skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling the effect of heatsink performance in high-peak-power laser-diode-bar pump sources for solid-state lasers 011 011

Conference ·
OSTI ID:290772

We derive approximate expressions for transient output power and wavelength chirp of high- peak-power laser-diode bars assuming one-dimensional heat flow and linear temperature dependences for chirp and efficiency. The model is derived for pulse durations, 10 < {tau} < 1000 ps, typically used for diode-pumped solid-state lasers and is in good agreement with experimental data for Si heatsink mounted 940 nm laser-diode bars operating at 100 W/cm. The analytic expressions are more flexible and easily used than the results of operating point dependent numerical modeling. In addition, the analytic expressions used here can be integrated to describe the energy per unit wavelength for a given pulse duration, initial emission bandwidth and heatsink material. We find that the figure-of-merit for a heatsink material in this application is ({rho}C{sub p}K) where {rho}C{sub p} is the volumetric heat capacity and K is the thermal conductivity. As an example of the utility of the derived expressions, we determine an effective absorption coefficient as a function of pump pulse duration for a diode-pumped solid-state laser utilizing Yb:Sr{sub 5}(PO{sub 4}){sub 3}F (Yb:S-FAP) as the gain medium.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
290772
Report Number(s):
UCRL-JC-129417; CONF-980117-; ON: DE98058833; BR: YN0100000
Resource Relation:
Conference: BIOS `98: an international symposium on biomedical optics, San Jose, CA (United States), 24-30 Jan 1998; Other Information: PBD: 14 Jan 1998
Country of Publication:
United States
Language:
English