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ABSTRACT

Time domain electromagnetic (TDEM) sensors have
emerged as a field-worthy technology for UXO
detection in a variety of geological and environmental
settings. This success has been achieved with
commercial equipment that was not optimized for
UXO detection and discrimination. The TDEM
response displays a rich spatial and temporal behavior
which is not currently utilized. Therefore, in this:

- paper we describe a research program for enhancing’
the effectiveness of the TDEM method for UXO
detection and imaging. Fundamental research “is
required in at least three major areas: (a) model based -
imaging capability i.e. the forward and inverse
problem, (b) detector modeling and instrument
design, and (c) target recognition and discrimination
algorithms. These research problems are coupled and
demand a unified treatment. For example: (i) the
inverse solution depends on solution of the forward
problem and knowledge of the instrument response
(ii) instrument design with improved diagnostic
power requires forward and inverse modeling -
capability; and (iii) improved target. recognitior -
algorithms (such as neural nets) must be trained with ~
data collected from the new instrument and with
synthetic data computed using the forward model.
Further, the design of the appropriate input and
output layers of the net will be informed by the results
of the forward and inverse modeling. A more fully
developed model of the TDEM response would enable * .
the joint inversion of data collected from multiple
sensors (e.g. TDEM sensors and magnetometers):”
Finally, we suggest that a complementary approach to
joint inversions is the statistical recombination of data
using  principal - componenf = analysis. The
decomposition into principal components is useful
since the first principal component contains those
features that are most strongly correlated from 1mage
to image.
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1.0 INTRODUCTION

he utility of the TDEM method for UXO detection
be improved by recording and interpreting more

attributes of the scattered wavefield. The scattered
wavefield is due to currents induced in the target
conductor by a primary time varying magnetic field.
The wavefield is not measured directly, instead,
voltages or emf’s are measured in receiver coils. The
voltages are induced according to Faraday’s law by -
the time varying scattered fields. Measurements are
performed in the time domain after the termination of
the primary current waveform in the transmitter loop.
The target conductor and ground response signals can
be separated since currents from the latter decay much
more rapidly than currents in conductors with the
large and positive conductivity contrasts that are
typical of UXO. The residual effect of the primary
field can be separated since it is present only for a
very short time after the termination of the current
waveform. TDEM sensors (e.g. the Geonics Ltd.
EMB61) that have been deployed in the field over the
last several years for UXO detection measure. the
induced voltages in only one time gate. In addition,
the transmiitter and receiver coils of this sensor are all
in the horizontal plane. The imaging and
discrimination capability of TDEM sensors could be
significantly enhanced by recording measurements in
receiver coils oriented in three orthogonal directions,
and in many different time gates. However, effective
use of these measurements would “depend on the
availability of an appropriate forward and inverse
theory with which to interpret them. It would also be
desirable to develop a formal and rational basis for
designing an instrument that would provide the
maximum diagnostic power for broad classes of
targets. Finally, the formal inversion approach is™
adequate  for post-processing of data, but
complementary to this, it would be desirable to
develop and implement an inference technique that is
field robust and can operate in real-time or near real-
time.

Thus, there are three major problem areas that we
consider in this paper: (a) model based imaging
capability i.e. the forward and inverse. problem, (b)
detector modeling (including instrument 'response)
and instrument design, and (c) target recognition and
discrimination algorithms. We describe a theoretical
approximation developed by Habashy er al. (1993)
that can be used to compute rapidly and accurately
secondary fields for targets with large conductivity
contrasts. This work can provide a basis for the
forward and inverse theory required to address
problem area (a). For problem area (b) we describe a
formalism that can be used to improve the design of
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geophysical surveys and instruments: The classical
geophysical approaches to inverse theory fot

complicated problems often requires hand-on

interaction (i.e. selection-of model-norm constraints,

. optimal point on the trade-off curve between variance

reduction and model norm, starting guess, etc.). The
classical approaches provide - essential insight and

quantitative criteria for instrument design and target -
classification, but are not ideally suited-for the real- -
time results required in the field due to lack “of-

robustness. Therefore, for problem area (c) we discuss

the use of neural nets for pattern recognition and

anomaly classification. Also, we consider a statistical
technique known as principal component analysis that
can be used to produce compressed input training data

for the net, and which may prove to be of utility for -

joint interpretation of data sets from differing sensor
types. In section 2 we discuss the forward and inverse
problen; instrument design is considered in section 3,
pattern recognition approaches are examined  in

section 4, and issues in data processing and data

representation are considered in section 5.

