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Tuesday, April 5

Domain Decomposition Methads I

8:00 - 8:25

8:25 - 8:50

8:50 - 9:15

9:15 - 9:40

Michael Pernice

W.K. Tsui

Marc Garbey

Christina Christara

Nonlinear Problems I

8:00 - 8:25

8:25 - 8:50

8:50 - 10:15

Masao Igarasi

Homer F. Walker

Coffee Break

Domain Decomposition Methods II

10:15 - 10:40 Xiao-Chuan Cai

10:40 - 11:05 Seongjai Kim

11:05-11:30 Tony Chan

11:30 - 11:55 Steven M. McKay

Chair: Seymour Parter Room A

Domain Decomposed Preconditioners with Krylov Sub-
space Methods as Subdomain Solvers

Domain Decomposition Methods for Solving an Image
Problem

A Schwarz Alternating Procedure for Singular Perturba-
tion Problems

Schwarz and Multilevel Methods for Quadratic Spline Col-
location

Chair: Homer Walker Room B

On the Convergence Processes of Newton-Raphson Itera-
tion Methods

Choosing the Forcing Terms in an Inexact Newton Method

Chair: Seymour Parter Room A

Domain Decomposition Based Iterative Methods for Non-
linear Elliptic Finite Element Problems

Parallel Iterative Procedures for Approximate Solutions of
Wave Propagation by Finite Element and Finite Difference
Methods

Multigrid and Multilevel Domain Decomposition for Un-
structured Grids

The Use of the Spectral Method within the Fast Adaptive
Composite Grid Method




Nonlinear Problems II

10:15 - 10:40  Scoit Hulchinson

10:40- 11:05 Rosemary Renaut

11:05-11:30  Randall Bramley

11:30 - 11:55 Matthias Heinkenschloss

12:00 - 4:30  Informal Discussion

Integral Equations and
Inverse Problems

4:45 - 5:10 J. Whilte

5:10 - 5:35 Curt Vogel

5:35 - 6:00 C.T. Kelley

6:00 - 6:26 J.G. Wade

Eigenvalue Problems

4:45 - 5:10 Clemens W. Brand

5:10 - 5:35 Andreas Stathopoulos

5:35 - 6:00 Victor Pan

Chair: Homer Walker Room B

A Two-Level Parallel Direct Search Implementation for
Arbitrarily Sized Objective Functions

Parallel Algorithms for Unconstrained Optimization by
Multisplitting with Inexact Subspace Search - The Ab-
stract

Solving Linear Inequalities in a Least Squares Sense

Numerical Solution of Control Problems Governed by Non-
linear Differential Equations

Chair: Nick Trefethen Room A

Comparing Precorrected-FFT and Fast Multipole Algo-
rithms for Solving Three-Dimensional Potential Integral
Equations

The Numerical Solution of Total Variation Minimization
Problems in Image Processing

GMRES and Integral Operators

Tterative Methods for Distributed Parameter Estimation
in Parabolic PDE

Chair: Roland Freund Room B

Preconditioned Iterations to Calculate Extreme Eigenval-
ues

Overlapping Domain Decomposition Preconditioners for
the Generalized Davidson Method for the Eigenvalue Prob-
lem

New Algorithms for the Symmetric Tridiagonal Eigenvalue
Computation o




Workshop: Iterative Software Kernels  Chair: Jain Duff Room A
(Evening: 8:00p - 10:00p)

Jain Duff Current status of user level sparse BLAS

Michael A. Herouz Current status of the Sparse BLAS Toolkit

Craig C. Douglas Adding Matrix-Matrix and Matrix-Matrix-Matrix Multi-

ply to the Sparse BLAS Toolkit

Wednesday, April 6

Nonsymmetric Solvers I

8:00 - 8:25 Tobin Driscoll

8:25 - 8:50 Kim-Chuan Toh

8:50 - 9:15 N. J. Meyers

9:15 - 9:40 Gerhard Starke

Parallel Computation I

8:00 - 8:25 Wayne Joubert

8:25 - 8:50 Claude Pommerell

8:50 - 9:15 Youcef Saad

9:15 - 9:40 Barry Smith

9:40 - 10:15 Coffee Break

Chair: Tom Manteuffel Room A

Conformal Mapping and Convergence of Krylov Iterations

Convergence Estimates for Iterative Methods Via the
Kreiss Matrix Theorem on a General Complex Domain

An Iterative Method for the Solution of Linear Systems
Using the Faber Polynomials for Annular Sectors

Subspace Orthogonalization for Substructuring Precondi-
tioners for Nonsymmetric Systems of Linear Equations

Chair: Howard Elman Room B

PCG: A Software Package for the Iterative Solution of Lin-
ear Systems on Scalar, Vector & Parallel Computers

Migration of Vectorized Iterative Solvers to Distributed
Memory Architectures

P_SPARSLIB: A Parallel Sparse Iterative Solution Package

Portable, Parallel, Reusable Krylov Space Codes




Nonsymmetric Solvers II

10:15 - 10:40

10:40 - 11:05

11:05 - 11:30

11:30 - 11:55

Emanuel Knill

Jane Cullum

Karl Gustafson

Olavi Nevanlinna

Parallel Computation II

10:15 - 10:40

10:40 - 11:05

11:05 - 11:30

11:30 - 11:55

12:00 - 4:30

Anne E. Trefethen

Gene Poole

Shu-Mei C. Richman

Michael Herouz

Informal Discussion

Iterative Methods: Theory

4:45 - 5:10

5:10 - 5:35

5:35 - 6:00

6:00 - 6:25

FEugene L. Wachspress

W.E. Boyse

Tugral Dayar

Eldar Giladi

Chair: Tom Manteuffel Room A

Minimal Residual Method Stronger than Polynomial Pre-
conditioning

Peaks, Plateaus, Numerical Instabilities, and Achievable
Accuracy in Galerkin and Norm Minimizing Procedures
for Solving Ax=b

Computational Trigonometry

Convergence of Arnoldi Method

Chair: Howard Elman Room B

The Conjugate Gradient NAS Parallel Benchmark on the
IBM SP1

Advancements and Performance of Iterative Methods In

Industrial Applications Codes on Cray Parallel/Vector Su-
percomputers

A Component Analysis Based On Serial Results for Ana-
lyzing Performance of Parallel Iterative Programs

Performance Analysis of High Quality Parallel Precondi-
tioners Applied to 3d Finite Element Structural Analysis

Chair: Roland Freund Room A

Recent ADI Iteration Analysis and Results

A Sparse Matrix Iterative Method for Efficiently Comput-
ing Multiple Simultaneous Solutions

On the Effects of Using the GTH method in the Iterative
Aggregation/Disaggregation Technique

On the Interplay Between Inner and Outer Iterations for
a Class of Iterative Methods




Software and Programming Environ- Chair: Steve Ashby Room B
ments

4:45 - 5:10 Are Magnus Bruaset Object-Oriented Design of Preconditioned Iterative Meth-
ods

5:10 - 5:35 Linda Hayes VOILA-A Visual Object-Oriented Iterative Linear Algebra
Problem Solving Environment

5:35 - 6:00 D. Kim Multilevel Adaptive Solution Procedure for Material Non-
linear Problems in Visual Programming Environment

6:00 - 6:25 David R. Kincaid ITPACK Project: Past, Present, and Future

Workshop: Recent Progress and Chair: Graham Carey Room A

Advances in Iterative Software
(Evening: 8:00p - 10:00p)

David M. Young Origins of the ITPACK Project

David Kincaid Recent Developments on ITPACK

Graham Carey Design Considerations for a Portable Parallel Package

Wayne Joubert Adapting Iterative Software Libraries to Parallel Environ-
ments

Rossen Parashkevov Operator-based Iterative Tools

Thursday, April 7

Nonsymmetric Solvers ITI Chair: Anne Greenbaum Room A

8:00 - 8:25 Diederik Fokkema Generalized Conjugate Gradient Squared

8:25 - 8:50 Roland Freund Block Quasi-Minimal Residual Iterations for Non-
Hermitian Linear Systems

8:50 - 9:15 Noel M. Nachiigal A Look-Ahead Variant of TFQMR

9:15 - 9:40 Tedd Szeto Composite-Step Product Methods for Solving Nonsym-

metric Linear Systems




Parallel Computation X1

8:00 - 8:25

8:25 - 8:50

8:50 - 9:15

9:15 - 9:40

9:40 - 10:15

Let Li

Dan Hu

H.S. Kohli

John Shadid

Coffee Break

Nonsymmetric Solvers IV

10:15 - 10:40

10:40 - 11:05

11:05 - 11:30

11:30 - 11:55

E. Gallopoulos
Teri Barth

Ron Morgan

David Young

Parallel Computation IV

10:15 - 10:40

10:40 - 11:05

11:05 - 11:30

11:30 - 11:55

12:00 - 4:30

Larry Reeves

A. Basermann

R.P. Silva

Martin Bucker

Informal Discussion

Chair: Dan Quinlan Room B

A Divide-and-Inner Product Parallel Algorithm for Poly-
nomial Evaluation

Parallelizing Sylvester-Like Operations on a Distributed
Memory Computer

Maximizing Sparse Matrix Vector Product Performance in
MIMD Computers

Parallel Performance of a Preconditioned CG Solver for
Unstructured Finite Element Applications

Chair: Anne Greenbaum Room A

Matrix-Valued Polynomials in Lanczos Type Methods
Variable Metric Conjugate Gradient Methods

Some Comparison of Restarted GMRES and QMR for Lin-
ear and Nonlinear Problems

MGMRES: A Generalization of GMRES for Solving Large
Sparse Nonsymmetric Linear Systems

Chair: Dan Quinlan Room B

Adapting Implicit Methods to Parallel Processors

Parallelizing Iterative Solvers for Sparse Systems of Equa-
tions and Eigenproblems on Distributed-Memory Ma-
chines

A Parallel Implementation of an EBE Solver for the Finite
Element Method

An Implementation of the TFQMR-Algorithm on a Dis-
tributed Memory Machine:




Student Paper Winners

4:45 - 5:10

5:10 - 5:35

5:35 - 6:00

Qing He

Lina Hemmingsson

Johannes Tausch

ODE Solvers

4:45 - 5:10

5:10 - 5:35

5:35 - 6:00

6:00 - 6:25

7:00 - 9:00

Multigrid and Multilevel Methods I

8:00 - 8:26

8:25 - 8:50

8:50 - 9:15

9:15 - 9:40

Viadimir Druskin

A. Lorber

Andrew Lumsdaine

Yimin Kang

Banquet

Jian Shen

Craig C. Douglas

Jan Janssen

Stefan Vandewalle

Chair: Tom Manteuffel and Room A
Steve McCormick

Parallel Algorithms for Unconstrained Optimizations by
Multisplitting

Analysis of Semi-Toeplitz Preconditioners for First-Order
PDEs

Equivariant Preconditioners for Boundary Element Meth-
ods

Chair: Paul Saylor Room B

Explicit and Implicit ODE Solvers Using Krylov Subspace
Optimization: Application to the Diffusion Equation and
Parabolic Maxwell’s System

On the Relationship Between ODE Solvers and Iterative
Solvers for Linear Equations

Krylov-Subspace Acceleration of Time Periodic Waveform
Relaxation

Convergence Analysis of Combinations of Different Meth-
ods

Location to be announced

Friday, April 8

Chair: Steve McCormick Room A

Implementations of the Optimal Multigrid Algorithm for
the Cell-Centered Finite Difference on Equilateral Trian-
gular Grids

Constructive Interference II: Semi-Chaotic Multigrid
Methods

Multigrid Waveform Relaxation on Spatial Finite Element
Meshes

Time-Parallel Iterative Methods for Parabolic PDEs:
Multigrid Waveform Relaxation and Time-Parallel Multi-

grid




Applications 1

8:00 - 8:25

8:25 - 8:50

8:50 - 9:15

9:15 - 9:40

9:40 - 10:15

Multigrid and Multilevel Methods II

10:15 - 10:40

10:40 - 11:05

11:05 - 11:30

11:30 - 11:55

S.F. Ashby

M.J. Hagger

Jusst Rahola

Tom Cwik

Coffee Break

Michael Griebel

Irad Yavneh

Michael Jung

Steve McCormick

Applications II

10:15 - 10:40

10:40 - 11:05

11:05- 11:30

12:00 - 4:30

Ray S. Tuminaro

R. Bauer

Karen R. Baker

Informal Discussion

Chair: Jim Morel Room B

Modeling Groundwater Flow on Massively Parallel Com-
puters

Two Grid Iteration With a Conjugate Gradient Fine Grid
Smoother Applied to a Groundwater Flow Model

Solution of Dense Systems of Linear Equations in Electro-
magnetic Scattering Calculations

An Tterative Parallel Sparse Matrix Equation Solver with
Application to Finite Element Modeling of Electromag-
netic Scattering

Chair: Steve McCormick Room A

On the Relation Between Traditional Iterative Methods
and Modern Multilevel/Domain Decomposition Methods

Multigrid with Red Black SOR Revisited

Implicit Extrapolation Methods for Multilevel Finite Ele-
ment Computations

Multilevel First-Order System Least Squares for PDE’S

Chair: Jim Morel Room B

A Multigrid Preconditioner for the Semiconductor Equa-
tions

Preconditioned CG-Solvers and Finite Element Grids

Modeling the Diffusion of Phosphorus in Silicon in 3-D




Multigrid and Multilevel Methods IIT
4:45 - 5:10 J.E. Dendy, Jr.

5:10 - 5:35 Van Henson

5:35 - 6:00 John Ruge

6:00 - 6:25 C Liu

Applications III

4:45 - 5:10 Thomas Hagstrom

5:10 - 5:35 Colin Aro

5:35 - 6:00 D.Rh. Guynllyw

6:00 - 6:25 David Silvester

Workshop: Robust Iterative Methods
(Evening: 8:00p - 10:00p)

Chair: Joel Dendy Room A

Grandchild of the Frequency Decomposition Multigrid
Methods

On Multigrid Methods for Image Reconstruction from Pro-
Jjections

A Nonlinear Multigrid Solver for a Semi-Lagrangian Po-
tential Vorticity-Based Barotropic Model on the Sphere

Implicit Multigrid Method for Numerical Simulation of the
Whole Process of Flow Transition in 3-D Boundary Layers

Chair: Howard Elman Room B

Experimental and Theoretical Studies of Iterative Methods
for Nonlinear, Nonsymmetric Systems Arising in Combus-
tion

Preconditioned Time-Difference Methods for Advection-
Diffusion-Reaction Equations

Preconditioned Iterative Methods for Unsteady Non- New-
tonian Flow Between Eccentrically Rotating Cylinders

Fast Non-Symmetric Iterations and Efficient Precondition-
ing for Navier-Stokes Equations

Chair: Youcef Saad Room A

Youcef Saad

Mike Herouz

Wei Pai Tang

Larry Wigton

Alex Yeremin

Iterative solvers in industrial applications: are we kidding
ourselves?

Some current challenges for industrial CFD applications

Multi-stage ILU preconditioners for semiconductor device
simulation

Experiences with Matrix-Iterative Solvers at Boeing

Numerical experiences with advanced iterative solvers for
industrial applications




Saturday, April 9

Preconditioners I Chair: Steve Ashby Room A

8:00 - 8:25 Edmond Chow Approximate Inverse Preconditioners for General Sparse
Matrices

8:25 - 8:50 Xiaoge Wang CIMGS: An Incomplete Orthogonal Factorization Precon-
ditioner

8:50 - 9:15 L. Kolotilina Incomplete Block SSOR Preconditionings for High Order
Discretizations

9:15 - 9:40 Fernando Alvarado Block-Bordered Diagonalization and Parallel Iterative
Solvers

Applications IV Chair: Room B

8:00 - 8:25 S.W. Bova Tterative Methods for Stationary Convection-Dominated

Transport Problems

8:25 - 8:50 A.J. Meir ¢ Velocity-Vorticity Formulation of Three-Dimensional,
Steady, Viscous, Incompressible Flows

8:50 - 9:15 Louis Howell A Multilevel Approximate Projection for Incompressible
’ Flow Calculations

9:15 - 9:40 N.A. Hookey Simulation of Viscous Flows Using a Multigrid-Control
Volume Finite Element Method

9:40 - 10:15 Coffee Break

Preconditioners IT Chair: Steve Ashby Room A

10:15-10:40 P. Amodio Parallel Preconditioning for the Solution of Nonsymmetric
Banded Linear Systems

10:40-11:05 J.E. Pasciak Preconditioning the Pressure Operator for the Time De-
pendent Stokes Problem

11:05-11:30 S. Holmgren A Framework for the construction of preconditioners for
systems of PDE

R
L E



Applications V
10:15-10:40 Maryse Page

10:40-11:05 El Tziperman

11:05-11:30 M. Kamon

12:00 - 4:30  Informal Discussion
Toeplitz and Circulant Matrix Solvers

4:45 - 5:10 Thomas Huckle

5:10 - 5:35 Paul Saylor

5:35 - 6:00 FEugene E. Tyrtyshnikov

6:00 - 6:25 Seymour Parter

Saddle Point Problems

4:45 - 5:10 Andy Wathen
5:10 - 5:35 Bruno Welfert

5:35 - 6:00 Xiezhang Li

6:25 Conference Adjourns

Chair: Room B

Iterative Solvers for Navier-Stokes Equations - Experi-
ments with Turbulence Model

Multilevel Turbulence Simulations

Preconditioning Techniques for Constrained Vector Poten-
tial Integral Equations, with Application to 3-D Magneto-
quasistatic Analysis of Electron Packages

Chair: Room A

Iterative Methods for Toeplitz-Like Matrices

A Modified Direct Preconditioner for Indefinite Symmetric
Toeplitz Systems

Circulant Preconditioners with Unbounded Inverses: Why
Non-Optimal Preconditioners may Possess a Better Qual-
ity than Optimal Ones

A Remark on Band-Toeplitz Preconditions for Hermitian
Toeplitz Systems

Chair: Room B

An Optimal Iterative Solver for the Stokes Problem
On the Convergence of Inexact Uzawa Algorithms

The Asymptotic Convergence Factor for a Polygon Under
a Perturbation




Evening Workshops
8:00pm~10:00pm

Tuesday: Tterative Software Kernels
Organizer: lain Duff

Wednesday: Recent Progress and Advances in Iterative Software
(including Parallel Aspects)
Organizer: Graham Carey

Friday: Robust Iterative Solvers
Organizer: Youcef Saad

Audience Participation is Encouraged!
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Thursday, April 7

Nonsymmetric Solvers III
Chair: Anne Greenbaum
Room A

8:00 - 8:25 Diederik Fokkema
Generalized Conjugate Gradient Squared

8:25 - 8:50 Roland Freund
Block Quasi-Minimal Residual Iterations for Non-Hermitian Linear Systems

8:50 - 9:15 Noel M. Nachtigal
A Look-Ahead Variant of TFQMR

9:15 - 9:40 Tedd Szeto
Composite-Step Product Methods for Solving Nonsymmetric Linear Systems

‘.






Generalized Conjugate Gradient Squared

Diederik R. Fokkema* and Gerard L.G. Sleijpen
January 14, 1994

Abstract

In order to solve non-symmetric linear systems of equations, the Conjugate Gradient
Squared (CGS) is a well-known and widely used iterative method. In practice the method
converges fast, often twice as fast as the Bi-Conjugate Gradient method. This is what
you may expect, since CGS uses the square of the BiCG polynomial. However, CGS may
suffer from its erratic convergence behavior. The method may diverge or the approximate
solution may be inaccurate. BiCGSTAB uses the BiCG polynomial and a product of
linear factors in an attempt to smoothen the convergence. In many cases, this has proven
to be very effective. Unfortunately, the convergence of BICGSTAB may stall when a
linear factor (nearly) degenerates. BiCGstab(¥) is designed to overcome this degeneration
of linear factors. It generalizes BICGSTAB and uses both the BiCG polynomial and
a product of higher order factors. Still, CGS may converge faster than BiCGSTAB or
BiCGstab(£). So instead of using a product of linear or higher order factors, it may be
worthwhile to look for other polynomials. Since the BiCG polynomial is based on a three
term recursion, a natural choice would be a polynomial based on another three term
recursion. Possibly, a suitable choice of recursion coefficients would result in method that
converges faster or as fast as CGS, but less erratic. It turns out that an algorithm for such
a method can easily be formulated. One particular choice for the recursion coefficients
leads to CGS. Therefore one could call this algorithm generalized CGS. Another choice
for the recursion coefficients leads to BICGSTAB. It is therefore possible to mix linear
factors and some polynomial based on a three term recursion. This way we may get the
best of both worlds. We will report on our findings.

*Mathematical Institute, Utrecht University, P.O. Box 80.010, NL-3508 TA Utrecht, the Netherlands. E-
mail: fokkema@math.ruu.nl







Block Quasi-Minimal Residual Iterations
for Non-Hermitian Linear Systems

Roland W. Freund

AT&T Bell Laboratories
Room 2C-420
600 Mountain Avenue
Murray Hill, NJ 07974-0636

Abstract. Many applications require the solution of multiple linear systems that have
the same coefficient matrix, but differ only in their right-hand sides. Instead of applying
an iterative method to each of these systems individually, it is usually more efficient to
employ a block version of the method that generates blocks of iterates for all the systems
simultaneously. An example of such an iteration is the block conjugate gradient algorithm,
which was first studied by Underwood and O’Leary. On parallel architectures, block
versions of conjugate gradient-type methods are attractive even for the solution of single
linear systems, since they have fewer synchronization points than the standard versions of
these algorithms.

In this talk, we present a block version of Freund and Nachtigal’s quasi-minimal
residual (QMR) method for the iterative solution of non-Hermitian linear systems. We
describe two different implementations of the block-QMR method, one based on a block
version of the three-term Lanczos algorithm and one based on coupled two-term block
recurrences. In both cases, the underlying block-Lanczos process still allows arbitrary
normalizations of the vectors within each block, and we discuss different normalization
strategies. To maintain linear independence within each block, it is usually necessary to
reduce the block size in the course of the iteration, and we describe a deflation technique
for performing this reduction. We also present some convergence results, and we report
results of numerical experiments with the block-QMR method. Finally, we discuss possible

block versions of transpose-free Lanczos-based iterations such as the TFQMR method.







A Look-Ahead Variant of TFQMR
by
Roland W. Freund (AT&T Bell Labs)
and
Noél M. Nachtigal (Oak Ridge Natl Lab)

Recently, Freund proposed a Krylov subspace iteration, the transpose-
free quasi-minimal residual method (TFQMR), for solving general nonsin-
gular non-Hermitian linear systems. The algorithm relies on a version of
the squared Lanczos process to generate the basis vectors for the underlying
Krylov subspace. It then constructs iterates defined by a quasi-minimization
property, which leads to a smooth and nearly monotone convergence behav-
ior. We investigate a variant of TFQMR, that uses look-ahead to avoid some
of the problems associated with breakdowns in the underlying squared Lanc-
zos procedure. We also present some numerical examples that illustrate the
properties of the new method, as compared to the original TFQMR. algo-
rithm.






COMPOSITE-STEP PRODUCT METHODS FOR SOLVING
NONSYMMETRIC LINEAR SYSTEMS

TONY F. CHAN * AND TEDD SZETO t
Extended Abstract

The Biconjugate Gradient (BCG) algorithm [5] is the “natural” generalization
of the classical Conjugate Gradient method to nonsymmetric linear systems. It is
an attractive method because of its simplicity and its good convergence properties.
Unfortunately, BCG suffers from two kinds of breakdowns (divisions by 0): one due to
the non-existence of the residual polynomial, and the other due to a breakdown in the
recurrence relationsip used. There are many look-ahead techniques in existence which
are designed to handle these breakdowns. Although the step size needed to overcome
an exact breakdown can be computed in principle, these methods can unfortunately
be quite complicated for handling near breakdowns since the sizes of the look-ahead
steps are variable (indeed, the breakdowns can be incurable).

