.
Russian Federal Nuclear Center - All-Russian Scientific Research
Institute of Experimental Physics (VNIIEF), Sarov

Problems you meet in various areas of science and technology require
computers with very hgh performance to solve them. To achieve maximum
performance, computer designers use different techniques. First of all, we can mention
high speed elemental base, vector -pipe approach, concurrent execution of several
different instructions- the so-called “wide instruction” and, finally, multiprocessor
systems. During the last years the attention to multiprocessor systems greatly
increased mainly due to gained successes in microelectronics. In present days a great
number of multiprocessor systems of various architectures is being developed. We are
interested in two simplest , in some sense, types of multiprocessor systems, namely:
multiprocessor systems with common internal memory and multicomputers. The
typical feature of computers with common memory is a relatively small number of
central processors. To gain maximum performance in this case, very powerful
processors are used. Multicomputers achieve high performances at the expense of
using a large number of very compact central processors. Therewith we have to use
shared memory in lieu of common internal memory. A multicomputer under
consideration will be considered to have each central processor equipped with its own
local internal memory. Suppose further that all processor elements (PEs) are
connected to each other by some commutation network involving L communication
lines (CL). Let g be the throughput of each line, i.e. each line is capable of sending g
full words per a time unit ; f is an arithmetic performance of one processor element.
Thus, maximum achievable throughput of the whole commutation system equals Lg,
and maximum arithmetic performance is

V = M*{,
where M is a number of PEs which may be interconnected using commutation
systems of different architecture.

The most simple is the matrix architecture when processor elements are
connected to each other in such a manner that a set of them has a matrix structure of
some dimensionality.

The problem of computation parallelization to a large number of branches
becomes more and more actual. Now there are computer systems including thousands
of processor elements. In spite of the growing arithmetic performance of each
processor element the problem of their number increase in some computer systems
doesn’t lose its actuality. For this reason we somehow exaggerate the problem,
namely: we suppose that we have a computer at our disposal consisting of N processor
elements , where N may increase with no limit. We also suppose that the problem
being solved includes N>>M computational points, where N may also increase with
no limit. Assume that a set Qy of all N computational points is divided into M subsets
with N/M points in each of them. Let each subset be processed by an appropriate
processor element. Total multicomputer’s arithmetic performance is proportional to a
number of processor elements M and increases indefinitely with M — . However,
with M — 0 an amount of data transfers between processor elements may increase
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indefinitely. Evidently. a question arises: may it be so that the time needed for these
transfers becomes essentially larger than the time needed for arithmetic work
compietion?

Suppose that processor elements under consideration have fixed performance
and communication lines have fixed throughput. Further suppose that the difference
grid Q; and the hypergrid constructed on it and containing M hypernodes both have
bounded degrees r < c.

Statement 1. With above made assumptions for a multicomputer having a
commutation network with an architecture of a full graph of connections the following
inequalities are valid under any topology:

C sTa/Ta<Cs ¢))
Here T, and T, are the times spent by a multicomputer to execute data transfers and
arithmetic work , C; and C; are constants.

To prove this statement, remember that each hypernode has a finite number of
grid nodes, therefore, to calculate the step one needs to transfer a finite amount of data
from neighboring hypemodes that will implement a finite number of communication
lines without any transits because the commutation network has an architecture of a
full graph of connections. The above formulated conditions are valid for any M and N,
i.e. with any M and N the average load of a processor element will be positive.

Statement 2. Let a multicomputer’s commutation network has matrix
architecture with a degree R 2> r. Assume that in the original difference grid topology
regularity violates in isolated points ~ .

Under the above assumtions with M — c we may chose the hypergrid with its
topology being regular by placing irregular points into hypernodes. Thus, we obtain
the task where M hypernodes have regular hypergrid’s topology which is to be solved
using a multicomputer which commutation network has an architecture coinciding
with the hypergrid topology. Obviously, in the case being considered the time spent
for transit data transfers will not decrease and inequalities (1) will be valid.

Statement 3. If a difference grid has an unbounded degree, then an average
load of processors will approach to zero under the unlimited increase of their number.

To prove the above statements, it is sufficient to consider a case when only in
one point the grid’s degree appears unbounded. Let the degree of the point O increases
indefinitely . Two cases are possible during the hypergrid construction.

1. A point with an unbounded degree is an internal point of some hypernode.

2. A point with an unbounded degree is a boundary point of a hypernode.

In the first case a situation arises with an increasing N, when a number of
nearest grid neighbors surpasses a maximum admissible number of points in a
hypemode. In the last case one will need to remove a part of nearest grid neighbors
from the considered hypernode and transfer them to another hypernode, i.e. a point
with unbounded degree becomes a boundary point of a hypernode and we obtain the
case 2. In this case a part of nearest neighbors of a considered point will be located
inside and on the boundary of the same hypernode which the point itself belongs to.
With an unbounded increase of N a number of nearest neighbors of the considered
point being located in neighboring hypernodes will increase with no limit. Information
about all these neighbors is to be transfered by communication lines to the memory of
the processor element formed this hypernode. A number of communication lines

. . . . . . . . . .
) By an isolated point regularity violation we mean a point which is surrounded by a sufficient number
of regular points.
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converging to the considered node may increase with no limit. But all obtained data
must pass through one or several ports having the finite performance, therefore, data
transfers may require unlimited time , i.e.
Ta—
No « 2)
Ty being a finite value, inequalities (1) will not take place in the case under
consideration and an average load of processors will decrease to zero.

Let we have a multicomputer with matrix structure of commutation network of
a degree r; > 0. Assume that in this task the hypergrid topology coincides with the
commutation network architecture. Under these assumptions it’s not difficult to
determine bijection between the commutation grid nodes and the difference hypergrid
nodes. Evidently, in this case, if an algorithmic neighborhood coincides with the
difference grid neighborhood, then the task solution is possible without transit data
transfers. In other words, we have proved the Statement 4. If the difference grid
topology coincides with the commutation network architecture and an algorithmic
neighborhood follows from grid neighborhood, then computation without transits is
possible. Obviously, we may suggest a more strict statement, namely: if in the above
described case the commutation network is supplemented by new communication
lines, then a possibility of transit-free computation remains. In particular, if the matrix
architecture is supplemented up to the tore architecture or up to the matrix of degree
1. 211, then a possibility of transit-free computation remains.

Statement 5. If the difference grid topology is contained inside the
commutation network architecture, i.e. if by switching off some communication lines
it is possible to make the commutation network architecture coinciding with the
difference grid topology , then the considered task computation without transits is
possible using such multicomputer, if the algorithmic neighborhood follows from the
grid neighborhood.

Statement 6. If a multicomputer’s commutation network architecture is inside
the difference grid topology, i.e. by switching off some grid lines it is possible to
make the difference hypergrid topology coinciding with the commutation network
architecture for the computer in use, then in this case computation without transit
transfers is not possible, if algorithmic closeness follows from grid closeness. The
same fact may be formulated in the following way: if a hypergrid has a degree p; > 0,
it is impossible to solve the task without transit transfers using a multicomputer the
commutation network architecture of which has a degree p, > 0 less than p; > 0 at
least in few points.
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THE CALCULATIONS OF RADIANT ENERGY TRANSFER IN THERMONUCLEAR TARGETS IN DIFFU-
SION-VACUUM APPROXIMATION

Bazin A. A., Vaulin V.V,, Dementyev Yu. A., Mironova V. F., Skidan G. I,
Tikhomirov B. P., Tikhomirova E.N.

Numerical evaluation of X-radiation symmetry on the surface of capsule containing ther-
monuclear fuel is one of the key issues in the problem of adequate numerical description of
physical processes in inertial confinement fusion targets. Solution of the problem in its complete
statement comprising kinetic equation of radiation transfer and the set of hydrodynamics equa-
tions meets certain difficulties.

For this reason simpler mathematical models are used in practice for preliminary choice
of initial ICF target design and shape [1]. The paper describes radiant energy transfer in ICF tar-
gets in diffusion-vacuum approximation. In the frames of this approximation radiation transfer in
optically thick and close to those regions is described by radiant heat conduction while in opti-
cally thin and transparent regions by integral equation of radiant heat exchange between radiation
absorbing surfaces. The regions in which integral equation is solved are called 'vacuum', other
regions are called diffusive. Radiation transfer between diffusion regions through transparent en-
vironment is described by integral equation, with account of photon time-delay [2]. For numerical
solution integral equation is substituted by a set of algebraic equations which is solved by relaxa-
tion method {3]. View factors and average photon time-delay are calculated using the technique
presented in [4].

It should be noted that there are two approaches to developing numerical techniques for
radiant transfer simulation. Both of them are based on the concept of separate calculation of dif-
fusion and vacuum regions. The initial problem is represented as two simple problems, soluble
consistently. The first approach - iterative. The decision is built by a method consecutive ap-
proximations. The boundary conditions on a surface non transparency are corrected on each itera-
tive cycle. The method is simple in realization, but requires appreciable expenses of processor
time of the computer. The second approach is based, that the exchange of boundary conditions
between diffusions and vacuums by areas occurs automatically on each temporary layer. Thus ab-
sence necessity of iterative process, that results in economy of processor time. However there is
the danger of occurrence of computing instability, as the stability of algorithm as a whole much
depends on a way of the task of exchange boundary conditions.

The technique considered stipulates several types of exchange boundary conditions which
provide the calculation process stability. Particularly, one-way fluxes might be transferred or self-
similar flux and temperature obtained from the solution of the equation of transfer in vacuum re-
gion and the equations of radiant heat conduction in diffusion regions are jointly calculated.

For the problems considered the process of reradiation from the cavity wall is described
either in black body approximation (model 1) or by boundary conditions of diffusion type (model
2). In the latter case the flux from diffusion region can exceed the value of radiation flux into
vacuum. To remove this error an easy method of limiting the diffusion flux is proposed. The flux
is determined by the formula:

w =o'T‘--3—J'+ aT‘——l-J‘l’
2 2

where o is Stephen-Boltzmann constant, T is temperature.
- The material motion in diffusion regions is described by gas dynamics equations which
are solved by finite-difference method in 1-D sector" approximation [5].




To exemplify application of the given approximation method for radiant energy transfer
problems we consider the problems of X-radiation propagation in laser and heavy-ion targets.

1. Laser targets.

The calculations have been done for the laser targets of small diameter with laser energy
radiation of 8 kJ. Such targets were tested at VNIIEF on "ISKRA-5" facility [6]. The geometry of

two targets being studied is presented in Fig.1.
Qb
Q
om | Qr Q

Targets 1, 2.
ACH=6 mm, DAw=0.6mm, ACu=0.3 mm, ASiO2=Sm, O fiim=3.5mm

Fig.1.

A spherical capsule of 0.095 mm radius is located in the center of a hollow cylinder with
inner diameter 0.9 mm and length 3.2 mm. The capsule has a glass casing 5 pm thick. The casing
is filled with gas with the density 0.004 G/cm* . The cylinder casing has two layers. The outer
layer 6 um thick is made of polyethylene; the inner layer is sprayed gold 0.6 pm thick. The
cylinder is sealed by round plates at the ends. The outer plate is copper. It is 0.3 mm thick. The
inner plate is made of gold (0.2 mm thick). X-radiation flux as a function of time was set on Q
surfaces as a source, the dependence corresponded to the experimental parameters of "Iskra-5" fa-
cility laser pulse. The source energy made 2 kJ in all calculations. The condition of energy outlet
into vacuum on the Qb surfaces (-1.2<X<-1.1, 1.1<X<1.2) was set. Exchange boundary condi-
tions were set on Q1, Q2, QI, QI surfaces . The second target differs from the first one by the
presence of polyethylene film 3.5 pum thick placed at a distance of 7 mm from the target center
(see Fig.1) to shield the capsule from laser radiation.

The calculations were mainly aimed at assessing the radiation field symmetry on the
spherical capsule surface. The targets were calculated in two versions: with and without account
of gas dynamics processes. It was demonstrated that in static case the value of temperature field
asymmetry at the moment when the temperature on the equator reached its maximum made
10.5% and 10.6% for the first and for the second targets respectively. In dynamic case these val-
ues appeared to be equal to 20% and 16,3% correspondingly.

Qb

Q

2. Heavy-ion target.

A cylindrical target of 1.3 cm diameter and about 1.6 cra height is considered (see Fig.2).
The target is radiated by 10 ion beams with total energy of 10 mJ.

The given target was optimized by means of two-dimensional calculations. In two-
dimensional calculations (five cases) the converter width was varied and its position on the side
surface along with the cylinder height. The curves are given from these calculations to charac-
terize temperature on the capsule surface as a function of angle 8.




Cylindrical target geometry.
|

To evaluate temperature field asymmetry over the rotation angle ¢ 3-D calculations were
made. In three-dimensional problem the converters in the left and right halves of the target were
turned relative to each other by the angle of Ap = 36°.

The analysis of results of three-dimensional calculations demonstrated that the tempera-
ture field asymmetry on the capsule surface over angle 0 lies in the range of 1% and over angle ¢
it does not exceed 0.15%. '

The numerical method based on diffusion-vacuum approach to energy transfer description
is applicable to other problems of radiation heat exchange found in engineering.
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COMPUTATION OF RADIATION TRANSPORT AT BOUNDARY SURFACE
ANISOTROPIC LIGHT EMISSION

S.V.Bazhenov, P.1 Pevnaya

The technique is designed for solving the equation of
radiation transport in a radiation-transparent region for the
case where the distribution of radiation intensity from the
boundary surface is of quite an arbitrary form. The problem
solution uses a method based on employment of angular
factors.

The equation of radiation exchange among boundary surfaces can be found
from the expression for one-way radiation flux J- leaving the region through its unit
boundary surface

_ - R das
) J‘(A,t):JI(A,Q,t)pAdQ= fl(B,Q,z-—'—”i)p Es

A 2
2z Be S ¢ R-!B

where / is radiation intensity in direction Q ,
u - cosine of the angle between the direction in which the intensity is taken and the
normal to the surface.

Assuming that the boundary surfaces emit by the Lambert law, i.e. in all
directions with identical intensity, the equation transfers to

2 J(4An= _[J’(BJ_B_AE) M HgdS
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The system is closed with setting at the boundary of flow
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and balance relation J -J" =g¢.

To solve the problem, splitting S, ( i=1,.., Al ) is introduced on the surface and

the transition is made from integral equation (2) to equation system
v

S (ny=2.[4,7;]

(4) = l'l-.,“)
i=1,...,.M
where matrices A ;and L; are geometrical integrals
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When deriving the computational scheme we will base on the assumption that
in equations (1) and (2) integration can be done over the surface S(t).

In most cases this assumption secures a high accuracy as the boundary surface
motion velocity is much higher than light velocity C.
Let the solution is sought for at time tn+1




The left-hand side of equation (3), given multipliied by the timestep 1. provides
the radiation energy flux flowing out of the region through the surface S, per
computational timestep

r
) ST = s
e
According to the assumption of integration over the surface S(t) at time to*! at
the surface S, the radiation arrives which left the surface Sj at time ™' - IJ™' and at

time t” at the surface §; the radiation arrives which left the surface §j at time (" - 7.

Hence, during the time interval (17,t"*1) at the surface S, the radiation arrives
which left the surface Sj within the time interval (1" ~ I_’I - I_;’j").

And the natural formula for each addend in the night-hand side if system (4) is
of the form
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If at computing the integral in (6) one accurately uses the principle like in
formula (5), i.e. if one assumes the integrand constant and equal to its value at time
tk+1 at each timestep (t¥, tk*!), then from equation system (4) strict conservativism of
the scheme

_an+l n+l = Erwl __En

follows, where En*! Enis radlanon energy in the region at times tn*!, tn .
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Many computations used the Lambert distribution when solving the kinetic
equation of radiation transport on the region boundary.
The basis for this is the fact that heat flows to the region walls composed. as a
rule, of low-transparency materials are noticeably less than emission of the absolutely
black body, i.e.

IqI<<TT”.

At the same time, in many problems there were boundary surface areas where
the radiation passage to the region considerably differed from the Lambert
distribution.

Indeed, in the computations the vacuum regions can border low-density and
fairly radiation-transparent regions energy release from which is computed in the
diffusion approximation.

Using the Lambert distribution at the interface between the vacuum and such
fairly transparent regions inevitably leads to loss of local approximation in the
computation on separate boundary surface areas, and the question of necessity to
estimate the region of effect of the errors made inevitably arises.

In practice this was expressed in the fact that. instead of the Lambent

— 1
distribution,  J(A.Q.t)=—J"(4,t) , relationships of the form
s
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are admissible on the boundary surface, f(u) is an arbitrary given function p
satisfving the
normalization condition

1
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To close setting up the problem, functions Fy are assumed known functions of
T’ and heat part of flow ¢,:
Fi=AF, T'- AF;. q, + AF;;
where AF,; are known functions of coordinates, time.

The so-called "heat" flow ¢ 1s assumed composed of two components: actually heat
part of flow g, and other losses of energy ¢., e.g., kinetic energy, etc.

9=q,%q:
The relation between one-way radiation fluxes takes the form
J =J +q,+q,

Division of the energy flow q through the boundary region into two
components seems justified for the reason that the principal formula for J* which is
always used in the computations is obtained under the assumption that the following
expansion takes place for the region wall temperature:

T9=T + 557: N

0 l; > X |
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Estimation of emission of the material behind the wall into the region. i.e. of
flux J*, reduces to integration of the function 7%(x) over the wall material.

cc
The integral of the first addend yields Y T* and that of the second addend

does 1/2q.

From the form of the expansion for 7¥(x) it is clear that the second addend is
only related to presence of the temperature gradient in the wall material, i.e. only to
the thermal flow part.

In particular, note that using the expansion for 7%(x) leads not

. I 3
to the Lambert distribution, but to the formula 7( 4, pu,7)= —(——ZC 7 —Iq, u.
- )



In our opinion. the need of the quadratic addend in the intensity formula is due
to the fact that, as the computations showed. the emission intensity dependence of the
wall material on p at the initial phase of its heating is not described with a linear
function and is of the form

Iw
loc
—Zp
n 4
0 1 K
tangent to S normalto S

Using the intensity formulas leads to the equation system
Ao\
S (J7 +4q, +q2,)= ZZ[Akijkj]
j k=0
where Akj , Lkj are geometrical integrals. In the integrand numerator additional
multipliers pg* or f(up) appear, depending on the formula used for the emission
intensity.
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The above-discussed approach for provision of scheme conservativism and
accounting boundary surface radiation anisotropy is implemented in the RADIBS
code.
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DIFFERENCE SCHEME CONSTRUCTION FOR COMPUTING
2D TIME-DEPENDENT ELASTIC-PLASTIC FLOWS BASING ON THE
LAW OF KINETIC AND INTERNAL ENERGY INTERCONVERSION

VNIIEF, Arzamas-16
Delov V.1, Senilova O.V., Sofronov 1.D.
SUMMARY

The Wilkins scheme /1/ is widely used presently for computations of 2D
and 3D continuum gas-dynamical flows in Lagrangian variables. This scheme
possesses a number of positive features, however, also has its disadvantages. A
number of papers are devoted to its development, as well as description of its
application results. The proposed technique for difference scheme
construction can be used to eliminate one of the principal drawbacks of the
Wilkins scheme in the case of axial symmetry relating to its non-conservation
of total energy.

In the presentation the difference schemes for computing 2D time-
dependent elastic-plastic flows are constructed in two stages:

At the first stage the conservative differential-difference representations
of the equations of motion are derived which describe isotropic axisymmetric
time-dependent elastic-plastic flows in Lagrangian variables. The technique
under discussion is an extention of the 2D technique for construction of spatial
approximations of gas dynamics equations of motion /2/, /3/ for elastic-plastic
media. Its distinctive feature is simplicity and fast derivation of the
differential-difference equations of motion which are close in their structure
and quality to the equations derived using variational approaches.

At the second stage the time discretization of obtained differential-
difference equations at the second approximation order is made.

DERIVATION OF DIFFERENTIAL-DIFFERENCE
EQUATIONS OF MOTION

To obtain the differential-difference equations of motion primarily in the
region of variation of variables (x,y) at the initial time it is necessary to choose
the approximating grid. Here we restrict our consideration to regular grids.
The volume of an elementary tetrahedral grid cell whose sides are straight
line segments is evaluated as volume of a body produced by revolution about the
axis Ox.
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The grid space distribution of the values is taken as it is a practice in the
technique "D" /4/: the velocity and coordinate values are related to the grid
nodes and all remaining values to the computational cell centers.

Then the Kkinetic energy matrix and difference representations of the
deformation rate tensor components are determined.

In the presented work the kinetic energy matrix determining the pressure
gradient approximation technique is taken in the canonical form which is
conventionally used in gas-dynamical techniques. Then the kinetic energy of
elementary cell i is of the following form:

K, =0125-M,> (ul +v7),

=l

where j - the number of the cell vertex, M;=p;V; - mass of the i-th cell,

pi - material density in the elementary volume, V; - the cell volume,

u,v - velocity vector projections on the coordinate axes Ox, Oy, respectively.
The next step is recording the law of conservation of total energy for the

whole computational cell set. Then, taking into account the law of internal

energy variation, the law of variation in kinetic energy of the whole

elementary volume system under consideration is traced out. Upon transition in

the obtained relation to summation over the grid nodes, the differential-

difference equations of motion are determined.

TIME DISCRETIZATION

At construction of the proposed difference scheme the grid time distribution
of the values is taken as it is a practice in the technique "D": the velocity
values are related to half-integer points in time ™' and all remaining values
to integer points in time t°, i.e. the time derivatives are approximated within the
second order of accuracy.

The increments of the components of the strain tensor per timestep,
stress tensor deviator at time t™' and the shear strain energy increment are

determined according to the Wilkins scheme.
TEST COMPUTATIONS

The results of two test computations are reported. The problem of planar
stress wave in 2D axisymmetric formulation is taken for the first problem.
The second problem of elastic membrane vibrations is used as a basis to show
the unquestionalbe advantage of the obtained difference scheme over the classic
Wilkins scheme. The figure below illustrates the time history of the plate




total energy which should remain constant in the computation by the Wilkins
scheme (computation 1) and by the proposed difference scheme (computation 2)

Total energy vs time
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EFFICIENT SINGLE SCATTER ELECTRON MONTE CARLO
M.M. Svatos and J.A. Rathkopf

Lawrence Livermore National Laboratory

Livermore. CA 94550

ABSTRACT

A single scatter electron Monte Carlo code (SSMC), CREEP. has been written which bridges the gap
between existing transport methods and modeling real physical processes. CREEP simulates ionization.
elastic and bremsstrahlung events individually. Excitation events are usually treated with an excitation-
only stopping power, although simulation of individual excitation events is possible. Agreement of these
quantities with experimental values is generally quite good.

One application of this code is the generation of probability distribution functions (PDFs) to describe
the phase space of a single electron emerging from a sphere of a given material and radius. A library of
data sets for such spheres (or “kugels”) is being computed for a variety of incident energies, material types.
and sizes. The final goal of this work is to achieve extremely accurate transport results with an efficiency
that is similar to that of condensed history methods.

1 Introduction

Single scatter Monte Carlo (SSMC) physics is gaining attention for electron transport, despite the fact that
it is inherently very time consuming. One reason is that since single scatter calculations conform more
closely to the physical processes the electron undergoes, they can serve as a means to explore the validity
of assumptions used in other transport techniques. The results of SSMC can also be tallied and fed into a
more efficient code.

SSMC allows large angle scatter and backscatter measurements to be calculated with greater accuracy
in a reliable manner. Large angle scatter and backscatter, being relatively rare, result in much of the
seemingly eccentric energy deposition behavior of electron beams (and photon beams for that matter, since
photons deposit their energy to the medium through secondary electrons), including lateral blooming with
distance and nonuniformities (“hot” or “cold” spots) found near changes in the medium type or density.

. CREEP relies on sampling the Lawrence Livermore Evaluated Electron Data Library (EEDL), which
was established at LLNL by 1990 to complement the ENDL (Evaluated Nuclear Data Library) and EPDL
(Evaluated Photon Data Library). Complete documents detailing its contents, with derivations, are avail-
able [1-3]. Cross sections for ionization (by subshell), elastic scatter, bremsstrahlung, and excitation are
tabulated on an energy grid with a variable placement of points between 10 eV and 100 GeV, for atomic
numbers 1 to 100. Compounds and mixtures may also be used by combining the appropriate element data
via Bragg additivity.

One important application of SSMC is to use it as a foundation for other more efficient methods. This
has been called a Local-to-Global approach. It works by breaking the calculation into two stages: a local
calculation (SSMC) done over small geometries having the size and shape of the “steps” to be taken through
the mesh; and a global calculation which relies on a stepping code that samples the stored results of the
local calculation. An example of an SSMC-based Local-to-Global code will be introduced in Section 4.

2 Single Scatter Monte Carlo Code

The CREEP code is written in FORTRAN and C, in a very simple style with the intent of being extremely
portable. Since this code is intended primarily as a means to explore basic physical properties of the
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~28 um - ~28 mm

Figure 1: LEFT: The geometry of the local calculation. RIGHT: An example global calculation.

medium. only simple geometries are assumed: either spherical or slab or a slab layered with different
materials.

The overall algorithm for a truly single scatter charged particle code is a direct analog of the algorithm
that has historically been used in photon and neutron Monte Carlo codes. Briefly, one finds the distance
to interaction by finding the total cross section at the present energy and uses the relation s = —Aln(n) ,
where 1 is a random number on the interval (0,1]. One then determines which interaction took place. by
forming and sampling from a cumulative probability based on the cross sections for each of the four possible
interactions (ionization, excitation, elastic scatter, bremsstrahlung). The energy, position and trajectory of
the particle are updated to reflect the chosen interaction. Then the same process is begun again, provided
the electron has not escaped the medium or fallen below the energy cutofl.

3 Results from Single Scatter Monte Carlo

Benchmarking this code with experiment for a variety of elements and select compounds and mixtures.
over the energy range of the EEDL database, is a large effort that is still in its infancy.

Historically, backscatter has been difficult for condensed history codes to simulate correctly. Figure 2
shows two examples of backscatter information generated by CREEP compared to experimental values.
The agreement is generally quite good.

Comparisons of the CREEP single scatter Monte Carlo (SSMC) code with energy deposition measure-
ments are shown in figure 2. Agreement to experiment is generally quite good for a variety of materials,
incident energies, and incident angles. The curves did not require normalization.

In addition to the preceding quantities, CREEP also calculates analog stopping powers (the amount
of energy lost per unit distance for both radiative and collisional events), energy deposits due to individ-
ual interaction types, and “real” pathlength (cumulative distance between events) which can be used to
calculate detour factors (the ratio to the real range compared to the CSDA range).

Obtaining these results is time consuming. Some timings are shown in Table 1. In general, the simula-
tion time increases with the number of histories, the geometry size, and as the energy threshold is lowered.
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Table 1: Timings for several CREEP runs on a SunSparc 20 running Solaris OS 2.51. Each medium was
a slab of 1 mm thick. Results for the number of interactions. the number of calls to the random number
generator (RNG). and the user time are normalized per incident history.

Medium | Density (g/cc) | Interactions | RNG calls | User Time (s) | Ratio

H 1x107* 0.667 8 2.52x 1074 1

0] 1.4x107° 5.098 39 1.77 x 10— 7.02
Na 1.0 6714 48001 1.35 3357
H>O 1.0 8057 71714 3.30 13095
Au 19.3 19810 145541 6.98 27698

All of these require more interactions to be simulated. The version of the code which includes compounds
and mixtures is also notably slower than the single-element versions. Table 1 gives some feel for how the
run time scales with different media.

Clearly if this method is to become practical, there must be a means for a radical speed-up in the
execution time. Such a means has been suggested in the Local-to-Global algorithm. [7]

4 TUsing Single Scatter Results in Local-to-Global Transport

In this application, the local calculation is an SSMC (CREEP) run performed in small spheres of various
materials. The electron is started in the center and tracked until it crosses the surface of the sphere, at
which time the following state variables are tallied: exit energy, exit “position cosine” (z/R). elevation
angle (3) and swing angle (a) of the trajectory in the exit plane, and the number of secondary particles it
set in motion that also escaped the sphere. The sphere, or kugel, is also divided into four surface bands:
each band has its tallies kept separately. This geometry is illustrated in figure 1. After many histories,
these tallies result in probability distribution functions (PDFs), each having 100 equally-spaced bins, that
may be sampled by the global calculation. Knock-on electrons that escape, as well as all photons, are kept
in separate distributions.

The global geometry for cases of interest is divided into voxels of varying density and material type.
An example is shown in figure 1. For each history, a kugel of appropriate size and incident energy is chosen
from the library and centered on the electron’s location. The exit conditions are then sampled from that
kugel’s PDF's, starting with the exit band b, on which the other variables depend. The exit energy is then
sampled, which sets the (target) energy loss, Ejoss = Ein — Egy:. The exit trajectory is determined by
sampling two correlated angles, o and §, from which three correlated direction cosines can be obtained.
The target exit position on the sphere is found by sampling the z coordinate, and then randomizing x and
y on the z-ring. This exit point is used to define the endpoint of a vector which starts at the center of the
kugel. It is along this projected pathlength vector that E,; is deposited. Since a kugel can be larger than
a transport zone, the energy deposited in each zone is scaled by two factors: the fraction of the projected
pathlegth vector through the zone, and the density of the zone. If the density of a zone is greater than the
nominal density that was used in the global calculation, the energy will be deposited before the edge of the
kugel was reached; thus a new exit position is found along the same trajectory. but closer to the center (or
vice versa for a less dense region). If a new material is encountered during the energy deposition scheme,
the step is stopped at the boundary, and only the energy deposited up to that point is subtracted from
E;,. The next step is taken in the new material.

After each kugel step, the average number of secondary electrons escaping from {anywhere on) the kugel
is sampled, n., given that the primary escaped from band b with exit energy FE,.:. The state varibles for n,
secondary electrons are then sampled in a manner exactly like that above, but the results are taken from
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the secondary electron distributions. The same is done for photons. which are not tracked. but passed off
to another code for transport.

5 Summary

Single scatter Monte Carlo provides the most accurate way to simulate electrons. however it is too slow
to be practical for general use. It is possible to have a code with both speed and accuracy by using the
Local-to-Global method of precalculating distributions. A current implementation of this algorithm uses
approximately 5 x 10* bytes per kugel PDF set. If the application can be defined by a limited number of
materials and step sizes, the total amount of storage is quite feasible.

The speed-up in the global calculation comes from needing a fewer number of steps per history and
also a fewer number of operations per step. The accuracy converges to that of the local SSMC calculation
as many histories are run, provided the PDF sampling routine is faithful. Further investigation as to the
degrees of speed-up and accuracy in various geometries is an ongoing effort.

This work was performed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore National Laboratory under contract number W-7403-ENG-48.
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Figure 2: TOP and MIDDLE: Energy deposition is shown as a function of depth into the medium, where
the depth has been normalized to the CSDA range of the electron in each case. The points attributed
to Lockwood et al are from calorimetric measurements [4]; the comparisons are absolute. BOTTOM
LEFT: CREEP backscatter percentage (including backscattered secondary electrons) compared to the
experiments of Darlington et al [5] and Neubert et al [6]. BOTTOM RIGHT: The backscattered energy
spectrum resulting from a 10 keV electron impinging on an aluminum slab that is large in x, y, and z
compared to the mean free path of the incident electron.

95




96




THE ENERGETIC ALPHA PARTICLE TRANSPORT METHOD EATM
Ronald C. Kirkpatrick

Los Alamos National Laboratory

Absrtract: The EATM method is an evolving attempt to find an efficient method of
treating the transport of energetic charged particles in a dynamic magnetized (MHD) plasma
for which the mean free path of the particles and the Larmor radius may be long compared to
the gradient lengths in the plasma. The intent is to span the range of parameter space with
the efficiency and accuracy thought necessary for experimental analysis and design of
magnetized fusion targets.