2.0 THE FORWARD AND INVERSE PROBLEM

OF ELECTROMAGNETIC SCATTERING
Backgrdund

The most difficult challenge in modeling TDEM
sensor responses is the computation of the secondary
EM fields scattered by the unexploded ordnance
(UXO) target. Many of the techniques developed for
forward and inverse scattering computations —are
notoriously CPU intensive. Techniques based on

linearization of the field variables are simpler and
faster but limited in the range of problems they can -
solve.- For example, these techniques can only be-

applied to problems that display small conductivity
contrasts. Iterative-techniques have been devised to
overcome these problems, but there is no guarantee of

convergence, and the approach requires repeated -
solutions of the forward problem which can be very -

expensive. Many of the computational techniques are
based on the finite element method, finite differences,
or integral equation approaches. These techniques can
accurately simulate EM ficld behavior for wide
frequency ranges and for a diverse variety of material
properties so long as the discretization is sufficiently
fine and the computational requirements do not
exceeded the available resources. The principal
disadvantage of these techniques is that they require
the repeated inversion of a large stiffness matrix. This
is a particularly worrisome problem for inverse
scattering since in minimizing a given cost function
or objective criteria, the same operation must be
performed again and again.

A review -of many of these computational techniques
can be found in Volakis and -Kempel (1995). A
summary and comparison of computer codes that have
been developed for geophysical problems can be found
in Smith and Paine (1995). These codes suffer from
the computational requirements described above.
Some break down for the conductivity contrasts that
are characteristic of the UXO problem, others are
limited- by. the source-receiver geometries they can
model, and others can model only a single conductor.
Furthermore, all of these codes are proprietary, and
would require many man-years to develop from
scratch. ' '

The Born Approximatioh and the Extended Born
Approximation

The Born approximation is a scattering method that is
widely used in acoustics, seismology, quantum
mechanics, and electromagnetics {e.g. Wu and
Toksoz, 1987; Zhou, 1989; Zhou et al., 1993). The
key to this approximation is that thé-electric field that
exists within the scatter is modeled by the electric
field that would exist in the homogeneous background

-medium. This formulation is advantageous since the

forward and inverse problem can be posed simply and
computed rapidly. The disadvantage is that the
conductivity contrast of the scatterer with the
background medium is required to be small, whereas
the conductivity contrast due to metallic components
of UXO can be quite large. For example, the
conductivity of steel is ~ 10’ Siemens/m whereas the
ground conductivity of soils range from ~107 to 10°.
This contrast causes both the amplitude and phase of
the electric field induced in the metallic components
of UXO to differ greatly from the background field
thus vitiating the use of the approximation. The Born

approximation has found useful application in——

environmental EM problems where the conductivity
contrasts are not nearly so large. Recently, Habashy et
al. (1993) and Torres-Verdin and Habashy (1994)
have developed an approximation called the Extended
Born Approximation. Their formmilation extends the
range of validity of the Born approximation to very
large conductivity contrasts, yet retains many of the
numerical and analytical advantages of the Born
approximation. Their work provides the means to
simulate accurately the electric field internal to the
conductivity distribution without having to invert the
large, often full, stiffness matrix that results from
solving integral-equation or finite-difference schemes.



The Inverse Problem

The Extended Born Approximation renders practical
the nonlinear EM inversion problem, and has been of
demonstrated utility for geophysical inverse problems
(Habashy et al. 1995). Although the estimators to
compute the internal electric field are weak nonlinear
functions in conductivity, they are generally much
faster to compute than the full forward problem, and
are almost as efficient as the Born and Rytov
approximations. The enhanced accuracy of these new
estimators and the advantages described above make
their application to low frequency three-dimensional
inverse problems in ordnance detection and imaging
ideal. Forward and inverse problems based on these
estimators can be applied to scatterers with many
geometries including spherical objects, rectangular
parallelepipeds, rectangular cylinders, thin plates, etc.
Complex models can be constructed using these
simple building blocks. ’

In the inversion process we attempt to infer

information about the properties and location of an

‘object from measurements of a scattered field. Here, -

the scattered field is the secondary magnetic field
inducéd in the scatter by the primary magnetic field.
Instead of measuring the field directly, we measure
the time varying flux of the field which is recorded as
a time dependent electromotive force (emf) in the

receiver coil. The emf is a functional of the secondary

fields and the recording geometry; the -exact
dependence can be obtained from Faraday’s law
which states that