Recently, Bank and Chan introduced the Composite Step Biconjugate Gradient
(CSBCQ) algorithm [1, 2], an alternative which cures only the first of the two break-
downs mentioned by skipping over steps for which the BCG iterate is not defined. This
is done with a simple modification of BCG which needs only a maximum look-ahead
step size of 2 to eliminate the (near) breakdown and to smooth the sometimes erratic
convergence of BCG. Thus, instead of a more complicated (but less prone to break-
down) version, CSBCG cures only one kind of breakdown, but does so with a minimal
modification to the usual implementation of BCG in the hope that its empirically
observed stability will be inherited.

We note, then, that the Composite Step idea can be incorporated anywhere the
BCG polynomial is used; in particular, in product methods such as CGS [6], Bi-
CGSTAB [7], and TFQMR [4]. Doing this not only cures the breakdown mentioned
above, but also takes on the advantages of these product methods, namely, no mul-
tiplications by the transpose matrix and a faster convergence rate than BCG. For
example, if we take the resulting CSBCG polynomials and square them, we obtain
the Composite Step CGS method [3]. Similarly, we can apply it to the Bi-CGSTAB
algorithm by computing products of the CSBCG polynomial with a steepest descent
polynomial to obtain a more stable basis for the Krylov subspace; we call the new
method CS-CGSTAB.

In the implementation of these methods, we use a strategy for deciding whether
to skip a step that does not involve any machine dependent parameters. Furthermore,
this strategy is designed to skip near breakdowns as well as produce smoother iterates.

In [1], Bank and Chan also prove a “best approximation” result which establishes
a bound on the error of CSBCG. Since the product methods involve the same BCG
polynomial, we can extend this CSBCG result to prove convergence results for CSCGS
and CS-CGSTAB.

* Dept. of Mathematics, Univ. of Calif. at Los Angeles, Los Angeles, CA 90024. E-mail:
chan@math.ucla.edu.

t Dept. of Mathematics, Univ. of Calif. at Los Angeles, Los Angeles, CA 90024. E-mail:
szeto@math.ucla.edu.




Numerical experiments compare the convergence behavior between these compos-
ite step methods and also show that these methods do produce improved performance
over their non-look ahead couterparts on practical problems.

REFERENCES

[1] R. E. Bank anp T. F. CHAN, An analysis of the compasite step bi-conjugate gradient algorithm
for solving nonsymmetric systems, UCLA CAM Tech. Report 92-53(1992). Numer. Math., to
appear.

[2] R. E. Bank anD T. F. CHAN, A composite step bi-conjugate gradient algorithm for solving
nonsymmetric systems, UCLA CAM Tech. Report 93-21 (1993). Numerical Alg., to appear.

[3] T. F. CuaN aND T. SzETO, A composite step conjugate gradients squared algorithm for solving

nonsymmeiric linear systems, UCLA CAM Tech, Report 93-27 (1993). Numerical Alg., to
appear.

. W. FREUND, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear sys-

tems, SIAM J. Sci, Stat. Comput., 14(1993), pp. 470-482.

4]

(1952), pp. 33-53.

. SONNEVELD, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci.
Stat. Comput., 10(Jan 1989), pp. 36-52.

. A. VAN DER VORST, Bi-CGSTAB: A fast and smoothly converging variant of bi-CG for the
solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13(March 1992), pp.
631-644.

6]
(7]

R

[5] C. Lanczos, Solution of linear equations by minimized iterations, J. Res. Natl. Bur. Stand. 49
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Colorado Conference
on Iterative Methods

Thursday, April 7

Parallel Computation ITT
Chair: Dan Quinlan
Room B

8:00-8:25 LeiLi
A Divide~-and-Inner Product Parallel Algorithm for Polynomial Evaluation

8:25 - 8:50 Dan Hu
Parallelizing Sylvester-Like Operations on a Distributed Memory Computer

8:50-9:15 H.S. Kohli
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ABSTRACT --- In this paper, a divide-and-inner product parallel algorithm
for evaluating a polynomial of degree N (N+I=KL) on a MIMD computer
is presented. It needs

2K + log,L

steps to evaluate a polynomial of degree N in parallel on L+ processors
(L=2K-2log,K) which is a decrease of log,L steps as compared with the

L-order Horner's method [1], and which is a decrease of (2log,L)? steps

as compared with the some MIMD algorithms [3,4]. The new algorithm is
simple in structure and easy to be realized.

1. INSTRUCTION
There are many issues related to the parallel algorithm for polynomial evaluation of
degree N. Estrin's algorithm [2] needs T =2(log,N+1) steps when using p =[N/2] (here

[x] is an integer satsfying x=[x]<x+1) processors. L-order Horner's method needs T =
2K+2logz:L steps when using p=L processors [1]. For a MIMD processor, the number of
steps can be further decreased but the algorithms become extremely complex to realize. For
example, Munro and Paterson [3], Maruyama [4] proved that p=N, T = log,N + (2log,N)?

+O(1), and when p=N"2, T=2N/p +logp + (2log,p)"?+ O(1). Muraoka [1] applied the
method of folding and realized T=1.44log,N + O(1). Even when there are infinite number
of processors, Kosaraju [5] derived a lower bound for T(N) gives by T(N) = log,N +
(210g2N)'~2 - (log,N)¥ - C, where constant C>0.

In this paper, we present a simple divide-and-inner product parallel algorithm for
evaluating a polynomial of degree N (N+I=KL) on a MIMD computer. This algorithm
needs T=2K-+log,L steps when using p =L+ processors. This algorithm is simple, and yet

improves [3] and [4] by (2log,[)/2 steps.

2. ALGORITHM
Let f(x) be a polynomial of degree N
N
fix)= Zaxi (1)
i=0 ’

and N+I=KL. Suppose the number of processors p=L+I. First divide the N+I items of f(x)
into L groups, i.e.,

L-1
f(x) = 3 b; xX,

i=0




for i=0,1,.., L-1. 2)

by = ayc+ 8y, X + oo+ Qe X<,
a) by, by, ..., by, can be computed in 2(K-1) steps in parallel using L processors by

vector Horner's method.
, X(L-I)K.

b) Serially compute xX, x%,
Let 2r<K<2! then K can be expressed in binary form:

K=dy+d %2 +d,%2° + ... + d %2,

where d;€(0,1), i=0, 1, ..., r-1, d=I. Then
XK=xB(xd (xE  (xF1(xF)2)2..)2)2, 3)
thus, x¥ can be computed serially in 2r (=2[log,K]) steps using one processor. Again

“)

using L-2 multiplications, we can compute

xK  for i=2,3,..,L-1.

(5)

¢) Compute inner product
by+ b, xK+ bxX + ... + b, xL-VK,

It can be evaluated in parallel in I+ [log,l.] steps at most using L processors.

3. THE ANALYSIS OF TIME COMPLEXITY
Now let us analyze the number of steps of divide-and-inner product. Note that (2), (3)

and (4) can be computed in parallel. Thus the whole process. can be evaluated in parallel in

T=max(2K-2, 2log,K+L-2) + 2 + log,L
(L=2K-2l0g,K)

2K+log,L,
{ (L>2K—215g2K )

L+logK+log,(N+1),
steps. Let Y, =f(L) = 2K+log,L = 2(N+1)/L+logzL. (L=2K-2logzK), then

Y, = - 2(N+1)/L? + 1/In2% 1/L
= I/L (log,e - 2(N+1)/L) < 0.

Thus function Y, is monotone decreasing. Similarly, let

Y, = g(L) = L+log,K+log,(N+1)
=L -log,L +2log,(N+1), (L>2K-2log,K)

Y, =1-log,ex1/L>0

and so Y, is monotone increasing. Therefore the number of steps takes the minimum T =2K

+log,L on L =2K - 2log,K.




THEOREM 1 A polynomial of degree N (N+1=KL) can be evaluated in parallel in
T=2K +log,L steps at most when using L+]1 processors, where L=<2K - log,K. And when

L =2K-2log,K, T takes the minimum.

Let L =2K -Zlog,K, then 2K2-2K10g2K = N+1. The relationship of the degree N of

polynomial, the number p=L+1 of processors and the least steps Tmin is given in Table 1.
And using the interpolation method, we can get

K== 1.218 No4,
and thus the number of the processors is
L =(N+1/K = 0.821 No%7,
and the least number of steps is

Tmin = 2K + log,L = 2.436N°% + 0.57log,N,

and the speed up is

Sp=T/Tmin = 2N/ (2.436N°% + 0.57l0g,N) = 0.821N°57 (N—00),

and parallel efficiency

& ,= S,/P = 2.436N04/ (2.436N°4 + 0.57log,N) = 1 (N—>c0),

4. CONCLUSION

The divide-inner-product parallel algorithm for evaluating a polynomial of degree N
(N+1=KL) is presented in this paper. This method needs 2K + log,L parallel steps on L+1

(L=2K-2log,K) processors and have decreased by log,L steps and (ZlogZL)I/Z steps as

compared with the L-order Horner's method [1] and some MIMD methods [3,4] respectively.
The new method is also simple on structure and easy to be realized.




Table 1

N p Tmin N P Tmin
11 5 8 31 7 12
12 5 8 32 7 12
13 5 8 33 7 12
14 6 8 34 8 12
15 5 10 35 8 12
16 5 10 36 8 12
17 5 10 37 8 12
18 5 10 38 8 12
19 6 10 39 9 13
20 6 10 40 7 14
21 6 10 41 8 14
22 6 10 42 8 14
23 7 10 43 8 14
24 7 10 44 8 14
25 7 10 45 8 14
26 6 12 46 8 14
27 6. 12 47 9 15
28 6 12 48 9 15
29 7 12 49 9 15
30 7 12 50 9 15
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Extended Abstract

1 Introduction

Discretization of linear operators arising in applied mathematics often leads to matrices with the
following structure:

M@E)=(D®A+B® L, + V), 1)

where z € R™,B,D € R***, A € R™*™ and V € R™*™: hoth D and V are diagonal. For the
notational convenience, we assume that both A and B are symmetric. All the results through this
paper can be easily extended to the cases with general A and B.

The linear operator on R™" defined by (1) can be viewed as a generalization of the Sylvester
operator: $(z) = (Im ® A+ B®1I,)x. We therefore refer it as a Sylvester-like operator. The schemes
discussed in this paper therefore also apply to Sylvester operator.

Similar to the matrix form of the Sylvester operator S(X) = AX + XB, we have the matrix
form equivalent to (1) as the follows:

M(X)=AXD+XB+VoOX (2)

where X € R™*", V € R™*" and V is defined as: for i = 1,...,n, let Viiag be the mn vector
consisting of the diagonal elements of V, then V( : , 1) = Viigg((G = )m +1 : nm, (-Ym+1:
nm). The operation denoted by ‘@’ here is the element-by-element multiplication. More precisely,
Vo X e R™", and (V © X)(i,7) = V(3,§)X(,§). The equivalence between the matrix form (2)
and the ‘tensor-product’ form (1) is based on the following 1 — 1 correspondence from R™X™ to
R™iz = [X(;, 1) X(5,2), ..., X(;,n)Y)

One example of the Sylvester—like operator is from the reactive scattering model in quantum
chemistry (see [1], and [6]). In the study of the accurate state-to-state reaction cross sections for
three-atom systems with modest number of energetically open quantum states, the following 2-D
Schrédinger equation is arises.

H(8,x;0e)2:(8, x: pe) = Ea(pe)®1(8, x; pe),

where p¢ is a fixed center of a sphere in the space, and 8, y are the polar and azimuthal angles,
respectively. With the discrete variable representation, tlie Hamiltonian can be written in the form

H=hy@I +foh, +V,

which has the same form as (1).

For many iterative algorithms of solving the linear system of equation Mz = b, or of solving the
eigenvalue problem Mz = Az, the linear operation Mz are performed repeatedly. Therefore in the
implementation of an iterative algorithm on a certain computer system, the efficiency of computing
the operation y = Mz will effect. the efficiency of the whole algorithm.




In this paper, we present the SIMD scheme for parallelization of the Sylvester-like operator on
a distributed memory computer. This scheme is designed to approach the best possible efficiency by
avoiding unnecessary communication among processors. Throughout this paper we use form (2) and
form (1) alternately in our presentation and analysis. Hereafter, the integers m and n are reserved
for the sizes of the Sylvester-like operator in either (2) or (1).

2 The Standard Systolic Model on a Ring Structure

The matrix M in (1) has a very special structure. In general, we can write M as M = Muiag+Moyy,
where Myiq, consists of n nonzero diagonal blocks denoted by M;’s and M,y consists of nonzero
off diagonal blocks written as «;; .

For a distributed memory system with n processors connected in a ring network, the matrix-
vector product y := Mz can be naturally carried out by the standard Systolic Procedure (see [3]).

We denote the k-th processor in the ring by Pr.1 For a certain processor, left and right refer
to the indices of its left and right neighbors, respectively.

As usual, we distribute the vector z to the local array zj,.(1 : m) of each processor. For
Py, Tioc = z(km + 1 : (k + 1)m). Similarly, the result vector y will be distributed to the local
array yroc(l : m) with yioe = y(km +1 : (k + 1)m). Mpy4y and ary1,i(E = 1,...,n0 # k4 1)
are also saved in Mie.(1 : m,1 : m) and a(l : n), respectively, such that My = Mgy, and
a(i) = app1,:i(i=1,...,n5i 4 k+1).

The procedure is described as the follows:

Algorithm 1 (for Py)

Yloe = MiocTioc

ind =k

forc=1:n-1
send Tioc to Frej:
Tecv Tyoc from Prign:
ind=1ind +1
ifind=n,ind=0
Yioc = Yioc + a(in(l + 1):1:10(:

end

To complete the procedure, each processor needs to send and receive (n — 1)m floating point
numbers and perform 2m(m +n — 1) floating point operations(flops). The total memory required is
m? 4+ 3m + n including an m buffer for message passing.

Algorithm 1 is easy to implement and perfectly load balanced. However, it does have some
disadvantages. First, the number of processors has to agree with n. It many be difficult or impossible
to arrange this scheme on may applications. Secondly, the communication load on each processor
is heavy. In fact, upon completion of the procedure, each processor has contacted information from
Tioc’s of all other processors.

3 A New Systolic Model on a 2-D Mesh

Our new scheme is designed to reduce communication among processors by taking advantages of
both special structure of the operator and the 2-D processor network structure of the system.

The cause of heavy communication involved in Algorithmn 1 can be traced to the fact that in
operation y = Mz, all components of the vector = are needed to compute any component of y. In
contrast with y = Mz, the equivalent matrix operation ¥ = M(X) imposes a different. dependency
of Y on X. Only two ‘strips’ of X, namely, X(7) : 43, : ) and X(:, ji : j2), are needed to obtain a
submatrix Y (31 : 42, ji : j2) of the result matrix ¥. This special dependency relationship provides
a motivation to distribute X and Y on a 2-D mesh processor network with a natural 2-D partition.




In brief, we partition the matrices X according to the 2-D mesh so that an equal-sized block of X
can be distributed to every processor. The same rule applys to Y.

Before we discuss the scheme in more detail, we introduce the way of labeling the 2-D mesh of
processors. We assume that in a mesh there are p. columns and p, rows of processors, and assume
that p = pepr is the total number of processors in the mesh. Following the similar way used for
the Intel Touchstone DELTA system, (see [4]) we identify each processor with a logical processor
number i and the corresponding 2-D coordinates (ir,4,). The one in the upper left corner of the
mesh has processor number 0 and denoted by Py. The processor numbers then increase from left to
right and top to bottom. The processor in the lower right corner has processor number p — 1 and is
denoted by P,_,.

For a processor located at a certain position in the mesh, left, right, up and down refer to the
indices of its left, right, upward and downward neighbors, respectively.

On processor P with coordinates (kg, k,), chunks of matrices A, B, D and V are distributed
in the local arrays Apec(1 : mi,1 : ), Broe(1 @ m,1 2 w), Dioe(1 : m) and Viee(1 : mu,1: m ) so
that Ajoc = A(ky mu+1: (ky +Dmu, 2 ), Viee = V( ky mu+1: (ky + Do, ke i+ 1 (ke + Dm),
Byye = B( 2, ks + 1 (ke + D), Die =diug{D}(kz e +1: (k= + l)m).

Where we assume that m = my p, and that n. = n; p.. As described before, matrix X has its
chunk distributed in the array Xi,.(mi, m) with the relation Xj,, = X (ky mu+1: (ky+1)my, keni+1:
(kz + U)n). Similarly, the result matrix Y will have its chunk distributed in the array Yioc(mu,mi)
with the relation Yioe = Y (ky mui+1: (ky + Doy, kzng +1 ¢ (kx4 1)1).

The follows is the description of the procedure.

Algorithm 2 (for P;)
{Step 1. applying the operation Y = V & X}
fori=1:my

forj=1:mn
Yloc(i;j) = Vloc(i;j)-Xloc(i»j)
end
end
{Step 2. applying the operation Y =Y + X B}
ind =k

fori=1:p.—1
send Xjoc to Prest
recv Xj,. from Prign
ind =ind +1
if ind = pg, ind =0
Yioe = Yioc + Xioe Bioc( ind w4+ 1 : (ind + 1)my, 1 my)
end
{Step 3. recovering the original distribution of X}
send Xjoc to Presy
recv Xjoc from Prigp,
{Step 4. applying the operation Y =Y + AX D}
fori=1:m
Xloc(:, l) = Dloc(i) Xloc(:, 1)

end

Yioe = Yioe + Aloc(l sy ky my 1z (ky + D)my )Xo
ind = ky

fori=1:p.—1

send Xjoc to Pyp

recv Xjoc from Pyown

ind=ind+1

ifind=p,,ind=190

Yioe = Yioe + Atoc(1 : mayind my +1 : (ind + 1)m) Xioc



communication load flops memory
Algorithm 1 n®—n 4n? —4n n®+3n+n
Algorithm 2 2032 —n an? 4202 1 on | 2032 +4n+ /0

Table 1: Comparison: both compute an n x n operator on 1 processors

end

Algorithm 2 is distinct from Algorithm 1 with its 2-direction message passing patfern. In
Step 2 and Step 3 each row of processors in the mesh form a horizontal ring. Message passing is
restricted within processors in this row. Similarly, in Step 4 each column of processors in the mesh
form a vertical ring. Message passing is restricted within processors in this column.

For each processor, in order to complete Algorithm 2, it takes p. ‘horizontal’ message sending
and receiving actions and p, — 1 ‘vertical’ message sending and receiving actions. In each action the
message load is m; n;. Therefore the total message sending and receiving load is (pc + pr — L)y ny.
The total flops performed in one processor is 2m? m pr + 2my nf pe + (pc + pr + 2)m 1. The total
memory required is myn + mny 4+ dmyn + 1y including a myn; buffer for message passing.

4 Comparisons

Like Algorithm 1, Algorithm 2 is easy to implement and perfectly load balanced. Further more,
it has several advantages over Algorithm 1.

First, Algorithm 1 requires that p, the number of processors used, must agree with n. This
would limit its applications on practical probléms. For Algorithm 2, the requirement for the size
of the processor mesh is much looser. In order keep the load balance, p- and p., the number of rows
and the number of columns in the mesh, have to be a factor of m and a factor of n, respectively.
However, the algorithm can be arranged to deal with a general case where p, and p, are arbitrary
with imbalanced communication and flops load on processors. Therefore, for many practical cases
where Algorithm 1 cannot be implemented, the comparison between the two algorithm is out of
the question.

Secondly, even in a case where both algorithms can be used, they apply different message passing
strategies which have different communication costs. In Step 2 and Step 3 of Algorithm 2, each
row of processors carries out message passing actions independently. Also in Step 4 each column
of processors carries out message passing actions independently. This 2-direction message passing
pattern makes it more efficient on communications than Algorithm 1. In order to compare the
flops and communication load of the two algorithms, we have to fix the sizes of the operators, as
well as the numbers of processors being used in the ring network for Algorithmn 1 and the mesh
network for Algorithm 2.

We set m = n, so that Algorithm 1 would be well suited to a ring of n processors. Accordingly,
we assume Algorithm 2 is adapted on an \/n by \/n mesh of processors with total n processors. In
Table 1, we compare the these two algorithms by communication load, flops, and memory required
on each processor under the above assunptions.

1t is clear from these numbers that while Algoritliun 2 keeps about the same flops load as Algo-
rithm 1 has (with respect to the leading terms of flops; and flopss), it reduces both communication
load and memory space dramatically.

5 Discussions on Speed-up
By definition, we say that a parallel algorithm for a particular problem achieves speed-up S if

S = T, /T, where T}, is the time required for execution of the parallel program on p processors and
T, is the time required by one processor when the best uniprocessor procedure is used(see [3). We




number of processors flops communication time
Pe X De = Pe’ dnPpe + 2p. + D (2p — D+ (2p. — Dn?B
2pc X 2pe = 4pe” n°pe + (pe + 1/2)0)° (dpe = D+ (pe — 1/H)n*B
kpe % kpe = k*p.? (4/k)nPpe + 2peJk + 1/ ® | (2kpe — Dya + (2p/k — 1/k%)n%p

Table 2: Change in flops and communication timme cansed by changing of processor mesh sizes

will give the speed-up test data of Algorithm 2 which is computed according to this concept. in the
next section, However, the statement ‘the best wniprocessor procedure’ is somewhat confusing in
our case. Since our procedure is designed to distribute the original system onto a network of large
number of processors, it is likely that a problem of certain sizes can be computed by p processors
but cannot. be computed by one processor due to insufficient. memory on a single processor. In this
case, the following ratio should be considered as the ‘relative speed-up’ S = Tj, . /T, where pmin
stands for the least number of processors on which the computation can be carried out. Hereafter,
for an integer i, T; stands for the time required for execution of a certain operation on 7 processors.
More generally, we can define relative speed-up § as § = Tpo/Typ, where py is given and p is an
integer. In any case, it is important to know, for an operator with given sizes, how run time T
changes when the processor number p changes. In the following analysis, we measure the change of
flops and communication time to ‘predict’ the change of run time. In next section, we will compare
our ‘prediction’s with the real run time data. An alternative way to measure speed-up would be to
use Gustafson’s [2] scaled speed-up idea. However, we think the data presented here are informative
and they only involve measured quantities.

For simplicity, we assume that our operator has sizes n by n and that in our processor mesh
Pe = pr. We first double the sizes of the mesh in both directions, i.e. we enlarge the mesh into
2p. by 2p.. Then we enlarge the mesh into kp. by kp.. Assuming that for each processor « is the
time required to initiate a message and f# is the rate that a message can be transferred, the time of
sending ! floating point numbers once between two processors is v + If3. Table 2 shows the change
in flops and communication time on one processor.

Thus, when the number of processors is raised by k* times, the flops load on each processor
is reduced by about k* times. The reduction of the communication time is more complicated to
calculate. In the situation when o < 123 the reduction is about k times. However, we can set
k? and k as the ‘upper bound’ and the ‘lower bound’ for the reductions in run time. In the next
section, we will refer k and k? as ‘ideal computation speed-up’ and ‘ideal communication speed-up’
caused by raising the processor sizes in both directions k times, respectively.

6 Numerical Test Results

In this section, we provide some numerical results to demonstrate the behavior of Algorithm 2
and to compare Algorithm 2 with Algorithin 1. Both algorithms are implemented on the Intel
Touchstone DELTA with number of processors up to 256. All the matrices involved in both matrix
form (2) and (1) are formed by random numbers. All programs are run in double precision.

First we compare Algorithin 1 and Algorithm 2 by applying Algorithm 1 and Algorithm
2 to the equivalent operators (1) and (2) with the same operator sizes on the same processor mesh.
We always set n = m and the processor mesh sizes \/n by /n. Table 3 compares the performances
of both algorithms in terms of average time per operation. In the last column of the table, the
ratios 3 /t, show the relative speed-ups from Algorithm 1 to Algorithm 2 with respect to different
operator sizes and processor mesh sizes. The results indicate that under the above assumptions on
the operator sizes and the processor mesh sizes, Algorithm 2 reduced run time dramatically, and
when the problem sizes and the processor mesh sizes increase, the amount of the reduction increases
too.

