o DOE/ER)25205 - - 7]

Final Report on

Numerical Methods for
Some Structured Matrix Algebra Problems

DOE Contract DE-FG03-94ER25215

Elizabeth R. Jessup
Department of Computer Science
University of Colorado
Boulder, CO 80309-0430

This proposal concerned the design, analysis, and implementation of serial and parallel
algorithms for certain structured matrix algebra problems. It emphasized large order prob-
lems and so focused on methods that can be implemented efficiently on distributed-memory
MIMD multiprocessors. Such machines supply the computing power and extensive memory
demanded by the large order problems. We proposed to examine three classes of matrix
algebra problems: the symmetric and nonsymmetric eigenvalue problems (especially the
tridiagonal cases) and the solution of linear systems with specially structured coefficient
matrices. As all of these are of practical interest, a major goal of this work was to translate
our research in linear algebra into useful tools for use by the computational scientists inter-
ested in these and related applications. Thus, in addition to software specific to the linear
algebra problems, we proposed to produce a programming paradigm and library to aid in
the design and implementation of programs for distributed-memory MIMD computers. We
now report on our progress on each of the problems and on the programming tools.

In [8], we present the results of our study of a parallel method for solving the symmetric
eigenproblem. This method is to reduce the symmetric matrix to tridiagonal form via
Householder transformations, to compute the eigensystem of the tridiagonal matrix, and to
backtransform the result. Bruce Hendrickson of Sandia National Laboratory, Chris Smith
of the University of Wisconsin, and I have developed an efficient code for Householder
reduction and backtransformation on the Intel Paragon. The algorithms are based on a
square torus-wrap mapping of matrix elements to processors to reduce communication,
and the code uses level 3 BLAS routines for efficient numerical kernels. The experimental
results presented in [8] demonstrate that the torus wrap mapping leads to substantially
better performance than the block mapping used in ScaLAPACK [3].

With Silvia Crivelli (formerly a grad student at CU and now a postdoc at CU), we
have developed PMESC-a medium- to coarse-grained environment for managing dynamic
computations on distributed-memory MIMD computers. The goal of PMESC is to free the
programmer from dealing with application-independent issues such as load balancing, inter-
processor communication, and program termination, while allowing her or him fo concen-
trate on the application specific ones. PMESC combines the ingredients that are necessary
to make a useful tool: portability, efficiency, and ease of use. The name PMESC comes
from the phases of dynamic computation handled by the environment.

PMESC achieves portability by following a two-layered approach that concentrates all
of the machine-dependent issues at the lower level and builds the upper level that takes care
of more specific abstractions on top of that. As a result of this design, not only the user
code but also the high-level layer of PMESC remain unchanged across different computers.
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Furthermore, each level is independent of the other which makes it possible to easily replace
the lower level by an standard package such as MPI, and we are in the process of translating
the lower level to MPI. PMESC achieves efficiency by providing different building blocks to
address different programming issues. This flexible approach allows the programmer —not
the language or system— to decide which of those blocks are most suitable for the particular
application and the computer architecture. Finally, PMESC is easy to use because it was
designed based on the applications and their requirements and it was implemented to fulfill
them. Thus, it provides a methodology that is within the grasp of a C programmer and a
syntax that is not different from standard C programming.

PMESC is the subject of Silvia’s Ph.D. thesis [4]. We are presently writing a series
of papers about PMESC and our mechanisms for evalutating it. The first of these is [5].
We expect to release the PMESC library shortly and are in discussions with Bill Gropp
of Argonne National Laboratory about merging PMESC with Argonne’s PETSc (Portable,
Extensible Tookit for Scientific Computation) package.

Another problem studied was the parallel solution of structured linear systems arising
in the solution of two-stage stochastic programs. A two-stage stochastic problem translates
into a process of making a guess at a specified action based on present day information
then correcting that action based on the effects of a collection of possible future events.
This sort of problem arises, for example, in portfolio management: what seems like a good
investment today may turn out to seem less promising once the effects of future happenings
(wars, interest rate drops, etc.) on its earnings are considered [11].

The deterministic equivalent formulation of two-stage stochastic programs using interior
point algorithms requires the solution of linear systems of the form (AD?AT)dy = b. The
constraint matrix A has a dual, block-angular structure. Together with Stavros Zenios and
Dafeng Yang of the Wharton School of Business, we have developed a parallel matrix factor-
ization procedure using the Sherman-Morrison-Woodbury formula and based on the work
of Birge and Qi [2]. This procedure requires the solution of smaller, independent systems
of equations. With the use of optimal communication algorithms and careful attention to
data layout we have obtained a parallel implementation that achieves near perfect speedup.
Our analysis and experiments on an Intel iPSC/860 hypercube and a Connection Machine
CM-5 show that the good performance scales to large problem sizes on large machines. The
results of this work are published in [10].

Finally, we were motivated to study manipulation of the Gerschgorin disks by our study
of how to solve the symmetric tridiagonal eigenproblem on the hypercube multiprocessor
[9]. In that study, we noted that while it is easy to implement the bisection method on
distributed-memory multiprocessors, it is not easy to achieve good performance in general.
Processors assigned disjoint Gerschgorin disks can compute the eigenvalues within those
disks independently of one another in parallel. However, processors assigned large disks or
disks containing many eigenvalues take longer to complete their computations than those
assigned small disks with few eigenvalues. Applying similarity transformations is one way
to improve the processor load balance. We were able to determine the best way to com-
pute a single eigenvalue of a symmetric tridiagonal matrix on a distributed-memory MIMD
multiprocessor, and this work is published in [6]. Generalizing this result to an arbitrary
number of eigenvalues seems now to be a problem that is intractable or that, at least, re-
quires enormous effort for little reward. We were able to derive some specific preprocessing




rules for symmetric eigenproblems but were not able to develop a general and practical
approach. Parallel nonsymmetric eigensolvers based on tridiagonalization turned out to be
a similarly unappealing problem. We were also able to make small improvements to the
nonsymmetric method but were not able to overcome its most basic failings. Both the pre-
processing problem and the nonsymmetric tridiagonalization problem are now on the back
burner.

We have turned our attentions instead to two other general problems. With CU postdoc
Zlatko Drmag, we are developing numerical methods and software for solving generalized
eigenvalue and singular value problems with a focus on accuracy. Our preliminary results
with the latter problem show that we will be able to produce software for those problems
that, in some cases, is more accurate and more robust than that provided in LAPACK [1].

In conjunction with this large scale software development, we are producing a set of
software tools to support the basic building blocks of linear algebra computation. Examples
of these include norm computations and the computation of rotation angles. The first
emphasis of this tool development will be improved accuracy. The second, and equally
important, will be improved efficiency. Our emphasis will be on producing tools that run
efficiently on cache-based workstations. While tools for fundamental computations are
available among the BLAS and in LAPACK, we are discovering that the available tools
do not always make good use of the memory hierarchy and large scale memory of modern
workstations.

During the period of this grant, we also published the textbook [7]. It was released
in April 1996. This book is an undergraduate textbook about the use of supercomputers
in scientific applications. As such, it is a bridge between our research and educational
interests. The textbook and the course based on it were awarded a DOE Undergraduate
Computational Science Education Award in August 1995. We gave several invited talks
about the book and course at educational conferences during the last year.
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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expréessed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.