ViE = -(1/c) 4B. Q2.1)

where E is the electric field, B is the magnetic field,
and c is the speed of light. The emf is given by the
integral of the above over the arca of the receiver
coil. By applying Stokes law we obtain

so that the emf can be expressed either as the line
integral of the electric field along the loop- of the
receiver coil, or as the time derivative of the magnetic
flux across the aperture of the receiver coil. ‘The
observed emf values constitute the data used in the
inversion. ~ According - to the Extended Born
Approximation, the integral equation that governs the
total electric field E in the frequency domain is
written

EW) = Ef(n)+ i @ 1, Jos G@r,rY) o (1) oEy(r) Ac(r))dr’

(2.3)

where G is the Green’s function tensor, Ey(r) is the
background electric field, I" (r) is the so-called
depolarization tensor and contains weak nonlinear
dependence on the scalar Green’s function and the
anomalous conductivity Ao, and @ is the frequency.
In the integral equation the total electric field E is
represented as the sum of the background field E;(r)
and the scattered field (the integral terms). The
scattered field is generated by the scattering currents
(and charges) induced inside the scatterer by the
interaction of the total electric field E(r) with
variation of the conductivity within the scatterer and -
host medium. The objective of the inverse problem is
to recover Ao from the observed emf’s.

In general, the inverse scattering problem is non-
unique and the scattered field is nonlinearly related to
the scattering object. The nonlinearity complicates the
solution of both the forward and inverse problems. In
essence, the nonlinear dependence of the scattered
field on the properties of the scattering object is due to
the mutual interaction between the induced currents.
The non-uniqueness arises due to incomplete data
coverage and because in order to stabilize the
inversion matrix it is often necessary to incorporate
damping or smoothing constraints which lead to low
pass images of the actual object.

In addition to imaging, a benefit of constructing the
inverse solution is the ability to analyze the efficiency
of the antenna array i.e., the space-time distribution
of TDEM observations of the scattered field. The
antenna array of a TDEM detector is defined by the
orientation, location, and size of the transmitter and
receiver coils, the distribution and width of time
windows of observation, and system parameters such
as base frequencies, transmitter waveforms, etc. This
leads to the design considerations in the presented in
the next section.

30 OVERVIEW OF  OPTIMIZATION
PRINCIPLES FOR  SURVEY  AND
INSTRUMENT DESIGN

General considerations

The design of any geophysical survey or instrument
e.g. seismic, electromagnetic, gravity, etc., is
fundamental to a successful outcome. The typical goal
of maximum target resolution is often in conflict with
practical requirements. Thus, survey/instrument
design is a classic problem in optimization theory (i.e.
given quantifiable objective criteria, what is the




optimal choice of instrument or survey :-design
parameters?). There are a number of questions that
should be addressed in the design process: (1) What is
the optimal trade-off between redundancy of field
measurements {which we seck to minimize) versus
accurate characterization of the target? (2) How
should -a ~ priori information e.g. statistically

characterized noise environments, geophysical -

measurements from other sensors, known geology,
target class, etc., be incorporated into the design
process? (3) What objective criteria in the inverse

problem are most appropriate to consider e.g.

resolution of sub-surface voxels, delineation of

boundaries, covariance between estimated médel :

parameters, effect of design parameters on noise
amplification, stability of inversion matrices, etc.? In
this section we discuss the general problem of
geophysical survey and instrument design, and
present criteria that can be used to evaluate the
efficiency of such designs. The survey/instrument

design can be adjusted until an objective function” :
defined by the criteria is maximized. This process’ " -
depends on the ability to compute the forward and - .

inverse solutions. In addition, since the objective

function may be topologically complex, it is necessary -
to use an optimization technique capable of locating
the globally optimum solution. We show that the
smallest singular value of the design matrix

constitutes a useful objective function, and we suggest

that genetic algorithms are well-suited for discovering -

the optimal solution.

Barth and Wunsch (1990) have shown that inverse

theory can be usefully applied to the experiment.

design problem. They considered the optimal

deployment of sources and hydrophones for an ocean -

acoustic tomography experiment. Their design
approach applies equally well to the design of
geophysical sensors. The inverse solution determines
which data contribute most to the resolution of the
model parameters that characterize the problem. For
example,- in the resistivity inverse problem, -the

inverse solution determines (1) which of -the .
measurable field quantities, and which set -of:

transmitter-receiver  separations and - - transmitter
frequencies best resolve the conductivity and
thickness values of an earth model, and (2) which
combinations of data optimally mitigate noise effects.
The singular value decomposition (SVD) of the
design matrix provides valuable diagnostics of the
experimental design. It is generally the case that the
utility of the design is improved by adjusting the
survey parameters to increase the condition number or
the size of the smallest singular value of the design
matrix. Thus, to optimize a survey design, one

attempts to maximize an objective function given, for
example, by the smallest singular value. Clearly, this
is a strongly nonlinear problem, and cannot be solved
with classical techniques. However, as mentioned
above, genetic algorithms can be usefully applied to
this problem ‘