We then test the speed-up behavior of Algorithm 2 by fixing the operator sizes to 240 x 240,




problem sizes processor number | #1 (in sec.) | ta(in sec.) | ta/h
256 x 256 = 65536 | 16 x 16 = 256 0.3656 0.09688 | 3.774
196 x 196 = 38416 | 14 x 14 =196 0.1879 0.05191 | 3.619
144 x 144 =20736 | 12x 12=144 0.1067 0.03152 | 3.385
100 x 100 = 10000 | 10 x 10 = 100 0.05785 0.01875 | 3.085
64 x 64 = 4096 8x8=064 0.03054 0.005352 | 2.313

Table 3: Comparison: run time t; of Algorithm 1 vs run time ¢, of Algorithm 2
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Figure 1: (a)Speed-up S: matrix sizes 240 x 240, left; (b)Relative speed-up S = Ty/Typ:matrix sizes
256 x 256

and applying Algorithm 2 on processor meshes with different sizes. The single processor program
is composed with LAPACK level 3 BLAS routines. Figure 1(a) shows the speed-up in this case.

Following the discussions in Section 4, we arrange tests fo observe the ‘relative speed-up’. This
time we fix the operator sizes to 256 x 256. We start from using 2 x 2 = 4 processors and denote
the observed run time by Ty. Then for k = 2,4,8 we use 2k x 2k = 4k* processors and denoted
the run time by Ti. Figure 1(b) shows the ‘relative speed-up’ Ta/Tag, and compares the curve with
the ‘ideal computation speed-up’ k% and the ‘ideal communication speed-up’ k. However, the curves
indicate that k2 and k are good upper bound and lower bound for the real time speed-up.

In the following tests, we measure the relative speed-up caused by raising the processor mesh
sizes once. In the first test, we take the operator with sizes 1024 x 1024 and we start from using
8 x 8 = 64 processors. Figure 2(a) shows the speed-up caunsed by raising the processor mesh sizes
to 16 x 16. In the second test, we take a much smaller system of sizes 240 x 240 and start from
8 x 8 = 64 processors. Figure 2 (b)shows the speed-up caused by raising the processor mesh sizes
to 16 x 16.

The different behaviors of Algorithm 2 shown in Figure 2(a) and Figure 2(b) indicate that the
change of system sizes will effect the speed-up behavior, the larger the system sizes are, the closer
it looks to ‘ideal computation speed-up’.

Algorithm 2 can be generalized to one that would deal with the 3-D array Sylvester-like
operation Map(z) = (I ®IQA+I@BRI+C®I®I+ V)a. With 3-direction message passing
scheme, this generalized algorithm is well snited for distributed memory computers with 3-D torus
topology such as Cray T3D. For detail, please see [5)-
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Maximizing Sparse Matrix Vector Product
Performance in MIMD Computers

R. T. McLay, H. S. Kohli, S. L. Swift, G. F. Carey

A considerable component of the computational effort involved in conjugate gradient solution
of structured sparse matrix systems is expended during the Matrix-Vector Product (MVP),
and hence it is the focus of most efforts at improving performance. Such efforts are hindered
on MIMD machines due to constraints on memory, cache and speed of memory-cpu data
transfer.

This paper describes a strategy for maximizing the performance of the local computations
associated with the MVP. The method focuses on single stride memory access, and the
efficient use of cache by pre-loading it with data that is re-used while bypassing it for other
data. The algorithm is designed to behave optimally for varying grid sizes and number of
unknowns per gridpoint.

Results from an assembly language implementation of the strategy on the iPSC/860 show
a significant improvement over the performance using FORTRAN.







Parallel Performance of a Preconditioned CG Solver

for Unstructured Finite Element Applications1

John N. Shadid?, Scott A. Hutchinson? and Harry K. Moffat>
Sandia National Laboratories
Albuquerque, New Mexico 87185

Abstract

A parallel unstructured finite element (FE) implementation designed for message passing MIMD
machines is described. This implementation employs automated problem partitioning algorithms
for load balancing unstructured grids, a distributed sparse matrix representation of the global
finite element equations and a parallel conjugate gradient (CG) solver. In this paper a number of
issues related to the efficient implementation of parallel unstructured mesh applications are pre-
sented. These include the differences between structured and unstructured mesh parallel applica-
tions, major communication kernels for unstructured CG solvers, automatic mesh partitioning
algorithms, and the influence of mesh partitioning metrics on parallel performance. Initial results
are presented for example finite element (FE) heat transfer analysis applications on a 1024 proces-
sor nCUBE 2 hypercube. Results indicate over 95% scaled efficiencies are obtained for some
large problems despite the required unstructured data communication.

1. Introduction.

In recent years substantial progress has been made in the development of scientific applications
on large-scale multiple instruction - multiple data (MIMD) machines. These machines utilize
many independent processors, each with local memory, to provide a substantial performance
increase over traditional vector supercomputers. Unfortunately, this performance increase is often
obtained with considerable cost in programing complexity. In particular, users must now partition
computational tasks into subtasks suitable for individual processors, map these tasks to the paral-
lel architecture and then use message passing to achieve synchronization and communication. In
general, algorithm development and performance analysis for the parallel solution of PDE sys-
tems has been focused on regular meshes [7,10,11]. For this case the static partitioning problem,
of dividing the computational task into subtasks, is trivial. Due to the data locality inherent in
these finite difference (FD) and finite element (FE) approximation procedures the task partitoning
reduces to simple heuristics designed to minimize the perimeter-to-area (or surface -to-volume)
ratio for subdomains of regular meshes. Once subdivided these tasks can be easily mapped onto
hypercubes and mesh architectures so that neighboring subdomains in the computational domain
are mapped to neighboring processors in the parallel machine. Thus, only structured - nearest
neighbor communication is needed and contention for the communication channels is avoided.

In contrast, the partitoning and mapping problem for irregular and unstructured meshes can be

much more difficult. Indeed, the determination of a partition that actually minimizes communica-
tion between balanced sets is know to be an NP-hard problem [3], so it is very unlikely that a gen-
eral computationally efficient algorithm exists. In addition, the mapping problem for unstructured

1. This work was partially funded by the Applied Mathematical Sciences Program, US Depart-
ment of Energy, Office of Energy Research, and was performed at Sandia National Laboratories
operated for the US Department of Energy under contract no. DE-AC04-76DP00789.

2. Parallel Computational Sciences Department
3. Chemical Processing Sciences Department




meshes is also difficult since a general unstructured mesh cannot be mapped with only nearest
neighbor communication on a hypercube or mesh architecture. As a result the required unstruc-
tured communication can produce contention for communication channels between processors.
However, the central importance of the partitoning and mapping problem for unstructured mesh
computations has motivated the use of a wide range of heuristic algorithms [4,6,8,12,13]. These
algorithms produce a variety of partitions for which the quality of the partition is roughly corre-
lated with computational cost. If is these essential differences between regular mesh and unstruc-
tured mesh parallel computations which make the efficient parallel implementation of
unstructured FE codes challenging on distributed memory MIMD machines.

2. Parallel Implementation Overview

In this section the overall parallel implementation framework for a representative paralle] unstruc-
tured mesh FE application and CG solver is briefly discussed. This FE application is capable of
solving for steady and transient conduction with local volumetric heat generation in complex 2D/
3D geometries. Considering a typical complex unstructured grid as in Figure 1 the following
comments about the typical structure of a parallel FE application can be made. It is evident from
Figure 1 that a general automated method for subdividing an unstructured computational mesh
and mapping it to the parallel MIMD machine is necessary. An ad-hoc or by-hand method would
prove to be unusable for a large number of meshes and the resulting paralle] communication effi-
ciency would be difficult to predict, assess and control. In our implementation we have used a
general graph and mesh partitioning utility, CHACOI5], developed at Sandia. Using this utility
the basic overall parallel MIMD implementation on P processors is as follows. Consistent with
the choice of a nodal based FE scheme, it is necessary to load balance the work agsociated with
the matrix setup and solution by partitioning the N nodes among the P processors2. The load bal-
ancing algorithm partitions the N nodes into P sets of [N/P] or (LN/P]+1) FE nodes® and
then maps these sets to the P processors of the parallel machine such that the overall interproces-
sor communication is minimized (see Section 4). After the required load balance and mapping the
FE application can then set up the distributed FE coefficient matrix. On each processor this dis-
tributed sparse matrix corresponds to a rectangular submatrix, A , of the global overall coeffi-
cient matrix, A. Thus each processor, in parallel, performs the necessary element integrations and
sets up a local set of equations for each of the FE nodes which it has been assigned. In this imple-
mentation, the equations are fully summed and actually correspond to a complete row entry from
the corresponding global coefficient matrix. The union of these distributed rectangular matrices is
therefore equivalent to a serial global coefficient matrix.

3. Parallel CG Solver

The parallel CG algorithm is essentially the same as the structured grid Krylov methods discussed
in [10,11] with the exception of the unstructured matrix-vector product. The main kernels are the
matrix-vector product, DAXPY type operations and vector inner products. As in the structured
mesh case, the key to performance in these solvers is typically the efficiency of the matrix-vector
multiply kernel and, within this, the communication it requires. For the parallel CG kernel to
operate as efficiently as possible, the time for the interprocessor communication during the
required matrix-vector multiplies must be minimized. In turn, key to this minimization is the data
structures in which both the distributed sparse matrix and the distributed vectors are stored.
Logically and as will be described in the next section, each processor is given a set of nodes for
which it is responsible. Thus, in the formation of the sparse matrix and vectors, each processor
will have a set of rows in both the sparse matrix and any associated vectors, each corresponding to

2. Other choices such as element based schemes are possible. The relative performance of such schemes
should not vary greatly for reasonable implementations of either the nodal or elemental schemes.
3. LR] is the floor function which returns the largest integer, m, such that m < R.




unknowns located at the nodes which have been assigned to this processor by the partitioning
algorithm. Formally, let v, € R™ be the vector of unknowns which have been assigned to proces-
sor [ where n; is the number of these unknowns. The edges cut in the connectivity graph represent
the data dependencies between subpartitions (processors). Thus, in order to complete the matrix-
vector product, processor / will need additional values of v which reside on other processors.
These values are required to complete the interactions between processor I’s “border” unknowns
and it’s “external” unknowns. That is, if v,, c v,are the border unknowns of processor , these
unknowns interact with border unknowns on neighboring processors via the connectivity of the
FEM mesh. These border unknowns assigned to neighboring processors are referred to as proces-
sor I's external unknowns. Figure 2 gives an illustration of this partitioning.

Given a specific partition and the assignment of the unknowns (internal, border and external)
described above, a distributed sparse matrix storage scheme[10] is used. On each processor, the
node numbers are reordered such that the first n;; nodes are the internal nodes of the processor, the
next ny, are the border nodes and the last n, are the external nodes. Therefore, n; is defined as n; =
nj + np. Thus, the last n, members of the vector must be obtained by communicating with the
processors which have been assigned these nodes. Once this portion of the vector is filled, the
matrix-vector product may be computed. Note that the number of messages is equal to the number
of neighboring processors and that the size of each message is directly proportional to the number
of edges cut in the connectivity graph by interprocessor boundaries. In addition, if the processor is
not a physical neighbor, the message may have to traverse several intermediate communication
channels in order to arrive at its destination. Thus two processor based local metrics, the maxi-
mum number of messages and the maximum size of these messages along with two global net-
work metrics, the total number of data items transmitted (termed cuts) and the total number of
data items transmitted weighted by the distance they travel (termed hops) are useful to describe
the effectiveness of partitioning algorithms. These factors are critical in determining the speed of
the matrix-vector products. All of these factors are influenced to some degree by the partitioning
of the problem. The next section briefly describes the partitioning methods used in the results pre-
sented in Section 5. For a more complete description of the partitioning methods available
through the utility CHACO used in this study, see [5].

4. Partitioning Algorithms

The central importance of the partitoning problem to unstructured mesh computations has moti-
vated the use of a wide range of heuristic algorithms [4,6,8,10,13]. These algorithms produce a
wide spectrum of partitions for which the quality of the partition is roughly correlated with com-
putational cost. The partitioning utility CHACO[S5] implements a wide range of methods which
can be used to produce load balanced partitions for distributed memory MIMD machines. These
methods may be divided into two classifications geometric and graph based. Geometric methods
use only information about the relative geometric distribution of vertices (or elements) of a mesh
that is being partitioned. Graph based methods require only information on the inter-connectivity
of the vertices (or elements) to produce a partition of the graph. Graph and geometric partitioners
can further be subdivided into local and global methods to describe the scope of influence. Global
methods use information from the entire graph (or geometric domain) to select the partition,
whereas local methods consider only a small neighborhood of the vertex under consideration to
produce the next candidate partition. In this study the following methods have been used. The lin-
ear and scattered partitioners use a simple assignment of the vertices (FE node in this study) to
locally balance and map the vertices. The linear partitioner assigns groups of | N/P] or
(LN/P] + 1) FE nodes to each processor in a sequential manner in accord with the numbering
of the original graph. The scattered method assigns each vertex sequentially to a processor, after P
vertices are assigned the method repeats cyclically until all vertices are assigned. The run time of
the simple schemes is very small and the effectiveness of the partition depends on the original
numbering of the graph. The Inertial method is a global geometric method which considers the
vertices to be point masses with mass equal to a vertex weight. The principle axis of the distrib-




uted point masses is determined and a cut is made perpendicular to this direction to bisect the
domain into two sets of equal mass. The inertial method is fast and can produce a very reasonable
partition for a wide range of geometrically based problems. The global inertial method can be
combined with a local graph based heuristic, Kernighan-Lin (KL), a greedy local optimization
scheme, to produce a hybrid method. The KL local refinement scheme can significantly improve
inertial method partitions, it does however increase the cost of this method substantially. The mul-
tilevel spectral bisection scheme (denoted by ML) is a global graph based heuristic. The ML
method of Hendrickson and Leland[4,5] produces a coarse representation of the original graph, to
which spectral partitioning is applied on the coarsest level, this partition is proj ected to the next
finer level on which a refinement by KL is used to optimize the partition locally. This local refine-
ment is done recursively up to the finest level. This algorithm is more expensive but usually pro-
duces the best partition for large problems. All of these methods are used as a preprocessing step
in the parallel FEM implementation so that the individual cost of any partitioning method will be
amortized over the number of times a specific parallel partition of a FE mesh is used.

5. Results

As described above there are a number of issues related to the performance of the parallel unstruc-
tured finite element application and in this section a number of these are briefly discussed. Figure
3 shows the fixed-size problem speedup for a small 3D unstructured FE problem with about 6000
FE nodes. This plot illustrates the transition from a computation to a communication bound appli-
cation as the number of processors is increased. Clearly the matrix setup phase of the application
scales well with increasing number of processors. The small deviation from linear speedup is due
to a small amount of work that is redundantly done in parallel to obtain elemental Jacobians. The
total time to setup and solve the problem is also shown in Figure 3. The point at which communi-
cation begins to overwhelm the computational cost is at about 256 processors. A transition point
at 128 to 256 processors for a small problem indicates that the application scales reasonable well
as the number of processors is increased despite the unstructured communication overhead. The
effects of the various partitioning metrics. for a small problem is shown in Table 1. Here it is evi-
dent that the local processor-based metrics of “maximum neighbors” and “maximum message
size” are important in the overall performance of the unstructured solvers. The partitioner that
produces the best run time is associated with a minimum in the “maximum neighbors” metric
(Inertial). When two partitions tie with this metric (ML and Inertial + KL) the “maximum mes-
sage size” metric becomes appropriate. Clearly the network based “cuts” and “hops” metrics have
very little bearing due to the small size of the problem and the small number of processors.

However, distributed memory machines are most productive solving large problems. Tables 2 and
3 indicate the preliminary performance of the parallel application and solvers on two large test
problems. In Table 3 the scaled parallel efficiency of the parallel unstructured solver is indicated.
The scaled speedup (and thus efficiency) is estimated by using the single node maximum compu-
tational rate (Mflops) and the measured multiprocessor rate on two large FE problems. For these
large problems it is evident that the network based metric of “hops” is an appropriate measure of
expected performance. In terms of the time for the unstructured communication it is clear that
having a good quality partition can reduce the required communication time substantially. Scaled
efficiencies of over 95% indicate that the parallel solvers scale well for large problems on a large
number of processors. Table 4 indicates performance for a 1,000,000 FE node problem run on 512
and 1024 processors. As indicated in the table the ML partitioner produces the highest performing
partition. Again in this case the “hops” metric is a good predictor of the expected performance.
The minimum time necessary to setup and solve the 1,000,000 node problem, 197 sec., is impres-
sive. The overall performance can also be measure by the solver Mflop rate of 840 Mflops. This
compares well to a 1,000,000 unknown finite difference calculation on the nCUBE2 that obtains
about 1.4 Gflops. These preliminary results are encouraging.
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Figure 3: Fixed Sized Speedup for Coarse 3D Horizontal CVD Reactor Mesh
Algorithm Cuts Hops Max. Max. Partition Solve
(103 (10%) Neighbors | Mesg. Time Time
Length (sec.) (sec.)
(Kbytes)
Scattered 51 88 7 6.6 0.0 26.9
Linear 73 13 7 23 0.0 21.2
Inertial 4.7 5.6 5 1.3 0.1 17.9
Inertial 3.0 4.2 6 46 2.1 18.1
+KL
ML 2.6 3.6 6 .70 3.0 19.7

Table 1: Comparison of Partition Metrics for Investment Casting Mesh -8 processors (6,673 FE Nodes)




64 Processors (186,381 FE Nodes)1 256 Processors (1,088,019 FE Nodes)
Algorithm | Hops tp tuc Solver Hops tp tuc Solver
(106) Efficiency (106) Efficiency
Linear 3.2 0.0 243 .69 - - - -
Inertial 0.62 7.0 7.7 .87 7.6 58 101 .80
Inertial + 0.47 84.1 4.7 .90 4.7 688 54 .88
KL

ML 0.27 373.1 2.2 .96 13 ~3100 13 97

Table 2: Scaled Parallel Efficiency for 3D Horizontal CVD Reactor Mesh

IThis is the largest problem per processor (2912 FE Nodes/Proc) that can run with the Linear partitioner
-~ Unable to run due to increased message buffer size

tp - Partitioning Time (sec.) on a SGI ONYX with R4000 100/50 MHz MIPS cpu and 256 Mb memory.
tyc - Unstructured communication time (sec.)

512 Processors 1024 Processors
Algorithm | Hops | tyc ts | Mflops | Hops | tyc | ts | Mflops
(10%) (10%)
Linear - - - - 41.1 145 | 397 371

Inertial 10.5 71 460 356 13.9 48 261 615

Inertial + | 6.3 342 | 403 408 74 26 | 218 740
KL

ML 12 365 451 11 197 840

Table 3: Parallel Performance for 3D Horizontal CVD Reactor Mesh (1,088,019 FE Nodes)

-- Unable to run due to increased message buffer size
tyc - Unstructured communication time (sec.)
tg - Total solution time (matrix setup + CG Jacobi solver) (sec.)
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Matrix-valued polynomials in Lanczos type
methods *

V. Simoncinif E. Gallopoulos*

January 3, 1994

Abstract
It is well known that convergence properties of iterative methods can
be derived by studying the behavior of the residual polynomial over a
suitable domain of the complex plane. Block Krylov subspace methods
for the solution of linear systems

Alz1, ... 851 = [b1,...,bs] (1) @)

lead to the generation of residual polynomials ¢,, € B, , where B, s
is the subset of matrix-valued polynomials of maximum degree m and
size s such that ¢m(0) = I, Rm = B — AXmm = ¢m(A) o Ro, where
$m(A) 0 Ro i= Ry — AT " ATRoEj, & € R°¥*. An effective method
has to balance adequate approximation with economical computation of

+ iterates defined by the polynomial. Matrix valued polynomials can be

used to improve the performance of block methods for solving (1). An-
other approach is to solve for a single right-hand side at a time and use
the generated information in order to update the approximations of the
remaining systems. In light of this, 2 more general scheme is as follows:
A subset of residuals (seeds) is selected and a block short term recurrence
method is used to compute approximate solutions for the corresponding
systems. At the same time the generated matrix valued polynomial is
implicitly applied to the remaining residuals. Subsequently a new set of
seeds is selected and the process is continued as above, till convergence of
all right-hand sides. The use of a quasi-minimization technique ensures
a smooth convergence behavior for all systems. In this talk we discuss
the implementation of this class of algorithms and formulate strategies
for the selection of parameters involved in the computation. Experiments
and comparisons with other methods will be presented.

*This research was supported by the National Science Foundation under grant NSF CCR-

9120105 and by ARPA under grant COM-NIST-UNIVMINN.

tDipartimento di Matematica Pura ed Applicata, Universitd di Padova, Italy. E-mail

simoncin@deis20.cineca.it.

{Center for Supercomputing Research and Development and Coordinate Sciences
Laboratory, Univ. of Illinois at Urbana-Champaign, Urbana, Ilinois 61801.
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Variable Metric Conjugate Gradient Methods
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Some Comparison of restarted GMRES and QMR
for Linear and Nonlinear Problenms

Comparisons are made between the following methods: QMR including
its transpose-free version, restarted GMRES, and a modified
restarted GMRES that uses approximate eigenvectors to improve
convergence. For some problems, the modified GMRES is competitive
with or better than QMR in terms of the number of matrix-vector
products. Also, the GMRES methods can be much better when several
similar systems of linear equations must be solved, as in the case
of nonlinear problems and ODE problems.

Ron Morgan Wayne Joubert
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Abstract

MGMRES: A Generalization of GMRES for Solving Large Sparse
Nonsymmetric Linear Systems

by

David M. Young and Jen Yuan Chen
Center for Numerical Analysis
The University of Texas at Auetin
Austin, Texas

We are concerned with the solution of the linear system (1): Au = b,
where A is & real square nonsingular matrix which is large, sparse and non-
symmetric. We consider the use of Krylov subspace methods. We first choose
an initial approximation u(® to the solution @ == A~!b of (1). We also
chooge an auxiliary matrix Z which is nonsingular. Forn = 1,2,... we deter-
mine (™ such that u(™ — uOe K, (r(9), A) where Kn(r(V, 4) is the (Krylov)
subspace spanned by the Krylov vectors r(%, Ar(®), ..., 4% 150 and where
10 = b~ Aul®), If ZA is SPD we also require that (u(® — 7, ZA(u( — §)) be
minimized. If, on the other hand, ZA is not SPD, then we require that the
Galerkin condition, (Zr(™,v) = 0, be satisfied for all ve&,(r®, A), where
7" = b — Ay™),

With the GMRES method, which was developed by Saad and Schultz
[1986], aud which has for many years been used extensively for solving large
sparse nonsymmetric systems one lets Z = AT. One generates a set of
mutually orthogonal vectors w(?, w(®), ., .w(™ guch that w(® = r® and such
that Sp(w®, w®), ., wk-Y) = K (+©, 4) for k = 0,1,2,...,n. To do this,
for each k we let w(¥) be a linear combination of Aw®*=1) wk=1 __ »®),
Next, for each n we choose ¢{™,c{™, ..., ™, so that u(® = u® 4 ¢(Mep(® 4
e .+c$l"_)1 w(™1) and so that (™, #(") is minimized. The cf.”) are determined
by solving & related system of linear equations in the least squares sense.
This is done in a stable manner using Givens rotations.

In this paper we consider a generalization of GMRES. This generalized
method, which we refer to as “MGMRES”, is very similar to GMRES except
that we let Z = ATY where Y is a nonsingular matrix which is symmetric
but not necessarily SPD. We require that the w() be mutually orthogonal




with respect to ¥. Of course if Y is not SPD it is possible that the pro-
cess of generating the w() may break down. Also, unless Y is SPD we
must replace the minimization condition on (r(™,r(™) by a Galerkin con-
dition which requires that (Zr™,wd) = 0 for i = 0,1,...,n =1 The
determination of the coeficients ™ can be carried out using Givens ro-
tations, as in the case of GMRES, though the overall procedure is some-
what more complicated. It can, however be shown that, for given n* and
+(9, one can uniquely determine ), u®, ... ul™ provided that the pro-
cess of computing w©®, wl), ..., w""~Y does not break down and provided
that for n = 1,2,...,n* there actually exists a unique vector u{® such that
u(® — u@eK,(r®, 4) and such that the Galerkin condition is satisfied.

