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1. Introduction

When gas is injected into an oil reservoir at high pressure, a richly complex set of physical
interactions begins. Components transfer between oil and gas phases, viscous fingers form, geo-
logical heterogeneities control flow pathways in wonderfully complicated ways, and capillary and
gravity forces modify flows driven by pressure gradients between injection and production wells. In
this report, we examine the scaling of the interactions of those mechanisms. The goal of the work
is to provide a base of physical understanding upon which can be built the design of gas injection
processes for heterogeneous reservoirs.

In Chapter 2 we consider how multicontact miscibility develops in multicomponent systems.
Standard theory for development of miscibility is based on analysis of three-component systems,
and minimum miscibility pressures (MMP’s) or minimum enrichments for miscibility (MME?’s) are
often calculated by mixing cell methods that determine when either the injection gas or displaced
oil lies on a critical tie line. Those methods fail for systems with more than three components
if development of miscibility is controlled by tie lines other than the injection or initial tie lines.
That situation arises for condensing/vaporizing gas drives, which occur in many CO4 floods and in
the displacement underway at Prudhoe Bay, for example. In Chapter 2 we extend and apply the
theory to several systems. We report an analysis of the behavior of nitrogen displacements that
is consistent with results reported by other investigators concerning the effect of changes in oil or
injection gas composition on MMP. In Section 2.2 we apply the theory to a COgy displacement of
a synthetic oil containing ten components [131].That section shows how to use the MOC approach
to understand displacement behavior of crude oils, which can contain many more than three or
four components. Sections 2.3 and 2.4 examine the mathematical structure of the MOC theory
for systems with equilibrium K-values that are independent of composition. Because nearly all the
important features of the mathematical structure carry over to systems with variable K-values, the
constant K-values analysis provides the basis for understanding the behavior of crude oil systems as
well. Finally, in Section 2.5 we describe a new technique for direct calculation of the MMP for such
situations. The new method works well for condensing/vaporizing gas drives, and it is significantly
more efficient than other approaches in widespread use.

In Chapter 3, we turn to the question of viscous instability. It has long been known that
when viscous oil is displaced by a less viscous gas, the flow is hydrodynamically unstable, and the less
viscous fluid “fingers” through the oil. In Chapter 3, we make use of a particle-tracking technique
to study the interplay of fingering, gravity segregation, and reservoir heterogeneity. The results
presented show clearly that two-dimensional flow calculations do not necessarily reproduce what
happens in three-dimensional flows when viscous and gravity forces are of comparable importance.
Gravity forces turn out to be more important in three-dimensional flows than in two-dimensional
cross-sections. Additional results reinforce our previous conclusion that reservoir heterogeneity,
the spatial distribution of permeability, has a significant effect on flow patterns — fingers adapt
happily to preferential flow paths. The transition from gravity-dominated flow at low flow rate to
viscous- or permeability-dominated flow at high flow rate is also strongly affected by heterogeneity.
Finally, we examine approximations that can be used to try to account for viscous fingering in
compositional gas injection processes.

In Chapter 4 we describe an efficient technique for calculating the performance of a gas
injection process in a heterogeneous reservoir. The method is a version of a streamtube technique,
in which the effects of heterogeneity in a two-dimensional porous medium are represented by flow
through a series of streamtubes, while the effects of the displacement process, whether it is a mis-
cible flood, a waterflood or a compositional displacement, are represented by a one-dimensional




the chromatographic separations that then can be used to design efficient oil recovery processes. In
the context of describing the mechanisms of those processes, Egs. 2.4 (or the equivalent molar con-
servation equations when volume change is included [52]) have been solved repeatedly for ternary
systems by investigators of alcohol flooding, surfactant flooding and gas displacement processes,
and the theory of three-component flows is largely complete. An extensive set of references to that
literature is given by Johansen [96]. Investigations of four-component problems have been limited
to gas/oil displacements. Four-component solutions were first reported by Monroe et al. [135],
and the properties of those solutions and many others were subsequently explored in detail by Din-
doruk [45] and Johns [103] (see also [105, 46, 148]). Four-component solutions were also reported
by Bedrikovetsky [11] for displacement processes with constant K-values. All those investigations
showed that a solution to a Riemann problem, which can be represented as a sequence of shocks
and rarefactions that generate a path through the state space, I', must lie on surfaces of tie lines
illustrated in Fig. 2.21. One surface is associated with the left state (injection composition) and
the other with the the right state (initial composition). This section provides additional evidence
that it is the geometry of tie lines in those surfaces that controls the structure of solutions.

On the mathematical side, much work has been devoted to questions of existence and
uniqueness and to describing the wave structure of solutions. Investigations that have much in
common with the problems considered here have been reported by Johansen and Winther [98, 99,
100].

In the analysis of polymer flooding [98, 99] and three-component, two-phase flow problems
[100, 103], it has proved useful to rewrite the problem in terms of dependent variables that yield
an eigenvalue problem for a triangular matrix. In that form, the analysis of wave structure is much
more straightforward than it is for the eigenvalue problems associated with Egs. 2.4. In this section
we employ the same strategy: we ask under what circumstances can a problem with triangular
structure be obtained by a suitable model representation. We then consider what types-of phase
behavior produce triangular structure and show that only a small set of phase behavior types is
allowed. However, we show that the types that do produce triangular structure are consistent with
simplifying assumptions commonly used to describe the behavior of surfactant and gas/oil systems.
It is also important to note, however, that the models considered here are always hyperbolic, even
if the structure is not triangular [187].

For triangular models, the solution path in I lies on a sequence of easily defined surfaces of
tie lines, and the solution wave structure can be described in a straightforward manner. While the
assumptions required to make the problem triangular are fairly restrictive, the properties of the
resulting solutions provide considerable guidance about solutions to more general problems, and
hence the structures described here are a useful step toward understanding of truly multicomponent
flows by extending the techniques employed in the analysis of multicomponent polymer flows [99].

In the sections that follow, we state and prove a theorem about tie line geometry. We then
show that expressions for eigenvalues and eigenvectors can be obtained easily for four-component
conservation equations with global triangular structure, and we examine the wave structure of
solutions. We show that triangular structures result when equilibrium K-values are independent
of composition. We conclude with a discussion of other approximate phase behavior models that
would also yield triangular structure.

2.3.1 Global Triangular Structure

It is convenient for analysis to write the conservation equations in terms of the properties
of tie lines, which control solution structure and behavior. To do so, we represent the equation of
a general tie line as

C2 = of§;n)C1+¢(&m), (2.10)
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The initial and boundary conditions are specified as left (L) and right (R) states,

ck, z<o,
Ci(2,0) = (2.67)
CE, z>0. =
2.4.2 Nontie-line Path Integration for a Ternary System

We choose S and z; as primary variables, which yields the following version of Eq. 2.64,

wla o8 2l 2]-[0) w9

where az and b3 are algebraic expressions involving the K-values,

(K2 — K1) (K3 — K1 )(f - s)

= , 2.69
%= oKy — K1) (K3 — K1) — [1+ (K1 — 1)s](Kz — 1)(K3 — 1) (269)
and
_ B+ h
by = xR (2.70)
Where Ky — K)(EK1 — K.
p=  E - ) - Ks) , (2.71)

(Ko —1)(EKs—1) v
The ordinary differential equation describing the nontie-line path is found from the eigen-
vector that points in the direction of the nontie-line path,

o _ (1= f)
as = (f-5)
(K2 - l)(_K3 - 1)(1 - f’)[l + (Ifl - 1)5]
(Ko — K1)(K3 — K1)(f - 5)
(K1 — 1)K — 1) (K3 -1)
(K2 — K1)(Ks3 — K1) )

z1

(2.72)

Eq. 2.72 can be integrated to obtain an expression for the nontie-line path as a function of
saturation.

o = o- So)z? 4 (K2 1)(Ks—1)
1= g (K2 — Ky1)(K3 — Ky)

(K — 1)(K5 — 1)(fo — So)
(K — K)( K — K = 5)

(K1 — 1)K — 1)(Ks — 1) s
v - e [(5f ~ 50f0) - 2 /S 0 fas). (2.73)

Here (29, Sp) is some starting point for the integration.
1 g P g

The final form of the expression for the nontie-line path depends on the integral of the
fractional flow expression in Eq. 2.73. The fractional flow function we use for the example that
follows
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3. Viscous Fingering, Gravity Segregation and
Reservoir Heterogeneity in Gas injection Processes

Viscous fingering, gravity segregation and reservoir heterogeneity have long been known to
affect the performance of gas injection processes. This chapter we report results of an extended effort
to understand the interplay of those factors. Section 3.1 presents a study of the interaction of viscous
fingering, gravity segregation and reservoir heterogeneity in 2D and 3D media using particle tracking
simulation technique. We show that 3D flow behavior differs substantially from the 3D flow behavior
for displacements in which either gravity or viscous forces dominate. Reservoir heterogeneity can
reduce the effect of gravity segregation, and hence the difference between 2D and 3D flow behavior.
These results strengthen further our previous conclusion that reservoir permeability distribution
often dominate flow behavior. In Section 3.2 we describe compositional simulations conducted
to investigate the effects of phase behavior on the development of viscous fingering and gravity
segregation in heterogeneous media. We show that slightly submiscible displacements can be more
efficient than completely miscible ones, because mobility ratios are more favorable in the submiscible
displacements.

3.1 Interactions of Viscous Fingering, Permeability Heterogene-
ity and Gravity Segregation in 2D and 3D Flow in Porous
Media

H. A. Tchelepi and F. M. Orr, Jr.

Viscous fingering, gravity segregation, and reservoir heterogeneity have long been known to
affect the performance of the collection of gas injection processes known as miscible floods [171].
Numerical simulations of viscous fingering and gravity segregation have been performed by some
investigators to examine the transition from gravity-dominated flow, in which a single gravity tongue
forms and early breakthrough of injected fluid occurs, to flow dominated by viscous fingering. Most
calculations have been performed only for two-dimensional cross sections, however.

Only recently have investigations of 3D fingering begun. Withjack et al. [196] presented
3D computed tomography images from a series of unstable miscible displacement experiments in
a 5-spot geometry such that buoyancy in the vertical plane was in competition with the viscous
forces in the horizontal plane. They found that recovery correlations for 5-spot geometry based on
2D information overestimate the observed 3D recoveries from the experiments.

Zimmerman [209] simulated growth of viscous fingers in homogeneous porous media in the
absence of gravity segregation under conditions of isotropic dispersion using a spectral technique.
He found that transversely averaged concentration profiles were similar in 2D and 3D simulations.
Christie et al. [34] investigated both fingering and gravity segregation in homogeneous media as
well as those in which a distribution of shales was also present. In all their calculations, buoyancy
forces were quite strong. They found that breakthrough occurred slightly earlier and recovery was
slightly lower in 3D flow than in 2D flow. Christie et al. [34] did not investigate the transition from
gravity-dominated to viscous-dominated flow.

Chang et al. [28] performed 2D and 3D simulations of laboratory displacement experiments
and found that calculated recovery curves differed only slightly. Mohanty and Johnson [132] simu-
lated corefloods performed in heterogeneous cores. They found that 2D simulations were not good
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approximations for layered systems with only modest contrast in permeability between layers and
found better agreement when 3D simulations were performed.

Because 3D simulations are significantly more expensive to perform than 2D simulations, it
would be useful to know when 2D calculations can be used with confidence to predict performance
of reservoir displacement processes. In this paper we report results of simulations that examine
when 2D simulations reproduce the behavior of 3D flow and, more importantly, when they do not.

The simulations described here were performed with a particle-tracking technique described
in detail by Araktingi and Orr [6], Tchelepi and Ozr [180], and Tchelepi et al. [181]. Brock and Orr
[24] showed that the simulator reproduces accurately the transition from flow controlled by viscous
fingering in a 2D homogeneous porous medium to flow controlled by the permeability distribution in
heterogeneous porous media. Araktingi and Orr [5] showed that the simulator accurately represents
the effects of gravity in 2D flow as well. Thus, the simulator used has been tested extensively
against experimental data where available and has been shown to model accurately the effects
of heterogeneity, viscous instability, and gravity segregation. In the remainder of this paper, we
examine a succession of unstable 2D and 3D displacements to determine when 3D flow differs
substantially from 2D flow.

Simulations were performed for flow in a rectangular porous medium with width equal to
the height. Unless otherwise stated, the aspect (length to height) ratio was set to L/H = 4. The
3D simulations were performed on 128 x 64 x 32 grids, with 64 particles taken to represent a
unit concentration. For 2D simulations, 128 x 64 grids were used. Extensive grid refinement tests
showed that no significant changes in results were observed for finer grids. The grids used here were
significantly finer in the vertical and transverse horizontal directions than those used by previous
investigators. Longitudinal and transverse Peclet numbers were set to 505 and 3750, respectively, a
dispersion anisotropy of 30. The computations were performed on massively parallel machines with
8192 or 4096 processors (MasPar, Inc.). The algorithms that implement the model were designed
to take advantage of the speed of parallel processing in moving particles. Typical simulation times
for the 3D compljltations were about 5 hours of CPU time.

3.1.1 Homogeneous Porous Media

Displacements without Gravity. A comparison of 2D and 3D displacements in a
homogeneous porous medium with viscosity ratio, M, set to 30 is shown in Fig. 3.1. It compares
the pattern of viscous fingers in a 2D simulation with several horizontal and vertical slices through
the 3D porous medium. Fig. 3.1 shows that in both 2D and 3D, fingers have dimensions and spacing
that are nearly the same, though fingers have penetrated slightly farther in 3D. Furthermore, in the
absence of gravity, the numbers of fingers and their widths are essentially equal in the horizontal
and vertical directions. That result is reasonable because finger dimensions are determined by the
level of transverse dispersion, mobility ratio and flow length, factors that act equivalently in 2D
and 3D flow.

Another comparison of 2D and 3D fingering is given in Fig. 3.2. It compares concentration
profiles obtained by averaging the concentrations of fluid present at a given longitudinal position,
again for M = 30. Fig. 3.2 shows that the longitudinal concentration distributions are remarkably
similar in 2D and 3D flow in the absence of gravity. The 2D distributions are noisier, presum-
ably because concentrations are averaged over fewer fingers in 2D than in 3D, but otherwise the
distributions do not differ in any significant way.

Displacements with Gravity. When gravity is added to the picture, the equivalence of
2D and 3D flow disappears for some displacements. In both 2D and 3D flow, of course, viscous
forces that drive the hydrodynamic instability compete with buoyancy forces that act to create
a gravity tongue. If the flow is slow enough that gravity forces dominate, then fingering will be

61




0.8 1.0

O'.B 1.0

0:8 1.0

OtB 1.0
0'.8 1.0

Figure 3.1: Comparison at 0.2 PVI of 2D and 3D displacements with M = 30 in a homogeneous
porous medium in the absence of gravity.
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Figure 3.2: Comparison of transversely averaged concentrations of injected fluid in 2D and 3D

displacements with M = 30 at 0.1, 0.2 and 0.3 PVI in a homogeneous porous medium in the
absence of gravity.
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suppressed. If the flow is fast enough that viscous forces dominate, then fingers form and the
gravity tongue is suppressed. The relative importance of viscous and gravity forces is measured by
a viscous to gravity ratio, R,/,. Here we use the definition of Fayers and Muggeridge [64],

vAp H
YN (3.1)

R, /4 as defined in Eq. 3.1, without the leading coefficient of 2, can be rigorously derived from
the governing equations. R,/, is interpreted as a ratio of characteristic times. It is the ratio of the
time it takes a particle to traverse the height of the model, to the time it takes the particle to cover
the length of the medium when driven by the mean viscous force at @. In addition to the obvious
fact that segregation requires a density difference, the viscous-to-gravity ratio, R, /4, indicates that
the following factors, when dispersion is negligible, add to the effectiveness of buoyancy. (1) slow
average displacement velocities, (2) large vertical communication and (3) longer, thinner domains.

" The transition from flow dominated by a single gravity tongue to flow dominated by viscous
fingering is illustrated for 2D flow in Fig. 3.3. At R,;, = 1 and 2, the flow is strongly influenced
by gravity-driven vertical flow, which causes a thin gravity tongue to form. As R,/, is increased
further, however, viscous fingers begin to form, and the gravity tongue loses strength and becomes
smaller. The R,;, = 5 and R,;; = 10 displacements in Fig. 3.3 are in the transition region where
buoyancy and viscous fingering compete for dominance. Finally, when R,/, = 20, viscous fingering
dominates the flow.

Fig. 3.4 compares 2D and 3D flow for M = 30 and R,;, = 20. While there is no evidence
of a gravity tongue in the 2D flow, all three vertical slices of the 3D flow show some evidence of
gravity override. Fig. 3.5 is a 3D perspective at 0.3 PVI of the M = 30 displacement when R,/,
= 20. The presence of a gravity tongue is evident in Figs.3.4 and 3.5. In addition, some of the
fingers below the gravity tongues in the 3D flow appear to have been deflected upward by gravity.
Apparently, gravity segregation remains important at R,;, = 20 for M = 30 in 3D flow, while its
effect in 2D flow is virtually absent.

Another indication of the larger effect of gravity in 3D flow is given in Fig. 3.6, which reports
recovery at breakthrough of injected solvent for both 2D and 3D flows. In 2D flow, breakthrough
recovery increases with R,;, up to about R,;, = 10. In 3D flow, however, breakthrough recovery
is lower than that for 2D flow (at the same value of M), and the effect of gravity persists to higher
values of R,/y. In fact, only above R,/; = 100 does the effect of gravity on breakthrough recovery
disappear. :

The effect of gravity on recovery after breakthrough is shown for M = 30 in Fig. 3.7. It shows
that for L/H = 4, there is little difference between the 2D and 3D displacements after breakthrough
for R,y = 5. As the flow length is increased, the weaker influence of buoyancy in 2D flow gives way
to the effects of lateral dispersion and viscous fingering. Hence, when L/H is increased to 16, there
is a substantial difference between 2D and 3D flow, as the longer flow length provides more time
for gravity segregation, which is more effective for a given R,/, in 3D than in 2D, to take effect.

Fig. 3.8 provides further evidence of the increased effectiveness of gravity segregation in 3D
than in 2D at the same value of R,/ . Fig. 3.8 is a 3D snapshot for M = 30 and L/H = 4 for R,
= 100 just before breakthrough. The effect of buoyancy on 3D flow at this high viscous-to-gravity
ratio is reflected in preferred fingering near the top of this relatively short model. We saw in Fig.
3.3 that buoyancy was no longer effective in 2D flow at M = 30 and L/H = 4 when R,;, was
20. The enhanced effectiveness of gravity segregation in 3D flow was experimentally observed by
Withjack et al. [196] in unstable miscible displacements in a 5-spot geometry.

We offer the following explanation for the difference between 2D and 3D flow behavior in
the transition region of R,;, where both gravity and viscous forces influence the flow. In unstable
2D flow (see Fig. 3.3) at intermediate values of R/, the effect of gravity is to cause upward flow of

Rv/g =2

v/gs
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Figure 3.3: Effect of viscous to gravity ratio, R, ,, in 2D displacements for M = 30 at 0.2 PVL




Figure 3.4: Comparison at 0.3 PVI of 2D and 3D displacements with M = 30 and R,;, = 20 in a
homogeneous porous medium.
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M =30, Rvg =20, PVI=0.3

Figure 3.5: A 3D snapshot for M = 30 and R,;, = 20 in a homogeneous porous medium at 0.3
PVIL
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M = 30, Rvg = 100, PVI = 0.33

Figure 3.8: A 3D snapshot for M = 30, L/H = 4 and R,/, = 100 in 2 homogeneous porous medium
at 0.33 PVIL.
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injected fluid within the fingers and downward flow of the resident, more viscous fluid between the
fingers. In 2D flow, the vertical displacement must cause mixing of the two fluids because the flow
can only occur in a single plane. That mixing reduces the local contrasts in viscosity and density,
which limits the driving force for vertical transport.

In 3D flow, however, vertical flow need not take place in a single plane. Instead, downward
flow of the heavy, more viscous fluid can take place between fingers. As a result, less mixing takes
place, the viscosity and density contrasts remain higher than in 2D flow, and hence, segregation
remains important at higher values of R, /,. Thus, 2D calculations can yield inaccurate predictions
when R,, is in the transition region and L/H is large, as it is likely to be in field-scale flows.

3.1.2 Heterogeneous Porous Media

To investigate how the presence of permeability heterogeneities affects the interplay of
gravity segregation and viscous fingering, a series of computations was performed for 2D and 3D
correlated permeability distributions for Dykstra-Parsons coefficients Vpp = 0.2, 0.4, and 0.8 and
dimensionless correlation lengths Ap = 0.05, 0.1 and 0.2. Here we illustrate the results for Vpp =
0.8 and Ap = 0.2. The permeability distributions were generated by Gaussian sequential simulation,
and the 2D and 3D distributions were generated independently. Simulations were performed for
mobility ratios of 10, 30, and 50.

When the permeability field was nearly uncorrelated (small Ap), fingering behavior was
nearly the same in 3D flow as that observed for 2D flow, and both were similar to the behavior
described above for homogeneous porous media. Simulations with gravity were not performed for
those fields, but we speculate that gravity would also have effects similar to those for homogeneous
porous media.

When the correlation length is longer (Ap = 0.2), the resulting permeability fields contain
preferential flow paths that interact strongly with viscous forces to determine where injected fluid
flows most easily. Fig. 3.9 shows transversely averaged concentration profiles for displacements
with M = 1 and M = 10 in 2D and 3D porous media (labeled 2DF6 and 3DF6) with A\p = 0.2
in all coordinate directions. Gravity effects are not included in the displacements of Fig. 3.9. The
displacement at M = 1 shows how much spreading of the transition zone arises from the permeability
distribution. Dispersion also contributes to that spreading, but its effect is small compared to that
of the permeability distribution. Here again, the averaged profiles are similar for the 2D and 3D
flows, though the 3D profiles are smoother, probably because they are averaged over more flow
paths in 3D. When the displacement is unstable at M = 10, the transition zone is longer still,
as viscous forces amplify the effects of the heterogeneity. When gravity effects are absent, the
differences between 2D and 3D flow are small in this example in which the mean flow direction is
parallel to one of the principal axes of the correlation structure. In simulations in which the mean
flow direction was not so aligned, 2D simulations did not match the results of 3D simulations even
when gravity effects were not included.

Fig. 3.10 gives another view of the effect of heterogeneity on the flow. Fig. 10a compares the
averaged concentration profile for unstable (M = 30) 3D flow without gravity for permeability field
3DF6 with that for a homogeneous porous medium. The effect of the heterogeneity is to lengthen
the transition zone substantially. In this case viscous fingers find and flow along the preferential
flow paths present in field 3DF6 that are oriented more or less parallel to the mean flow direction.
Fig. 10b shows the effect of gravity in the homogeneous displacement along with the profile for field
3DF6 without gravity. In the homogeneous porous medium, a significant gravity tongue forms,
though it still does not lengthen the transition zone as much as heterogeneity alone in 3DF6.

The effect of gravity in field 3DF6 is shown in Fig.3.10c, which gives profiles for R,;, =
0.1, 5, 10 and 20. At those values of R, , a significant gravity tongue forms in a 3D homogeneous
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porous medium. In 3DF6, however, the profiles for R,;, = 5, 10, and 20 are indistinguishable.
Figs. 3.11 and 3.12 are 3D snapshots at breakthrough for displacements in field 3DF6 at R,;, of
100 and 5, respectively. At"Ru/g = 100 (Fig. 3.11), two high-permeability channels join near the
bottom of the model and the system breaks through along the bottom of the model. When R,,
is 5 (Fig. 3.12), some of the flow is reallocated to the top depriving the high permeability channels
near the bottom from some of the low. When R,;; = 5, breakthrough occurs near the top of the
model. While the details of the flow are altered as R,/, is lowered from 100 to 5 in 3DF6, the
average behavior in terms of sweep is not significantly affected. In Fig.3.10c, only at the lowest
value, R/, = 0.1, is evidence of a significant gravity tongue apparent. Fig. 3.13 is a 3D snapshot
of the M = 30 displacement in 3DF6 for R,;, = 0.1 at breakthrough. Thus, for field 3DF6, the
gravity viscous transition occurs for values of R,;, between 0.1 and 5 for M = 30, in contrast to
the behavior of a homogeneous porous medium, for which the transition occurs in the range 1 <
R,/ < 100. '

We argue that the difference in behavior between homogeneous and heterogeneous porous
media is the result of restrictions to vertical flow in the heterogeneous medium. Evidently, the
variations in permeability place some zones of low permeability in locations that slow gravity-driven
vertical flow, while high permeability zones amplify the effects of viscous forces in the horizontal
flow. As a result, the transition region occurs for lower values of R,;, when the heterogeneities of
field 3DF6 are present. Here again, for displacements in the transition region, 2D simulations are
unlikely to reproduce accurately the fluid distribution and recovery behavior of the 3D flow.

3.1.3 Discussion -

The examples presented indicate that results of unstable displacements in 3D porous me-
dia can be very different from those obtained for 2D porous media when the combined effects
of gravity segregation, heterogeneity, and viscous instability are considered. The differences are
largest for systems with high values of L/H when the value of R, , is in the transition region from
gravity-dominated flow to viscous-dominated flow. If either gravity segregation or viscous forces
dominate, however, 2D and 3D simulations produce similar results as long as the 2D permeability
field represents adequately the correlated permeability structure of the 3D field. Thus, use of some
3D simulations to assess the relative importance of viscous and gravity forces is desirable, though
it is clear that such computations will continue to be limited by the computation time required
and by the availability and resolution of 3D reservoir descriptions. The particle-tracking tech-
nique used here is a relatively efficient technique that can be used to determine whether extensive
3D simulations are required, for example to investigate optimum injection rates, or whether 2D
representations are adequate.

3.1.4 Conclusions
Comparison of 2D and 3D simulations of unstable displacements leads to the following
conclusions:

Homogeneous Porous Media

(i) If gravity effects are absent, 2D and 3D simulations predict similar finger dimensions and
averaged concentration profiles.

(ii) 3D flow behavior differs substantially from 2D flow behavior for displacements in which neither

gravity forces nor viscous forces dominate (1 < R,/ < 100).
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F6, M = 30, Rvg = 100, PVI = 0.105 (BT)

Figure 3.11: A 3D snapshot for M = 30 in permeability field 3DF6 with R,, = 100 at breakthrough
(0.105 PVI).
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A

F6, M = 30, Rvg = 5, PVI = 0.07 (BT)

Figure 3.12: A 3D snapshot for M = 30 in permeability field 3DF6 with R,/q = 5 at breakthrough
(0.07 PVI).
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F6, M = 30, Rvg = 0.1, PVI = 0.04 (BT)

Figure 3.13: A 3D snapshot for M = 30 in permeability filed 3DF6 with R,;, = 0.1 at breakthrough
(0.04 PVI).
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Heterogeneous Porous Media

(iii) In correlated permeability fields in the absence of gravity, 2D and 3D simulations agree well
as long as the principal axes of the correlation structure are aligned with the mean flow
direction.

(iv) The presence of correlated heterogeneities can significantly alter the range R,/, over which
the transition from gravity-dominated flow to flow controlled by viscous forces is observed.