Technical Discussion - Objectlve Cntena

The choice of the objecuve functxon is one of the most
important elements in survey/instrument design. The
design will depend on the target features of interest,
and on how the data will be processed and
interpreted. A design that yields good performance for
one set of criteria may perform less well for another.
Regardless of the specific goal, objective criteria can
always be framed in terms of very general functionals
that are easily computed during the inversion process.
Criteria can be defined in terms of subsurface volume
element and boundary resolunon model parameter
covariance and trade-off, noise sensmwty, matrix
stability, and others. B

Barth and Wunsch (1990) have shown that singular -
value decomposition is a ‘useful Wway of computing
many of the objective criteria of inferest (see also an
early contribution by Glenn and Ward, 1976). To
demonstrate this we consider the canonical inverse
problem

GAm=d, N 3.D

where G is the design matrix, Am is the vector of

unknown model parameters, and d is the data vector.
G is dependent on the. physics of the particular
problem and on the detailed properties of the

‘survey/instrument design. It is easy to see how

equations (2.2) and (2.3) can be combined to yield
this type of inverse problem. If there are no noise or
other error terms in the data, a fully determined
system would give rise to perfect resolution. In most
cases however, the matrix G is singular, and instead
of determining the model parameters, one is forced to
estimate them. Using the SVD of G, one particular
estimate for the model parameters is

dm=VA' Ud . - (.2)

where in the usual way U, V, and A are such that G =
ULV" (Aki and Richards, 1980). U and V span,
respectively, the data and model spaces, and A is the
diagonal matrix of singular values 4; for /] <i <N,
where N, is the number of model parameters. If the
rank of G is less than N, (the rank corresponding to
the number of non-zero singular values 4, for / <i <




p), then there is a null space and the vector of model
parameters breaks up into a piece Am, which is
determined by G and a piece which lies in the null
space dmy about which no information is available.
The matrix V also decomposes into ¥, made up of the
first p columns of ¥ and ¥, which is constructed from
the columns (p+7) through of V. Then all solutions
for Am are now of the form Am =-Am, +V,a where
4m, = V,A,' Udand ais a matrix of arbitrary
coefficients. Different estimators of Am make
different choices for the formally indeterminate values
of a, ranging from sctting them to zero (for the
-minimum mean square solution) to employing a
priori statistical information about the solution. From
Aki and Richards (1980), the error covariance matrix
is

<dm Am™> = VAT VT (3.3)

where we have assumed for simplicity that data errors
are uncorrelated with standard deviation o,
Obviously, the covariance of the solution becomes
large when A, is small. Associated with these entries
will be certain elements of the estimate Am which will
be poorly determined, possibly unacceptably so. Some
workers have eliminated eigenvectors with small
cigenvalues to keep the covariance below a certain
level. This, however, reduces the number p of non-
zero eigenvectors, degrading the resolution in model
and data spaces. The resolution matrix of the model
parameters is VP so that the estimated model

parameters Am,, are related to the true model

parameters by Am., = V¥’ Am. The trace of the
resolution matrix equals the rank of G, and,
therefore, truncation of singular values will lead to
deterioration in the resolution matrix.

Noise processes represent another important factor. In
the presence of noise the minimum variance estimator
is a useful solution. The estimator which minimizes
the trace of the covariance matrix and the covariance
of this solution are given, respectively, by Am =
RG'(GRG" + o,0) "' d and has covariance <Am
Am™> = VAN +0,7/0,° I} AV' where R is the a
priori covariance matrix associated with the true
model parameters, and c,, is the standard deviation of
the model parameters. Although the instability of
equation (3.2) is reduced by ecliminating small
singular values, it is now important to consider the
relative magnitudes of the small singular values to
that of the noise term in above covariance estimate.
Although the design matrix ¢ may be such that the
system is fully determined, its smaller singular values
may be so small that they become negligible when
compared to the noise level in the measurements. In

this case, it is usually better to reduce the rank of G.
Truncation of small singular values leads to a more
stable estimate for the model parameters, but at the
price of resolution loss.