Introduction

There have been several methods applied to the problem of energetic charged particles (e.g., 3.5
MeV DT alpha particle) transport in unmagnetized fusion plasmas [1-4] as well as heavy ion
transport in high-Z radiation converters for ion beam fusion targets [5]. In addition, the magnetic
confinement fusion community has treated the problem of transport through very tenuous plasmas
in the presence of magnetic fields [6-8]. However, the problem of energetic charged particle
transport in a relatively dense, dynamic magnetized plasma has not been adequately explored. The
research code EATM is an evolving attempt to find an efficient method of treating the transport of
energetic charged particles in a dynamic magnetized (MHD) plasma for which the mean free path of
the particles and the Larmor radius are initially long compared to the gradient lengths in the plasma.

The intent of this work is to span the range of parameter space with the efficiency and accuracy
thought necessary for experimental analysis and design of magnetized fusion targets. Magnetized
target fusion (MTF) [9] attempts to take advantage two benefits of the magnetic field in order to
lower the driver requirements for fusion ignition: reduction of thermal conduction across the field
and turning of the charged fusion reaction products. It is the second of these benefits that the
EATM transport method is intended to illucidate.

One of the earliest examples of MTF targets is the Sandia National Lab Phi-target, devised in 1977
[10-11]. About the same time Los Alamos National Laboratory (LANL) was exploring the Fast
Liner concept [12], a larger cylindrical embodiment of MTF, and more recently Los Alamos and
the All-Russia Scientific Institute for Experimental Physics (VNIIEF) have collaborated on the
MAGO experiments that are intended to study target plasma formation for MTF [13].

The EATM approach is as follows: Use piecewise analytic solutions and transformations to build
transport matrices for a range of single computational cell parameters. Then use these matrices to
effect the transport throughout the computational mesh. This approach should be most applicable
to codes with fixed orthogonal meshes such as Eulerian algorithms or AMR codes. An important
property is correct asymptotic behavior for two extreme cases: a) no field and b) zero density.
Between these extremes it is necessary to obtain some benchmark for the method, One benchmark
is the results of a particle tracking code that has been we have been using to acquire some
preliminary results for various static magnetized plasma configurations. The particle tracking code
could be extended to dynamic plasmas, but it becomes expensive for complicated configurations.

Uniform Zone Results
For the case of slowing due to both electrons and ions

dE/ds=-b E'-b_E" G(x)

*




where E is the particle energy, s is the distance traversed, b, and b, are coefficients that depend on
the plasma temperature and density, x"=m, E/ (mkT,),

G(x) =2 erf(x) - ( 1 + m/m) x exp(-x°)

= FP/(F+a),

Here we define F =E'” and a’=mkT,/m,. A factor similar to G(x) also occurs for the ions.
but only near background ion thermal energies does it differ from unity.

By resorting to the above simple approximation for G(x), it is possible to get an analytic result for
the energy of the particle as a function of time:

(IJ ed> - q) etbo e-t/r
o +

where ®=(F+H’)/(a-1)H’, H’=a’b, /(b,+b,), o =b,/(b,+b,), and

T =2(m/2)"?a’b, /3 (b, +b,)>. Inthe fast electron limit G(x) = F*/ a*, so that the above result
reduces to the form

D =P " .
However, for plasma electron temperatures near 1 KeV and below, the fast electron approximation
can lead to very large errors, so it is important to avoid this approximation if results that are valid

over a wide range of plasma temperatures are desired.

The time interval for slowing from F to F is
t=1{In[F’+H)/(F+H)] + (F’-F)/(e-DH } .

The above analytic results apply to the slowing of the DT alpha in a homogeneous medium for uns
constant value of magnetic field B. There is an energy dependence in the coulomb logarithm for
the ions which was not included in derivation of the analytic results above, so for evaluation of il.c
constant b, some mean energy such as FF, must be used.

These analytic results connecting t, and E (hence s and v) are very useful for facilitating
numerical integration and for characterizing the DT alpha trajectory in a uniform computational
zone. A table of t(F) is easily calculated to provide F(t). It should be noted that direct numeric.l

integration of dE/dt = vdE/ds can both avoid use of the G(x) approx-imation as well as include tisc
dependence of the ion Coulomb logarithm on the energy E.

In an (x,y) plane with B=B, and v,= vcos¢, where tan¢=v /v, ,
x=] v,, sin ot dt, yzj v,, COs @t dt, andz = [ v, dt,

where v, = (2/m)"* Fcos ¢ and Vy = (2m)? Fsin¢.

For slowing by electrons only (b, = 0), these integrals have analytic forms, but forb, >0 we huv.
not found an analytic. However, the problem reduces to numerically integrating two functions:

98




sinf(0) =) f(8)sin 8d® and  cosf(®) =) f(8) cos 6 db .
where 0 = ot and f(0) is the inversion of
8 = In{(f +h>)/(f(8)Y +h’)] + (£ -1(6) )/ (@ -Dh" .

Using a piece-wise linear fit to f(8) allows a piece-wise analytic integration to be carried out to an
accuracy that depends only on the step size AB used:

f(c+b®)sin0d6 = TA{-ccosO+bsin®-bBcosB )

and J(c+b0)cos0dB =~ TA{ csin@+bcosB+bBsind} .

Only two numerical calculations are needed for a given homogeneous zone, because the

transformation properties for the functions sinf(8) and cosf(6) allow the results of the two
numerical integrations to be reused over and over for many trajectories through that zone.

Transformation

The integrals sinf(8) and cosf(6) to get sinf’(6) and cosf’(8) for which the starting value f_°
differs from f can be transformed thus (see Figure 1):

sinf > = (cosf - cosf,) cos O, + (sinf - sinf,) sin 6, and
cosf ’ = (sinf - sinf,) cos 8, - (cosf - cosf) sin 8, ,

X,

X

Figure 1. The trajectory in the primed coordinate system is obtained by transforming the
trajectory calculated for the original coordinate system.

where sinf = sinf(f ,h,a,0), cosf = cosd(f ,h,a,0),
sinf, = sind(f_,h,a,8 ), cosf, = cosd(f,h.a,8 ),
sinf” = sind(f, ,h,a,8), cosf’ = cosd(f, ,h,a,B),




Crossing Time

It is possible to calculate the time when the DT alpha particle crosses a specified plane. For
simplicity the case of slowing by electrons only (b, = 0) 1s uesd to illustrate the procedure. For the

magnetic field in the z direction and the x direction in the direction of v X B, the path of a DT alphu
particle entering a homogeneous region at the origin will be:

X(1) = v, T (@7 - & (sin Ot + T cos t)) / (1+0°r)
y(t) = v, T (1 -e* (cos t - @T sin @t )) / (1+&°T)

z=v, T(1-e").
The equation for a plane in that coordinate systemis Ax+By+Cz=D,where A=d/d.B=

d/d,C=d/d, and D =d. Here,d is the distance between the point of entry into a computational
cell at (0,0,0) and the plane defining one side of the cell.

Defining the coeficients: C, = (v,,T(Awt+B)+Cv,1-D),C,= v, TA/C, (1+0’T). C, =
v,,t B/ C, (1+w’t*), C,=Cv,1/C, , solving

e [(C,-C,onsinot + (C,+C,ot)coswt +C,] = 1
for the minimum crossing time t (there are potentially several crossings), and substituting t into

the above equations provides the exit point (x,y,z). Since there are more than one plane that
define the cell, the minimum time among all of them must be found.

Tables can be made for the solutions to €™ =asin @t + bcos ot +c, and an interpolation
used to efficiently find solutions. The most convenient approach is to write the equation as

e¥=asin@+bcos8+c = Rsin(@+7Y) +c,

and then solve for q(0) = 1/, interpolating to get the x that satisfies the equation for a given q. It
should be noted that since wt > 0, q > O for physically meaningful solutions. For a given value of
q there are multiple values of 8 = mt. Since we want the first crossing time, we choose the
smallest value. For a zone defined by multiple planes ( A x + B,y + C, z=D, ), the smallest from
among all wt, is selected.

This proceedure can be extended to the case of slowing by ions and electrons, but becomes more
complicated simply because the path for a DT alpha can’t be expressed analytically for that case:

2/m)” [sind {A] Fsinotdt+B [ Fcoswtdt } +Ccoso) Fdt] =D ,
which reduces to solution for 8 in an analogous equation:
a sinf(8) + b cosf(8) + ¢ | £(0) d6 = 1.

For a given zone f(8) is calculated first and f f(0) d6 is easily evaluated, so the functions sinf(8)

and cosf(B) can be calculated. The transformation procedure can then be used to provide




intermediate values for these functions. Then the crossing time is obtained by solving for the

smallest value of 8 that satisfies an equation analogous to the one for crossing time with slowing
due to electrons only.

Applications of the Analytic Results

The above results have two potential applications. One is in the implementation of a Monte Carlo
approach to Charged particle transport. For the case of high plasma temperature such as may occur
in a burning DT fusion plasma, or for very energetic particles such as the D°He proton, the nuclear
scattering cross section becomes important, because the Rutherford scattering cross section
diminishes. Monte Carlo has been used in the past to obtain particle range-energy results for these
cases [Evans & Talley].

The other potential application is in the construction of a datasbase of transport matricies.

Upon specifying a zone geometry and content (p, T,, and B), the analytic results and a single
numerical trajectory calculation can be transformed repeatedly to build up a collection of weighted
outgoing particle directions, energies, and times. The fractional contribution of each incoming
particle to the outgoing particle in a particular distribution is used to build a transport matrix. This
approach is similar to that of reference [14]. The transport matrix describes the coupling between a
pair of surfaces that are part of the bounding surfaces that define the zone. Each pair of surfaces

coupled will have its own matrix, so there will be several matrices per zone, as illustrated in Figure
2

-

outgoing distribution function :

1 2 3
2 4 1
5 3 10
1 2

| 1

TN 8

/’/Mlz: (16x16)

. K out
incomm S0 1 2 3 2 2 4 1
distribution 0 U3 23 1
[] ‘/
function : . 0 121 32
7 3 2771 mn 0 1 2 3
12 4 |2 N
BT 0 1 2 etc.
WT— 0 12

)

Figure 2. Building a transport matrix. The faces of the zone defined by intersecting

planes is dividpd into several sub areas and a chosen number of trajectories are used to get
the exit directions, energies, etc.




Potential Improvement

Some improvement may be necessary to increase the flexibility of the above results. The analysis
of the DT alpha trajectory is based on the assumption of uniform zones. It would be desireable to

handle gradients in the various intensive zone quantities (p, T,, and B). The prospect for a general
analytic approach to gradients is poor, but an efficient numenc.a] approach may be possible. The
idea is to break up a zone with a gradient into several volume elements and do the transport through
these zones, each of which has uniform density, temperature and field values that reflect the
gradient within the parent zone. The results of two successive breakups (N) can be extrapolated in
1/N to get the result that would have been obtained for very large N. This assumes that the
gradient can be approximated by many small steps. This assumption can be tested against special
cases that have analytic solutions and against a particle tracking code.
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EXPLOSIVE DECELERATION AND FRAGMENTATION OF METEORITES
IN ATMOSPHERE

D.V.Petrov. O.N.Shubin, V.P.Elsukov, V.A.Simonenko,
RENC—VNIITF

ABSTRACT

At this juncture there is a series of interactions between meteorites and the atmosphere
experimentally observed but remained without any coherent reasoning. First of all, it is the
explosion of the Tunguska meteorite at certain height. After this explosion no meteorite matter
was found. Moreover, in the Earth atmosphere one can regularly register the bursts like fire ball
of a nuclear explosion yielded of 1 to 100 kilotons of trotyl [1]. This evidences that under
certain conditions a physical mechanism exists which governs the explosive interaction between
a meteorite and the Earth atmosphere possessing specific features of the nuclear explosion in
the air or above ground. There is also no a consistent theory describing meteorite fragmentation
in the atmosphere.

The work offers the theoretico-computational model describing the explosive
interaction between meteorites and the atmosphere, as well as the meteorite fragmentation.
Fundamental assumption of the theory are as follows. When a meteorite enters the atmosphere,
it interacts with approach stream of air that results in large-scale loss of hydrodynamic stability.
This causes meteorite disintegration into several approximately equal fragments. Later for each
of the fragments resulted the process is repeated - one can observe a chain reaction of meteorite
fragmentation, the fragments being decelerated in the atmosphere.

This physical model can lead to two consequences. In the first one, the meteorites which
have rather small density and size less than critical can reach only certain critical height above
the Earth surface. In this case the spatial region, where the meteorite “pieces” transfer their
energy to the atmosphere during relatively short time (as compared with flight time), has the
sizes comparable (with one order accuracy) with the initial dimension of the meteorite. The final
size of fragments felt down onto the ground according to this scenario will apparently be
defined by existence of certain minimal size of a particle and/or critical velocity of these
particles in the atmosphere. Judging on result of the Tunguska explosion the final particles are
of microscopic dimensions. In the second scenario, when density and dimensions are large
enough, fragmentation process has no time to develop comprehensively. In this case dimensions
of fragments which have achieved the ground, will be macroscopic. For example, the Sikhote-
Alin event was not the explosive one.
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1. OVERVIEW

Currentlv most of researchers use as the initial hvpotheses the theory of gas dynamic

deceleration and ablation of meteorites in the Earth atmosphere which is described. for
example, in [2]. The equations it uses are in the following form:

MEI—=-GpaSv"n (1.1)
dM A
—dT'=-'Q—p.SV3 (12)

where G, A are unitless coefficients,
S - effective maximum midsection,
Q - ablation energy of unit mass,
M - meteorite mass (initial mass M,),
n - unit vector along trajectory,
pa - air density,
v - meteorite velocity.

In principle, the equations should contain Earth gravity, however, for considering the
fundamental issues it is not principal character..

In [3] for the case of exponential atmosphere the analytical solution (1.1) in quadratures
was derived for “spherical meteorite™.

Let us consider the major advantages and disadvantages of the theory.

Advantages
1. The theory (given appropriate choice of constants) qualitatively well describes
deceleration of a single meteorite in the middle part of trajectory.

Disadvantages

1. As only velocity vs. altitude is known from direct experimental observations, then
there are rather great uncertainties in selection of constants in the system (1.1-1.2). This is
especially actual for determining the initial dimensions, mass, and, respectively, energy.

2. As it was noted by the author of [6], the ablation equation at certain velocities
- contradicts to the energy conservation law.

3. The theory does not offer neither qualitative nor quantitative evidences of potential
fragmentation of meteorites, meanwhile investigations of meteorites felt down show that
meteorite fragmentation is most probably a rule - singe meteorites are rare.

4. The theory does not offer the qualitative evidence of meteorite explosion in the
atmosphere: the Tunguska and Sikhote-Alin events. It follows from solutions of the system
(1.1-1.2) that a meteorite loses energy relatively smoothly with height. Moreover, dE/dH is
smeared practically over the entire atmosphere [3].

In some studies the attempts were undertaken to avoid these disadvantages and
complete the theory [3-6 ].

In [3] it was noted that pressure to a meteorite due achieved maximum, if meteorite
mass did not exceed certain value. In this case pressure of air even to relatively slow meteorites
can reach great values essentially exceeding strength of meteorite matter. That is why the
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authors of [3] describe the process of fragmentation (explosion), phenomenologically
introducing the notion of "fractional pressure" Pg. On their estimates, for iron meteorites Pex
650 atm. for stone ones Pg=50 atm.

To describe the Tunguska event the authors of [4] completed the system (1.1-1.2) with
the equations describing changes in meteorite cross section while it travels through the
atmosphere (model cylinder of height h and diameter 2r) under pressure on the front surface
(pressure on the back surface is neglected). It should be noted that in the model. deformation
and, respectively, fragmentation begin after pressure has exceeded compression strength of
meteorite matter.

Asteroid fragmentation is studied in [5]. Asin [3], it is considered that fragmentation of
asteroid (or further fragmentation of its fragments) occurs if pressure exceeds asteroid matter
strength. In this case cross section of “asteroid” increases with respect to velocity with which
fragments fly apart in space, which in turn is dertved from the relationship for the pressure
difference work and kinetic energy of fragments scattered. Fragmentation proceeds repeatedly:
the next phase begins when radius of the cloud increases twice; it is supposed that in this case
fractures become wide enough to allow penetration of approach air and each fragment has its
own pressure difference. Fragmentation stops if pressure does not exceed strength. From this
moment each fragment gets its own pressure difference and their deceleration in the atmosphere
is calculated independently.

The model described in [6] was designed as a simple analytical model intended for
illustrating calculated with the STN code results of the Shoemaker-Levy comet disruption in the
Jupiter atmosphere. The authors of [6] noted that ablation equation (1.2) at certain velocities
contradicts to the energy conservation law. This is associated with the fact that actually ablation
mass does not disappear from the system, more correct relation for Q is:

1,
Q-_— QO +5V'.

The second term is dominant at v>5km/s for all matters of concern for the problem

under consideration. If one neglects the first term, the modified ablation equation is:
9‘(';—1=—2Ap,s . (1.3)
In addition, the authors of the model took into account formation of a layer of
evaporated matter and hydrodynamic expansion of asteroid - a result of Kelvin-Helmholtz

instability.

It is evident from the above that in order to describe fragmentation and/or explosion, the
* initial model (system (1.1-1.2)) is modified in two ways:

1. Introducing fenomenological pressure of disruption (references [3,5]).

2. Deforming a meteorite to increase its resistance and “lead’ it to the explosion
(references [4.6]).

In the last case it is a need to complete the model with some constants and assumptions
which are unknown a priori. It should be noted here that different authors use different
constants in the initial system (1.1-1.2). Thus, we have to say that provision of the problem with
constants is beneath criticism (consequences of a very poor experimental data). Hence, there
are certain doubts whether the physical model and actual picture are adequate.

In our view, all the above shows that this modification of the initial model is not
challenging. Mathematical simulation is the most direct way to solve this problem (experiments
are expensive and often impossible). Unfortunately, it is not easy to describe the problem
completely because there is a lack of knowledge in the processes and there are no adequate
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models of matter. Therefore. the theoretico-computational approach is the most promising
because every step of the theoretical model is verified by mathematical simulation.

In the work this theoretico-computational approach was implemented for the problem
of clarifving the explosion and fragmentation of meteorites and asteroids.
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2. PHYSICAL MODEL
2.0 NULL APPROXIMATION

The phenomenon of fragmentation and explosion (since it is observed) should not be the
“thin™ physical effect. it should have a simple qualitative reasoning. Therefore, for qualitative
understanding, most likely, ablation can be neglected in the first approximation because it
should only strengthen the basic effect. Since fragmentation and explosion do not follow from
the first equation (1.1). it is a need in the physical hypothesis which could result in the above
effects.

The fundamental hypothesis of the model is the following. When a meteorite enters the
atmosphere, it interacts with the approach stream of air that results in large-scale loss of
hydrodynamic stability. It disintegrates into several parts approximately equal to one another.
Then the process reproduces itself - one can observe the chain reaction of meteorite
fragmentation, the fragments being decelerated in the atmosphere.

We will consider the meteorites in the form of a ball.

At first, let us assume fragmentation proceeds discretely and the time from one
disintegration to another does not depend on both velocity (i.e. we assume that in the “null
approximation” a meteorite and its fragments are not decelerated) and air density.

Let us introduce the following designations:

R, - meteorite initial radius;

, m=0 means initial state;

Rm radlus ofa fragment at the m-th step;

T, - time from one disintegration to another at the m-th step;

n - number of fragments;
7 - time during which a fragment of unit size disintegrates;
N - total number of fragments.

Then one can write the following relationships:
Reg=n -m/3RO
tm=m 3R, 2.1.1)
N(m)=n™.

Respectively, current time tm can be expressed as:

- @ 1 /3 1-
t. =Z‘tk =Z1:-RO(-—) =1-Rj—— x” ,  Where x=n'1/3, m21 (2.1.2)
k=0 e B 1-x

It is seen from the formula that there exists the ultimate time of meteorite fragmentation
which is equal to:
o

Yn -1

If during thxs time meteorite has not reached the Earth, it will naturally disintegrate in

1
t,=1-R,—— —tRo

(2.1.3)

air.
Then it is more convenient to transfer from the discrete variable m to the continuous
one t. Then we derive the following expressions for number and size of fragments:




t, ) (2.1.4)

Rt_R(l 1)
()— 0 _t

f

Since t, is proportional to meteorite initial size R, then number of fragments mnto which
it will disintegrate during this time, will mostly depend on just this parameter and be far less
sensitive to the rest of (n, 7).

Following the above, in the “null” approximation the meteorite explosion -
disintegration into infinite number of fragments - takes place at moment t. Then, if it does not
reach the Earth surface, the explosion will occur in the air. In this case the reaching condition
(meteorite critical size) can be estimated from the following relation: t; =h/v<t,, where h is the
atmosphere height, v is meteorite velocity. From this one can derive the expression for
meteorite critical size:

h 1

ROZ;-;(I—;—\/%) (2.1.5)

To transfer to numerical estimates, we need to know 1. Generally saying, T depends on
velocity. Looking ahead, we can say that t obtained by numerical estimation for the ice
meteorite is about 40us/cm when velocity is equat to 20km/s. Given atmosphere height of
10km. we obtain that R¢>60m for n=8.

2.2. RESULTS OF MATHEMATICAL SIMULATION

Naturally, any physical hypothesis needs experimental confirmation. In our case it is
rather difficult. Therefore, to verify its plausibility, let us use mathematical simulation. The
following calculation was performed with 2D hydrodynamic code MECH [7.8] (without

accounting for ablation). A ball of 1cm in radius and 1 g/cm3 in density was winded by air flow
of velocity in 20 km/s and density pa=0.00129 g/cm3 (air density at sea level). Equation of state
of the ball matter was taken in the simplest form:

P=pyci(8-1), (2.2)
where P is pressure,

P, - initial density,

¢, - effective speed of sound (c¢,=2.5 km/s),

& - compression.

In fact, it is equation of state for ice at small compression and pressure. Really, pressure
realized in these processes is not high, Pzpov2=5 kbar.

Air was considered as ideal gas with y=1.2.
Figures 2.2.1 - 2.2.4 depict gas dynamic flow implemented.
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Fig. 2.2.1 presents the moment when flow achieved equilibrium. On Fig. 2.2.2 one can
see how a hole is being formed at the axis of symmetry. On Fig 2.2.3 we see that the initial ball
has become torus and Fig 2.2.4 shows two tori formed from the first one. So, we see the
process reproduces itself. Of course, the problem should be caiculated for three spatial
variables, however, main features of the phenomenon may be seen from 2D calculations. The
ball has become torus during =~40 ps. Apparently, this time is close to the disruption time
desired and it was used for the estimation of paragraph 2.1.

A series of runs were proceeded which varied in velocities of approach flow at normal
air density. Specifically, the values were obtained for resistance coefficient G in the motion
equation (1.1), which was fitted on calculated results.

Main calculated results are presented in table 2.2.1.

Table 2.2.1.
Voo km/s G td, us
5 1.313 193
10 1.381 84
20 1.408 40
30 1.404 29.5
50 1.219 17.7
70 1.15 14
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As it is seen from table 2.2.1. resistance coefficient is almost constant within a wide
range of nitial velocities. Certain deviation takes place at high velocities which can be easily
explained: at these velocities both pressure and compression are not already small and
application of the equation of state in form (2.2) is hardly correct.

As to time of disruption, it is seen from Fig. 2.2.5 that it is simply inversely proportional
to initial velociry.
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InV,

0
Fig.2.2.5

Thus, mathematical simulation verifies on the whole the mechanism used and obtained

relations and patterns, as well as their numerical values we will use in further development of
the analytical model and numerical simulation which will be considered in the next section.
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3. ANALYTICAL ESTIMATES
3.1. EXPONENTIAL ATMOSPHERE

With relation to practice. real interaction with exponential atmosphere of the Earth is of
most interest. In this case the system of equations will be written as follows.

Equation of motion in ballistic form
dv? 2GA y
= v, 3.1.1
dz  pi’ME coso Ps S
where z is coordinate above the Earth surface;
¢ - angle of meteorite enter into the atmosphere;

M - mass of a fragment at the m-th step;

py - meteorite density;
n A
T 23ngl3
M pPuM,

A - unitless coefficient defined from the relation

Sm - maximum midsection square:
pa - current air density, p, = p,exp(-z/ h);

h - Earth atmosphere height.
Integration limits in this equation can be defined by the following relation:

m-tm-1Tm. (3.1.2)

To complete the svstem of equations, it is a need to write the equation for tm. For this
purpose let us introduce the notion of destruction velocity so as
ty b
[vedt= | dt =R__ . (3.1.3)
o o, WV.p,)

To continue, on the basis of numerical calculations it is necessary to make some
assumptions concerning the form of function vd=l/t(v,pa). Considering dimensionality,

LA —ci,—cj, y.etc.) (ca- speed of sound in air).  As it was shown in paragraph 2.2,

t

1
T=—f(—,
V opy V
Tm~1/v, and, since prior the disruption meteorite velocity varies relatively weakly (paragraph
2.2), one can neglect the dependence on parameters of type c/v<<l. Then
1
r=—f(fey. 3.1.4)
Y Pum
Really, when air density is constant, substituting (3.1.4) into (3.1.3) we obtain:

t-
th Vm—le

R,.= | ~ ,
=2 {2

that agrees with calculated results.
To facilitate computing, we will consider then that

I 1
r:—f(p—')=—3p—'. (3.1.5)
v V. Pwum
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Substituting (3.1.5) into (3.1.3) and integrating with respect to z we will obtain the
following relationship:

BpyR,_ coso =h(p, —pn)=hAp,, (3.1.6)
where p_=p,(z.).
If we integrate equation (3.1) over z from z_, to z_ . we will obtain:

J, (3.1.7)

hy
Vo = Voo €XP| AP, o

2GA
Py M, coso
Combining (3.1.6) and (3.1.7):

where vy =

GA

m Vm—! exp - 47_{ I3
3]

m

v =V, f

Respectively, energy loss is:
, 1

AE_ =E " (1 - f_z) .

After m acts of fragmentation the meteorite will lose the following amount of energy

AE(m)_—E( )Zfz”-—E(l f22). (3.1.9)

n=l

v B|=v

f (3.1.8)

and

To clarify the issue on distribution of energy losses over height, let us return to formula
(3.1.6) and rewrite it for variables R and x:

R, ..
p - Bp\l h 1 *
Hence we have the equation:
R

e—z.lh - e-z_-,/h = B F:)M 0 xm-l = éxm-] .
0
So,

" -z‘,/h +'_an—l

n=}]

Assuming z,—>+« and summing the series, we obtain:

hat #

e

1 - X
- /h - -1
¢ - ):Z ’ g

,m2>1. (3.1.10)
=1} I-x
When m—»cc, meteorite will reach only finite height
1
1___
- 3
z,=h-In— =h.1n——‘/g—. (3.1.11)
S gPu o
P h
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If z<0. meteorite fragments will fall down onto the Earth. if z>0. meteorite will explore
in air. On results of calculations of paragraph 2.2. B~0.1. Then critical radius of the ice
meteorite makes up about 50 m.

Using the above formulas. the calculations were proceeded for the ice meteorite of 30m
in radius and velocity of 20 kmy/s normal to the Earth surface. Kinetic energy of such meteorite
makes up 5.4 Mt. Figures 3.1.1-3.1.2 depict how meteorite kinetic energy depends on height
and time at the moment of fragmentation.

. Yield MT _Yield MT

T ®¥ ®m X 4 B @ R B 8B B ¢ A 1 15 12
Altitude, km Time.s

Fig. 3.1.1 Fig.3.1.2

As it is seen. the first fragmentation occurs at height of ~10 km, after 5 acts of
fragmentation it is already at the ultimate height of 4 km where it disintegrates completely. Near
this height during the time of ~0.01s energy of 1.5 Mt is being lost along the distance of about
100 m.

The issue remains on the character of energy release in this process. We have failed to
derive the explicit analytical expression for exponential atmosphere and this model. However,
due to the fact that almost all energy loss is concentrated within narrow range of heights: 50%
of energy is lost at 1 km, then one can accept the atmosphere has constant density in this
region. Solution of such problem is offered below.

3.2. ATMOSPHERE OF CONSTANT DENSITY
Likewise paragraph 3.1, integrating the equation (3.1.1) over time, we obtain:

1 1 GAp
—_— = it -t .
O - A

Vm vm—l

To derive the explicit analytical formula for function E(t), we will use formula (2.1.1):
m73 -m73
.=tn R, R=n R Then
1 1 b, (3 173 ’
—— =a=GAt—=|—| . (3.2.1)
v, Vv Py \47n

Generally saying, as it was shown above, this is not correct. Really the right part of the
last equation should be inversely proportional to v, (in this case formula (3.2.1) becomes

m m-1
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(3.1.8) at small « ). In fact. this results in slower energy losses from one fragmentation to
another. However. since in the model described the time from one disintegration to another 1s
understated as compared with exponential atmosphere, one could anticipate compensation and
hope the approach will give not bad estimate.

It follows from formulia (3.2.1) that:

v
v = 0

m -_—— .
I+mav,

1
/sl: =E ___—.T— -
" 0([1+mav0]' lj'

and meteorite kinetic energy is:

E,~E(m)=E,-> AE, =
k=l

Hence.

E,
[l +mav, ]z .
Transferring from variable m to time with the use of relation (2.1.2)
o= In(1-t/¢;)

(3.2.2)

-~ we obtain:
- E,
EM= !: ln(l—t/t,)} . (3.2.3)
1+ov, ——
Inx
When t—t, . dE/dt—-2. It is the explosive process.

Generally saying, in formulas (3.2.1-3.2.3) some effective parameters (E,, v,, t,) should

be "sewed" with the solution for exponential atmosphere.
Really rate of energy loss is surely limited. Most likely, its maximum value is determined

by finite size of macro particles and/or by finitness of velocity.
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4. COMPARISON OF ANALYTICAL ESTIMATES WITH RESULTS OF
MATHEMATICAL SIMULATION FOR EXPONENTIAL ATMOSPHERE

To verify validity of estimates offered in paragraph 3.1. the interaction of meteorite with
the Earth atmosphere was computed. Initial conditions were as follows: at height of 25.5 km a
meteorite of radius in 30 m had initial velocity of 20 knv/s.

The run showed that the destruction has occurred after 0.511s, i.e. afier the asteroid has
covered ~10 km. Deceleration coefficient made up G=1.3 indicating that it depended on
atmosphere density.

It should be noted that the estimation with the formulas of paragraph 3.1. gives the
results which somewhat differ from those obtained through mathematical simulation: The first
fragmentation occurs at the height of 8.64 km in 0.81 s. This evidences that everything goes
faster in mathematical simulation. This might be reasoned by the fact that in analytical estimates
of the disruption model we considered that disruption time vs. density is ~pa, actually it may be

not so strong.

Since the analytical estimates of explosion strength have appeared even less optimistic
than results of mathematical simulation, it has meaning to consider the problem of the Tunguska
explosion from analytical standpoint.

Let us consider it was a ball of 46 m in radius, 20 km/s speed, entry angle of 450 Total
energy was 20 MT.
Trajectory is shown in Fig.4.1.
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Fig. 4.2 and 4.3. depict energy vs. height (here the first point corresponds to the first
fragmentation).
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Fig.4.2. Fig.4.3.

Ultimate height achievable by the meteorite fragments is 3.24 km. As it is seen from the
plots, about 8 Mt of energy are released by the explosion.

To illustrate the capabilities of the model proposed, let us compare it with both
hvdrodynamic model and hydrodynamic model with ablation. Ablation coefficient was taken
from [2]. The calculations were done for the ice meteorite which was 20 km/s speed and had
energy of 5.4 Mt.

Dependencies of typical quantities are presented in Fig. 4.4 - 4.7.
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It is seen from the plots that the model proposed offers qualitatively new results. In
hvdrodvnamic model and model with ablation meteorite reaches the Earth surface with
“smooth” release of energy, while in the mechanism proposed it “explores™ at finite height. It is
also seen ablation affects trajectory not essentially. At the same time, if the model is completed
with ablation, energy release due to less radii will proceed faster.