3.2 Compositional Displacements in Heterogeneous Systems
F. J. Fayers, B. Aleonard, and F. Jouaux

The flow studied in Section 3.1 focussed on the physics of unstable flow, but neglected the
influence of phase behavior, shown to be so important in Chapter 2. In this section we describe
research to obtain a better understanding of how phase behavior, adverse viscosity ratio, viscous fin-
gering, heterogeneity and gravity interact in compositional modeling of gas displacement processes.
One of the difficulties in understanding such problems arises from the fact that in a multicontact
process leading to miscibility, the two phases move quickly towards equality in composition, so
that density and viscosity contrasts are substantially reduced. However, at positions away from
the mixing zone, the injected and in situ phases retain their original contrasts in properties. This
led to the Todd and Longstaff method [186] for modeling viscous fingering in such systems, where
the problem is represented in terms of a mixing rule with effective properties for the phases. This
formulation neglects phase behavior and is based on the hypothesis that the system behaves very
similarly to a first-contact miscible process. More recent studies have indicated that multicontact
processes do not generally attain miscibility (see for example [105]), and that dispersion effects
can lead to submiscible behavior with some detrimental effects on oil displacement. Another factor
relates to heterogeneity, where it is increasingly evident [6] that reservoir heterogeneity has a strong
effect on fingering patterns, although the magnitude of the adverse viscosity ratio also influences
the behavior. The appropriate way to adjust the Todd and Longstaff mixing parameter for hetero-
geneity is poorly understood. Because heterogeneity forces the displacing fluid to take preferred
paths, the sweep characteristics are very different from the homogeneous case, and the assumptions
of uniform mixing within large grid blocks are highly erroneous. For these reasons, the a-correction
procedures were introduced by Barker and Fayers [9] into compositional modeling to compensate
for the nonuniformities in phase behavior and component transport associated with the use of large
grid blocks.

In the present studies, we will set up a “mildly” heterogeneous problem and study the
attributes of various ways of representing its behavior under nearly miscible displacement. Under-
standing how to use compositional models to predict gas displacement more reliably in heteroge-
neous applications has become an important question. We will assume that the scale size involved
is sufficiently large that capillary forces and diffusion processes are negligible. At the laboratory
and somewhat larger scales, these effects cannot be neglected in nearly miscible processes [63], but
their omission may be appropriate at the reservoir scale.

Two major simulators have been used in this work. The first code, MISTRESS, is a fast
high resolution simulator developed by Christie et al. [33] at BP Research, which models a two-
component first-contact miscible process. Its high resolution is achieved through fine gridding and
use of an FCT-algorithm [32] for controlling numerical dispersion. It has been used to understand
the physics of viscous fingering in homogeneous systems [65], and also some work has been done
in heterogeneous systems [67]. The second code MORE, is a commercial compositional simulator
developed by Young [199] at Reservoir Simulation Research Inc. It has high speed efficiency for

78



Table 3.1: The parameters for the PR equation

Component M, P, T, Q Parachors | %Mole
(g/mol) | (Psi) () —_ — | Oil/Mis. Gas

Cy 16 671.17 | 117.07 { 0.1592 77.1 | 36.92/32.77

Ca+ 41 769.81 142.79 | 0.013 141 | 11.55/67.23

Cs+ 189 322.89 775 | 0.6736 588 [ 42.81/0

C30+ 451 171.07 | 1136.59 | 1.0259 1453 | 8.71/0

finely gridded problems, and is very fast on the Cray YMP computer used in this work. It does
not have special features for controlling numerical dispersion, and the unquantified influence of this
in compositional problems will be partially examined in these studies. We will also be looking at
some special features associated with variable interfacial tensions, which have been programmed
into MORE through the Elf Geosciences Center.

3.2.1 The Permeability Field

Permeability distributions have been generated using the moving average technique in 2D,
based on averages within an ellipse (major and minor axes give the anisotropic correlation lengths
o and ¢;). Random permeabilities are first normally generated using a random number generator
on a fine (128 x 64) grid, with further points generated for averaging outside the rectangle of
interest. The moving averages are taken on the fine grid, and thence a log transformation is used
to give a log normal distribution. The distribution shown in Fig. 3.14 was the principal realization
studied, which was generated using the parameters: L/W = 3.0, oy/L = 0.2, a;/W = 0.06 and
omr = 0.69. The distribution was intentionally chosen to give rather long and thin permeability
zones, thought to be more appropriate to real geology. We also wished to create a distribution
which was reasonably statistically homogeneous as a function of z (clearly not so) and to be not
too heterogeneous (the Dykstra-Parsons index for this problem is Vpp = 0.50). A reduced grid of
permeability values (64 X 32) was also formed by performing a simple renormalization based on a
2 x 2 column and row averaging procedure (see Fig. 3.14b).

3.2.2 Phase Behavior
Three types of phase behavior have been studied as follows :
(i) First contact miscible displacements with po/py = 20 and p, = 49.2 1b/ft3, p, = 24.5 1b/1t®.

(ii) A four-component model of slightly submiscible displacement, using the data of [105] with a
C,+ enrichment of 67.23 mol% for the injected gas. The parameters for the Peng Robinson
equation are listed in Table 3.1. These properties give viscosities and densities close to those
in (1) for the initial fluids.

(iii) A twelve-component model from which the values in the four-component model were consis-
tently derived [105]. The PR-parameters are given in Table 3.2.

The parameters in (2) and (3) are associated with slightly submiscible displacement [105]
but nevertheless the phase behavior ensures a reasonably efficient oil displacement, of the type
which probably occurs in many “miscible” condensing/vaporizing displacements [208].
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Figure 3.14: The permeability distribution used in this work.
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Gas Saturation at Output Times : 0.20, 0.30, 0.40, 0.45 pvi

Figure 3.15: MORE four-component run on the fine grid (no gravity).
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Gas Saturation at Output Times : 0.20, 0.30, 0.40, 0.45 pvi

Figure 3.16:

MORE four-component run
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Gas Saturation at Output Times : 0.20, 0.30, 0.40, 0.45 pvi
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Figure 3.17: MORE twelve-component run on the reduced grid (no gravity).
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Table 3.2: The PR-parameters used in this work

Component M, P, T, Q % Mole
(g/mol) | (Psi) () — | Oil /Mis. Gas
COq 44 1071.34 87.56 | 0.225 4.48/20.81
CHuN, 16 671.17 { 117.07 | 0.013 36.92/32.77
Cs 30 708.35 89.72 | 0.0986 3.21/20.08
Cs 44 617.38 | 205.82 | 0.1524 2.33/22.23
Cy 58 543.31 | 294.58 | 0.187 1.53/ 4.11
Cs 72 475.28 | 366.46 | 0.2523 0.88/0
Cs < 86 419.54 | 439.41 | 0.3138 1.27/0
Cr+ 108 417.69 | 584.35 | 0.3739 9.17/0
Ciot+ 152 407.14 | 670.78 | 0.5489 11.19/0
Cia+ 213 314.34 | 808.24 | 0.755 11.22/0
Caot+ 312 205.28 954.6 | 0.875 9.09/0
Cao+ 451 171.07 | 1136.59 | 1.0259 8.72/0

3.2.83 Results without Gravity

Base Case MORE Calculations. A base case was run with the MORE four-component
model on the fine grid. The gas saturation distribution is shown in Fig. 3.15. There is no evidence of
injected gas components moving ahead of the S,-values, since C remains fixed at the in-situ value
ahead of the gas front. The gas phase distribution is strongly controlled by the heterogeneities.
Use of the reduced grid was expected to cause two sources of smoothing error, namely reduced per-
meability spread due to averaging and increased truncation errors in the finite difference method.
Fig. 3.16 indicates that the consequent errors are tolerable, with the reduced grid still giving a fair
reproduction of the main characteristics from the fine grid, including only a small error in break-
through time. The effects of a more accurate representation of phase behavior were tested using
the twelve-component model where comparison of Figs. 3.16 and 3.17 indicates almost no changes,
i.e. the four-component approximation is more than adequate. In view of this, no further cases
were run with twelve components. These results confirm the view that satisfactory compositional
simulation in reservoir applications can often be performed with relatively few components (e.g.
four to six). The relative permeabilities used in MORE have been based on k,, = §x2 kg = S_,’;z
with Sorg = 0.15 and Sgc = 0.05. Thus high oil recovery is primarily driven by phase behavior.
We also examined kr, = 57, krg = S5 with Sorg = 0 2nd Sgc = 0, i-e. straight lines assuming
almost miscible behavior. The results shown in Fig. 3.18 indicate a very high degree of dispersion
at low gas saturations. This must be partly physically driven by the much larger gas mobility at
low saturation, but there may be exaggerated numerical dispersion errors due to the absence of
any self-sharpening character in the fractional flow. It is interesting that the method of character-
istics solutions for 1D flows suggest that there is only a weak dependency on fractional flow when
the system is close to miscibility. Instead of solving by the method of characteristics, accurate
1D MORE solutions for gas saturations were obtained using 500 gridblocks for the two forms of
relative permeabilities. These are compared in Fig. 3.19, which demonstrates that the straight
line form will be more dispersed, although the numerical dispersion errors are now much reduced.
There is also a light component front now moving ahead of the gas front. Recently completed Elf
modifications to MORE which allow relative permeability adjustment with interfacial tension have
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also been examined. The interfacial tension is calculated by the Mcleod-Sugden correlation

Nc . .
o/t =3"P, (”"””’ - ﬁg&) 3.2
; ¢ Mo Mg ( )

where p, and p, are oil and gas phase densities and M,, M, the corresponding molecular weights.
P, is the Parachor for component i. The parachor values used in this study are listed in Table 3.1.
The default option in the Elf extension to MORE satisfies the following rules: For phase j

krj = [1— f(r)] KT + f(r)k (3.3)

where ¢m and m imply the limiting immiscible and miscible relative permeabilities, and the weight-
ing function f(r) is defined by

f(r) = (1 —r)ezp(-7) (3-4)

where 7 = min (:—o) The magnitude of the switching parameter o,, determines the interfacial
tension at which the weighting towards straight-line relative permeabilities will commence. With
0, set to a threshold of 0.01 dyne/cm, and then to 0.1 dyne/cm, the results were almost identical to
those from immiscible relative permeabilities in Fig. 3.16. The trend towards straight lines starts to
occur using o, = 1.0 dyne/cm. The results shown in Fig. 3.20 are now somewhat closer to Fig. 3.18,
but still similar to Fig. 3.16. This value for o, is probably too high in terms of expectation of a real
change to immiscible relative permeabilities. Thus for nearly miscible processes in heterogeneous
systems, the use of the unmodified immiscible relative permeabilities appears to be justified.
Equivalencing First-Contact Miscible Calculations to Compositional Results.
It would be very convenient if compositional calculations could be replaced by appropriate first-
contact miscible calculations in the consistent heterogeneous geometry. The MISTRESS code
has been run for the fine and reduced permeability models to test this possibility. The fine grid
results for p,/py = 20 are shown in Fig. 3.21 which should be compared with Fig. 3.15 for the
equivalent four-component MORE calculation. This shows finer fingers with MISTRESS and an
earlier breakthrough. Thus the first-contact process in a heterogeneous system is more unstable than
its submiscible compositional counterpart. The last calculation was replaced with the reduced grid,
as shown in Fig. 3.22. This indicates a solution with a similar character, but now the breakthrough
time is surprisingly, slightly more advanced. To test the effects of numerical dispersion in the MORE
code, a method was found to allow this code to simulate a first-contact MISTRESS calculation.
This entailed choosing the same properties for each component in a two-component model in the
input data to MORE, and then adjusting the z.-critical factors to cause the correct viscosity ratio
in the Lohrenz-Bray-Clark correlation, i.e. 20:1. This gives a flatter mixing behavior than the
1/4-power mixing law. The MORE calculation is shown in Fig. 3.23 for the reduced grid, which
shows some exaggerated numerical dispersion, but less dispersive than Fig. 3.18. However, the
general character is similar to MISTRESS, and the breakthrough time is only delayed slightly.
Although the effects of numerical dispersion in two-component miscible models are different from
multicomponent models with phase behavior, the above MORE results give encouragement about
the nondominance of dispersion errors in MORE. It therefore seems unlikely that the numerical
dispersion is a significant feature in reducing the instability of the compositional displacement. All
of the first-contact miscible solutions are consistent with an effective mobility ratio which is too
high. One method for fixing up the effective mobility ratio is to choose M. consistent with the Koval
value, arguing that viscosity mixing dominates in the channels of the heterogeneity. This approach
is sometimes used in streamtube models. The Koval effective ratio is M, = 2.3. The MISTRESS
calculation run with this ratio is shown in Fig. 3.24. The delay in breakthrough is now too great, and
this result is not a satisfactory compromise. A second method for choosing the appropriate mobility
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Gas Saturation at Output Times : 0.20, 0.30, 0.40, 0.45 pvi
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Figure 3.18: MORE four-component run on the reduced grid (no gravity) with straight line relative
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Figure 3.19: MORE four-component run on a homogeneous 1D grid (500 grid blocks).
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Gas Saturation at Output Times : 0.20, 0.30, 0.40, 0.45 pvi
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Figure 3.20: MORE four-component run on the reduced grid with IFT-adjusted relative perme-
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ratio is based on the results of Rubin et al. {163] for viscous fingering in compositional problems in
homogeneous media. They suggest that the fingering is primarily controlled by the mobility ratio
across the principal shock of the analytic 1D solution. The saturations and compositions for curve
(a) of Fig. 3.19 in the 500 point 1D calculation were used to estimate the variations in Ay, the total
mobility, as indicated in Fig. 3.25. It is seen that the primary variation occurs between A; = 0.44
and \; = 2.20 giving M, ~ 5.0. A MISTRESS calculation run with this ratio, illustrated in Fig.
3.26, now gives reasonably close agreement with the MORE four-component result in Fig. 3.15.
Further examples are needed to test the generality of this equivalencing in heterogeneous problems.

3.2.4 Results with Gravity

Calculations with gravity are known to be sensitive to the effects of heterogeneity, because
of the competition between mixing processes. Mixing governs Ap and therefore controls gravity
override, but mixing also controls the viscous drive through high permeability channels, which
prevents large scale mixing and therefore modifies phase behavior. In general, we do not expect
compositional and first-contact miscible models to be compatible when gravity is important. Cases
for the same permeability models have been run for a vertical cross section, again with L/W = 3.0.
We use the definition of gravity number given by:

gM - 1)W
ApgLy[k/ g

where Ap is the density difference between injected and in-situ phases, p, is the injected gas phase
viscosity and q is the injection rate per unit area at the left boundary. We have used the arithmetic
average permeability for our heterogeneous problem. The MORE calculation with N, = 2.0 did
not show much gravity effect (contrary to what would be expected for a homogeneous problem
[66]; see also Section 4.1). However, results for Ny = 1.0 shown in Fig. 3.27 now show significant
differences from Fig. 3.16. There is a very early breakthrough caused by the thin gravity tongue
in the top layer. Using the fine grid gives much the same results, as seen in Fig. 3.28, but with
an even finer tongue. It is necessary to decrease the flow rate by another factor of 5 to give Ny, =
0.2, before gravity essentially overcomes heterogeneity (Fig. 3.29). The permeability distribution
creates asymmetry in the effective horizontal and vertical permeabilities, so that keyss/kness < 1.0.
This implies N, in Eq. 3.5 should be rescaled by, which would probably cause the rescaled N, in
the last case to move closer to 0.5, the value at which gravity override is expected to completely
overcome viscous fingering in homogeneous cross sections [66].

A first-contact miscible (FCM) calculation for the case N, = 1.0 run on MORE, illustrated
in Fig. 3.30, shows considerably less gravity override than observed in the four-component result in
Fig. 3.28. The more pronounced gravity effect arises in the immiscible case because the two phases
have different densities which give a finite segregation term in the fractional flow equation. The
density difference is largest at the small gas saturation values, which therefore gives a significant
upward dispersion appearance to the results in Fig. 3.28. We believe this is a real physical effect,
and not an artifact arising from numerical dispersion. At N, = 0.2, the FCM-calculation with
MORE shown in Fig. 3.31, is nearly dominated by gravity, but nevertheless by not quite as much
as in the four-component result in Fig. 3.29.

It would be useful to find an effective density difference, or effective vertical permeability,
for equivalencing a MISTRESS calculation with gravity effects to the equivalent MORE four-
component model. We first ran MISTRESS with trial values of Ny = 0.33 and M = 20, as illustrated
in Fig. 3.32. The gravity override is too severe and the fingers are too thin. Since M = 5.0 gave
the appropriate equivalencing of the mobility ratio in the nongravity case, the next MISTRESS
case in Fig. 3.33 was for N; = 0.33 and M = 5.0. The magnitude of gravity override is now

N, = (3.5)
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Figure 3.21: MISTRESS run with M = 20 on the fine grid (no gravity).
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Gas Saturation at output times 0.20, 0.30, 0.40, 0.45 pvi
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Figure 3.22: MISTRESS run with M = 20 on the reduced grid (no gravity).




Gas Saturation at Output Times : 0.20, 0.30, 0.40, 0.45 pvi
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Figure 3.24: MISTRESS run with M = 2.3 on the reduced grid (no gravity).
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somewhat reduced; that is decreasing the mobility ratio causes the growth rate of the gravity
tongue to be reduced in favor of the fingers caused by the heterogeneous channels. An FCM-
calculation in Fig. 3.34, run on MORE with M = 5.0, N, = 0.33, gives a result slightly closer in
appearance to the four-component model in Fig. 3.28, where the additional numerical dispersion
helps the comparison. Thus we have found an ad hoc correction to the gravity number, which when
combined with an appropriate mobility ratio, allows the FCM-calculation to essentially reproduce
the compositional behavior. In summary, for cross sections with gravity effects, this work illustrates.
that enhanced gravity segregation rates can occur with a submiscible process, particularly at the
lower gas saturations. The enhancement is of the order of a factor of three (i.e. very significant)
in the problem studied. We have not yet found a simple method for predicting this equivalencing
factor.

3.2.5 A Simple One-Dimensional Approximation for Heterogeneous Flows With-
out Gravity

We have seen that a 2D-heterogeneous MISTRESS calculation can be made to represent a
MORE 2D-heterogeneous compositional problem provided an appropriate mobility ratio is used.
This mobility ratio was chosen from the change in total mobility across the mobility front in Fig.
3.25, implying the need to perform a 1D-compositional calculation as a precursor to the 2D first-
contact miscible case. A further step in simplifying these problems can now be contemplated. The
Koval model contains the empirical parameter H, which is recommended as a measure of hetero-
geneity, to correct the effective mobility ratio M, appropriate to viscous fingering in a heterogeneous
system. The Koval fractional flow is given by

C

F=era-oymn

(3.6)

C is the average solvent concentration across any y-section of the 2D fingering pattern, and M, is
the Koval effective mobility ratio, given by

4
M, = p, (0.225%% + 0.78051/4) (3.7)

For homogeneous (H = 1.0) viscous fingering problems, Eq. 3.6 represents the average fractional
flow behavior and the consequent average C(x) profiles very well. For the submiscible problem
studied in this paper, the appropriate mobility ratios are M = § and M, = 1.512 from Eq. 3.7.
It remains to determine the appropriate value for H for our mildly heterogeneous example. Koval
recommended that H be determined by fitting to the results of a displacement calculation for the
real heterogeneity distribution, run with M = 1.0. The unit mobility problem is simpler than a
problem with M > 1.0, since the pressure solution (Laplace’s equation) has only to be determined
once. Fig. 3.35 shows MISTRESS average concentration distributions obtained for M = 1.0. These
are compared with the Koval model for M = 1.0, with a reasonable choice, H# = 1.5. This
value of H appears to give quite a good fit. Referring back to the earlier M = 5 solution with
MISTRESS in Fig. 3.26, the consequent plots of C(z) and the Koval model with H = 1.5 and M,
= 1.512 are compared in Fig. 3.36. Equally good results are also obtained for M = 20, and higher
mobility ratios. The need for an explicit M = 1 solution to determine an appropriate value of H
could be avoided if there were some simple rule or correlation for calculating this quantity. Koval
recommended use of a correlation graph, which is fitted by the equation

Vop
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At 0.20, 0.30, 0.40, 0.45, M = 05 MISTRESS, No Trig. Log-Nor Perm. 128x64.

Figure 3.26:

MISTRESS run with M = 5 on the fine grid (no gravity).
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Figure 3.27: MORE four-component run on the reduced grid (N, = 1).
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Gas Saturation at Output Times : 0.20, 0.30, 0.40, 0.45 pvi
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Figure 3.28: MORE four-component run on the fine grid (N, = 1).
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Figure 3.29: MORE four-component run on the reduced grid (N, = 0.2).
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Figure 3.30: MORE “first-contact miscible” run (M = 20) on the fine grid (¥, = 1).
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Gas Saturation at Output Times : 0.20, 0.30, 0.40, 0.45 pvi
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Figure 3.31: MORE “first-contact miscible” run (M = 20) on the reduced grid (N, = 0.2).
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Figure 3.32: MISTRESS run with M = 20 on the fine grid (N, = 0.33).
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Figure 3.33: MISTRESS run with M = 5.0 on the fine grid (&, = 0.33).
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Gas Saturation at Output Times : 0.20, 0.30, 0.40, 0.45 pvi
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Figure 3.34: MORE “first-contact miscible” run (M = 5) on the fine grid (N, = 0.33).
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This result was largely based on studies for layered systems and for our problem would give 3.75,
which is far too large. Araktingi and Orr [6] suggested that an’important parameter is the hetero-
geneity index defined by

H; = o}, 10/ L. ‘ (3.9)

This relation gives 0.095, which is below the cut-off suggested by Araktingi and Orr for hetero-
geneities to influence fingering significantly. It seems unlikely that H will be a simple function of
H;. For example, our results are for L/W = 3.0, and it is known that viscous fingering behavior is
dependent on this ratio, and it will also depend on o /W, the dimensionless transverse correlation
length.

3.2.6 Conclusions

The following conclusions apply to our results for 2 “mildly” heterogeneous problem, al-
though other examples of heterogeneity would need to be studied:

'(i) A multicomponent compositional calculation in a heterogeneous medium can be adequately
represented by phase behavior from relatively few components (in the range 4-6).

(ii) A compositional simulator without special differencing methods [12] operated in a first-contact
miscible mode, or in a multicomponent mode with straight-line relative permeabilities, will
show severe numerical dispersion at low gas saturations, although this is less pronounced
at higher saturations. When used with conventional immiscible relative permeabilities, a
multicomponent calculation appears to give acceptable dispersion errors.

(iii) Near-miscible heterogeneous problems run in a compositional framework do not appear to
give low enough interfacial tensions to justify use of modified relative permeabilities. This is
not likely to be true for capillary pressures for problems at smaller scale sizes [63].

(iv) First-contact miscible calculations run at the initial fluid mobility ratio show much more
adverse viscous fingering in a heterogeneous system than their compositional equivalent, i.e.
miscible displacement is less unstable than initial estimates may suggest.

(v) An effective mobility ratio can be found for running a nongravity heterogeneous problem in
a first-contact miscible mode. This mobility ratio is given by the shock front change in total
mobility from an accurate 1D-solution.

(vi) The first-contact miscible solution for the nongravity heterogeneous problem is well repre-
sented by a Koval model with H chosen from the M = 1 solution. Better understanding is
needed of the factors which control H.

(vii) Heterogeneities interact strongly with gravity segregation and reduce the magnitude of the
latter. Increasing the mobility ratio increases the gravity override for a constant gravity
number.
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4. Modeling Multiphase Flow in Heterogeneous
Media Using a Streamline/Streamtube Technique

The results of Chapter 3, along with the work of a variety of investigators [6, 134, 181, 179,
24,192, 170} indicate that in many flow situations, the spatial distribution of permeability dominates
the flow. Low viscosity injected fluid follows preferential flow paths created by heterogeneities rather
than forming viscous fingers.

The particle-tracking method employed in Chapter 3 is an efficient way to explore the tran-
sition from viscous-dominated to permeability-dominated flow, but it is not suitable for multiphase
flow problems because it does not capture the behavior of shocks that form when dispersion has
small effect (see Chapter 2). In this chapter we explore use of related methods that make use
of streamtubes and streamlines to create very fast simulation techniques for multiphase flow in
heterogeneous systems. In Section 4.1 we consider single- and two-phase flow in two-dimensional
heterogeneous porous media. Section 4.2 extends the approach to consider the kind of compo-
sitional displacements studied for one-dimensional flow in Chapter 2. Section 4.3 shows how to
extend these ideas to three-dimensional flows.

The simulation approach outlined in this chapter has great promise because it is orders
of magnitude faster than conventional simulations, and it is not subject to large errors due to
numerical dispersion. It works best when the flow is dominated by the permeability distribution.
The most important limitation is the restriction to processes in which gravity forces have limited
effect. Research to remove that limitation is underway.

4.1 Modeling Flow in Heterogeneous Media Using Streamtubes:
I. Miscible and Immiscible Displacements

M. R. Thiele, M. J. Blunt, and F. M. Orr, Jr.

The primary objective of the streamtube approach is to enable fast and accurate numerical
solutions for displacements through heterogeneous systems. The fundamental assumption in our
approach is that field-scale displacements are dominated by reservoir heterogeneity; flow paths are
governed by the permeability distribution, while the fluid composition along these fiow paths is
similar to that seen in an equivalent one-dimensional displacement.

The motivation for this research originated from recent advances in the one-dimensional
theory of multicomponent, two-phase, compositional displacements [104, 46, 148] (see Chapter 2)
and a desire to extend these solutions to two-dimensional heterogeneous systems. Motivation for
a fast numerical technique was also sparked by the now established statistical methods used in
reservoir description [44]. It is possible to generate many equiprobable geostatistical realizations
of a reservoir having several million gridblocks, conditioned possibly on log data, core analysis,
and seismic data. However, simulation of multiphase displacements using conventional numerical
models is limited to a few simulations on systems containing around half a million gridblocks or
less for first-contact miscible displacements [180, 34, 31], and only around ten thousand gridblocks
for compositional displacements [15, 27]. Estimating recovery from hundreds of detailed reservoir
models to obtain a statistical spread in cumulative oil recovery is beyond current computational
capabilities, forcing either the use of upscaling techniques [113, 114] or rapid but approximate
solution techniques that adequately represent the dominant displacement process.
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In this work, we explore the use of a streamtube method as an approximate but rapid and
efficient solution technique to model multiphase flow in heterogeneous media. Streamlines and
streamtubes have been used extensively in the past to model displacements in regular and irregular
well patterns. Important contributions are from Higgins and Leighton [85, 86], Higgins et al. [87],
Parsons [152], Martin and Wegner [126], Bommer and Schechter [20], Lake et al. [117], Emanuel
et al. [56], and Hewett and Behrens [84]. A successful use of streamtubes has been demonstrated
by Emanuel et al. [56], in which a conventional finite-difference simulator was used to compute
the average fractional flow and total mobility for a representative, heterogeneous cross section as
suggested by Lake et al. [117]. The one-dimensional solution resulting from the average fractional
flow was then mapped along fixed streamtubes representing flow paths for a complex well pattern
in an areal heterogeneous system. To account for the changing mobility field, the flux along each
streamtube was varied in proportion to the total resistance of each streamtube [85, 86], but the
streamtubes were fixed in time. This method reliably reproduced field performance in nine cases,
including a CO4 displacement.