In designing an instrument or survey for a given
target class, it would seem reasonable then to try to
make the rank of G equal to the rank of the system
(i.e. N,,), and the magnitude of the smallest singular
value in the spectrum of G as large as possible. If the
smallest singular value is large enough, so that it is
not noise dominated, then truncation would not be
necessary. The covariance (eq. 3.3) for the estimate
in equation (3.2) would be well behaved, and the
model resolution would not be compromised. The
model estimate and its covariance in the presence of
noise would also not be noise -dominated. Therefore,
if we desire to design a system which is fully
determined, then we choose the objective function F
to equal the smallest singular value An, The singular
values of G, in turn, are related to how the

geophysical fields sample the subsurface, which is

determined by the distribution of the sources and
receivers and instrumental parameters. If the
underdetermined case is considered when perfect
resolution of all the model parameters is not required,
the objective function is modified to F = A, where p
is less than N,, and equal to the rank of G which is
desired. There is yet another approach to this problem
suggested by Snieder and Curtis (1995). They point
out that although the ill-conditioning of the design
matrix is often computed in terms of the condition
number (the ratio of the largest to the smallest
singular value, and which can therefore be infinite), a
more useful measure of conditioning is given by © =
Nn A1 1 T Z;, where 4, is the largest singular value,
and the sum is taken over all singular values. The
sum in the denominator is equal to the trace of G
while A, may be estimated using the power method.
Hence © may be calculated swiftly even for large,
non-sparse matrices.

As shown above, the model resolution is sensitive to
data error. Thus, estimates of data error can be used to
asses which data attribute best resolves a- given
structure, and the generalized inverse can be used to
determine which data contribute the most to model
resolution. Study of the eigenvectors that compose V
provides insight into model parameter correlations
and measurement correlations which can be exploited
for improving the design of an experiment or
instrument. Although the most intuitive objective
function may be the one which yields minimization of
the mean square error in synthetic experiments using
an a priori model, the 'diagnostic criteria defined




)

above yield other.important measures that evaluate
the quality of the solution such as model covariance,
matrix stability, model resolution, etc.

Numerical Optimization Method

Once the objective criteria are established and can be -

computed numerically, it is necessary to search
efficiently for the survey or instrument design that

yields the highest objective function valuation, and

which does not exceed the available experimental
resources. In general, the survey/instrument designs
can be: (1) completely random, (2) structured to the
extent that the controlling parameters vary in a well
defined and likely discrete manner, or (3) confined to
a limited number of fixed designs. The objective
function will display highly nonlinear dependence on
the parameters that characterize the survey/instrument

design and this presents numerical problems. In fact,

the problem is so strongly nonlinear that all classical
optimization techniques such as the Newton-Raphson
or conjugate gradient methods would fail completely.
These methods can yield solutions: that are local
maxima rather than thé global maximum. Another
problem with the classical approaches is that they
required partial derivatives of the objective function
with respect to the survey/instrument parameters, and
the derivatives can be difficult, if not impossible to
evaluate. For example, the singular value of the
design matrix is clearly a strongly nonlinear function
of the components of the matrix. These problems can
be addressed in principle through the use-of genetic
algorithms, and this was the approach used, for
example, by Barth (1992) and Hernandez et al.
(1995). Although, the geophysical problems are likely
to be more computationally intensive than the
oceanographic problems described..in the above
references, the use of genetic algorithms remains
appropriate.

Genetic  algorithms draw inspiration from the
optimization process that forms the basis of biological
evolution. Evolution is a process whereby a biological
species defined by order 1000-10000 genes is
modified to optimally fit the present environment.
Geophysical survey/instrument optimization problems
can be defined by a similar number of parameters.
The most serious challenge is the volume of the phase
space in which to search and the complexity of the
optimization surface in that space. For example, if the
dimensionality of the parameter space is of order 100
with just a few possible states for each parameter, say
10, then the number of points in the phase space
approaches 10'®! An essential feature of genetic

algorithms is their ability to bypass the inefficient
component of the phase space.