THE BOTTOM LINE

Theoretico-computational model of the asteroid explosion and fragmentation in the
Earth atmosphere has been designed. Fundamental assumptions of the model are as follows.
When a meteorite enters the atmosphere, it interacts with approach stream of air that results in
large-scale loss of hydrodynamic stability. It disintegrates into several approximately equal
fragments. Then each of the fragments reproduces the process - one can observe a chain of
fragmentation and deceleration of the meteorite in the atmosphere. Based on the mechanism
proposed, radius of the ice asteroid which can achieve the Earth surface was estimate, it is ~50
m. Really, as it follows from mathematical simulation, this radius is smaller. If the meteorite
does not reach the Earth surface, its energy loss is of explosive character - the most portion of
energy is lost at the distance of several meteorite typical sizes.

Based on the results obtained the areas for further research can be defined:

1. Effects of matter (ice, stone, iron), as well as its porosity on fragmentation.

2. Effects of meteorite (asteroid) form on fragmentation.

3. 3D mathematical simulation of fragmentation processes.

4. Comparison of experimental observations in explosions in the atmosphere with results
of mathematical simulations and the estimations with the analytical model.

5. Calibration of physical models and mathematical codes with experimental results.

6. Detailed study on how the resistance coefficient and disruption time depend on air
density.
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Experimental Facts:

¢ burst of Tunguska meteorite;

o flashes are recorded similar to fireball of nuclear explosion with
the yield of 1-100 KT of TNT.
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1. OVERVIEW

Initial system

d :
M-(% =-Gp,Sv'n
M L .
R

a = oS

Advantages:
1. This theory describes quite well deceleration of a single meteorite

at the intermediate part of trajectory (under appropriate selection
of the constants).

Disadvantages:

1. Rather large uncertainties in selection of system constants.

2. At some specific velocities equation of ablation contradicts the law
of energy conservation.

Opportunity of meteorite fragmentation does not succeed.

4. Opportunity of meteorite «bursty in the atmosphere does not
succeed: dE/dH spreads over the whole atmosphere.

‘b.)

Two ways of modification:
1. Phenomenological pressure of destruction is introduced.
2. Meteorite is strained in order to increase its strength and «lead to»

burst.

These modifications of the initial model are not promising.
Mathematical modeling is the most direct way of solving the problem
‘(because experiments are too expensive, and often impossible).

The most promising way is simulation-theoretical when each
step of physical model is verified with mathematical calculations.
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2. PHYSICAL MODEL
2.1. ZERO APPROXIMATION
Principal Assumption of the Meodel:

When meteorite enters the atmosphere, it interacts with a
windstream and this results in a large-scale loss of hydrodynamic
stability of the meteorite. It disintegrates into several nearly equal
fragments. Later this process reproduces itself - chain reaction of
meteorite fragmentation, and deceleration in the atmosphere are
observed.

Meteorite is a sphere.

Fragmentation is discrete and interval between two
fragmentations does not depend on velocity and air density.

Assume n to be a number of chunks resulting from
fragmentation.

Final time of meteorite destruction is:

-

Un
t.=t-R,—7/——
‘ *Yn-1

Number and sizes of the chunks are calculated in the following
way:

(N(t) = 1 3
t
< t,

t
\R(t) = Ro(l - t—)

f

«Burst» of meteorite, i.e. disintegration into an infinite number
of fragments, occurs at the moment t;. If meteorite does not reach the
Earth’s surface by this moment, the burst will occur in the air.




2.2.RESULTS OF MATHEMATICAL MODELING

Assume, that meteorite is of unit size and unit density.

Equation of state is P=p,c.(6-1).

Vo, km/s G tg, US
5 1.313 193
10 1.381 84
20 1.408 40
30 1.404 29.5
50 1.219 17.7
70 1.15 14

t, is destruction time.
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3. ANALYTICAL ESTIMATES

3.1. EXPONENTIAL ATMOSPHERE
dv’ _ 2GA
dz ~ pi’MLicoso
Intecration limits: ¢ -t _, =1,

PV’

t- ‘ﬂ
Jv dt *j dt =
o d . T(V,p’ ) -]
. . . . 1. p. ¢ ¢,
Proceeding from dimensionality 1= ;f(;—,——,——,y,etc.)
MV
1
r=—f(P)
V. Pu
1. P,
Assume, that t=—B—.
v p_\l
Integrating:  Bp,R_ ,cos¢=h(p, —p__,)=hAp, and
: GA
vn =vn—lexp - |'3B =V-_]f

ar
3
AE =Eof2"(l-—l-2-)
- f
After m fragmentations meteorite will lose the following amount of
energy:

]\ -
AE(m)= —Eo(l - F};r“ =E,(1-1*)

Using variables Ry and x=n"" for cosp=1 we obtain the following
relations:
pu R

T SR 4.
. 0

p=]

If m— o, meteorite will be able to reach only a final altitude
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Calculations show that B~0.1. In this case critical radius of the icy
meteorite will make up about S0 m.

3.2ATMOSPHERE OF CONSTANT DENSITY

Similarly to the previous case:

({1 1 GAp, -~
( V.,_,] (tn t--—l)

= T Al s
v pM Mn—l

For explicit analytical dependence E(t) the following formulas are

used: ;
1, =1-0n"°R,, R, =n"""R,
Then
(- (2]
— = o =GAT | —
V- v--l p- n
This leads to

- less energy loss at fragmentation;
- longer time interval between fragmentations.

Balancing can be expected and this approach will, probably, give a
good estimate.

_ EO
E(t)= In1-t/t,)
1+av, T Inx
For t— t;, dE/dt — -co. This is an explosive process.
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4. COMPARISON OF ANALYTICAL ESTIMATES WITH
THE RESULTS OF MATHEMATICAL MODELING

Initial conditions are the following: at the altitude of 25.5 km
meteorite of 60 m in diameter had the initial velocity of 20 km/s.

Mathematical Calculation
modeling
Time of destruction, s 0.511 0.81
Altitude of 15.5 8.64
destruction, km

Burst of Tunguska meteorite from the analytical viewpoint:
sphere had radius of 46 m, velocity of 20 km/h, angle of
incidence of 45°, total vield of 20 MT.

i 'y

4 s s ? [ s - iR ¥ o8 M 1B M S U 3 u s
Altitode (Z), xw ' Time, s

Fragments of meteorite can maximally reach the altitude of 3.24
km.
Explosive process results in the loss of about 8 MT of energy.
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COMPARISON OF DIFFERENT MODELS
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CONCLUSION

Based on the results obtained, directions for further research
can be determined:

. Effect of material type (ice, stone, iron) and porosity on the
process of fragmentation.

. Effect of meteorite (asteroid) form on fragmentation.

. 3D mathematical modeling of fragmentation processes.

. Comparison of experimental observations of bursts in the
atmosphere with the results of mathematical modeling and
calculations according to the analytical model.

. Calibration of physical models and mathematical codes on
the basis of experimental results.

. Detailed study of how resistance coefficient and destruction
time depend on air density.
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Implementation of Numerical Simulation Techniques in Analysis of the
Accidents in Complex Technological Systems

G. S. Klishin, V. E. Seleznev, V. V. Aleoshin, Russian Federal Nuclear Center-VNIIEF, Russia
Presented by P. 1. Pohl, Sandia National Laboratories, Albuquerque, NM

Gas industry enterprises such as main pipelines , compressor gas transfer stations, gas
extracting complexes belong to the energy intensive industry. Accidents there can result into
catastrophes and great social, environmental and economic losses. Annually, according to official data
several dozens of large accidents take place at the pipes in the USA and Russia. That is why prevention
of the accidents, analysis of the mechanisms of their development and prediction of their possible
consequences are acute and important tasks.

The accidents reasons are usually of a complicated character and can be presented as a complex
combination of natural, technical and human factors. In the RAO "GAZPROM" there is a subdivision
of the reasons of accidents into the following groups:

¢ environmental interference;

e defects and drawbacks of the pipes and auxiliary equipment manufacture;
e mistakes in the pipelines operation:

o damages during the pipelines construction;

e unauthorized interference in the gas pipes operation.

Mathematical and computer simulations are safe, rather effective and comparatively
inexpensive methods of the accident analysis. It makes it possible to analyze different mechanisms of a
failure occurrence and development, to assess its consequences and give recommendations to prevent it.
The difficulties in mathematical and computer simulations of accidents at the pipelines objects can be
explained by :

¢ a wide spectrum of the failures reasons and consequences;
o the variety of the accidents mechanisms and ways of their development;
e an integrated influence of the damaging factors.

Besides investigation of the failure cases, numerical methods play an important role in the treatment of
the object’s diagnostics results and in further construction of mathematical prognostic models of the
object behavior during the period of time between two inspections.

While solving the diagnostics tasks and in the analysis of the failure cases. the techniques of
theoretical mechanics, of qualitative theory of differential equations. of mechanics of a continuous
medium , of chemical macro-kinetics and optimizing techniques are implemented in the Conversion
Design Bureau #5 (DB#5). Both universal and special numerical techniques and software are being
developed in DB#5 to solve such tasks. Almost all of them are calibrated on the calculations of the
simulated and full-scale experiments performed at the VNIIEF and MINATOM testing sites. It is
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worth noting that in the long vears of work there has been established a fruitful and effective
collaboration of theoreticians. mathematicians and experimentalists of the institute for solution of such
tasks.

Let's consider in more details the approaches and mathematical simulation techniques
implemented in DB#5, VNIIEF for the pipelines failures analysis. Big movements. shifts and spread of
the construction elements of the pipeline equipment during an accident can be well described with the
help of the theoretical mechanics equations. Theoretical mechanics techniques are often used during a
simplified numerical analysis of the equipment behavior in the emergency mode of operation.

For example, with their help the oscillations of the air column between blades of the
compressor, located at the compressor gas transfer station, during the surge can be described in the first
approximation. The task of the surge simulation in this case can be presented as the analysis of a usual
system of differential equations with the given boundary conditions. This analysis is done in
accordance with the qualitative theory of differential equations. It makes it possible to evaluate surge
stability and character, to predict the accident development. Figures 1.2 show an example of the surge
phenomenon analysis with the help of computer simulation performed for GTU-160, that is located in
one of the shops of the compressor station «Morkinskaya», «Volgotransgaz» subsidiary.

In investigation of fires, a combination of three-dimensional finite element and one-dimensional
finite difference models is often implemented. They are investigated with the help of the finite element
techniques (FET) and finite difference techniques. Let's consider this approach using the following
example. The gas pipe in the building is ruined, a combustible mixture of methane and air is formed. It
has filled the building inside. There was a heating source in one of the rooms of the building. To
analyze the possible inflaming of the combustible mixture, there were performed non-stationary three-
dimensional thermal calculations with the help of a finite element technique. In three-dimensional
thermal calculations a gas mixture was assumed as an inert one. This approach in the analysis of the air-
methane mixture heating is quite authorized, as the processes of the mixture enflaming take place in a
very narrow layer adjacent to the heater. (As a rule, the thickness of the heated layer is considerably
less than the distance between the adjacent joints of the finite element grid (graticule) implemented in
thermal calculations).

So, at every time step of the finite element technique, after three dimensional thermal areas were
calculated, the most heated micro-volumes of the combustible mixture were selected. In these volumes
the combustible mixture was considered as a mixture where exothermic chemical reactions take place.
We performed one-dimensional non-stationary thermal calculations with consideration of kinetics of a
chemical exothermic mixture decomposition to assess the possibility of enflaming of the selected
micro-volumes. Here finite difference techniques with the adaptive grid were used.

As arule, in an emergency at the gas pipeline, the magnitudes of one or several parameters
characterizing the design of the equipment or its operation, reach their extremes. That is why, in
simulation of emergency cases at the gas pipelines optimizing techniques are widely used in VNIIEF. In
this case, a target function of the optimizing task describes critical parameters of the gas transfer
system as a function of control efforts induced on the pipeline equipment. Task limitation functions
reflect constructive and technological limitations of the pipeline equipment or the gas transfer process.
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Taking into account the complexity of the gas pipeline systems, the target function and the limitation
functions are non-linear multi-parameter functions. The problem of gas transportation operating costs
reduction can also be presented as an optimizing task (Fig. 3,4). So, we are facing the need to solve a
non-linear multi-parameter task of a conditional optimization, that looks like:

FX)=>min, G(X)=0, P(X)>0, A>X>B,

where F(X) is a target function, G(X), P(X), are given limitation functions, X is a vector of controlling
influences, A, B are the given vectors that belong to the n-dimensional Euclidean space. For solution of
optimizing tasks a library of optimization programs is developed in DB#5, VNIIEF. Original algorithms
of solution the tasks of linear, non-linear and mini-maximum optimization are realized. Special
algorithms to analyze the obtained solution for its extremity are developed. Many years of work with
the optimization library confirmed its operability and sufficient effectiveness of the algorithms in it.

Besides the analysis of different accidents at the gas pipelines, mathematical simulation
techniques, that were originally developed in RFNC-VNIIEF for to solution of the tasks of gas
industry and pipeline transportation, could be implemented in :

o the analysis of the main pipelines state;
e localization of the places of the pipeline destruction;
e in creation of new generation information and control systems for pipeline transportation.

Figure 1. Stable Equilibrium System State
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Figure 2. Hard Mode of the Excitation of the Surge
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Figure 4. Final Positionin an Example
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Let’s consider implementation of numerical simulation for assessment of the pipeline state that
is based on the results of the external and internal pipe diagnostics. To evaluate the state of the main
pipelines from the point of view of their strength an external pipe and internal diagnostics is
performed from time to time. In the DB#5, RFNC-VNIEEF pipeline state assessment from the point of
view of their strength is usually performed with the help of the techniques of the continuous medium
mechanics, in particular FET that is widely used nowadays. Here the approach is based on a
consequent implementation of the beam models, shell models and voluminous finite element models.
Calculations on the beam models (Fig.5,6) and shell models (Fig.7,8) are of evaluating character are
mainly used for specifications of boundary conditions for FEM calculations

Figure 5. Actual Displacement of the Pipeline as Compared to the Designed One

Figure 6. Stress Intensity at the Pipeline Section
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Figure 8. Stress Intensity at the External Side of the Pipeline Curve Where A
Corrosion Defect is Located
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basing on the finite element model (Fig.9). This approach allows to consider the deformation influence
of the whole pipeline section on the stress and strain state in the defective zone.

Figure 9. Stress Intensity in the Defective Zone
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Analysis of the calculation results allows one to make a conclusion. based on the critenia of
strength and destruction, about the carrying capability of the defective pipeline section. This conclusion
serves as a basis for decision about this section replacement, repair or prolongation of its service
lifetime.
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An Implicit Fast Fourier Transform Method for Integration
of the Time Dependent Schrodinger Equation

Merle E. Riley
Laser, Optics, and Remote Sensing Department
Sandia National Laboratories
Albuguerque, NM USA 87185-1423
and
A. Burke Ritchie
Lawrence Livermore National Laboratory
Livermore, CA USA 94550

Abstract

One finds that the conventional exponentiated split operator procedure is subject to
difficulties when solving the time-dependent Schrodinger equation for Coulombic systems. By
rearranging the kinetic and potential energy terms in the temporal propagator of the finite difference
equations, one can find a propagation algorithm for three dimensions that looks much like the Crank-
Nicholson and alternating direction implicit methods for one- and two-space-dimensional partial
differential equations. We report investigations of this novel implicit split operator procedure. The
results look promising for a purely numerical approach to certain electron quantum mechanical
problems. A charge exchange calculation is presented as an example of the power of the method.

I. Introduction

The potential of fast computers to solve difficult full-dimensional problems prompted us to
investigate some modern finite-difference methods for solution of partial differential equations of
interest, among these the time-dependent Schrodinger equation (TDSE). One of the more interesting
choice methods for integration of the TDSE!' is the exponentiated split operator procedure (ESOP),'?
based on the use of the fast Fourier transform (FFT), which has been successfully used for vibration-
rotation spectral analysis and simple scattering situations.'>*.

Electronic processes such as charge transfer, excitation, and ionization involve the Coulomb
interaction which makes the numerical representation of the wave function more difficult than in the
molecular dynamics studies.>** We find that the ESOP tends to be very sensitive to the integration
step size in Coulombic problems: the solutions become inaccurate very abruptly as the time
increment is increased. Overall, one would prefer a method with the inherent stability of implicit
numerical procedures which, although inaccurate for large step sizes, remain stable and acceptable in

overall character. We review the ESOP and introduce a novel numerical method, the implicit split
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operator procedure (ISOP), which is reminiscent of the Crank-Nicolson (CN) and alternating-
direction implicit (ADI) methods’ for integrating the TDSE.
The TDSE is written as ¥ = —i HYW in Hartree atomic units (denoted au). The

Hamiltonian operator is:
‘ H=T+V, T=-1V2. (1
where the potential V is a function of position and time. The ESOP formulates the numerical

integration as the repeated application of the factored (split) incremental propagator:
W, 4 = exp(—%iT dt) exp(—iV dt) exp(~FiT dt) ¥, . 2)

By using the speed of the FFT to convert from the space to momentum representation and back, one
can always apply diagonal operators to the wave function. The ESOP conserves norm but not energy
due to the lack of commutation of the incremental propagator with the Hamiltonian. The procedure

is correct through order (dt)2 .

In certain atomic physics applications we found that the truncation error in the ESOP grew
faster than we could tolerate with time steps that would have appeared to be adequate for a second-
order-accurate method. These were applications with a Coulomb potential and a hydrogen 1s orbital
as a part of the wave function. We begin byy writing down the second-order-accurate, time-symmetric
form of the finite difference advance in the TDSE, analogous to the CN procedure:

Vs +yiHB Y, g =Y, —TiHd'E, 3)
A direct numerical solution of Eq.(3) is impractical due to the difficuities in resolving the implicit

part of the operator, even with the use of ADI techniques. The truncation error in Eq.(3) is O(dt)3 ,

which is precisely the same as in the ESOP in Eq.(2). What is desired is a use of the fast Fourier
transform (FFT) methods for resolving Eq.(3) by splitting the space and momentum parts of the
Hamiltonian. One way to do this is to rewrite Eq.(3):
_1-JiHdr ‘P
“h T e Lidar ! @

and to factor the propagator quotient approximately, all the while maintaining accuracy through
O(dt)2 precisely as in Eq.(2):

1-titar \(1-Livar\(1-LiTar
1+2iTar J\1+divar )\ 1+4iTar

Vg = Y. (5)

The advantage of this factorization or splitting is that the operator is now a product of
momentum and coordinate dependencies which allows the FFT procedure to be applied as in the
ESOP. The form in Eq.(5) is our implicit split operator procedure (ISOP)®’.
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II. Numerical Study of Stationary State

Our first numerical study compared calculations on the stationary 1s hydrogen atom ground
state with the ESOP and ISOP methods. We used computational cubes of 10, 20, and 40 au on a
side, all with an FFT grid of (64)° , symmetrically centered about the Coulomb singularity. The time
solution went from zero to 200 au. The space points were element centered and quadratures were
performed by the trapezoidal rule. We varied the time increments dt from 0.02 to 0.5 au.

What we found was that the ESOP calculations were unstable with diverging energy for dt =
0.05 in the 10° box, for dt=0.1 in the 20° box, and for dt = 0.5 in the 40’ box. The ISOP was stable
for all boxes and space grid sizes for all these time increments. Note the resemblence to a “Courant-
like” condition in the fact that a larger space increment allows stable integration with a larger time
step for the ESOP. Of course the accuracy is not as good for the coarser grids even in the ISOP. A
detailed examination of the numerical ESOP wavefunction shows that the unstable propagation error
is rapidly varying in space and thus appears in the kinetic energy.
IIL.Numerical Study of Charge Exchange

Quantum charge exchange is a notorious multi-arrangement-channel scattering problem of
great mathematical and numerical complexity. Even the simple idea of expanding in atomic orbital
and/or molecular orbital bases is complicated. We have done a small set of charge exchange
calculations of protons on H in the mixed classical-quantum picture. Our results agree quantitatively
with experiment and the best prior theory. The potential energy for two moving nuclei is written as:
V=-2Z,/r,(t)— Z,/r,(t) . The presence of ionization in fast collisions requires us to put
absorbing boundaries® on the computational box. In so doing the periodic boundary conditons of the
FFT do not cause interference within the free unbounded ionized channel. One of the most
impressive aspects of the present numerical treatment of the quantum charge exchange problem is the
simple and straightforward formulation of the theory. The Figure illustrates a slice through the
nuclei of the modulus of the wavefunction after the collision with a relative velocity (v) of 1 au and a
collison impact parameter (b) of 1 au. Part of the ionized electron is still leaving the vicinity of the
scattering center.
IV. Discussion and Conclusion

To conclude, we feel that the improved stability and energy conservation of the ISOP affords
direct numerical approaches to the solution of certain quantum mechanical problems. Some of these
problems are: strong-field excitation and ionization, charge exchange, multichannel reactive
scattering, and wave packet dynamics. The new massively parallel computers can make such
approaches practical.
Appendix

A uniformly spaced cartesian grid with points centered about the Coulomb singularity

defines its own cutoff of the potential. However one can see that an arbitrarily positioned gridwork

145




(U

iht
e
) ‘.,...,.__E _\\E‘

@)
410040

()

U
D
il

)
oy
%,
A
)

.....A
it HATRORERS
! Ry

i
R N
K R R
R
R
AR SN
R R R
AR, \
zz%zza &
X A )
N
$$z$$
W, o) o X
ek \

\)

R
Aol
W )
b
) )
.,“,,/,
e

)
W,

OV
i
KV
Wl
oooo—.oo




can create a large error in the numerical representation of the potential operator if a grid point lies too
near the singular point. We make the following argument for the modification of the Coulomb field
when used with the FFT grids. Consider the integral over a spherical volume of radius R centered
about the singular point of the potential: If we equate the spherical volume element to the volume of
a rectilinear cartesian volume element, dV =dx X dy X dz , we find for the sphere’s

radius: R = (3dV /4rm) U3 " If we now equate the integral over the Coulomb singularity to the

trapezoidal value of that integral with a cutoff of r,imposed in the Coulomb potential, we have

2nR? = (1/r) (d.x)3 , from which we can now solve for r, using the above value of R:
r, =(2dV /97) U3 The Coulomb potential is simply evaluated with r = max[r,r,] .
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IMPORTANCE BIASING SCHEME IMPLEMENTED IN PRIZMA CODE

la.Z. Kandiev, G.N. Malyshkin

Russian Federal Nuclear Center - All-Russia Scientific-Technical Institute of Technical
Physics (RFNC-VNIITF), Snezhinsk, Russia, 456770

Introduction

PRIZMA code [1] is intended for Monte Carlo calculations of linear radiation transport
problems. The code has wide capabilities to describe geometry, sources, material composition,
obtain parameters specified by user. There is a capability to calculate path of particle cascade
(including neutrons, photons, electrons, positrons and heavy charged particles) taking into
account possible transmutations.

Importance biasing scheme [2] was implemented to solve the problems which require
calculation of functionals related to small probabilities (for example, problems of protection
against radiation, problems of detection, etc.). The scheme enables to adapt trajectory building
algorithm to problem peculiarities.

The scheme was developed employing idea of step-by-step calculation of complicated
problems according to which initial problem is split into several subproblems which are solvable
and are solved successively (results of the first subproblem become input data for the second and
so on). Main drawbacks of this way of solving are, first, error emerging due to data conversion at
the moment of transit from one subproblem to another and, second, uncertainty in estimating
statistical error of the final result.

Scheme implemented in PRIZMA code enables to obtain final result in one through
calculation and use splitting into subproblems in order to use methods of non-analog modeling at
different steps.

For this purpose we defined four classes of problems with simple relations between source
and detector (elementary problems) so that majority of conventional problems of linear transport
theory can be reduced to some combinations of them. Schemes of non-analog modeling and
principles of building approximate importance function and appropriate non-analog distributions
were selected for each class of problems. Special tool for “calculation control” was created
allowing to transit from one elementary problem to another during the process of building
trajectory.

Non-analog modeling

When solving integral-differential Boltzmann transport equation we deal with two forms of
its integral representation written for density of particles (density of collisions) prior to collision

y(P) and after it x(P):
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W(P)= [K(P.P"y¥(P')dP" - y,(P) (1)

2(Py=[L(P.P'y x(P')dP" + 1,(P) (2)
Here _

P="P{r,Q,E,t} - is phase space point characterized by the position r, directionQ, energy E
and time t;

Y, (P) - is density of first coliisions;

K(P,P") - is transition kernel from point P prior to collision to point P',

%o(P) - is distribution density of the source;,

L(P,P") - is transition kernel from point P after collision to point P';

In the course of building trajectories transitions take place from one form of integral equation
to another and vice versa.

In practice importance biasing scheme should be implemented as follows:

1. Calculate approximate importance function meeting functional of the problem under
consideration. Approximate importance function should be rather simple in order to provide
appropriate nonanalog distributions.

2. In compliance with the importance function obtained build nonanalog distributions with
parameters selected to minimize fluctuations of particle statistical weight w.

3. Introduce special procedure into random walk scheme allowing to eliminate fluctuations of
particle weight: reducing statistical weight w to the value of weight function W(P) which i1s
inversely proportional to importance function.

Importance biasing scheme in PRIZMA code
Elementary problems

PRIZMA code employs estimate “on visits”, i.e. result is recorded only if particle passes
through the region of detection. In this case statistical error of estimate of any functional will be
large if probability of particle hitting detector is very small. Consequently, to estimate any
functionals it is necessary to model trajectories in such way that to increase the number of
particles hitting the detector. This means that it is necessary to increase artificially both density of
collisions in the vicinity of detector and inside detector and density of particles moving to detector
and its vicinity. Thus, problem of estimating any functional is reduced to the problem of
estimating solutions (P) and %(P), ignoring dependence of importance function on the form of
particular functional.

Each of these two groups of problems has.its own peculiarities but they are related since turn
into one another in the course of modeling. Problems of each group are also divided into two
groups. Totally there are four classes of problems to solve which it is necessary to apply
nonanalog modeling;

1. Radiation transport in optically thick medium. Calculation of density ¥(P).

2. Radiation transport in optically transparent medium. Calculation of density W(P).

3. Radiation transport into detector located in vacuum or absolute absorber. Calculation of
density %(P). ’
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4. Radiation transport into detector located in emitting and scattering medium Calculation of
density x(P). .

Problem falling into one of these classes with simple relation berween source and detector 18

referred to as elementary. Most problems of linear radiation transport theory can be reduced to &

combination of elementary problems.

Importance function

For the simplest case (one-group (with constant energy) radiation transport problem in
homogeneous infinite medium with point isotropic source) the foliowing relation can be obtained
based on reciprocity law:

¥ () =Y,0,) (3)

where  and v~ are solutions of direct and adjoint equations,
ris source point,
s is detector point.
To calculate weight function W(r), importance function v is normalized to its value at the source
point fo:
1 Yr(r,)

W) Yn,)

Y(r) 4)

For the problems with arbitrary geometry, medium properties are symmetrized in accordance
with 1D geometry (plane, cylindric or spherical) specified by detector geometry. But it is required
to meet the following condition :

¥ (ryzmax¥;(R,), R,R,eS (5)

where S is a set of pairs of points matching pair r, rs in 1D geometry.
For spectral problems approximate solutions of one-group problems are used

Wi E) = — ).

Yr(r,,E,) "’ (6)

where Wr(r,,E)is non-increasing function of E, E, is maximal source energy.,

and the following condition should be satisfied
Wrir. £)<¥r(r,,E;) (7)

where E, is incidence energy, E, is secondary or scattered energy.
Similarly, expression for importance function y from equaton (2) is as follows'

Z'(l‘,ﬁ) = Xr(rdrg)

- 8
PR ®)
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Schemes for elementary probiems

For specified classes of elementarv probiems importance functions and brief description of
applied methods are given beiow.

Class 1. Probiems of radiation transport in optically thick media
Importance function reads as

*7 4 € e
l.i/'(r,E)=eCO ’ *e_C(E)*rﬁ =Ne'—C“(E)Mﬁr (9)

where 1 is distance from a current point to detector,

I, is distance between source and detector,

Co=C(E,), where Eq is maximal energy of the source.
And C(E)< T°(E)< Z(E), where Z(E) is total macroscopic cross-section of interaction, C(E) and
T’(E) are non-increasing functions and C(E) and Y are selected to satisfy conditions (35), (7).
Main methods of calculations are geometrical splitting and exponertial transformation.

Class 2. Problems of radiation transport in optically transparent media.
Imponance function is

W'(r.E) =i (10)

where At is optical thickness of the system (A1<<1).
Main method of caiculation is method of forced collisions when density of collisions in the
medium is artificially increased. '
Class 3. Problems of detecting with detector located in absolute absorber (or vacuum) at a
rather large distance from emitting and scattering medium.
Importance function is specified in the form

- Qco
2(r, Q)= }2/‘*) - (11)
1 Qew

Here:
Ay =1=p,, i, .—_\[(r: -R;)/rl, r , 1o is minimal distance from scattering medium to the
center of spherical detector with radius Rg;
o is a set of directions from point r to spherical detector.

Main method applied is method of “test” particles in which two particles instead of one are
emitted from escape point. One of them moves in a cone of directions @: its escape angle with

respect to direction to detector is selected from uniform distribution
‘ 1

I=p,

where {44 is cosine angle between tangent to sphere of Ry radius from point r and direction to the
center of detector.

Escape angle of the second particle results from physical distribution sampling within the
range (-1,1) with failure: if selected direction is within @ then particle is considered to be
absorbed at the escape point, otherwise it continues motion with the previous weight. Extension
for m detectors is allowed.

Class 4. Problems of detecting with detector located in emitting and scattering medium.
Importance function is the following:
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~ A v 1- H. ~
2=t s — (12)
Aﬂra 1 - #fq
where ris distance between current point and detector center.
To is distance between source and detector Center,

L is cosine angle between particle direction and direction to the center of detector.
i 2 2 2
yr = \}((ry —Rd)/rp )
i( R,, rosR,
n=im,&<m<n (13)
L Ter Te™T

f o —
=g, 20
“ (r, us<o

Main method of calculations is method of concentric detectors which implies the following.

All space is covered with the net of m concentric spheres (detector is the first of them)
=R<R:<...<Ra.

Assume that it is necessary to game escape angle of the particle which is at the distance r>R,

from the center of detector. Let A, be a set of directions from point r to detector R, /= l;k s
where k=m, if r>R_or k=I1,if R_ <r<R, 1:2,.m, assuming that R, =r. Whole set © of

possible particle directions is divided into sub-sets @; where @=A,, B=A-ALL 1= 2,k, B-—0-
TAL
Escape angle for detector R, is selected from uniform distribution,

1

-4
and for detectors R; , 7 =2,k is proportional to the function

1
f(#)=E, b<ps (14)

where g = J(r* =R/ r?).

Bias obtained is compensated with weights. -

For m;-; particle direction is sampled from physical distribution with failure: if selected
direction is within -, then particle is considered to be absorbed at the escape point. otherwise it
continues motion with the previous weight. Thus, at once (k+1) partcles instead of one can star
from the escape point.

Change of statistical weight

The following procedure is implemented to reduce statistical particle weight w to a specified
value of weight function W(P) at point P. Depending on relation between value n=w/W(P) and
specified interval of values (n1,n2), ni<l, n2>2, three outcomes are possible’
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a) n>n>. Splining: N particies instead of one continue random walk, each with weight w =w N\,
where N={rvn2]=1. Here square brackets mean integral part of number,
b) n<nl. Russian roulette: particie is “knocked on™ with probability p=1-n and with probabiliry
p=n continues random walk with weight W(P),
¢) nl<n<n2. Paricle continues random walk with the pfevious weight w.
Interval (nl.n2) specifies range of admissible oscillations of statistical particle weight in the
vicinity of prescribed value W(P). Interval (0.5, 2) is usually used in calculations.

The above procedure of reducing statistical weight can be applied at the following phases of
modeling particle: after obtaining initial parameters of source particle, prior to particle coliision.
after selection of type of particle interaction with marter, after sampling of scattering. Weight
function can be defined in the form multiply of some functions.

Scheme of initial problem calculation

The following phases can be defined in solving initial problem from statement to solution.

. Analysis of problem conditions. Understanding of peculiarities. Problem reduction to
elementary ones in compliance with the peculiarities.