In our work we use a different approach [183, 185): the streamtubes are no longer fixed
in time, but are recalculated periodically, thereby capturing the change in the flow field that can
result due to large mobility contrasts. Fixed streamtubes can sometimes overestimate recovery
and fail to represent adequately the changing velocity field. Although periodically updating the
streamtubes allows representation of the inherent nonlinearity of the velocity field, it does introduce
a difficulty concerning arbitrary initial conditions along streamtubes when moving one-dimensional
solutions forward in time. No analytical solutions exist for such general, one-dimensional conser-
vation problems, and solutions could only be constructed using a numerical approach [20] or a
front-tracking approach along streamtubes [166, 47, 78, 22]. We propose a simplified method: for
any new timestep, tp + Atp, the solution along a streamtube is always found by using the same
one-dimensional solution, which is known at the start of the displacement for all times and which
was found using fixed initial conditions. This is an approximation that some of the initial conditions
found along a streamtube at a particular time ¢{p may be different. Thus, our approach is different
from a rigorous timestepping algorithm that would require to move a given concentration forward
in time by considering its position at time ¢p and using the local velocity for determining its new
position at time fp + Atp. But the appeal of our approach is given by the possibility of combining
periodically changing streamtubes with any one-dimensional solution that can be determined a
priori to estimate the performance of a displacement through a heterogeneous system. Although
our method clearly involves assumptions in generating a solution, we will show that the error in-
troduced by these assumptions is small and considerably less than the uncertainty introduced by
the geostatistical description of the reservoir.

The streamtube approach is meant to solve problems that are dominated by reservoir het-
erogeneity and convective forces. We only consider cross-sectional problems with constant initial
and injected conditions (Riemann boundary conditions) without gravity. Furthermore, the one-
dimensional nature of the streamtubes requires the assumption that transverse flow mechanisms
(normal to the streamtube boundaries) be of negligible importance. The extension of the stream-
tube method as described in this paper to three dimensions with gravity and transverse diffusion
is the subject of ongoing research.

4,1.1 The Mathematics of Streamtubes

Streamtubes can be found by solving directly for the streamfunction using [10]

g [10¥ Jd (/10v¥
7 (X‘a—) +ay ocay) =0 (1)
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Figure 4.1: Possible boundary conditions of the streamfunction ¥.

where A; and Ay are the total mobilities in the z and y directions given by

NP . NP .
PV oYL ARV o . .. (4.2)

j=1 Hi =1 Hi

J is the phase index, IV, is the total number of phases present, k, and k, are the absolute permeabil-
ities in the x and y directions, respectively, .; is the phase relative permeability, and ; is the phase
viscosity. For cross-sectional domains the boundary conditions for Eq. 4.1 are particularly easy to
formulate (Fig. 4.1), since the flowrate between two streamlines is simply given by the difference
in value of the streamfunction associated with each streamline. Since the top and bottom no-flow
boundaries are themselves streamlines, the difference in the value of the streamfunction between
the two must equal the total flowrate. An obvious choice then is to set the bottom boundary to
¥ =0 and the top boundary to ¥ = Qa1 (clearly, the opposite choice is just as good). Similarly,
a uniform rate distribution along the inlet or outlet face must be given by a linear distribution of
¥ from 0 to Q¢otar- Thus,

l:Ein/out = YQtotal ; 0 < y<1l. (4.3)

To find the equivalent of a constant-pressure/total-rate boundary condition in terms of the stream-
function, it is sufficient to consider the Cauchy-Riemann equation,

1ov _ _or
Ay Oz By

A constant-pressure boundary states that gradient in the y direction must be zero. For a nonzero
coefficient A; 1 it follows that

0P ov

a—y =0 = a—x =0. (4.4)

Total flow is automatically honored by the value associated with the top and bottom limiting

streamlines. The possible boundary conditions for the the inlet and outlet ends are summarized in
Fig. 4.1. Once the streamfunction has been solved for the particular heterogeneous domain of in-
terest, streamtubes are defined by considering two adjacent streamlines. A system of N streamlines
will therefore define N — 1 streamtubes. A streamtube allows identification of slow and fast flow
regions: thick sections of a streamtube correspond to slow-flow regions (low-permeability regions),
thin sections to fast-flow regions (high-permeability regions). The heterogeneity of the system is
therefore reflected in the geometry of the streamtubes, which capture the distribution of the flow
velocity imposed by the underlying permeability field as demonstrated in Fig. 4.2.
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{a) Uniform Distribution

{b) White Noise Distribution

Figure 4.2: Streamtube geometries as a function of reservoir heterogeneity.

4.1.2 Stream Tubes as 1D Systems

The key idea in using streamtubes to model two-dimensional displacements is to treat
each streamtube as a one-dimensional system. Higgins and Leighton [85, 86] showed that in order to
map a one-dimensional solution along streamtubes, the solution must scale volumetrically. Treating
each streamtube as 2 one-dimensional system automatically associates a pore volume with it, which
must be a fraction of the total pore volume of the system. By definition, a streamtube will see
a volumetric flowrate that is given by the difference in the value of the streamfunction associated
with the bounding streamlines. Therefore, for each streamtube it is possible to use the common
form of dimensionless time given by
_ Jowdr
=7y,
where g; is the volumetric flowrate of streamtube ¢ given by the difference ¥p — ¥ 4, with the
subscripts A and B referring to the bounding streamlines, and V p is an arbitrary pore volume used
for scaling. If all streamtubes see the same AV (i.e, the streamlines are found by interpolating
using a constant AW¥), then

tp; (4.5)

N N
Q=Z%'=QZ=¢1N , (4.6)

where N is the number of streamtubes, and the dimensionless time for each streamtube can be

written as . . .
tDi = fo._qidT = fO_da = fO @ZT . (4.7)
Vp Ve NVp
Similarly, a dimensionless length can be associated with each streamtube given by
S $A:(O)d
op; = J0 $4(0)E (4.8)

Vp
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where A; is the cross-sectional area of the streamtube as a function of a one-dimensional coordinate,
¢, along a streamtube. The “best” choice for V p is clearly
—  Vm
Vp= TT , (4.9)
where Vp, is the total system pore volume and N is the number of streamtubes. In the limit of a
homogeneous system each streamtube will have a dimensionless length of zp = 1.
It is also possible to define a dimensionless velocity as

TDi _ <fos ¢Ai(C)dC) NVp\ _ N[5 ¢4i(QdC
ip; Vp f(;' Qdr fg Qdr )

The importance of Eq. 4.10 lies in the fact that solutions that scale as zp/tp can now be mapped
directly onto a streamtube simply by evaluating Eq. 4.10. Notice that Vp cancels out in Eq. 4.10,
stating that the dimensionless velocity does not depend on the choice of V p [84]. However, it is also
true that to map the solutions along the streamtubes requires explicitly defining the dimensionless
variables zp and ¢p. Thus, for actual calculation purposes a choice for Vp must be made.

vp; = (4.10)

4.1.3 Tracer Displacements

For tracer displacements the elliptic equation governing the potential flow field is de-
coupled from the mass-conservation equations. The mobility field does not change with time and
consequently the-streamtubes are fixed and need to be solved for only once. Two analytical solu-
tions can be mapped along streamtubes in the tracer case: (1) a no-diffusion solution given by an
indifferent wave traveling at unit velocity, expressed mathematically as

1 forzp<t
Cp(zp,tp) = { 0 for a:g S tg (4.11)

and (2) a convection-diffusion type solution. For a semi-infinite domain an approximate solution is
given by [118]

tp
NPe

-

Cp(zp,tp) = %erfc (Z—D—ﬂ) . (4.12)

Cp, zp, and tp have the usual definitions of dimensionless concentration, distance, and time,
and Np, is the Peclet number, a dimensionless number expressing the extent of physical diffu-
sion/dispersion in the direction of flow. The Peclet number is defined as

Npe = (4.13)

T )
where u is the total flow velocity, L is the system length, and K is the diffusion/dispersion coefficient
in the direction of flow. A velocity-dependent model is sometimes used to express the coefficient
K as [118]

K=K,+aly , (4.14)

where K,, is the molecular diffusion coefficient and « is the dispersivity of the permeable medium.
If the molecular diffusion coefficient is assumed to be small compared to the product o |u|, then
the Peclet number may be approximated as

Np. =~

Rt~

(4.15)
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Figure 4.3: Example solution for a two-dimensional heterogeneous domain ( HI = 0.3) with 250x100
gridblocks by mapping the diffusion-free tracer solution at ip = 0.3 along streamtubes.

Thus, large values of the Peclet number correspond to less diffusion/dispersion, and as the Peclet
number tends to infinity Eq. 4.12 tends to the no-diffusion solution given by Eq. 4.11. Field-scale
Peclet numbers can range from 100 to 10,000 [7].

To quantify reservoir heterogeneity, we use the heterogeneity index, HI. The heterogeneity
index originated from the work of Gelhar and Axness [73] and is defined as

HI=ot ) , (4.16)

where of ;. is the variance of the In k—field and A, is the correlation length in the main direction of
flow. The higher HI, the more heterogeneous the system is said to be. The heterogeneity index is
a better measure of reservoir heterogeneity than the Dykstra-Parsons coefficient, Vpp, because it
combines information about the variability of the permeability field (¢ ,) with information about
the correlation structure of the heterogeneity ().). The traditional Dykstra—Parson coefficient,
Vbp, can be recovered from HI by recalling that

omr = —1In(1-Vpp) . (4.17)

Even so, it is questionable whether the HI is a satisfactory parameter for quantifying the complex
geological structure of a real reservoir. In particular, it does not account for anisotropy and field
size.

An example tracer solution for a heterogeneous reservoir with 250x100 gridblocks using 50
streamtubes and the no-diffusion solution (Eq. 4.11) is shown in Fig. 4.3. The heterogeneity index
for the permeability field is HI = 0.3 and the variance is 6%, = 1. Generating the streamtube
solution in Fig. 4.3 does not involve any timestepping, as is the case for finite difference approaches.
Instead, because the dimensionless distance (Eq. 4.8) is known along each streamtube, the loca-
tion of the tracer front can be positioned immediately in each streamtube by simply finding the
zp = tp point. All points along a streamtube associated with zp < tp will see a tracer concen-
tration of Cp = 1, whereas all points associated with zp > tp will see a concentration of Cp = 0.
To generate a solution at some later time then, the streamtube approach does not move the old
front position by a Atp, but instead generates a solution for the new cumulative time tp + Atp.
Using Eq. 4.12, on the other hand, allows the addition of physical longitudinal diffusion. Example
solutions at tp = 0.3 for three Peclet numbers (Npe — o0, Np, = 1000, and Np, = 100) are
shown in Fig. 4.4. It is important to realize that using Eq. 4.12 along streamtubes does not account
for transverse diffusion, but only for longitudinal diffusion. On the other hand, in the streamtube
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STREAMTUBES - Np, = infinity

TREAMTUBES - Np, = 1000

TREAMTUBES - Np, = 100

-

Figure 4.4: Including physical diffusion in a M=1 displacement by mapping the CD equation along
200 streamtubes at tp = 0.3. Examples for Np, — o0, Np, = 1000, and Np, = 100.

approach longitudinal diffusion is truly specified along the total velocity vector, which is different
from traditional simulation which specifies diffusion coefficients along the Cartesian directions of
the underlying grid.

Mapping a CD-solution along field-scale streamtubes can be interpreted as an attempt
to capture sub-tube heterogenecities by specifying an appropriate Peclet number. As such, it
represents a nested approach to modeling heterogeneities that dominate at different scale: the
streamtubes capture the large-scale heterogeneities of the reservoir, while the CD-solution models
sub-gridblock/sub-streamtube features.

4.1.4 Numerical Diffusion

Mapping analytical solutions, such as Eq. 4.11 or Eq. 4.12, onto streamtubes results in two-
dimensional solutions that are completely devoid of numerical diffusion. Streamtube solutions can
therefore be used to quantify the extent of numerical diffusion in other numerical solutions obtained
using finite-differences or finite-elements. An example of such a comparison is given in Fig. 4.5,
which shows the tracer solution without physical diffusion at ¢{p = 0.3 compared to solutions
with no physical diffusion (but some numerical diffusion) obtained using a BP research code with
flux-corrected transport [33] (using a Courant-Friedrichs—Lewy number of 0.2) and Eclipse [94], a
commercially available finite-difference reservoir simulator with single-point upstream weighting.
As the number of streamtubes increases, the streamtube solution converges to the exact limiting
solution for the no-diffusion case and can therefore be used to calculate the spatial error,

AC’err =| C(.’E, y)Stubes - C((B, y)FD l ’ (418)

where the subscript FD stands for finite-difference. A spatial rendering of ACer is shown in Fig. 4.5,
which demonstrates that numerical solutions are clearly affected by numerical diffusion, although
the basic flow pattern dictated by the permeability field is the same in all cases. The reason for
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Figure 4.5: Comparison of concentration profiles and spatial error distribution showing extent of
numerical diffusion in finite-difference simulators. Streamtube method versus a BP research code
with flux-corrected transport (FCT) and Eclipse, 2 commercially available reservoir simulator with
single-point upstream weighting and automatic timestep selection.

this, of course, is that for the tracer case the flow velocity is fixed in time and thus is unaffected
by any level of diffusion/dispersion.

4.1.5 Immiscible Displacements

The one-dimensional, two-phase immiscible problem, also known as the Buckley-Leverett
problem, is well documented in the petroleum literature [26, 38, 118] and is generally presented in
its dimensionless form, o5 of

w w
Dw | Gw _ ¢ 4.
dtp  Ozp ( 19)
where ip = tu;/$L and zp = z/L are the usual definitions of dimensionless time and distance,
respectively, u; is the total (constant) Darcy velocity given by u; = uw + %o, and fy, is the fractional
flow of water given by

Uy 1
- = i 4.20
fu Uy + U 14 Eeotie e (4.20)

kroy Krw, o, and j,, are the relative permeabilities and viscosities of oil and water as indicated by
the subscripts. The solution to Eq. 4.19, subject to the Riemann conditions

- Sy forzp <0

where the subscripts ! and 7 refer to the left and right constant states of the discontinuity at
zp = 0, can be found easily using the method of characteristics [203, 123]. An example solution
for a two-phase problem with an endpoint mobility ratio of 10 is shown in Fig. 4.6. Depending on
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08F

06F

Saturation, Sy

04F

Fractional Flow/Rel. Perm.

02F

00 blwreltin e Lisvsraeas [FERTTTTeN e, X
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 2.5

Saturation, Sy, Dimensionless Velocity, xp/tp

Figure 4.6: Relative permeability curves (kro = 52 | kyo = §2), corresponding fractional flow
function for a viscosity ratio of 10 (o/pw = 10), and BL analytical solution used for testing the
new streamtube approach. The mobility ratio at the shock front is Mook = 1.36.

the shape of the fractional flow curve, fu,, the solution can contain rarefaction waves and/or shocks
[118].

The Higgins and Leighton Method. The streamtube approach originally proposed by Higgins
and Leighton [85, 86, 87], and subsequently used and extended by many investigators [152, 126,
20, 117, 56, 84], centers on capturing the nonlinear behavior of the displacement by keeping the
streamtube fixed but allocating the total flow into each streamtube in proportion to the total flow
resistance as it changes with time. For areal problems, the Higgins and Leighton method has
been shown to give good approximation of recovery for both homogeneous domains [48, 126] and
heterogeneous domains [56, 129]. The total resistance along a streamtube ¢ is given by

N S S
Ri= | AOMO °

where S is the total length of each streamtube (not to be confused with zp, the dimensionless pore
volume coordinate along a streamtube defined by Eq. 4.8) and A; is the total mobility. At any
instant in time, the flow is then allocated in proportion to [84]

(4.22)

Ry
5. 4.23
5 (423)
where Rr is given by
1_§°L (4:24)
'RT =1 R’ . .

Unlike finding the dimensionless pore volume along a streamtube using Eq. 4.8 — which is all that
is required to map one-dimensional Riemann solutions along periodically changing streamtubes and
is easily determined — evaluating the integral in Eq. 4.22 is more difficult. The reason is that to
calculate R; the product A(C)k((), where k() is the absolute permeability, must be determined
along the streamline coordinate, (. For a general heterogeneous domain, in which the permeability
field is specified by k, and k, components on a regular Cartesian grid, finding the directional
permeability k({) becomes a nontrivial exercise. Furthermore, if the streamtube encompasses more
than one gridblock, then k(() should really be an average of the directional permeabilities along
A(¢). Finding the area, A((), is easier than finding k((), but must be approximated as well.
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Thus, the product A(¢)k({) may involve a substantial error, which is then integrated along ¢ using
Eq. 4.22 to find R;.

To find a two-dimensional solution using the Higgins and Leighton method then, the one-

dimensional Buckley-Leverett solution shown in Fig. 4.6 is mapped along a (fixed) streamtube, with
the total flux apportioned over time to each streamtube changing according to Eq. 4.23. In other
words, each streamtube no longer sees the same volumetric rate. Figure 4.7 compares recoveries
for the Higgins and Leighton method to recoveries found using Eclipse. Although the Higgins and
Leighton method returns acceptable recoveries, the difficulty it has in capturing breakthrough time
correctly with increasing mobility ratio suggests a weakness of the method in trying to model the
changing velocity field (Fig. 4.8) with fixed streamtubes. Although acceptable in the immiscible
case, the error can be substantial for strongly nonlinear first-contact miscible and compositional
displacements, as we will show.
A New Streamtube Approach. The principal difference in our approach from that of Higgins
and Leighton and other investigators lies in combining periodically changing streamtubes with one-
dimensional solutions that are previously known. The solution along a streamtube for a new time
level ip + Atp is not given by considering the initial conditions along the streamtube at time p,
solving the one-dimensional problem with these conditions, and timestepping from ip to tp + Atp.
Instead, we always use the same one-dimensional solution and simply go from 0 to ¢p + Atp along
an updated streamtube. In other words, our approach centers on treating each streamtube as a true
one-dimensional system on which the Buckley-Leverett solution, for example, is mapped repeatedly
for different times, even though the streamtubes are updated periodically.

The motivation for this new approach came from the desire to capture the changing velocity

field in multiphase flow while retaining the detailed representation of the physics of flow embedded
in one-dimensional analytical solutions. Updating the streamtubes is an appealing solution because
the changing streamtubes reflect the nonlinearity of the problem, while the original definition of
a streamtube as carrying a volumetric rate equal to the difference in the values of its bounding
streamlines is maintained. However, as mentioned in the introduction, updating the streamtubes
poses one problem related to the initial conditions associated with each streamtube: each time a
streamtube is updated, the initial conditions along the new streamtube will not correspond exactly
to the initial conditions along the old streamtube. The resulting (hyperbolic) problem that must
be solved in order to move the solution forward in time correctly by a Atp along each streamtube
is therefore one with general type initial conditions, which in general can be solved only by (a)
using a standard one-dimensional finite-difference solution along each streamtube {20], or (b) by
using a moving interface, front-tracking algorithm [127, 126, 159, 166, 47, 78, 22]. We side-step
the problem of general initial conditions that arises with streamtube updating by choosing to use
the same one-dimensional solution for all times. Although our approach involves an assumption in
terms of how it moves a two-dimensional solution forward in time, we show that the resulting error
is small and largely offset by the lack of numerical diffusion, increased speed, ability to capture the
changing velocity field as well as the uncertainty in the geological description.
Validation. We tested our approach by the following numerical experiment. The saturation and
velocity fields of a standard finite-difference simulator [94] were stored at regular increments of
dimensionless time. From each velocity field, the corresponding streamtubes were then constructed
and used to find the saturation profiles by mapping a Buckley-Leverett solution along the stream-
tubes for that particular time, fp. The saturation profiles obtained by this method were then
compared to the saturation profiles obtained by the new streamtube approach we propose here.

The Buckley-Leverett solution used in the numerical experiment is shown in Fig. 4.6. Notice
that although the endpoint mobility ratio is 10, the shock—front mobility ratio is only 1.36, leading
to a more stable displacement than suggested by the endpoint value alone. This is generally true
for many waterfloods with reasonable relative permeability curves: the frontal mobility ratio is of
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Figure 4.7: Comparison of recovery curves found using Eclipse and the Higgins and Leighton
method. The same permeability field as the one used in Fig. 4.3 was used here.

Figure 4.8: Streamtube geometries at different times for the A = 10 displacement.
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order 1 even though the endpoint can be of order 10 or 100, leading to a weak nonlinearity in the
total velocity.

Figure 4.9 displays example solutions at tp = 0.2 and ¢{p = 0.4. The upper row shows
saturation maps obtained directly from Eclipse; the middle row shows maps obtained using the
velocity from Eclipse but mapping the one-dimensional solution as in our approach; and the last
row shows profiles obtained by using the new streamtube approach only. As demonstrated in
Fig. 4.9, the solution found using our method agrees well with the mixed solution found using
Eclipse. Both solutions have no numerical diffusion because an analytical one-dimensional solution
is used along the streamtubes. A direct comparison of the saturation maps (Fig. 4.9), as well as the
integrated response (Fig. 4.10), demonstrates that the difference between the two solutions (Eclipse
velocity field + 1D solution and our approach) is indeed small. In fact, it is interesting to note
that numerical diffusion causes a larger difference in recovery than the approximation introduced
by the new streamtube approach. This conclusion can be drawn from the fact that the velocity
fields for the Eclipse solution and the mixed method are identical, and therefore the difference must
be attributed to numerical diffusion. This numerical experiment suggests that the error is indeed
small compared to traditional finite-difference solutions, and in particular, numerical diffusion is
shown to cause larger errors than the assumptions in our method.

Recovery curves using different endpoint mobility ratios are compared to recoveries found

using Eclipse in Fig. 4.11. Compared to the Higgins and Leighton approach, breakthrough is
now predicted correctly in all cases, clearly demonstrating that the nonlinearity of the problem is
captured by updating the streamtubes. The improvement compared to the Higgins and Leighton
method for the M=40 case (Fig. 4.7) is substantial.
Convergence for Immiscible Displacements. In the streamtube approach there is no dis-
cretization of the conservation equations, and therefore there is no Courant-Friedrichs-Lewy (CFL)
[123] condition to worry about. Instead, the question of how many times the streamtubes must be
updated to consider the solution converged arises naturally and is addressed by solving a problem
repeatedly with an increasing number of streamtube updates over a fixed period of time. We con-
sider the problem converged when the recovery curve no longer changes with increasing number of
streamtube updates. Recovery curves for 1, 10, 20, 40, and 100 streamtube updates over two pore
volumes injected are shown in Fig. 4.12. Oanly 20 solves are sufficient to consider the problem
converged. With 20 updates, the new approach represents a reduction in computation time by two
orders of magnitude compared to the thousands of solves needed by a traditional finite-difference
simulator like Eclipse. For this particular problem (Menq = 10), Eclipse required 1,600 solves,
which translates into a speed-up of 8,000% .

4.1.6 First-Contact Miscible Displacements

Unstable first-contact miscible (FCM) displacements in heterogeneous systems have been
studied by many authors [6, 34, 192, 180]. The strong interest in unstable FCM displacements
is motivated principally by the possibility of learning more about displacements that are near-
miscible, such as natural-gas and carbon-dioxide flooding. The assumptions used in FCM flow
isolate the convective part of the displacement problem from any phase-behavior considerations and
allow study of the interaction of reservoir heterogeneity with the nonlinearity of the velocity field.
Although the absence of any phase-behavior and multiphase flow aspects simplifies the physics, it
does enhance the nonlinearity of the problem. Diffusive mechanisms, such as molecular diffusion
and pore-scale mixing, are the only physical mechanisms available to mitigate the original mobility
contrast. As a result, FCM displacements are very challenging to simulate numerically and are
far more difficult than two-phase immiscible problems. High mobility contrasts lead to extreme
velocity variations and sufficient gridblocks must be used to ensure that numerical diffusion is as
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Figure 4.9: Saturation maps at times fp = 0.2 and ¢p = 0.4. From top to bottom: profiles obtained
directly from Eclipse; profiles obtained by using the velocity field from Eclipse but mapping a
Riemann solution along streamtubes; profiles obtained by the method propased in this work.

06

5 0SE
2 -
z £tz
= 04f
> -
o] -
[&) N
@ 3
C o3fF
1 o
[77] -
o o
g E
c o
j X
£ : ECLIPSE
o 01 /0 e ECLIPSE+Riemann Solution
-/ - Streamtubes+Riemann Solution
0.0 _.||..||
0.0 0.2 0.4 0.6 0.8 1.0

Dimensionless Time, tp

Figure 4.10: Recovery curves for the three different solution methods used to generate the profiles
in Fig. 4.9.

120




1.0

: . Streamtubes Mend=1...
- Eclipse ._,...---"“'
08 [ 2> Mena=3
C’g_ E ond=5.
=z o
> 3 Meng=10
2 5
2 06F
0 n
5] "
% — Meng=40
[7:] -
Q -
c 04[
2 -
& -
@ -
5] o
E -
D -
0.2
o,o lll'lll'lIl'lllllllIIIl'llllllllllllllI
0.0 0.4 0.8 1.2 1.6 2.0

Dimensionless Time, {p
Figure 4.11: Comparison of recovery curves found using Eclipse and the new streamtube approach
suggested here. The agreement is superior to that obtained by the Higgins and Leighton method
shown in Fig. 4.7.

1.0
; ---------- 1 Solve
F ———— 10 Solves Mens=1
R - 20 Solves
- e 40 Solves =
08| 100 Solves /% Denes
2 Denfe
-4 A e
é’, : " Mend—_lg----'
S o ':’ ----------------------
3 06[ L
<} o s
@ C A P
c Mang=40._..
7] o s =l
Q9 - . -;‘;';-;-; =
7 - 2
5 N e
E | [P
a8 -
021
o-o-ll||Il||lllllll|||llll"l'l‘l!ll"'I"'
0.0 04 0.8 1.2 16 2,0

Dimensionless Time, tp
Figure 4.12: Recovery curves for 1, 10, 20, 40, and 100 streamtube updates over two pore volumes
injected (¢p = 2), showing that the problem can be considered converged if more than 20 updates
are used.

121




close as possible to representing true physical diffusion at the gridblock scale. Physically meaningful
simulations of FCM displacements require substantial computer resources [180].

1D Viscous Fingering Solutions. Unlike the two-phase immiscible problem, the ideal miscible
case has a subtle one-dimensional solution. The solution to the governing PDE (with no diffusion),

dCp , Cp _
o + 92p 0, (4.25)
with initial data of the type
)1 forzp<0
Cp(ep,0) = { 0 forzp>0 "’ (4.26)

where Cp is a normalized concentration, gives rise to an indifferent wave solution traveling at unit
velocity (as for the tracer case). For favorable mobility ratios (M < 1), the physical solution is in-
deed a wave traveling at unit velocity, although the wave is no longer indifferent but self-sharpening.
For unfavorable mobility ratios, on the other hand, the solution to Eq. 4.25 is misleading because
it still gives a piston-like displacement, when the system is in fact unstable. The problem, of
course, is that the displacement model given by Eq. 4.25 is unable to distinguish between stable
and unstable displacements since it is linear; by not having concentration dependent coefficients,
the solution cannot account for any viscosity-induced mobility contrast as a function of zp and ¢p.
Furthermore, Eq. 4.25 has no characteristic length scale, resulting in a sharp, but unstable front
at all length scales and for all times. A physically meaningful solution, on the other hand, would
require some cut-off length scale across which the frontal instability is mitigated.