In their most basic implementation, genetic
algorithms make use of the following simplified
version of the biological evolutionary process. First,
the model parameters are coded in binary form. The
algorithm then -starts ‘with a randomly chosen
population of models called chromosomes. Second,
the fitness values of these models are measured by
some fitness criteria such as agreement between data
and prediction or simply the minimum or maximum
of an objective function. Third, the three genetic

_ processes of selection, crossover, and mutation are

performed upon the models in sequence. In selection,
models are copied in proportion to their fitness values

based on a probability define by the value of the

objective function divided by the sum of the objective

functions over all models. In crossover, an operator

picks a crossover site between selected pairs of

chromosomes and exchanges, based on a crossover
probability, the bits between the two models. In

mutation, a bit is changed at random based on

mutation probability, and is applied to the models to

maintain diversity. After execution of the above

processes, the new models are compared to the

previous generation -and accepted based on an update

probability. The procedure is then repeated until

convergence is reached (i.e. when the fitness of all the

models becomes very close to one another). Useful

discussions on the use of genetic algorithms can be

found in Charbonneau (1995) and Sen and Stoffa

(1995).

Once the TDEM sensor is optimally designed for
prescribed target classes, one can expect the
performance of target recognition algorithms to
improve, which leads us to the next section.

4.0 TARGET RECOGNITION ALGORITHMS

TDEM sensors display a rich spectrum of responses to
metallic conductors. The response is dependent on the
properties of the scatterer, the nature of the excitation,
and on the manner in which the scattered field is
measured and processed. As discussed in section 2,
the detector response can be characterized
mathematically and the inverse problem can be
formally posed. This approach is useful since it allows

one to discover the types of data and the instrument —

parameters that usefully constrain the target. In
practice, formal inverse problems can be made robust
for well-defined and well-rehearsed problems.
However, for actual field deployments in which there
are highly variable field and noise conditions, and




real-time or near real-time imaging requirements, the
implementation in_the near future of an inversion

process that does not require interfacing from the

expert user would be rather difficult. (We expect,
however, that post-processing with the formal inverse
method will be practical). Accurate estimation of
model parameters using any kind -of sensor-(not just

TDEM) can be a very difficult problem. Ambiguity
arises through insufficient or noisy data. This leads to

non-uniqueness that can only be resolved by a priori
constraints such as positivity, compactness,
smoothness, small model norm, etc. Further, any
inversion is limited by the accuracy and/or
assumptions of the theory used to interpret the data.

Lastly, ambiguity arises from the nature -of the non- -

linear inversion itself, i.e. the iterative inversion
procedure may not converge to the correct solution.
These types of problems motivate the use of neural
networks for the UXO inverse problem. We suggest in
the following that the complete solution of the formal
forward and inverse problems informs the

development and routine use of the neural network ™"

approach.

Raiche (1991) presents an excellent overview of the
application of neural nets to problems in geophysical
inversion. He describes the shortcomings of the
classical techniques including some of the points
mentioned above. Raiche describes a paradigm for an
automated geophysical system which works like a
noise tolerant, interpolating associative memory; i.e.
given raw geophysical data from one or more types of
surveys, it will output a representation of Earth

properties which gave rise to the input data structure. -

He goes on to list the desirable .attributes that the
system should have. Since these are precisely the

attributes that a field robust TDEM detector should -

have, we quote directly from his paper:

e The system as a whole should be able to extract
and classify features of the input data structure, and
establish rules associating their interrelationship with
observed Earth structure models.

o It should be able to utitize data sets from dlﬁ‘erent
geophysical methods by establishing rules governing
the relative weighting of various data features.

o It should be able to learn from experience. In this
case the experience will comprise all of the numerical
and analogue model and field data curves along with
whatever interpretations have been input to ‘the
system.

e It should be able to infer (develop) a suitable
noise model so that the shape of the class boundaries
will encompass distorted members of the same class.
In other words, it should be capable of mapping input

data into a nonlinear space with a metric which
minimizes the effect of observed noise.
» It should be stable; i.e., given the same input data
sets, it should infer consistent interpretations. It
should not ‘forget’ or distort prototypes.

o It should be capable of inferring model structures

not necessarily contained in the training set; i.e., it
must be capable of interpolating within the metric
established by noisy prototypes.

e It should not be bound by local error minima
traps when comparing ficld data with forward model
data from the final model. :

¢ It should be computationally efficient.

The design of an inversion process based on a neural
net that displays the above desirable properties is a
challenging problem. Broadly speaking, there. are
three major problem areas that must be addressed,
and we refer to these as Task 1, Task 2, and Task 3.

Task 1: The first task is to choose an apprbpriate‘

interpretation space for the inversion results. By this
we mean the characterization of the net’s output layer.
A very general characterization - would be the
representation of the subsurface with discrete 3D
voxels; each node on the output layer would
correspond to a single voxel. The classifier would
then assign properties to each voxel. As Raiche
(1991) points out, an alternative would be to

implement a- two-stage output process. The first stage-

would classify the data as arising from a specific
model class; e.g., ant-personnel mine, anti-tank mine,
etc. The second stage would consist of estimating the
parameters associated with the model class, ¢. g depth
of burial, location, orientation, etc. .