. For each elementary problem importance function is derived and importance biasing scheme 1s
selected. According to importance function obtained, parameters of nonanalog distributions are
calculated.

. Problem is calculated by building trajectories in the real system but at every moment particle
trajectory is built in compliance with importance biasing scheme of elementary problem within
which the particle is.

Calculation efficiency

Assume that in addition to some functionals nonanalog calculation gives average number I, of
particles caught by detector for the first time. Let o, be relative statistical error of this result and t,
be total calculation time. Then efficiency of this calculation is estimated using the known formula:

1
k =
"= o (15)
For the case of analog modeling, 1, and G4 are calculated using the following formulas:

Ca=77 (16)

(17)
if 7, <<1.

Assuming 1,=I, and 6,=0,, we obtain

I
K,==
A tl

>




where t, is mean time required to calculate one history during analog modeling Using formuias
(15) and (18) we obtain expression to estimate prize of nonanalog calculation in comparison with

thar of analog.

K Z,
=== 19
KF K, cr:],,tn (1%

Examples of calculations

Examples are given below of several model problems calculated using the above approach.
Problem 1. Consider infinite homogeneous medium with two types of interaction: scattering at
probability g=0.9 and absorption; full macroscopic interaction cross-section being Z=1. It is
required to estimate flux of particles ®(R) at the different distances R (up to 100 optical
thicknesses) from a point isotropic source. This problem falls into the class of elementary
problems of radiation transport in optically thick media. Calculation method is exponential
transformation.

Table 1 contains precise (up to 5 digits) values of flux $(R) [3], calculated values of flux ,
®(R) calculated values of first collisions J3(R) and values of prize Kg (19) at distances R=10, 20,

..., 100. Hereinafter relative statistical percentage error is given in brackets.

Table 1.

R, cm 10 20 30 40 50
®(R) *47R* | 1.3182e-1 1.3773e-3 1.0794e-5 | 7.5201e-8 | 4.9116e-10
@(R) *47R? 1.312e-1 1.3774e-3 1.086e-5 7.59¢-8 491e-10

(0.47) (0.56) (0.67) (0.80) (0.90)

J,(R) 3.93e-2 3.97e-4 3.09¢-6 2.135e-8 1.385e-10

(0.40) (0.50) (0.60) (0.72) (0.83)
K, 0.95 4.0el 2.7€3 2.3e5 2.2e7

R, cm 60 70 80 90 100
®(R) *47R* | 3.0796e-12 | 1.8773e-14 | 1.1210e-16 | 6.5894e-19 | 3.8256e-21
@D(R) *47R* | 3.06e-12 1.88e-14 1.12e-16 6.57e-19 3.88e-21

(1.1) (13) (1.5) (1.9) (2.3)

J,(R) 8.63e-13 5.26e-15 3.13e-17 1.85e-19 1.09e-21

(1.0) (1.2) (1.4) 17 (2.0)
K, 2.1e9 2.2ell 24el3 2.5el5 2.5el17
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Problem 2. This problem differs from probiem 1 because it takes into account spectral content of
radiation. Poimt isotropic source of E.=300 Ke\' gamma-quanta is located in the center of infinite
homogeneous zinc medium (zinc density is denved from S(Eo)=1 and is equal to 8.77193g:cm”)
Source energy is determined from condition q(E¢)=0.9 This probiem falls into the class of
elementary probiems of radiation transport in optically thick media. Calculation method is
exponential transformation.

Calculation results for R=50 are given in table 2.

Table 2.

R, cm 50

@(R) *471;}{% 2.00e-19
(1.1)

1,(R) 1.25¢-19
(1.05)

K 2.6el6

P

Problem 3. Consider infinite medium with the same optical properties as problem 1. It is required
to estimate number of particles J hitting spherical detector with radius r=0.1cm, located at the

distance of R=50cm from the source. This problem inciudes two elementary problems which tum
one into another: particles transport in optically thick medium (calculation method is exponential
transformation) and detection problem in scattering medium (calculation method is method of
concentric detectors). )

Calculations gave the following value: J=5.09¢-16 at statistical error 6=4.5%. Tranforming to
flux ®(R), we obtain P(50)=1.62e-14, that practically coincides with result obtained for the
previous problem where ®(50)=1 6e-14. According of formula (19) we have K, = 15¢"




Problem 4. This problem iliustrates application of the method of forced collisions to estimarte
electron vield obtained from piane aluminium laver 0.5cm depth exposed to plane-paraliei flux of
1MeV gamma-quanta. Two calcuiations were done: analog and nonanalog. Run times were the
same. Tables 3 and 4 show calculated fluxes of electrons at the left and right boundaries of the

layer.

Table 3. Flux of electrons ], at the left boundarv of the laver

Anaiog Method of forced
modeling collision
5 2.58e4 2.56e-4
G, % 16.8 5.23

Table 4. Flux of electrons J» at the right boundarv of the laver

Analog Method of forced
modeling collision
I 4.88¢-3 5.03e-3
c, % 3.77 1.17

Tables show that nonanalog caiculation gives a prize of Kg=10 if compared with analog one.
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IRREGULAR FREE-LAGRANGIAN “MEDUSA"” TECHNIQUE.
S.G.Volkov, B.M.Zhogov, V.D.Maishakov. |.D.Sofronov

Arsamas-16, VNIIEF, Russia
Annotation.

*Medusa” technigque refers to two-dimensional free-l.agrangian numericai methods soilving gas-
dynamics equations. The technique uses an irreguiar spatial grid reflecting the current neighborhood of
computational points while solving difference equations.

The paper presents the scheme of difference gas-dynamics equations and the sequence of their
solution. It describes main technique peculiarities such as the use of local interpolations and mixed celis.
The paper gives a brief solution of heat conductivity equation on the grids the technique uses.

Finally, the paper discusses the issues on calculation parallelization and gives a computation
illustration by means of the given technigue.

Introduction.

*Medusa” technique has been developed and improved by a large team of investigators for a
number of years. The early publications on “Medusa” technique date back to 1972. Refs./1.2/ describe
the technique and its first program implementation. Ref./3/ includes an English version of the techrique
description. There are several papers devoted to the computations using this technique /4,5/.

“Medusa”™ technique is applied to compute gas-dynamic flows assuming shock waves and
tangential gaps that are complex both in their geometry and in the nature of motion. One is sure to
confront certain difficulties when computing the flows of the kind by reguiar technigues.

“Medusa” technique automatically makes the grid adaptable to the soiution in the sense that
when computing the unknowns at each point it uses the information on soiution value at the neighboring
for the given moment points. As a result, a set of neighboring points might vary during the solution with
computations run on metrically close neighbors.

1. Problem discretization.

*Medusa” technique is used to solve 2D (plane or axially symmetric) gas dynamics equations in
Lagrangian variables:

‘fi—L =-Vgrad(P +Q)+VF,
t

— =const,
V

dE v
—+(P+0)—=0,
dt ( Q) dr '

E=EPV).

Here U - velocity vector, V - specific volume, P- pressure, F- extemnal force vector, E -
specific internai energy. Q vaiue - computational viscosity. The second equation of the system is the
equation of conservation for Lagrangian particle mass, J value in this equation is the transformation
Jacobian from the initial Eulerian particie coordinates to the current ones with regard to problem
symmetry. The given equation system is soived in some connected 2D domain whose boundary is
assigned boundary conditions of geometric (rigid wall) or dynamic (assigned pressure or velacity) type.
Within the domain the initial values are given.
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To discretize the problem within the aomain and on its bounagary some points are selected Tne
point iccation is arbitrary. The boundary pomnts should not be precisely on tne boundary. it i1s sufficient
that they should be closer to the corresponding boungary section than non-bounaary points. To seiect the
integration pattern a set of neighboring points is defined for each point. A set of points closest to tne
considered one than to any other within a seiected set of points is considered to be point neighbors
Additiona! fictitious neighbors are defined for boundary points. namely: |eft and nght boundary conditions
are added as neighboring. A set of neighbors for each pomnt are put in order in a counter-clockwise
direction.

A cell - as an area of infiuence -.is constructed for each point by means of neighbors. It is &
polygon whose veriexes are comprised by triangle centers of gravity defined by the point and two
consecutive neighbors. In  case with one fictitious neighbor the vertex is the middie of the sector
connecting the point with non-fictitious neighbor projected to the corresponding boundary. In case with
two fictitious neighbors the point itself is projected. The probiem is discreiized by applying the equation
of motion to celis.

The gradient of (P=Q) value is found by means of contour integral as to the celi perimeter.
Contour integrals are calcutated by linear interpoiation of P and Q functions on triangies. The values
on domain boundaries are taken from boundary conditions. As a result we obtain:

F = ﬂP"L(’)_ZP()H1 518,

X

F = f—(—%—@ > P.(x,-x.,)/S.

Where P, is (P+Q) on the side connecting the i and i+1 ventexes. This function for boundary
sides is taken from corresponding boundary condition.

We would obtain the foliowing formulas for velocity components at the next computational step:

U™ =U"+V" .(F,+G,)-dt,

W™ =W"+V".F,-dt.

The equation for conservation of mass is discretized directly. An average specific cell volume
results from the cell volume divided into mass. Thus we obtain:

l,/n*} = vn«r‘x /Alnﬂ,‘nlnol - AI".
in plane case the cell volume equals to domain, in axisymmetric case it equals to the volume of
cell rotation around the X axis to one radian.

The equation for energy is discretized as follows:

E™ = E"+(0.5-P™ +05- P + Q™). (V" V™).

Computational viscosity for compressibie cells is defined by the formula:

7 n=1 _ L’n

0= k-I—-————/V" A
Q= (k- I V")

With V™' >V " viscosity sets to zero.

I - the cell size directed to pressure gradient, k - an empirical coefficient, presently equal to 1.6. It

represents a quadratic viscosity proportional to the squared number of velocity divergence with the first
order of accuracy.




The next step is calculated as foliows. The specific celi volume is computed at the peginning c’
the next step. Computational viscosity is found Dy variation value of specific volume. Then tne agiabatic
equation computes the energy, pressure, and sound velocity in tne cell. The aliowable time step for the
given point is calculated by dividing the charactenstic cell size by sound veiocity. A charactenstic size
resuits from the cell domain divided by its perimeter.

The second step computes the pressure (+viscosity) gradients, the sizes of cells in gradien:
direction and new velocities. With rigid walls restricting the domain. the velocities of comresponding
boundary points are adjusted so that the points would keep within the walis during the computation step.

Local grid variations when some points either shift or change their neighbors are carried out after
the second step. Along with this, the grid functions are varied as well.

At the final computation step the points acquire new coordinates according to the formulas:
xn+i :xn +Lrn+ldt,

¥ =t WL,

These actions completed, everything is ready for the next step.

“Medusa” with irreguiar grid is specifically featured by the opportunity of local grid variations. The
main variations of the kind are extensions and reconstructions.

The extension deais with the scheme aligning and the cell construction technique. Some of the
points may fall out of the cell. To remedy the situation, the points that got close to the boundary of their
cell different from the problem boundary or those having left the celi are shifted to the center of cell
gravity to a certain part of the segment connecting the point with this center.

Reconstructions remedy the pattemn of point neighborhood. The technique supports the point
property to have only closest ones as its neighbors. The neighborhood is varied at local ievel.

Some parts of the celis enter others both during extension and reconstruction processes. When
values are recalculated these parts carry mass, total energy and pulses along the axis. A part of the
value to be carried is proportional to the volume part being carried in comparison to the total cell volume.
Interpolations result in kinetic energy transfer to intemal.

"Medusa" technique uses a mixed cell model when computing interfaces. A point is supposed to
contain one material or several having their own equations of state. Points with one material are referred
to as pure. those with several - mixed. A mixed cell mode! is supposed to have several separated
materials. The material volumes of one cell summed up equals to a total cell voiume. The equations of
energy for each material are integrated into a8 system and additional conditions are assigned. One of
them requires the equality of the cell volume and the summed volume of component materals. The
given model fits well the cases with perturbation propagation perpendicular to material interfaces. Cases
when movement along interfaces prevails require the selection of computational grid.

2. Heat conduction implementation.

Implementation of heat conduction as of other additional physical processes is based on splitting
the probiem as to physical processes. The point parameters imply additional grid functions. e.g.
temperature, and the corresponding equation is computed on a stationary grid for the same cells as
used in gas dynamics. Dicretization in time uses the same computational step as in gas dynamic
computations.

When solving the equation for heat conduction

-

&
== div(KgradT)

where K is thermal conductivity dependent on the solution. the implicit difference scheme was used
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- id

E  -E - .
e =N (T =T
dr - ’-'(T-‘ )

where T . temperature at the main point. T, - temperatures at the points neighboring to that being
caiculated. R - number of neighbors. A, factors are computed by some averaging tne neat conguction
factors K poth in the point under computation and its neighbors.

The implicit equation obtained is solved by local balance iterations. The method appites heat
flows resulted from tocal iterations of the points having been computed.

3. Paralielization features.

"Medusa" technique provides great opportunities for gas dynamic equations to be
computed paraliel on a large number of processors. Some computation step stage is defined by the
neighporing points data resulted from the previous stage or from the last stage of the previous
computation step. Thus, both shared-memory and distributed memory schemes suit "Medusa” equally
well.

Paralielization scheme is as follows. £ach stage of computation step is computed by
processors separately, splitting a set of all points into subsets. These subsets are computed by their
processors. To balance the load a number of points is assigned to a processor or the splitting into
subsets takes place followed by automatic balancing. When the memory is sufficient to store the
previous stage results one processor is capable of computing several stages synchronically. This brings
up the question of duplicating several computations. In case of distributed memory the issue of data
transfer becomes critical. Each processor needs the data on its points as well as on the neighboring
ones. In a shared-memory case the subset configuration is of no importance whereas in distributed
memory the subset form determines the transferred data voiume.

4. Computation illustration.

Computation results represented graphically illustrate the most specific features of the technique.
The problem solution for the case with automatic channel pinch is demonstrated.

The problem geometry is as follows. A sealed chamber contains gas under a high pressure. The
gas may leak out through a namrow channel in the wall constraining the gas. We need to define whether
tne channel can be shut or not depending on properties of the material the channel walls are made of.
Mathematically the problem is formulated as follows: one halfspace in initial state is filled with ideal gas
whose pressure is P1, density is p1 and adiabatic exponent is y1; the second halfspace is filled with ideal
gas having P2=0 pressure, p2 density and adiabatic exponent y2. There is a cylinder channel in the
second halfspace with r0 radius, free of material, and having an axis perpendicular to the plane dividing
the halfspaces. What we need to require is the system behavior in time.

Fig.1 shows the initial problem geometry and the difference grid to be used for computations.

Fig.2 illustrates the material disposition near the channel at the moment of its pinching.
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INTRODUCTION

The technique "Meduza" was developed and improved by a large team
of investigators during many vears. An incomplete kist of the technique
investigators can be drawn up basing on the lists of authors of papers devoted to
description of the technique and computations conducted with this technique.
The early publications devoted to the technique "Meduza" go back to 1972
Refs. /1,2/ describe the technique and its first program impiementation. Ref. /3/
includes the English version of the technique description. There are several
papers devoted to the computations conducted using this technique /4, 5/. The
list of the presentation authors includes its original developers. They pursue the
current technique development and maintenance.

It 1s impossible to realize reliable gas-dynamical computations of
complex products by some one numerical technique due to gas-dynamical flow
features, computational algorithms, limited capabilities of computers and many
other reasons. It is a common practice to conduct computations with different
techniques in order to see the effect of methodic errors by result comparison. Of
course, in each computation it would be desirable to refine the mesh so that the
results in no way depend on that taken at the initial time. However, as a rule,
this is impossible, and one has to take it for granted that the quality of the
obtained results depends on the mesh cell size. Therefore. in the division there
are several techniques for solving gas-dynamical problems. "Meduza" is one of
the Lagrangian techniques. In the technique "Meduza" the gnd is automatically
adapted to the solution in the sense that the computation of unknowns at each
point uses the data of the solution value at the points which are neighboring at
that time. The latter circumstance leads to the fact that during the solution the
set of neighboring points can change, with the computations being conducted
each time by metrically close neighbors. The technique refers to free-
Lagrangian.

The expernience of many vears of the technique employment showed that
the technique can be used to solve very complex 2D gas-dynamical problems.
At a reasonable construction of the initial grid the qualitative pattern of flows
has always been proper. To enhance the accuracy achieved, one usually
increases the number of the points either over the whole problem or ar its .
regions where the flow gradient has proved especially high and a noticeable loss
of accuracy has taken place.
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1. Problem discretization

The technique "Meduza" is used to solve 2D (plane or axisymmetric)
gas dvnamics equations in Lagrangian variables:

%: ~Vgrad(P + Q)+ VF,
_._l_: const,

V

dE

dv
—_— P —_—= 0,
dt+( +Q)dt

E=E(P,V).

Here U - velocity vector, V - specific volume, P - pressure, F - external
force vector, E - specific internal energy. The value Q, computational viscosity.
is some fictitious value relating to the probiem discretization and depending on
the grid sizes. The second equation of the system, the equation of conservation
of Lagrangian particle mass, the value J in this equation, is the Jacobian of the
transformation from the initial Eulerian particle coordinates to the current taking
into account the problem symmetry. The above equation system is solved in
some connected 2D region on whose boundary geometric type (rigid wall) or
dynamic (given pressure or velocity) type boundary conditions are given. Inside
the region the initial values are given.

To discretize the problem inside the region and on its boundary some
points are taken. The point position is arbitrary. It is only necessary that they
map a given problem in some way, for example, where the density is higher, the
points should be more condensed. The boundary points should not necessarily
be preciselv on the boundary, it is sufficient that they were closer to the
corresponding segment of the boundary than the non-boundary points.

The region triangulation is made using a set of points taken. Any
triangulation type is possible in principle. The technique essentially employs the
tniangulation related to the Dinchlet (or Voronoi) cells. The Dinchlet cell for a
point is the set of all region points which are closer to the point of concern than
to any other one from the point set taken. In the general case the Dinchlet cell
will be a convex polygon produced from intersection of semiplanes determined ~
by perpendiculars to the straight line segments connecting various points of the
set taken and passing through the middles of these segments. The points are
declared neighbonng if their Dirichlet cells have a common side. Connection of
all the neighbors with straight line segments results in region fragmentation into
polygons. Having passed diagonals in the obtained polygons we obtain the
region triangulation. When no four points lie on a single circumference, the
Dirichlet cells determine the triangulation without passing diagonals.

The triangulation is used to determine a set of neighboring points for
each point. Two points are neighbors if they comprise one triangle. For
boundary points further fictitious neighbors are determined, namely: on the left
and on the night boundary conditions are added as neighbors. The set of
neighbors for each point is ordered in the counter-clockwise bypassing
direction.

For each point the neighbors are used to construct a cell. the influence
region. This is a polygon whose vertices are the centers of gravity of the
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triangies determined by the point and two successive neighbors. When one
neighbor 1s fictitious. the vertex is the projection of the middie of the straight
line segment connecting the point to the non-fictitious neighbor onto the
corresponding boundary. In the event of two fictitious neighbors the point itself
is projected. The problem discretization is found by applying the equations of
motion toward the cells.

The gradient of the value (P+Q) is found by applying the theorem of
mean and Green formula to the contour integrals:

sy = ([ Lavay,
§rav=[[ %

—3Sf¢x = H%dxdy.

The function (P+Q) is taken for the function f. The partial derivative
values are substituted with the cell-mean value equal to the quotient of division
of the integral over area by the cell area. The integrals over area of the
derivatives are substituted with the contour integrals of the functions
themselves. The contour integrals are computed by linear interpolation of the
functions P and Q on tnangles. On the region boundaries the values are taken
from the boundary conditions. Finally we obtain

szg(_};:gl'_‘zpﬁ()’m—fi)/sv
F, = a(P+Q)—ZP(x x,.)/S.

where P,iis (P+Q) on the side connecting the vertices i and i+1. For the
boundary sides this function is taken from the relevant boundarv condition. At
every next computational step for the velocity components we find the formulas
U =U"+V" - (F,+G_)-dt,

W™ =W" +V"'F, dt.

The equation of conservation of mass is discretized directlv. The mean
specific cell volume is found by the cell volume division by mass which is
computed by the initial density and varies only at the interpolations. Thus. we
obtain

Vnﬂ - vn+1 /MM»I,MnH - Mn.

In the planar case the celi volume equals the area, in the axisvmmetric
case it equals the volume of the cell revolution about the axis X by one radian.

The equation of energy is discretized as follows:

En-e! = En +(0.5_Pn+l +O.5'Pn +Q"+|)'(Vn _l/nﬂ).

This equation and the equation of state are used to determine pressure
and energy with the method of iterations.
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The computational viscosity for compressing celis is found by the
formula

l_rnol_l;n R
= (k- | —————) /V".
0= (k1=

At V" > V" viscosity vanishes. In this formula | is the cell size in the
pressure gradient direction, k is an empirical factor currently equal to 1.6. This
is quadratic viscosity proportional to squared velocity divergence of the first
order of accuracy.

For every next step the computations are arranged as follows. When at
the previous step the new point coordinates have been computed. at the
beginning of the next step the specific cell volume is computed. The
computational viscosity is computed by the value of variation in the specific
volume. Then the adiabat equation is used to compute energy, pressure, and
sound speed in the cell. The permissible time step for a given point is computed
through division of the characteristic cell size by sound speed. For the
characteristic size the quotient from division of the cell area by the cell
perimeter is taken. The above computations are conducted for all the points and
constitute the computation contents of the first stage of the computational step.

At the second stage the pressure (+viscosity) gradients. cell sizes in the
gradient direction and new velocities are computed. Given rigid walls bounding
the region, the velocities of relevant boundary points are modified so that the
points do not go beyond the walls during the computational step.

Following the second stage, local modifications to the gnd are made at
which some points change their neighbors or are shifted. In so doing the gnd
functions change as well.

At the final step computation stage the points acquire new coordinates
by the formulas

X = g +U"”dt,

-yud»l = ).n +Wn+ldt.

Then everything is ready for conduct of the next step.

The main "Meduza" feature relating to the irregular grid is the capability
to make local grid changes. The basic types of such changes are extensions and ~
reconstructions.

The extension relates to the scheme centering and cell construction
method. In the scheme discussed the points do not "notice” the approach of
their neighbors. It is best to show the position using a one-dimensional model
example. Consider a set of points on a straight line segment uniformly
distributed at the initial time. The points of odd numbers do not move, while the
points of even numbers have one and the same velocity. Pressure is identical at
all the points. Upon. execution of a computational step like in "Meduza” the
points away from the boundary will displace from the cell centers. but cell
volumes (lengths) will not change and. hence, the gas-dynamical parameters will
not change as well. In the general case the cell drops behind the point or the
point tries to go outside the cell. To remedy the situation, the points which
came close to the boundary of their cell other than the problem boundanes are
shifted toward the center of gravity of the cell at some fraction of the length of
the straight line segment connecting the point to that center.
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The reconstructions remedy the point neighborhood pattern. The
technique maintains the property of the points to have only the points as their
neighbors which are neighbors in terms of the Dirichiet cells. The check for the
Dirichier cell criterion is made at the local level 1.e for one neighborhood
generation. Consider some point and its three successive neighbors.

Al

Point A2 will not be a neighbor of point A0 if the point of intersection of
the perpendiculars to the middles of the segments A0-Al and AO-A3 and point
AOD lie in one of the semiplanes determined by the perpendicular to the middle of
the segment A0-A2. The critical case is when all the three perpendiculars
intersect at one point, i.e. the above four points lie on one circumference. Point
A2 is brought out of the neighborhood if it has traveled quite far beyond the
circumference passing through points A0, Al, A3 (>10% of radius). When
point A2 goes out of the number of the neighbors of point AQ. its two other
neighbors, Al and A3, become neighbors of each other.

Both at extensions and reconstructions some parts of cells transfer to
other cells. At updating mass, total energy (internal + kinetic), and momenta
along the axes are transferred together with these parts. The transferred fraction
is proportional to the transferred volume fraction as compared to the total cell
volume. On transference of all the parts involved in the current re-interpoiation
the velocities are obtained by division of momenta by masses. Internal energy is
obtained by subtraction of the newly obtained kinetic energy from total energy.
In any case the re-interpolations result in conversion of the kinetic energy to the"
internal, similar to a number of absolutely inelastic impacts of the transferred
parts to the remaining.

When computing interfaces. the technique "Meduza" uses the model of
mixed cells. It is assumed that a point can contain one or more materials which
have their equations of state. One-material points are referred to as pure and
several-material points as mixed. At the initial tume the mixed points are
obtained at matenial interfaces. Later on due to the re-interpolations the mixed
points can become pure, while the pure mixed. At material transfer from one
point to another the percent composition of the recipient point is maintained A
pure point becomes mixed when transfer of material not contained in it is
forced.

The mixed cell model provides for several segregated materials. The sum
of material volumes of one cell equals the total cell volume The equations of
energy for each material are integrated into a system and additional conditions
are imposed. One of these conditions expresses equalitv of the cell volume to
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the sum of composing material volumes. Other conditions relate pressures and
energies of various materiais. For example. in pure gas dynamics the condition
of equal pressures is used. A computation with heat conduction may use the
condition of equal temperatures if density differences between cell matenals are
not very large. The above model works well at perturbation distribution
perpendicularly to the matenal interfaces. At a predomunant motion along
interfaces the computational grid should be fit.
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2. Technique program implementations

The technigue program implementations introduce some peculiarities
relating to computer capabilities. For example, memory economy can result in
asymmetry caused by the fact that at some points either values from different
time templates or interpolated and non-interpolated values are used. Small main
memory sizes require using the external memory and appropriate computation
tactics.

Three main technique implementations can be distinguished: on BESM-6
computer, on ES series machines, and on personal computers.

The principal feature of the BESM implementation is a small main
memory at quite a high performance. The problem computation employed
splitting a set of computational points into so-called computational compacts.
The number of points of one compact corresponded to the standard unit
communication with the external memory. The point computation till the end of
the computational step was conducted compact-by-compact. For points of other
compacts only the computations were conducted which are required for
computation of the main compact.

The step computation for the compact was split into stages
approximately as it was stated in the previous section. Upon the computation of
the compact it turned out that its points were not needed for the step
computation of other compacts and it could be transferred, if necessary, to the
external memory. The compact computation required presence only of the
compact itself and several neighboring compacts in the main memory. In this
manner it was possible to increase the volume of the points considerably in the
problems computed. The limitations were even in the digit quantity of the points
used for numbers. The digits were as follows: the main memory allowed to
allocate about 1600 points, the splitting into compacts could be used to be able
to compute problems with 16000 points.

In addition. one may mention a dense packing of point data and using
various programs for initial template computation. gas dvnamics computation,
and computed data output. Neighbor lists were used for the point neighborhood
description, and each element of the list was composed of a group of neighbors
which could be fit into one machine word. The program was implemented in the
machine codes.

The ES implementation did not use the splitting into compacts. Short
integers were used for numbering points and edges. As a result. the maximum
permussible number of points equaled 10000. The characteristic features of the
ES implementation were as follows: location of all points in main memory. using
the dynamic memory for arrays and tables, point neighborhood description using
the edge scheme.

The edge scheme provides for the point neighborhood storage as a
graph. Each graph edge is described with two points in an arbitrary order and
with two neighboring edges following the described one in the order of counter-
clockwise bypassing for each of the points composing the edge. The order of
appearance of the neighboring edges is consistent with the order of point
appearance.
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This scheme requires approximately two times more memory than the
neighbor lists, but is of a regular character which is more suitable for language
impiementations. o

The ES program was implemented in the PL1 language. The initial data
computation, gas dvnamics computation, and data output were located in one
load module. The computation was controlied with the task text interpretation
program.

The technique "Meduza" was implemented on personal computers with
1486 and higher processors. The whole computational part was implemented on
the FORTRAN pre-processor SVIFT. This pre-processor generated the text for
the Fortran-77 compiler translated by many available compilers. Basing on test
problem computation a compiler was taken which generates a fastest code.
Watcom 9.5. This program version uses the computation control language
allowing the on-line interaction with the user. At any instant of the computation
it 1s possible to stop the computation, look through the results, make file
outputs, make some modifications and continue the computation or abort the
task.
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3. Implementarion of heat conduction and detonation processes

The implementation of further physical processes, such as heat
conduction or kinetics, is based on splitting the probiem by physical processes.
Additional grid functions, for example, temperature or HE concentration, are
introduced to the point description, and the relevant equation is solved on an
immovable grid for the same cells which are used for gas dvnamics. The time
discretization employs the same computational step as at the gas dynamics
computation.

When solving the equation of heat conduction

= —div(KgradTl),

where K is the heat conduction factor, generally speaking. depending on the
solution, the implicit difference scheme

E.n-I_E’n R § N
; " : =ZAU'(7T‘_7: l).

7=t
was used where T, is temperature at the main point, T, are temperatures at the
points neighboring with that being computed, R is the number of neighbors. The
factors A, are computed using some averaging of the heat conducuvity factors
K at the point being computed and its neighbors.

The obtained implicit equation is solved with the method of local
balance iterations. This method is well parallelizable.

When soiving gas-dynamical problems with detonation simulation,
various models were used. The prompt detonation was simulated using
replacement of the equation of state and addition of energy release. The
assumptions of constant detonation rate and specific energy release were used.
Another method of the detonation simulation is taking into account chemical
reactions, various dependencies of the reaction rate on thermodynamic
parameters of cell materials were used here.
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4. Paralielization features.

The gas dvnamics equation solution with the technique "Meduza”
provides wide capabilities for computation parallelization on a large number of
processors. It should be noted that the computation of a separate computational
step stage stated in the first section for each point does not depend on
computation of the same stage for other points. The computation of any
computational step stage depends on the data for neighboring points computed
at the previous stage or at the last stage of the previous computational step.
Thus. both shared-memory schemes and distributed-memory schemes are
suitable for "Meduza”.

On the shared memory the parallelization scheme is as follows. The
computation of each computational step stage is distributed among the
processors with splitting the set of all the points into subsets. These subsets are
computed by their processors. For the load balancing the number of the points
on the processors is determined or splitting to small subsets is made and self-
balancing is used. When the memory is sufficient to store the results of the
previous stages. several stages may be computed on one processor till
synchronization. In this case the question about duplication of some
computations arises.

For the distributed memorv principal becomes the problem of data
transfer. The paralielization scheme remains approximately the same as for the
shared memory. The set of the computational points is split into subsets which
are computed on separate processors. Besides its own points, each processor
has to have the neighboring point data as well for the computations. The
number of the neighborhood generations depends on the number of the
computational step stages computed on one processor till synchronization. As a
result, it turms out that if the data transfers occur rarely, the amount of the
transferred data is larger. While the subset configuration does not play a large
role for the shared memory. the subset type is responsibie for the amount of the
transferred data for the distributed memory. The problem of the best method of
point distribution over subsets has not yet been solved thus far. It is evident
intuitivelv that the subsets should be related to a shortest boundary, something
like a circle on the point neighborhood graph.
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CONCLUSION

The technique "Meduza" may be used for computation of flows
very complex both regarding geometry and pattern. in particuiar. aliowing
for flows with shock waves, tangential discontinuities. For illustration
graphic results are given for some computations which show most
charactenistic features of the solutions computed.

The first computation demonstrates the solution of the channel
self-pinch probiem. Setting up the problem is as follows. In a closed
chamber there is gas under high pressure. This gas can flow out through a
narrow channel in the wall bounding the gas. It is necessary to assess the
possibility or impossibility of shutting off the channel depending on the
properties of the material the channel walls are made of. The mathematical
problem is formulated as follows: at the initial state one semispace is filled
with ideal gas of pressure P1, density pl, adiabatic exponent yl; the
second semispace is filled with ideal gas of pressure P2=0, density p2.
adiabatic exponent y2. In the second semispace there is a cylindrical
channel of radius r0 not occupied with material whose axis 1s
perpendicular to the plane separating the semispaces. It is necessary to
determine the time behavior of the system.