Although adding a cut-off length scale can be done mathematically by retaining a second-
order diffusion term, implying that the cut-off length scale is given by the diffusive length scale
associated with Npe, it is unlikely that at the field scale molecular diffusion and pore level mix-
ing are first-order type physical processes that mitigate instabilities. Convective mixing at the
macroscale, such as viscous fingering and channeling, are probably more important. To account
for such phenomena in an averaged, one-dimensional sense, an analogy to two-phase flow was first
proposed by Koval [116]. In the Koval model, straight-line relative permeabilities and a quarter-
power mixing rule are combined to define a flux function f(Cp) that models convective mixing of
the fluids. The governing PDE for Koval’s model is

6Cp | 9f(Co) _,

9o T dap ’ (427)
where f(Cp) is given by
1
D eff
Mg is the effective mobility ratio defined as
4
Meg = (0.78 +0.22MY/4) ", (4.29)

and M = po/ps is the usual definition of the mobility ratio for FCM flow. Koval’s original model
also includes a heterogeneity factor H. This factor has been set to H = 1 (homogeneous), since
the model is used along homogeneous, one-dimensional streamtubes.

A similar one-dimensional model is the Todd-Longstaff formulation. The Todd-Longstaff
model [186] includes Koval’s model as a special case and is a single-parameter function given by

f(Cp) = — . (4.30)
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Figure 4.13: Fractional flow curves and corresponding velocity profiles for M = 10 and different
values of w in the Todd-Longstaff model.

By choosing w as

In (0.78 + 0.22M1/4)

w=1-4 i ) (4.31)

the Todd-Longstaff model is equivalent to Koval’s model [186]. As shown in Fig. 4.13, settingw = 1
gives the piston-like, no-diffusion solution, while w = 0 returns the equivalent two-phase problem
using straight-line relative permeabilities.

Two-Dimensional Solutions. Fig. 4.14 shows example M = 10 solutions through several cross
sections with 250x100 blocks and varying degree of heterogeneity at tp = 0.4. The left column shows
concentration maps found using the streamtube method, while the right column shows reference
solutions found using a finite-difference simulator with flux-corrected transport (FCT) [33]. A
value of w = 0.725 is used (equivalent to Koval’s model) to capture the viscous-fingering-induced
mixing along each streamtube. This value of w was chosen so that the method would yield the
correct recovery for the limiting homogeneous case. However, we found the solutions to be only
a weak functions of w, with values between 0.5 to 0.8 resulting in almost identical recoveries and
concentration maps for the heterogeneous cases we studied.

Figure 4.14 shows that the streamtube approach is able to capture the same large-scale dis-
placement features seen in the FCT solutions. One interesting question raised by the comparisons is
whether the streamtube solutions and the reference solutions are indeed on the same scale. All FCT
solutions have some viscous fingering features, whereas all the fingering in the streamtube solutions
is assumed to take place within the streamtubes and captured in an averaged one-dimensional
sense. As such, the streamtube technique, as for the CD solution, represents a nested approach to
modeling displacements through heterogeneous systems: the streamtubes capture the large scale
channels, while the 1D solution captures the viscous fingering taking place within these channels.

Total recoveries for the six different permeability distributions are summarized in Fig. 4.15.
The recovery for the very short correlation length system (PERM 5) is expected to be good, since it
amounts to the recovery predicted by the one-dimensional Koval solution. For the other cases, the
recovery curves tell an interesting story, particularly for the permeability fields with a heterogeneity
index of HI = 0.0625 (PERM 2) and HI = 0.64 (PERM 3).

The PERM 2 permeability field has a correlation length of A, = 0.25, but only a standard
deviation of 01, = 0.5. In other words, the system is only mildly heterogeneous and although
there are preferential flow channels, the streamtube solution sees a rather homogeneous reservoir.
The FCT solution, on the other hand, allows fingers to grow along these channels. The predicted
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Figure 4.14: Concentration maps for M = 10 displacements in six different, 250x100-block hetero-
geneous reservoirs at ip = 0.4
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Figure 4.15: Recovery curves for the displacements shown in Fig. 4.14.
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recoveries are, accordingly, higher for the more homogeneous streamtube solution and lower for the
viscous-fingering-dominated FCT solution. This identifies a flow regime for which the streamtube
approach probably fails to capture the dominant displacement mechanism: field-scale fingering
induced by a mildly heterogeneous system.

The much more heterogeneous PERM 3 case, on the other hand, behaves quite differently.
Heterogeneity clearly dominates the flow in this displacement, which the streamtube method is able
to capture. The FCT solution also resolves the heterogeneity, but the flow channels are thicker,
probably due to some transverse numerical diffusion as well as finger coalescence, inducing sufficient
mixing to lower the mobility contrast. As a result, the recoveries for the FCT solution are higher
than for the streamtube solution. It is worth pointing out that PERM 3 is a difficult permeability
field to use for simulation and, in fact, the FCT simulation had some numerical difficulties due to
the extreme permeability contrasts, causing the run time to exceed 14,000 Cray seconds, which was
set as cap for all simulations. In the remaining cases, the streamtube and FCT recoveries match,
demonstrating the ability of the streamtube approach to capture overall recovery and the main
displacement features.

As in the two-phase immiscible case, an alternative to updating the streamtubes to capture

the nonlinearity of the displacement is to keep the streamtubes fixed and allocate the flow according
to the total flow resistance of each streamtube. Although the Higgins and Leighton approach gave
reasonably good recovery curves in the immiscible case, the error in breakthrough time is much
more significant for FCM flow because of the stronger nonlinearity of the formulation, as shown
in Fig. 4.16. King et al[111] modified the Higgins and Leighton approach and found “boost”
factors for each streamline by calculating the total flow resistance as an integration from the inlet
to the isobar located at the tip of the leading finger, rather than using the total length of the
streamline from inlet to outlet as required in Eq. 4.22. King et al. realized that at early times the
resistance, R;, would be dominated by the unswept part of the streamtube, thus underestimating
the nonlinearity of the displacement. Although the placement of an isobar at the leading finger
is a clever way to reduce the influence of the unswept region on flow resistance, and may be an
alternative to the Higgins and Leighton method, it clearly has some problems as well. For example,
it may be difficult to pick the correct leading finger at early times; choosing the wrong finger will
cause convergence to the wrong solution, because it will force the smallest flow resistance on the
chosen finger and allow it to grow the fastest. The problem could possibly be corrected by using
an isobar that is removed from the leading finger by some appropriate length (although that in
turn raises the question by how much to remove the isobar from the leading finger). It is worth
noting that the difficulties found by King et al. were anticipated by Martin et al. [127], who found
that immiscible displacement with favorable mobility ratios (i.e., piston-like displacements with
a mobility discontinuity) was not predicted as well as unfavorable mobility ratio displacement by
using fixed streamtubes.
Convergence for FCM Displacements. As was mentioned previously, the streamtube approach
does not have the equivalent of a CFL condition: there is no numerical limitation to the size of the
timestep and the solution is always numerically stable. We consider a solution converged when the
overall recovery does not change with increasing number of updates over a fixed time interval.

All the solutions presented so far implicitly used ”sufficient” updates for a converged solu-
tion. Figure 4.17 shows overall recoveries as a function of mobility ratio and number of streamtube
updates for one of the permeability fields used (PERM 11) in Fig. 4.14. In both cases, the solution
can be considered converged by using between 40 and 100 streamtube updates over two pore vol-
umes injected. In fact, the big difference in recovery occurs by going from a single solve (tracer case)
to 10 streamtube updates. Even by using only 20 updates an acceptable solution can be obtained,
with breakthrough being predicted correctly. Compared to the many thousands of pressure solves
required by a traditional numerical formulation, the speed-up in finding the solution is by two to
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Figure 4.16: Comparison of recovery curves for a FCM displacement with M = 10 found using a
FCT finite-difference simulator and the Higgins and Leighton method. The underlying permeability
field has 250x100 gridblocks.
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Figure 4.17: Convergence of the 2D solution for the ideal miscible case for endpoint mobility
ratios of 5 and 10 over two pore volumes injected. The permeability has 250x100 gridblocks with
HI=0.3, ) =0.3, and oy, = 1.

three orders of magnitude. Herein lies the great advantage of the streamtube approach: although
it makes assumptions in generating the two-dimensional solutions and does not capture the sub-
tleties of viscous fingering, it is able to find solutions that contain all the main features imposed
by the large-scale heterogeneity and return accurate overall recoveries, particularly breakthrough
times, using orders of magnitude less CPU time than a traditional finite-difference or finite-element
approach.

4.1.7 Applications

The real power of the streamtube approach lies in its ability to produce solutions that cap-
ture the main features imposed by the underlying permeability field while using orders of magnitude
less CPU time than traditional simulation techniques. Its strength is not in resolving the details
of the displacements, although the control on numerical diffusion may suggest it, but in being able
to produce accurate recoveries very quickly. As such, it is ideally suited for a statistical approach
to reservoir forecasting. A large number of statistically identical permeability realizations can be
processed to generate a spread in recovery for a particular combination of reservoir geology and
displacement mechanisms. The streamtube approach may also be used as a filter: permeability
fields that returned the maximum and minimum recoveries can be singled out and used in a much
more expensive finite-difference simulation to confirm the spread in recovery.

The speed of the streamtube approach can be used in many ways, but becomes particularly
appealing when the parameter space of interest includes reservoir heterogeneity, in which case many
simulations are required to obtain a statistically meaningful answer. An example of a parameter
space that has received considerable attention recently [180, 6, 192] has been in the area of unstable
displacements through heterogeneous systems. In its simplest representation, the parameter space is
given by the endpoint mobility ratio (instability) and heterogeneity index (heterogeneity), although
HI is clearly not a completely satisfactory parameter for quantifying the complex geologic structure
of a real reservoir. Nevertheless, HI can give some indication of the degree of heterogeneity of
the reservoir, particularly if it is used in a statistical sense. An example sweep of the parameter
space is shown in Fig. 4.18. There are 30 recovery curves for each of the six M-H I pairs. Mobility
ratio increases from left to right and heterogeneity increases from top to bottom. All underlying
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Figure 4.18: 180 recovery curves used in an example sweep of the M-HI parameter space to
illustrate how nonlinearity and heterogeneity interact.
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permeability fields have 125x50 gridblocks.

Fig. 4.18 is particularly interesting in that it quantifies how nonlinearity in the velocity field
and heterogeneity interact, but does so statistically, rather than using a single recovery for each
case. As a result, the weakness of HI as a parameter is traded for a more convincing spread in
recovery given by the 30 curves for each case. Some interesting observations may be made from
Fig. 4.18: (a) nonlinearity and reservoir heterogeneity interact to create a spread in recovery that
increases with increasing mobility ratio and increasing heterogeneity; (b) of the two parameters,
heterogeneity is clearly the dominant factor in establishing recovery; and (c) recovery envelopes
partially overlap from one case to the next. A higher heterogeneity index or mobility ratio does not
automatically lead to lower recoveries compared to a system with lower heterogeneity or mobility
ratio, although on average this conclusion does hold. For example, an (M = 5,HI = 0.86) pair
exists that will return a higher recovery than an (M = 10,HI = 0.86) pair.

Generating the 180 recoveries of Fig. 4.19 would have taken a prohibitively long time with
a traditional finite-difference approach. Instead, if the streamtube approach is used as a filter for
the 180 images, the number of solutions required to establish firmly the spread in recoveries is just
six — two per case — as is shown in Fig. 4.19.

4.1.8 Limitations of the Streamtube Approach

As with all numerical techniques, the streamtube approach presented here has its limita-
tions. The most serious limitation arises from using the same one-dimensional solution for all times.
If a representative one-dimensional solution does not exist, then our approach, in its present form,
is clearly not applicable. This may occur for domains that have non-constant initial conditions,
problems with flow reversal, gravity-dominated displacements, or problems in which the boundary
conditions change with time. In an areal domain, for example, where wells are routinely shut in,
new infill wells are introduced, and flow rates vary, a one-dimensional solution that can be used for
all the streamtubes does not exist.

It is possible to remove the limitation of arbitrary initial conditions along changing stream-
tubes by considering a numerical, one-dimensional solution along each streamtube as proposed by
Bommer and Schechter [20] to move the solution forward in time for each A¢p. We are currently
pursuing this avenue as a way to generalize the streamtube approach.

Another key assumption in the streamtube method is the dominance of the heterogeneity
in determining the flow response. If the reservoir is only mildly heterogeneous, then viscous fin-
gering, which the streamtube approach cannot model explicitly, may dominate the displacement
mechanism. For such cases, the streamtube approach would not be the correct numerical technique
to use.

The biggest outstanding challenge in the streamtube approach is accounting for gravity. It
is unclear what the representative one-dimensional solution is, and in multiphase flow there is an
additional complication, because the velocity vectors for each phase do not point in the direction of
the total velocity. Thus, a streamtube would not be representative of the flow direction of any one
phase. We are actively pursuing the extension of our approach to gravity-dominated displacements
and three-dimensional flow [17].

4.1.9 Summary and Conclusions

The underlying assumption in applying the streamtube method to describe two-phase im-
miscible and first-contact miscible flow in heterogeneous porous media is that field-scale displace-
ments are dominated by reservoir heterogeneity and convective forces. Flow paths are captured
by streamtubes, the geometry of which reflects the distribution of high and low flow regions in
the reservoir. Each streamtube is treated as a one-dimensional system along which solutions to
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Figure 4.19: Confirming the spread in recoveries predicted by the streamtube approach by using a
FCT finite-difference simulator on permeability fields associated with the maximum and minimum
recoveries for each case predicted by the streamtube approach.
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mass-conservation equations for different displacement mechanisms can be mapped. The stream-
tube approach effectively decouples the channeling imposed by the reservoir heterogeneity from
the actual displacement mechanism taking place. In other words, regardless of the displacement
type, the assumption is that there are predefined flow paths that will dominate the two-dimensional
solution. The fluid velocity along these flow paths is reflected by the geometry of the streamtubes,
and the inherent nonlinearity in the underlying velocity field is captured by periodically updating
the streamtubes.

For a particular displacement type, the same one-dimensional solution is mapped along
streamtubes, allowing to timestep by integrating from 0 to tp 4+ Atp. This approach allows ana-
lytical and numerical solutions to conservation equations to be mapped along periodically updated
streamtubes, but does not account for general-type initial conditions along streamtubes that arise
from the changing location of the streamtubes over time.

Fast, accurate, and robust solutions. The streamtube approach produces fast, accurate,
and robust solutions to displacements that are dominated by reservoir heterogeneity. Streamtube
geometries capture the impact of heterogeneity on the flow field, while the one-dimensional solutions
mapped along them retain the essential physics of the displacement mechanism. Speed-up is by
two to three orders of magnitude for two-phase immiscible and first-contact miscible displacements.
The absence of any convergence criteria as well as accounting for all the essential physics in the
one-dimensional solution leads to particularly robust solutions.

Statistical reservoir forecasting. The speed of the streamtube approach makes it an ideal tool
for statistical reservoir forecasting: hundreds of geostatistical images can be processed in a fraction
of the time required by traditional reservoir simulators. Application to first-contact miscible dis-
placement show a substantial uncertainty in overall recovery due to the combined effects of reservoir
heterogeneity and the inherent nonlinearity of the displacements. As reservoir heterogeneity and
nonlinearity increase, so does the uncertainty in overall recovery. The streamtube approach allows
to quantify this uncertainty, which can then be confirmed by a more expensive traditional approach
by using only the two geostatistical images that produce maximum and minimum recoveries. Al-
though the streamtube method makes assumptions in generating the two-dimensional solutions,
the uncertainty in recovery because of heterogeneity is shown to be substantially larger than the
error introduced by our approach.

‘Weak nonlinearity of ¥. For all displacements, the number of necessary updates for the stream-
tubes to converge onto a solution are shown to be many orders of magnitude less than the equivalent
number of pressure solves in traditional numerical simulation approaches. For all the displacements
investigated here, 20 to 40 streamtube updates over two pore volumes injected were sufficient to
give accurate overall recoveries.

4.2 Modeling Flow in Heterogeneous Media Using Streamtubes:
II. Compositional Displacements

M. R. Thiele, M. J. Blunt, and F. M. Ozr, Jr.

Thermodynamic considerations add a substantial degree of complexity to compositional dis-
placements compared to the simpler two-phase immiscible and first-contact miscible displacements
described in Section 4.1 [184]. The local equilibrium assumption requires a flash calculation for
each gridblock at every timestep, while the traditional difficulties associated with numerical diffu-
sion and frontal instabilities remain. Simulations become enormously expensive and yet may yield
less than satisfactory solutions. Compared to the “simple” physics described by two-phase relative
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permeabilities in immiscible displacements or the quarter-power mixing rule in first-contact misci-
ble displacements, phase equilibrium and its coupling to multiphase flow poses daunting numerical
difficulties, forcing very large computation times. As a result, most compositional simulations are
performed on coarse grids and may have substantial amount of numerical diffusion. The problem
of numerical diffusion is particularly subtle in compositional simulation, because it interacts with
the phase-behavior to alter displacement performance, sometimes substantially. In multicontact
miscible (MCM) flow a small amount of numerical diffusion is sufficient to induce two-phase flow
by pulling the composition path into the two-phase region thus hindering development of true
miscibility.[105, 193, 149]

The streamtube approach presented in Section 4.1 is a powerful tool for investigating com-
positional displacements. With a one-dimensional solution known, the two-dimensional solution for
a heterogeneous system can be constructed with the same ease as for a tracer, immiscible, or first-
contact miscible displacement as outlined in Section 4.1. Furthermore, because the one-dimensional
solution may be calculated numerically using a large number of gridblocks, or analytically for some
special cases [104, 46] (also see Chapter 2), numerical diffusion is minimized or even completely
absent. Computation times are reduced dramatically, since beyond the savings resulting from the
comparably small number of streamtube updates required to capture the nonlinear convective part
of the displacement, all the phase-behavior is contained within the one-dimensional solution that
is mapped along the streamtubes. This means that the phase-behavior is completely decoupled
from the underlying Cartesian grid used to describe reservoir heterogeneity and to solve for the
local flow velocity, and flash calculations are no longer necessary for each gridblock. The sim-
plicity of the streamtube approach is in stark contrast to traditional compositional simulation,
which faces significant numerical difficulties, particularly in strongly heterogeneous systems where
extreme differences in local flow velocities impose very small timesteps and can cause convergence
problems.

4.2.1 One-Dimensional Solutions

As for the displacements discussed in Section 4.1, applying the streamtube technique to
model compositional flow in heterogeneous systems centers on the availability of a one-dimensional
solution. Substantial progress on analytical solutions has been reported recently [104, 46, 135, 148],
and analytical solutions have been presented for multicomponent problems that have constant
initial and injected conditions (Riemann conditions) with either no volume change on mixing [104]
(see Chapter 2) or volume change on mixing [46]. Compositional solutions subject to Riemann
boundary conditions (constant left and right states) will be composed of shocks, constant states,
and rarefaction waves.

Although all 1D solutions presented here could have been obtained analytically, we calcu-
lated them numerically to guarantee consistency in the phase-behavior representation between the
one-dimensional solutions used along the streamtubes and the two-dimensional reference solutions
found using the same compositional simulator in 2D. In other words, the two-dimensional compo-
sitional solutions used for comparing the streamtube solutions were obtained simply by increasing
the number of blocks in the second dimension and specifying the heterogeneous permeability field,
while leaving the PVT data untouched.

4.2.2 Heterogeneity and Phase Behavior

A key issue in multiphase, multicomponent flow through heterogeneous porous media re-
volves around the question of how phase-behavior and reservoir heterogeneity interact to define the
displacement of resident hydrocarbons. Although several investigators have studied the problem,
many questions remain, particularly with regard to conclusions drawn from numerical simulations
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because of the limited number of gridblocks generally used in published studies. Numerical in-
vestigations of compositional displacements include the work by Gardner and Ypma [70], who
simulated CO; displacements in uncorrelated, mildly heterogeneous systems on 100x10 and 40x10
grids; Chang et al.[27], who studied the displacement of a Maljamar separator oil by pure CO2
at 1,200 psia and 90°F through a variety of different heterogeneous systems using an 80x20 mesh
and a third-order finite-difference scheme; Fayers et al.[62] (Section 3.2), who simulated slightly
sub-miscible gas displacements on 128x64 and 64x32 grids; and Blunt et al.[15], who present a
theory for compositional viscous fingering that was validated against numerical solutions obtained
using a high-order total-variation-diminishing (TVD) scheme on grids of up to 400x150 blocks.

In all these studies, the large parameter space introduced by the phase-behavior description
(number of pseudocomponents, equation-of-state model, viscosity correlations, etc.) coupled with
the well-known difficulties introduced by numerical diffusion and the uncertainties in the relative
two- and three-phase flow properties as well as reservoir heterogeneity, combine to give a highly
nonlinear, uncertain problem formulation that makes it difficult to separate what is physically
meaningful from what is a purely numerical artifact. Besides proposing our streamtube approach
as an alternative to conventional finite-difference/finite-element techniques in certain cases, one of
the central issues of this paper is also to attempt to understand what traditional numerical solutions
may be expressing about the physical interaction of phase-behavior and reservoir heterogeneity. We
will show by comparing finite-difference solutions to ones obtained using the streamtube approach
that even for simple three- and four-component systems, an adequate representation of the solution
with finite differences requires hundreds of gridblocks in each dimension, even when a high-order
numerical scheme is used. Hence our preliminary conclusion is that unless order 10* to 10° grid-
blocks (and probably more) are used in two dimensions, the resulting displacement predictions are
unlikely to be accurate and will yield optimistic recoveries. In three dimensions, the number of
gridblocks is likely to be in the order of 10° to 108. Unfortunately, such simulations are either
outright impossible or may take a prohibitive amount of CPU time with current resources, and
certainly cannot be done on a routine basis. Even with repeated upscaling to a coarsely gridded
model, an attempt to determine a statistical spread in recovery because of the uncertainty in the
description of the reservoir remains beyond current computer capabilities. In contrast, the simple
streamtube method allows rapid and robust construction of approximate solutions for composi-
tional flow in heterogeneous domains, preserving the sequence of composition fronts and avoiding
difficulties associated with numerical diffusion interacting with the phase-behavior representation.

4.2.3 Three-Component Solution

An example of a high-volatility-intermediate (HVI) ternary system is given by CHy4 / COg /
Cio at 1,600 psia and 160°F[103]. The name high volatility intermediate refers to the strict ordering
of the K-values, Kcr, > Kco, > Koy, for all compositions and the fact that the intermediate
component K-value is greater than one (Kco, > 1). This means that CO; will preferentially reside
in the more mobile gas phase. An HVI system can give rise to either a condensing or vaporizing
drive, depending on the initial and injected compositions. The displacement of a 30/70 (in mole
fractions) CH4/Cyo oil by pure COgz, for example, is 2 condensing gas drive. One-dimensional
numerical solutions for the CH4/COQ2/Cio system found using 100 and 500 gridblocks and a third-
order TVD scheme are shown in Fig. 4.20. The solutions in Fig. 4.20 were found using the Peng-
Robinson equation of state[154], the Lohrenz-Bray-Clark correlation for the phase viscosities[125],
and Corey-type relative permeabilities with an exponent of 2 and a residual oil saturation of 0.2. The
numerical simulator used here was UTCOMP (V3.2)[189], an implicit-pressure, explicit-saturation
(IMPES) type, isothermal, three-dimensional compositional simulator developed at The University
of Texas at Austin. The reason for finding the one-dimensional solution numerically, rather than
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Figure 4.20: UTCOMP one-dimensional numerical solutions using 100 and 500 gridblocks and a
third-order TVD scheme to control numerical diffusion for the CH4/CO, /C1o condensing gas drive.

analytically, was to guarantee consistency in the phase-behavior representation between the one-
dimensional solutions used along the streamtubes and the two-dimensional reference solutions found
using the same compositional simulator in 2D.

The numerical solutions in Fig. 4.20 capture all the the essential shocks in the condensing
gas drive, and in particular the 500-block solution has an acceptable level of numerical diffusion. For
modeling purposes, the total mobility profile is the most important piece of information, because
it indicates the strength of the nonlinearity of the total flow velocity and directly ties into the
solution of the streamtubes. Thus, the total mobility profile is mapped along each streamtube,
just like the concentration or saturation profiles, to find the new mobility field, which is then used
directly in the solution of the elliptic PDE (Section 4.1, Eq. 4.1) for the streamfunction. For this
particular case, although the endpoint mobility ratio is approximately 8, the mobility ratios across
the two fronts, which are separated by a long rarefaction wave, are approximately 2 and 3. Thus,
the endpoint mobility contrast is reduced considerably by the phase behavior alone.
2D Solutions. A compositional solution (almost free of numerical dispersion) for flow through
a heterogeneous domain can now be found by mapping the 500-gridblock, third-order TVD solu-
tion shown in Fig. 4.20 along streamtubes. Composition and saturation maps for a 125x50-block
heterogeneous reservoir at tp = 0.3 are shown in Fig. 4.21. The heterogeneity field used here has
a heterogeneity index of HI = 0.3 and a variance of oy, = 1.0 and corresponds to an upscaled
version (using geometric averaging) of the 250x100 gridblock field used extensively in Section 4.1.
The various composition fronts arising from chromatographic separation are clearly visible and,
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CO2 (tp=0.3)

Figure 4.21: Two-dimensional, three-component condensing gas drive in a 125x50-mesh heteroge-
neous reservoir at tp = 0.3. The one-dimensional solution used to generate the two-dimensional
solution is shown in Fig. 4.20.

although the endpoint mobility ratio is M = 8, the displacement does not suffer from the instabili-
ties that an equivalent first-contact miscible (FCM) displacement with the same endpoint mobility
ratio would see. The reason for this is that the phase-behavior mitigates the initial mobility ratio
contrast by creating two weaker fronts, which are separated by a long rarefaction wave.

A comparison of the approximate streamtube solution to a two-dimensional finite-difference
solution (UTCOMP) found using a third-order TVD scheme is shown in Figs. 4.22 and 4.23. Fig. 4.22
compares composition and saturation profiles at tp = 0.4, whereas Fig. 4.23 compares only the gas
saturation profiles at Atp = 0.1 intervals. The agreement is good, particularly considering that
UTCOMP required approximately 5,000 Cray seconds per 0.1PV injected, whereas the streamtube
solution required less than 2 Cray seconds, a speed-up factor by over three orders of magnitude.
Figs. 4.22 and 4.23 are encouraging, because they suggest that the streamtube approach detailed in
Section 4.1 can be combined successfully with a one-dimensional compositional solution as well to
model a two-dimensional displacement through a heterogeneous domain at a significantly reduced
cost.

Nevertheless, even though the comparison between the finite-difference and the streamtube
solutions is good, the leading front in the streamtube solution is at breakthrough, whereas it has
advanced only two-thirds as far in the UTCOMP solution. This raises the question whether the
difference is due to the assumptions inherent in our approach, which cannot model some physical
phenomena, like transverse diffusion and mixing due to viscous crossflow, or whether it is due to
numerical errors in the UTCOMP solution. Clearly, both numerical approaches involve some errors;
the subtlety of the question really lies in trying to understand which of the two solutions is closest
to the “true” solution.