The MGMRES ajgorithm is considerably simplified if Y'A as wellas ¥
is symmetric, Under this assurnption one can determine w(™® in terms of
w® 1 and w(®~2) instead of in terms of w1 -2 w(® as would be
required in the general cage, The determination of the coefficients cS”) which
are involved in the Galerkin condition is also considerably simplified. An
example of a case where Y and YA are symmetric is the “double system”
which corresponds to the Lanczos method for solving (1), Thus given the
linear system (1) one can consider the double system {A}{u} = {b} where
for some b and @ we have

et te)a(2)=(2) o

We also choose

=37 @)

Evidently {Y'} and {Y'}{A} are symmetric. The application of MGMRES
with ¥ = {Y'} to the double system yields the “LANGMRES” method given
by Young and Chen [1994].

An important feature of the GMRES algorithm is that one can determine
(™, (") for a given n and test for convergence without actually carrying
out the complete GMRES process to determine u(®), Thus, one can compute
(™), +()) for each iteration and only actually compute u{" when (r(™, r(")
is smaller than a prescribed tolerance level. We describe 2 similar procedure
for MGMRES. For each n we first compute the residual #) for ORTHORES




(Yg by determining the scaling factor ¢, such that #(" = ¢,w("), The residual
" for MGMRES can be determined from 7"} by a short series of elemen-
tary vector operations. No matrix-vector operations or inner products are

required to get ™.
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When numerically solving many types of partial differential equations, it is advantageous
to use implicit methods because of their better stability and more flexible parameter choice,
(e.g. larger time steps). However, since implicit methods usually require simultaneous knowl-
edge of the entire computational domain, these methods are difficult to implement directly
on distributed memory parallel processors. This leads to in.frequent. use of implicit methods

on parallel/distributed systems.

The usual implementation of implicit methods is inefficient due to the nature of parallel
systems where it is common to take the computational domain and distribute the grid points
over the processors so as to maintain a relatively even workload per processor. This creates a

problem at the locations in the domain where adjacent points are not on the same processor.

*This work was supported in part by the National Science Foundation under Grant Numbers MSS-9216479
and CDA-9222827, and, in part, from the Air Force Office of Scierntific Research under contract numbers
F49620-92-J-0546 and F49620-93-1-0409.
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In order for the values at these points to be calculated, messages have to be exchanged
between the corresponding processors. Without special adaptation, this will result in idle
processors during part of the computation, and as the number of idle processors increases,

the lower the effective speed improvement by using a parallel processor.

We can see this problem by examining the one-dimension diffusion equation, g—'t‘ = g—z’;.

Using a standard second-order implicit method, this results in the discrete equation:

k3

wf+1 — w} _ wf:i*-% - wa+1 + wf-.'—-% (1)
At (Az)? ’

or, rearranged,

— ] + (1+ 2a)THH - 0w} = B, @

where a = (TA::%T' Now, solving this equation on & sequential machine is quite easy using
a standard tridiagonal sweep method, similar to the Thomas algorithm [1]. However, on
a parallel machine with the domain decomposed across processors, only one processor at a
time will be active if the sweep method s programmed to match the computations on the
sequential machine. Using other matrix methods such as a straightforward implementation

of LU decomposition has the same effect since they also need full domain information.

In our scheme, we consider each processor fo temporarily be an independent sub-domain,
and use the appropriate implicit operator for that domain, allowing all processors to operate
simultaneously. Then, after each iteration, processors that have adjacent points exchange
messages, updating the values for that iteration. To examine our method, we discretize
the domain into nk + 2 grid points and distribute them over n processors such that points
0,...,k+ 1 are on processor 1; points k,...,2k + 1 are on processor 2; ..., and points
(n—1)E,...,nk+1 are on processor n (See Figure 1). Note that points 0 and nk + 1 are the
boundary points of the physical domain and the overlapping points are used to store values

from the adjacent processors.

For simplicity, assume that there are only two processors (n = 2) and there are only three

grid points per processor that are updated by that processor during each itetation (k = 3).




Iq. processor n _>l
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Figure 1: Domain Distribution

nknk+1

Examining the processor with points 0,1 and 2, we can write the matrix equation as:

(1 4 2(1) —Q 0 wy wy Qg
—a (1+4+2a) -« wy = wy +| 0 (3)
0 —-a 1+ 2a) ws o1 w3 + awy . 0

where the subscripts on the w vectors represent the iteration level. The values for w, are at
iteration ¢ since they are passed by a message after each iteration. Similarly, looking at the

processor with points 4,5 and 6, the resulting matrix equation is:

(1+2a) —a 0 wy wy + aws 0
—a (14+22) -« w; = wg +1 0 4)
0 —a (1+20) wg b1 we . awy

Combining equations 3 and 4, we can get the global equation for this example:

[ (1+2a) —a 0 1T wy ] [ wy ] [ awg ]
- (1+2¢) —-a ws ws 0
0 —a (142) w3 - waztaw, + 0
(142e) —a 0 wy wetaws 0
—a (142a) —ca ws ws 0
i 0 —a (1+2¢) | ws |, we | | awr |
(5)

where all the elements off of the main diagonals of the left-hand matrix are 0. Let’s represent

this equation in the form

P41y = By + b,

(6)
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Upon examination, it is easy to see that B can be written as Q + I, where @ is all 0’s except
for the two a’s just off the main diagonal, and I is the 6x6 identity matrix. Thus, we can
rearrange (6) as

(P — Q)W(t41) = We) + b _ (8)

But, this is exactly the form the implicit method would take if all of the domain was on a
single processor. The main thing to notice is that the left-hand operator has been split in
such a manner as to uncouple the two sections of the domain so that both processors can
be calculating new values simultaneously. This improves the efficiency over common implicit
implementations, for example [2], [3] and [4]. Although this example is small, it can be easily

generalized to a larger problem on many processors.

There are 3 points to consider in analyzing this method:

o First, how does the splitting of the operator affect the convergence/convergence rate
as compared to the original operator of Equation 2? We conjecture that the actual
convergence should not be affected, but that the convergence rate will be less than
that of the original operator. The critical part will be to discover if this method will
give convergence rates better than those of the best of the explicit methods such as

conjugate gradient or cyclic reduction.

e Second, if the convergence rate is better, then how much does the message passing
affect the overall run-time of the method compared to explicit codes that can overlap

communication with computation? If the message passing uses too much time, then




there will be significant amounts of time when all the processors are compuatationally
idle. In this case, the explicit methods may use less total run time then our method,
since they can usually maintain almost continuous computation. Even if our method
uses fewer iterations, the longer run time would make our code impractical for actual

use.

o Third, how easily can this method be generalized to higher-order differencing methods
and/or higher dimensional problems? A large number of the problems that could make
use of this method are 2- and 3-dimensional problems that require greater accuracy
then simple first-order differences. If our method does not generalize well to these more
complicated problems, then there will not be any distinct advantage to use it over other

methods that are more directly applicabile.

Hopefully, this method will be both rapidly convergent and very adaptable so that the

parallel community will be able to use the ’better’ algorithms from the large background of
sequential computing while still allowing for the efficient use of parallel systems.
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For the solution of discretized ordinary or partial differential equations it is
necessary to solve systems of equations or eigenproblems with coefficient ma-
trices of different sparsity pattern, depending on the discretization method;
using the finite element method (FE) results in largely unstructured systems
of equations.

Sparse eigenproblems play particularly important roles in the analysis of
elastic solids and structures [7] [12] [17]. In the corresponding FE models,
the natural frequencies and mode shapes of free vibration are determined
as are buckling loads and modes. Another class of problems is related to
stability analysis, e.g. of electrical networks. Moreover, approximations of
extreme eigenvalues are useful for solving sets of linear equations, e.g. for
determining condition numbers of symmetric positive definite matrices or for
conjugate gradients methods with polynomial preconditioning [3].

Iterative methods for solving linear systems and eigenproblems mainly
consist of matrix-vector products and vector-vector operations; the main
work in each iteration is usually the computation of matrix-vector products.
Therein, accessing the vector is determined by the sparsity pattern and the
storage scheme of the matrix.

For parallelizing iterative solvers on a multiprocessor system with dis-
tributed memory, in particular the data distribution and the communication
scheme depending on the used data structure for sparse matrices are of great-
est importance for the efficient execution. These schemes can be determined




before the execution of the solver by analysing the sparsity pattern of the
matrix and can be exploited in each iteration. Moreover, the schemes are ap-
plicable as long as the symbolic structure of the matrix which is determined
by the discretization mesh does not change, i.e. they can be used in each
time step of a time dependent problem or in each iterative step of a nonlinear
problem which is solved by linearization. In this paper, a data distribution
and a communication scheme are presented which are based on the analysis
of the column indices of the non-zero matrix elements.

Storage schemes for large sparse matrices depend on the sparsity pattern
of the matrix, the considered algorithm, and the architecture of the employed
computer system. The storage scheme considered in this paper is often used
in FE programs and suitable for regular as well as for irregular discretization
meshes. It can be found in similar form in e.g. [14]. The non-zeros of the
matrix are stored row-wise in three one-dimensional arrays a*, o, and d?.
a¥ contains the values of the non-zeros, a® the corresponding column indices.
In a*, the position of the beginning of each row in a* and o is stored.

First, the matrix is distributed row-wise to each processor, the vector
components accordingly. By analyzing the column indices, each processor
determines which matrix elements result in computations with local data and
which ones with non-local data. Communication and local computations are
performed overlapped to reduce waiting times.

The parallelization strategy has been applied to the method of conjugate
gradients with preconditioning [11] [15] and the symmetric Lanczos algorithm
[8] [9] [16] [19] [20].

The method of conjugate gradients (CG) is a frequently used iterative
solver for systems of linear equations Az = b, particularly for sparse coeffi-
cient matrices A. The method converges for matrices which are symmetric
and positive definite. In these investigations, the modified CG algorithm sug-
gested by Aykanat e.a. [4] has been applied since it has better parallelization
properties than the original method. Preconditioning is done by simple di-
agonal scaling [15] which hardly contributes to the total execution time but
usually accelerates the convergence considerably. Polynomial precondition-
ing [3] is subject to current investigations; this class of preconditioners allows
using the same parallelization strategies as for the pure CG algorithm since
the essential additional operations are sparse matrix times dense vector com-
putations. Furthermore, the applicability of these strategies to the QMR
algorithm for solving non-hermitian systems of linear equations [10] will be
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investigated.

Lanczos methods are most commonly used to approximate a small num-
ber of extreme eigenvalues and eigenvectors for a real symmetric large sparse
n x n matrix A [8] [9] {12] [16] [19] [20]. The principle of the Lanczos meth-
ods is described in the following. Starting with A and an initial vector ¢,
a vector sequence ¢,,, m = 2,3,..., and a sequence of m X m symmet-
ric tridiagonal matrices Tp,, m = 1,2,3,..., are generated by an iterative
process. Issentially, the iteration consists of a matrix-vector product and
vector-vector operations. This property makes it easy to exploit the spar-
sity of A. Certain eigenvalues of the matrices T5,, m = 1,2,3,..., may be
good approximations of eigenvalues of A. The eigenvalues of the tridiagonal
matrices may be determined by the parallel bisection technique described in
[6] or other methods. One result of the approximation theory for Lanczos
methods is that if the extreme eigenvalues of A are well seperated from the
rest of the spectrum then these are usually the first to be well approximated
by eigenvalues of T, [16]. If some good approximations of eigenvalues of
A have been found the corresponding eigenvectors of T}, may be computed
by inverse iteration and transformed to eigenvectors of A using the Lanczos
vectors ¢, m =1,2,3,... [8]. Criteria to decide which eigenvalues of T},
are good approximations of eigenvalues of A are described in e.g. [8] and
[16]. Here, the two variants of the Lanczos tridiagonalization described in
[5] and [13] have been applied; the latter method has better parallelization
properties than the former.

Numerical and performance tests of the developed parallel variants of the
considered solvers for systems of equations and eigenproblems have been car-
ried out on the distributed-memory system INTEL iPSC/860 of the Research
Centre Jiilich with sparse matrices from two FE models. The first FE model
comes from environmental science; it simulates the behaviour of pollutants
in geological systems [1] [18]. In the second FE model from structural me-
chanics, stresses in materials induced by thermal expansion are calculated
by applying the FE program SMART [2]. The parallel algorithms have been
shown to be well suited for the considered large sparse matrices. The parallel
CG method is employed in both projects. On a distributed-memory system,
the developed data distribution and communication scheme result in flexible
algorithms. These algorithms perform well for large sparse matrices of very
different sparsity patterns.
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A parallel implementation using PVM on a cluster of workstations of an
Element By Element (EBE) solver using the Preconditioned Conjugate Gra-
dient (PCG) method is described, along with an application in the solution
of the linear systems generated from finite element analysis of a problem in
three dimensional linear elasticity.

The PVM (Parallel Virtual Machine) system [?], developed at the Qak
Ridge Laboratory, allows the construction of a parallel MIMD machine by
connecting heterogeneous computers linked through a network. In this im-
plementation, version 3.1 of PVM is used, and 11 SLC Sun workstations and
a Sun SPARC-2 model are connected through Ethernet.

The finite element program is based on SDP, System for Finite Element
Based Software Development [?], developed at the Brazilian National Labora-
tory for Scientific Computation (LNCC). SDP provides the basic routines for
a finite element application program, as well as a standard for programming
and documentation, intended to allow exchanges between research groups in
different centers.

In the finite element method, the linear system to be solved is Kp = f,
where K is the “stiffness” matrix, p the unknowns to be calculated and f

*Structural Engineering Department — ramon@dcc.ufmg.br
Structural Engineering Department — lauracle@brufmg.bitnet
tComputer Science Department — mlbc@dcc.ufmg.br
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the “force” vector. As matrix K and vector p are the result of a Boolean
sum —assembly— of individual contributions of each element, the problem
can be written as: o o

Kp= (E Ke) p=3 K 1)

e=1 e=1 R

where nel is the number of elements, and K¢ and p° are the element contribu-
tions to the global system. To avoid assembling the global stiffness matrix,
the solution is obtained at element level, using the PCG method. This allows
large savings in storage, making the program useful in the solution of very
large models. In an analysis of the PCG method [?], using Jacobi as the pre-
conditioner due to its simplicity, the product K°p® defines the order of the
algorithm, and can be run in parallel for different groups of elements. Details
on the data structure are described in [?]. To implement the parallel version
of the solver, it is only necessary to have at each processor the data related
to elements contained at one group of elements. Communication can be kept
low by restricting it to nodes belonging to elements at the group boundaries.
The efficiency of the algorithm is then conditioned by the partition in groups,
which can be made automatically trying to minimize the number of elements
in common boundaries. As an application of the described implementation,
a cube subjected to concentrated load at one corner was analyzed, with dif-
ferent levels of discretization. The number of equations varied from 2361 to
39390, and the obtained efficiency, given by (2), is shown in Fig. 1.

== () () g

where #% is the time running sequentially in one SLC processor, t/! is the
time spent in the parallel processing, and ngr is the number of processors.

It was not possible to compute the efficiency for the finer mesh (39390
unknowns), as the problem is too large to be processed sequentially in the
SLC in its present configuration with 8 Mbytes. The average execution time
for this case was 3963 and 3414 seconds respectively for 9 and 12 processors,
corresponding to 511 iterations. The performance of the algorithm is affected
by the system load during execution, forcing the measures to be obtained
from averaged values.
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1 Introduction

A fundamental task of numerical computing is
to solve linear systems

AZ =b. (1)

Such systems are essential parts of many sci-
entific problems, e.g. finite element methods
contain linear systems to approximate partial
differential equations. Linear systems can be
solved by direct as well as iterative methods.

Using a direct method means to factorize
the coefficient matrix. A typical and well
known direct method is the Gaussian elimina-
tion. Direct methods work well as long as the
systems remain small. Unfortunately, there is
need for the solution of large linear systems [8].
When systems get large direct methods result
in enormous computing time because of their
complexity. As an example take (1) with a
N x N matrix A. Then the solution of (1) can
be computed by Gaussian elimination requir-
ing O(N3) operations. Additionally, an imple-
mentation of a direct method has to take care
of the high storage requirement.

In contrast to direct methods, iterative

*This work was done at the Central Imstitute
for Applied Mathematics, Jilich Research Centre,
Germany

methods use successive approximations to ob-
tain more accurate solutions to a linear system
at each step. The iteration process generates
a sequence of iterates &y, converging to the so-
lution & of (1). The iteration process ends if
either Z,, fulfills a chosen convergence crite-
rion or breakdowns, i.e. division by zero, oc-
cur. Possible breakdowns can be avoided by
look—ahead techniques [4, 10].

Often, linear systems are sparse meaning
that the coefficient matrix contains only a few
nonzero entries. A powerful iterative method
to solve large sparse linear systems with Her-
mitian positive definite coefficient matrices is
the conjugate gradient method (CG) [6]. Each
step of CG involves the coefficient matrix only
in the form of one matrix—vector product with
A. Frequently, computation times of iterative
methods are almost entirely dominated by the
time to calculate these products. So an im-
portant aspect of choosing a specific algorithm
among several possible ones is the number of
matrix-vector products.

While the repository for Hermitian systems
is quite rich there exist only a few methods for
non-Hermitian systems. An extension of CG
to linear systems with general non-Hermitian
nonsingular matrices leads to the biconjugate
gradient method (BCG) [9]. BCG generates




two CG-like iterates. One sequence is based
on matrix—vector products with A, the other
one with AT. So each step of BCG needs the
computation of two matrix-vector products.
BCG shows an irregular convergence behavior
and breakdowns may occur.

Both disadvantages of BCG — with the
exception of incurable breakdowns — can
be overcome by the quasi-minimal residual
method (QMR) [5]. QMR produces smooth
convergence curves and can be implemented
with look—ahead. Like BCG each step of QMR
is built of two matrix—vector products with
A as well as with AT. On parallel machines
with distributed memory, efficient transposi-
tion is a difficult task, see e.g. [7]. Just re-
cently, Freund [3] introduced an algorithm
eliminating the matrix—vector product with
AT . This transpose-free quasi-minimal resid-
ual method (TFQMR) uses two matrix-vector
products with A in each iteration step. Like
QMR, TFQMR demonstrates a regular con-
vergence behavior but breakdowns are possi-
ble. Here we will focus on an implementa-
tion of TFQMR on a machine with distributed
memory.

The rest of the paper is organized as fol-
lows. In section 2, we start with the TFQMR
method. The parallel implementation is de-
scribed in section 3. Timing results are given
in section 4.

Throughout the paper, the vector norm |||
is the Euclidean norm. Inner products are de-
noted by (Z, 7). The notation

Km(ﬁ, D) := span{h, Dh,...,D™ 'k}

is used for the mth Krylov subspace of CN
generated by h € ¢ and the N x N matrix
D. To obtain a matrix by concatenation of the
vectors Ji, T2, - - -, T We write [ 2+ - - In]-

2 TFQMR-Algorithm

The solution of linear systems (1) with
general non-Hermitian nonsingular N x N
coefficient matrices can be computed by
the transpose-free quasi-minimal residual
method (TFQMR). This section shortly
presents the algorithm. Details can be found
in [3]. TFQMR is derived via the standard
conjugate gradient squared algorithm (CGS)
without look-ahead [11]. CGS was the first
transpose-free BCG-type method and pro-
duces iterates F2n, by an updating scheme of
the form

(2)

Fon = Bon—2 + an—1(Ton—1 + F2n)-

The vectors #t, #2, - - - J2n of (2) span the fol-
lowing Krylov subspace:

®

span{fil, 52’ ey g.m} = lcm(FO) A)’

where m = 1,2,...,2n and 7y = b— Az
is the residual vector obtained for some ini-
tial guess Tp. FEach step of CGS generates
two search directions f2n—1 and an. But the
actual iterate only makes use of the sum of
both directions. In contrast, TFQMR creates
two iterates Ton—1 and Fay, per step exploiting
all available search directions. The TFQMR-
iterates have the form:

5m=50+[!71 372"'!jm]5ma Em € Cmr (4)

with m = 2n — 1,2n. The free parameter vec-
tor Z, in (4) can be chosen such that the it-
erates satisfy a condition which is similar to
the quasi-minimization property of the QMR
method. The resulting iteration process is
shown in Figure 1.




3 Parallel Implementation

In this section we describe a message-passing
based implementation of TFQMR. To our
knowledge, this is the first such implementa-
tion on a massively parallel processor like In-
tel’s iPSC/860.

We begin by pointing out the data struc-
ture used and show how the data is dis-
tributed among the processors. The basic op-
erations, matrix—vector products, inner prod-
ucts and vector updates, respectively, are dis-
cussed with regard to parallelism. Finally, we
make some remarks concerning the stopping
criterion.

3.1 Data Structure

As mentioned above, the dominant time-
consuming building blocks of iterative meth-
ods are the matrix—vector products. Con-
sequently, these products have to be imple-
mented carefully. We use a sparse storage
scheme to reach our goal: The solution of large
sparse systems. So only nonzero elements of A
are stored. We choose the Compressed Row
Storage [1] format because we don’t assume
more than the sparsity structure of the ma-
trix., Other storage schemes should be taken
into consideration if specific properties of the
coefficient matrices are known. E.g., the Com-
pressed Diagonal Storage [1] format could be
appropriate for banded matrices with a con-
stant bandwidth.

The Compressed Row Storage format stores
subsequent nonzero entries of the matrix rows
in contiguous memory cells. The matrix is rep-
resented by three different arrays. The data
structure of a N x N matrix with £ real nonze-
ros is shown in figure 2. The array value
contains the data entries of the matrix A.
The corresponding column indices are stored
in col_ind. The contents of the array row_ptr
points to the locations in the array value that

Choose %o € €V

ﬁ1=b—Afo

§1=b— A%
Fo=b— Az,
Yo = Af
do=0

7o = ||7ol|
J9=0
70=0

Choose 7o such that p, = (Fo, 7o) # 0
forn=1,2,3,...do
On-1 = (Fo, Un-1)

— -1
On-1= g’Z—1

Yon = Yan—1 — Cp—1Vn-1
form=2n-1,2ndo
"Em+1 = Wy — n-1A¥n
- ”wm+1”
Tm-1
Cm = 1
</ 2
1+92
Tm = Tm=19mCm
Im = C%qan—l

19;""_1%—1 Jm-—l

Jm = gm + Cn_1

Tn=Tm-1+ 77me
if £, has converged then

stop
end if
end for
pn = (Fo, Wan41)
— P
ﬂn - pﬂ’—‘l

Yon+1 = Wang1 + Pndon
Up = Aant1 + Bn (Affen + Prtn-1)
end for

Figure 1: TFQMR algorithm of [3]




starts a row of A. If a matrix element a;;
satisfies
5

then the following two equations hold simulta-
neously
(6)

(7)
Accessing — reading as well as writing — a
specific matrix element a;; is an expensive op-
eration using this data structure as (7) reveals.
But fortunately, TFQMR only makes use of A
in the form of a matrix—vector product. Fig-
ure 3 shows how a matrix—vector product in
Compressed Row Storage format is computed
sequentially.

As usual, we implement vectors as one-
dimensional arrays.

value(s) = ajj

col ind(s) =j

i = max{r | row_ptz(r) < s}.

3.2 Data Distribution

On a distributed memory machine, each pro-
cessor stores part of the data in its local mem-
ory. The matrix A can be distributed among
the processors based on several criteria. We
choose to assign the rows of A to different pro-
cessors by not splitting up any row. Any two
processors are allowed to store a distinct num-
ber of rows. The number of rows each proces-
sor holds is driven by a parameter. This pa-
rameter tries to balance the number of arith-
metic operations equally. A good choice of

MATRIX = record
value : array [1..f] of REAL
col_ind: array [1..tf] of INTEGER
row_ptr: array {1..N] of INTEGER
end record

Figure 2: N x N Matrix with ¢ nonzeros in
Compressed Row Storage format

this parameter is machine-dependent as well
as specific for the algorithm. Our parameter
matches the parameter of [2] which uses the
same data distribution for an implementation
of CG. We know that this is an inadequate
choice, but nevertheless it is preliminary ac-
ceptable as the results demonstrate.