Fig.1 shows the initial geometry of the problem and difference grid
used for the computation. The wall is depicted red. Its initial density is
2.56. Gas 34 in pressure and 0.06 in density at the initial time in shown
green. The adiabatic exponent of both the matenials equals 3. The channel
and receiver behind the wall are composed of light gas shown in blue
0.001 in density. Colors other than those of the main matenals depict the
mixed cells. The horizontal size of the system equals 200. the vertical 100.

The channel radius is 4.5.

Fig.2 shows position of the materials near the channel by the time of
beginning of its shutting-off. Fig.3 presents the velocity field at the same place.
The arrow length is proportional to the velocity modulus. The mixed cells are
drawn completely. The channel is not shut off as there is a positive component
along the axis X over the whole channel length. Fig.4 shows the density
distribution. The red and brown points have the highest density (5-7). the white
and gray the lowest.

Figs.5, 6, 7 show similar patterns by the time of completely shutting-off
of the channel. In Fig.5 one can see cells of the wall matenial on the axis. Fig.6
shows some points before the channel which have reversed. In this figure the
maximum velocity is twice as low as in Fig.3. In Fig. 7 the region of the highest
density points reaches the axis. In Fig.8 there is the complete flow pattern at the
same time.

In this computation one can note a characteristic specific positioning of
the points near most interesting places and considerable displacements of one
point relative another. Depending on the value y2 characterizing the wall
material compressibility the channel can be shut off as is seen from the presented
figures or remain open.

The next problem is opposite to the first in a sense. Penetration of a
narrow cylinder through a plate of another matenal is computed in the gas-
dvnamical approximation. i.e. without taking into account material strength.
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The initial geometry is shown in Fig.9. Fragments of two computations
are given here. In the first the plate density was 7.85 and the penetrator density
was 2.71. In the second computation the materials exchanged their piaces. The
velocity of the penetrator approach equals 5 in both the computations.

Fig.10 shows the plate and penetrator shapes some time after beginning
of the impact for the first computation. The next figure shows the velociry field
at the same time.

Figs.12 and 13 show the collision problem where the penetrator density
is higher than the plate density. Here the instant is shown when the penetrator
has aimost flown through the plate. Fig.14 shows the density distribution by the
same tme.

The next example shows the heat conduction computation with the
technique "Meduza". The task consists in computation of the temperature field
forming at cooling of an infinite square cross section bar inside which at the
initial time t=0 temperature T(0,x,y)=1 is given, while on the outer boundary
during all following times zero temperature Trp(t)=0 at /> 0. is maintained.
The bar cross section is a unity square: 0<x<1];0< y <1

2 computations are presented. In the first computation the grid was
taken uniform 40 by 40. Fig.15 presents the graph of the grid and temperature
field at time t=0.1.

In Fig. 16 the arrows indicate the heat gradient direction to a scale, the
arrow length being proportional to temperature at the point where the maximum
arrow length corresponds to the maximum temperature whose value is given in
the upper row in the graph.

Fig.17 presents the graphs of the temperature distribution by sections.
The right bottom rectangle gives the section along the line: the left point is x=0,
v=0.5; the right point is x=1, y=0.5. The left bottom rectangle gives the section
along the line: the left point is x=0, y=1:. the right point is x=1, y=0. The right
top rectangle gives the section along the line: the left point is x=0, y=0.1; the
right point is x=1, y=0.1. The left top rectangle gives the section along the line:
the left point is x=0.1, y=1; the right point is x=0.1, y=0. The crosses show the
analytical solution.

In the next computation the grid was taken uniform by rows and
columns with point increasing in a line from the square center from 3 to 40
points on each side. Fig.18 presents the graph of the grid and temperature field -
at the time t=0.1.

In Fig.19 the arrows indicate the heat gradient direction to a scale. the
arrow length being proportional to temperature at the point where the maximum
arrow length corresponds to the maximum temperature whose value is given in
the upper row in the graph.

Fig.20 presents the graphs of the temperature distribution by sections.
The rnight bottom rectangle gives the section along the line: the left point is x=0,
v=0.5. the nght point is x=1, y=0.3. The left bottom rectangle gives the section
along the line: the left point is x=0, y=1. the right point is x=1, y=0. The right
top rectangle gives the section along the line: the left point is x=0, y=0.1, the
right point is x=1, y=0.1. The left top rectangle gives the section along the line:
the left point is x=0.1, y=1; the right point is x=0.1, y=0. The crosses show the
analytical solution.
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METHOD FOR MATERIAL FAILURE AND FRAGMENTATION
COMPUTATION IN EGAK PROGRAM SYSTEM
Gorodnichev A.V., Simonov G.P., Yanilkin Yu.V.
RFNC-VNIIEF, Sarov (Arzamas-16)

The presentation describes the Lagrangian-Eulerian technique implemented
in the program system EGAK [l] and designed for simulation of 2D multi-
component media flows whose characteristic feature is presence of severe
deformation, taking into consideration elastic-plastic material properties [2]. The
technique under discussion makes use of the elastic- -plastic Wilkins mode! with the
Mises vyield criterion.

The method of concentrations is used to compute the interfaces. In one
computational cell there can be several components characterized with internal
energies, as well as volume and mass concentrations. The components can be both
various materials with their equations of state and elastic-plastic constants and
vacuum, as well as a perfectly rigid body.

The technique for the material failure computation uses both simplest
models based on prompt failure at achievement of limiting tensile stresses and
more complex models proposed and studied in [3-6]. The latter involve the
evolutionary equations for the parameters characterizing the material porosity
degree which allows to take into account the history of damage accumulation in
the material to determine the time of its failure.

The material rigid component yield strength and pressure are assumed
to be & function of the parameters characterizing the material porosity degree.

The proposed technique also implements the capability to take into
consideration material fragmentation following material failure under the high-
velocity deformation conditions. To do this, the concepts developed by Grady [7]
and Ivanov et al. [8] were considered.

The purpose of using the dynamic fragmentation mode! is determination of
the fragment sizes from the material failure. At a high-velocity collision the
fragmentation occurs when the collision velocity is higher than some critical
value. The fragmentation characteristics immediately depend on the failure type
and material parameters at the failure time.

The presentation discusses computed data for several problems: steel ball
piercing through a two-layer aluminum and textolit barrier; collision of two copper
plates; steel ball piercing through a plastic barrier; etc. The latter problem was
used to test the fragmentation computation methods.

The computed data is compared with the analytical solutions, with
experimental data and results of computations with other techniques. In all the
computation series conducted the agreement of the computed data with analytical
solutions and experimental data was good. Note that the model of Kanel et al. [4]
proved most efficient and currently this is the basic in the EGAK system. By way




of exampie consider the computed results for piercing through & two-iaver
aluminum and composite barrier by a steel ball flying at velocity 2.7 km/s
Tne initial computation geometry is presented in Fig.la. One computation
did not use the laiiure model, the other used Kanel's model. The equations oi state
were taken in the Mie-Grueneisen form. Fig.lb,c shows the piercing pattern
for two times. In the experiment the composite and aluminum hole diameters are
60 mm and 70 mm, respectively, close values were found in the computation

taking into account the failure.

=0 =0
Al
textolit ‘
Fe ‘ ;
¥ ¥

=20 =20

destructed:
textolit

experimental hole size
aperture

a) ‘ b)

Fig.1. Raster pattern of two-layer barrier piercing:
a) computation without account of failure, b) computation with
account of failure (time in microseconds).
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Molecular Dynamics Simulation of Permeation in Solids

Phillip I. Pohl. Grant S Heffelfinger. Diana K. Fsler and David M. Ford
Sandia National Laboratories. Albuquerque. NM 87185

Abstract

In this work we simulate permeation of gases and cations in soldid models using molecular
mechanics and a dual control volume grand canonical molecular dy namics technique. The molecular
sieving nature of microporous zeolites are discussed and compared with that for amorphous silica
made by sol-gel methods. One mesoporous and one microporous membrane mode are tested with
Lennard-Jones gases corresponding to He, H,. Ar and CH;. The mesoporous membrane model
clearly follows a Knudsen diffusion mechanism. whik the microporous mode] having a hard-sphere
cutoff pore diameter of ~3.4A demonstrates molecular sieving of the methane (0=3.8A) but
anomalous behavior for Ar (6=3.4A). Preliminary results of Ca+ diffusion in caldte and He/H-
diffusion in polyisobutly ene are also presented.

INTRODUCTION

The diffusion of gases in porous solids is govened by physical and chemical features of
both the solid and the gas. The diffusion of a species. i. in a direction. x. is related to the gradient
of concentration or density. p. by Fick's law,

d
J;‘=—D,“—;—p,(x). (D

Permeability. F. a more appropriate parameter used in flow across membranes is found by
modifving (1) slightly. i.e..

J* = —AP. B )

Where AP is the pressure drop across a membrane of thickness x, per cross sectional area 4. If x
1s not known exactly. then it is absorbed into F and takes the name permeance.

Recently. Xiao and Wei gave a detailed analysis of the diffusion mechanisms of hvdrocarbons in
zeolites [1]. Their unified diffusion theory describing gaseous. liquid. Knudsen. solid and
configurational (molecular sieving) diffusion. has a diffusivity expressed by

E

D= guLe_? (3)
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where g is a geometric term: « is a characteristic velocity. L the characteristic path length. and £
the activation energy. The activation energy is only used for solid and configurational diftusion.
and is cause for the sieving effect important in microporous membrane separations.

More recently. Shelekin et al.. discussed the permeability of gases across disordered silica

membranes. In these porous materials. Knudsen diffusion. surface diffusion and molecular
sieving behavior dominate depending on the gas-surface interaction. For pores large relative to
the molecuiar size of the permeating gases. knudsen diffusion is the likely mechanism controlling
the rate of transport. In this instance. the gases permeate proportionally to their molecular
velocity. and hence. inversely proportional to the square root of their molecular weight. For
similar membranes that strongly attract the permeating gases. surface diffusion will enhance the
rate relative to knudsen diffusion. In this study. Ar and CH, are much more strongly adsorbing
than He and H,. so are possibly subject to this effect. When the pores of the membrane are
roughly the same size as the gas molecule’s diameter. then molecular sieving may take place. Like
configurational diffusion described above. this mechanism is characterized by a strong
temperature dependance and more importantly. sharp dropoffs in permeabilities for larger gas
molecules. E ‘
Computer simulations of microporous solids have grown considerabl in the past decade
dueto the advent of improved classical and quartum mechanical algorithms and the rapid growth of
parallel computer hardware (Figure 1). These simulations can aid in understanding the structure-
property relaionshps berween the diffusing gases and the membrane.

To test the assumptions used in

-

arriving at equation 3, we recently

emploved a number of simulation Terafiog l : ; SN“;”'eVASC;' n
techniques [2] including molecular ol o
mechanics to predict E. grand canonical ‘ Croy 130, Cms O
Monte Cario (GCMC) 1o simulate the Intel Delta, CM-200, etc
concentration in model < pores and il omt. ere. pB-
analysis of available pore space for - L, xome
different sized molecules to evaluate z oy
porosity/tortuosity effects. The focus g e Froechon :6

of the present work has been an - "N —oe e
alternative to this three pronged -z i e oSeriol
approach. That is. simulate pressure = g v 704 O Vector
driven gas transport in pores. which is .:‘:“ ,6”"“‘“"5 o Parallel
more like the actual experiments carried . 555;\(;

out in testing zeolite [3Jor silica [4] H

membranes. It is generally known that ."

the chemical potential gradient is the true 1 | feiectio-mecnanicar

dnving force for diffusion.  Hence, :,'ccc!oum.ng ;momnel |

|
U VYo Sel viv Teev A P

simulation in the grand canonical Y mar

ensemble (constant UVT) is the most

appropriate construct. To completely

investigate pore diffusion, we have Figure 1 Growth of Computing Power
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simulated gas movemen: driven by a
chermical potentiai gradient in microporous 12000 :

siiica using 2 newl developed dual contol
voiumﬁt grand .canonical molecular 8000 - »
dyv namics method [3]. / : x\ , |
POROUS MODELS 4000 /f lﬂ\\ —

The wall atoms. which did not :
move. were positioned according to the Poreo Volume (nm’\b‘}\ :
corrdinates of a silica model made by 0 2 4 6 8 10 12
expanding an amorphous glass model to a Pore Diameter (angstroms)
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size of current generation sol-gel derived

silica membranes consists of a distribution and all indications suggest that it may be similar to
that of our model (Figure 2). That is. Brinker and Seghal [4] have been able to demonstrate
molecular sieving by preparing membranes that exclude CH, at detectable levels. but allow He to
permeate at a rate of 2.25x107 em’/em’-s-cmHg at 313K. In the present work. He. Ha. Ar. and
CH, (modeled as Lennard-Jones particles at 300K. 450K and 600K) permeability are determined
for the silica models. The technique described below was applied recently to the simulation of
He. H- and CH, permeation across silicalite membranes [7]. Results in that system showed
considerably accuracy in comparison with experiments and suggested that the experimenally
usable cross-sectional area in [3] was approximately 40 times less than ideal. Insights like this
are indeed one benefit of molecular level computer simulations.

GCMD

The Dual Control Volume Grand Canonical Molecular Dvnamics (DCV-GCMD) method
has recently been adapted to investigate pressure-driven transport of a pure component fluid
through a model zeolite [7]. While the DCV-GCMD method employs molecular dynamics (MD)
moves throughout the system. each MD move is followed by a series of GCMC-like insertions
and deletions of fluid molecules in each of two control volumes in order to maintain-the chemical
potential in the control volumes constant at a desired value. By measuring the flux and the
gradient of the resulting steady-state density profile. the diffusitivity of each fluid component. 1.
in the presence of a chemical potential or pressure gradient. transport parameter can be
determined from equations 1 and 2. While DCV-GCMD has been demonstrated for binary color
diffusion [5]. in this work we have extended the method 10 model a fluid expenencing a pressure
gradient while confined in a porous system [7] as well as running the code on a massively parallel
computer. The pressure gradient is achieved for a pure component fluid simpiv by choosing
chemical potentials in the two control volumes which produce two different fluid densities.
Gradient driven gas diffuiosion simulations in pores is being tried by several others [8.9.10.11].

The fluid-fluid and fluid-wall interactions were modeled with the cut and shifted Lennard-
Jones potential. the cut-off distance taken to be 2.50 for all interactions. The parameters were

taken as those for silica hydroxyl oxygens [12] and He. H,. CH; and Ar [13] (65=3.0 A.

201




Figure 3 Setup of Grand Canonical Moiecuiar Dynamics computer simujation
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Lorentz-Bertholot combining rules used. The Si atoms in the silica model were neglected as they
are effectively shielded by the Os making up the tetrahedral network. The densities in the system
were initiallv set only to give ample flux for study but can be controlled to the desired bulk
pressure. the temperature was 300K. 450K. and 600K. and the MD time step 2.9 fs.

The silica svstem was 139.0cy long consisting of 8x3x3 of the models described above.
thus the x coordinate stretched from 0.0 to 139.0cy. Periodic boundary conditions were
employved along all planes and at x = 0.0 and x = 1396y. Each control volume encompassed the
entire pore cross section (Figure 3). While we have positioned the control volumes for both
systems inside the pore. they could just as easily have been positioned outside the pore.
enabling one to model entrance effects.

The simulation was equilibrated for 100.000 timesteps after which averages were
accumulated for >100.000 steps. The simulations were carried out only long enough to see a
reliable and repeatable flux. At this point. the permeatbility can be computed based on the
known pressure drop and membrane thickness. The algorithm employved in this work is a
massively parallel version of the DCV-GCMD. Briefly, this paraliel algonthm employs a
superposition of two different parallel algorithms: spatial GCMC and spatial MD. With this
parallel DCV-GCMD algorithm. simultaneous insertions/deletions can be attempted in each
control volume thus for this work. 64 insertions and/or deletions were attempted in each control
volume after each MD step. For this simulation. carried out on 250 processors of Sandia’s Intel
Paragon. each MD timestep and its associated 64 attempted insertions/deletions in each control
volume took ~1 cpu second depending on the number of gas particles.

RESULTS

The axial density profile (p(x)). determined by averaging the number of fluid molecules in
1 oy wide bins is shown in Figure 4. From this figure. we can see that the density in control
volumes A and B are poy® = 0.030 and 0.0035. which correspond to bulk pressures of 20 and 2
atm. respctively. While these conditions are currently unattainable experimnetally. the results
should still be valid if the Gas-Gas interactions are much fewer than the Gas-Membrane
interactions. Based on the low densities. we have assumed this is the case and a concentrations
dependence is not expected. The axial density profile in Figure 4 shows approximate Fickian
behavior, namely the dropping density from the high pressure to low pressure surfaces. We have
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Fioure 4 Axial densitv profiies in microporous silica membrane model (regucec unus:
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calculated the flux via two different methods [11]. the flux plane method and the control volume
flux method (J* and &*. respectively):
TP AT

A4 _N )

planes

_ M(B)-M(4) -
= m—\—— (3)
represent the net number of fluid molecules which move through each flux
plane (two were used in this work. one at x = 70.06 and another at the periodic boundary. x = 0
and 140.00y) and Apjane; 1s the number of flux planes (2 for this work). M(B; and M(4) are the net
number of insertions (accepted insertions - deletions) in control volumes A and B. respectively.
At is the MD timestep. A,, is the cross sectional area of the model. and A, 1s the number of
MD timesteps. The fluxes. calculated via both methods (reduced by multiplving by 6y’ (my/ey)
-). and the resulting permeabilities computed from equation 2 are shown in Table 1.

From Table I we see that the fluxes calculated via the two methods agree quite well and
vield a value for the permeabilites. for silica[1]. These values are considerably higher than the
experimental values given above at 313K suggest that the density of this particular model is too
low for comparison with the molecular sieving membranes of Brinker et al. [4]. The reason for
this is that the relative elementary volume for the thin films is probably on the order of 100nm or
essentially the thickness of the laver. Since our model is less than one tenth of that. the density
of the real system overall can be greater than that of our model and still have the same
permeability. Another view of the results through the mesoporous model can be seen in Figure 5.
where the permeabilities are plotted as a function of the inverse square of the molecular weight.

X

gt

steps

where jLTR and jRTL
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Tabie 1. Fluxes and permeabilities from DCV-GCMD simuiations

[m m permeabiiity
: fO'"‘\/-‘; e G:J? (Barrers*)
1.5 grce Silica Model
He(450K) 3.6e-3 3.7e-3 3.300
He(300K) 3.5e-5 3.8e-3 3.500
H-(450K) 2.4e-3 1.9e-3 2.300
H,(300K) 3.3e-3 3.2e-5 3.000
Ar(600K) 4.7e-6 4.0e-6 180
Ar(450K) 2.3e-6 3.5e-6 205
Ar(300K) 5.2e-6 3.5e-6 190
CH,(600K) 3.1e-4 2.8e< 300
CH,(450K) 8.0e-7 7.0e-7 80
CH,(300K) - 1.1e-7 3.1e-7 <10
He (Mixed 300K) 1.4e-5 1.3e-3 2.700
CH,(Mixed 300K) 3.0e-3 3.0e-3 <10
- 0.5 grce Silica Model ~

He(450K) 4.8e-4 . 4.7e-4 646.000
He(300K) 4.7e-4 4.8e-4 737.000
H,(450K) 5.7e-4 ' 6.0e-4 841.000
H,(300K) 7.0e-4 7.1e-4 1.020.000
Ar(450K) 9.4e-5 9.1e-5 184.000
Ar(300K) 1.3e-4 1.3e-4 213.000
CH,(450K) 1.0e-4 1.0e-4 - 260.000
CH,(300K) 1.6e-4 1.5e-4 307.000
He (Mixed-450K) 1.4e-4 1.4e-4 700.000
CH(Mixed-450K) 4.0e-3 . 4.0e-5 206.000
He (Mixed-300K) 2.3e-4 2.3e-4 776.000
CH.(Mixed-300K) 9.0e-3 ‘ 8.0e-5 300.000

A straight line through the origin should reveal the knudsen permeation expected from
mesoporous membranes where the molecular velocity dictates the fluid tranport.

DENSE SOLIDS

While the above discussion concerned the permeation of gases in meso- and microporous
solids. the following examples describe the diffusion in denser solids. The applications are
different. but the study techniques remain the same. That is. making proper assumptions about
the interaction potentials and solid structure are paramount to obtaining useful information about
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Figure 6 Permeability vs. Inverse molecuiar weight squared for mesoporous modei (line arawn as
guide for eve).
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the transport properties of the diffusing body within a reasonable simulation time frame. Again.
massively parallel supercomputing helps when applicable.

The first example concerns the diffusion of cations through calcite. and is part of a
program funded by the National Aeronautic and Space Administration to assess the prospects of

Figure 5 Experimental (below) and simulated diffusion of Ca— in calcite.
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Figure 7 The density profile of He'H- in poiyvisobutviens |
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organic species on mars. Figure 6 shows the results of the experimental and simulated diffusion
of Ca in calcite. The agreement is reasonable and suggests that the activation energy is
approximately 300 kcal/imol [17]. The second example is of the permeation of He and H2 down a
concentrations gradient within a model of polyisobutylene. Figure 7 gives a plot of the gas
density as a function of position within the polymer model [18]. Initial conclusions of this work
suggest that the timesteps were so small. that a relatively long time was required to reach
equilibrium.

CONCLUSIONS

We have demonstrated the usefulness of DCV-GCMD for investigating the sieving nature
of microporous materials by applying the method to a model silica system. Work is currently
underway to apply DCV-GCMD to multicomponent fluids under different conditions in other
silica and zeolite models. In this work we tried to exhbit the power and usefulness of massively
paralel computer simulation in understanding gas flow in microporous solids. The theories in use
for zeoltes may work well for amomphous silca membranes if the pores are of molecular
dimensions. DCV-GCMD simulation allows comparison with the most relevant experiments in
membrane research. that is permeation of gases-and gas mixures.
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Introduction . o
Currently there is 2 development effort underway at VNIITF focused on studving the kinetics

of processes that decompose sulfur and nitrogen oxides in flue gases by repetitive puise electron
beam. In the framework of this effort there is ongoing development of the acceierator with
parameters: beam current I=2 kA  accelerated electrons energy up to 1 MeV', puise duration =50 ns
and pulse repetition frequency up to 500 Hz. Electron beam will exat through thin titantum foil of
output window and will be slowed down in air laver ~1.5 m thick, some beam energy will be
transformed into Bremsstrahiung with ended energy 1 MeV.

In spite of the fact that the portion of beam energy converted into Bremsstrahiung in air per
pulse 1s small. repetitive mode of operation with fairiv high pulse repetition rate can lead to fairly big
radiation exposure dose for personnel, if there is no biological shielding in place to surround the
accelerator.

To determine required thickness of biological shielding walls. in several feductial points there
has been performed computation of Bremsstrahlung dose resulting from interaction berween 1 MeV’
electron beam from the repetitive-pulse accelerator and output window’s foil. beam deceierating air
laver, assuming varnious wall thickness.

It was demonstrated that high pulse repetition rate ~500 Hz necessitates selection of concrete
shielding walls ~100 cm thick to protect personnel against radiation.

The computation was performed bv PRIZMA code [Ref 1] which enables consideration of
the problem in fuli formulation. The code incorporates versatile capabilities in describing geometry,
sources, composition of materials, and computation results. It aliows for computation of paths for
different nature particles (neutrons, photons, electrons. positrons, and ions) accounting for their
mutual transformations. For the purpose of solving the probiems requiring computation of small
probabilities-linked functionals (for instance, protection against radiation. detection problems, etc.)
there has been developed cost function simulation method which permits to tune algorithm onto
features of the specific problem. Development of this method relied on the assessment by “visits™, i.e.
required result is taken only in the case if a particle crosses integration region (detector)

If. in computations based on this method. one evaluates the number of particles which for the
first time have visited integration region along with evaluation of required functionals, it becomes
possible to get the assessment of benefit kr obtained in comparison against analogue simulation
method: '
| b

Lo,
where t; - time of computing one historv bv analogue method,
Ly, Gu , t. - average number of particles - first time visitors of integration region. relative error of this
result. and total time of computations, respectively, in non-analogue simulation method

k

€
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To vindicate produced resuits. there has been done computation of the dose createl v
scattering on air of v-radiation from “*Co-source ai a big distance from the source. in the geometry
descrived 1n [Ref 2] Thne results of computation are compared against the resuits of “bencamark’”
expenment [Ref 2]. thus serving as a test for the method developed to evaiuate Bremsstrahlung dose
bevond accelerator’s biological protection.

For the same purpose there were performed tests of the method for computation of
Bremsstrahiung production and energv-angie distribution of photons by comparison of measurement:
results presented in [Ref.3] against results under PRIZMA code.

The above-named probiems, because of big optical thickness of barmers and relativeiy smali
sizes of detectors. are reduced to small vaiues assessment probiem. Thus, there is a need in use of
non-analogue simulation apparatus incorporated in the software complex PRIZMA. Brief description
of non-anaiogue simulation method as it is implemented in this sofrware compiex is given in [Ref 4]

Computation of Bremsstrahlung Dose Behind Accelerator’s Biological Protection -
Formulation of the Problem

Computation of Bremsstrahlung radiation dose which is created in interaction of accelerator
electron beam with output window foil, laver of air, and with concrete, was carried out for the points
#1-7 shown on figure 1. '

End wall of
accelerator
with beam
oumpat
window

Accelerator
biological
- protection

Sieel door

9.05

Electron . S5 b Accelerator
accelerator &L ourput

wmdow

Figure 1. Relative position and sizes of the accelerator and test box
(unequal scale, all sizes are in m)

' Detector #6. is Jocated above upper roofing of the test box, detectors #1-4 are located on
t}ogzqntgl plane which goes ﬂ?rough beam axis, detector #5 is located on the level 2.125 m. Detector
#7 is inside test box and is situated 15 em above beam axis in vertical plane, and is shifted 1 cm




forward from output window surface. Internal height of the test box is 2.3 m. Acceierated electrons
energv is 1 MeV' The eiectron source is specified as surface. monodirectional and monqenergen:(on
the internal surface of the foil in accelerator’s output window and has an area 0.5x0.1 m~

Electrons are normal incident onto window’s foil internal surface, they are unirormiv
distributed through the surface.

Walls of the accelerator box are made of steel. 0.8 c¢m thick. Concrete’s formulauon
(weight): 0.0056 H, 0.4983 O, 0.0171 Na, 0.0024 Mg, 0.0456 Al, 0.3158 Si, 0.0012 5. 0.019Z K.
0.0826 Ca, 0.0122 Fe, density p=2.3 g./cmz. Output window’s foil is made of titanium 2-107 cm
thick. Weight composition of the air: 0.735 N, 0.232 O, 0.013 Ar ; density equals to normal vaiue
Thickness of hall’s brick walls 1s 0.4 m, hall’s height - 9 m.

Computation of the Dose from *Co-source Gamma-radiation Scattered on Air (test 1)
p

Correctness of photon transport in barriers with big optical thickness and complex geomerrv
was performed through comparison of the dose from air-scattered gamma-radiation emitted by *Co
special configuration (see fig. 2) source, as it was computed by PRIZMA code, and measured in
experiments in the vicinity to the ground surface.

ISKY |

E . Roof siab (concrete)

2309

. -=-{Bottom (concrete) }<F

1
|
i
!

.GROUND

;
Figure 2. Vertical cross-section of protective box, with concrete roof stab 43 cm thick shown, which
corresponds to the configuration of confined source in experiments on measurement of atmosphere-

scattered radiation

Figure 2 shows the geometry of protective concrete box for ®’Co 1sotope source used in
computations, the geometry, with maximal approximation (we do not know the design of the cart
and container for the source), describes geometry of the box used in experiments [Ref 2]

The computations used three source configurations’
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open source with 2 beam. colitmated in verucal cone with solid angie of 150.5%, mn this case conic
ring 3 was put on tne edges of walls 1. beam 1s formed by the nng.

the source covered bv concrete siab 21 cm thick:

the source covered by concrete siab 42.8 cm thick

Radiation detectors used in computations are air-filled spheres 10 c¢m in diameter. Detectors
were placed at various distances from the source in the range 50-700 m. Height of detectors reiative

to the earth surface 1s 1 m.
Analvzing the problem of computing exposure dose for an open source we decompose it on

foliowing elementary problems [4].

1. Radiation transport into detector located in emitting and scattering medium. Svstem’s geometry -
spherical, 10 cm diameter detector is situated in the center of the system. Solution method -
method of concentric detectors.

. Radiation transport in optically thick air layers. System’s geometry - spherical, in the center of the
svstem is located 10 cm diameter detector. Solution method - exponential transformarion.

. Radiation transport in optically thick soil layers. System’s geometry -planar, soil-air boundarv
serves as the detector. Solution method - exponential transformation.

When calculating exposure dose for confined source, one more problem is added to the three
above-named elementary problems:

4. Radiation transport in optically thick lavers of concrete. System’s geometry is determined by the
geometry of protective box, external surface of the protective box acts as detector. Solution
method - exponential transformation.

Comparison of computation results versus expenment for the power of exposure dose at

various distances from the source is given in tables 1-3.

Table 1

Measured and computed exposure dose (LR/h™'Ci™") for open source
with the beam collimated in vertical cone of 150.5° solid angle.

Distance,

Expernment

PRIZMA

Exposure dose,
uRM'Ci!

Exposure dose,
uR/A"Ci

Number of photons
incident on detector
(per source photon)

27.0 =0.087

21.3 =051

(2.20+0.048) 107

10.5 =0.087

839=02

(9.07+0.22)10°®

2.74+0.058

222+002

(2.44:0.024y10°®

0.86=0.038

0.811+0.013

(8.89:0.17y107

0.302 £0.003

0.321+0.0077

(3.54+0.095)10°

0.112 =0.0022

0.128+0.0027

(1.41=0.037y10°

0.0523 = 0.0026

0.0574+0.0013

(6.33+0.19Y10™"°

0.0267+0.00016

0.024620.00039

(2.62+0 05710




Measured and computed exposure dose (uRh™Ci™) for the source
covered by a laver of concrete 21 cm thick.

Table 2

Experiment PRIZMA
Number of photons Benefi:
Distance, Exposure dose, Exposure dose, incident on detector ks
m uR/AnICit pRACI (per source photon)
50 253 =0.039 2.28 = 0.064 (3.8720.011V1C" | €910
100 0.802 = 0.0022 0.822 =0.025 (1.38+0.044Y10° 24107
200 (1.64=0.022Y10" }(1.68=0.055)10" |(2.79:0.10y107 1.310°
300 (443 =0013Y10° | (4.89=0.10y10° |(8.29+0.21)107"° 4310°
400 (1.59=0.011y10" }(1.62+0.065r10" | (2.7120.14y10"° i 71100
500  J(499=-011y10° [(546=017y10° |(869+035y10"" | 2710
600 (178 =0.11y10° | (2.19+0.10)10° | (3.60+0.23)10" | 3610
700 (663 =1.3y10" (770 =0.2v107 (1.14+0.039y10"" | 141C°
Table 3
Measured and computed exposure dose (uUR/hCi™") for the source
covered bv a laver of concrete 42.8 cm thick.
Experiment PRIZMA
Number of photons Benefit
Distance, Exposure dose, Exposure dose, incident on detector Ky
m uRA*Ci! uRMACI? {per source pnoton) }
50 (2.22=0.022y10" |(2.39=010)10" |{(3.99=0.13y10° I 5210
100 (6.49=0.18Y10° [(7.24=032y10° [(1.25=0047y10° | 1910°
200 (131 =0.013Y107 |(1.58=0.076Y107 |(2.71=0.11y10" fo1110
300 (316 =0.11y10° | (4.08=0.12y10° | (7.31=022)10°" [ 3410
400 (1.01 =0.13y10°  }(1.21=0067v10° | (2.10=0 14y10™" | 3810
500 -- (428 =0.23V10° | (749205510 [ 9010
600 -- (141 =0076)10" }(2.33=0.15)10°" I 5310
700 - (545=020v10° |} (8.230.34y10" | 1310

Apparent to the eve is satisfactory matching of computation and experimental results for
confined source, and some discrepancy at small distances for the open source The existing
discrepancies, to our view, are explained bv the absence of accurate information on concrete
formulation and source cart (for more accurate accounting for scattered radiation inside concrete pit,
for the case of open source)
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Computation of Bremsstrahiung Yield from Be. Al. and Fe Targets (Test 2)
Compuranion method which determines vield of Bremssirahiung radiation generated from
interaction berween accelerated electrons and air, and elements of accelerator's structure was tested
bv comparing PRIZMA-computed and experimental vaiues [Ref3] of the total yield and anguiar
distribution of Bremsstrahlung generated in Be, Al. and Fe targets wradiated by 1 MeV electron
beam. Target thickness was chosen from the condition of complete eiectron stopping. experiment's
schematics is shown on Figure 3.
In this case decomposition gave only one elementary problem:

1. Radiation transport into detector located in vacuum. Detectors with radius 0.1 cm are located on
1 m radius sphere in the points corresponding to various polar angies relative to the symmetry axis
of the system. Solution method - method of probe particles.