The UTCOMP solution shown in Figs. 4.22 and 4.23 was obtained without explicitly adding
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Figure 4.22: Comparison of the streamtube solution with the UTCOMP solution at ¢p = 0.4. The
UTCOMP solution was found using a third-order TVD scheme.

any diffusive terms like capillary pressure or physical diffusion/dispersion. Thus, the only remaining
mechanisms that could lead to a reduction of the mobility contrast in the two-dimensional finite-
difference solutions are transverse and longitudinal numerical diffusion and mixing resulting from
viscous crossflow. Although the TVD scheme is certainly able to contain numerical diffusion, we
know that some numerical diffusion must be present, particularly given that there are only 50
blocks in the transverse direction and 125 in the main direction of flow. It is also worth mentioning
that a TVD scheme in 2D is not as efficient as in 1D [123]. Whether there is mixing because of
viscous crossflow is difficult to say, particularly given that there seem to be no additional features
in the saturation profiles compared to the streamtube solution that would indicate crossflow.

The streamtube solution, by definition, does not account for any transverse diffusion or mix-
ing processes. Furthermore, it marches forward in time by always using the same one-dimensional
solution and mapping it at ¢p + Aip along updated streamtubes. The net effect is that our method
cannot account for physical mechanisms that may attenuate the original mobility contrast seen in
the one-dimensional solution. As a result, the streamtube solution may be overly dominated by
the mobility contrast seen in the one-dimensional solution causing a faster leading front and earlier
breakthrough than in the finite-difference solution.

In order to evaluate the streamtube solution further, two additional simulations were per-
formed: (1) a UTCOMP solution was found using a one-point upstream scheme to emphasize the
effects of numerical diffusion (Fig. 4.24) and (2) a diffused one-dimensional compositional solution
was mapped along the streamtubes in an attempt to include numerical longitudinal diffusion as
a mitigating factor on the mobility contrast (Figs. 4.25 and 4.26). (A simulation with a refined
250x100 grid and a third-order TVD scheme, while maintaining the same heterogeneity structure,
was attempted using UTCOMP as well, which would have allowed us to quantify the impact of
numerical diffusion more directly. Unfortunately, excessive computation costs, = 20hr per 0.1 PV,
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Figure 4.23: Comparison of the evolution in time of the gas saturation. The streamtube solution
was found using a 500-gridblock one-dimensional solution, while the UTCOMP solution was found
using a third-order TVD scheme.
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MP - 1 Point Upstream - tp = 0.3

STREAM - 1D w/ 500 Gblocks & TVD - tn =0.3

Figure 4.24: Comparison of the evolution in time of the gas saturation. The streamtube solution
was found using a 500-gridblock one-dimensional solution, while the UTCOMP solution was found
using a single-point upstream weighting scheme.

forced the simulation to be terminated.)

25x50 One-Point Upstream Solution. Fig. 4.24 compares a UTCOMP solution found using
one-point upstream weighting to the same streamtube solution shown in Figs. 4.22 and 4.23. The
degradation because of numerical diffusion in the UTCOMP finite-difference solution is considerable
compared to the TVD solution (Fig. 4.23), and most importantly, the solution now has an even
more stable character to it; the fronts are much more diffused and breakthrough occurs later than
in the TVD solution. This is an indication that transverse and longitudinal numerical diffusion are
mitigating the mobility contrast in the UTCOMP solution altering the nature of the instability of
the displacement.

4.2.4 Diffused Streamtube Solution

If the frontal instability is mitigated principally by longitudinal numerical diffusion, then it
should be possible to map a diffused one-dimensional solution along the streamtubes that would lead
to a solution that would look similar to the UTCOMP solution of Figs. 4.22 and 4.23. On the other
hand, if the instability is mitigated principally by transverse numerical diffusion, then it is unlikely
that the UTCOMP solution can be matched by the streamtube method, since transverse phenomena
are not accounted for in our approach. The one-dimensional solution used in the streamtube solution
so far was obtained using 500 gridblocks and a third-order TVD scheme, which produced a solution
with relatively sharp fronts (Fig. 4.20). To capture the fact that only 125 blocks are present in the
main direction of flow in the two-dimensional heterogeneous domain, a one-dimensional solution
using only 100 gridblocks and single-point upstream weighting was generated and mapped along
streamtubes. A difficulty associated with mapping a diffused one-dimensional solution is that the
solution is no longer scalable by zp/tp, as is shown in Fig. 4.25.

There are 10 curves in Fig. 4.25, each representing a solution at time increments of Atp =
0.1 (starting from ¢p = 0.1). The solution clearly tends to sharpen up with time as we expect. To
capture the time dependence of the diffused, one-dimensional solution in Fig. 4.25, the solution was
mapped along the streamtubes for the corresponding time interval. In other words, the first curve
was used in the streamtube simulator to find solutions in the range of tp = 0.0 to tp = 0.1, the
second curve for solutions between tp = 0.1 and ¢p = 0.2, etc. Although this approach is only a
rough attempt to include longitudinal numerical-type diffusion into the streamtube solution, it does
mitigate the mobility contrast somewhat in the resulting two-dimensional solution. Fig. 4.26 shows
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Figure 4.25: One-dimensional UTCOMP solution using 100 gridblocks and one-point upstream
weighting. Fach solution represents an increment of Atp = 0.1.

a comparison of the UTCOMP saturation maps to the saturation maps obtained by mapping the
more diffused one-dimensional solutions of Fig. 4.25 onto streamtubes. Fig. 4.27 shows a summary
of the gas saturation maps for the various cases. Although the streamtube displacement appears
slightly more stable compared to the one found using 500 gridblocks (see Fig. 4.23), breakthrough
still occurs earlier than in the UTCOMP solution, suggesting that other mixing phenomena must
be present in the UTCOMP solution that are not present in the streamtube solution.

The very large difference in computation times, 3,000 to 5,000 Cray seconds per 0.1 PV
injected depending on the numerical scheme for UTCOMP versus the 2 to 3 Cray seconds for
the streamtube solution, makes the streamtube approach an attractive alternative, despite the
underlying assumptions used in mapping the one-dimensional solutions along the streamtubes and
the differences in the solution compared to one obtained using finite differences. Fig. 4.27 is
particularly interesting in that it suggests that transverse and longitudinal numerical diffusion in
finite-difference solutions may be able to mitigate substantially the instability of the displacement
compared to what is seen in the equivalent one-dimensional solution. In turn, this raises the difficult
question of whether the finite-difference solutions in Fig. 4.27 can indeed be considered converged
and are capturing the true instability of the displacement.

Cumulative recoveries for the three-component problem are shown in Fig. 4.28. It is partic-
ularly revealing to note that the difference in recovery due to the different one-dimensional solutions
used along the streamtubes (500 gridblocks and TVD versus 100 gridblocks and one-point upstream)
is negligible. This reinforces the possibility that the mobility mitigation in the UTCOMP solution
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Figure 4.26: Comparison of the evolution in time of the gas saturation. The streamtube solution
was found using a single-point upstream, 100-gridblock 1D solution, while the UTCOMP solution
was found using a third-order TVD scheme on a 125x50 grid.

is unlikely to be an artifact of longitudinal-type diffusion, but rather from a transverse-type mixing
mechanism, such as transverse diffusion or mixing due to viscous crossflow. The substantial differ-
ence between the UTCOMP and streamtube recoveries is in contrast to the good matches obtained
for the immiscible and ideal miscible cases for the same permeability field (PERM 11) as shown
in Section 4.1 (Figs. 4.10 and 4.14, respectively). We interpret this difference as an indication
that a small amount of transverse mixing, either due to numerical diffusion or viscous crossflow
or both, coupled with the phase-behavior of the system has a considerable impact on recovery.
The one-dimensional recovery is also shown as a way to quantify the impact on recovery due to
heterogeneity alone.

Fig. 4.29 shows the convergence of the streamtube solution. As in the FCM displacements
discussed in Section 4.1 of this work, fewer than 40 streamtube updates are sufficient to capture
the changing velocity field resulting from the nonunit mobility ratio of the displacement. In this
case though, the speed-up compared to the finite-difference approach is by four orders of magnitude
because in addition to reduced number of matrix inversions there are no phase-behavior calcula-
tions since all the phase-behavior is contained in the one-dimensional solution mapped along the
streamtubes. How substantial the mitigation of the initial instability really is is quantified by the
fact that the UTCOMP recovery falls between the streamtube solutions using a single update (tracer
case) and ten updates of the streamtubes.

4.2.5 Four-Component Solution

The three-component system presented in the previous section was characterized by a
condensing displacement mechanism. In this section, the displacement of a three-component oil
(CH4/Cs/C16) by an enriched gas composed of a mixture of CH4 and Cs, at 2,000 psia and 200°F
is used as an example of a displacement exhibiting condensing behavior at the leading edge and
vaporizing behavior at the trailing edge. The example is taken from Johns (p.194) [103]. The
initial composition of the oil (in mole fractions) is CHy = 0.2, Cg = 0.4, C15 = 0.4, and the injected
composition of the enriched gas is C Hy = 0.65 and C3 = 0.35. The injected conditions are close to
the minimum enrichment composition for miscibility (CH4 = 0.615 and C3 = 0.385), characterizing
the system as near-miscible[103].

Fig. 4.30 shows the numerical one-dimensjonal solutions obtained from UTCOMP using 100
and 500 gridblocks and a third-order TVD scheme. Compared to the three-component solution
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Figure 4.27: Summary of gas saturation maps at tp = 0.5.

(Fig. 4.20), some numerical difficulties are evident for this example, as indicated by the more
diffused fronts and the dip in the total mobility profile near the inlet. Nevertheless, the 500 gridblock
solution does seem to capture the main feature of the displacement and sees the condition of near
miscibility: the main part of the two-phase region is small and the total mobility profile shows a
substantial mobility contrast across the two-phase region. The mobility profile is the main indicator
of the instability that will control the displacement; for this case, the initial mobility contrast is
M = 8.4, but unlike the three-component solution, which had a similar endpoint mobility ratio, the
two main fronts are much closer to each other because of the condition of near miscibility and lead
to a mobility contrast of M = 6 across the leading fronts. Thus, even though the endpoint mobility
ratios are similar, the four-component streamtube solution is expected to be more unstable than
the three-component solution discussed previously and therefore more difficult to model accurately
in two dimensions.

The strong nonlinearity is clearly visible in Fig. 4.31, which compares the streamtube solu-
tion to a two-dimensional UTCOMP solution found using a third-order TVD scheme. The stream-
tube solution breaks through much earlier and the channeling is more pronounced than the finite-
difference solution. As in the three-component case, the question arises whether the much more
stable displacement predicted by the finite-difference formulation is a result of numerical diffusion
or is, indeed, a genuine physical feature of the displacement mechanism. The possible impact of
numerical diffusion is again studied by using single-point upstream weighting in UTCOMP, as well
as a diffused one-dimensional solution along the streamtubes. (A simulation using a refined 250x100
grid with UTCOMP was attempted, but led to prohibitively high computation costs and had to be
terminated.)

A comparison of UTCOMP saturation maps found using single-point upstream weighting
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Figure 4.30: One-dimensional numerical solution, using 100 and 500 gridblocks and a third-order

TVD scheme to control numerical diffusion for the CH,4/C3/Cg/Ci6 condensing/vaporizing gas
drive. .

and a third-order TVD scheme is shown in Fig. 4.32. The TVD solution shows a noticeable im-
provement in the resolution of the leading shock compared to the single-point upstream solution,
indicating that numerical diffusion is affecting the displacement, but it does not show as good an
improvement in capturing the instability of the displacement: the positions of the leading fronts
in the two solutions shown in Fig. 4.32 are only marginally different. Thus, the mitigating effects
longitudinal and transverse numerical diffusion have on the displacement by interacting with the
phase-behavior of the system do not seem to be offset by the improved numerical resolution of
the third-order TVD scheme. This points to an important aspect regarding control of numerical
diffusion in compositional models: because numerical diffusion interacts in 2 complex way with the
phase behavior of the system, doubling the number of cells and/or using an improved numerical
scheme may not result in the same improvement in modeling the instability of the displacement as
it would for ideal miscible or immiscible displacements. Furthermore, increasing the “complexity”
of the phase-behavior description and the proximity to miscibility will decrease the efficiercy of any
numerical scheme to control numerical diffusion and its impact on displacement efficiency, partic-
ularly for higher mobility ratios. We interpret our results as indicating that the two-dimensional
UTCOMP solutions are not likely to be fully converged, but rather represent intermediate solu-
tions in a possible refinement sequence that would ultimately show a displacement with a stronger
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Figure 4.31: Saturation maps for the CH4/C3/Cg/C16 displacement on a 125x50 gridblock hetero-
geneous domain. The UTCOMP solution was found using a third-order TVD scheme, while the
streamtube solution used the 1D, 500-gridblock TVD solution.

__UTCOMP - 1 PtUp. - t = 0.3 ___ UTCOMP-TVD -ty =0.3

Figure 4.32: UTCOMP saturation maps for the CHy/C3/Cg/C16 displacement at various times.
The UTCOMP solutions were found using single-point upstream weighting and a third-order TVD
scheme.
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Figure 4.33: Saturation maps for the two-dimensional UTCOMP and streamtube solutions for the
CH4/C3/Cs/C16 displacement. In this example, the streamtube solution was found by using a
100-gridblock, 1D solution and M = 1. The UTCOMP solution is the same as shown in Fig. 4.32.

nonlinear behavior and substantial frontal instability.

The quantitative reduction in the inherent instability of the displacement in the finite-
difference formulation is revealed by Fig. 4.33, which compares a “diffused” streamtube solution to
the UTCOMP (TVD) solution. The streamtube solution was generated using a 1D, 100-gridblock,
single-point upstream solution, but assuming a unit mobility ratio displacement (M = 1) through-
out. In other words, the streamtubes were calculated only once, as in the tracer case, and used to
describe the velocity field for the entire duration of the displacement, thereby ignoring any mobility
contrast between the phases. The match in this case is much better than in any of the ones shown
previously.

The comparisons in Fig. 4.33 are particularly revealing because they indicate that numer-
ical diffusion and phase-behavior combine to mitigate substantially, or even completely eliminate,
the original instability of a displacement. It is unlikely that any true physical crossflow mech-
anism could eliminate the entire mobility contrast of the displacement without altering in some
way the fingering/channeling pattern. Furthermore, the speed-up is now by four to five orders
of magnitude, since the streamtube solution uses a single matrix inversion versus the many thou-
sand pressure solves and flash calculations required by the finite-difference formulation. The most
dramatic conclusion to be drawn from these three- and four-component example solutions is that
two-dimensional compositional solutions, particularly those generated on coarse grids and with a
simple single-point upstream weighting scheme, are very likely not to be converged solutions, and
will always predict optimistic recovery performance.

4.2.6 Summary and Conclusions

We show that for compositional displacements the streamtube approach is particularly
powerful because of its simplicity, robustness, and speed. The speed-up compared to traditional
finite-difference approaches can range from 3 to 5 orders of magnitude. Our results from example
comparisons with finite-difference solutions suggest that numerical diffusion, particularly transverse
numerical diffusion, can substantially reduce, or even completely eliminate, the mobility contrast
seen in the equivalent one-dimensional solution.

Decoupling of phase-behavior from 2D grid. The streamtube approach becomes particularly
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powerful for multiphase compositional displacement, because all the phase-behavior is now con-
tained in the one-dimensional solution that is mapped along the streamtubes, thereby completely de-
coupling the underlying Cartesian grid used to specify reservoir heterogeneity from phase-behavior
considerations. This is different from traditional approaches to reservoir simulation, which perform
a flash calculation for each gridblock at each timestep. As a result, the streamtube approach makes
for very robust and fast solutions in the case of compositional displacements.

Impact of numerical diffusion on compositional displacements. The examples presented
indicate that numerical diffusion has a significant role in reducing the mobility contrast in tra-
ditional finite-difference solutions of compositional displacement. By comparing streamtube solu-
tions to finite-difference solutions, we found that the original mobility contrast can be substantially
reduced by the presence of numerical diffusion, particularly transverse numerical diffusion: the
coupling of reservoir heterogeneity, phase behavior, and numerical diffusion may be so dominant
in compositional displacements as to force only slow convergence with progressive grid refinement.
As a result, many times the grid refinement used in FCM displacement may be necessary for com-
positional displacements, particularly if a single-point upstream weighting scheme is being used, to
see the equivalent improvement in the solution. Thus, we argue that compositional displacements
on coarse grids obtained using a single-point upstream weighting scheme, which are common in
the published literature, are unlikely to be converged solutions in the sense of displaying the true
instability of the displacement and must be interpreted with caution.

Weak nonlinearity of ¥. For all displacements, the number of updates of streamtubes required
to converge to a solution is shown to be many orders of magnitude fewer than the equivalent
number of pressure solves in traditional numerical simulation approaches. As a result, updating
the streamtubes only periodically (20 to 40 times per 2 pore volumes injected) and using a one-
dimensional solution that captures the essential physics and nonlinearity of the displacement are
sufficient to give accurate overall recoveries. As for the displacements described in Section 4.1, this
offers the opporturity to quantify the impact of uncertainty in reservoir description on recovery
without sacrificing the underlying physics of the displacement mechanisms to numerical errors.

4.3 A 3D Streamline Simulator
R. P. Batycky and M. J. Blunt

The results presented in Sections 4.1 and 4.2 were based on use of streamtubes to model
flow in convection-dominated two-dimensional displacements. They show that streamtube calcu-
lations combined with mapping of any one-dimensional solution onto the streamtubes, results in
accurate performance predictions using between 10 and 10000 times fewer matrix inversions than
conventional approaches. The main focus of our work here is to extend that streamtube method
to three-dimensional field scale systems with arbitrary well locations.

In this work, we trace streamlines in a three-dimensional flow field as opposed to calculating
the streamtubes?, although in 2-D our streamline method gives identical results to 2-D solutions
reported in Section 4.1 and 4.2. As with the streamtube method, each streamline is treated as a
one-dimensional homogeneous systems along which any one-dimensional solution can be mapped.
The physics of the displacement is captured in the appropriate one-dimensional solution, while the
effects of the heterogeneity are captured by the paths of the streamlines.

!Streamtubes do exist in 3-D, but calculating them can be quite involved (Matanga [128])
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4.3.1 Tracing Streamlines and Mapping a One-Dimensional Solution

By definition, a streamline is a line in a velocity field that at any location is parallel to the
local velocity vector. We trace streamline paths by a procedure similar to those documented in
particle tracking and groundwater literature.

A summary of the streamline tracing and one-dimensional solution mapping method to
arrive at a three-dimensional solution is shown below.

(i) Solve the pressure equation,
V-A\VP =0, (4.32)

on a conventional finite difference grid with appropriate well locations and noflow outer bound-
aries. Here ); is the total mobility at any point in the grid and P is the pressure.

(ii) Solve for the velocity field at each gridblock face using Darcy’s Law.

(iii) Apply the method derived by Pollock [155] for the analytical definition of a streamline path
within a gridblock. In Pollock’s method, he defined a piecewise linear interpolation of the
velocity field in each direction, within a gridblock, based on the values at the block faces.

(iv) Trace streamlines from injectors to producers using the analytical expressions within each
gridblock. For each block that a streamline passes through, record the time-of-flight. King
et al. [111] defined the time-of-flight, tof;, to any location, s, as the time it takes to move
along a given streamline from the injector to location s,

tof, = /0 ’ V_éc’idc' (4.33)

Here V(() is the local interstitial velocity along the streamline.

(v) Map a one-dimensional solution along each streamline. These solutions (composition, sat-
uration) typically scale by dimensionless velocity #p/tp. At any given elapsed time of the
simulation, f., the following relationship holds,

tof zp

ks (4.34)

So for a given elapsed time, any location along a streamline corresponds to a dimensionless
velocity and hence, a unique composition and saturation.

We have integrated the above steps into a general 3-D streamline simulator, 3DSL, that can handle
multiple wells in any location.

4.3.2 Current Results

In this section we use 3DSL for several simulations, and compare against ECLIPSE or
analytical solutions where available. We look at tracer displacements, the application of 3DSL
to multiple equiprobable realizations, and conclude with waterflood displacement comparisons on
three different permeability fields.

Quarter Five-Spot Tracer Displacement. To validate our numerical method employed here,
we first compare 3DSL results with the analytical solution of a tracer displacement in a quarter-five
spot. The analytical streamline tracing technique combined with a 1-D tracer profile should yield
“exact” results from 3DSL. The results on a 100X100 grid are shown in Figure 4.342. Also included

148




100X100 GRID - QUARTER 5-SPOT

0.8

06

RN R R RS RN

0.4

F ANALYTICAL SOLUTION

TRACER FRACTION PRODUCED

2k «  3DSL
- R R ECLIPSE - diagonal grid
: ol B ECLIPSE - parallel grid
O.O-xxxlx141-1':-'-&'".111'||||||||||11||||||||||||
0.0 0.2 0.4 0.6 08 1.0 12 1.4 1.6 1.8 20
to

Figure 4.34: Tracer concentration at producer in a quarter-five spot.

are results from ECLIPSE for a diagonal and parallel grid. Clearly the 3DSL results are identical
to the analytical solution and are free of numerical diffusion and grid orientation effects.
Three-Dimensional Tracer Simulations Because tracer results from 3DSL are exact, we can
use this new simulator to quantify the level of numerical diffusion present in conventional ECLIPSE
tracer simulations. Here we have generated a 40X40X10 permeability field using GSLIB. The field,
as seen in Figure 4.35, is anisotropic with an on-trend correlation length of A. = 0.5 in the main
horizontal direction, a transverse correlation length in the horizontal of A; = 0.2 and vertical
correlation length of A, = 0.1.

We performed two quarter-five spot displacement experiments, one in the on-trend direction
and one in the off-trend direction. The tracer recoveries for 3DSL and ECLIPSE are shown in
Figure 4.36. The ECLIPSE results agree better with the actual solution (3DSL) when the main
flow direction is off-trend as opposed to on-trend. The difference seen in the two solution methods
is based strictly on the magnitude of numerical diffusion within ECLIPSE.

ECLIPSE has both longitudinal and transverse numerical diffusion while 3DSL has neither.
Longitudinal diffusion along a streamline will smear the displacing tracer shock and act to reduce
tracer recovery, while transverse diffusion will improve recovery. Clearly in the on-trend case trans-
verse diffusion within ECLIPSE is more important than transverse convection. Tracer fingering
through high permeability regions has the potential to diffuse into adjacent low permeability regions
and remain there, giving overly optimistic recovery. When flow is off-trend the fluid takes a more
tortuous path from injector to producer. Now transverse convective fluxes are large compared with
transverse numerical diffusive fluxes, and the recovery curves are in closer agreement. However,
there is still longitudinal diffusion that affects recovery during the first half of the displacement.
Using 3DSL with Multiple Realizations. The streamline method is suitable for quickly pro-
cessing many equiprobable geological realizations generated using geostatistics. Here we show in
Figure 4.37, the recovery curves from 3DSL for ten-equiprobable geological models of a 200X200X10

2Gimilar results were presented by Fay & Pratts [60] in 1951 by solving numerically for the stream function directly,
and then mapping a tracer solution to the calculated streamlines.
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Figure 4.35: 40X40X10 correlated permeability field.
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Figure 4.37: Recovery curves from 3DSL for ten equiprobable geological realizations of a quarter
five-spot tracer displacement.

(4X10° gridblocks) quarter five-spot tracer displacement. Note that it took less time to generate
these 10 curves then is would have taken to generate one curve using a conventional finite differ-
ence approach. So by using 3DSL, one can quickly provide a distribution of recoveries based on
the known uncertainty in any geological description.

Waterflooding in a Full Five-Spot Pattern. In the previous sections we mapped a one-
dimensional tracer solution to each streamline. Here we map the Buckley-Leverett solution of a
waterflood displacement to each streamline. Furthermore, to illustrate the generality of 3DSL, we
consider a full five-spot pattern on a 50X50X20 grid with four corner producers and one central
injector. The producers are completed in the upper 10 gridblocks while the injector is completed
in the lower 10 gridblocks. We looked at three different fields with varying reservoir heterogeneity
generated using GSLIB,

Case 1 A diagonally oriented permeability field with a correlation length of A\, = 0.3 in the on-
trend direction and A. = 0.03 in the off-trend direction. The vertical correlation length is
Ae = 0.1.

Case 2 An isotropic areal distribution with A; = 0.4 and a vertical correlation of A, = 0.1.

Case 3 A diagonally oriented field with A = 0.4 in the main trend direction, an off-trend hori-
zontal correlation with A, = 0.1, and a vertical correlation of A\, = 0.8.

Figure 4.38 summarizes the oil recoveries under waterflooding for the three permeability fields.
Clearly the results from the two simulation methods are in excellent agreement for all cases. Again
ECLIPSE suffers from numerical diffusion which can lead to optimistic recoveries, depending on the
interaction of major flow directions with permeability correlations. Note that the 3DSL solutions
required between 10 and 20 times less CPU usage than the ECLIPSE solutions. So not only does
3DSL generate accurate results for waterfloods, but it does so in a fraction of the time.
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Figure 4.38: ECLIPSE and 3DSL recovery curves of a full five-spot waterflood displacement for
three different permeability fields.

4.3.3 Conclusions

We have successfully extended streamtube methods of calculating two-dimensional displace-
ments to three-dimensional systems by tracing streamlines from injectors to producers. The above
examples highlight the advantage of the streamline technique over conventional finite difference
results. The advantages are:

(i) 3DSL gives fast accurate results,

(ii) it is a useful tool for quantifying the effects of numerical diffusion in conventional simu-
lations, and

(iii) 3DSL provides a way to analyze quickly equiprobable geological models thereby giving
a distribution of possible recovery curves.

152



5. Interplay of Viscous, Gravity and Capillary Forces

The analysis of Chapter 2 indicates that essentially 100% displacement efficiency can be
achieved in one-dimensional, dispersion-free flow if displacement pressure or gas composition is
chosen appropriately. However, no real displacement meets completely the assumptions that make
the analysis possible. The flows are not one-dimensional, dispersion is always present to some
extent, and non-uniform flow and crossflow cause transverse mixing. All those mechanisms cause
some two-phase flow in displacements that all multicontact miscible (MCM) according to the tie
line criteria of Chapter 2. In real displacements, therefore, the residual saturation will not be
zero. Instead, it will be determined by the interaction of phase behavior, capillary forces, viscous
forces, and gravity forces. One effect of phase behavior is to cause low interfacial tensions (IFT’s)
for mixtures that are close in composition to a critical mixture. The mechanisms of multicontact
miscibility produce just such mixtures. Hence a key issue is: what factors control residual oil
saturations in near-critical (low IFT) systems? In this chapter, we examine that scaling question
in some detail.

We begin in Section 5.1 by considering the combined effects of capillary, gravity and viscous
forces on residual oil saturations. We develop simple models of the scaling behavior of entrapment
and then test the theory with experiments. The result is a correlation with a reasonable theoretical
basis for the combined effects of gravity, capillary and viscous forces on residual oil saturations.