The appropriate choice of output node classification
can benefit from thorough consideration of the
forward and inverse problem. This follows from the
fact that the solutions to most practical inverse
problems are non-unique. There are some properties
of the unknown model that simply cannot be retrieved
from the data (Aki and Richards, 1980). Furthermore,
it is generally not possible to obtain point estimates of
the model. Instead, the inverse solution can only
retrieve certain averages of the model, and this
defines fundamental limits of resolvability. The
formal solution of the inverse problem defines what
model properties can be TYetrieved. It is these
properties that should be used to characterize the
output layer. Further, as discussed in section 3, the
inverse solution determines which components of the
data contribute most to the resolution of the model.
Such knowledge can be used to tailor the input layer.
Finally, an important benefit of developing the




forward model is that training data can be computed

synthetically for arbitrary UXO targets and
instrument parameters. This can yield significant cost.

savings over data training data collected in the field. -

Task 2: A crucial task is the development of :the:

appropriate representation for the input geophysical

data. The input data should be of minimal |
dimensionality and represented in such a way as to .

optimize feature extraction. We suggest in section 5
that the principal component transform can be used to
achieve some of these objectives. It can be applied to
data sets from multiple sensors (e.g. TDEM sensors

and magnetometers), or to a data set in which many

realizations of the same signal in a noisy environment
are available.

Task 3: An important task is the development of a
mapping algorithm capable of transforming a suitable
representation of the input data into a description of
the UXO target. There are many existing neural
network architectures and training algorithms to
choose from, and it is likely that the best algorithm
can only be discovered by experiment. .

5.0 SIGNAL - PROCESSING AND DATA
REPRESENTATION

In this section we consider the. utility of principal
component analysis for TDEM processing. The
principal component transform is a versatile tool.
Although we present here how it may be used to
enhance the signal to noise ratios of TDEM
responses, we have also used it successfully for spatial
processing of geophysical data sets collected with
different sensor types. The mathematical treatments
for these two different cases are identical. In the
following we consider the TDEM response at
successive multiple time gates to represent a time
series which can be thought of as a vector. Likewise, a
two-dimensional spatial image can also be
represented as a vector.

Data collected with TDEM sensors can be evaluated
statistically since many recordings are obtained for a
single location in space. This is due to the base
frequency of the waveform which can vary from a few
Hz to a 1000 Hz, or more. For a TDEM instrument
that performs measurements in more than one time
gate, each recording will correspond to a time series.
There will generally be correlations among each
realization but noise is always present. However, by
using the covariance properties, it must be possible to
extract those features that are coherent across the data
sets, to facilitate noise rejection, and to segregate

uncorrelated features. A particular transformation
known as the Karhunen-Loeve transformation
achieves these objectives. The Karhunen-Loeve
transformation is also known as the principal
component  transformation, the -eigenvector
transformation, or the Hotelling transformation.
Discussions of this class of transform can be found in
Fukunaga (1972), Ready and Wintz (1973), and
Andrews and Hunt (1977). This method can be
applied equally well to a set of spatial images, or to a
set of time series, and essentially represents a form of
‘smart stacking’. One way to achieve - the
decomposition into principal components is by

“performing an eigenvalue-eigenvector decomposition

of the covariance matrix, and then rotating the
original input data vectors using the ecigenvector
matrix. We show in the following that the same effect
may be achieved by constructing the singular value
decomposition of the input data matrix. The
advantage of the SVD approach. is that it greatly
illuminates the meaning of the principal component
transformation, and it is computationally efficient and
stable.

In essence, the transform decomposes the input data
set of time series into an orthogonal set of time series
that we-call cigenseries. The eigenseries associated
with the largest singular value of the data matrix
includes those features with the greatest variance and
that are most strongly coherent across the original .
input time series. The eigenseries associated with the
intermediate singular values rejects those features in
the input data sets that are highly correlated as well as
highly uncorrelated. The eigenseries associated with
the smallest singular vilue contains those features
that are least correlated across the data sets, and often
includes a strong noise component. Thus, the
principal time series corresponding to the largest
singular value represents the desired result of a smart
stack.