Computed results of total Bremsstrahlung vield for various targets are compared versus
experimentaliy measured in Table 4. Angle distribution computed results are compared against
experiment on figure 4. Companson of provided results gives grounds to speak of satisfactory
accuracy in computation of Bremsstrahlung characteristics for the situation of Bremsstrahiung
generation in interaction berween the electron beam and air or accelerator’s structure elements.

Table 4

Computed and measured total energy of Bremsstrahtung (MeV/electron)
radiated from thick Be, Al, and Fe targets. Incident electrons energy is 1 MeV.

Target Be Al » Fe

(1.98=0.014y10° | (6.1120.037) 10 | (1.1520.092 ) 107

(1.56+0.4) 107 (5.12+0.8)"10° (1.0520.1) 107
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Computation of Bremsstrahlung Dose Bevond Accelerator’s Biological ProtecxionA

Analvzing the probiem of computing the dose of Bremsstrahiung generated in interaction of
acceierator’s electron beam with output window foil, with laver of air and concrete. at the point nght
bevond accelerator’s biological protection. we were abie to outline two eiementary probiems
1. Radiation transport into detector located in emitting and scattering medium. System's geometry -
spherical, detector 0.1 cm in radius is placed at the system’s center. Solution method - method of
concentric detectors
Radiation transport in optically thick medium. System’s geometry is determined by the geometry
of accelerator’s protective box. external surface of the protective box acts as the detector
Solution method - exponential transformation.

By means of preliminarv computations thickness of all walls in test box. except the front one.
was chosen egual to 1.0 m, thickness of the front wall was taken equal to 1.2 m. thickness of steel
doors - 2x9 cm.

After performing computations for the chosen sizes of protecting system. following vaiues of
absorbed dose D of Bremsstrahiung were obtained, the values are per one source (beam) eiectron for

detector locations.

tD

Detector #1 D=1.28-107 Grav/electron, 6=8.3 %
Detector #3,4.6 - D=0.98.107 Grav/electron, 6=9.3 %
Detector #3 D=1.82-107 Gray/electron, c=8.4 %

Ly 1)

Benefits k;, for Detector #1-6 are shown in Table 5.

Table &
Number of photons incident Benefit
Detector number on detector (per source ks
electron)
Detector #1 1372107 |, 0=8.3 % i 2.910"
Detector £3 4.6 318107 . 6=9.3 % ? 2610
Detector #5 466107 . 0=8.3% | 5.210%

The dose inside test box was estimated by means of detector #7 and through computation of
dose in detector #1 for the case when front wall thickness is equal 0.2 cm (for electron capture), we
assigned number #1a to this detector for further cases. The computation gives following values of
absorbed dose for these detectors:

1. Detector #1a - D=2.27-10" Grav/electron. c=5 .8 %
2. Detector #7 - D=0.73-10"" Gray/electron. 6=9 %

For the purpose of studving the feasibilitv of reducing thickness of the front wall, there were
computauons done for the case when front wall is 1 m thick. Following values of absorbed dose in
detectors #1 (assigned number #1b to this detector) and 2 were obtained for this case

1. Detector #1b - D=3.73.10 Grav/electron, c=8 8 %
2. Detector #2 - D=1.64.10"" Grav/electron. 6=10 4 %
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Recalculazing obtained resuits into apsorbed dose power P for the hardest (in the sense of
requirements 1o biological protection) accelerator’s operating mode with beam current 1=2 KA. pulse
duration 7=50 ns. and puise repetition frequency 300 Hz gives following resuits

1. Detector 1 - P=144.1C" Gray'hour, =8.3 %
2. Detectorg3 46 - P=1.10 1C“" Grav/hour, 6=16 %
3. Detector %5 - P=2.05.10" Grayv/hour, =8 %
For the thickness of front wali of 1 m similar recaiculation gives following values:
1. Detector #1b - P=4.20-10" Gray/hour, 6=8.8 %
2. Detector #2 - P=1.85.10" Grav/hour, 6=10.4 %
For the power of absorbed dose inside test box we obtain:
1 Detector £la - P=255.10" Gray/hour, 6=5.8 %

)

Detector # - P=0.82-10° Gray/hour, 6=9 %

The above given results attest to the fact that chosen parameters of the test box assure dose
levels in possible personnel locations do not exceed allowed level of the Norms of Radiation Safery
NRB-96 of 10~ Grav/hour.

Worth noting is that the above given values of the benefit are somewhat understated, since
when estimating kg, the number of first-time visits was substituted by the total number of visits.

References
[1] Ya. Z. Kandiev, E.S. Kuropatenko, 1. V. Lifanova et al. // Collection of abstracts. 3™ All-Union

Scientific Conference on Protection of Nuclear-Engineering Installations from Ionizing Radiation.
Toilist, TGU, 1981, page 24

[2] R.R Nason. J.K.Shuitis, R.E.Saw and C.E.Clifford, “A Benchmark y-Ray SkyShine Experiment”,
Nucl. Sci. Eng., 79, 404-416, (1981).

[3]1 D.H.Rester, W.E.Dance and J.H Derrickson, “Thick Target Bremsstrahiung Produced by
Electron Bombardment of Targets Be, Sn and Au in the Range 0.2-2. 8 MeV™, Journ. App!. Phvs,
vol.41, No.6, 2682-2692, (1970).

[4] M.A Amautova, Ya.Z Kandiev, B.E Lukhminsky, G.N.Malishkin; Nucl. Geophys. Vol.7.No.3,
pp. 407-418,1993.

218




MULTI-PARAMETER MODEL OF TURBULENT MIXING
IN TWO-DIMENSIONAL FLOWS
V.V. Nikiforov, Yu.V. Yanilkic, G.V. Znarovza, Yu.A. Yudir
RFNC-VNIIEF, 607190, Sarov (Arzamas-16). Russiz

ABSTRACT

The paper descripes Nikiforov's multi-parameter mode! of turbuient mixing
implemented in the EGAK program system [1]. The model uses 9 independent
variabies for which evolutionary equations are soived. For the variables all the
Reynolds tensor components, turbulent energy dissipation rate, two components of
mass turbulent flow velocity, squared density fluctuations and total turbuient
energy are used. The mode! is a 2D analog of 1D VIKHR' technique mode! [2] and
involves turbulence generation both due to gravitational and tangent instabilities.

1. EQUATIONS FOR AVERAGED QUANTITIES
ai(pa) +div(plid) = -VP-divoy,
1
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-%(ai p)+div(a, pl)=div(pDVa;),
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é(aipei)ﬁ- div(a;pe;T) = div(pDVa,e; ) - B; P;div(d - W)+ aips;:; ‘

Viscous stress tensor ot has four components in 2D case
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2. EQUATIONS FOR TURBULENT QUANTITIES
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where (u,,u,) - velocity vector; p - average density of medium; p; -

".0

density of

the i-th component of medium; e; - specific internal energy of the i-th component
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oi medium; P - average pressure ol medium: P. - pressure of tne i-th componen: c’
mediurm: B. -voiume concentration of the i-tn component (: = V,/V), & - mass
concentration of the i-th component (¢; = M;/M). € - viscous dissipation rate 1c-
T . . -
turbulent energy; € - components of velocity component fiuctuation tenser: V- -

lent

components of deformation rate tensor; W(w,,w,) - velocity vector for turbulent
mass flow; R - relative mean square for density fluctuations; € - rate of viscous

4 rrl T ! ] () 1
dissipation of turbulence energy, ®=g/e’; ®=<u;u3>+—<p u;u3> - total
Vo4 p 4
turbuience energy.
T_T_l/ o i1, T_N.T T _Ly
€y =€, -:<Ufui>= 1=L2.3% ¢ —Ze,, €12 —;>—<u1u7>,
2 - 2
1 \ 1, _ 1
wl=-<p’u ;o 1=12 R=—;<p'>, g=—VP;
P P p
1+R €
o(R)=—:; 0=
R e

Superscripts 1, 2 denote longitudinal and radial components, respectively.
ransport terms II, being divergences of third order tensors, have quite a
bulky form. Therefore, in the original version of the numerical method we use a
difiusion approximation for them in the following form:

Il =div(D5Vel -Wel ),  II°=div(D}VO-w%0),

N w - - ) w _
II, =;d1vp(DTle-—wwl), I3 =%lep(DTVw2—ww2),
® = L divp’ (D%VR—@-R), I1* = div(D%Vs—ﬁ's),

02

3. EXPRESSIONS FOR COEFFICIENTS

T T T.T
€ - — le;e,e
kj=—, kg =13, k=33 =2
Se; \.‘f (e’l‘)'
el 1 W-VPel 1 v kg
ky =—=+—c s kfj————+-+—,
68’ 10 e egep 2 2

, ! 7. o2
where W] =yW; + w3,
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g7 is 2 component of the tensor ey in a local coordinate system where one of the
axes coincides with the direction of the turbulent mass fiow.
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I, = Y=L scale of turbulence;
©
T T T
D(T“") = D(;Z) = D‘T‘") = D(;’”) = DY =3Dy,

- eTeT
T 7"b k,e I+b
1k 2(w,A +w,A.)e!
pelBny )y
4k, kpeR
A T
k_/:i.*._e_...y_
T2 el 2

Vi1, Voo, V33 - components of deformation rate tensor,
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Results of computations with the EGAK-B technique pased or the above-
discussed mode! are presented for known problems on studving turbuient
mixing in 1D and 2D fiows. The iollowing probiems are considered: turbuient
mixing at gravitational and shear instabilities, Meshkov experiments in
cylindrical geometry and shock tubes. The computed data is compared with
experimental data and results of computations with other techniques. Tne
agreement is good.
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 Numerical modeling of experiments with fuel peliets
at pulse reactor "

Kandiev Ya. Z. Kozvbavev R M.

Russian Federal Nuclear Center - All-Russia Scientific-Technical Institute of Technical
Physics (RENC-VNIITF). Snezhinsk. Russia. 456770

To solve the probiems connected with numerical modeling of experiments. camec out a:
pulse reactors, the updating of the PRIZMA base code - the code PRIZMA-D has been
developed at VNIITE.

PEculiarity of this code is the special source - fission points distributed by eigenfunctiorn
within reactor core.

To diminute restrictions on application of nonanalog modeling, the process of deming a
source and the process of modeling trajectories to obtain necessary results are separated.

This organization of caiculation cvcle allows to increase efficiency of caiculations
essentially.

Besides, the special method of modeling paricles trajectories which is realized in the
PRIZMA compiex allows to obtain correlated results of several versions of a problem mn one
calculation.

To illustrate the capabilities of the code, the problems of numencal modeling of
experiments with fuel tablets at pulse reactor are considered.

1. Introduction

At present Monte-Carlo the calculations of linear problems of radiation transport in various
compositions and units of facilities are carried out at VNIITF using PRIZMA code[1] Broad
capabilities for describing geometry, sources, structure of materials, for ordering the results are
incorporated in the code. The possibility is provided to carry out caiculations of particles cascade
transport including (neutrons, photons, electrons, positrons and ions) with aliowance made for
their transmutation. To soive the problems in which 1t is necessarv to calculate functionals
connected with small probabilities {(e.g. problems of radiation shielding, problems of detection.
etc.), importance biasing scheme has been developed which permits to adapt modeling algorithms
to a specific problem while developing this method due account was given to the fact that in the
code the evaluation "on wisits " is applied, i.e. the required result is rerecorded oniyv if parucle
imersects the area of integration detector.

If using this method in addition to required functionals one evaluates the number of particles
visiting the area of integration for the first time it is possibie to obtain an esumate of a pnze k, in
comparison with the analog method of modeling:

1,

* Lo,
where t, - 1s such time of one history using analog method,
I,. ., tn - are average number of particles visiting the area of integration for the first time.
relative error of this result and total run time, respectively. for nonanalog method of modeling.

All this enables to model numencally expeniment and ensures necessarv accuracy of the
results with much lower expenses than those spent on organization and conduct of experiment
Similar calculations allow to predict behaviour of radiation in an experiment, compare results of
calculation and experiment, update parameters of the experiment.

225




~

At the same time there are classes of probiems. in which either source. or resuits nave such
specific features. that they cannot be soived by the PRIZMA code Therefore. there is 2 necessin
of creating speciaiized codes with the same main capabiiities as PRIZMA code PRIZMA D codz
1s one of them It is intended for soiving probiem connected with estimation of nuclear reactors
and critical assemblies.

- Expenimental Physics Division of VNIITF caiculated experiments on melting tablets of
reactor fuel in a retort placed along the axis of channel of pulse reactor IGRIK [2]
The report describes briefing capabilities of PRIZMA.D code and calcuiations resuits
obtained during planning these experiments.

2. PRIZMA.D code.

Peculiarity of the code is in special source - fission points distributed by eigenfunction
within reactor core. Depending on conditions of a problem, fission points can emit;

a) neutrons and photons of fission spectrum

b) only neutrons of fission spectrum.

To diminute restrictions on application of nonanalog modeling, the process of deriving a
source and the process of modeling trajectories for obtaining required results are separated.

Calculation cycle is schematically as follows:

Modeiing neutron

Counting Iniial generation of trajectories to provide
cvele pouwnts fission pomnis of anew

) generation

Modeling trajectories
particles emnted from fission
points and obtaining results

This organization of calculation cycle allows to apply nonanalog method of modeling in the
second part of this cycle without restrictions.

In PRIZMA complex special method of modeling trajectories (based on marking of a
particle) is implemented which permits to obtain correlated results of several versions of a
problem differing a little in some local area of a system. There are three tvpes of such problems:

1. Version with varying composition Versions differ in composition of substance filling
some volume V. .

2. Versions with increasing volume \" Volume varies according to the rule

VH=VLV{2)=VI-V2 V(K =VI+V2+ +Vk

3. Versions with moving volume Versions differ in the fact that volumes V(i).i=1, k are
located in different places of a system

The essence of the special method of modeling consists in the following' certain type of
mark corresponds to each version of a problem (a source particle is marked by all types of
marking), when particle entries perturbed volume. it splits into two particles. and one continues
random walk in geometry corresponding to the version with perturbed volume with a mark
corresponding to this version; another one does the same in geometry correspoding to the version
with undisturbed volume with an appropriate mark. In one calculation the combination of various
cases 1s allowed. Plots of particles trajectories prior to the entry into of perturbation area are the
same for each case. Therefore, appropriate calculation results for the versions are correlated
positively to some extent. Besides, total time of calculation for versions is saved

Special method of modeling is used in PRIZMAD code in assumption of small
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. . . . : o far all verciarc
perturbations In this case. distribution of fission points of the source is the same for al! versions
of the problem and corresponds to distribution of the version without perturbed volume

3. Problem description and results of calculations

The calculations were performed using PRIZMA D code with BAS constants {3} The
results of calculations are normalized to one fission in the core of the reactor In all the tabies
standard deviations are given in percentage.

Geometry of the experiment is shown in Fig. 1, 2. A fuel tablet of UO. (diameter and length
of the tablet are 0.58 and 1.5 cm, respectively, the density of uranium oxide is 10.5 grem3) is
located in a protective retort, which is placed in a centerline of the reactor channel centre of the
retort having the coordinate z = 37.5 cm (Fig.1). To increase the fraction of of thermal neutrons.
the converter of polvethylene is used contiguous to the lateral surface of reactor working zone.
Channel is closed by a carbon fuse from outside. It is required to calculate energy yield in the fuel
tabiet.

The following conditions of the problem were considered:

1. Determination of optimum thickness of the converter; five variants of converter
thickness were considered: 2, 3, 4, 5 and 6 cm (case with increasing volume).

2. Evaluation of influence of protective retort material on energy in a fuel tablet. four
variants (the case with moving volume) were considered:

a. fuel tablet without retort,

b. tablet with an iron retort (p = 7.8 g/cm3),

c. tablet with a titanium retort(p = 4.5 g/cm3),

d. tablet with a carbon retort(p = 1.7 g/cm3).

3. Evaluation of influence of 235U concentration on radial distribution of energy release in

a fuel tablet. Four variations (case with varying composition) were considered:
a Uglgpi0,
b UsyUsy' O,
¢ Ugilisa0:
d Uggil'so0,

Using special method of modeling allowed to obtain the results for 80 versions of the
problem in one calculation. o ,

Table 1 gives energy vield averaged over the mass of fuel tablet.

Fig,[? shows the results for various thicknesses of the converter and for various materials of
the protective reton.

In Table 2 and in Figg radial distributions of energy in fuel tablet for various 235U
concentrations are given (tablet is without a protective retort, thickness of polvethvlene is 5 cm)

To evaluate the efficiency of main calculation, comparative calculation was performed of a
variant for converter with a moderator 4 c¢m thick, with an iron protective retort and with the
structure of retort (3.b). The time spent to obtain energy release value of 7.0]e-3 with g = 4.3 %5
was one-third of the total run time spent on all 80 versions of the main problem. Relative
efficiency was Kv = 17.3. The average number of neutrons hitting in the fuel tablet is 6.54e-4
Inference is that run time of all 80 versions using the analog method with appropriate errors
would be approximately 400-fold.

Here the fact is not taken into account that in one calculation positively correlated results of
all versions of the problem were obtained.




e

To improve dependence of radial distribution. the calculation with stx vanous (2 2 3
10 %e. 15 Se. 36 %, 90 %0) concentrations of 235U was camed out. Results are given 1o Tat
and in Fig.5
Analysis of the results obtained showed that radial distribution of energy In a 1abie:
depends practically on concentration of 235U in 1t.
To evaluate gradient of density of neutron field along the axis of the reactor channel.
calculation was carried out for six variants of fuel tabiet location (z=11.75, 15.73.16.73, 25 73,
27.75;31.75 cm). This calculation corresponds to the case with moving volume. The results are

given in Table 4 and in Fig.6.
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Table 2. Distribution of energy reizase (Me\:g) in the layers AR of the fuel tabiet (1abie:

without retory

- Concentrauion | ACH? | Rj--R: + Ro--R3 1 Rz-Ry ! Ry--Rs l R:--Rg i Re--R-
of (cm) | (0.0-- | (010 (0.15-- | (0.20-- | (0.23- | (020~
2350 ' 0.10cm) | 0 13cm) | 0.20cm) | 0.23zm) | 0.20em) | €.29:m»
59, 30 | 5.02e-3 | +.72e-3 | 4.59e-3 | 3.8le-3 | 4.98e-3 | 3.43e-3
l13% 1 11% 10% | 9.6% 36% | 8%
10% 50  8.37e3 l 8.14e-3 | 8.6le-3 | 9.03e-3 | 1.0le-2 | 9.33e-3 |
L73% | 6.6% 6.1% 6.3% 6.1% ! 330, |
36% 50 | Lloe2 | 1.13e-2 | 1.25e-2 | l.6oe-2 | 2.0le-2 | 2.43e-2
L11% 0.4% 7.7% 7.5% 7.0% 6.5%
93¢, 5.0 | 6.09e-3 | 8.07e-3 | 1.00e-2 | 1.58e-2 | 2.49e-2 | 44]e-2 |
L14% 1 11% 8.8% 7.6% 67% | s

Table 3. Distribution of energy release (MeV/g) in lavers AR of the fuel tablet (tablet
without retort) ACH>=4.5cm

i Concentration | ACH2 | Rj--Rz | Ra--R3 | R3—-Ry | Ry-Rs | Rs--Rg | Rg--R- ’
of (cm) | (0.0 | (0.10-- | (0.15-- 1 (0.20-- | (0.23- | (0.26--
2330 | 0.10cm) | 0.15cm) | 0.20cm) | 0.23cm) | 0.26cm) | 0.29cm)
2.3 435 | 2.72e-3 | 2.8le-3 | 2.72e-3 | 2.93e-3 | 2.80e-3 | 2.93e-3
43% | 3.8% 33% | 3.39 3.2% | 3.0%
45 | 4.58e-3 | 4.78e-3 | 4.82e-3 | 4.70e-3 | S42e3 1 d4Te-3
48% | 43% 3.7% 303 34% | 329
10% 4.3 1 7.23e-3 ‘ 7.40e-3 | 7.97e-3 | 8.39e-3 | 8.69e-3 | 0.40e-3 |
1.35% | 4.1% 3.5% 370, 380, 1 31% |
1£% 4.3 9.0%e-3 l 9.93e-3 | 9.64e-5 | 1.11e-2 | 1.17e-2 | 1.30e-2 |
Lo41% | 3.7% 3.49, 3.6% 3.2% 13.0%
36% . 43 09.70e-3 | 1.08e-2 | 1.27e-2 ! 1.60e-2 | 1.89e-2 : 2.36e.2 !
i 420, | 38% | 329 | 330 i 30% | 279, !
00% | 4.3, 213e-3 ) 6.73e-3 | 0.8%e-3 1.38e-2 . 2350e-2 . 4292
i L 3.0% 439 359, ¢ 320, | 200, | 2o, |

Table 4. The energv release (MeV:g) in the fuel tablet movine alone of channel axis

- Concentration | ACH» | ll
of 235 U (cm) i Center coordinate of the fuel tablet |

: (cm) I

| 1173 0 1873 1 1973 S 2373 2775 0 3173

10% 4.3 ! 6.30e-3 | 6.77e-3 | T.28e-3 | 7.92e-3 | 8.34e-3 | §.62e-3 |
370 | 33% | 300 | 200, i 289, | 200, |
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NUMERICAL SIMULATION OF NEAR AND FAR AREAS OF
ACCIDENTAL RELEASES AND EXPLOSIONS

Yanilkin Yu.V., Sofronov V.N., Tarasov V.l., Statsenko V.P.,
Piskunov V.N., Kovalev N.P., Dibirov O.A., Stadnik A.L., Toropova T.A.,
Ivanova G.G., Shanin A.A.

RFNC-VNIIEF, 607190, Sarov (Arzamas-16), Russia

ABSTRACT

The presentation describes the 3D program package designed for numerica!
simulation of dynamics of accidental expiosions and releases and their
conseguences in the giobal scale. The package is implemented within the program
system TREK [1].

INTRODUCTION
Simulation of a full-scale problem relating to accidental releases is 2 complex
probiem due to both a large number of physical processes to be taken into account
and difierent scales of flows at various process phases. The package includes two
phases of the process under consideration: explosion cloud rising up to the
stabilization height and aerosol transport in the atmosphere over the
orphographically and thermally inhomogeneous underlying surface.
The simulation is based on simultaneous solution of the following physical
processes:
at the first stage:

e gas-dynamical flow of poiydisperse medium;

¢ turbulent mixing;

e change in aerosol particle disperse composition due to coagulation;
at the second stage:

e atmosphere hydrothermodynamics;

e particle transport and turbulent diffusion.

Quite a great number of methods have been recently developed for
simulation of the polydisperse media flows under discussion. However, irrespective
of the plenty of various methods, in the literature there is practically no papers
discussing methods suitable for simulation of full-scale probiems, that is the
accidental release dynamics from the process beginning to the end.

Within the system TREK an attempt was made to integrate the programs
designed for numerical simulation of the flows discussed in full measure, that is
for simulation of the accidental release dynamics from the process beginning to
deposition onto the ground surface.




The package does not aliow to simuiate flows from the probiem beginning
tc the end without computation interruption, each process stage s aisc
computed separately, however, using the programs within 2 singie system
considerably facilitates the transier of the computed data for one stage ics
simuiation of the second. This procedure can be automated in many respects. The
principal service and computation package modules have been recentiy deveiopec
which allows to use tne package ior simulation of principal physical processes
occurring at accidental releases and expiosions.

Note that for the near area many problems are 2D in their formulation, and
the authors earlier developed 2D programs within the EGAK program system [2.3]
for simulation of such flows.

1. FIRST STAGE FLOW MODEL
The following basic assumptions are used for description of the polydisperse

medium flows: _

e the carrying phase is a gas-vapor mixture composed of several components witn
their equations of state;
each carrying phase component is described completely with specific energy
and volume concentrations;
the medium molecular viscosity is taken into consideration only in the
interphase exchange processes; '
the disperse phase is a polydisperse impurity composed of several coagulating
components of the active fraction and several components of the composite
fraction;
the collisions of disperse phase particles with one another are not taken into
account both for each separate fraction and for particles from different fractions;
separate disperse phase fractions can exchange mass between themselves and
carrying phase due to the processes of coagulation, condensation, fragmentation
and aerodynamical entrainment;
the disperse phase material is incompressible;
the heat exchange between the carrying phase and particles is not taken into
account;
the turbulence is simulated within the k-¢ model.

2. SECOND STAGE FLOW MODEL

The processes are studied in which the horizontal sizes are considerably larger
than the vertical (X“Y>>Z). In this case the statics equation is used instead of
the equation of motion for the vertical velocity component. Ii the condition
(X"Y>>Z) is not met, the equations for three velocity vector components are
solved,; '

Meteorological fields will be set as sums of given background large-scale
components and their deviations which are smali. This allows to linearize the
initial equations through rejection of small values;




e The atmosphere is formaliy segregated into twc lavers: neer-grounc and
boundary iaver located above tne near-ground. Tne near-grounc laver Is 1axen
intc consideration parametrically, that is by setting eilecti 127
conditions on the upper near-ground laver Doundary basing oOn KNOWTL
pnenomenological relations;

e Tne space and time variations in density are assumec smali. thereiore tne
incompressibility condition is used;

e The turbulence is simulated both within the k-e mode! and zigebraic moage! of
Reyvnolds stresses.

3. NUMERICAL RESULTS

Numerical solutions for a number of test probiems are exemplified:
e Gaussian profile transport;
e Aerosol transport taking into account the turbulent diffusion;
e Aerosol transport taking into account the turbulent difiusion and

sedimentation;

¢ Aerosol transport by height-variable wind;
e Ekmann problem;
e Prandt! problem of slope wind.

The above examples demonstrate a sufficient efficiency and accuracy of the
programs integrated in the package.
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NUMERICAL SIMULATION OF THERMONUCLEAR FUSION
NON-EQUILIBRIUM
PROCESSES USING 2D SOFTWARE PACKAGES

RFNC-VNIIEF
607190, Nizhni Novgorod region, Sarov

Belyakov IM,, Belkov S.A, Vatulin V.V, Vakhlamova L.L.,
Vinokurov O.A., Garanin S.G., Yermolovich V.F., Pleteneva N.P..
Remizov G.N., Rezchikov V.Yu., Ryabikina N.A., Sofronov I.D,
Fedotova L.P., Shagaliev R M.

In works on studying and soiving thermonuclear fusion problems an important
role is played by computer simulation of running processes. The computer simulation
methods aliow not only to study one or another physical scheme and approach to
solving the problem, but also promote reduction in a large number of expensive
experiments and, eventually, determination of promising lines for solution of the posed
problem.

This presentation is devoted to discussion of principal capabilities for

numerical simulation of material radiation and energy transfer processes in 2D
thermonuclear fusion problems implemented in the framework of connection of two
VNIIEF program packages, ie the multi-dimensional program package for
computing particle transport processes taking intc account particle-medium
nteraction /1/ and multi-dimensional program  package for computing gas-
dvnamical processes /2/. The following is taken into account within the program
package for computing particle transport processes:

1. Spectral X radiation transport and radiation-medium interaction.

2. Er;ergy transfer by electrons and ions taking into account medium non-

equilibrium.

3. Energy transfer by heavy ions and absorption of this energy by medium in

heavy-ion fusion problems.
4. Laser radiation energy transfer and absorption.

5. lonization kinetics in the mean ion approximation.




Mention the principal features of taking intc accouni some of the apove
processes in the program package /1/.

The X radiation transpor: and radiation-material interaction process is
computed in the multi-group kinetic - or multi-group diffusion approximation
depending on the class of probiems being solved.

For the 2D multi-group kinetic approximation the following system is solved

1% i 1e-1, £, —Vau 2, €"+Q,. =11l )
ca
La-,u“ 1£(, \/I_:,U_-coslpé‘) T r B To‘(\/l‘#zsmwn) 2)
l é‘ . 1! (0) _? _ L (D) 3
=Y 2uePB0 =Y 206,00 >3 4,2, G)

p d pour =l =i

€[=€‘(r, zvﬂywiwﬂt)’

E, =E (p.T,)

Za = Xalp1,.0)
Z.n =zn(p’7;’&)x)v
X “XatXa»

gxp =€1p(7; 2@, )

Q, =Q, (1,2 p,u,0,t) - an independent source.

Computations of many thermonuclear fusion problems are known to require a
very accurate account of X radiation transport processes using the kinetic
approximation, and, on the other hand, computer simulation of X radiation
transport processes in the multi-group kinetic approximation involves fairly high
computer costs. Taking into account the above circumstances, at development of the
package /1/ a particular attention was attached to designing effective numerical
methods and algorithms for solving the multi-group kinetic equation.

Mention some features of the methods implemented here. The 2D transport
equation is approximated on quadrangular spatial grids by a difference scheme with
an extended template /3/. To solve the obtained essentially non-linear equation
system, the KM-method of iteration convergence acceleration /4/ is used.

As it is known, many of the computed thermonuclear fusion systems are
charactenized with a fairly small optical thickness which imposes especially high

requirements for accuracy of the kinetic equation approximation by angular
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variabies. To secure such an accuracy, the following two approacnes are used it tne
package /1/.

1. The numencal solution of the kinetic equation in optically transparen:
regions is impiemented in two stages with separation of "pnmany" and “secondan”
photons, where the primary photons are photons which have got into the system
from volume and surface
sources, respectively; accordingly, the secondary photons are pnotons generated in the
system from radiation-medium interaction (scattering, absorption). In other words,
solution of the ornginal problem is represented as a combination of solutions of two
individual  problems set up for the primary photons and secondary photons,
respectively.

Note that in the package /1/ the numerical solution of the equations
corresponding to the pnmary and secondary photons uses essentially different
angular grids differing both in selection of the quadrature formulas and in the number
of the photon flight directions used. As the computation experience shows, such an
approach  secures the possibility to conduct detailed computations with
simultaneous considerable increase in the computation accuracy.

The presentation provides a more detailed discussion of this approach
Examples of numerical computations are given.

2. The weight factors in the additional relations used at the difference
approximation of the equations of transport by angular vanables are selected
taking into consideration the curvilinear geometry.

Two methods. are therewith implemented in the program. one of which is
based on the known paper by Reed W .H. and Lathrop K.D. /5/. As the preseﬁxarion
demonstrates, using such methods also considerably increases accuracy of the
numerical solution obtained.

For the 2D multi-group diffusion approximation the foliowing equation

system 1s solved:

-

law, | C L
Fdsz,gradu;z,,u‘ =Z‘um-—§_auz$u1, i=1il
1l

C‘E il 1
pg =§ z.uA w‘—szumAw‘—ZZau 1,4, Ao,

=1 1=l =l
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u =u (r.z,w,t),
=E£,(p.T,).

=, (7,.0,)
=D (p,7,.@,),
=¥.(p.1,,0,).
=2.(p.1,.0,)
w = Xat s

‘e

Energv transfer bv electrons and ions

-~

p e dnD, gradT, +6,(T,~T,)

E,=E (pT),
D,=D,(p,T,),
T, =T,(r,z.0).

pZE: ~divD, gradT, +6,(T, -T,)
ol .

E =E(p,T),
D, =D,(p.T),
T =T(r,20).