In Section 5.2 we consider how high pressure COz could be used to enhance gravity drainage
of oil in fractured reservoirs. Experiments performed previously with analog oil/water/alcohol
systems had indicted that significant recovery could be obtained if IFT’s were lowered by phase
behavor mechanisms. Here we report experimental evidence that similar behavior is observed in
high pressure CO2/crude oil systems. These results indicate that gas injection processes using low
IFT gravity drainage can be applied to fractured reservoirs if the fracture network can be used to
deliver gas, create the required gravity head, and collect the oil displaced from the matrix porosity.

In Section 5.3 we return to the more general problem of scaling behavior for a wide-range
of multiphase flow problems that involve heterogeneity, gravity, viscous and capillary forces. We
derive the appropriate dimensionless groups, and we review experimental and simulation evidence
to determine the ranges of these parameters over which important transitions occur. A surprisingly
consistent picture emerges, despite the complexity of the problem.

Finally, in Section 5.4, we return to the laboratory scale to interpret with simulations a set
of low IFT imbibition experiments performed previously. Those experiments showed unexpectedly
effective displacement behavior. We use the simulations (and their inadequacies) along with an
analysis of imbibition mechanisms at the pore level to explain the observed behavior.

5.1 The Effects of Capillary, Gravity and Viscous Forces on
Residual Oil Saturation

D. Zhou and F. M. Orr, Jr.

Tertiary oil recovery or aquifer remediation processes attempt to recover oil that is trapped
by capillary forces. Displacement of a hydrocarbon phase by water alone is an immiscible displace-
ment that cannot completely recover oil from reservoirs due to the interplay of capillary forces with
heterogeneities of the media. Two types of heterogeneities are commonly dealt with: pore-level het-
erogeneity and macroscopic heterogeneity. Pore-level heterogeneity, such as pore size (grain size)
and pore structure variations, controls the amount of oil left after the injected fluid has swept a
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zone, whereas macroscopic heterogeneity determines zones that the injected fluid sweeps. In numer-
ical simulation of a displacement process, macroscopic heterogeneity can be represented directly by
assigning different rock properties (permeability and porosity) to certain grid blocks, given knowl-
edge of the detailed structure of the medium. Because of the complex nature of pore entrapment
mechanisms, however, the effects of pore level heterogeneity are represented by empirical correla-
tions. One of the empirical correlations is the capillary desaturation curve (CDC), which defines
the relationship of the residual oil saturation and the physical properties of a system. Accurate
representation of the dependence of the CDC on fluid and rock properties is of great importance
for simulations of enhanced oil recovery and spilled oil clean-up processes, because these processes
must reduce the residual oil saturation to relatively low levels. This work describes theory and
experiments that demonstrate the relative contributions of gravity, viscous and capillary forces in
the correlation of residual oil saturation and the physical properties of water-wet systems.

The physical properties of a system are commonly represented by a capillary number, which
is usually defined by one of the following equations

Ncl = I_L_Zl)', (51)
or k v
_ B VP _ Huolw
No=EoV2 -l (52)
and a Bond number defined by Apak
NB = ‘pTg, (5'3)
B=—t—, (54)

where p., is the viscosity of the displacing phase, v is Darcy velocity, \/p is the pressure gradient,
k is permeability, R is the radius of the grains composing the porous medium, Ap is the density
differences between the fluids, and o is the interfacial tension (IFT) of the system. According to
Darcy’s law, the capillary numbers (N and Nep) are related by Ne2 = Nei/krw, where kry is the
relative permeability of the displacing phase. The use of Ny or N in the literature depends on
the application to specific situations. Ny, for example, is likely to be used to correlate results of
experiments with constant injection rates, whereas N2 may be used to describe flows with constant
pressure drop. In this section, however, we find that even for processes with constant injection rates,
N, is a more appropriate form to represent the ratio of viscous forces to capillary forces. The Bond
numbers B and Np are related by the correlation of the permeability (k) and the grain sizes (R)
of a medium.

There are two CDC’s for a displacement system, depending on the continuity of the displaced
fluid [118, 137, 205, 206]. A discontinuous nonwetting phase is more difficult to displace from a
medium than a continuous nonwetting phase [118, 137]. In this work, we focus our attention
on the displacement of continuous nonwetting phase from a porous medium, which is commonly
involved in oil recovery processes with an oil bank. CDC’s are generally obtained from laboratory
measurements [71, 112,137, 177], although attempts have been made to predict CDC’s by statistical
[119, 205] or deterministic theories [118, 172, 206]. Studies of CDC’s have been largely focused on
the balance of capillary and viscous forces [118, 161, 172, 205], which is measured by the capillary
number. Consequently, gravity effects are neglected in CDCs used in most simulators of enhanced
oil recovery processes, even though some studies [137, 194, 195] have shown that gravity effects can
be significant. In this work, we examine the combined effects of gravity and viscous forces on oil
entrapment in porous media, and we define conditions under which gravity forces can be neglected
or must be included in the analysis.
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5.1.1 Entrapment mechanisms

In order to identify the factors that influence oil entrapment during immiscible displace-
ments, we first review entrapment mechanisms. Mohanty et al. [133] investigated the physics of
oil entrapment in water-wet media, and identified two entirely different entrapment mechanisms,
namely, a snap-off process that traps oil in a pore and a by-pass process caused by competition of
flows between pores. Using detailed experimental observations, Chatzis et al. [29] determined that
approximately 80% oil is entrapped by snap-off processes and 20% by the by-passing processes for
consolidated, water-wet media.

Snap-off occurs in pores with large aspect ratios, the ratio of pore body and pore throat
diameters. The large aspect ratio creates a significant lower wetting-phase pressure at the pore
throat than that in the pore body. Hence, the wetting phase flows towards the pore throat, and
forms a collar that grows and eventually breaks the nonwetting phase. Roof [161] derived a static
criterion for snap-off in noncircular capillary tubes, based on the capillary force balance at the pore
throat and the pore body. A noncircular capillary tube was used as a model of the irregularities
of pores and the roughness of solid surface of the medium. Ransohoff et al. [158] extended Roof’s
static analysis to include the effects of viscous flow resistance in the water filled corners of the
capillary tube. For a system shown in Fig. 5.1a, they obtained the static criterion for snap-off,

CmRoRt
Ry > Smtot
b= Ro - Rt ’

where Cy, is a dimensionless interfacial curvature, which is a function of the cross-sectional geome-
tries, R, is the pore neck radius, and R; and R} are the hydraulic radii of the pore throat and pore
body respectively, as shown in Fig. 5.1A.

To include the dynamic effects of viscous flow, Ransohoff ef al. [158] and Gauglitz et al.
[72] calculated and measured experimentally the time required to transport enough fluid into the
pore throat to have snap-off, and compared it to the time for the nonwetting phase to flow through
the pore throat. If the time of transporting enough fluid to form a collar is less than the time
required for the nonwetting phase to flow through the pore throat, snap-off would occur.

The random nature of the sizes and locations of pores in porous media incorporating the
interconnections among the pores generates flow competition among pores. The displacing fluid
in the fast flow pores can trap oil in pores in which flow is slow. This mechanism is referred
to as by-passing. Pore doublet models (PDM) have been used both theoretically [29, 118] and
experimentally [29] to demonstrate the by-pass mechanism. The PDM is based on the assumption
that well-developed-Poiseuille flows compete in two parallel flow paths (pores) with different sizes
(see Fig. 5.1B). The flow velocity in each flow path can be obtained by combining Poiseuille’s law
and the Young-Laplace equation [118]. The ratio of the velocities is an indication of the amount
of fluid trapped in one pore. For an imbibition process, capillary forces draw the displacing phase
into the smaller pore, while viscous forces make the fluid flow more rapidly in the larger pore. The
result of this competition is that at low injection rate, the oil in the large pore would be trapped,
with the reverse being true at high rates. Chatzis and Dullien’s experiments [29] on a model of
neck-bulge-neck pores showed that oil was trapped by the by-passing process.

By-passing processes can also be represented by network models for studies of entrapment
mechanisms in porous media [13, 57, 58, 59, 194, 206]. Network models represent porous media
by networks of pores with different sizes and connectivities. Another approach, percolation theory,
has also been used to represent the random nature of the porous media, in which the flow path
is fully random. In its original form, percolation theory represented only two-phase displacements
when capillary forces dominate the flow process, and it did not account for the continuity of the
flow path. Invasion percolation theory was then introduced to include both the randomness of the
medium and the continuity of the fluids. In the following subsection, we review briefly effects of

(5.5)
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Figure 5.1: Commonly used snap-off model(A) and pore doublet model (B).

gravity in invasion percolation theory as well as the experimental results that demonstrate effects
of gravity on residual nonwetting phase saturation.

Gravity Effects on Entrapment. The first theoretical investigation of gravity effects was re-
ported by Wilkinson in an invasion percolation study [194]. Wilkinson neglected the snap-off pro-
cess, and assumed that the nonwetting phase is only trapped by the by-passing process. Correlation
lengths for both viscous and buoyancy forces were introduced to measure the relative magnitudes
of viscous and buoyancy forces compared with capillary forces in the medium. A dimensionless
viscous correlation length was defined as

Lvm Ncl —v/(1+v)
R~ (E)
where Lym is the maximum length of oil clusters in the system during a viscous displacément, R

is the grain size (radius) of the medium, &k, = kk,/R? and v is a percolation exponent (v = 0.88
for three-dimensional percolation). They also defined a gravity correlation length (¢a),

te = L—;'Z"—‘ o« B~v/(+v) (5.7)

by = , (5.6)

where B is the Bond number [137, 194], and Ly, is the maximum length of oil clusters in the
system when gravity forces dominate. For gravity-dominated flow, the residual oil saturation Sor
was related to the gravity correlation length by

1 >(1+ﬁ)/v
14e;
where A = (14 B)/(1 + v), which is a percolation constant (A = 0.77 for three-dimensional per-
colation), B is also a percolation constant of 0.45 for three dimensional percolation, and 53, is

8% — Sor o < « B, (5.8)
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the residual oil saturation at very low capillary number and Bond number. For v1scous-dommated
cases, the residual oil saturation was correlated as

(1+8)/v N\ A
Sor — Sor (Eiv) x (k_:,l> . (5.9)

For situations in which both viscous and gravity forces act, Wilkinson [195] assumed that capillary
and gravity forces were additive, and that the residual oil saturation depends on (N /k, + B)*.
Blunt et al.[13] developed a network model to calculate the percolation constant for invasion

percolation processes. For both imbibition and drainage processes, Blunt et al. showed good
agreement between network simulations and percolation theory when the processes were dominated
by gravity forces. They also demonstrated numerically that gravity forces (represented by the Bond
number B) behave the same as viscous forces (N.;). For cases in which both gravity and viscous
forces are involved, Blunt et al. proposed an effective correlation length to correlate the residual
oil saturation. The effective correlation length is defined as

1 1 1 1 .

Al + & + & (5.10)
where L is the length of the system. For a porous medium of relatively large size, 1/L ~ 0, and

h
ence 11 1

S, . (5.11
e T (51D

In terms of capillary and Bond numbers, the residual nonwetting phase saturation is
53— Sup ¢ (Bl 0490 4 pta) G4 (519

Eq. 5.12 indicates that the effective correlation length theory does not give a linear combination.
Thus, for cases in which both gravity and viscous forces act, there are two very different correlations
for residual oil saturations. We shall note that these correlations are two extrapolations of the
invasion percolation theory, not from rigorous derivations. The pore-level models described in the
next section support the linear combination of gravity and viscous forces in determining residual
oil saturations.

Experimental studies [137, 138] indicate substantial effects of gravity on residual nonwetting
phase saturation in glass-bead packs. The experiments were performed with beads of different
diameters to obtain a wide variation of Bond numbers. Morrow et al. [138] correlated their results
against a linear combination of N,; and B,

or = f(Na +0.001413B). (5.13)

This correlation agrees with Wilkinson’s results, although Wilkinson’s theory neglected the snap-off
process. In the following section, we demonstrate theoretically that there is a linear combination
of gravity and viscous forces for both snap-off and by-passing processes.

5.1.2 Extended REV-Scale Models

Previously available models of snap-off and by-passing neglect the influence of gravity. In
this section we extend such models to include gravity. In the following derivation of equations, we
assume that the interface between oil and water phases is always in equilibrium, so that we can use
the Young-Laplace equation to represent the pressure difference across an interface. Flow of both
phases is assumed to be well-developed Poiseuille flow, and therefore, Poiseuille’s law or Darcy’s
law is used to represent viscous pressure drops.
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Snap-off Model. In past studies of snap-off processes, oil blob sizes were assumed to be smaller
than the pore size. That assumption is known to be violated in displacements in real porous media.
For example, Chatzis [29] observed the blobs could be several pore sizes in extent. In our analysis,
we consider an oil blob occupying two pores in the vertical direction (see Fig. 5.2a). However, the
analysis is not limited to two-pore lengths and could be easily extended to multipore arrangements.
Consider the situation shown in Fig. 5.2, in which water flows into the pore from the bottom. We
assume that water phase wets the walls with a film whose thickness remains constant in the pore
body but varies in the pore neck. The pressures in the phases at the pore throat (A) are
Po=Pi+‘C%bo-"‘APov_pogL, (514)
and -
P, = P, — APy, — puwyL, (5.15)

where P; is the pressure of the wetting phase at location (B), R} is the pore body radius, Cy, is the
dimensionless interfacial curvature in the pore body and AP,, and AP,, are the viscous pressure -
drops of the oil and the wetting phase. Because of the continuity of the wetting phase, the wetting
phase can reach the pore throat through other neighboring pores. Therefore, we use Darcy’s law
to calculate the viscous pressure drops for both phases. AP, and AP, are then expressed as
APy = (pwvwL)/(Ekrw), and APoy = (pov,L)/(kkro). Thus, the pressure difference between the
two phases at the pore throat (A) is

Cmo

AP, = (P, — Pyh = Tb— + (pw — Po)gL +

TR ) B LoVoL
kkyrw kkro

(5.16)

At the pore throat, we can also obtain the pressure difference between the two phases from the

Young-Laplace equation, -
o

R
where R; is the oil throat radius, and R, is the radius of the oil neck (see Fig. 5.2b).
Now we consider the following situations: AP, > APy and AP, < AP;. When AP, > APy,
the fluids would flow in such a way as to reduce AP, to keep the two forces in balance. In order to
decrease AP,, the system would either increase R; or decrease R,. It is impossible to increase R;
much further, because of the solid pore structure. Thus, the system. would reduce R,. To reduce
the value of R,, capillary forces pump the wetting phase into the pore throat. Consequently, a
wetting phase collar ring would forms at the pore throat [158]. The formation of the collar ring
~ reduces the value of R;, and results in snap-off. However, when AP; < APy, the system becomes
stable. In order to balance the pressure difference in this case, the system would either reduce
R; or increase R,. Reducing R; is impossible, because the viscous pressure difference AP; would
push oil into the pore throat and the interface moves outward to increase R;. Thus, increasing the
effective value of R, is the only solution. To increase the effective value of R, the capillary forces
push the wetting phase away from the pore throat and there is a reduced wetting phase at the pore
throat. Therefore, there would be no snap-off. In summary, we argue that snap-off would occur if
AP; > AP;. We then obtain the following condition for snap-off to occur,

APy =(P,— Py)2 = (5.17)

o o Cmo VL _ LoVol

- > w — Po . 5.1
% RZE T (Pw = po)g L+ == = 57~ (5.18)
Because v, has positive values, the condition simplifies
o o _ Cno Py L
-5 25 w — Po 1. 1
® R R T (P = po)g L + = (5.19)
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Figure 5.2: Vertically oriented snap-off model (a) and detailed pore structure (b).

or

k Rt Cm-Rt)
k <= - - .

Ncl + rwB = RtL krw (1 Ro Rb

Eq. 5.20 suggests that mobility ratio would have minimal effect on the final residual nonwetting

phase saturation, which agrees with experimental observations [1, 177].

If we set N, = 0 and N = 0, Eq. 5.20 simplifies to

Cm.Rt.Ra
> -
B2 R, R

(5.20)

(5.21)

which is the same as Eq. 5.5.
Doublet Model. For vertically oriented doublet pores as Fig. 5.3 shows, we write down the
pressure drops from point B to point A for each pore as following for a upflow (on the assumption
that the tubes are cylindrical)

_ 8pyuiLy | 8povi(L — Iy) _ 20

= e Lw L"' o .
Apy 2 + i R1+ 1Pwg + (L — L1)pog (5.22)

and :
8uwvala  8uova(L — Lz) 20 ‘
Ap, = : -—+1L L-1 2
P2 =t B 7, T L2Pug +( 2)Pod; (5.23)
where R; is the radius of tube ¢, and L; is the distance the displacing fluid flows in tube ¢, L is the
length of the tubes, and v; is the flow velocity in tube i. Since the two pores have common junctions,
the pressure drops Ap; and Apz must be equal, Ap; = Ap;. Therefore, we obtain the following
expression in which the average velocity (v,) of the doublet pores is v, = (R2v1 + R3v;)/(R? + R2).
/ % _f o R

Np=22 By
1+7 27" RiLi+f Rz)

. Nem+ (I — I) (5.24)
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Figure 5.3: Vertically oriented pore doublet mode

where [; = L,‘/L, Hr = I‘Lo/ﬂw’ f = R%/R%7 and

m= (1) (4 £ = Pl - 21y) + (ra+5-2)- ). (5.25)
Vg Vg Vo' Vg
The permeability of the PDM is defined as (R? + R3)/8 from Poiseuille’s law.

To simplify the arguments, we assume the radius of pore 1 is smaller than that of pore 2,
R; < R,. Capillary forces draw the wetting phase into the smaller pore (pore 1), and viscous forces
make fluid flow more easily in the larger pore (pore 2). At the same time, gravity forces reduce
the velocity difference between pores. Reduction of viscous forces slows the flow in the larger pore,
and results in more oil trapped in the larger pore. If the oil in pore 2 were completely trapped, we
would have the following parameters: v2 = 0,y = 1 and Iz = 0, and m = F(1 + f). Because the
value of m decreases with increasing value of v, the system must have a value of m smaller that
f(1+ f) to avoid entrapment of the nonwetting phase in pore 2 completely. Thus, the nonwetting
phase would be trapped in pore 2 completely, if m > f(1+ f). Rearrangement of Eq. 5.24 gives

2% R,
R < C=—=(1-=2), .26
N1+CNB_C'R1L( Rz) (5.26)

where C = 1/(1 + f)2.

For a given system, Eq. 5.26 indicates that the nonwetting phase in the larger pore would
be trapped due to by-passing when the combined effects of gravity and capillary forces are less
than a certain value. The relative magnitude of gravity forces and viscous forces depends on the
value of C, which represents the heterogeneity of the system. C = R}/(R? + R3)? is the relative
permeability of the displacing phase (the wetting phase), and can be derived as following with an
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assumption that displacements in the tubes are piston-like,

R! k1 R? Ql
(B + R WE+E)
where k; and k are the permeabilities of tube 1 and both tubes, ()1 and @; are the flow rate in

pore 1 and the total flow rate in both pores. According to Darcy’s law, Q1 = Ak,,k/(n0®/010),
and Q¢ = Ak/(p0®/0l) for a given flow area A and potential gradient ®/3l. Therefore,

C =

(5.27)

g _ At
C==== SO L B krun (5.28)
Q+ 42
and ok R
No + ki Ng < bpyye—(1 — =2). ' 5.29
' S Al (5.29)

Thus, Eq. 5.29 also suggests that a linear combination of the capillary and Bond numbers can
be used to state a criterion for by-passing. Here again, the coefficient of the Bond number is the
wetting-phase relative permeability.

Summary. In both snap-off and doublet models, we obtain criteria for entrapment of the non-
wetting phase in porous media in terms of linear combinations of capillary and Bond numbers.
Comparison of Eqgs. 5.20 and 5.29 indicates that they have similar forms. In both cases, the rela-
tive contributions of capillary and Bond numbers are determined by the relative permeability of the
displacing phase. Using the relationship between Ny and N2, we obtain the following equations
for snap-off and by-pass processes.

R, 2R,
<—(1-=2-=2 X
N°2+NB—RL(1 R, Ry’ (5-30)
and
No+ N <-—(1—R1 (5.31)
2TIB=>P TV " R, '

The simplicity of Eqgs. 5.30 and 5.31 suggests that N, is a more appropriate deﬁmtlon of capillary
number than N.; even for processes with constant injection rates.

5.1.3 Experiments

Experimental studies [137, 138] provide some evidence that a linear combination of capillary
number and Bond number determines residual oil saturation. However, the Bond numbers were
changed by varying the sizes of the beads used in packing their columns. We now investigate
whether use of the linear combination is reasonable if we change Bond number by the variation
of IFT and density differences of the fluids. In this section, we report results from experiments
designed to examine these parameters.

All displacements were conducted in the same sand-pack column. The Bond number was
varied by using different IFT’s and density differences of the fluids. Fig. 5.4 is a schematic of the
experimental apparatus. The HPLC pump provided constant injection rates ranging from 0.1 to
8.0 cc/min. The length of the sand-packed porous medium was 119.0 cm and the diameter 1.95
cm. The permeability was 48.5 Darcy and the porosity, 0.256. We used pre-equilibrated mixtures
of brine, iso-octane (iCg).and isopropanol (IPA) to generate fluid pairs of wide range of IFT and
densities differences, This system has been well studied [138]. Four tie-lines were used to obtain
IFTs varying from 0.1 to 38.1 mN/m and densities from 0.11 to 0.33 g/cc, which correspond to a
range of capillary and Bond numbers from 10~6 to 10~3. Table 5.1 lists the measured properties
of the fluids used.
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Figure 5.4: A schematic diagram of the experimental setup.

All the imbibition displacements were conducted with initial wetting phase saturations.
These were established by first injecting the nonwetting phase into the top of the column that was
fully saturated with the wetting phase. The initial wetting phase saturation varied from 0.19 to 0.26
of pore volume. The large variation of initial wetting phase saturations were results of large varia-
tions in mobility ratios in different runs. In this range of initial wetting phase saturation, repeated
experiments showed that this variation of initial wetting phase saturation did not influence the
residual nonwetting phase saturation. Therefore, the differences in the residual nonwetting phase
saturation are the results of the capillary and Bond number variations. To study the directional
effects of gravity forces, we conducted displacements by injecting the wetting phase from either
bottom or top of the column. We refer to displacement from the bottom as gravity-favorable and
that from the top as gravity-unfavorable, because the gravity forces stabilize the displacements
when injected phase enters the column from the bottom. Table 5.2 summarizes the experimental
results from both gravity-favorable and unfavorable displacements.

In all the displacements, we observed little additional recovery shortly after breakthrough,
an observation that is consistent with theidea that the sand-pack was strongly-water wet. Following
the common practice, we plot the final residual oil saturation against the capillary number alone

Table 5.1: Fluid properties.

fluid IFT Ap Np Viscosity (cp) | Viscosity (cp)
system | (mN/m) | kg/m?® (wetting) (nonwetting)

#1 38.1 330 |4.2x10°° 0.98 0.48

49 4.41 305 |3.3x10°° 2.80 0.49

#3 1.07 220 1.0 x 104 3.25 0.52

#4 0.10 110 | 5.2x 1074 2.60 0.70
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Table 5.2: Summary of the displacement results

fluid | flow rate S; Sor S; Sor Ng
system | (cc/min.) | favorable | favorable | unfavorable | unfavorable
#1 0.5 0.19 0.181 6.6 x 10~7
#1 1.0 0.22 0.257 1.4 x10°°
#1 2.0 0.23 0.181 0.19 0.248 2.7 x 1078
#1 4.0 0.23 0.181 0.19 0.248 5.4 x 107
#1 8.0 0.20 0.171 0.24 0.19 1.1x 10%
#2 0.1 0.24 0.16 3.4x107°
#2 . 0.5 0.25 0.152 1.6 x107°
#2 1.0 0.26 0.19 3.3x107°
#2 2.0 0.26 0.138 0.27 0.15 6.7 x 107°
#2 4.0 0.24 0.124 0.22 0.123 1.3x 1074
#2 8.0 0.25 0.10 0.27 0.11 2.7x 1074
#3 0.1 0.25 0.12 1.6 x 10~°
#3 0.5 0.25 0.11 0.24 0.178 8.5x 107°
#3 1.0 0.25 0.14 1.7 x 1074
#3 2.0 0.24 0.10 0.22 0.11 3.2x 1074
#3 4.0 0.20 0.086 0.14 0.09 6.2x 107
#3 8.0 0.22 0.067 0.23 0.07 1.3 x 1073
#4 0.1 0.23 0.096 14 x 1074
#4 0.5 0.25 0.08 6.9 x 104
#4 1.0 0.25 0.067 1.4 x 1073
#4 2.0 0.23 0.048 . 2.8x 1073
#4 4.0 0.23 0.038 5.5 x 1073
#4 8.0 0.25 0.02 1.0 x 10~2

for all displacements in Fig. 5.5. From the results, the experimental data cannot be reasonably
correlated by the capillary number alone. The experimental results also indicate, therefore, that
gravity forces and the flow directions affect the residual nonwetting phase saturations.

5.1.4 Discussion

In the definitions of capillary number (N, ) and Bond number Np, five variables are in-
volved: the injection rates (v), the IFT (o), the density difference (Ap), the viscosity of the wetting
phase (i), and the permeability of the medium (k). In the experiments described in the pre-
vious section, we varied IFT and density differences, and injection rates to obtain a wide range of
capillary and Bond numbers. To check the other parameters, we review the experimental results
of Morrow and Songkran[187] and Morrow et al.[138] In both studies, they varied the capillary
number and Bond number by changing different bead sizes and injection rates. Changing bead size
changes the permeability of the bead pack. The permeability of a beadpack can be related to the
bead size through the Kozeny-Carman equation

¢3
T ka1 — ¢)2AZ

where A, is the specific surface area per unit solid volume, for spherical bead A, = 3/R, K is the
Kozeny constant, which is approximately equal to 5 for bead packings, and ¢ is the porosity of the

k (5.32)
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Figure 5.5: Correlation of residual nonwetting phase saturation with the capillary number alone
for all displacements.

packing, which is about 0.38 for bead packings. Therefore, the permeability of a bead pack can be
simply related to bead size as
k = 0.00317R>. : ' (5.33)

Thus, the correlation given by Morrow and Songkran [137] and by Morrow et al. [138] can rear-
ranged in terms of Np as
Sor = f(Nea + 0.445N ). (5.34)

Comparison of Eq. 5.34 with our theory indicates that the wetting-phase relative permeability at
the trailing edge of the displacement front is about 0.445, which is consistent with the reported
measurements for a similar system [137, 138] (kry = 0.5).

We used a procedure similar to that used by Morrow and Sougkran [137], and obtained a
least-squares fit of our residual oil saturations from gravity-favorable displacements with an effective
number defined as N. = N + cNp. As Fig. 5.6 shows, a straight-line correlation on the semi-log
plot exists when ¢ = 0.5. The value of ¢ is the relative permeability of the wetting phase according
to Eqgs. 5.20 and 5.29. This value is very close to the measured relative permeability by Morrow
and Songkran [137] on a similar system. Again, our experiments suggest that a linear combination
of the capillary and the Bond numbers correlates the residual oil saturations, and the appropriate
coefficient is the wetting-phase relative permeability.