Distribution of the vectors is done by break-
ing up the components. It corresponds to the
distribution of the rows of A.

3.3 Matrix—Vector Products

Looking at figure 1 the nth iteration seems
to contain three matrix—vector products
Afsn—1, Afen and Afonsi. Bubt an analysis
shows that each iteration step only involves
two matrix—vector products. The reason for
this is that the value of Agj, with odd j, can
be stored and reused in the following iteration
step. A matrix-vector product is executed
based on a communication scheme presented
in [2]. At the beginning of the algorithm, an
investigation is carried out to determine which
processors have to communicate with one an-
other. Finally, these results are made global.
The investigation is done only once and this in-
formation is used in every matrix—vector prod-
uct. For a more detailed description of the
communication scheme, the reader is refered
to [2].

The communication time of a matrix-vector

fori=1,...,Ndo
y(@) =0

for k = row_ptz(i),...,rowptr(i+1)—1do

y(i) = y(6) + value(k) * b(col-ind(k))
end for
end for

Figure 3: Sequential matrix-vector product in
Compressed Row Storage format, § = Ab




product can be overlapped with local compu-
tations. Currently, our implementation does
not support such overlapping.

3.4 Inner Products

To compute an inner product, each processor
calculates the inner product of the local seg-
ments. Then the global inner product is com-
puted by applying a global system call making
available the sum of all local inner products to
all processors.

Computation of inner products enforces
synchronization. An efficient implementation
tries to minimize these synchronization points.
In figure 1, each iteration step of TFQMR con-
sists of four inner products (7:':0, Un-1), ||D2nl,
[[B2n41]| and (Fo, Ban41), respectively. The
two convergence tests add more synchroniza-
tion, see 3.6.

As with the matrix—vector products, we do
not overlap any communication with compu-
tation. Furthermore, the number of synchro-
nization points is not minimized at all.

3.5 Vector Updates

Vector updates are done locally. Each proces-
sor updates its own segment. Synchronization
and communication are not necessary.

3.6 Stopping Criterion

Usually, the decision whether an iterate &, is
close enough to the solution is based on the
residual 7, = b — AZm. In TFQMR, the val-
ues of 7, or ||Fm|| are not readily available.
Freund [3] proposed a stopping criterion by
using the inequality

IFmll < Vm + 1 7. (8)

So the actual value of ||7,|| only needs to be
computed in the final stages of the iteration
process.

We use the difference of two subsequent iter-
ates as the stopping criterion. More precisely,
we calculate | £, — £, | and take the max-
imum over all components with the cost of
adding a further synchronization each time a
convergence test is executed.

4 Timings

The implementation is done on the Intel
iPSC/860 of the Research Centre Jiilich, Ger-
many. This site provides the user with up to
32 nodes each of 16 MB storage. The code is
written in FORTRAN. We use the Portland-
Group compiler, Rel. 4.0, with optimization
level 3. All results are taken while other users
share the computer so that the operating sys-
tem may influence the measurements.

Werun the code with two examples from en-
vironmental sciences [12]. Example I is a sys-
tem of dimension N = 17368 with ¢ = 304000
nonzeros. The corresponding values for ex-
ample II are N = 49392, ¢t = 1242814. We
emphasize that both systems are symmetric !
This means that results with non—Hermitian
systems still have to be run.

Table 1 demonstrates the results using the

systems mentioned above. As is easily verified,
TFQMR is well parallelizable.

Example
I I
2 370 —
4 206 560
p 8 123 306
16 81 176
32 63 111

Table 1: Time pro iteration step with p pro-
cessors in 103 sec




5 Conclusions

The TFQMR algorithm to solve linear systems
with general non-Hermitian nonsingular coef-
ficient matrices is shown to work efficiently on
a parallel machine with distributed memory.
As described, the current implemenation is far
from being optimal but shows satisfactory re-
sults concerning parallelism.

Future work will focus on the parameter to
adjust the data distribution. Examples will
be extended to non—Hermitian systems. We
will try other stopping criteria including the
one proposed by Freund (8). Our goal is to
use fewer synchronization points by packaging
communication which is needed to calculate
the jnner products. Communication and com-
putation will be overlapped and the code will
be put to a Paragon system.
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PARALLEY, ALGORITHMS FOR UNCONSTRAINED
OPTIMIZATIONS BY MULTISPLITTING *

QING HE !

Abstract. In this paper » new parallel iterative algorithm for unconstrained optimization using
the idea of multisplitting is proposed. This algorithm uses the exiating sequential algorithms without
any parallelization. Some convergence and numerical results for this algovithm are preacnted. The
¢xperiments are performed on an Intel iPSC/260 Hyper Cube with 64 nodes. It is interesting that
the sequential implementarion on one node shows that if the problem is split properly, the algorithm
converges much faster than the one without splitting.

Xey words. parallel algorithms, multisplitting, unconstrained optimization, QR decompositon,
Householder QR decomposition, hypetenbe computer, variable wmetric method, BFGS update.

AMS subject classifications. 65H10, 85K05, 65K 10, 30C30

1, Introduction. It has jong been believed that to speedup nonlinear optmiza-
tion algorithms, the key is to consider, e.g., the QR decomposition, or the system
golver, which comprise the major part of most optimization algorithms. Hence in the
parallel processing community many researchers have been concentrating on paralleliz-
ing the linear algebra routines {3}, and other routines for solving system of equations
{2]. Huang and O'leary [12) used multisplitting algorithms to attack the nonlinear
optimization problem by finding the toot of the gradient of the objective functions.

We take a different approach whereby we split the original problem into a set of
small subproblems, and obtain the solution to the original problem by solving the sub-
problems using existing sequential algothims. This approach forces all the awkward
linear algebra operations, such as matrix factorization, to a serial environment and
hence avoids the need to consider efficient parallel irnplementation of such operations.

Before we proceed we give a brief review of the existing mulisplitting parallel
algorithms for linear and nonlinear systems of equations. These are relevant here
because the splitting we propose is very similar but ocenrs prior to the minimization,
whereas these algorithms use splitting within the minimization to split the relevant
linear systems of equations. In section 2 our new algorithms are given, with proof of
convergence in section 3. The parallel convergence criteria are discussed in section 4,
while section 5 shows some numerical results. Ongoing and future work are discussed
in section 8.

Throughout this paper |).|| is assumed to be the 2-norm.

1.1. Yinear Systems of Equations.
DEFINITION 1. [14] Let be given « mairiz A € R**" and a collection of mairices
Mi,Ni Bi g R**®, = 1, ..., J satisfying
1. A=Mi—N? forj=1, ..., J,
2. M7 is nonsingular forj =1, ..., J,
3. EV is a nonnegative disgonal matriz forj = 1, ..., J and Z;-’____l Bl =1

* This research was performed in part using the Invel Garma System operated by Caltech on be-
half of the Concurrent Supercamputing Consortinm. Access 1o this facility was provided by Caltech,

! Deparement of Mathematcs, Arizona Staze Univeristy, Tempe, AZ 85287-1804, and Depart-
ment of Computer Science and Engineering, Arizona State Univeriaty, Tempe, AZ 85287-5406
(ghe®enuxmpi.eas.asu.edu).




Then the collection of triples (M7, N3, EV), j = 1, ..., J, is called a mullisplitting of
A. The corresponding linear multisplitling method for solving Ax = b is defined by the
iteration

J
zFtl = ZE’j(JWj)—l(Nj:l:k +b)k=1,..,

J=1

Most of the convergence results arc suinmarized in [6]. Further convergence results
for specific situations are given in [5], (8], (7], {11], [12], (23], [14], [13], [16], [17], [18],
[21], (22)-

1.2. Nonlinear Systems of Equations. The problem is to solve

F(z)=0, where F:RB — R,

F(1y ey Tn) = (Fr{21 ooy Zn), oo P21, ooy 20))7

DEFINITION 2. [5] Forj = 1,..., J lel F9:R™ x R be such that Fi(z,z) = F(z)
fer allz € R*. Moveover, forj = 1, ..., J let E? be a non-negative diayonal n x n-
malriz with Z€=1 El = [. Then the collection of puirs (Fi, Ei), j =1, .., ],
15 called ¢ nontinedr multisplitting of F. The corresponding nonlinear multisplitting
method (NM-method) is defined by the ileration

J
PSS EM k=01,
. j=1

where y*1 solves FI(z*, y5d) = 0.
The local convergence results are found in {3}, and R. E. White [19] presents
additional convergence results for nonlinear eqnations with special structures.

2. The Algorithms.

2.1. Linear Least Squares. Suppose 4 € R™*", z € t*, and 6 € R™ and
that the least squares solution is required for
(2.1) Sz} = llde b

A partition of 4 can be defined, 4 = (4,42, ..., 4,) where each 4; is an m x n;
submatrix of A , and 3°;_, #; = n s0 that

Fle) =11 AX: - b
i=1

where ¢ = (X1, Xa, ..., X;)7 is partitioned consistently with A. Let y = (¥}, Y5, ..., ;)7
where ¥; is an n; x 1 submatrix of y, and Z9% = (2]*, 28, ..., Zi¥)T, where 21*
is an n; x 1 submatrix of Z*. For 1 < j < r, define bj(z) = 6 — Tizg Ai X, and
take positive scalars of, liMrmoo 0f = a; > 0, where k is the iteration number, such
that 3°7_, of = 1. Then the solution to 2.1 can be found in parallel hy solving the

subproblems
minimizell4; X5 ~ b;(«¥))l, 1<j<n

Let B¥ be an m x 1 vector, for 1 <i<rand k > 0, and 2 the solution of 2.1.
ALGORITHM 1. (Serial Version)

[ -]

P



1. k =: 0, and guess an z*;

2. do while not convergcd
2.1 calculute Bf = .4,J\ A<igy
2.2 calculule b,(:c}") =b- Z BL' 1<i<r

2.8 For1<ji<vr, find Y‘H'1 io minimize [JA; X5 — b; (z®)||
24Forl<i<r andl<j<r set

fal e
gkl f Yi'f'*' ifiz
: XF otherwise

2.5 set pF+l = J - af““ﬂ'k“
2.4 test for wnve1gence
'> Sk=k+1
end do
3. 2t =1t

Now notice that, for 1 <i<r,

.
XPH = Y aktziin
j=1

r

- Etly kol kel ek

= Qi },I' +ZC¥J~T s i
e

.
— E4+ivrndgl k-1 >
= @Y L (o XF

s
(2.2) = ofPlyFH g (] - of Yk

This equality is employed in the parallel version of the algorithm to void communica-
tion,

ALGORITHM 2. (Parallel Version) For all processors i do
Begin
1l hk=:¢
2. guess an XF
3. celcwlate BY = A; XF
4. do while not converged
4.1 get all Bf forj % i
4.2 calculate bij(2*) = b— z#,
4.3 find Yk"'l to minimize || A; X, - b,(:tk)”
; 4 calealate BfFL = b1 A,V ERL (1 pk¥L) BE
4.8 test for canvergence
4 6k=Fk+1
end do
Boo* = yf = (VST
End

2.2, Nonlinear Minimization. Let f: £* — E! have positive semidefinite

Hessian and only one stationary point z*. Then the problem is to minimize f(x) in
the bounded neighbourhood D of z*

w




forl<j<r, let:c,_(X1 X e Xy )T where, for | <i<r

: —i _| Y i=]
(23) X = { X; oLherviise ’ )
Let f;(z,Y;) = f(%7), then we obtain the following algorithm:
AvgoprruMm 3. (Serial Version)
L k=10
2. guess an 2*
3. do while nol converged

3.1 forlLj<r, ﬁndYk"'l to minimize (2%, Y;)
39For1<z<rand1<]<r,

. B4l g
giver [ VT =)
: Xk otherwise

3 9 pFtl = E k+1£_,,l.+l
3.4 lest for conwergencc
35k=k+1
end do
4. z* =2*
By taking advantage of 2.2, we obtain the parallel version of Algorithm 3:
ALGORITHM 4. (Parallel Version) IFor all processors i do
Begin
k=0
2. guess an XF
3. do while not converged
3.1 get alIXl’ forj#i
3.2 find Y"'“ to minimize f;(z®,¥;)
3.3 calculate XEH o of YA oo o)X
3.4 test for convergence
33 F=k+1

end do
4.z~ ="
End

3. Theoretical Results.

3.1, Preliminaries.

LEMMA 1. Let f: R™ = R} be ¢ strictly conver function, Jor1<j<r, e >0,
and Y5 e;=1 Forzo € R* and Z;, e R* (124 <) i F(zo) = f(Z;,) Jer all
7, and 29 = Z 1 @5 05,0, then zo = Z; , for all j.

Proof. In f'tct let S; = {4|Z;« = o}, then since 2o = 7, @; %j« We have
Q- e)ro=3, -
JE€Se JHSe
Natice that
1= e =D

JES. H-XN
4

e s



50,
o

1.~
j€Sa Zifsg 4]

Zg =

thus, by o > 0 we have

. o [a )
1S g

F€S5a -.1:'55,
2 o s f(%.)
6D

FESaA
= 3 -/ (z0)

jgS. Laigs, @

f(z0)

A

Eg g5 %5
Zz&’Sc f( 0)

(30))

which is a contradiction. 0
Lemma 2. Let {25} (1 € j < m) be a set of bounded sequences, then there exists

an integer sequence {kn}, where ky ~ oo when h — oo, such that {x’“} converges

for all j.
Proof. {2%} has a subsequence, say, {:cl"‘} which converges then { -Lo"“} has

a subsequence {m._,"‘} which converges, ..., and finally, {:L =" '} has a subsequence
{4} which converges. By the const,ructlon, {z""} converges for all j since

{klzl} 3 {khﬁ} DD {khm-z} D '{k},}.

2]
LEMMA 3. Let {2*},{ZiF} (1< < v} be as in Algorithm 3, then {J(z*)} is a

monolonely decreasing sequence, and
: By = ) FEY —
5, /) = i F(Z) = f.
forl<j<r, and for some reel number fy .

Proof. (x) is a convex function, so

f(.‘l!k+1) = f(z a-l;-i—lzj.k+1)
=1

1A

r .
Z a;-i-lf(zj.kﬂ)
Jj=t

r
> el e)

j=1
= [flz*)

since f(Z9:k+1) < f(:z:“) So {f(z*)} is monotonely decreasing, and thus has limits.
Let fo = lun;,_.oo f(:r ), and notice that

1A
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Osfﬁﬁ“w@ﬂ—fw““»sf@h-fuﬁﬂ

i=t
so { F(Z9*) } converges for all j and fo = limg_.co f(Z7F) since limg stk = a; > 0,

Finally, we quote the following theorem without proof.
THEOREM 1. [1]If f is @ conves function defined on the conver set C and attains
its mazimum over C at an interior point 28 of C, then f is constant on C.

3.2. Convergence Results. Let f,',]. be the Jacobi with respect to the subvector
Y; ofy.

THEOREM 2. The fo in LEMMA 8 is the minimum value of f.

Proof. By LEMMA 3, fo = limg—co f(2*) = limg—os F(Z9*), for all j. Notice
that {Z+*} is bounded, so, by LEMMA 2, has a subsequence {Z7:%»}, where &5 — oo,
when h — oo, such that Zj. = limp—s0 Zién 1 € § & r, for some Z; .. Since £(x) is
continuous fo = imp—_eo f(Z9¥8) = f(Z;,.), for all j. By the definition of z*» in step
3.3 of Algorithm §,

r r
NaiZi. = lim (o Z7kn)
- " Cmd v ]
j=1 i=1

r

lim > of* 275
R—otr £ 1
J=1

ky

= lim a2
A—c0

Lo
for some zg, and
fo= Jlim f(z™)= f(2o).
—

Case 1, f is strictly convex. .
By LEMMA 1 2o = 5, for all j. And since fy (27%+) = 0 for all b, we have

(3.1) Fe,(23,2) = Jim fy,(Z25) =0.

‘Therefore fy.(zo) = fy,(Zj) = 0, i.c., V /() = 0, and thus zo minimizes {(x), and
fa is the minimum value of f.

Case 2, f convex.
Let C be the convex hull of {Z;.}, and Zj,. # z¢ for all j, ther zg is in the interior
of C since a; > 0 (1 € j < r). Purthermore for z € C'there are A; > 0 {1 <5 < »)
such that

.
' w:E/\ij,, and Z/\J-:l.
j=1

=l
Since f(x) is a convex function,
I
=)y = 13225
i=1
6

T T,




DA f(ZF)

j=t

”,
}:)‘J’fu
ji=1
= fo.

Bur then f atftains its maximum at an interior point of C and is therefore constant
on C by THEOREM 1, so Vf(20) = 0, and thus #o minimizes f(x), and fp is the
minimum value of f. When 22 = x, for some j the proof follows in a similar mmanner.
g

A

il

For strictly convex tfunctions we have

THEOREM 3. If f is strictly convez then the sequences {a*},{ZI*}(1 < § < r)
in Algorithm 8, and hence Algorikim 4 , all converge to lhe minimum point of f.

Proof. By LEMMA 3, and THEOREM 2,

fo= lim f(=") = fim f(Z7F)

for all j. Now we prove that {zF} converges. Let D* = {y|f(y) < f(z*)}, then
obviously DF*' € D, and z; € D*. Since the minimum point is unique we have
ﬂ:;l 0¥ = {230} Therefore o = limg .o z*, Similarly, ZiE+1 e Dk, and thus
2g = lilfigmco Z9F, for 1 < j < . 0

Observations:

1. We may solve the problem by using the known results for the systems of
noulinear equations on the function Vf, but if we solve it directly we have a wider
choice of the methods, such as, Descent, Conjugate-Direction, Gauss-Newton, and
Duvidon-fletcher-Powell Methods;

2. "The choice of methods used on local processors may be crucial as is the case
in the Jacobi Block method for the eigenvalue problem for symmetric matrices;

3. Our experiments show that, when choosing z¥+!, if we add the following
step, then the performance is improved significantly:

Lot y¥+! = (VP Y H, oo YY) F(gh40) < f(2PT1), then set o+t = g5+,
The proof of convergence for this variation of our algorithm is simnilar. Qur tiraing
results are for the algorithms with this improvement.

4. Convergence Checking. Given ¢ > 0, we can check either [j* ! —2*|| < ¢,
or [|f/(&*)] < &, or || f(x*¥1) — f(=*)| < &

In parallel, for all j, processor j checks cither || X!~ x¥|| < ¢, or Ify, (")l < &,
aince we have ||z¥F1 — zF|| < Z§=1 |§X;“+1 - X}’”, and a similar inequality holds for
1 (£F))|. We test ||f(z¥+!) = f(2*)|| < € in our programs on the Hyper Cube since,
from the above Observation 3, f(2¥) is always available.

5. Numerical Results. For all our tests we choose of = o = 1/r, & > 1.

1 £ i € 7, where r is the number of splittings. Since the splittings are also non-
overlapping, each subproblem has the same size. If ¢ is the machine precision then
the tolerance is set to /2. The MFLOPS for our linear least squares algorithms is
itr ¥ (3n+ 2n%/r = 31n/6r — 3/2)/t, where the matrix has size n x n, r is the
number of splittings, t is the time in second, and itr is the number of iterations. For
nonlinear algorithms the MFLOPS depends on the function chosen.
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‘Pable 5.1 presents timings for Algorithm 1, using Householder QR decornposition
[9] for the subproblems, on one node. In the first row is the timing without splitting.

The test problem is an m x m nonsingular linear least squares problem, where m
= 1024. The problem is test problem 1 from {3, for which

A = l=2/m ifi=}
W =2/m  otherwise
Iteration starts with 2; = 0.0 for 1 € ¢ < n. The converged solution is z; = —1.0
for L<iKn.

TasLe 5.1
Timiny on one node with splittings vaing Householder QR decompostion for all the subproblems.

£ of splitting o # of iteration | timing {sec) | MFLOPS
1 NJA 1 741.56 2.392854
2 1/2 3 416,132 7.744013
4 1/4 2 213.168 5.053860
S 1/8 5 121,618 5.682460
16 1/16 3 74.182 5.541246
32 1/32 3 53.86 3.203662
64 1/64 3 17.653 2.305085
128 1/128 3 62.491 0.939302
256 1/256 3 177.6832 0.194418

Except for the cases of splitting into 1024 and 512 subproblemns, when the machine
ran out of memory, the program is faster than without splitting and in the case for
splitting into 64 subproblems it is 15.56 times faster than without splitting. Ience
there is an optimal splitting. The test results of Algorithm 3, using the variable metric
method [4] on the subproblems, on one node have similar behaviour.

Table 5.2 is the timing of Algorithm 2 for the same problem on the Hypercube.
The speedup increases with problem size.

Tastr 5,2
Timing on 84 node hypercube for lincar least squures using Houscholder QR decompusition
for all the subproblems. The problem size is n X n, r is the # of splittings which equals the # of
processors used, ftr is the # of iterations, ¢ is the elapsed time in second, ¢ is the communication
time, cp 13 the percentage of the total communication time v.a. Fotal rum time, the speedup &p is
with respect o the iiming on one node.

T &« Jitr] o2 | ¢t | sp [ ¢ | <% | MFLOPS ||

1 [ N/A| ¢ 512 | 79.338 1 0 0 3.376358
4 ] 1/4 | 2] 8121 7186 | 11072714 0.8 | 11.165388 | 158.357202
3 | 1/8 | 3 | 512 | 3.194 | 24.839073 | 0.10 | 3.130370 | 32.085298
18 | 1/16 | 3 | 13 | 1.489 | 53.281397 | 011 | 7.387508 [ 35.214700
32 [ 1/32 | 4 | 512 | 1.526 | 51.989513 | 0.18 | 11.795544 | 23.936952
83 | 1/61 | 2 | 512 | 2.675 | 20.658318 | 0.93 | 34.76635 | 5.561277
1 | NJA| 1 | 1024 | 741.56 L 0 i) 2.892834
4 174 | 2 [ 1024 | 56,126 | 13.212415 | 0.24 | 0.427609 | 19.194694
8 1/8 3 1024 | 16,478 | 45.008498 0.45 2.731245 | 49.326740
16 [ 17161 S [ 1024 | 5494 | 134976338 | 0.48 | 1.736804 | 74.821616
33 | 1/32 ] 3 | 1024 | 3.326 | 222.958510 | 0.57 | 17.137703 | 63.214452
64 | 1/64 | 3 | 1024 | 3.59 | 208.562678 | 0.117 | 3.259053 | 30.596636 ||

Table 5.3 presents timings for Algorithm 4 applied to the minimization of the
following function (3):




n
f(zl’ Zg, v, xn) - Z(ei-x,/n - e—i’/n)2'
i=l
Initial values are z; = —(i + 0.1), (1 < i < n), and the real solution has z; = =4, (1 <
i £ mn). We use the variable metric method with BFGS updating formula [4] on
all subproblems. From the table we can see that the speedup is greater thau the
number of processors used. Oue reason for this is partly due to cache, or memory
size, When the problem is split onto a number of processors they are nearly all in the
main memory, or cache, but if it is run on one processor then the main memory is not
enough for holding a big problem and so at run time doing expensive swapping takes
up & large proportion of the time. But, more importantly, the speedup does show the
potential of our algorithms for parallel machines. ‘

TABLE 5.3
Tiwing on 64 node hypercube for nonlinesr minimization wsing Yarisble Metric Method, with
BFGS updating Formule, Jor the subproblems, The problem sise is n, r is the # of splittings which
equals the # of yrocessors used, itr is the # of iterations, ¢ is the elupsed lime in second, ¢ is ths
communication lime, cp is the perceniage of the otal communication time ws. lotal run time, the
apeedup 8p is with respeet to the liming on one node.

el o Titel o T ¢ ] sp [ e T _o% 1

1T [N/JA] 1 | 512 | 209.22 1 0 a

4 1 1/4 1 1] 512 2,463 88.579995 | 0.66 | 27.93060
5§ | 1/8 | 1 | 512 2.76 75.804349 | 0.38 | 13.768116
16 [ 1/16 | 2 | 512 1.669 | 126.112153 | 0.54 | 3.254973
2 l1/32 17 T 512 2.68% 78.008951 | 0,127 | 4.735272
64 | 1/64 | 5 | 3512 2.688 77.834823 | 0.92 | 34.226192
1 | NJA | 1 ] 1024 | 1442.475 1 0 [§]

4 | 1/4 | 1 [ 1024 49.261 29.282291 | 0.111 | 0.226330
8 | 1/8 | 1 11024 2.261 637.980994 | 0.80 [ 3.538257
16 | 1/16 | 2 | 1024 | 2446 | 589.72809% | 0.116 | 4.74238
32 1 1/32 | 3 11024 | 2.499 | 6577.220862 | 0.147 | 5.882353
64 [1/64 | 2 | 1024 | 2789 | 517.201491 | 0.97 | 34.779491

—

6. Current and Future Work. Currently we have gencralized the results to
the singular case, and for overlapped splitting, e.g., ¥* O Y}* # ¢ for i # j . Further
the splitting can be dynamically changed, e.g., we can add or delete components from
Y?* at any iteration. Furthermore we are testing the algorithms with an incxact sub-
space search, by which we mean that we do not find the minimum for the subproblem
in each iteration, as in the inexact line search algorithm. We are also testing the
effect on the rate of convergence of the choice of methods for the subproblems. More-
over we need theoretical results for the convergence rate. Notice that our speedup is
with respect to the timing on one node using the algorithm without splitting. But
if, for example, in Table 5.2, for n = 1024, we use the timing on one node using the
algorithm with optimal splitting, e.g., in ‘Table 5.1, » = 64, then the speedup is not
so great, However, we have not been able to prove that there is always an optimal
splitting for Algorithm 1, or Algorithm 3, such that the algorithm converges much
faster than the one without splitting, even though our test results, so far, support
this. More details can be found in [10].