The Singular Value Decomposltlon Approach to
the Principal Component Transform

It turns out that the principal components obtained
from the Karhumen-Loeve transformation are
identical to the vectors of the matrix U computed in a
singular value decomposition (SVD) of the data
matrix X. Here, we take the matrix X to be of
dimension (VxAf), where N is the number of rows and
corresponds to the total number of time series points,
and M is the number of columns, and is simply equal
to the number of time series. The singular value
decomposition of the matrix X is written as the
product of three matrices:




X =W | 6.1)

or in index notation

X= Z' w; up; 5.2)

i=1 : .
where r is the rank of X, u; is the ith eigenvector of
XX, v; is the ith eigenvector of X”X, and w; is the ith
singular ‘value of X. A detailed derivation of these
eigenvector relationships and the SVD itself can be
found in Aki and Richards (1980) (also sce Press et
al., 1986). The singular values w; can be shown to be
the positive square roots of the eigenvalues of the
covariance. matrices XX or X"X (see Lanczos, 1961,
for a derivation). The eigenvalues are always real and
positive due to the positive definite nature of
covariance matrices. In equation (5.2), the factor uv,”
is an NxA matrix of unitary rank which we call the
ith eigenimage of X (e.g. Andrews and Hunt, 1977).
Owing to the orthogonality of the eigenvectors,
eigenimages form an orthogonal basis for the
representation of X. As can be seen from the form of
equation (5.2), the contribution to the construction of
X of the eigenimage associated with a given singular
value w; is proportional to that singular value’s
magnitude. Since the singular values are always
ordered in decreasing magnitude, the greatest
contributions in the representation of X are contained
in the first few eigenimages.

In our application, X represents the recorded time
series from many different cycles of the primary
waveform at the same location in space. Now suppose
that all M time series are linearly independent, i.e., no
time series may be represented in terms of a linear
combination of the other A7-7 time series. In this case,
X is of full rank M and all the singular values w; are
different from zero. Hence, the perfect reconstruction
of X requires all eigenimages. On the other hand, in
the case where all A/ time series are equal to within a
scale factor, all images are linearly dependent; X is of
rank one and may be perfectly represented by the first
eigenimage wuu;v,". In the general case, depending
on the linear dependence which exists among the
images, X may be reconstructed from only the first
few ecigenimages. In this case, the data may be
considered to be composed of time series which show
a high degree of series-to-series correlation. If only p
(p < r) eigenimages are used to approximate X, a
reconstruction error e is given by

=X, - XII°
= (UW,V-UuwV"y (UW V-UWV’

=Zw’ ' - (5.3)
k=p+I -
where W, is a diagonal matrix of singular values in
which the singular values w; in the range p+/ <k <r
have been set to zero.

We can now define band-pass Xzp, low-pass X;p, and
high-pass Xy» images in terms of the ranges of
singular values used in the reconstruction. The band-
passed image is reconstructed by rejecting highly
correlated as well as highly uncorrelated images and
is given by

q
Xep = Zwiuyy I<p<g<r (5.4)

i=p
The summation for the low-pass image X;p» is from
i=1 to p-1 and for the high-pass image Xp is from
i=g+1 to r. It may be simply shown that the fraction
of energy which is contained in a reconstructed image

Xjpp is given by E, where

E= Z(ny /2@f_ (5.5)
i=p i=

The Karhunen-Loeve matrix of X is the matrix that

contains the principal components and is denoted by

K. K is an (N x M) matrix, and i§ given by

K=XV. ' (5.6)
This matrix multiplication represents a rotation of the
input data X into the eigenvector frame (v, v,... vu).
We note that the vector components of X (i.e., k;, k5,

, ki) are mutually orthogonal. Using the smgular
value decomposition of X, we may write

K=UWwry ; )
which, upon taking advantage of the identity V'V = I
becomes

K=UW. (5.8)

Recalling that (vy, v,,... vy) are the exgenvectors of

X"X, we now see that U is the signal matrix X after
both projecting into the frame of the eigenvectors of
the covariance matrix and normalization by division
with the singular values.

6.0 Conclusions

We have described a research program to improve the
utility of the TDEM method for UXO detection and
imaging. The key component of our approach is to
develop the forward and inverse solutions for the
TDEM signals. This is a challenging problem due to
the large conductivity contrasts characteristic of UXO.




A quantitative theory would provide the basis for
interpreting the spatial-temporal complexity of the
TDEM response, and would provide information that-
could be used to improve instrument design and the

performance of target recognition algorithms based on - .

neural nets. Finally, we suggested that the principal
component transform provides -a formal empirical .
basis for jointly interpreting responses from multiple
sensor types, and for improving the signal to noise
ratio of data from single sensor types. '
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