Using the same value of ¢, we correlated all our experimental results, as Fig. 5.7 shows, for
both gravity-favorable and gravity-unfavorable displacements. At high values of Ne, the correlation
is excellent, while it is less satisfactory when N, is small. The difference between the gravity-
favorable and unfavorable displacements may result partly from the accuracy of the flow rate and
permeability measurements, because the subtraction of the two numbers enhanced the significance
.of the measurement error when these two values are comparable. In general, the correlation is good
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Figure 5.6: Correlation of the residual oil saturations and the sum of the capillary and Bond
numbers for gravity-favorable displacements.

and we obtain the following correlation of the residual oil saturation with the capillary and the
Bond numbers.

0.01227
N +0.5Np )
Fig. 5.8 shows a comparison of the experimental data and the correlation given by Eq. 5.35.
Fig. 5.8 also demonstrates the significant directional effects of gravity forces on residual nonwet-
ting phase saturations. For a system’ with gravity forces comparable with viscous forces, gravity-
favorable displacements have much lower residual oil saturation than do gravity-unfavorable dis-
placements. This directional effect of gravity forces on residual oil saturation shows that gravity
forces can reduce the residual oil saturations, as well as macroscopic sweep efficiency [207].
For a given system, it would be useful to determine which forces are most important.
Therefore, we rearrange the linear combination to obtain

Sor = 0.02 + 0.0505/0g( (5.35)

Apgk
Ne = No(1 + =£55, © (5.36)
Hay®
The relative magnitudes of Ny and Np in a system can be reflécted by the gravity number
_ Apgk .
N, = ) (5.37)

When N, > 1, the Bond number is more important, whereas when Ny < 1, capillary number is the
controlling parameter in determining the residual oil saturation. .

We should note that the gravity number (N,) is proportional to the medium permeability.
Thus, flow in a high-permeability medium will have larger gravity effects than that in a low-
permeability medium. To illustrate this concept, let us compare typical oil-spill and oil recovery
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Figure 5.7: Correlation of residual oil saturations and the sum of capillary and Bond numbers from
percolation theory and best-fit of the experimental data.

situations. The permeability of a typical soil is about 50 darcy, water viscosity is around 10~3Ns
(1 cp), and the flow rate can be estimated to be 1 ft/day, which is about 3.5 x 10~%m/s. We
also assume that the density difference is about 300kg/m® and the IFT is about 40 x 10~3N/m.
The gravity number (N,) is about 2.5, that is, the gravity forces are larger than the viscous forces
in typical spilled-oil clean-up procésses. For a waterflood oil recovery process, however, with a
permeability of the order of 100 md and the same fluid properties, the gravity number is about
5% 10~3. Thus, the effects of density difference and flow direction will be more important in oil-spill
applications than in typical waterflood situations.

5.1.5 Conclusions

‘In this work, we presented two different models of oil entrapment mechanisms, and exper-
imental results from oil displacements with gravity forces assisting and impeding the oil recovery
processes. We draw the following conclusions:

1. We demonstrated theoretically and experimentally that a linear combination of gravity
and viscous forces can be used to correlate residual nonwetting phase saturations for both gravity-
favorable and gravity-unfavorable displacements.

2. Changing the value of capillary and Bond numbers by varying interfacial tension, density
difference and injection rate give similar effects on residual nonwetting phase saturations in our
experiments. )

3. When gravity forces are comparable to or larger than the viscous forces, gravity-
unfavorable displacements have significantly higher residual nonwetting phase saturation than
gravity-favorable displacements. .

4. Because soils have much higher permeabilities than oil reservoirs, gravity effects on
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Figure 5.8: Comparison of the correlation with experimental data (lines are correlations and dots
are the experimental data).

residual nonwetting phase saturations are much more significant in spilled-oil clean-up than in oil
Tecovery processes.

5.2 Gravity Drainage of Crude Oil in the Presence of Carbon
Dioxide

D. Zhou

Our recent experiments and theoretical analysis have demonstrated that gravity drainage
at low interfacial tension could be an efficient oil recovery mechanism from vertically fractured
reservoirs [165]. However, the analysis was based on experimental data from model fluid systems,
such as a binary liquid mixture of C; and nC; used by Stensen et al. [173]. The question that
one would ask when we apply the analysis to field design is whether the complex nature of crude
oil leads to drainage behavior different from that of model systems. There are few data in the
literature about crude oil drainage for injection gases that exhibit multicontact miscibility. One
such gas is CO,. In this section we report results of experiments to determine whether transfers
of components between CO,-rich and oil-rich phases can lead to gravity drainage of crude oil. In
particular, we report experimental results for gravity drainage of Means/crude oil in the presence
of high pressure COs.

When CO, is injected into a reservoir, mass transfer will occur between the CO2 phase and
the crude oil, because of the large solubilities of some hydrocarbon molecules in CO5, and also the
solubility of CO2 in the crude oil. This mass exchange leads to the variations of phase properties
such as interfacial tension and densities, which alters the relative magnitudes of the gravity and
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Figure 5.9: Schematic of the gravity drainage rig

capillary forces and influences the drainage rates of the oil phase. Gravity forces drain the heavier
phase (crude oil) out of the rock, while capillary forces and the end effect act to retain oil in the
core. The magnitude of gravity forces is proportional to the absolute length of the core. Therefore,
relatively long cores are needed to investigate gravity drainage mechanisms in a way that is suitable
for oil reservoirs. Qur experimental setup was designed to use 2-ft long cores, which are significantly
longer than the cores used in some past studies of gravity drainage experiments [173, 176].

5.2.1 Experimental Apparatus and Procedures

Fig. 5.9 is a schematic of the gravity drainage apparatus. The use of a visual cell enables
us to measure the volume of oil drained at any given time without disturbing the system. The
drainage apparatus was designed to operate up to 7,000 psia and 200°F. Fig. 5.10 shows the inside
arrangement of the drainage cell. The annular space between the core and the cell wall is about 1
mm, a space that simulates an open fracture through which oil and gas can flow. We attempted
to minimize the volume ratio of this space and the rock matrix in order to observe similar mass
transfer mechanisms as in oil reservoirs. The inside dimensions of the drainage cell are height of 2
ft and a diameter of 2.5 in. In order to avoid oil displacement when gas flows into the cell, the cell
was designed to allow gas flow into the cell from both ends.

Means stock tank crude was used for our, studies, because it has been relatively well char-
acterized in our laboratory [174, 79]. Because we used stock tank oil, we saturated cores at room
temperature and pressure. We first saturated the core with water by evacuating it and then al-
lowing water to imbibe into the core. Weighing the core before and after saturation gave the pore
volume. The core was then moved into the core holder for oil displacements to establish initial wa-
ter saturation. We considered the initial water saturation to be reached after injection of 1.5 pore
volumes of crude oil, at which time the water production was small although it had not completely
stopped. The amount of water produced was used to calculate oil saturation. The core was then
weighed again to check the material balance. '

The cell and CO4 were then preheated to the desired temperature before inserting the
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Figure 5.10: Schematic of the gravity drainage cell

saturated core into the drainage cell. The core was kept in the drainage cell for two days before the
introduction of CO3 in order to be sure that temperature equilibrium was achieved in the drainage
cell. .

Pure CO2 was then introduced into the cell to replace the oil in the annulus. The pressure
in the cell is controlled manually by periodically introducing additional COg into the cell.

The difference in density between the CO2 and the oil creates a gravity driving force for oil
drainage. That force is opposed by capillary forces which depend on the interfacial tension of the
gas/oil system. That interfacial tension changes as components transfer between the phases and
the oil swells as the CO5 dissolves in it. Thus, the experiment determines whether the component
transfers lead to significant recovery of crude oil.

5.2.2 Results

We conducted two drainage experiments at different temperatures and pressures. Fig. 5.11
shows the crude oil recovery curves. Experiment 1 was performed at room temperature (72.5 °F)
and relatively low pressure (900 psi) in a 500 md sandstone core. After three weeks of drainage,
there was about 27% of original oil in place (OOIP) recovered. The experiment was stopped after
six weeks of drainage. There was little additional oil recovered in the last three weeks. No additional
oil was recovered when we blew down the system to ambient pressure. The calculations of the phase
properties presented below show that the interfacial tension was relatively high (about-4.0 mN/m).
Therefore, this low recovery is not surprising.

In Experiment 2, the temperature was elevated to 120°F, and the pressure was kept at 1500
psia for the first five weeks and jumped to 1700 psia in the last week of the experiment. Two recovery
periods were observed in this experiment. Drainage was fast in the first week of drainage, and then
it slow down in the remaining four weeks. That behavior is consistent with the observations of
Schechter et al.[165]. Comparison of Experiments 1 and 2 suggests that gravity drainage is faster
and more efficient at the higher temperature and pressure. At same temperature, we recovered
additional 6 % OOIP when the pressure was increased from 1500 psia to 1700 psia. This additional
recovery indicates that gravity drainage at high pressure is more efficient in the pressure range
of the experiments, presumably because interfacial tension was lower. at the higher pressure, and
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Figure 5.11: Recovery curves for experiments 1 and 2

because solubility of GO in the oil increased somewhat. Experiment 2 was terminated by blowing
down the pressure from 1700 psia to ambient pressure in about 20 minutes. We collected additional
5% of oil with a lighter color than the crude oil. Thus, we recovered 50% of OOIP from Experiment
2.

5.2.3 Discussion

Qil recovery from gravity drainage is the result of interactions between capillary forces
created by interfacial tension and'gravity forces from the density difference of the gas and oil
phases. The relative magnitudes of capillary and gravity forces determine the efficiency of a drainage

process. The ratio of the capillary to gravity forces can be represented by the inverse Bond number
N 51, defined here as

¢
Nzl= w‘/: (5.38)
B ApgH

where c s a scaling constant for a given medium (¢ is about 0.2 for most of the media), o is interfacial
tension, Ap is the density difference between oil and gas phases, k and ¢ are the permeability and
porosity of the medium, and H is the height of the core. )

Fayers and Zhou [62] proposed the following equation to correlate the remaining oil satu-
ration (Srm) at the end of a drainage process to the corresponding value of Ng' by scaling the
capillary pressure curves.

Sm = N5t (2= N5") (1= Sor) + Sor (5.39)

where S,, is the irreducible oil saturation. They used 0.25 as S, in correlating their experimental
data collection.

To estimate the corresponding values of Nz 1 for our experiments, we performed calculations
of the phase properties for the Means/CO; system. The Peng-Robinson equation of state (PR-
EOS) was used to calculate phase densities. Interfacial tensions were calculated with the Parachor
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Figure 5.12: Calculated densities of Means/CO2 mixture at 72.5°F and various pressures

methods. Detailed compositions of stock tank Means reported by Stessman [174] were used in these
calculations. Figs. 5.12 and 5.13 show the calculated densities and interfacial tensions of the oil-rich
and COy-rich phase at 72.5°F and various pressures. Figs. 5.14 and 5.15 show the same calculation
for the high temperature and pressure experiment. Our calculations indicate that the interfacial
tensions were not ultra-low (10~2 mN/m) but were about 1 mN/m. Using o = 4.0 mN/m, Ap =
400 kg/m? for experiment 1 and ¢ = 0.5 mN/m, Ap = 180 kg/m3 for experiment 2, we obtained
the corresponding Ngl values as 0.23 and 0.14 for experiments 1 and 2 respectively. Fig. 5.16
shows the comparison of the two experiments and the correlation proposed by Fayers and Zhou.
Although the remaining oil saturation is slightly larger than the correlation, the trend agrees well
with the earlier comparisons. :

The recovery results shown in Fig. 5.16 suggest that substantial recovery of oil from fractured
reservoirs is possible by CO3 injection. If fracture heights larger than 2 ft exist, for example, inverse
Bond numbers will be lower still and better recovery efficiency can be expected. Furthermore, if the
porous medium is not strongly water wet, then injection of water will yield poor recovery, because
imbibition will be relatively inefficient. Even if the porous medium is water wet, the film drainage
mechanisms discussed in this chapter can lead to improved recovery after water injection. Thus,
there is considerable evidence that the use of gas injection processes in fractured reservoirs should
be investigated further.

5.2.4 Conclusions

From the experimental results and calculations of the phase properties of Means/CO2 sys-
tems, we draw the following conclusions. .

(i) Crude oil can be efficiently recovered by gravity drainage in the presence of CO, at

relatively low pressure (1500 psia), in which the interfacial tension between oil and CO,
rich phase is not necessarily ultra-low.
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Figure 5.13: Calculated interfacial tension of Means/CO; mixture at 72.5°F and various pressures
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Figure 5.14: Calculated densities of Means/CO; mixture at 120°F and various pressures
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(ii) Final crude oil recovery can be related to the inverse Bond number of the model systems,
although the Means/CO; fluids were not pre-equilibrated.

(iii) Additional oil can be recovered by blowing down the system pressure after a drainage
process, and the recovered oil is lighter than the original crude oil.

5.3 Scaling Multiphase Flow in Simple Heterogenous Porous
Media

D. Zhou, F. J. Fayers, and F. M. Orr, Jr.

In this section, we examine the scaling laws and flow regions controlling various types of flow
behavior in systems with simple forms of heterogeneity. If we imagine displacement of oil by water
in a two-dimensional, vertical cross-section of two layers with differing permeability, the distribution,
of oil and water at any time during the displacement will be controlled by a combination of physical
phenomena. Water will usually flow faster in the high permeability layer. If the water is less viscous
than the oil, then viscous fingering may influence-the flow pattern. Gravity segregation will induce
vertical flow, with very different effects depending on whether the high permeability layer is above
or below the low permeability layer. Capillary forces will also cause transverse flow or crossflow, as
water imbibes from the high permeability layer into adjacent low permeability zones (in a water-wet
porous medium). The relative importance of each flow mechanism depends on the flow rate, the
density difference between oil and water, the mobility ratio, permeabilities and capillary pressure
curves for the layers, and so on. At low flow rate, for example, capillary and gravity forces will
dominate the flow pattern, but at high flow rate, viscous forces will control fluid distributions.

We consider scaling of viscous, gravity, and capillary forces for displacements in homoge-
neous porous media and in systems that contain some simple heterogeneity such as layers and
fractures. We do so by making the material balance equation dimensionless, thereby deriving a set
of dimensionless groups that describe the relative magnitudes of the various forces. While many
investigators [167, 198, 54, 156, 66] have used the same approach for subsets of the flow problems
examined here, there has not previously been a comprehensive analysis which attempts to include
a wide range of experimental data covering the combined effects of viscous, gravity, and capillary
forces with the effects.of permeability variation. We have analyzed many sources of experimental
and simulation data to identify limiting flow regimes and to establish the range of values of the
dimensionless groups over which transitions from one region to another occur. We find that the
experimental information confirms consistent boundaries for the flow domains, and thus our results
give a comprehensive mapping of the overall flow behavior.

The analysis and delineation of dimensionless transition regions given here will find a variety
of applications. It will establish when concepts such as “vertical equilibrium” can be used to
calculate average transport functions (pseudofunctions), and it will help to determine how much
resolution is required in description of permeability heterogeneity in a reservoir. For example, if
capillary pressure dominates local flow, then capillary crossflow will eliminate the effects of local
permeability heterogeneity variations as capillary forces move water from high permeability to low-
permeability zones. In such cases, the details of the local variations need not to be resolved in
simulation representations of the flow. Thus, this analysis given here will permit more effective use

of approximate simulation techniques that are an inevitable part of current simulation approaches
for field-scale flows.
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5.3.1 Analysis

For two-phase flow in a heterogeneous two-dimensional cross-section, we commence by ex-
pressing the equations of motion in a dimensionless form similar to that adopted by Yortsos [198]
and Ekrann [54]. This form of analysis is referred to as Inspectional Analysis by Shook et al. [167].
While the approach we use is similar, the dimensionless groups we will define differ from those
obtained by Shook et al. [167). Material balance equations for incompressible flow are

0Sy , OU,  0OVy

5T Tax Ty (5:40)
0 0
F)d (Uw + Us) + i (Vo +V5) =0, (5.41)
and the Darcy flow velocities for both phases are given by
kr; 09,
Uj = —kn(X ’Y)ﬁ,-la_)g’ (5.42)
ky; 00,
W=—mMﬂWﬁ3ﬁ, (5.43)

where ¥; is the flow potential in phase 7, U; and V; are the flow velocities of phase j in the horizontal
and vertical directions, and k, and kj, are the permeability distribution functions in the vertical
and horizontal directions. By definingz = X/L,y =Y/H,t =Tq/L, u; = U;/q, v; = (LV;)/(¢H),
ky = kawKv(2,9), kr = kanKu(2,y), 8 = (¥;kan)/(Lqpo), and A; = (krjpto)/1;, We obtain the
following dimensionless equations

0Sy  Ouy Ovy

¢ t 5, T 3y = 0, (5.44)
i(u +u)+i»(v +v,)=0 5.45)
9z w ] ay w o) = Y, ( .

0%®;
Uu; = —I(H(.’II, y)Aja_mJ7 (5.46)
H\? kap, o 09;
(f) E’U] = —Kv(w,y)/\]a—y, (547)

where H and L are the width and length of the medium, k,, and k,;, are the average permeabilities
of the medium in vertical and horizontal directions, and ¢ is the total flow velocity in the horizontal
direction. Note that the flow potentials &, are dimensionless and expressed relative to the oil
viscosity, and that the dimensionless mobilities also contain oil viscosity as a factor.

In the four dimensionless equations, (L/H)%(key/kar) = Ri® appears in Eq. 5.47 as the only
scaling group, which can be rearranged as

H

IN?heo _ L% Lo _Th 548
( )kah‘ﬁﬁg%‘ﬁq_hfﬁ’ 54)
which is the time ratio for a fluid to flow a distance (L) in the horizontal direction to the distance
(H) in the vertical direction with the same potential difference across the distance. R; is also
called the effective shape factor, which is the shape factor L/H weighted by the permeability
anisotropy. The shape factor (R;?) represents the relative flow capacities of the medium in vertical
and horizontal directions.
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In this section, our objective is to identify flow regions where certain forces dominate fluid
movement in the transverse direction. Thus, we will focus our attention on the flow velocity in the '
_transverse direction. Combining the Darcy equations for each phase gives

1 0% 0®

—_— =-K Ao+ A —-—w> . .

(Rl)2 (’Uw + ’Do) V(il?, y) ( 0 By + Aw By o (5 49)
In order to define the relation between ®, and ®,,, we use the definition of capillary pressure to
obtain N
Ang kah _ Pc kah
i Lqpo Lapo
where transverse capillary pressure is defined as p. = pc*J(Sw), and p.* is a characteristic transverse
capillary pressure of the medium, p.* = f;.;f"’ Pe(Sw)dS/(1 — Sor — Sisc). Substituting Eq. 5.50
into Eq. 5.49 yields :

@w=@o+

J(Sw), (5.50)

o2 —(v + vu) M ( 87
2 o __ o _ 3 a7
f dy  AEv(z,y)(1+M) 1+M Ngv — Ne 3y), (5.51)
where -
— pg av
gv Haqp, ? (5.52)
_ Lpc*kay
= Hqu,’ (5.53)
and \ |
M =" (5.54)

Ny, and N, are the characteristic time ratios for fluid to flow in the transverse direction due to

gravity or capillary forces to that in horizontal direction due to viscous forces as shown by Egs.
5.55 and 5.56.

Apgkay
_ Apolkey _L70* Ty (5.55)
gv qu-llo q H Tgv, °
and .
n.*k L Pec_Kav
N,, = ch av _ =~ Hpo — E_. (556)

H2qu, ¢ H Tew

Note the differences of the gravity and capillary numbers defined here from the conventional gravity
(IV,) and capillary (IN.) numbers in the past studies [167, 198, 5], except Fayers and Muggeridge
[64] used N,,, and Yokoyama and Lake [197] used N, in their studies. The conventional capillary
(NV,) and gravity (IN,) numbers are defined and related to the new numbers as

_ Apg-Hkah _ Ngv

- == 5.57
g Lap, R? (5.57)

and . N ‘
N, = 2= "eh _ v 5.58
Lqp, R? (5.58)

The advantage of using Ny, and N, is that they represent the relative magnitudes of the gravity
and capillary forces to the viscous forces in the transverse direction including the fact of aspect
ratio as reflected by the shape factor (R;?). .

We will treat M/(1 + M) as a constant in the system, although in principle, the mobility
ratio M is a function of saturation. For a number of the applications to be considered, we will
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Table 5.3: Summary of the limiting cases

Flow region Simplified expression Conditions
Capillary-dominated Rzz%%ﬂ = %VA%% Ney >> Ngy and ];'{ﬁw >>1.0
Gravity-dominated R 3;; = —%Vf} Ngy >> Ny and AT/I_,]_—VA% >>1.0
Capillary-gravity equil. %%‘g = —A—:Cg.ﬁ Ngy = Ny, and M >>1.0
Viscous-dominated RF% = ﬁm/\—;’}g—'ﬁ’-‘;—ﬁ ﬂg%ﬂ << 1.0
Vertical crossflow equil. %‘%2 ~0 @%‘M << 1.0and B2 >> 1.0
No-communication %‘I;ﬁ R 00 ﬂgﬁ%ﬂ << 1.0 and B2 << 1.0

be concerned with crossflow mechanisms in vertical sections for which the boundary conditions are
Vo = ¥y = 0 at top and bottom. We therefore expect that v, and v, will be relatively small at
intermediate locations.

Eq. 5.51 shows that the potential gradient in the vertical direction of a cross-section consists
of three parts: viscous, gravity and capillary forces. The relative magnitudes of these forces are
defined by two dimensionless numbers: a modified gravity number (Ng,M)/(1+ M), and a modified
capillary number (N.,M)/(1 4+ M). Thus, the mobility ratio has been included in the capillary
and gravity numbers, because the definitions of capillary and gravity numbers are based only on
oil viscosity. The shape factor (R;?) defines the magnitude of the potential gradient of the system
in the transverse direction. In addition to the three scaling numbers, the scaled permeability
distribution function Ky (z,y) and scaled capillary pressure function J(S,,) represent the effects of
heterogeneity of the medium. 85,,/dy shows the influence of the phase distribution in the medium.

The scaling properties of a heterogeneous medium can be categorized as the average scal-
ing parameters, such as the shape factor R,%, capillary number (M N,,)/(1 + M), gravity number
(MN,)/(1+ M), and the mobility ratio M, and the detailed scaling properties as the scaled per-
meability distribution function Ky (z,y), capillary pressure function J(S,), and phase distribution
05y/0y. This work will examine the average scaling parameters to identify flow regions where cer-
tain forces dominate. We will consider media having simple heterogeneity, but will assume that the
effects of ordering of layers is secondary to the principal mechanisms controlling the flows. In the
following, we will define conditions for four flow regions: gravity-dominated, capillary-dominated,
capillary-gravity equilibrium, and viscous-dominated flow regions. In each case, the vertical poten-
tial gradient given in Eq. 5.51 is used to obtain limiting conditions for the crossflow behavior. The
limiting forms of expression for vertical potential gradients to be derived in the next section are
summarized in Table 5.3.

Gravity-Dominated Crossflow. Gravity-dominated flow occurs if Ny, >> Ny, so that Eq. 5.51
can be reduced to

0% —(vo + V) MN,
2 o __ o w _ v
B 9y~ AEv(z,y)1+ M) 1+M (5.59)
Furthermore, if (NguM)/(1+ M) >> Fuis, Eq. 5.59 can then be reduced to
RAGE = - (5.60)

8y 1+ M’

where Fuis = —(vy + %)/(Ao(1 + M)Kv(z,y)). Fyis should be small and in the magnitude of
unity for this case. Thus, the conditions for Eq. 5.60 to be valid are that Ny, >> N, and
MNg,/(1+ M) >> 1.0. Eq. 5.60 has been derived such that the system is dominated by gravity
segregation.
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Capillary-Dominated Crossflow. If capillary effects dominate, then Eq. 5.51 reduces, when
Ny >> Ny, to
209, —(vo +vy) M aJ

By~ WKy O+ i) 11 ay (5.61)

When (N.,M)/(1 4 M) >> 1.0, Eq. 5.61 simplifies to

R

3 208 _ MNedJ
0y 1+ Moy’

(5.62)

Thus, the driving force for fluid to flow in the transverse direction is the capillary force. The
conditions for such a case are that (Ng,M)/(1+ M) >> 1.0 and N, >> Ng,.
Capillary-Gravity Equilibrium. If (Ng,M)/(1 + M) >> 1.0, Eq. 5.51 can be reduced to

0% _ Mo (| NewdJ
0y 1+M Ny 0y )

(5.63)

If (MNg,)/(1+M) >> 1.0, and Ng = Ngy/N,, is intermediate, the value of (1—(Ney/Ngr)(0J/0y))
should be small, which means that

0J8S  Ngy _Apg
9505~ Noy — po (5.64)
Eq. 5.64 indicates that the system is in capillary-gravity equilibrium. Thus, if (Ng,M)/(1+
M) >> 1.0 and Nyy/N,, is moderate, the system can be considered to be in capillary-gravity
equilibrium. ‘
Viscous-Dominated Crossflow. In Eq. 5.51, the net effects of capillary and gravity forces are
controlled by the sign of 85,,/8y. Since 8J/85,, is negative, if 85,,/0y is negative, the gravity and
" capillary forces tend to offset each other’s effects. However, they will enhance each other’s effects
if 85, /8y is positive. In order to reach a viscous-dominated flow region, the viscous force should
be much greater than the maximum effects of capillary and gravity forces, that is

Ney  NyyM '
Ngu)li—M << 1.0. (5.65)

a1+

Eq. 5.51 can then simplify to

aQIw = Rlza@o _ _('vw'*"vo)

R? = )
' oy 0y AuwKv(z,v)

(5.66)

If B2 >> 1.0, the value of 8®,/8y should be very small, because Fyis = —(vo + vw)/(Ao(l + -
M)Kvy(z,y)) has a finite value. Thus,

6<I>o~0~6<1>w
dy oy

(5.67)

Crossflow under such condition is referred as viscous crossflow equilibrium (VCE). It is obvious
that VCE is valid only if (N;,G + Nep)M/(1 + M) << 1.0, and also B;® >> 1.0..

Eq. 5.66 indicates that if the viscous forces dominate flow, both phases should crossflow in
the same direction at any point of the medium. Furthermore, if R;®> << 1.0, 88,/dy should be

very large, that is,
| 0%, _ 9% _, o, (5.68)
dy ~— Oy ) ’
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Eq. 5.68 indicates that for finite crossflow velocities (v, + v) and R;? << 1.0, there would need to
be an infinitely large potential gradient. Since this is not plausible, there should be little crossflow
in the transverse direction.

In summary, if (New + Ngo)M /(1 4+ M) << 1.0, the system is dominated by the viscous
forces. At the same time, if B> << 1.0, viscous crossflow can be neglected, and if B;?> >> 1.0, the-
system is in VCE.

5.3.2 Discussion and Comparison with Existing Experimental and Simulation
Results

Three independent dimensionless groups have been derived for the average scaling properties
of a flow system: (N, M)/(1+ M), (NoyM)/(1+ M) and R;®. We then defined the conditions for
certain forces to dominate fluid flow in a medium. However, the conditions defined in the above
section are mathematically infinitely small or large. In practice, we would ask, how large (or small)
is large (or small) enough for these conditions to hold. To answer this question, we examined
existing experimental and numerical simulation results to identify flow regions. In the following,
we define a flow with a single gravity tongue as gravity-dominated flow, a flow which is faster in
the low-permeable region than in high-permeable region as capillary-dominated, and a flow where
recovery varies little with increase in flow rates as viscous-dominated.