7. Acknowledgements. This result would not have been possible without my
advisor, Dr, Rosemary Renaut, introducing to me the idea of multisplitting for the
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Analysis of Semi-Toeplitz Preconditioners for First-order PDEs*
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Abstract

A semi-Toeplitz preconditioner for nonsymmetric, nondiagonally dominant systems of equations is
studied. The preconditioner solve is based on a Fast Modified Sine Transform. As a model problem
we study a system of equations arising from an implicit time-discretization of a scalar hyperbolic PDE.
Analytical formulas for the eigenvalues of the preconditioned system are derived. The convergence of
a minimal residual iteration is shown to be dependent only on the grid ratio in space and not on the
number of unknowns.

1 Introduction

We are interested in solving systems of first-order PDEs such as the Euler equations and the Maxwell
equations. For the Euler equations, we are mainly interested in the case when there are different time-scales
present in the problem and the fastest time-scale does not have to be resolved. An important application is
almost incompressible flow [4], [5], where the sound waves in the medium are much faster than the motion
of the fluid. For an explicit discretization in time the restriction on the time-step due to the CFL-criterion
becomes too severe. For the Maxwell equations, we intend to consider complicated geometries such that
the smallest grid-cell in the space-discretization restricts the time-step considerably in an explicit time-
discretization. Therefore we use an implicit time-discretization. This leads to a system of equations

Au=1b (1)

which has to be solved for each time-step. A is nonsymmetric, and since the time-step is large compared to
the space-step, it is also strongly nondiagonally dominant.

In this report we theoretically examine the convergence properties when we apply a minimal resxdual iteration
to (1), utilizing a semi-Toeplitz preconditioner. Such preconditioners have shown to be well suited in a domain
decomposition setting of the problem [8].

2 The model problem
2.1 The differential equation

In [7] we consider a scalar two-dimensional equation with variable coefficients. Here we will restrict our
presentation to constant coefficients in order to be able to derive theoretical properties of the preconditioned
system.

U+t ftu;, =g , 0<z<1 , 0<z2<1 , t>0. (2)

(2) is well posed if we prescribe u(z1,0,%), u(0, z2,t), and u(zy, z2,0).

*This work was supported by the Swedish National Board for Industrial and Technical Developmcn(t, NUTEK, under contract
No, 89-02539 P
tDepartment of Scientific Computing, Uppsala University, Box 120, S-751 04 Uppsala, Sweden




2.2 Discretization

Introduce a uniform grid as
zd-j=jhd ) j=0,"-1md ' hd=1/md ’ d=1,2.

Let uj denote the approximate solution at the point (z1,j,z2,). Now we discretize equation (2) in time
using the trapezoidal rule with time-step At

un+1 —y"

EH IS+ (B = det 407 3
At 2 245z 3z4’ 1529 T )

For the space derivatives we use second-order centered differences in the interior of the domain and one-sided
first-order differences at the outflow boundaries. We define the following quantities

Kg = %‘3 , d=1,2
T
u® = ("?,1 uzy ... upL1 Urg ... U ms )y,
and finally write the equations as
AuH = (I, @ Ay + K242 ® Iy, Ju™ 1 = (4)
where b contains known quantities and A; and A are defined by
4 r 0 1
—K1 4 K1 -1 0 1
A= , A= . (5)
—-K1 4 K1 -1 0 1
=217 442K -2 2

3 Iterative methods

The matrix A defined in (4) is extremely sparse, with five nonzero diagonals and semi-bandwidth m,. Modern
CG-like iterative methods are well suited for nonsymmetric systems of equations. In this report we consider
minimal residual iterations, [3], which in each iteration fulfills

(i) 3 1 : -1 (0)
IrPlle = jmin_ llpi(M="A)rls

where P; is the set of all polynomials of degree i, M is the left preconditioner, () = M=1(Aul) —b) and
u(®) is the approximation of u obtained in iteration i. If M~14 is diagonalizable we obtain

i i = -14) - & 6
o eyt (2855 IO = conda(Waeva) € @

where Wjs-14 is the eigenvector matrix and ), are the eigenvalues of M —14. From (6) we conclude that we
will have finite termination in n iterations where n is the number of distinct eigenvalues to the preconditioned
system. Moreover, if we can precondition our system such that the eigenvalues of M -14 are contained in k
dense clusters we have a good approximation to the solution in k iterations. Clustering of the eigenvalues
may be even more important than a condition number improvement, [1], [2], and [12]. In Section 4 we define
a preconditioner that yields a highly clustered spectrum. Since the iterative method includes the solution of

Mz =y, (7)

in each step we must have a fast solver for this system. The preconditioner solve defined in this report is
based on a Fast Modified Sine Transform developed in [6].




4 The preconditioner

In this report we consider the semi-Toeplitz preconditioner M defined by
4 K1

M=1,,0A +KxA4;:01, , A= (8)

K
—k; 4
In [7] it is shown that M can be decomposed as
M = (Im; ® Smy)T(Im, ® SE)) (9)
where T is block-tridiagonal with diagonal blocks as
T=In,Q®A+rA420 In, (10)

where )
Ay = dig(,gye o dms) 5 Mg = 4+ 2iy cos (i%7) (11)

Sm, is the modified sine matrix defined by

Sy (51 K) = /5279441 sin (gﬁ) jk=1,...,m (12)

By rearranging the unknowns the solution of

Tz =y,

decouples into m; independent tridiagonal systems of order my. In [6] it is shown how the modified sine

transforms can be evaluated using Fourier transforms of vectors y € C 2 By symmetry we can also reduce
the intermediate solution of the tridiagonal systems to the solution of only the first -"-'-'-.‘;'Ll systems.
To sum up this section we present the different steps in the solution of (7):

e mg Fourier transforms of vectors y € C 24t

I’ m?ﬂ solutions of tridiagonal systems of order m;

e m, Fourier transforms of vectors y € c™ G

5 Spectrum of the preconditioned system

By defining B A
= - = Im; ® El

where E; is defined by

0 0 0
E=|: S 13
! 0 --- 0 0 ( )
o --- —K1 2&1
we get
. M YA=T14+ MY, @ E1) (14)

Otto [9] shows how to compute the eigenvalues of (14) when M is a semicirculant preconditioner, i.e., each
block is circulant. We use the same technique to determine the eigenvalues of (14). We will make use of a
lemma in [9] which we restate here for readability. Let £(a, b) denote the closed ellipse centered at the origin
with semimajor axis b oriented along the imaginary axis and semiminor axis a. Also let £¥(a, b) denote the
region {z]z € £(a,b) and Re(z) > 0}.




Lemma 5.1 The eigenvalues A2z, k =1,...,my, of Az satisfy:

o Mo FMj, k#£]
o Ay € EH(dm3 4,2 + 4m7 %)

From Lemma 5.1 we conclude that there exists a nonsingular matrix V such that
V—1A2V = A2 = diag(z\z,l, ceny Ag,m,)

By defining
D=(V"'®SE YM(V ® Sm,) (15)

where S, is the modified sine matrix of order m; defined in (12) we get

= Im; ® SglAISm; + ~2V—1A2V ® Im; = Img ® Al + K2A2 ® Im;

where A; is defined in (11). From Lemma 5.1 we get that
Re(Ay,j + K2d2,k) = 4+ waRe(Azk) 2 4
which implies that I, ® A1 + k2A3 ® I, is nonsingular, i.e., M —1 exists. Hence
D = In, ® Ay + K242 ® Iy, = diag(Dy, ..., Dm,)
where

Dk =diag(d,,) ’ d,, =4+2il€1 cos (;;Jx_:-—l) +IC2A2’k y v=(k=1)mi4i , k=l..m3 , j=l..m ,

(16)

and the spectral decomposition of M~ becomes
M™l'=(V®Snm)DY(V e SE).
Now consider the matrix W given by

W = (VOIn) M EV &In,) = (Im, ® Sm,)diag(D7?, ..., D7l )Im, ® S, E1) =
= diag(Sm, D{'SH E\,...,Sm, D1 SH, E1) = diag(Wh, ..., Wn,)

As W is a similarity transformation of M~E and W is block-diagonal, the eigenvalues of M -1F equal the
eigenvalues of Wi , k =1,...,my. Due to the sparse structure of E;, Wi only have 2 nonzero columns

0 .- 0 Wi(l,my—-1) Wi(l,m)
0 .- 0 Wi(2,m~1 Wi(2,m1)
el : (2,my - 1) : (17)
0 --- 0 Wi(mi,my—1) Wi(m,m)
where
We(l, my — 1) = —Kk1 3522, S, (£,9)d5 2 SH, (5, m1) = —”1’.‘_"'@”'"‘(:“;’\: 1) £=1,...,m
Wi(l, m1) = 261 T2 Sy (8 )d5 2 S, (G my) = 2wyt =™ B, o522, 1) - )
(18

where v=(k—1)m1+i, d, is defined in (16) and

2 X jn
Sl )= 2 P (o ) (19)
=

Fk,t(e)':;i_:;(*.%%% ) k»£=1)°°°1m1 ) (20)

where a is a complex number with e @ > 0, # > 0 is real and 0 < 6 < 7. We now show how to evaluate the
sums in (19) using the technique presented in [9]. Using this result we can then compute the sums defined
in (18).

where




Theorem 5.2 ®; ((a,B) defined in (19) can be evaluated using residue calculus, yielding

: E+L __ L |E=4] -k _ Lk ¢ £ 2my+2

] ¥4 z z "N T —Z ¥4

@k,t(a, ﬂ) == 1 ( )(_.1 ) 2 2
ﬂ Zz2—=2 z2—2z 1—2 my+

z=i(%—- 1+(-g-)2)

and the principal branch of the square root function is employed.

where

Proof:
By periodicity we get

Pk e(e, B) = ﬂu+1 ?:‘;HFL (;’m) , kE€=1,...,m

Fi i8 C' and 27-periodic =
Fia(0) =T e , cg=3= J2¥ ¢=i0 Fy (6)d8
The Poisson summation formula yields
Pro(a, B) = Z::“—(;O 2cq(2my42) = 260 + E§°=1 (2°q(2Mx+2) +2¢_g(2m, +2))
Using the Euler identities in (20) gives

1 (%0 — e=ik0)(ith . g=it0) (k=)0 4 oi(E~k)P _ Gi(k+0)0 _ omi(k+0)8
1 2a+if(ef +ei0) 8a + 4if(e”® + e—9)

Fr () =~

By making the substitution z = e*® we get

i k—t— tmh—q _  htlmg_ y=lehe
2y = — 5ok § Tt (,_;l)(;_z,; “dz , Vg (21)

where C is the positively oriented unit circle and

21=i(%— 1+(%)2) , z,:i(g-+ 1+(-g-)2) (22)

where |z;| < 1 and |z3] > 1. Hence z; is within C while z; is not. Note that z, = z71.

Two types of integrals arise which are calculated using the residue theorem.

2? ’
2 S

ep20 I1 = #-‘C (:-:;)(z-z;)dz Z1—33 = zyez]t

- -
ep21 = E%fc (z-::)(:—zg)dz = zfl-zg + i;-l-li!so(p_l)(o)
©®=1)(0) denotes the (p — 1)th derivative of ¢(z) at z = 0, where y(z) is defined by

‘P(z) = (z—zx)l(z-zz) = zxitz ((z - zl)-l - (z - z2)~1) yielding

¢(P-1>(z) s (o = DU=1)P=1((z = 1) ® — (= — 22)*), and hence

I = Em + S (-a) 7 - (-2) 7)) =

21—3 3;—8 212,




Using this result in (21) yields

i :.+l_z|.-‘|
co = -2—p- ..l.__LI__

2;—2;
= _;z:(am-*-z) z:—h+‘:—t_zl-k-l_zﬁ , k,,l = 1, v,y
Co(2m 42) = Y] 31-3;1
C—g(2m1+2) = Cq(2m1+2)
Since |21] < 1 we get
) 2m, +2
Sy = A
1 - 1~ z2m;+2
¢=1 1
which gives
=N i 1 E—£ , _t-F bt peny _Hmt?
Y (2eqampsn) + 2omgemsn) = —g——=7 (A + 2 - - A o
g=1 - 1-2z

Summing up we conclude that

Dr,e(a, B) =
e, ) 8 73—zt 2 =2t 1— 2m¥2

i (zf’f‘ s W Gl Gt O il )

where z; is defined in (22) which completes the proof. n]
Thus, by Theorem 5.2 and using that Re(4 + £2A2,¢) > 0 and x; > 0 we can find analytical expressions for
Wi (£, m; — 1) and Wi (£, my) defined in (18). The characteristic equation for Wi defined in (17) is

A- Wk(ml -1,m; - 1) —Wg(ml —-1,m) _

- = \™m—2 -
det(Mlm, = Wi) = X™ J We(m,my—1) A= Wi(m,m1)
+K2)3x

Aml-l(A b iﬂl@mhml__l(-—i—-l—’ Nl) — 2K1¢m1,m1(4+‘2A’ * , Kl))

0

Hence W;. only has one nonzero eigenvalue A given by

A =ik ® (4+53A3 k )+ 2 d (4+K,X: x ) — 2 1_,%-1—: + 9z l_zzml
k= K1%Pm,,m;-1 2 y K1 K1¥Pm,,m; 2 K1) = —2; 1_'Em1¥5 32k l—xim‘:ﬂ

where

-

2k =1. (4_""—'-4‘;:?2& -Jl'*' (4’*’;1?2&) ) ] k: 1)---’m2 . (23)
We summarize this result in a theorem.
Theorem 5.3 The matriz M~ A where M is defined in (8) and A in (4), has (m1 — 1)my eigenvalues that
are identically one. The remaining my eigenvalues py are given by

g1-zim1—? . 1—z2™
ﬂk=1—2k:§m+2zzkw , k=1,...,mp (24)
g3 k

where z;. is defined in (23).

As the dimension of the nullspace of E is (my—1)my, it is clear that the eigenvalue 0 to M~ E has (m; —1)m;
lineatly independent eigenvectors. Hence we know that a minimal residual iteration will converge in at most
m, + 1 iterations.

From Theorem 5.3 we can derive

Theorem 5.4 Assume that
At=chi , 0<a<l, ¢>0 (25)

and
ma(1+ 2m;%)
¢

my = 1, 0<¢<1 (26)




where [$] denotes the closest integer greater than §. In the limit my — oo, the my eigenvalues of M~'A

that are different from one all reside on a curve-segment p(7y)

() =2-272+2/1-92-2iy(/1-9y2+1) , —¢<7< ¢

Proof:
Define (; as
Ck=4+;—:i\°‘£ , E=1,...,mq
By (25) we get
Cr —%3'+2h,’\2k*2°_1m1 Yhw, , k=1,...,m;
where
wp=g2Ay , k=1,...,my

Lemma 5.1 together with (29) and (28) yields

we € £+@22E M1 4 9mz ) | k=1,...,my

m; ‘my

By (26) m2 < m; and Z2(1+2m, 2-) < ¢ yielding

+ -
w € £H@T9) € £Fam; T, 4)
Now define
€e=c 1m" 1-}-61;m1 , 0<8: <1,

which gives
G=2+in , ¢S <¢.
For m; > 1 we have € < 1 and (31) together with (30) in (23) and a Taylor expansion yields
. . . 2iey;
2 =i(C — (1 +¢H)Y?) = 2ie— i — i1 — 42 + ——2c + O(€?
e = (G — (1+¢)77) Tk 7:;,\/1—5()

We obtain
Zhoo EliMmcwzr ==Y —iy/1—9 , —6< 1 <é

For m; sufficiently large there is a positive constant ¢; such that
denr

Vi

Thus, we get |z;]*™ — 0, which together with equation (24) gives

|26 =1 +0() <1—emi™L.

limm,_.oopk=1—z§'°°+2izk,°° , k=1,...,mz .

(27

(28)

(29)

(30)

(31)

(32)

(33)

By inserting (32) in (33) and exploiting that —¢ < v < ¢, Vk, we conclude that the eigenvalues of M~14

that are different from one all reside upon the curve-segment p(v) defined by (27).

0

From Theorem 5.4 we see that when At is defined by (25) the eigenvalues stay bounded and are well separated
from the origin when the problem-size increases. In Figure 1 we show how well the asymptotic formula (27)

agrees with the eigenvalues for a large problem-size.
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Figure 1: Asymptotic spectrum solid line and eigenvalues marked with circles for o = 0.99, ¢ = 100, ¢ = 0.99, and m2 = 500.

6 Asymptotic convergence factor
In this section we determine the asymplotic convergence factor p defined by
i

= lim &/} (34)
$ e OO

where ¢; is defined in (6). We enclose the asymptotic spectrum g defined in (27) in a circle C(4, R) and use
the general result from [10]. Here C(c, R) denotes the circle with center ¢ and radius R.

Lemma 6.1 Tke circle C(4, R) where R is defined as

R= |u(x4) — 4] = /8 + 1242 8/1— &7 (35)
encloses the asymplotic specirum p defined in (27).
Proof:

Define r(7) as the distance between 4 and u(7). Then

= (-2-27+2/1 -7 + 27(V1-172 +1))* =8+ 129 - 8V/1 -7

and
d*r? 8 8y?
— 0
N e A (B U
Hence r? obtains its maximum value at the endpoints yielding r(y) < R which proves the lemma o

Theorem 6.2 For0 < ¢ < @ the asymplotic convergence factor p fulfills

2+ 342 — 2¢/1 — 42
ps\/ ? 3 i <1




Figure 2: The solid line represents the asymptotic convergence factor for & = 0.99 and ¢ = 100. The residual reduction is
plotted for m3 = 127 dashed line, mj = 255 dotted line and m; = 511 dashed-dotted line.

Proof:
For0 < ¢ < 33@ we obtain 8 + 1242 < 8 +12-§ = 8\/1-§-+ 16 < 8y/1 — ¢2 + 16, and consequently

\/ 8+ 12¢2 — 84/1 — ¢2? < 4. Using Lemma 6.1 and the general result in [10] yields

2432 -2/1—¢2
psgz\/ ¢ ¢ <l

2

8]

In Figure 2 we show the asymptotic convergence factor for varying ¢. In the same figure we show the residual

reduction / defined by .
p= (nr.-uz)‘/'
lIroll=

for different problem-sizes using GMRES [11] and i = 20.
Finally in Figure 3 we show the actual number of iterations obtained from GMRES(20) for different problem-
sizes. The iteration has converged when ||M~1r®)||,/||M ~b}}> < 10~S.

From Figure 2 and 3 we see that the convergence seems to depend only on the ratio between the number
of grid-points in the different space-directions and not on the number of unknowns. In Figure 3 we see that
the number of iterations actually goes down when we increase the size of the problem.

7 Conclusions

In this report we have studied semi-Toeplitz preconditioners and minimal residual iterations to solve block-
tridiagonal systems of equations. Analytical formulas for the eigenvalues of the preconditioned system are
derived. We have also shown that in the limit mg — oo the eigenvalues of the preconditioned system all
lie on a curve-segment that can be easily computed. The eigenvalues stay bounded and are well separated
from the origin independently of the problem-size. From this eigenvalue distribution we can derive upper
bounds to the asymptotic convergence factor. These bounds have been verified numerically. Finally we show
empirically that the number of iterations does not grow when we increase the number of unknowns.

Y
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Figure 3: Number of iterations for @ = 0.99 and ¢ = 100. Solid line represents ¢ = 0.89, dashed line ¢ = 0.75, and
dashed-dotted line ¢ = 0.5.

References

[1] O. Axelsson, A restarted version of a generalized preconditioned preconditioned conjugate gradient
method, Report No. 8710, Department of Mathematics, University of Nijmegen, Nijmegen, the Nether-
lands, 1987.

[2] O. Axelsson and G. Lindskog, On‘ the eigenvalue distribution of a class of preconditioning methods,
Numer. Math., 48 (1986), pp. 479-498.

[3] R. W. Freund, G. H. Golub, and N. M. Nachtigal, Iterative solution of linear systems, Acta Numerica
(1991), pp. 57-100.

[4] J. Guerra and B. Gustafsson, A semi-implicit method for hyperbolic problems with different time-scales,
SIAM J. Numer. Anal., 23 (1986), pp. 734-749.

[5] B. Gustafsson and H. Stoor, Navier-Stokes equations for almost incompressible flow, SIAM J. Numer.
Anal., 28 (1991), pp. 1523-1547.

[6] L. Hemmingsson, A Fast Modified Sine Transform for Solving Block-Tridiagonal Systems with Toeplitz
Blocks, Submitted to Num. Alg.

[7] L. Hemmingsson, Toeplitz preconditioners with Block Structure for First-order PDEs, Report No. 156,
Dept. of Scientific Computing, Uppsala University, Uppsala, Sweden, 1993.

[8] L. Hemmingsson, Domain Decomposition Methods for Hyperbolic Problems in 2D, Draft report, Dept.
of Scientific Computing, Uppsala University, Uppsala, Sweden.

[9] K. Otto, Analysis of preconditioners for hyperbolic PDE, Report No. 147, Dept. of Scientific Computing,
Uppsala University, Uppsala, Sweden, 1992.

[10] Y.Saad, Krylov subspace methods for solving large unsymmetric linear systems, Math. Comp., 37 (1981),
pp- 105-126.

[11] Y.Saad and M. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmeiric
Linear Systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856-869.

[12] H. A. van der Vorst, Preconditioning by incomplete decompositions, Ph.D. thesis, Rijksuniversiteit
Utrecht, Utrecht, the Netherlands, 1982.

.....



EQUIVARIANT PRECONDITIONERS FOR BOUNDARY ELEMENT
METHODS!

JOHANNES TAUSCH??3

Abstract, In this paper we propose and discuss two preconditioners for boundary integral
equations on domains which are nearly symmetric. The preconditioners under consideration are
equivariant, that is, they commute with a group of permutation matrices. Numerical experiments
demonstrate their efficiency for the GMRES method.

1. Introduction. In the past few years symmetry exploiting methods have be-
come a popular topic in numerical linear algebra. Of special interest are linear systems
that come from discretizing an integral equation defined on a domain with geomet-
rical symmetries. These problems inherit the structure of the underlying group of
symmetry transformations when the discretization is done in an appropriate way. By
making use of this structure, it is possible to significantly reduce the amount of work
involved in solving these systems.

Of course, this method will fail when the symmetry is destroyed by perturbing the
domain slightly. However, we expect that the symmetric and the perturbed problems
are somewhat close to each other and that it is possible to take advantage of this
situation as well.