The spatial and time approximation of the diffusion type equations is
constructed on the regular difference grnid composed of arbitrary quadrangles The
possibility of using both direct methods and iterative metinod§ of incomplete Cholesky
decomposition typé is provided for solving the obtained algebraic equation system.
To achieve an economical computation, special acceleration methods are used

Energy transfer by heavy ions is computed in the one-panticle approximation
taking into account the Coulomb deceleration on free and bound medium electrons and

ions.
The model for accounting laser radiation absorption is implemented in

the geometric optics approximation.

To compute spectral optical properties of non-equilibnum. non-stationary,

multi-component, multi-charge plasma, the ionization kinetics in the mean ion

approximation was used.




The gas-dvnamical motion of multi-component non-equilibnum medium. as
it was already mentioned. is computed with the program /2/ using the Lagrangiar-
Eulenan method.

The program package under discussion uses non-orthogonal spatial grids
which enables to take into account features of geometnes computed within a
required degree of detail.

The method of computing over subregions (computational domains) is
therewith used. The domain inter-influence 1s taken into  account through
communication of internal boundary conditions. In so doing the possibility to  simulate
most complex processes In  various approximations is implemented. For
example, the spectral radiation transport processes can be computed in some regions
in the multi-group kinetic approximation, in other regions in the multi-group diffusion
approximation.

This capability is based on the conservative combined scheme of computation
using special internal boundary conditions.

The above program package finds a wide application in studies of various
thermonuclear fusion structures.

The presentation exemplifies some of such computations.
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PARALLELIZATION METHODS FOR NUMERICAL
SOLUTION OF 3D GROUP
NON-STATIONARY EQUATION OF NEUTRON DIFFUSION
FOR NUCLEAR POWER PLANT SAFETY CALCULATIONS

Aleksevev A V., Zvenigorodskaya O.A., Shagaliev R M.

Russian Federal Nuclear Center- VNIIEF,
37 Mir ave., Sarov, Nizhni Novgorod region, 607190

Presently numerical simulation is one of the principal methods allowing to
predict behavior of nuclear power plants (NPP) at various (design and accidental)
modes of operation. This method capabilities have always been and seemingly will be
limited with computer powers. The advent of massively parallel computers has
created new capabilities for development of software tools (ST) for NPP simulation.

As was aiready reported at the previous fourth Mathematical Conference,
VNIIEF has developed the 3D program package TENAR designed for numerical
stmulation of NPP behavior at various modes of operation, beginning with design
and ending with serious accidents (but where the NPP equipment structure is
preserved).

The package includes programs allowing to take into account the following
processes: neutron transport and interaction with medium, delaved neutron and
isotope bumup kinetics, coolant flow in the circulation circuit and NPP vessel,
heat transfer in solid elements, fuel element thermomechanics. The package can be
augmented with. new components allowing to take into account needed processes

For numencal solution of 3D stationary and non-stationary problems of
neutron transport in the group diffusion approximation this package uses the
program KORAT 3D /1/. As the numerical solution of the neutron diffusion
problem in the reactor computations is characterized with considerable amounts of

computer operations, of particular urgency is parallelizing this problem on multi-

processor computers, primarily, on high-performance distributed-memory systems.




It should be noted that the issues of development of effective diffusion
probiem paralleiization methods are currentiy attached quite a significant attention tc
Several approaches are therewith used. One of most common is that based on the
geometry decomposition principle on which we will dwell in more detail somewhat
further. The idea of some 3D diffusion equation parallelization techniques (see,
e.g, /2-4/) is that on multi-processor computers the conventional method for
numerical solution of mesh diffusion equations is used entirely in the whole domain of
solution. In so doing special parallelizable algorithms for solution of mesh
diffusion equation systems on multi-processor computers are used. Thus, for
example, while on one-processor computer the known iterative method of
conjugate gradients with incomplete Cholesky type expansion was used for
numerical solution of gnid diffusion equations, such an approach employs the
paralielized version of the method of conjugate gradients /2/.

Mention one more approach frequently used on a computer with a small
number of processors: this is the method of paralielization by energy groups.

This presentation discusses the iterative method of 3D diffusion problem
parallelization based in the program KORAT 3D. It is based of the geometry
decomposition principle.

Asit is known, the geometry decomposition method idea is that the domain
of solution of the original problem is split into a number of subdomains (hereinafter
we will refer to them as computational domains) and the diffusion equation 1is
solved separately by the computational domains. This permits splitting both into

geometrically non-intersecting and geometrically intersecting sets of  the

computational domains. Then the inter-influence of the solutions found in different

computational domains is taken into account through internal boundary
conditions which are communicated at special iterations. We will call these
iterations as iterations by internal boundary conditions.

A number of implementation versions of the geometry decomposition method
have been recently considered for numerical solution of the multi-dimensional
diffusion equation. They differ both in the technique of splitting into the
computational domains and the teéhnique of setting the internal boundary

conditions. As  our experience and analytical estimations of the geometry




decomposition method efficiency show, in the general case both these factors have
quite a2 considerable bearing on efficiency of numerical soiution with thus metnod

Various approaches are currently used to set the internal boundary
conditions. For example, the well-known RM (Response Matrnx) method for paraiiei
machines /5,6/ is based on transfer of one-side flows to neighboning computational
domains. Some other papers /7/ use Dirichiet-Dirichiet or Dinchlet-Neumann type
conditions for the boundary conditions.

An important feature of the parallelization method implemented in the program
KORAT 3D is using a special type of internal boundary conditions /8/. These
internal boundary conditions are a combination of the complete flow function and
desired function, with the coefficient in this combination being computed
basing on a multi-dimensional analog of the limiting sweep factor 79/, This
serting of internal boundary conditions is aimed at a higher efficiency of the
method iterative in the internal boundary conditions.

The presentation provides a more detailed discussion of the iterative
parallelization algorithm /10/ implemented in the program KORAT 3D. A simplest
1D problem is used as an example to make a comparative analytical estimation of
the convergence rate of the iterative method implemented in the program KORAT
3D and some other iterative methods in internal boundary conditions The
proposed parallelization algorithm is numerically studied using an essentially 3D non-

stationary two-group problem for the RBMK type reactor facility.
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Propagation of an ultrashort, intense laser pulse in a

relativistic plasma

Burke Ritchie and Christopher D. Decker

University of California
Lawrence Livermore Narional Laboratory
Livermore, California 94550

A Maxwell-relativistic fluid model is developed for the
propagation of an ultrashort, intense laser pulse through an
underdense plasma. The separability of plasma and optical
frequencies (cop and o respectively) for small mp/m is not

assumed; thus the validity of multipie-scales theory (MST)
can be tested. The theory is valid when (op/co is of order

unity or for cases in which mplm << 1 but strongly

relativistic motion causes higher-order plasma harmonics
to be generated which overlap the region of the first-order
laser harmonic, such that MST would not expected to be
valid although its principal validity criterion u)p/o) << 1

holds.

{t is the purpose of this paper to present a relativistic fluid
model in which the approximate separation of optical and plasma
frequencies is not made. The fluid model results are then
benchmarked against PIC results as a test of our numerical methods.

The equations of the model are Maxwell's equations for the
vector and scalar potentials in the Lorentz gauge, the continuity
equation, and the fluid momentum eguations,
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in Egs. (1) n is the dimensionless normalized electron density and n

the dimensioniess normalized ion density, which is taken to be
constant during the passage of a laser with a pulse length in the
femto-second regime.

We difference Egs. (1a) and (1b) in time but not in space, where
the spatial problem is defined as a 2D slab with propagation along z.
The use of Fast-Fourier Transform (FFT) methods to treat spatial
derivatives has been described previously [1]; here we merely
outline the techniques used for the equations of the Maxwell-fluid
model. All terms containing differential operators are moved to the
right side, which is assumed known from the previous time step.
Then we Fourier transform the equations in space and advance the
resulting algebraic equations one time step using the three-point
central-difference algorithm for the second-order time derivative.
Then we find the inverse Fourier transform. This constitutes one
cycle in the temporal advance. We treat Eq. (1d) similarly, a
procedure which has already been implemented by others [2] for the
fluid momentum.

in this way spatial differencing is entirely avoided. This
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procedure has the effect that spatial derivatives, which in reai-
space, finite-difference methods are distributed locally over a
selected number of grid zones and can be the source of numerical
instabilities, are smoothed globally over all space, thereby leading
to robustly stable results. We use the standard FFT routine of
Cooley and Tukey [3], which is a very fast algorithm on a vector
machine. This procedure, as applied to Maxwell's eguations, has been
thouroughly benchmarked in other applications [1].

A similar procedure applied to Eq. (1c), however, does not yield
numerically stable results. The following procedures, however, do
yield numerically stable results. Our algorithm to advance the
normalized electron density over an interval dt is,

dt =3 gad di =3

na:c"z—ngpvc-dIVp/m‘re‘Epvnr | @)
where the subscripts a, r designate the advanced, retarded function
with respect to the interval dt. This algorithm is a form of the
well-known split-operator FFT method [4], in which noncommuting
exponential factors of the propagator are arranged over a singie
three-step interval as shown in EqQ. (2). The outside factors, which
contain differential operators, are evaluated in transform space and
the middle factor is evaluated in real space. This procedure is
obviously limited to first-order accuracy in dt because (in contrast

to the conventional split-operator method of [4]) P/y depends on
space and thus higher-order terms in the expansion of the
exponential are are dropped as truncation errors. However this
procedure is observed to be conditionally numerically stable.

The laser wavelength is 1 um. The plasma density is 1020 cm-3
such that the ratio of the plasma to optical frequency, (op/m, is
0.296. In the calculations we use the scaled variables: time in units

of w1, space in units of k™1, fields in units of mc2/e, and
momentum in units of mc. The longitudinal and transverse widths of

the Gaussian pulse are 10 k™1 and 17.67 k-1 respectively, where the

FWHM is 28YIn2 for a Gaussian width 6. This corresponds to a pulse
length of about 8.75 fs and a pulse width of about 4.64 um. For
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maximum time of 220 w-1, transverse length of 125 k*1, and
longitudical length of 500 k-1 we used 8001, 256, and 1024 mesh

points respectively.
The PIC calculations were performed using the code WAVE [5],

which has been thoroughly benchmarked over the last two decades
[6]. We used 108 particies (sufficient to resclve the fifth-order
laser harmonic) and 512, 256 mesh points for longitudinal,

transverse lengths respectively equal to 204.8 k1. The temporal

interval is 0.2 o-1.
We present results for a laser pulse with a peak intensity of

1.12 x 1018 W cm=2 (Fig. 1) incident on a cold piasma whose

boundaries are sharply defined at -100 k1 and 100 k1
iongitudinally and at the grid boundaries transversely. The laser is
polararized in the transverse direction and causes the transverse
component of the fluid momentum to quiver as shown in Fig. 2. The
EM fields are calculated from the potentials [Eqs. 1a-1b] from the
relation,
£ i oA
o : _ (3)
In the wake of the laser a longitudinal EM field is generated (Figs.
3-4) which extends for many plasma wavelengths - a plasma
wavelength is 2=x m/mp in our scaled variables. The fluid and PIC

models in Figs. 3 and 4 respectively show reasonable mutual
agreement considering their theoretical differences. The poorest
agreement is observed near the laser puise and at the left-hand
boundary of the plasma. This may reflect the use of damping terms
in the fluid momentum equations to suppress motion outside of the
plasma boundaries.

Acknowledgements. This work was performed uder the auspices
of the U. S. Department of Energy by Lawrence Livermore National
Laboratory under Contract No. W-7405-ENG-48.
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Figure Captions

Figure 1. Three snapshots of laser intensity versus longitudinal

distance. The laser enters the region of the plasma at -100 k"1 and
is self-focused as it passes through the region.

Figure 2. Snapshots of fluid quiver momentum versus longitudinal
distance corresponding to the second and third snapshots from the
left of Figure 1. The periodicity is on the optical frequency scale.

Figure 3. Wake EM field versus longitudinal distance for the right-
hand pulse of Figure 1. The periodicity is on the plasma frequency
scale, with optical-scale modulation clearly visible near the front
of the pulse.

Figure 4. Wake EM field as given by the PIC model versus
longitudinal distance as a comparison with the fluid-model wake
field given in Figure 3.
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Source Description and Sampling Techniques in
PEREGRINE Monte Carlo Calculations of Dose

Distributions for Radiation Oncology

A. E. Schach von Wittenau. L. J. Cox. P. M. Bergstrom Jr.. W.P. Chandler.
C.L. Hartmann-Siantar. and S. M. Hornstein

Lawrence Livermore National Laboratory. Livermore. CA 94350

Abstract

We outime the technigues used within PEREGRINE. a 3D Monte Cario code calculation svstem. to model the pnoton outpu:
from medical accelerators. We discuss the methods used to reduce the phase-space data to a form that is accurately and efncentiy

samplec.

introduction

PEREGRINE is a 3D Monte Carlo code calculation system
designed specifically for radiation therapy planning. Unlike
current dose calculation methods. which approximate dose
distributions 1n the patient based on water phantom measure-
ments. PEREGRINE determines the dose in the patient by
simulating the actual treatment. particle interaction by particle
mnteraction.

Accurate Monte Carlo dose calculations reiv on a detailed
understanding of the radianon source. One of the operational
requirements for Monte Carlo treatment planning is that this
detailed undersianding be expressed as a set of distributions
which mav be rapidly and efficiently sampled. but which still
accurateiv represent the underlving phase-space used to derive
those distributions.

The nature of the problem is perhaps best understood in the
context of Figure 1. A monoenergetic beam of electrons
«~2 mm diameter; strikes 2 thin (~1 mm) target made of a
high-Z marerial such as wngsten. The resuiting bremsstrahi-
ung photons are collimated by conical collimator ttypicaliy
tungsten).

The photon beam passes through a beam flattener (aiso
known as a flattening filter). which is usually made of Cu. Pb.
or steel. The beamn fiatiener. being thicker in the center. attenu-
ates the central portion of the bremsstrahiung photon distribu-
tion. This results in a flat energy fluence distnibution at the
patient plane. Although the energy fluence distribution is uni-
form. the energy distribution itself is not uniform. since the
photons landing at different points on the patient plane will
have gone through differing thicknesses of the beam flanener.
In addiuon. non-negiigible amounts of radiation will scatter
from the collimator and the beam flattener and arrive at the
pauent plane. This radiation field needs to be characterized by
several distributions of bremsstrahlung and scattered photons

Tius work was performed under the auspices of tie LS.
Depariment of Energy by the Lawrence Livermore National
Laboratory under contract number W-7403-ENG-45.

Target

Coliimator

Beam
flattener
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Tally plane

_— (X, Yy, u,v, welght’ E’ q. zlast)
""" (xs Y. 4, v, welght’ E’ Q. zlast)
— —(x,y,u,v,weight, E, q, Z,,5)

Figure 1 A stviized picture ot the head poruon of a medscal
accelerator Monoenergeuc eiectrons with energies of 4. 6. 8. 10. 15, or
IR MeV are incident on a thin +~1 mm). mgh-Z target such as wngsten The
bremsstrahiung radianon so produced 1s cothmated by a pnmary colhimaror.
aiso typicaliy made from twngsten The torwarg-peaked bremssirahiung fiu-
ence distnbunon 15 ‘flatened” by a conical prece ol metal. typically made
from copper This filter. being thicker 1n the center. anenuates the center por-
non of the beam. pnmariiv by anenuaung the iow energy poruon of the pho-
ton distnbuton. Photons escaping the bottom of the accelerator head are
talired for later anatvsis
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Figure 2. Backracking the photons to thetr pownt of origin shows which por-
uons of the acceieralor neaa contnbute 1o the ourput fluence

and may be turther shaped by beam shaping hardware such as
movable jaws and other devices. All" of these distributions
must be understood in order to deveiop a useful source model
for mput into PEREGRINE. In addition. the source model
denved from this understanding must satisfv the operational
needs of being easily and efficientiv sampled within the over-
ajl problem.

In this paper we present methods currently used within PER-
EGRINE to satisfy these requirements.

Methods and Materials

The stmulations were performed using the Monte Carlo
codes BEAM96 [1] and MCNP4B [2]. Machine drawings and
materials data for the medical accelerators discussed in this
paper were suppited by Varian. Inc [3]. Both BEAM and

2 ' f ‘ :
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-0.2 . ’ . ‘ i
-0.2 -0.1 0 0.1 0.2

Radial distance {cm)

Frgure 3. An expanded view of the region around the bremsstrahlung target
of the stviized accelerator head shown 1n Figure 2. The sharp edges of the inci-
dent etectron distribunion are ciearly visible. as ts the broader. iess intense dis-
tnibution of photons that scaner within she target.

MCXNP nave pnvsics “switches” which aliow tne plasing o7 10,
Vanous pavsical processes thal Occur Withun (0o douisialy”
head. In addiion. the BEAM code comes with (n2 caparus
10 reCord N2 "POSILION Of 1ast INIeracuon’ of d particiy, ds Wi

as the numpoer of the cell 1n which a given paruciz was cre-
ated’. Oniv those poTIIONS Of 1N treatment Neads iving apeme
the Jaws were sirnujated. since this portion 0! th2 acceierator
does not vary berween treatments. Modeling of the movabie
jaws and pauent-specific poruons of the acceierator will be
discussed eisewhere. A schematic of the modehing process 1»
shown in Figure !. The bremsstrahlung photons are tracked
through the accelerator head. Photons amiving at the bottom o7
the head are taliled. Their position (x,y . their direction cosines
tu.¥). as well as their particle type. energy. weight (1o accoun:
for the various physics-biasing schemes used). and position of
last mmteraction z,,,, are written to the phase-space fije. The 2
coordinate for each particle. being merely the tally-piane posi-
tion. and the direction cosine w, known from

S -

w = AJl-u-v
do not need to be written to the file. Approximateiy 5x10°
incident electrons are used in the sitmuiations. Given the van-
ance reduction schemes used (e.g.. forced collisions, parucie
splitting). the resuiting phase-space files contain information
for several tens of millions of photons ¢(of varving weights
and occupy ~1 GB of disk space each. To date we have simu-
lated eight accelerators made by Vanan. Inc. Work has started
on accelerators made by Stemens. Inc.

Analysis of Phase Space Files

The first step in the analysis is to *backtrack’ the photons to
their place of crearion. This is done using the equations

Xy = X+ g0~ :mll_v) Xus/w

¥s = ¥+l - Ztally VX v/w

A scatter plot of x, vs. g, for a stvlized accelerator
head i1s shown in Figure Z. This step In the phase-space analv-

6 MeV energy components

)
g : i :
o : ! \
2 10~ | FF |
* : A
® :
E q0-2.
'5 H
o :
L1073
5 <
i
w 10-4

-80 (¢]

Radius (cm)

Figure 4 The fluence at the patient plane compnises contributions trom the
target. the pnmary collimator. and the flattening filter. The target 15 the major
source of the energy reaching the pauent

1. We have since added rtus capability to MCNP. ajong with a number of other
diagnosucs which are not covered here
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Figure 5. The photon energv distributions vary strongiy with the prece of hard-
ware 10 which thev are created. Photons from the target have energies ranging
from the energy of the imuai electrons down 1o iow. but not guite zero. energy
Thus 1s consistent with the flattening filter's removal of the jower energy photon:
The energy distnbution trom the pnmary coliimator reflects both thus filtenng
process ton the low energy sides and the fact that the photons are Compton scai-
tered trough a non-neghgibie angie ithus afiecung the hagh energy sider Tne
pnoton distnibution irom the flariening fiiter refiects both the lack of low-energy
fiitening as well as the possibility for small angle scattenng (and consequentiv
httle energy loss)

S1s serves rwo purposes — the first being practical. the second
being conceptual. First. it is a useful check on the input deck.
since the locauons of the photon creations should correlate
with the physical structure of the accelerator head. Second. 1t
gives us a feel for how each portion of the hardware contrib-
utes 10 the output of the machine. For the example shown in
Figures 2 and 3. we see that photons originaung from the
target come from a well defined spot. Photons coming from
the primary collimator are fewer in number. and they tend to
come from the upper edge of the collimator. Thus. the inner
surtace of the primary collimator is not a uniform source of
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Figure © The photon energy distributions snown in Figure 5 change with
Increasing distance from the central axs of the acceterator. The energy distnou-
ttons ai a radius of 20 om are saown

photons. Rather. the pnimary collimator appears to be more of
a ‘ning’ source. The flatteming filter 1s also a source of photons.
Unlike the pnmary colhmator. however. the flanening filter is
much more unitormly “filled”.

We next analvze the fluence distmbutions at the paunent
plane. This is shown in Figure 4 10r an accelerator operaung at
6 MeV. We see that most of the energv comes directlv trom the
target. with contnibutions at the several percent level from the
flattening filter and the pnmarv colhmator

Energy Distribution

We show in Figure 3 the photon energv distributions from
the vanous components at the center of the pauent plane. The
photon energy distnibutions vary strongly with the ptece of
hardware in which thev are created. Photons from the target
have energies ranging trom the energy of the imuial incident
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Figure 7. Each subsource illumunates a different amount of the patient sur- Figure 8 The effecuve source distnbunons. looksng upwards trom the patient
face. Thus area is a funcuon both of the source "size’ as well as us distance tc plane towards the bremsstrahlung target The photons coming trom tne target
the jaws. The “target’ source 1s most sharply defined. The other sources iliumi- appear to come from a 2 mm diameter disk: those photons coming trom the pri-
nate farger areas of the patient. The dashed lines in the lower rwo paneis denote many collimator appear 10 come from a nng-like source (compare with
a suntabie area for Monte Carlo samphing Figure 27, and those photons comung trom the flattemng filter appear 10 come

trom a proad. aimost Gaussian-like source. Note the difterent diameters ot the
vanous sources




elecirons gown 1o iow. bui not guite zere. enardy. This 15 con-
sistent with the flalteming niter’s removai O th2 ower energ:
pnotons. Tre energy distnution 1rom the nnmany colitmator
refiacis potn this filtering process (on e 1ow energy sider and
the fact that the photons are Compton scattered through a non-
negiigibie angie 1thus selUng an upper pbound oOn the high
energy side:. The photon distribution [rom tne flattening niter
refiects both the iack of low-energy filtening ¢since this 1s the
last piece of hardware transited by the pnotons! as weli as the
possibibity for smali-angie scattering tand consequently little
energyv loss) of the high energy photons coming from the tar-

gat.

7ar,
28T

The energy distnibutions shown in Figure 3 change as we
move 1o larger distances from the cenrral axis of the beam.
This 1s shown 1n Figure 6. We nind that the distributions show
an increase in the proporton of low energy there. ~1 MeW
photons with increasing distance from the centrai axis. which
correlates with the decrease in the thickness of the flattening
filter traversed by these photons.

Energy Fiuence at Patient

The fiuence patterns at the pauent from each of the sub-
sources for a 10 cm x [0 cm field (that is. where the jaws in
Figure | have been moved so that the photons from the target
iltuminate a 10 cm x 10 cm square) are shown in Figure 7. We
see that. as expected. the target photons iliuminate the desired
arez. Photons from the pnimary collimator iliuminate a larger
area of the pauent. This 15 expected. since the “source’ of these
parucular photons 1s both closer to the jaws and larger
(Figure 2;. This trend becomes even more pronounced for the
photons rrom the flattemng filter. Indeed. these photons illumi-
nate a shghtlyv rectanguiar area. a result of the different aspect
ratio of the x- and y-jaw pairs. Anaiysis indicates that. at this
field size. 93% of the photon energy reaching the patent
comes from the target. 2% from the pnmary colitmator. and
5% from the fiattening filter.

While the area of illumination at a given field size is differ-
ent for each subsource. 1t 15 true. on the other hand. that each
subsource will tlluminate a specific area of the patent for a
specific jaw setung. The areas of illumination shown in
Figure 7 can be studied for other jaw setungs and the resuits
tabulated for later use.

Photon Origin Distribution

The subsources. in addition to illuminating different size
areas of the patient. also have markedlv difierent source distn-
butions. Figure § shows the radial distribution of the photon
energy for each subsource when the photons are backtracked
to planes at positions corresponding to the iocations shown mn
Figure 2. The “target’ photons source 1s a flat disk. the "pri-
mary collimator’ photons come from a ning-like source. and
the “fiattening filter’ photons come from a broad. almost Gaus-
sian source. While these distributions are quite different. each
is well described by a radial distribution and an anguiar distri-
bution.
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Source Algorithm

We now have enough MIOTNauon W gevelop & Souree aige-
ntnm for use i PEREGRINE The 'source probier
described in the Introducuon. was (0 bz able (o gensrale pPne-
1ONs In & mannar that was both accurate and efficrent. Let us
consider the probiem I0r 3 (redtment CONSISHNG Of ONT hivid
size for one machine: the generalization 1o muitple neld sizes
is straightrorward.

For a given feld size. we know what proportion of the
energy reaching the patent comes from each supsource
(Figures 4 and 7.

Step 11 Decide which subsource will be sampted.

For this subsource and neid size. determine the x
and y iimits of illuminauon (Figure 7). Generatz
random. uniformlyv distnbuted (x.,y) coordinate

within this area.

Step 2:

Step 3:  Given this (x,y) pair. calculate r. Adjust the weight
of the particie to account tor the slowiv-varving
fluence (Figure 4) of this subsource. Sample the
panticle’s energy from the energy distribution for

this subsource. at this r (Figures 5 and 6).

Given the subsource being sampled. sample an
initial position for the photon by choosing a start-
ing radius and angle trom the appropniate distribu-
tion (Figure 8).

Step +:

At tius point. we have the parucle’s energy and weight
(Steps 2 and 3). as well as two points defiming its trajectory
(Steps 3 and 4). The trajectorv-denining points denne the parti-
cle’s direction cosines. and we have all the required phase-
space information needed to stant tracking this particie 1n the
pauent. Sampling from the various distributions 1s performed
using the alias sampling method [4]. “Step 2" above keeps the
efficiency of the overall algorithm high. since we tend to pick
oniy those photons that will hit the pauent.

Conclusion

We have given an overview of the approaches used within
the PEREGRINE project 1o model medical accelerators. We
have described the vanations 1n the energv and angular distn-
butions of the radiation produced 1n or scauered by vanous
portions of the accelerator. We have outhined our procedures
for sampling these distributions to yield an algonthm that 1
both efficient and rapid.
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The technique for solving 3D hydrodynamics problems
on irregular Lagrangian grids
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Introduction
The necessity in 2 mathematical technique development allowing to compute 2

material motion in 3D space is related to the fact that in the majonty of practcaliy
sionificant situations the phenomena geomerry is three-dimensional.

)} In practice, there are a great number of problems when domains of solutions
originaliy have a complex structure and it is very difficult to construct a regular grid.
And construction of a regular grid with a preset property even within domains of
simple structure may be practically impossible. The use of an 1rregular grid will
allow to avoid these difficulties.

In problems with strong deformations closely located gas particies have a wend
to become widely separated from each other. In these cases flow simulation on regular
Lagrangian grids appears to be impossible. In mathematical models operaung in
Eulerian coordinates which do not use metric closeness the determination of various
material boundaries is a quite difficult task though in many cases it becomes
significant.

The proposed technique uses Lagrangian representation of gas dynamics
equations and the difference computational grid connected to a material and moving
along with 1t.

The space filling up by figures as computational grid cells without folds and
gaps is performed in irregular wav with the use of Dinchlei-Voronoy convex
polvhedrons at the initial time of integration.

The Lagrangian technique is an extremely powerful technique for solving
hvdrodynamics problems. But its disadvantage is that grid distortion takes place
during the process of computation of flows with strong material deformations and
this. in its turn, leads to a time step value decrease and in some cases to the
impossibility of further computations.

To eliminate the Lagrangian grid computational distortions during the
numerical experiment, the wavs of preserving three-edged angles to be convex and
local grid reconstruction by cumting some cells or pasting together two neighboring
cells are used.

The interest in unstructured and irregular grids may be also explained by the
fact that they may be much easier reconstructed in different ways and, additionally.
allow to localize grid areas which are to be reconstructed more simply.

Under local reconstruction all integral characteristics of the problem remain
and this fact positively affects the computation accuracy.

Topological grid structure is determined by connections of its nodes. Each
node of a triangular grid has strictly four neighbors. This grid feature is the most
important for the development of the local grid reconstruction technique.

Assume that the volume of cells surrounding cells being reconstructed is not
changed during operations of cell cutting and pasting together. This condition is useful
both for recomputation of hvdrodvnamic grid values and satisfaction of the
requirement of convexity of all cells after the grid reconstruction completion.
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Cells cutting and pasting together

Whiie curting a cell J. 2 plane which cuts a cell in two new ones shall te
specified. After points of this plane intersection with a cell edges have been found anc
new connections berween celis and nodes have been cetermined. we obtain two new
cells Jyand J» (see Fig.1).

Fig.1. Example of cutting a polyhedral cell by a plane.

Following the idea of preservation of cell volumes while executing operations
of the local grid reconstruction we need to relocate cell’s nodes being connected to
nodes of an edge occurring as a result of cell cutting , so that we could restore cell
volumes. _

The following dimensionless values are selected to estimate the grid status:

R, is a ratio between a tvpical cell size and a length of its maximal diagonal:

R, is a ratio between a typical cell size and an average value of this parameter
over the whole domain;

R; is a ratio between a cell volume and an average volume value of cells
surrounding it.;

R. is a number of this cell edges.

A typical cell size may be determined by the formula:

% . . . . :
D= /— | where Vis a cell volume. d, 1s @ maximal diagonal length. As experience

Vd,
showed. such approach to a typical cell size computation reflects in the best way
specific features of polyhedral cells.

A certain cell cutting is performed depending on values of esumated R, join
parameters.

Each cell cutting is performed completely by the plane normal to linear section
which connects centers of maximally distant from each other edges and dividing this
section in two.

The correct choice of a neighbor is a significant enough factor for combining a
cell with one of its neighbors. The choice of a neighbor was performed according to
the following criteria:

- a cell volume should be minimal:

- surface area of an edge separating cells being pasted should be maximal:

- maximal diagonal of a cell obtained as a result of pasting should be minimal.
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B= surs 10 remove celis being terrahedrons.
Grid correcrion using elastic impact.

At the initial time of integration a grid consists of convex poivhadrons cnis.
s requirsment may be easiiv implemented and is smctly performed in grid
structure at the initial time. Each time we obtain a new set of polvhedron’s veriices.
verification of the requirement that a value of any three-edged angle is less thar 2= 1
performed. This means that volume of the pyramid in which vertex the three-edge
angle under consideration is situated and the base of which is a piane passing through
nodes surrounding this angle and being nearest neighboring nodes over edges 1
positive value.

As a result of motion of all polyhedron’s vertices at the next (n+1) time step of
integration the volume valus may change its sign. Tnis means that thers is a ums
point t* , when this volume value equals zero, V(t*) = 0. This 1s possible, when four
grid nodes belonging to one three-edged angle lie in the same plane.

To determine this time point, wTite the expression of a triangular pyramid
volume in the form of cubic polynomial by introducing an integration time continuity
parameter. Cubic equation within the integration time range has an odd number of
roots: either one or three and only one positive.

To preserve a three-edged angle convexity, introduce an elastic impact on a
weightless rotating plane.

Impact 1s a2 phenomenon of finite change of solid velocities within a very shorn
time range. Therewith, if impulsive forces are potential, then this impact is called
quite elastic one. The set of masses grouped in grid nodes we consider solids of finite
mass.

Use conservation laws for a closed system of points:

e momentum conservation law;

* kinetic energy conservation law;

e rotational moment conservation law.

Note that a closed system is a system of bodies when no one of them is affected by
external forces.

The given system of equations includes seven equations with twelve
unknowns. For unique determination of new velocity values subordinate to these
conservation laws, add the condition of elastic impact on a rigid weightless wall. In
this case conservation of velocity tangent components on this wall is performed and
modification of only normal components of velocities in relation to this wall is
considered.

Using some not difficult transformations we obtain this system solution.

From the analysis of formulas describing the system solution one may see that
the use of elastic impact resulted in the fact that a volume value of a three-edged
prism has changed its sing for an opposite after the impact of all its vertices on the
plane where they were located at this moment. l.e. in this case the corresponding
three-edged angle will be convex.