Previous studies of scaling behavior in multiphase flow in porous media have usually con-

centrated on one of the following three situations: miscible displacements, immiscible displacements
with minimal gravity effects, and flow in fractured reservoirs. Although the existing experimental
and numerical simulation results for each case do not cover all parameters derived above, combining
these three different situations gives us a reasonably clear picture of the flow regions in general. A
summary of the principal sources of data and their estimated ranges of scaling parameters is given
in Table 5.4.
Miscible Displacements(V,, =~ 0). The term miscible displacement here refers to displacements
with negligible capillary effects (N, = 0), which can also include two-phase flow. Much research
effort has been applied to flow in such systems [5, 66, 23, 93]. When the capillary force is neglected,
only gravity and viscous forces contribute to flow. Dispersion and diffusion can influence to some
degree the performance of miscible and near-miscible displacements [63], since they affect mixing
and the contrasts in viscosity and density differences. However, dispersion can usually only be a
significant contributor in displacements where capillary and gravity forces are small and injection
rates are also relatively small. Dispersion effects will not be included in this work, and we retain
the unmixed viscosities and densities to analyze miscible scaling behavior.

Studies of crossflow in heterogeneous media have commonly been carried out on stratified
media [149, 201, 202, 93]. The complexity of the problem has progressed from studying viscous
crossflow alone {202, 201] to including gravity effects [54, 93]. Zapata and Lake’s fine-grid simulation
results on stratified reservoirs concluded that for systems without gravity and capillary effects, when
R;? was larger than 100, the viscous-crossflow equilibrium assumption was valid [202]. Continuation
of their work by Thiele [182] showed that for practical purposes, if R;? was larger than 10, the
VCE assumption held, and if R;?2 was smaller than 0.01, the system could be assumed to have no
communication (vertical crossflow can be neglected).

Both experimental and numerical simulation results have been reported for gravity effects
on displacement performance in vertical cross-sections [5, 66, 93]. Fayers and Muggeridge [66]
performed very fine-grid simulations for homogeneous vertical cross-sections and found that the
transition of viscous-dominated flow to gravity tonguing occurs in the range of 0.2 < (NgoM)/(1+
M) < 2. Pozzi’s [156] experimental results for uniform bead-packs showed that a single-gravity
‘tongue would form if (NgM)/(1+ M) > 2.5, which agrees well with Fayers and Muggeridge’s
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Table 5.4: Summary of data used to identify flow regions

Source Flow type Scaling numbers Flow regions
" (medium) Np MNeo ﬁ{—f]‘% R?
Du Prey imbibition 0.06 —10 0.59 transition
[49] (sandstone) 0.2< Np <5.0
-Hamon Imbibition - | 1072 — 10~1 10=2 — 0.5 | capillary-dominated
[80] (sandstone) | Np <0.05
Cuiec Imbibition | 1073 — 107% 0.56 capillary-dominated
[37] (chalks) Np <1072
Schechter imbibition 1072 —-20 0.01 transition
[165] drainage
(sandstone) . 0.2< Np < 5.0
Fayers miscible 0 10-%—-10% | 10%—10° transition
[66] (simulation) 02< J;{—fff <2.0
Araktingi miscible 0 107% —1.0 | 10*—10° | viscous-dominated
[5] (simulation) 0.25 < A{!—_,}_Vl_ell
Ingsoy miscible 0 8.0 — 14.0 20 gravity-dominated
[93] (bead-packs) Yla 5 5.0
Pozzi miscible 0 107> —10"' | 10-—10° | gravity-dominated
[156] (bead-packs) %fo > 5.0
Zapata viscous flow 0 0 0.1-7 VCE
[202] (simulation) R% > 10?
Thiele viscous flow 0 0 10~ —10° transition
[182] (simulation) ’ 0.1< 55 < 10
Yokoyama | imbibition 0-574 0 0—10% capillary-dominated
[197] (simulation) % > 4.1
Dawe imbibition 13.1 — 250 0 25 capillary-dominated
[39] (bead-packs) . %‘f’% > 13.1
Ahmed imbibition 0.29 — 14.3 0 14.3 transition
[3] (bead-packs) : 0.2 < Heul < 6.1
Pavone drainage 0.2-20 0 11.1 transition
[153] (carbonate) 0.2 < Ned < 10
180




o Lower limit for gravity tongue(insoy, 1990)
] Gravity tongue(Insoy, 1990)

A Transition{Insoy, 1990)

+* Viscous fingering(Araktingi, 1990)

Upper Limit (Fayers, 1991)

------------- Lower Limit (Fayers, 1991)

------- Lower Limit (Pozzi, 1963)

— ——- Lower Limit (Ekrann, 1992)

—-—-— Lower Limit for VCE

1 03 ---------- Upper Limit for No-communication

102 |
o Single-gravity tongue

10 L " e
e e ————— e By
- NS
................................ A srTiniiisaiaaaiaaiic

Transition zone

Ngy M/(1+M)

T T Illllll

107 | T
; Viscous-dominated;
10 ;— No- : Viscous-crossflow
Ecommunication ! | equilibrium
Tl R DI R

104 102 102 100 1 10 102 103 104
R?

Figure 5.17: Flow regions in miscible displacements

simulation results. Araktingi and Orr’s simulation results from a particle-tracking simulator for
both homogeneous and stratified vertical cross-sections indicates that flow was viscous-dominated
if NgyM/(1+4 M) < 0.25 [5], which also agrees very well with the above results.

. Experimental results were reported by Insoy and Skjaeveland [93] to examine the theory
by Ekrann for development of a gravity tongue in a stratified porous medium. Ekrann’s theory
assumed that vertical equilibrium and pressure continuity along the displacement front are the
criteria for development of a single gravity tongue. The predicted critical value of a system for
a single gravity tonguing is (M Ng,)/(1 + M) > 5.0. Their experimental data showed that when
(M Ngy)/(1+ M) = 11.5, there was a gravity-stable tongue.

Fig. 5.17 shows the flow regions in miscible displacements in layered and homogeneous
media. The lines are the boundaries between flow regions reviewed in this section. Although the
results are from both layered and homogeneous media, the transition from the gravity-dominated
to the viscous-dominated region agrees well between investigators. The transition is in the range of
0.2 < (NguM)/(1+ M) < 5.0. In the viscous-dominated region, the boundaries of transition from
no communication to VCE regions are based on Thiele’s results. The transition in this case in the
range of 0.01 < R < 10.

Immiscible Displacements without Gravity Eﬁ'ects (Ngy = 0). Capxllary-dommated CToss-
flow has been demonstrated as an important oil recovery mechanism, and therefore it receives
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considerable attention in oil recovery research. Several studies were carried out to investigate cap-
illary crossflow in the absence of gravity effects [55, 197, 39]. Yokoyama and Lake [197] simulated
the effects of capillary pressure on displacements in stratified porous media. Their results show
that with increased injection rate, less oil was recovered at the same pore volume injected [197].
They varied the transverse capillary number (V) from 0 to 57.4. From their simulated fractional
flow curves, we can see that at Ne = 0, there was no crossflow between layers, while with in-
crease of N, more crossflow occurred from the high-permeable layer to the low-permeable layer.
When M N,,/(1 + M) = 4.1, the displacement front in the stratified system was close to uniform.
When (MN,,)/(1 4+ M) = 574, the displacement front was completely uniform, which indicated
capillary-dominated flow.

An experimental study of capillary crossflow on a bead-pack by Ahmed et al. [3] showed
that crossflow changed significantly with changes in injection rates, although the production curves
did not vary so much. At their high injection rate (M N, /(1 4+ M) = 0.35), a viscous flow regime
existed in the most permeable layer, with breakthrough occurring in that layer. At low injection
rate (M N /(1 + M) = 8.5), flow advanced faster in the low-permeability layer, which indicates
a capillary-dominated flow. At intermediate flow rates ((MNy,)/(1 + M) = 0.57), displacements
occurred in both the high-permeability layer and the low-permeability layer.

In the waterfloods by Dawe et al. [39] in layered bead-pack systems at low rates, the water
front in the low-permeability layer advanced faster than that in the high-permeability layer [39].
Thus, the displacements were capillary-dominated. The corresponding value for (M Ne,)/(1 + M)
varied from 13.1 to 105.

The studies discussed above were for imbibition processes. Pavone’s study [153] of viscous
fingering in carbonate porous media was for drainage processes, however. The physical parameters
of the system were not well defined, although the author listed the permeabilities and porosities of
the samples. In order to use Pavone’s experimental results, the measured maximum pressures were
used to estimate the capillary entry pressures and the viscous pressure drops for similar media. For
each viscous ratio, media with reported permeability differences of no more than 0.1 Darcy were
considered as similar media. The corresponding values of (M N,,)/(1+ M) can then be estimated
for all displacements. From the moldings of the displacement fronts in the porous media, it can
be seen that the displacement in RUN 9 is capillary-dominated, since it had a stable front with
unfavorable mobility ratio. For RUN 9, (M N,)/(1 + M) = 10. '

Combining the experimental and simulation data, we can approximately determine the
transition region from capillary- to viscous-dominated flow as shown in Fig. 5.18. The lower limit
for the capillary-dominated flow is the intermediate rate displacement of Yokoyama and Lake’s
simulations M Ney/(1 4+ M) = 4.1. The dashed line in Fig. 5.18 is the estimated lower limit for
the capillary-dominated region. The upper limit (solid line) for the viscous-dominated region is
drawn through the highest rate of Ahmed et al.’s experiments. In summary, the transition between
capillary-dominated and viscous-dominated flow occurs in the range of 0.35 < Nc,,H_LM < 4.1.
Within the viscous-dominated flow regions (i.e. capillary and gravity forces are negligible), the
no-communication and viscous crossflow equilibrium flow regimes should be the same as in the
miscible displacement cases. ]

Flow in Fractured Reservoirs. In studies of flow in fractured reservoirs, imbibition or drainage
cells are commonly used to simulate the behavior of oil recovery from reservoirs with vertical
fractures [165, 37, 49]. In such cases, the flow in the horizontal direction is relatively small and
the values for N, and N,, become very large. Therefore, the ratio of the gravity to capillary”
“forces (N = Nyy/Ney) is an important parameter in scaling flow in fractured media. Thus, flow
in vertically fractured reservoirs is a special case in using the scaling equation. The calculation of
the Bond number (Np) requires the value of capillary pressure. However, in some of the studies,
capillary pressure curves are not available. In the following discussion, p.* is taken to be the
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Figure 5.18: Flow regions in immiscible displacements

average threshold capillary pressure of the medium and is estimated by the following equation for
cases without capillary pressure data:

1/2
P~ = 4o cosf (%) (5.69)

where c is a constant depending on the medium, ¢ = 0.02 is used for glass bead-packs, 6 is the
contact angle depending on the wettability of the system. The glass bead-packs can be considered
as strongly water-wet (cos§ =1) .

Early studies of imbibition were carried out on small reservoir samples and at high interfacial
tension (IFT). Cuiec’s results [37] for low-permeability chalks indicates that production curves
could be scaled according to imbibition theory (i.e. capillary force is the driving force). The Bond
numbers were small and varied from 10~% to 1072 in Cuiec’s study. On the other hand, du Prey’s
centrifuge imbibition tests [49] for sandstone samples showed that production curves could not be
successfully scaled with an imbibition model when the Bond number changed from 10~2 to 10.
Careful examination of the production curves shows that they can be scaled well by imbibition
theory if Np < 0.2. Production curves with Bond numbers between 0.2 to 10 cannot be scaled by
either capillary-dominated or gravity-dominated theory.

Schechter et al. {165] reported low IFT imbibition and drainage results, which showed
that imbibition processes changed from capillary-dominated to gravity-dominated when IFT was
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Figure 5.19: Flow regions in fractured reservoirs

changed from 38.1 mN/m to 0.1 mN/m. Their characteristic time scaling shows that if Np < 0.2 the
flow could be considered to be capillary-dominated, and if Np > 5 the flow was gravity-dominated.

Imbibition studies by Iffly et al. [92] concluded that gravity influenced imbibition in the tests
with the cylindrical sides sealed when the Bond number changed from 0.05 to 1073, This seems a
contradiction to the results reviewed above. However, the characteristic length used in their scaling
was based on countercurrent flow. The flows in the test could have been cocurrent flow. Thus, an
explanation is that water imbibed in from the bottom of the media and oil flowed out from the
top of the samples. Scaling of their results improves significantly with the characteristic length for
cocurrent flow. The improvement suggests that the imbibition processes were capillary-dominated,
but the flow was cocurrent.

Fig. 5.19 summarizes the experimental results reviewed in this section. Most of studies were
focused on the capillary-dominated region with only the work by du Prey [49] and Schechter et
al. [165] covering the transition region. The transition boundaries from the capillary-dominated to
gravity-dominated regions are determined from Schechter et al.’s results, which are in the range of
(0.2 < Np < 5).

Discussion. In previous sections, we have reviewed data from three types of situations: miscible
displacements, immiscible displacements, and flow in fractured reservoirs. Although the data are
limited, approximate bounds can be set up between flow regions for the media reviewed here. From
miscible displacements, we find the transition between viscous-dominated to gravity-dominated is in
the range of 0.2 < (M N,,)/(1+ M) < 5.0. Immiscible displacement results indicates the transition
between viscous-dominated to capillary-dominated is in the range of 0.35 < (M Ney)/(1+M) < 4.1,
and the transition from capillary- to gravity-dominated flow in vertically fractured reservoirs is in
the range of 0.2 < Np < 5.0. It is interesting to note that the transitions from capillary to gravity,
from viscous to capillary, and from viscous to gravity flow regions occur in a similar range for the
different scaling numbers. We can generalize the conditions for the transitions as: 0.2 < Sc¢ < 5.0,
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Figure 5.20: Schematic of flow regions in simple heterogeneous porous media

where Sc can be either M N, /(1 + M), or MNy,/(1+ M), or Ng.

Fig. 5.20 shows the combined results of the flow regions for all three scaling numbers.
The boundaries are determined based on the general results discussed above. In determining the
viscous-dominated region with both gravity and capillary effects, we assume that 0.2 < (M(Ngy +
Ngy)/(1+ M) < 5.0. In the viscous-dominated region, the bounds of the transition from viscous
crossflow equilibrium to no-communication regions are based on Thiele’s simulation results.

For slightly immiscible systems approaching a critical condition, the ratio Ap /o determined
from critical scaling theory increases rapidly near the critical point, and thus the Bond number of
the system can increase dramatically. Therefore, in systems approaching miscibility as injection
pressure or solvent enrichment increases, gravity effects will dominate as the capillary forces are
reduced. In such situations, simulation models of near-miscible processes must handle the phase
behavior and the density difference with care if the interplay of capillary and gravity forces is to
be modeled accurately.

Since there are difficulties in determining the capillary pressure and mobility ratio, the
bounds set from this work for immiscible displacements may have relatively large uncertainty
regarding to the Bond number and capillary numbers. Capillary pressure curves should be measured
to obtain reliable scaling for reservoirs, using either the imbibition or drainage mode appropriate
to the type of displacement. Further investigation is needed to be sure that the end-point mobility
ratio used here is valid for immiscible displacements with unfavorable mobility ratios.

5.3.3 Conclusions

In this study, we have defined three important dimensionless numbers that govern fluid flow
in porous media with simple heterogeneities, and we have established approximate bounds for the
transitions between regions. The dimensionless numbers can be easily extended to specific flow
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systems as shown in the discussion section. A diagram of flow regions (Fig. 5.20) was drawn from
the above discussion. This diagram can be very useful in identifying a flow situation in a given
reservoir. From this work, the following conclusions can be drawn:

(i) Transverse gravity (Ny,) and capillary (N.,) numbers have been defined from this analysis for
identifying flow regions in heterogeneous porous media. These numbers are the characteristic
time ratios for fluid to flow in the transverse direction due to gravity or capillary forces to
that in horizontal direction.

(ii) Mobility ratio should be considered in the scaling process. With decreasing mobility ratio for
a given medium, the viscous crossflow increases.

(iii) Miscible displacements can be very different in behavior depending on the system properties.
Even for a system with an aspect ratio less than 0.1, the flow region can vary from viscous-
- dominated, to gravity-dominated regions depending on the gravity number.

(iv) Viscous-dominated flow in layered porous media can be in the vertical crossflow equilibrium
region or the no-communication region depending upon the shape factor of the media and
the gravity or capillary number of the system.

(v) In near-miscible displacements, increases in injection pressure or enrichment will cause the
gravity effects to increase.

(vi) In fractured systems, the capillary to gravity force ratio defines the recovery mechanisms of
oil from the matrix. Hence, identifying the flow regions is important in the simulation of
fractured reservoirs.

5.4 Simulation Results for Imbibition Experiments

D. H. Fenwick and F. M. Orr, Jr.

Imbibition by a combination of capillary and gravity forces occurs often in multiphase flow.
One example is the imbibition of water into oil-filled matrix blocks in fractured reservoirs. In this
case, high capillary forces dominate over gravity forces and cause rapid imbibition into the water-
wet rock, which forces the oil out of the matrix and into the fracture. Imbibition by capillary forces
is the primary mechanism of oil production when waterflooding fractured reservoirs.

Capillary and gravity forces also operate in enhanced oil recovery, where interfacial tension
(IFT) and density differences between the phases vary according to the compositions of the phases.
Compositional variation makes the interplay between gravity and capillary forces more complex,
and could significantly effect the recovery of oil from fractured reservoirs. Schechter et al. [164]
performed core displacement experiments where the IFT was varied in imbibition. Four cores with
varying permeability were filled with oil, and the entire core was immersed in water and allowed
to contact all faces of the core. The experiments were performed with three different interfacial
tensions, 38.1 mN/m, 1.07 mN/m, and 0.10 mN/m. Fig. 5.21 shows the results of the experiments
on the 500 md Berea sandstone for the three interfacial tensions. Note that the recovery rate
increased as the IFT was reduced. The results in Fig. 5.21 demonstrate recovery behavior that
is inconsistent with scaling rules. (For a discussion of scaling see [164], [165], and Section 5.2).
Increased recovery rate for lower IFT’s is a surprising result, because as IFT is reduced, both
capillary and gravitational driving forces for imbibition are reduced. Schechter et al. [164] explained
the increase in rate by the fact that as IFT is reduced, gravity forces became more significant, which
brought about a transition from countercurrent flow to cocurrent flow.
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Figure 5.21: Imbibition Oil Recovery for 500 md Berea Sandstone [164]

The experimental results of Schechter et al. bring up many new questions about scaling
of imbibition as IFT is reduced. For very small blocks, capillary forces will dominate for all
but the extremely low IFT’s. As the blocks become larger gravitational forces will become more
significant, and the transition from countercurrent to cocurrent flow will occur at higher IFT’s. The
understanding of the transition from countercurrent to cocurrent flow would be particularly useful
for design of recovery processes for reservoirs containing vertical fractures. The implication of this
work is that if cocurrent flow can be obtained in a vertically fractured reservoir, then a significant
increase in recovery efficiency would be achieved at a potentially more rapid rate.

In this section we use a numerical simulator (ECLIPSE) to obtain insight into the results
of Schechter et al. The results of the simulations reveal what physical mechanisms are dominant
and how scaling of these imbibition experiments behaves. The results also demonstrate certain
limitations of the numerical simulator for simulation of imbibition.

5.4.1 Simulation of Imbibition Experiments

Input Data. Appropriate rock and fluid data property must be used in simulations if the physics
of the experiments are to be captured. Hamon and Vidal demonstrated that characterization of the
heterogeneity on the core is needed for scaling to be done properly. In fact, a complete description
of the varying relative permeabilities and capillary pressures along the core is necessary. This point
was also emphasized by Bourbiaux and Kalaydjian [21], who found that countercurrent imbibition
relative permeabilities were quite different than cocurrent imbibition relative permeabilities. Ac-
cording to the arguments of Bourbiaux and Kalaydjian, the type of flow regime must be understood
before appropriate relative permeability functions can be specified. Unfortunately, these functions
are not well known for the experiments of Schechter et al, [164]. The heterogeneity of the cores
was not characterized, and only single values of the permeability were given. However, Berea is a
fairly homogeneous sandstone, so the assumption of constant permeability throughout the Berea
cores may be acceptable. Hence, the 500 md Berea core results were selected to be investigated.
The experiments done at high IFT (38.1 mN/m) on the 500 md Berea core will subsequently be
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referred to as the high IFT case, and the low IFT (0.1 mN/m) experiments will be referred to as
the low IFT case.

Capillary Pressure. Because the imbibition experiments were done without initial water in the
core, primary imbibition capillary pressure curves are needed. Unfortunately, they cannot be found
in the literature for Berea. Capillary pressure curves were obtained by extrapolating secondary
imbibition curves to zero water saturation. This process does not obtain the correct curve, but
the emphasis of this work is not to find an exact match to the imbibition recovery curve. It is the
understanding of the physical mechanisms behind imbibition as the IFT is varied that is of interest.

Fig. 5.22 shows the positive values of capillary pressure used for three different simulations.

The high IFT and low IFT capillary pressure curves are shown, as well as the capillary pressure
curve for a low IFT experiment run with 19% initial water saturation (IWS) in the core. This
experiment will be introduced in the Discussion. A logarithmic scale is used to demonstrate how
the low IFT curve is over two orders of magnitude smaller in value than the high IFT curve.
" The difference in capillary forces will become important later when the effects of gravity on the
imbibition behavior are considered. The Berea core was assumed to be strongly water wet, so the
negative portion of the capillary pressure curves was essentially a vertical line.
Relative Permeability. The relative permeabilities for the low IFT and high IFT experiments
were determined by a history match of the experimental recovery curve. Fig. 5.23 gives three
different sets of relative permeability curves which were used to match the high IFT case recovery
curve. The oil relative permeability curve was kept the same throughout the different simulation
runs. Note that the three water relative permeability curves have extremely low values even up to
high water saturations. Those low values will be important for the scaling of these experiments.
The values of the k,,, III curve defined in Fig. 5.23 were used to produce the oil saturation profiles
in Fig. 5.26, which will be discussed later.

Fig. 5.24 shows two different sets of relative permeablhty curves used for the low IF'T case.
These values for relative permeability were over two orders of magnitude larger at lower water
saturations than the values for the high IFT case. The values of the k,, I and k;, I curves in
Fig. 5.24 were used in generating the oil saturation profiles in Fig. 5.30 to be discussed later.
Gridding Techniques. Sensitivity of computed results to the effects of gridding was investigated.
Cylindrical coordinates were used to grid the core and annulus region. For the high IFT case,
the core was separated into 59 vertical regions, with the top and bottom region representing the
annulus above and below the core. The middle 57 regions were 1 cm in length covering the full
length of the core. The core was divided up radially into 27 parts, logarithmically distributed
over the core diameter (6.35 cm) such that the finest grid blocks were closest to the annulus. The
annulus outside the core was represented by one radial block, so there were a total of 28 radial grid
blocks for the high IFT simulations. This configuration was tested against simulations with 8 radial
grid blocks and 57 radial grid blocks. The 28 radial grid block results were indistinguishable from
the 57 radial grid block results, but were quite different than the 8 radial grid block simulation.
It was then considered that 28 radial grid blocks were sufficient to grid the radial flow of the high
IFT case accurately .

The low IFT case contained 122 vertical sections to capture more easily the significant
vertical component of flow found in the low IFT experiments. Radially the.core was set up into 15
sections in a similar manner as for the high IFT case.

High IFT Simulation Results. The simulations showed a very high semsitivity to relative
permeability. Fig. 5.25 shows the results for the three different cases of water relative permeability.
Note that none of the curves show a good match to the experimental data. The very low relative
permeabilities of the k., II curve matched the very early recovery time, but the curves of kpw 1
and k,,, III match the recovery better at later times. Attempts to achieve a better match were
unsuccessful. There is evidence that simulation of primary imbibition is a very difficult task.
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Figure 5.22: Capillary pressure curves for simulations of imbibition experiments.
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Kazemi and Merril [110] had to add a second capillary pressure curve to match the experimental
results. The second curve was supposed to account for a “time delay” in the experimental recovery
rate. They provided no physical justification for the addition of a second capillary pressure curve.
Most important to note is that even for the very low relative permeabilities found in kyy, I and k.,
111, the simulations had orders of magnitude faster recovery at early times. '

. Because the k., III curve matched best the experimental recovery values, the average oil

saturation profile along the core was plotted at selected intervals. These values simply averaged
the oil saturation for each vertical layer of the core. Fig. 5.26 shows the results. Evidently, the
oil saturation decreased in a uniform fashion, with the top and bottom part of the core showing
equal additional reductions. The oil saturation decreased faster here than in the rest of the core
due to the increased surface area in contact with the water-filled annulus. Note that at 0.1 hour (6
minutes) the average oil saturation was already down to 50% along the core, a very fast recovery
rate. The lack of evidence for the segregation of oil and water in the core indicates that the flow
was radial and countercurrent in nature.
Low IFT Simulation Results. Schechter et al. [L65] proposed that in the scaling of the low IFT
experiments, capillary effects can be neglected and the recovery is dominated by vertical gravity-
driven flow. To examine this assertion, a simulation run was performed where the IFT was set
to zero and straight line relative permeability curves were used. The recovery is then due only
to the difference in gravity between the oil and water. Fig. 5.27 indicates that the experimental
recovery rate was in fact influenced significantly by capillary forces, because the density difference
was insufficient to maintain the recovery rate at the level of the experiment. Therefore, capillary
pressure must be considered as an important driving force even for these low IFT experiments. The
average oil saturation profile for the gravity-driven displacement (Fig. 5.28) shows a very distinct
water front advancing from the bottom of the core upward, with original oil saturations ahead of
the front. The top of the core shows some oil desaturation due to the top annulus imbibing into
the core due to gravity. As expected, the oil saturation profile shows segregation between the oil
and water, resulting in largely cocurrent flow.

When the low IFT capillary pressure curve (shown in Fig. 5.22) is incorporated into the
simulation, the relative permeability curves in Fig. 5.24 result in the recovery curves in Fig. 5.29.
Note that as for the high IFT case, the early time recovery behavior does not match well. Note
also that the poor match was obtained even though the water relative permeabilities at low water
saturations were quite low, especially for the ky,, I curve. In addition, the late time recovery
behavior also does not match the experimental results. Attempts to match the experiment better
were unsuccessful.

Despite the poor agreement, some important conclusions can be constructed from these
simulation runs. Fig. 5.30 shows the average oil saturation profile at different times for the low IFT
displacement. Comparison of Fig. 5.30 to Fig. 5.26 indicates that there is an important distinction
between the low and high IFT displacements. The low IFT case profile shows aspects of both the
high IFT case profile and the gravity-driven flow saturation profile of Fig. 5.28. An advancing
water front is evident, as well as a fairly uniform decrease in the oil saturation away from the
advancing water front, indicating radial flow. Thus it seems likely that both radial and vertical
flow contributed to recovery in the low IFT displacements.

5.4.2 Discussion

In the experiments in Schechter et al. [164] imbibition is driven by a combination of caplllary
and gravity forces. The capillary-to-gravity-force ratio, given by the i mverse bond number Nz B
describes the type of flow that is exhibited in these experiments. Here, Nzt B is given by,
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