. Here we present an approach how this can be achieved. We propose two precondi-
tioners for the iterative solution of the discretized equation which have the structure
of the related symmetry.

Now let us outline this paper. After a brief overview of boundary element methods
and iterative methods for the linear system associated with the integral equation in
sections §2 and §3, we discuss in §4 symmetry reduction methods. The following
two sections describe the preconditioners used. In section §5 a preconditioner is
constructed by discretizing the integral equation on a nearby symmetric surface. The
following section §6 contains a preconditioner which is the solution of a minimization
problem. Some results of numerical experiments are presented in section §7.

2. Boundary Integral Methods. Consider the linear integral equatiqfx
(1) Ap(z) +Kp(z)=g(z) <z€B

with the boundary integral operator

Ko(z) = /B Kz, 9)p(v)dB(y)

defined on a linear space of functions on B which is denoted by X.

We are mterested in the case when B is a closed and compact surface in the three-
space B C IR®. Equations like (1) arise from solvmg Laplace’s equation on a domain
with boundary B, in which case the kernel k(z, y) is weakly singular.

One of the standard approaches for solving (1) numerically is the application
of a collocation method. The idea here is to seek an approximation of the solution

! Submitted for the student paper competition of the Colorado Conference on Iterative Methods.

2 Partially supported by the National Science Foundation under grant number DMS-9104058

3 Department of Mathematics, Colorado State Umversny, Ft. Collins, Colorado 80523, USA,
e-mail: Tausch@Math.Colostate.edu
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p in a finite dimensional linear subspace X, C X spanned by the basis functions
{1,...,¢n}. Moreover, consider points on the surface {p1,...,Pn} C B chosen in a
way such that the interpolation problem

find pn € X, such that p(p;) = pu(p;) fori=1,...,n

is uniquely solvable for all functions p € X. Typically, the subspace X, consists
of functions that are piecewise polynomial on a triangulation of B, this has been
extensively studied by Atkinson, see [3}.

In general, the solution of the integral equation (1) will not be in X,,, and therefore
a function in this subspace cannot solve the equation at all points on the surface.
Instead, one forces the unknown function pn to satisfy (1) at least at the collocation
points. If p, is written as a linear combination of the basis functions pp, = Y, ¢i¢s,

then this yields the following linear system for the coefficients z = (e1, -+, c,,)T
(2) Az =}
with matrix entries
3 A(3, 5) = Aj(p:) + (K )(pi)
and right hand side
b(3) = 9(ps) -

For estimates of the discretization error |p, — p| we refer to the vast literature on
numerical methods for integral equations, see e.g. [4] or [13].

3. GMRES. The matrix of the collocation method in (2) is in general dense
and non-symmetric. A standard approach for solving (2) is to apply a multi grid
technique, see for instance [12] or [13]. These methods work well when the operator
K in the integral equation (1) is compact. If the boundary is only piecewise smooth,
then this assumption is often violated and the multi grid iteration may perform poorly
or may even diverge [5].

Only recently, other iterative methods, like conjugate gradients and Krylov sub-
space methods have been studied in connection with boundary integral equations, see
e.g. [8] and [18]. One of these methods is the GMRES method of Saad and Schultz
(14].

A well-known technique to improve the convergence of iterative methods is pre-
conditioning, see e.g. [L1]. The idea here is to multiply the linear system Az = b with
the inverse of a nonsingular matrix L, the preconditioner, and to solve the equivalent
linear system L~1Az = L~!b. Alternatively, one can transform the unknown z to
Lz = y and solve AL~'y = b. Note that the product L~*A or AL™! is actually
never formed - this would be too costly. One step in an iteration method involves -
among other operations — the multiplication of a vector with the matrix A. The extra
expense of the preconditioned method is to solve a linear system with matrix L in
each step.

A good choice for a preconditioner is a matrix that factors A in the form L~1A =
I + B where the norm of the remainder ||Bl|, is small. Then the eigenvalues of the
preconditioned matrix L~ A cluster around unity and yield a small condition number.

Another suitable preconditioner is a matrix L that factors A to a low rank per-
turbation of the identity, i.e. L™!A = I + R. Here R denotes a low rank matrix:
rk(R) = p < n and no assumption must be made about the norm of R. In this case
the preconditioned GMRES iteration terminates after at most p steps with the exact
solution.
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4. Equivariance. We are interested in the structure of the system matrix in (2)
when the surface B, on which the integral equation (1) is to be solved, has symme-
tries. That is, B is left invariant under a group I' of isometries such as rotations and
reflections. Each isometry v € T gives rise to a linear operator I, : X — X mapping
the function f € X on foy~!. The operators {II,|y € I'} defined in this way form
a group under the usual multiplication of operators which is isomorphic to the group
of isometries. Henceforth we will use the same symbol for both groups.

Moreover, suppose the kernel of the integral operator X depends only on the
distance of the two points z and y, i.e.

k(z,y) = k(|lz - yl).

This situation is typical when equation (1) comes from an integral reformulation of
a boundary value problem. Using a change of variables, it is straightforward to see
that such an integral operator commutes with the action of an element in T, i.e.

(4) KI, =1I,K.

In general, an operator K with the property (4) is called equivariant with respect to
the group action T, or simply I'-equivariant.

In order to be able to exploit the structure of the continuous problem, the dis-
cretization must not destroy the symmetry. This is the content of our assumption on
the basis functions and the collocation points:

Assumption: The group I’ defines a group of permutations on the indices by

[H‘7¢1: sy H1¢n] = [¢11, veny ¢7n]
and
Y1) s 1(@s)] = [Py1y---rPyn]-

and the permutation group is isomorphic to I'.
The permutations on the indices in turn induce permutation matrices I, by
setting:

(I, b)(3) = b(y~"9)

for a vector b € IR". Using the equivariance of X and the above defined group actions
we obtain for the matrix entries in (2):

A(r™Y, ) = (K85)(py-1) = (I K é)(p:) = (KT 65)(pe) = (Kéoi)pi) = AliL75) -

Hence we see that the matrix A has the three equivalent properties:

(5) Alr~t4,5) = AG,v5)  Vigv
(6) A(i,7) = A(vivvi)  VYigy
1) OA = AL VYy.

Equation (7) is the discrete analogue to (4). From equation (6) it is clear that the
matrix entries are constant on the orbits of T, consequently, the matrix is determined
by only n?/#T elements, if there are no fixed points of the group action on the index
set.

It is possible to exploit this structure to save computational work when solving
the linear system (2). The key here lies in the irreducible representations of the
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group I - for an introduction into representation theory see e.g. [15]. The irreducible
representations determine a sparse and unitary matrix F' - the generalized Fourier
matrix — which factors L in the form L = FHLF with L being a block diagonal
matrix. Since F is a unitary matrix, its inverse is given by the Hermitian transpose,
ie. F~1=FH, Instead of the linear system Lz = b, the equivalent system Léz=b
with right hand side b = Fb and unknown # = F'z is solved and then the solution z
is recovered from Z via the inverse transformation z = F¥z. We call this method the
Generalized Fourier Transformation (GFT), because it extends the idea of using the
discrete Fourier transformation for circulant matrices to equivariant matrices [7}.

The diagonal blocks of L can be computed with n? floating point operations, the
transformations b = Fb and z = FHz can be done in (#I')n flops. This shows that
the overhead is negligible, considering that A is a full matrix. The major savings in
computational effort comes from the fact that a number of small systems are solved
as opposed to one big system in the un-reduced case. For more details about the GFT
we refer to [16]. An earlier description of symmetry reduction using projections can
be found in [1] and [10]. The approach presented there yields equivalent subsystems.
Applications to boundary element methods with numerical results are in [2] and in
[19].

5. Preconditioner derived from a nearby symmetric surface. In this and
the next section we describe two preconditioners to handle problems defined on do-
mains that are close to a domain with geometrical symmetries. The basic idea of
our first preconditioner is to discretize the integral equation on the symmetric sur-
face. As was pointed out in the previous section, this yields an equivariant matrix
which can be inverted efficiently. Let us briefly discuss how the preconditioner is con-
structed. Usually surfaces are represented via parameterizations. Since we want to
include piecewise smooth surfaces, it is convenient to work with piecewise linear (PL)
manifolds. Here we recall the definition found in Georg [9]: A PL-manifold is a finite
collection Spr of closed triangles in IR®, each having affinely independent vertices

T; = [vd,vi,v8), i=1,...,J. In addition, we require
1. The intersection of two triangles in Spr, is either empty or a vertex or an
edge.

2. Each edge is common to exactly two triangles.

We assume that it is possible to parameterize the symmetric as well as the perturbed
surface with the same PL-manifold. Then our discretization scheme can be described
as follows:

1. find a symmetry respecting PL-manifold Spr and parameterizations (i.e.
piecewise smooth isomorphisms) m : Spy, — B and m : Spr — B of the
symmetric and the perturbed surface respectively.

2. define a set of basis functions {#1,-..,¥a} on Spr. Lifting them to the
surfaces B and B via ¥; =giom and ¥; = ¢; o m produces basis functions
{¢1,...,6n} and {@1,...,6a} . Note that the basis on B must respect the
symmetry in the sense of our assumption.

3. define collocation points {gi,...,qn} on Spr and map them to the two sur-
faces: p; = m(g;) and F; = m(q:)-

Applying the collocation method, we obtain the two nonsingular matrices L and A
arising from the symmetric and the un-symmetric problem, respectively. The matrix
L is a good preconditioner when the quantity [JA — L|| is small. It follows from [17]
that this is in fact true when the parameterizations and their first few derivatives are
close to each other.
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The use of the above preconditioner has a significant drawback. Usually the
assembly of the system matrix is the most costly part of a boundary element technique.
Our method requires two matrices — one for the symmetric and one for the perturbed
problem. Even though only a fraction of matrix entries have to be determined in the
equivariant case, the savings in the iteration may not justify the extra calculation of
the preconditioner.

This objection however does not apply for situations where the perturbed surface
differs from the symmetric surface only on a small piece. In this case the respective
basis functions and the collocation points are identical except for a few, which implies
that only a few rows and columns of A have to be updated to obtain the preconditioner.
In other words, A is a low rank perturbation of L, or L~14 is a low rank perturbation
of the identity, which in turn implies that the number of steps in the GMRES iteration
of L~'A is bounded by this rank.

In the next section we introduce a preconditioner which does not require addi-
tional surface integrations.

6. An Optimal Preconditioner. Our next goal is to find an equivariant matrix
L so that the product L™'A is as close to the identity as possible. In other words,
the preconditioner has to minimize the quantity "L‘I(A - L)" in a consistent matrix
norm. An upper bound for this number can be obtained easily, setting B = A~ L we
estimate:

415

|e=28] = (A= B8] = |1 - 47'B) 47 B]| < -

Since the right hand side of this inequality is monotonically increasing with "A‘lB”,
it is straight forward to minimize ||B|| = ||A — L||. Thus we require that our precon-
ditioner solves the following minimization problem:

(8) L =min{||A - L|| : L is T-equivariant} .

We will show that this problem is trivially solvable in the Frobenius norm: To obtain
the optimal preconditioner, one has to average over the orbits of the group action
on the indices. This construction can be viewed as a generalization of T. Chan’s
circulant preconditioner for Toeplitz systems [6], since a circulant matrix of order n
is equivariant with respect to a cyclic group of order n. Here this idea is extended
to any finite group. Before we formally describe the preconditioner in the following
theorem, we need some simple notions on a group acting on a set of integers:

Consider the index 7 in the index set N := {1, ...,n}. We denote the set Orb(i) :=
{¥i:4 € '} the orbit of the group action on the index i. Note, that the cardinality of
this set is not always equal to the group order #T', since the group action might have
fixed points, i.e. vi = i for some ¢ € N and some ¥ # e. We denote by I'; a minimal
subset of the group that generates the orbit of 7, that is Orb(i) = {yi:y € T;}. A
subset S C N that contains exactly one element from each orbit is called a selection
of indices. Clearly {7i};cs. ep, is 2 list of all elements in N without repetitions.

Now we are in a position to state the theorem: .

THEOREM 1. Let S C N be a selection of indices and let T; be a minimal
generator of the orbit Orb(i) for an indez i € S. Then the matriz L = {L(i,5)}i,;

defined by
. 1 . . .
(9) Lid) = oz D Atir)  VieSjeN
t

el
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and eztended by
(10)
L(ri,5) = LG,7"%) VieSjeN,yerl,

is the optimal solution of the minimization problem (8) in the Frobenius norm.

Proof. Let L be an arbitrary I'-equivariant matrix. The main idea of the proof
is to rearrange the summation in the Frobenius norm ||A — LII} so that the orbits of
L(i, ) stand together.

la-LiF = 3 3 (aw.5) -1, )

i'ENj'EN

= Y5 ¥ (40i i) - Livi i)
i€S yel, J'EN
= E Z Z (A(7i' 7j) - L(‘yi, 7]))2 Setting j - 7—1]'!

i€S 'YEf‘- JEN

= Z E E (A(7i, 77) = L(4, j))2 using the equivariance of L
$€S JEN e,

The last expression consists of un-coupled optimization problems for the L(i, 7). The
optimal solution can be obtained by minimizing each term, i.e.

3 (Alyi ) - LG, 5)*

7efl
for each i € N,j € S. This yields

Ca 1 s
L(’rj) - #1',’ 7§. A(‘ﬂv‘f]) :

It is easy to see that L is equivariant and independent of the choice of S or T;. u

The computation of L(i,j) for i € S and j € N by equation (9) requires #I;
additions, yielding n? floating point operations for the whole matrix L. Thus the
calculation of the optimal preconditioner costs approximately about as much as one
single matrix - vector multiplication. This is clearly an advantage over the precondi-
tioner of the previous section, because no surface integrations are necessary.

Note, that the matrix constructed in Theorem 1 is not always nonsingular. How-
ever, one matrix in the feasible set of the optimization problem (8) is the precondi-
tioner derived from the symmetric surface, which is nonsingular. Thus, the optimal
preconditioner is nonsingular if the perturbation of the surface is small enough.

7. Some Numerical Results.

7.1. Second Kind Equations. In the following we present some numerical re-
sults using the optimal preconditioner described above. The first examples deal with
the integral equation

2m0(a) + [ 3o (2= s0)B0) + (or - Aeole) = o),

which comes from solving Laplace’s equation on a domain with boundary surface B.
Here Q(z) denotes the solid angle of B at the point z, which is 27 when the surface
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N | its § | its §
481 11 050 5 .0055
192 [ 10 .042{ 5 .0095
768 | 11 .048 | 6 .0083
TABLE 1

Tteration results for the ellipsoid

N | its ) its §
48119 176 6 .014
192 122 219 7 .028
768 | 22 235 7 .033
TABLE 2

Tteration results for the perturbed cude

is smooth at z. The linear systems come from collocating with functions that are
piecewise constant on a triangluation of the parameter space.

The GMRES iteration was continued until the 2-norm of the residual was reduced
by the factor 10~1°. The tables show the number of iterations (its) as well as the
average reduction factor of the residual in each step (&) for various refinements of the
grid (N denotes the number of triangles). The parameters its and § are compared for
the original and the preconditioned system.

The domain in the first example is the ellipsoid (2/1.1)2 + (y/1.05)% + 22 = 1.
The parameterizing Spr-manifold is the unit cube, which induces a group action of
order 48 on the indices. This group action was used to construct the preconditioner
as in (9). The results of the experiments are shown in Table 1. In the middle column
are the results of the iteration applied on the original system, in the right column are
the respective numbers for the preconditioned system.

The second domain is a cube, with one side perturbed by a quadratic surface, see
Figure 1. Due to the edges, the number of steps of the un-preconditioned iteration is
higher than in the previous example with a smooth surface. Note however, that the
increase of steps in the preconditioned method is not so significant. The numerical
results are displayed in Table 2.

In the third example (a cube with a small cube removed in one corner, c.f. Figure
2) the preconditioner performed poorly. This is due to the fact, that the derivatives of
the parameterizations are not nearby, yielding boundary integral operators that are
not close in some norm. The results are shown in Table 3.

The same experments with a preconditioner that comes from a surface with sym-
metries did not reveal noticable differences. The optimal preconditioner performed
only slightly better.

7.2. First Kind Equations. In the above numerical examples the precondi-
tioner reduced the number of steps in the iteration significantly, however the un-
preconditioned iteration converges reasonably fast as well, especially in the case of
the ellipsoid. This is due to the well-posed nature of second kind equations (1) with
compact operators.

This picture changes when first kind equations are to be solved. Equations of this
type are of great importance for boundary element methods. We experimented with
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Nlits 6 [its &
384122 .24 16 .20

11521 23 .26 | 18 .23
'TABLE 3
Tteration results for the domain of Figure 2

e .. - -

F1G. 1, The perturbed cube

FiG. 2. The cube with a small cube removed in one corner




Results for a first kind equation on the pertubed cube

REFERENCES

N | its ) its é
48 123 .250{ 8 .039
192 { 33 373 | 10 .068
768 | 44 495 | 10 .084
TABLE 4

N | its é its )
384 | 39 450 | 9 .064
1152 | 49 .541 | 10 .087
TABLE §

Results for a first kind equation on the domain of Figure 2

the single layer operator from potential theory, which is defined by

1
Sp(z) = /; mp(y)dB(y).

Since this operator is compact, its inverse is not bounded and the equation Sp = ¢
is ill posed. When a discretization technique is applied then the number of GMRES
iterations will increase with the refinement of the mesh.

The experiments suggest that our preconditioners work well especially for first
kind equations. Compare with the results of Table 4, which were obtained by dis-
cretizing the perturbed cube of Figure 1 in the same way as for the double layer
equation.

As expected, the number of iterations increases as the grid is refined. This is also
the case when the preconditioner is used, however the increase is much slower. The
two preconditioners that we have discussed perform almost equally well as in the case
of the double layer equation.

Suprisingly, we obtained good performance for the single layer equation even on
the domain of Figure 2, where preconditioning of the double layer equation failed,
see Table 5. This behavior may be attributed to the higher sensitivity of the double
layer operator to perturbations of the surface. We will investigate this in our future
work [17].
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EXPLICIT AND IMPLICIT ODE SOLVERS
USING KRYLOV SUBSPACE OPTIMIZATION:
APPLICATION TO THE DIFFUSION EQUATION
AND PARABOLIC MAXWELL’S SYSTEM

Vladimir Druskin and Leonid Knizhnerman

Introduction
We solve the Cauchy problem for an ODE system

Au+ ‘3_1: =0, ult:O =¥, (1)
where A is a square real nonnegative definite symmetric matrix of the order
N, ¢ is a vector from R¥. The stiffness matrix A is obtained due to semi-
discretization of a parabolic equation or system with time-independent coeffi-
cients. We are particularly interested in large stiff 3-D problems for the scalar
diffusion and vectorial Maxwell’s equations.

First we consider an explicit method in which the solution of (1) on a whole
time interval is projected on a Krylov subspace originated by A. Then we
suggest another Krylov subspace with better approximating properties using
powers of an implicit transition operator. These Krylov subspace methods gen-
erate optimal in a spectral sense polynomial approximations for solution of (1),
similar to CG for SLE.

Lanczos Spectral Decomposition of the matrix exponential

Let us perform m steps of the Lanczos method with A and . The approxi-
mate solution is then [1, 2, 9-11, 12]

u = exp(—tA)p = [|p||Q exp(—tH)es, (2)

where Q is the N X m matrix of the m first Lanczos vectors and H is the
mXxm tridiagonal symmetric matrix of the coefficients of the Lanczos recurrence,
e; =(1,0,..., O)T. To reach convergence, one can increase the dimension m just
by adding new columns to Q and extending H. The main arithmetical work in
(2), connected with obtaining the matrices Q@ and H, is approximately equal to
the one the of m steps of an explicit time-stepping method (m multiplications of
A by vectors and 5mN additional scalar multiplications). But in spite of strict
stability limitations on explicit methods, approximation (2) is unconditionally
stable [1,3,7] and requires O(+/aloga) steps to converge, where a = #||A}|/2 is
the Courant number [1,2,6].

Lanczos decomposition of time-stepping schemes
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Eq. (2) is similar to unpreconditioned CG. Consider an approach to precon-
ditioning the Lanczos decomposition.
Suppose exp(—74) & Pr, 7> 0, then

u(ri) ~ Pip. (3)

The transition operator P, can be obtained due to implicit time-stepping, for
stability reasons its symmetry and the condition ||P;|| < 1 are required. We
perform m steps of the Lanczos method with P, and ¢ , and approximate (3)
similarly to (2): )
u(ri) ||| QHres. ()

Approximation of u(73) with (4) requires m = O(y/7logz) [4]. This reduction
compared with i steps of direct computing (3) is due to good Lanczos approxi-
mations for a few well-propagating modes of (3).

To construct a computationally efficient transition operator for multidimen-
sional PDE, we use exponential splitting. Suppose A = E,_ A, where A; are
nonnegatlve symmetric operators, then we can take

k

k
P, = [] exp(—0.5741) 11 exp(—0.574x41-1). (5)
=1 =1

Scheme (3, 5) has error 0(1'2) [11], and after proper selection of 7 combination
(3-5) requires m = O(a/%y/Ioga).

Splitting the scalar diffusion equation and 8-D quasistationary
Maxwell’s system

The multidimensional diffusion equation is split into 1-D problems [Peace-
man and Rachford, 1956]:

A= _Z_:c: (d Z—;) (6)

where d(z) is heat conduction. Then exp(—0.574;) can be easily computed by
means of a suitable Pade approximation, say [1/1] or {1/2].

The spatial operator of quasistationary (eddy current) Maxwell’s equations
is defined on 3-D vector-functions of the electrical field E:

AEE-l-VX (-l—VxE), (M
o 7

where o and p are variable electrical conductivity end magnetic permeability.
Because of cross-coupling terms, (7) can not be presented as a sum of 1-D

L . e



differential operators, similarly to (6). However, we have found that if
1
AE=Lvyx (D'—v X E) ,
o u
where D' is a 3 x 3 matrix, D' = diag(§/), [ = 1,2,3, then
1 1
exp(—0.57A)E=1— ;_-V xR ;V xE}, (8)

where R' is a 3 x 3 block operator,
R' = diag {6 M [I — exp(—0.5724)]},

and

M=- - —_— 1<n<3.
! - poz; (0’3:3,’)’ =n=

So, 3-D vectorial problem (8) is reduced to computation of a function of the
scalar 2-D elliptic operator M;. The latter can be done due to second level
splitting: combination of 1-D spitting (3, 5, 6) and Lanczos decomposition (4).

Numerical example

For a problem for Maxwell’s equations with N = 10° and @ x 108 the value of
m and CPU time on IBM R6000 have been reached 7-103 and 5 h. respectively
using the explicit variant of Lanczos decomposition (2). Combination of the
splitting and Lanczos decomposition (4) has reduced m to 500 and the CPU
time to 0.5 h. We have finally gained speed up of a factor of 1000 compared
with conventional time-stepping methods.
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On the Relationship Between ODE Solvers and Iterative
Solvers for Linear Equations
A. Lorber, W. Joubert, and G. F. Carey
Computational Fluid Dynamics Laboratory
The University of Texas at Austin

Abstract

The connection between the solution of linear systems of equations by both iterative methods
and explicit time stepping techniques is investigated. Based on the similarities, a suite of Runge-
Kutta time integration schemes with extended stability domains are developed using Chebyshev
iteration polynomials. These Runge-Kutta schemes are applied to linear and non-linear systems
arising from the numerical solution of PDE’s containing either physical or artificial transient
terms. Specifically, the solutions of model linear convection and convection-diffusion equations
are presented, as well as the solution of a representative non-linear Navier-Stokes fluid flow
problem. Included are results of parallel computations.
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KRYLOV-SUBSPACE ACCELERATION OF TIME PERIODIC WAVEFORM RELAXATION*
ANDREW LUMSDAINE!