Using the procedure (similar to the procedure for 2D case) of sequential look
through all vertices of all polyhedrons and composing a list of numbers of those three-
edged angles which are to be corrected sequentially using elastic impact, we’ll obtain
a set of convex polyhedrons by the end of one time step integration.

M
=
» al & T 2%

0
Yy
[4V]
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In the nex: 1ask the material mouor was computed using 3D lLagrangian
hvdrodynamics program. Cubic region was filled up by the ideal gas and resmniciad ot
rigid walls. A conical subregion was seiectecd inside tus region with the cons axis
being parallel 10 Oz axis. of opening angie egaul to =12 and with a vertex 1n the cuce
side laving in Oxy plane. In the comical subregion filied up with the same gas the

rotational flow was given at the initial ime being defined by velocities in every point
according to the following formulas:

Ci=y-y«.
U, =xi-x.
C,=0

where (X. yi. 0) are coordinates of the cone vertex.

During the process of involving a unperturbec part of the region in this motion
strong material deformation arose near the conical surface that caused the
computational grid distortion.

The computation of the given task was performed with local grid
reconstructions.

Projections of the task deformed region are given beiow.

Projection of the task deformad region.
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A THREE DIMENSIONAL FINITE ELEMENT FORMULATION
FOR THERMOVISCOELASTIC ORTHOTROPIC MEDIA

Marvin A. Zocher

Los Alamos National Laboratory
XNH. MS-F664
Los Alamos. NM 87545

ABSTRACT

A numerical algorithm for the efficient solution of the uncoupled quasistatic initial/boundary
value problem involving orthotropic linear viscoelastic media undergoing thermal and/or
mechnanical deformation is briefly outlined.

Introduction: This discussion is concerned with the development of a numerical aigo-
rithm for the solution of the uncoupled quasistatic initial/boundary value problem involving
orthotropic linear viscoelastic media undergoing thermal and/or mechaunical deformation.
The algorithm has been incorporated into a three dimensional FE program written by the
author. This code is a general purpose tool capable of predicting the response of a mathe-
matical domain to complex loading/thermal histories. Phenomena such as creep. relaxation.
and creep-and-recovery can all be predicted using this program. This discussion is based in
large part on the work previously presented in Zocher. Groves. and Allen.! Related work may
be found in Lin and Hwang.*?® Lin and Yi.* Hilton and Yi.° Yi.® and Kennedy and Wang."

In the foliowing. a brief statement of the problem of interest is provided. This 1s followed
by a discussion of the conversion through incrementalization of the thermoviscoelastic con-
stitutive equations into a form suitable for implementation in a finite element formulation.
Next the finite element formulation which is based on these incrementalized constitutive
equations is presented.

Problem statement: The problem to be solved. or more precisely. the class of problems for
which a method of solution is presented. may be referred to as the linear three-dimensional
quasistatic orthotropic uncoupled thermoviscoelastic initial/boundary value problem. The
governing field equations are equilibrium.

Gjij+pfi=0 S
strain-displacement.
€ij = é (v +ujs) (2)
and constitution.
¢ 5 B ; ._ .
0ij(Tg. &) = / Cijut (2§ =€) _6_1:1_5:73:_5_} d¢' — / Bij (24, £ = &) @E—ﬁ,;l g (3)
S <
0 s}

with constraints imposed on the solution by the following boundary and initial conditions:

U = Uy on 0Q,

T = ojin; = 1, on 0Q, )
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Oz .t =0
Ut Tty =0 for T <0 i3
Chirp. =0

In the above. f; is the body force. T, is the surface traction. n, is the unit outer normal on
0Q (the boundary of the domain Q). and p is the mass density. The terms C,jx; and 5,; rep-
resent the fourth order tensor of orthotropic relaxation moduli relating stress to mechanical
strain. and the second order tensor of relaxation moduli reiating stress to thermal strain.
respectively. The svmbol © is used to represent the difference between the current tempera-
ture and a stress-free reference temperature. The reader will recognize from the form of the
constitutive relationship that we have assumed the material to be possibly nonhomogeneous.
nonaging. orthotropic. and thermorheologically simple. The symbol £ in (3) is the reduced
time of the time-temperature superposition principle.

Incrementalization of the Constitutive Equations: To accomplish the aforementioned
incrementalization. we begin by subdividing the time line (reduced time) into discrete inter-
vals and assume that the state of stress is known at the begining of a time step. We then
seek the state of stress at the end of a time step. or equivalently Ao,.. In accomplishing
the incrementalization. four approximations and one assumption are made. The nature each
of the approximations is the same. that the variation in a given quantity (such as strain or
temperature) across a time step is linear. The assumption is that the relaxation moduli can
be represented in the form of Wiechert thermomechanical analogs (Dirichlet-Prony series).
The result is that the constitutive equation, given in (3), is converted into an incremental
form given by
Aoy = C;jH'Aekz — .szlAe + AU.'J'R (6)

where C'ijkzl, 5’,']". Aeg;. and A© are given by:

M at
' 1 ~ e ..
C:’jkl = C:']'I:IOC + Z Nijkl, {1 —€ I%m (nosumon 2, 7. k. 1)
Af m=1
/ 1 & _p_.gh
Ji; EBU@*';ZTIQ’F (1—6 'JP> (no sumon 1. 7)
S p=i
Acy = ReAS A6 = RoAS
and Aa,']'R is given by:
3 3 Fi; af
R ~ . ) L
Aoy = - Aijkl + Z (1 e fip > BUr (&) {nosum on 1, })
k=1 =1 p=1
where
Miju At
Aijkl = Z (1 — ¢ “ikim ) Sijklm (&n) (no sum on 1z, 7. k. [)
m=]

—-a —_af
Sz’jklm (Tk.€n) = € Fiikim Sijklm (Te En — AL) + Th’jklch (1 — g Fijkim > (nosumon 2, J,k,1)
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This incremental form of the constitutive equations is well suited to implementation in &
finite element program.

Finite Element Formulation: Using the incrementalization given in (6 in the method of
weighted residuals. one arrives in a straightforward manner to a svstem of algebralc equations

of the form: e i e N . N
Fliaw = [fii=[fi- s = fs =1

where ;
[k =/ (BT [C*] BT 4V
e o ot 12
A S S
%_.ff_i=/ el
fie
€ e"T Fm+17
)= [ T as
dnzh
{sj_ﬁBﬂTW L dl (&
fie
e / (B (Ac T dV
e
= [T
Qe
[“11s referred to as the element stiffness matrix. [f]. [f7]. [f5]. [ff]. and [f{]. are contributions

to the element load vector due to body forces. suriace cractlons stresses at the start of
the time step. change of stresses during the time step. and thermal effects. respectivelv.
Summation of the contributions from all elements results in a simple set of algebraic equations

of the form:
[N {au} = {F} (9)

Conclusions A three-dimensional finite element formulation has been developed and in-
corporated into a three-dimensional finite element code. This development provides the
analvst with a versatile tool with which he can easilv predict the response of an orthotropic
body (isotropic and transversely-isotropic bodies are considered subsets) to a wide range of
loading/temperature histories. Demonstrative example problem solutions can be found in
reference 1.
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3D PARALLEL PROGRAM FOR NUMERICAL SOLUTION
OF GAS DYNAMICS PROBLEMS WITH HEAT CONDUCTION
ON DISTRIBUTED-MEMORY COMPUTERS.
RESULTS OF COMPUTATIONS ON MP-3, MEIKO CS-2
' AND SP2 COMPUTERS.

Sofronov 1.D.. Voronin B.L.. Butnev O.I.. Byvkov AN,
Yerofeev A.M.. Skrypaik S.1 ’
(VNIEF)
D.Nieisen, Jr.. M.Uyvemura, R.Evans, S.Brandon.
M.Nemanic. C.Okuda
(LLNL)

The goal of this effort is devejopment of a2 3D parallel program for numerical solution of gas
dyvnamics problems with heat conduction on disaiputed-memory computer systems satisfying
the condition of the numerical result independency on the number of processors invoived.
The program was developed on the eight-processor computer system MP-3 developed by
VNIEF and was adapted by joint efforts of VNIIEF and Lawrence Livermore National
Laboratory (LLNL) emplovees to the massively parallel computer Meiko CS-2 located in
LLNL. A large senies of numerical experiments was conducted on the Meiko CS-2 computer
with a various number of processors. up to 236. and parallelization efficiency estimations

despending on the number of the processors and other parameters were made.

INTRODUCTION

VNIEF Mathematical Division has gained wide experience of parallel computa-

tions. Parallel computations of 2D problems were conducted on multiple computer

complexes BESM-4, BESM-6 and Elbrus-1 /1.2/. Later on parallel application programs

were developed on the multiprocessor computer Elbrus-2, i.e. shared main memory

computer /7/. Recently, with the advent of the eight-processor distributed-memory

computer MP-3 /8/ the problem of parallel program development for such computers has
become urgent.

The problem of program development for massively paralle! distributed-memory

computers requires development of efficient parallelization algorithms and methods taking
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into consideration the specificity of these computers. Some of the numerical schemes
which have showed themselves to advantage appear to be well paralielizable. otners con-
1ain a non-paralleiizabie part.

So in some cases achievement of a high parallelization performance is possibis
oniy when the numerical methods used for the problem solution have been considerabiy

developed.

2. SOLUTION METHOD
Recentiv we have pursued the development of the parallel program based on the
Eulerian-Lagrangian technique for numerical solution of 3D non-stationary gas dynamics
problems taking into account heat conduction /3,4/.
The heat conducting medium motion is described with the differential equation
svstem of gas dynamics 1aking into account heat conduction either in the single- or mult-

component formulation.

Implicit approximations combined with the direction-splitting method /5/ lead
both in the case of the heat conduction equation and in the case of gas dynamics equa-
tions to the set of finite-difference equations of the form:

AT =B-T",
1— desired grid function, A — three-diagonal matrix.

The thres-diagonal matrix equation system is solved with the sweep method /6.

3. PARALLELIZATION METHODS
The development of techniques and programs for computing complex 2D and then
3D problems on available integrated computers has been always paid much artention to
at VNIIEF Mathematical Division.
At each of these computer develdpmem phases the question of adequate problem
representation in a form accessible for parallel processing was sclved in its own way.
The inter-machine computer systems were used for large-block paralielization
through problem geometry segmentation into fragments each of which was computed in
the parallel mode on its own computer, while the fragment 'mterac_tion was through the

boundary condition communication between computers involved in the computer system.
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Or. th2 muitiple computer compiex Elbrus-Z the paralieiization algoritims poll Wil

statis and dvnamic balancing of procassor load wers impiemented. In both the cases e
timestep computation scheme was a sequential computation of all the thres spatial cires-
tions. The computation of each spatial direction was a set of "one-dimensiona!” probiems.
AT the static balancing the set of the "one-dimensional” probiems was split over processors
(the problem decomposition by parallelepipeds) and each computer computed a fixed set
of computational grid columns.

At the dvnamic balancing each processor computed a “free” uncomputed coiumn at
a given uma.

Weuse the problem geometry decomposition to arrange the massively parallel
computations on distributed-memory computer systems.

We have developed two basically different approaches to the massively parallel
computation arrangement.The first approach uses the timestep reconstructable decomposi-
tion of the 3D data matrix and is an extention of the parallelization algorithms for
multi-processor shared main memory computer systems. The decomposition change con-
sists in double or triple transposition of the 3D data matrix distributed over multi-
processor computer nodes. The second approach is based on using the 3D data matrix
non-reconstructable within the timestep.

At the first approach the commutation system load per one processor increases with
the increasing number of processors, at the second this load is invariable, but the initial
computational algorithms contain a non-parallelizable part. Achievement of a high paral-
leiization efficiency (close to 100% up to 100 processors) required combination of the
computation (arithmetic operation) with communications (communication operation) at
the first arrangement approach and a considerable sweep algorithm modification at the
second.

The sweep formulas are recurrent. i.e. are functions of running computation in the
forward and backward directions.

We considered three methods of sweep parallelization.

The first method is using the "counter-sweep” formulas.

Impiementation of this method provides a speedup of 2 at the sweep formula com-

putation which means complete parallelization at the number of processors in the "line"
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equal 10 2: when the processors in the "line” number more than 2. we will have iosses in
the paraliziizauon efficiency as earlier.

Th2 s2cond method is the sweep pipelining.

Taking into account that the computation of each spatial direction should impiemen:
the swesp formulas on a line set, one can begin the forward run on the following lines
when waiting for the backward sweep run for a given line. Implementation of this method
brought out a high parallelization efficiency at the number of processors in the "line” on
the order of several hundreds.

The third method is the sweep parallelization proposed in the paper by Yanenko e:
al. 10.

This method implementation also showed a high parallelization efficiency.

The developed algorithms were used to make a parallel program for numerical solu-
tion of 3D gas dynamics problems with heat conduction for massively parallel computers.
The program was developed on the eight-processor computer system MP-3 using the
MPI Standard for the interprocessor communication arrangement.

The block-matrix type computational grids can be emploved to solve problems
with using the large-block parallelization algorithms between blocks and each biock being
distributed over processors using one of three decomposition types: lines, columns, cubes.

The first decomposition type corresponds to splitting the problem geometry by one
spatial direction, the second to that by two and the third to that by three spatial directions.
The program 1s arranged so, that each problem can be computed on an arbitrary

number of computer system processors. The computed data is independent on the number

of the procassors involved in the problem solution.

4. SETTING UP TEST PROBLEM COMPUTATIONS AND
THEIR RESULTS
The test demonstration problems of three-axes gas ellipsoid expansion into vac-
uum and problem of heated homogeneous cube cooling /3,4/ were taken for numerical

experiments.
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i all the compurations the numerical resuit erTor Was no more wan :
the exallvaluss.

A compuration series was conducted for numerical study of the paralielization e
ciency for various problem geometry decomposition methods. for two modes of processor
joading and depending on the ratio of the arithmetic and communication operations.

ome results demonstrating the parallefization efficiency are presented in the figures.

w

{Se=. Applization).

5. CONCLUSIONS
Anaivzing the results obtained, we can infer that we managed to develop efficient
paralielization methods and 3D parallel program allowing to bring out a very high sca:-
abiliry {close to the theoretic) on massively parallel distributed memory computer systems
involving ~100-300 processors.
Apparently. further work is needed on development both of parallelization
1ethods and of the parallel program itself in order to retain this scalability level on com-
puter svstems involving thousands of processors.

To conclude with, two important circumstances should be mentioned relating to
development of programs for massively parallel computers. The first is the dara
input output problems. We took and implemented the principle of distributed formation of
the initia]l data and output data files of a problem. This allowed to avoid bottienecks
relating to input output, especially at the parallel program debugging and testing phase
where it 1s necessary to make a great number of relatively short computer runs. The second
is that parallel program debugging and quality study requires special toolkit: paraliel

program debuggers and profilers.
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Comparing of MP3 with Meiko
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Time Dependent View Factor Methods

Ronald C. Kirkpatrick

Los Alamos National Laboratory

Abstract : View factors have been used for treating radiation transport between
opaque surfaces bounding a transparent medium for several decades. However. in
recent vears they have been applied to problems invoiving intense bursts of
radiation in enclosed volumes such as in the laser fusion hohlraums In these
problems, several aspects require treatment of ime dependence.

View Factors

View factors are commonly used to compute the transport of radiation through a vacuum

between sets of opaque surfaces. A view factor is simply a coupling coefficient that gives
the fraction of radiation emitted from one surface that is intercepted by another, assuming
that the emission is isotropic {1}:

C,. = [[d,,% cos @, cos ¢, dA, dA,,
VE,, =C, /A,

where d,, is the distance between the surfaces, ¢ is the angle of incidence measured from
the normal to the surface, and A is the surface area. For simple problems, conservation can
be insured down to round-off accuracy, but the accuracy of the view factors depends on the
method used for computing them, some of which are restrictive. Here we are concermned
not with the methods for computation of the view factors, but with methods for treating
time dependence in view factor codes.

In the simplest view factor codes the geometry is fixed, specified albedos (the fraction of
incident radiation that is diffusely reflected or emitted) are used to describe the surface
properties, and the times of flight between the surfaces are ignored. However, for many
physical problems these simplifications are unsatisfactory. First, the surfaces may have
anisotropic properties. Second, the surface properties may be time dependent or depend on
the condition of the surface, which may change with time. For some problems (e.g:; some
radiation symmetry studies) it may not be necessary to treat the time dependence of the
surface properties, but in most cases changing surface properties are very important. Third.
the geometry can change significantly when the surfaces move (e.g., in response to rapid
heating), and fourth, for some problems (e.g.. illumination of an interstellar cloud by a
supernova) the radiation may be rapidly varying on a time scale shorter than the time of
flight between surfaces. Finally, many problems involve a tenuous medium between the
surfaces [2].

For the case of anisotropic surfaces properties it is possible to use angular bins, but it is
often more convenient to use angular moments of view factors:

C". = [ld;" cos™ @, cos @, dA, dA, .

For other problems, more detailed treatment of time changing properties of the surfaces
must be considered. For example an opaque surface may absorb and re-emit radiation. If
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that surface is optically thick and has uniform temperarure the radiation will be Pianckiar.
but this is seldom the case for a dynamic probiem. Itcan be shown that for planar
geometry, the first angular moment (n=1) of the view factor is sufficient to treat the
anisotropy due to a simple gradient in the source function:

wdlidt = -1+ S

where 1 = cos o, I is the radiation intensity, 1 is the optical depth, and is the source
function. This has the formal solution:

I =-[ Se ™" dry,

Sothatif S=S + 8’7, then
I, =- f, (S,+S'1)e-*dru (u<0),
which leads to

L, =S,+S cosa.

out

Thus, the first moment of the view factor is sufficient for treating a constant gradient of the
source function in an opaque surface. Absorbing surfaces exhibit limb bnghtening, which
is analogous to limb darkening seen for emitting surfaces such as the sun. This can lead to
radiation energy flowing in the direction opposite that which would be dictated by energy
density gradients computed in a diffusion code, which emphasizes the need for matching
the computational technique to the physical problem.

There are some cases in which the time of flight becomes important, and also some work
has been done on including the effect of a (more or less complex) medium between the
surfaces [2]. Henceforth, we confine our discussion to time dependent surface properties
and handling the effects of time of flight. We will discuss some specific models, but there
are many special applications of view factor codes that require other approaches. We only
suggest ways to handle changing geometry, since we have never implemented this
capability.

Models for Absorbing/Re-emitting Surfaces

While there are many ways to model changing surface properties, one of practical interest
for inertial confinement fusion (ICF) is the use of non-linear heat diffusion [3]. In ICF
hohlraum problems [4], soft X-ray radiation is absorbed by the surface which (as it heats
up) emits soft X-ray radiation with a different spectrum, until it comes into equilibrium
with the other surfaces that couple with it. Once equilibrium is obtained (if ever), the
emission comes into balance with the incident radiation, so the effective albedo is unity.
Otherwise, it differs from unity in a complex way that depends on both the amount and rate
of the incident radiation. -

There are several options for modeling these types of surfaces. One that has received only
a little attention is the uniform flux approximation [5]. It is based on the observation that in
the similarity solution for the non-linear heat diffusion equation with a power law opacity,
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reated. Thus effects such as limb darkening (as is the case for the sun) and limb
brightening can be inciuded.

Time of Flight

Only a littie work has been done on including the time of fiight effects in view factor codes.
This is because for most practical problems it is not important. However, for the case of
sudden illumination of an interstellar cloud by a supernova, or some similar physical
problem. the distant observer sees the cloud first illuminated and then the light scattered
from the cloud reaching the distributed parts of the cloud. Analytic solutions for the case of
a spherical shell surrounding a central puised source have obtained [7.8]. If the scattering
has a high effective albedo, then multiple brightenings may occur. Similar behavior can
occur in fast diagnostics for ICF, etc..

One successful method for treating time of flight uses temporal bins associated with the
destination surface. Here, the energy emitted by each surface during a time step is
apportioned to the proper destination surface in accord with the view factor for each pair,
and then the poruon is divided between two temporal bins for the destination surface based
on the centroid time of flight of flight between the pair. Between each time step, the
energies in all the bins are shifted, so that after several (constant) time steps the energy
emitted earlier arrives at the destination surface. Numerical results compare favorably with
the analytic results of Hoffman [7] and Zahrt [8]. An attempt to improve on this approach
by using a time of flight weighted by the contribution to the view factor gave nonsensical
results. For the case of a cylindrical pipe the radiation using the weighted times of flight
can travel at super-luminal speeds to the other end. Only in the case of very few surfaces
does the use of weighted times of flight seem to improve the relevant conservation
property: the sum of the products of the distances between surface pairs and the view

factors should be 47 times the volume.

The above method is restrictive, requiring a constant time step. In addition, no distinction
1s made between the various source surfaces, so information on the angle of incidence for
the radiation arriving at the destination surface is lost. Retention of this information would
require a set of temporal bins for each pair of surfaces. Memory requirements would then
limit the total number of surfaces that could be used in the problem. but the faithfulness to
the physics would be greatly improved. However, another way to retain the angular
information with less expense for memory is to use angular moments of view factors.
using a destination based set of temporal bins for each moment included. To my
knowledge, this has not been done.

Changing Geometries

For most problems that view factor methods have traditionally been applied to, the
geometry is fixed. This means that the view factors can be computed once and used over
and over again to solve the problem. However, there are some problems that are most
efficiently handled by view factor methods which do have changing geometries during the
course of the solution. One crude approach would be to simply recompute the view factors
at intervals, but since the expense for computing the view factors for N surfaces goes as N*
at best, and as N° for cases with a great deal of partial blockage (i.e., shadowing), this
could be very expensive for complex problems requiring a large number of surfaces.

However, there is some hope for handling problems involving changing geometries. First,
it should be noted that for surfaces with no blockage the straight-forward double areal
integral for computing view factors can be transformed into a double line integral [9]. This
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the flux deep into the surface is neariy uniform up to he head of the diffusion front. where
it diminishes rapidly to zero. If one negiects the radiation energy density (a’I“_\ relatve to
internal energy of the material. an integral relation connects the flux history with the depth

of penetration for a power law opacity dependence on temperature (K =X, 8,/ 8 ) can be
found:

E@w=] C\.T(x,t) dx = (n+4) ¢, x, (1) T () / (n+5),
X, (1) T () =V 2K T ™ dt,

where x is the depth (in gm/cm?), K = 4ac(n+5) / (n+4)* ¢, x, 6,", T(t) is the boundary
temperature, and x (t) is the penetration depth. This leads to

fit) = KT™ /[T dt,

but since f(t) = F(t)-o TX®) .

FO)=c T +KT™/V/[T*dt.

Inversion of the resuits from the last equation provides T ( F(t), t). Use of the uniform
flux approximation is restricted to a constant or continually increasing temperature at the
surface, which this is typically the case for ICF, because it fails badly when the boundary
temperature starts to decrease. It is also possible to get a solution for the case of an
arbitrary dependence of opacity on temperature.

Anocther option is to do a radiation hydrodynamics calculation for each surface and couple
them to each other through the view factors. However, a simplistic implementation of this
approach may compromise some important physics. Some years ago a modified radiation
diffusion treatment was developed to allow the in-depth absorption of radiation form a hot
source, yet utilize efficient radiation diffusion in the deeper zones in a 1-D problem [6].
Starting with the formal solution

I(t,, W) =- L S(t) e ™ drp

The intensity is split into direct and diffusion parts: I=1_ +1,, . wherel, =1 e™¥,
L. is the intensity of the radiation incident on the surface, and [, is the contribution to the
intensity of the radiation that due to the source function inside the opaque surface.
Integration over angle to get the flux resultsin: F=F, +F,. . where

Fdxr = Il-l Ilnc(u) e-‘tlp d}l

and Fue = 4nS ({1 -(1+T4) e+ T E(1)/4 } /3

Rather than use a flux or temperature boundary condition as is often done for diffusion
problems. the exponentially attenuated radiation that should be absorbed by each zone was
calculated and used as a source of heating. Properly applied, this allows the effect of both
hot Planckian sources and non-Planckian sources, as well as an anisotropic distribution of
sources to be treated. An additional modification allows the anisotropic re-radiation to be
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means that if a surface changes shape (e.g.. 1s warped) but does not change 1ts bounaary a~
seen from the otner surface of the pair. then the view factor doesn’t change. Seconc. viev. -
factors scale. If two surfaces are moved apart and expanded to keep the angular outiine tnz
same. then thelr view factors are unchanged. Therefore. for a geometry that changes due t©
a uniform expansion (or contraction) of the whole problem. all the view factors remain tng
same. If a surface is uniformly tilted. then to first order the change in the view factor Is
proportional to the change in the cosine of the angle between the normal of the tilted surfacs
and the line between them. Finally, the viewfactor for a surface that is so warped as 0 siop
across its apparent original boundary changes only in proportion to that part which siops
across the origmnal boundary. This means that small changes in geometry can be handied
by simply scaling the view factors appropriately. One can periodically recaiculate the view
factors to track the accuracy as scaling effects accumulate over many time steps.
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VARIATIONAL-DIFFERENCE FLOW-TYPE SCHEME
FOR 3D DIFFUSION EQUATION ON GRIDS
OF ARBITRARY HEXAHEDRONS.

PL

The paper addresses the construction and numerncal study of
difference scheme for 3D equation of non-stationary linear isotropic
and anisotropic diffusion by variational method using the diffusion
equation of flow type ( A.P.Favorsky method generalized for a 3D
anisotropic case [1]).

A linear 3D diffusion eguation is under consideration:

Q-——=-divW . xeQ . (1

ct
&

where W= (W, W. _ W.)is the heat flow vector whose components are equal to

U
W(x)=-S D (LX)— . i=123. )
i T [\_f CX'

Here U is temperature. Q is volume heat capacity. D ; is a symmetrical positively defined
matrix of diffusion coefficients. in anisotropic case D =D-0 . The boundary is
1. 1.3

specified by a flow and’or flow-temperature combination ( including oniv temperature)
T = ol - -
(W (t.x)-n(x)/:v(t.x) .xel zcQy ; (3)

7(I.x)-(ﬁ"(t.x)-ﬁ{x)jﬁ:—ﬁ(t.x)‘L’(i.x‘,\:f({.x) cxell =0T R

- . - .
Here n(x) i1s the external normal. {a-b' i1s a scalar product. (4) assumes that
B=0. v-p<0. ‘:‘xel‘}.

Similarly 1o [1]. both the flow definition (2 and boundary condition (4) result
simultaneously from minimality condition for convex functional

_ I A S R TS
o(W)=[ YL -W.W-20diviW|do- | : ——dr . (5)
a0 ) 7 :




where L= {L ] matrix is reverse to D={D | matnx. In the cass. when computing 2
minimalitv condition for functional (3) it is only the W fiow that is varied. whiiz the
boundarv condition (3) is accounted¢ as an additionai restricuion. i.e. normal fiow
variations are assumed to be equal to zero on the boundary section ['..

To solve the problems (1)-(4) numerically we use the grid composed of arbitrary
hexahedral cells whose faces might be represented by linear surfaces stretched over the
straight edges of hexahedron. The U;;, temperature. specified in cell centers. is an
average volume temperature in cells. The volume of hexahedral V , cell is found by

familiar formulas. for example, [2]. Normal components WZ,x. WZ,x and Wr,. for the W
heat flows. averaged over the surfaces of corresponding faces. are specified on
hexahedron faces having SZiji. SZjyi w Snys areas. The law of conservation (1) is
approximated in each cell in the regular way (see Fig.1)

G ot
Q ——=-DIV ¥ . (6

DIV v =7\7]—-(SE_2-\\’E_2-SE_}-WE_IJ.-Sn}\\’nZ—Snl-\\'nl+5;.‘2-\¥':_2—S:_l-\\';l) A7)

1)K

Led

Fig. 1

To approximate the ratios (2) and boundary conditions (4) it is necessany to
approximate functional (5) on the grid and to compute its minimality condition. The
surface integral in (3) is substituted by an evident sum of ®,,. over the boundary edges
of quadratic expressions from normal flow components. Volume integral (3) over the
volume of one hexahedral cell is substituted by the expression
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WhEr2 m IS ihe number 07 nexanesdral cell vertex. Wnild ing Giirenis

is specified by formmuiz (7, Vector flow W in (8 at

p P
i

independentiy by soiving the svstem of equations
Hr =0 .7z . BT =Ur-Er . Bn=U0.2n

where 82 . €2 and en are identitv normals to hexahedron faces mesting in on2 given
COMmON Verex.

Difference equations resuit from differentiating the functional over the fiows and
making the derivatives equal to zero

/ \ ( ) /
o i A H =
ESo +0 | EYD +d | eSS <o
i\a—.f (RS bnd | Kl-; ik Dnd} -)—: IR bnd
— =0 . ——= =0, ——¢ =0 .
EWI cWZ cWT
“1L)K “LjK RN

Then U™ temperatures are excluded in the equations obtained by the equation of
balance (6) and that ieads to equations for normal flow components

A WIo —B:j,j‘ WD +C: ‘W2 lszFE- .(\\':’.\\'n.[n) :
NN Ta=alle AN LA [N i), ISR Y

A‘n.)‘x W St +B.'|.j.L W EPRRY +C"x.).'x W EAWSHN =F"1,j,'n (W U-“ S

An,._;_; -\an.h_{ + Bnl.“ 'an.j,; +qu.j.k 'an.n.z = FnLj_k (W2 W2 Uy,

This system of eguations 1s computed by block iterations according to Seidel.
each iteration uses the runs aiong the corresponding grid line. the right parts are computed
each time with the values known. When iterations are completed and flows are defined.
new temperatures are computed from the equations of balance (6). (7). Since the
functional being minimized is strictly convex. the iteration process of the kind 1s sure to
always converge. The test problems computed on orthogonal and rather oblique grids
testify to the number of such iterations to be approximately proportional to the square root
of Courant number. In isotropic case with a grid composed of rectangular parallelepiped.
the constructed difference scheme allows to exclude the flows compietely and to obtain an
ordinary seven-point implicit scheme.

To exemplify the accuracy of the constructed difference scheme we would refer
to computation results of a problem on cube cooling. both isotropic {3] and anisotropic. At
the initial moment t=0 inside the cube we have Q = [0<x<L. 0<v<l. 0<z<L}. L = 1. the
temperature is constant U(x.v.z.0) =1. (x. v. z) €Q. the boundary is specified by the
temperature U(x. v .z .1) =0. (x .v. z)e ¢Q. t>0. Heat capacity Q=1. matrix of diffusivity
factors is diagonal D,, =D, -6, . with D;=D,=D.=1 for isotropic case and D =3. D.=D,=]
for anisotropic case. A accurate solution of the problem looks like follows:

L'a(,\'._\'.zt)=w(x.L.DI.t)-w(y.L.D:.t)w(x.L.D;.t) :

= L T (=(cm-1) )
u(x.L.D.t)=-¥-T—,——_.exp’ _[.f _(_.__) ‘
o (2m-1) P L

m=!
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All computations used a tims step Ar=0.0005 on the grid N xN xN with N=2t anc

N=10. each ume on a uniform onhogonax grid and on an oblique one from Fig.Z.

Fig.2
Errors ¢ =§nja§?L|“—L (\l“ ¥oaZ .1) at time t=0.08 are given in the Tabl
probiem grid { €20 ( £40 R: f R:
isotropic | orthogonal l 745-10- | 3.659-10 | 6.60 [ 0.379
isotropic oblique t 3.000-10-3 i 3.733-103 | 6.65 | 0.673 i

R, and R. values. given in the Table. result from the erTor €, decomposed in terms of
(LY 2 .
formulas\=R,—At+Rﬁ-[ —7) =0(At+Ax ) These values be close in both cases for

orthogonal and obiique grids. the formula proves to be correct for the error and
inaccuracy on oblique grid proves to be insignificant.

The program of numerical solution for 3D diffusion eguations based on the
difference scheme described. both for isotropic and anisotropic cases. is used presently to
simulate turbulent diffusion when problems on aerosol and other atmospheric poliutant
transter are computed in frames of TREK code [4].
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