Abstract. In this paper we use Krylov-subspace techniques to accelerate the convergence of waveform relaxation applied to
solving systems of first order time periodic ordinary differential equations. We consider the problem in the frequency domain and
present frequency dependent waveform GMRES (FDWGMRES), a member of a new class of frequency dependent Krylov-subspace
techniques. FDWGMRES exhibits many desirable properties, including finite termination independent of the number of timesteps
and, for certain problems, a convergence rate which is bounded from above by the convergence rate of GMRES applied to the static
matrix problem corresponding to the linear time-invariant ODE,

1. Introduction. Consider the problem of numerically solving the linear time periodic boundary value
problem for a system of linear time-invariant first order ordinary differential equations:

s() + Az@t) = F(1)
(1.1 2(0) = =(T)

Here, A € R¥*¥, f(t) € RY is a given right-hand side, and z(t) € R¥ is the unknown vector to be
computed over the simulation interval ¢ € [0, T]. In [7, 8], the authors describe and analyze the waveform
relaxation (WR) method applied to solving (1.1) and demonstrate that multigrid techniques can be used
effectively to accelerate the convergence of WR.

In this paper we address the question of using Krylov-subspace techniques to accelerate the convergence
of WR applied to solving (1.1). We also consider the problem in the frequency domain and present a new
class of frequency dependent Krylov-subspace techniques.

2. Waveform Relaxation. The iterates produced by continuous time waveform relaxation based on
the splitting (M, V) (i.e., A = M — N) satisfy

2.1 &+ Mzt = Nob4f
z(0) = =(T)

for ¢ € [0,T]. Equivalently, (2.1) can be expressed in operator form as the iteration
FH! = Kok +
defined on the space H = I, ([0, T], R¥), with K : H — H given by

- T t
(Kz)(t) = e7tM (I— e_TM) 1/ e(“"_T)MN:z:(s)ds+/ e("—t)MNm(s)ds
0 0

and v € H given by

-1 pT £
P(t) = e M (I - e_TM) / els—TIM f(s)ds+ / els—tM f(s)ds
0 0
The solution « to (1.1) is thus a fixed point of the WR iteration and satisfies the integral operator equation
22) (I -K)x = 1.

The operator K is well defined if iwn ¢ (M), where w = 2% [8]. Integral operator equations can
be similarly defined for the initial-value problem on a finite interval [0,T] and on the half-infinite interval
[0, c0)[2]. We will respectively refer to the integral operators so defined as K7 and K.

* This work was supported in part by National Science Foundation grant CCR92-09815.
! Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556;
Andrew.Lumsdaine@nd.edu.
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3. Krylov-Subspace Acceleration. In [1], Krylov-subspace techniques are used to accelerate the
convergence of WR for solving initial-value problems. The same approach can be used for time periodic
problems. As with initial-value problems, the operator K for time periodic problems is not self-adjoint so
only methods suitable for non-self-adjoint operators can be applied. One such method is waveform GMRES
(WGMRES), an extension of the generalized minimum residual algorithm (GMRES) [5] to the space HL.

Algorithm 3.1 (Waveform GMRES).

1. Start: Set 0 = — (I — K)a0, v! = »%/||r]|
2. Iterate: For k = 1,2,. .., until satisfied do:
o hjp={((I—K)w*v7),j=1,2,...,k
o wrtl = (I — K)v* — ;?=1 hj pv?
o hpyrp = |lwFt
o vFtl = ’wk+l/hk+1,k
3. Form approximate solution:
o zF = 20+ VFyF, where y* minimizes ||Be; — H y*|

As shown in [1], WGMRES applied to WR for the linear initial-value problem converges and the same
results can be applied to the time periodic problem. Quantitative convergence estimates for the finite interval
initial-value problem are very difficult to obtain. Although the spectrum of Kr is well defined (the singleton
{0}), the operator is very non-normal and the behavior of an iterative method based on the Krylov subspace
generated by Kg will not be determined solely by the spectrum. (Pseudospectral analysis might be helpful
in this regard, however [3, 6].)

On the other hand, the operator X may actually be normal for cases of interest, and typical convergence
results for GMRES applied to normal operators will hold for WGMRES applied to the time periodic problem.
Such cases of interest include Jacobi WR with constant diagonal matrix. As shown in [8], the spectrum of
K is given by

o(K) = U o((EnwI + M)"1N) U{O}
neZ
This is in comparison to the spectrum of K, which consists of the curve defined by

o((G¢I+ M)™IN)

and the enclosed points [2, 3]. Note that o(M~N) C o(K) C 0(K) so we might expect that the
convergence rate of WGMRES for the time periodic problem to be better than WGMRES applied to the
initial-value problem on the half-infinite interval (or on very long finite intervals) but to be worse than
GMRES applied to the matrix problem involving M 1N,

. 4. Frequency Dependent Waveform Methods. The waveform GMRES algorithm is based on mini-
mization of the residual norm ||7||. Instead of seeking to solve (2.2) by minimizing ||r||, one might instead
seek to minimize another quantity. In particular, one approach is to independently minimize the contribution
to the residual norm made by each of the member functions of some basis set of H. This approach gives rise
to the so-called frequency dependent waveform methods, the first example of which, frequency dependent
waveform SOR (FDWSOR), is described in [4].

For the periodic boundary value problem, a natural choice of basis is the set of complex exponentials
e™t, For linear time-invariant problems, one can express (2.2) in terms of its Fourier coefficients

@4.1) (I - Rin]) ] = Pln).
where

K[n] = (¢nwI + M)~'N.




Here, the nth Fourier coefficient of a periodic integrable function « is given by
1 /T ;
#ln] = (Fo)ln] = / @(t)e~mtds
0

Note that (4.1) is a complex matrix problem at each frequency nw. One could therefore propose frequency
dependent WGMRES (FDWGMRES) to solve (4.1).

Algorithm 4.1 (Frequency Dependent WGMRES).
1. Start:
e Calculate Fourier coefficients 3 = Fp, ° = Fa0
o Set#® =1 — (I -K)2° f =, ' = #%/3
2. Iteratg: Fork =1, 2,..., until satisfied do:
* hig =(I~K)o*,97),j=1,2,....k
. fz,k+1 = (I - K)o* — Tk hypt?
o hrypp = Jla*H|
° ,bk-f-l — ﬁ’k+1/i7’k+l,k
3. Form approximate solution:

k20, vrFak Y TR PP o1k
e 2" =&+ V §", where, for each n, §"[n] minimizes ||3[n]e; — H [n]g [n]]]

e Calculate z = F~13

Note that Algorithm 4.1 has many characteristics of a waveform algorithm — in this case, instead
of waveform functions of z, the algorithm is operating on sequence space functions of n. Note also that
Algorithm 4.1 is not the Fourier transform version of WGMRES. Whereas the projection of (I — K) onto
the Krylov subspace generated by WGMRES is a (k- 1) x k real matrix, the projection of (I — K) onto the
Krylov subspace generated by Algorithm 4.1 is a (k + 1) X k matrix function of the complex quantity inw.

Since Algorithm 4.1 is essentially the parallel application of GMRES to independent matrix problems,
the convergence of the algorithm as a whole will be determined by the slowest converging block. Thus, the
discrete time version of the algorithm will exhibit termination in N steps for an N x N matrix problem,
regardless of the number of timesteps. Moreover, for many problems of interest, the worst case convergence
will be dictated by the matrix block corresponding to n = 0. That is, the convergence will be bounded from
above by the worst-case convergence of GMRES applied to the matrix problem with M~ IN. This is in
contrast to WGMRES which does not exhibit finite termination (independent of the number of timesteps)
and which has convergence that is in some sense bounded from below by the convergence of GMRES
applied to M~! N,

5. Experimental Results. In this section, we present the results from numerical experiments using
discrete-time versions of WR, WGMRES, and FDWGMRES (discretized in this case with first order BDF
on 64 timesteps). Space does not permit description of the discrete time versions of WGMRES and
FDWGMRES, but their development is straightfoward. In the experiments, we solve

ou  %u
5 o2 7
u(0,z) = u(T,z)

(5.1)

with T’ = 2048, using a spatial discretization of N = 32 points, and using a random function for f. For
all methods, we take M to be the diagonal of A. For FDWGMRES, the necessary Fourier coefficients are
calculated using the fast Fourier transform (FFT) and inverse FFT. Note that since A is linear time-invariant,
it is only necessary to calculate the Fourier coefficients associated with the integration formula in order to
compute K.
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FIG. 5.1. Convergence comparison between WR (dotted), WGMRES (dashed), and FDWGMRES (solid) applied to solving (5.1)

For this example, the matrix A is symmetric, positive-definite, and has constant diagonal (so that
M = o). Ttis easy to show that for such a choice of M,

o(Kfn]) = (- )U(K[ D= (

T a)oM” 'N).

For any n # 0, the spectrum of K[n]is the spectrum of M IV with a rotation and a scaling of less than
unity magnitude. Since for all n, the eigenvalues of K[n] lie in a straight line in the complex plane, the
upper bound on the convergence of FDWGMRES is determined by the spectrum of K[n] when n = 0, ie.,
by the spectrum of M~ N.

Figure 5.1 shows a comparison of the convergence of the residual norm for WR, WGMRES, and
FDWGMRES applied to solving (5.1). Note that, as anticipated, WGMRES and FDWGMRES converge
much more quickly than WR (with FDWGMRES being better than WGMRES) and that FDWGMRES
terminates in N steps.

Figure 5.2 shows a comparison of the convergence of the residual norm for GMRES applied to the
static matrix problem corresponding to (5.1), WGMRES applied to the initial-value problem corresponding
to (5.1) (we take zero initial condition) and WGMRES and FDWGMRES applied to solving (5.1). As
expected, the convergence of GMRES for the static problem lies between FDWGMRES and WGMRES
and that of WGMRES for the time periodic problem lies slightly below that for the initial-value problem.

6. Conclusion. FDWGMRES exhibits many desirable properties, including finite termination inde-
pendent of the number of timesteps and, for certain problems, a convergence rate which is bounded from
above by the convergence rate of GMRES applied to the static matrix problem corresponding to the lin-
ear time-invariant ODE. The results shown here are preliminary, but very encouraging, and current work
includes the study of the parallel implementation of FDWGMRES as well as its extension to initial-value
problems.

In [4], frequency dependent techniques were developed for accelerating waveform SOR applied to
finite-interval initial-value problems. The optimal over-relaxation parameter for SOR in the infinite interval
case is a function of the spectral radius (as opposed to the entire spectrum) of the waveform iteration operator.
Since this spectral radius is a function only of £ (for £ € R), one can use Fourier transform techniques to
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FIG. 5.2. Convergence comparison between GMRES (dotted) applied to the static matrix problem corresponding to (5.1),
WGMRES (dashed) applied to the initial-value problem corresponding to (5.1), and WGMRES (dash-dotted) and FDWGMRES
(solid) applied to solving (5.1)

determine optimal values of the over-relaxation parameter for each €. The resulting over-relaxation kernel
can be appropriately truncated and applied to finite-interval problems. Applying frequency dependent
Krylov-subspace techniques to finite-interval initial-value problems is not as straightforward, primarily
because it does not seem to be sufficient in the initial-value problem case to restrict attention only to
the boundary of the spectrum of the infinite interval operator (as can be done with FDWSOR). To do so
implies periodicity and results in precisely the FDWGMRES algorithm presented here. We are presently
investigating combining frequency-dependent WSOR with WGMRES, however, to produce an equivalent
to FDWGMRES for initial-value problems.

Acknowledgments. The author would like to acknowledge many helpful discussions with Ken Jack-
son, Mark Reichelt, and Jacob White.
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CONVERGENCE ANALYSIS OF COMBINATIONS OF DIFFERENT METHODS

Yimin Kang
Department of Mathematics and Computer Science
Clarkson University
Potsdam, NY

SUMMARY

This paper provides a convergence analysis for combinations of different numerical methods for
solving systems of differential equations. We shall prove that combinations of two convergent linear
multistep methods or Runge-Kutta methods produce a new convergent method of which the order
is equal to the smaller order of the two original methods.

1. INTRODUCTION

The motivation of this work is to study the convergence and stability of semi-implicit time
differencing arising from many concrete applications (e.g., [ 4-5 ], etc.). For example, consider a
time evolution problem in the form

Y'(t) = alt, y(t)) + b(t, y(t))-

Suppose that the solution of this equation can be decomposed into two time scales: a fast motion
and a slow motion, the term a(¢, y(t)) is most responsible to the fast motion and the term b(t, y(t))
makes little contribution to the fast motion. When solving such a system by numerical methods,
explicit methods will require extremely small time steps for stability reasons. Implicit methods can
remove this restrictive requirement, but need to invert the whole system. Semi-implicit methods,
on the other hand, circumvent restrictive stability conditions by treating implicitly the term
a(t,y(t)) and avoid inverting the whole system by treating explicitly the remaining term b(z, y(t)).

The semi-implicit time differencing was first proposed by Robert in [6]. Since then, people have
applied the method to different applications. The technique, however, has been only analyzed
for specific problems and particular methods. In this paper, we are going to proof a stronger
convergence analysis that includes semi-implicit methods as a special case. Namely, we will prove
that combination of any two convergent methods of the same type (linear multistep methods or
Runge-Kutta methods) yields a new convergent method.

Section 2 proves the convergence for the case of linear multistep methods, section 3 analyzes
Runge-Kutta methods. We will follow the notations in [ 2 ].




2. LINEAR MULTISTEP METHODS

Consider the equation
Y (z) = a(z,y(z)) + b(z, y(z))- (1)

Throughout the paper, y(z) will always refers to the solution of (1). Whenever necessary, we will
use function f = a + b. To solve the equation (1) numerically, the term a(z, y(z)) and the term
b(z,y(z)) are treated by two different standard linear multistep methods defined by

Method (A):
Ypi+1 = Z Ci Yn—j +h Z a; f(:l:.,,,_j, yn.—j)a (2)
=0 j=-1
Method (B):
Yn+1 = Z Cj Yn—j +h Z bJ f(m'n.—j) yﬂ.—j)) (3)
j=0 j=-1

The combination of (A) and (58) leads to a new method

Method (AB):

m . m
Yut+1 = 2 Cj Yn—j +h [/Z ay a'(mn—ja yn.—j) + Z bJ b(:L'.,,._j, yn.—j)} . (4)

3=0 j=—1 j=-1

At first, we want to show that the equation (1) can be rewritten in the autonomous form. Let

z(m)=[ya)]’ &([if])=[a<i,v)]a 5([2])=[b(u0,v)]’

then the equation (1) can be written as

2(z) = d(z(z)) + b(z(x))- (5)
If we apply the linear multistep method (AB) to equation (5), we end up with

k{3 S

Totfl; = Z CjZn+h > aj (62)
i=0 i=1

n. n .
Yutp: = Z Cj Yn—j +h LZ ay a(xn.-—j) yn.—j) + Z bJ b(m'll.—j: y-n.—j) . (Gb)
j=0 j=-1 ' j=-1

Equation (6a) is exactly the same as (4). It turns out that equation (6b) is equivalent to the
requirement that method (A) has order 1 (or it is true for y(z) = ), which is under our
assumptions anyway. Therefore, applying the linear multistep method (AB) to the autonomous
problem (5) is equivalent to applying the method to the original problem (1). Hereafter in this
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section, we will use the autonomous equation (5). For simplicity, we still use notations y, a and b,
so the equation becomes

Y(z) = a(y(z)) + bly(z)), (7)

and the terms a(z,—j, Yu—;), (Tn—j, Yu—j) a0d f(Tn—j, Yn-;) in (2)—(4) are replaced by a(y—;),
b(yu—j) and f (?,Iw.—j), respectively.

THEOREM 2A  For the linear multistep methods (A), (B) and (AB) defined in (2)-(4), if
(A) is convergent and of order p > 1, (B) is also convergent and of order ¢ > 1, then (AB) is
convergent and of order min(p, q).

Proof.  (1). Consistency and order of convergence

In [ 2], the Taylor expansion of the solution y(z) is given by

Ek: B(t)(= — o) @ F(£,8)(y(z0)) 10 ((m _ :co)k'*'l)

y((l:) = y($0) +1~(f;)=] [T(t) )

where t is a directed tree in graph theory, 7(¢) is the number of vertex in ¢, §(¢) denotes the number
of ways of labelling a tree t with r(¢) — 1 distinct labels on condition that every vertex except the
root is labelled, F(f,t) is the elementary differential which is defined for ¢ € T (T denotes the set

of directed trees) by
F(f,7/(y) = f(y)

where 7 is the tree with a single vertex and by

F(£,9() = FP@)(F(£ 1) @), F(£,12) @), - - . F(£:1:)(®))s

where t = [t1,ta,...,%s), forally € X. F(f,t) is one of the terms in y"® () = f—f%:—llf(y(m))
(See [ 2] for details).

We now introduce a new concept fundamental differential. For a general function g : X — X, the
fundamental differential D(g,t) : X — X, corresponding to¢ € T is defined by

D(g,7)(y) = 9(v)

where 7 is the tree with a single vertex and by

D(g,8)() = 8 @) (F (£, t1) (@), F(F, 02)®)s - - -» F(Fr 1) (%)),

wheret = [t;,t2,...,t),forally € X. D(f,t) is one of the terms in %g(y(m)) Clearly,
elementary differential is a special kind of fundamental differential when ¢ = f. From the
definition, one can prove

F(f,t) = D(f,t) = D(a+b,%) = D(a,t) +D(b,t), VteT. (8)




Follow the arguments in [ 2 ], one can prove that the Taylor expansion for the function g(y(z)),
where g : X — X is a general function, is given by

k ¢ — )1 :z:
g(y(z)) = (fz); 1 B(#)( 0[3'(t) _?](!g, Do) | o (@ — o))

Without losing generality, assume p < gq. Therefore, the method (A) and the method (B) are both
of order p. According to order conditions for standard linear multistep methods, one has
k{3 Tre T

ES (=i le = 1= (=)' = EY (=i L k=0,1,2,...,p.
j==1 j=0 j==1

For the method (AB), the local truncation error at point z,41 is

hT1I.+1 = y(mu-i-l) - Li Cj y(m'n.—:i) +h 1Zn: aj a(y(mn—j)) +h 12": b.’l b(y(fl:,,_])):‘

=0 j=-1 j=-1

ey & BOPEAGED) o ope
e B poay O

-5 (e 3 HOEEA) (=317 +00r)
j=0 #(£)=1 [T(t) 1]

w (21 B )HE), et )
—h a; —Jh 0 W
3 ((?: Dt Dzo) —jay =" + o)

& (2 BODeYEE) )
h Z b.'l (T%;l [’I‘(t) _ 1]' ( ]h) + O(h’)

j=—1

j=—1

= i Kk (1 - {i(_j)k —k {/: aj(_j)") > 5(t)F(f}:')(y(:vw.)) + oY)
i=0 !

k=0 j=—1 +(#)=k
= O(hPth).
Therefore, 1,41 = O(h?).
(2). Stability
The stability of linear multistep methods are determined by root conditions of the characteristic

polynomial
T

p(T) — ,rm.+l - Z cjr""_j.
=0

Either the method (A) or the method (1) being stable leads to the stability of the linear multistep
method (AB). That concludes our proof of the theorem. o
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3. RUNGE-KUTTA METHODS

Again, the aim is to solve the autonomous equation (7) by numerical methods. (Non-
autonomous equations can be rewritten into autonomous form, provided one of the standard
Runge-Kutta methods (A) or (B) defined below is of order at least one.) The term a(y(z)) and the
term (b(y(z)) will be treated by two different standard s-stage Runge-Kutta methods defined by

Method (A):
Yu+B; = Yn +h Z a;j f(y'rl.-l-ﬂj), s = 1, 2,...,8+ 1, (9)
j=l1
Method (B):
]
Yon+p; = Yn +h Z bt] f(yn.-}-ﬁj)) s=1, 2a s+ 1. (10)
i=1

The combination of (A4) and (B) is given by
Method (AB):

Yo48; = Yn

5 3
+h I:'Z aij a’(yn-i-ﬁj) + Z bz] b(y1l.+ﬂj) ys=1,2,...,5+1,
=1 j=1

THEOREM 3A  For the Runge-Kutta methods (A), (B) and (AB) defined in (9)-(11), if
(A) is convergent and of order p > 1, (BB) is also convergent and of order ¢ > 1, then (AB) is
convergent and of order min(p, g).

Before we prove the theorem, let us develop some preliminary lemmas. At a fixed point z,,,
define functions

Yi(z) = y(oa) + (2 — 22) L; i a(¥;(2)) + ; by (¥ ()) | 1 K i< s+ 1.

LEMMA 3B  The Runge-Kutta method (11) has order p if and only if Ys(_:f'i) (z,) = ¥ (z,),
for 1 < m < p, Vz,.




Proof. This is because the local truncation error

T+l = -:;—L {y(mn-i-l) - y(:l:,,,) —h [’XS:I G414 a(YJ(!B)) + }il bS+1J’ b(YJ(:I))):\ }
= j=

1
= E (y(a:,H.]) — Y1 ("’n+l))

1 (& ™ (z,) 1 P (le)( )
S n) pm ) _ s m hp+l
- (ngu — ™+ O(RT) mi_jo = ™ + O(RP™)
P () ("")

— Z y\" (zn ) — — Yo ($11)hm 1y O(hp) P

m=0

According to lemma (3B), in order to prove that (11) has order p, it suffices to show that for
1 < m < p, Vz,. The formula of 3™ (z) is derived in [ 2 ]:

yi(z) = 3 a®F (1)) (12)

r(t)=m

where af(t) is the number of ways of labelling ¢ with a given totally ordered set V with V' = 7(t).
Next, we are going to develop formula for Y, S(_:_"l) (z). Define

= [%i(@), Yale),- -, Yors @I

so that )
§ = §(za) + (= — za)(@(H(2)) +b(5(2)), (13)
where #(za) = [¥(%a), Y(@a);-- - ¥(@a)]T and @+ X s+l _y xs+1 o X5+ 5 X**1 are defined by
821, 22, - zs1]T) = [ arjalz), 3 02j(%)s -+ 20 a1 j0{z4)) (14)
j j j
b(z1, 22, - s Ze1]T) = [0 bigb(27), 22 b2ib(5), - - - 2> bat16(23))- (15)
i j i

Define the restriction mapping R; : X**! — X by
, Ty
Ri([z1,22,- -2 2s41]" ) = 2,
then a, b are related to a, b by

R(E(E) = Lagal(z), 1Si<s+l,

Ri(b(z)) = Zbij b(Ri(2)), 1 <i<s+1,

- e R s e et < e 2 _— o



LEMMA 3C  If function a is m times differentiable at each of Rz, Rez,..., Ryp12 € X5+1,
then & defined by (14) is m times differentiable at z and for all uj, ug,...,u, € X**! and for
1=1,2,...,5s+1,

R; ( "'(’U],‘U,g, u.,,,)) = Z a.;ja("”')(Rjz)(Rjul, Rj’llg, ey Rju.,,,). (16)
i=1

Proof: Use induction on m. When m = 0, (16) reduces to (14). Assume the result holds for orders
of derivatives less than m > 0. For fixed uj, ug,...,un—1 € X and u # 0 we compute

1
(Kl

” R a" l(z + u)(ulauza u‘rn—l) - R a"~ 1( )(ulzu27 .. ’u‘ln—l)

— Z a,'ja("")(Rjz)(Rjul, Rj’dg, ceey Rju,,__leu) ”
J=1

” u " ” Z a’/v.l [a(m 1) (Z + u))(Rjul’ R.’iu2’ M Rj’ll1,,_1)

a(m l)(R ( )(R ul’R U9, . Rj’un.—-l)
_ a("’)(R ( )(R ul,R ug, . Rju'n.—leu) ”

which tends to zero as || u ||— 0 because function a is m times differentiable. Thus @ is m times
differentiable at z and the derivative is given by (16). [ )

LEMMA 3D  If D(a,t) exists forsomet € T, and if z € X**t!issuchthat R;z = y; for
i=1,2,...,5+1, then D(a,t) exists and

RiD(@,1)(2) = ®:(A, 1) D(a,B)(v0), i=1,2,...,5+ 1. (17)

where ®; is the so-called elementary weight corresponding to the Runge-Kutta method (A). It is
defined by

(A, 1) = Z aij,

CI)-;(.A, [tltz ... t,,, Z a;® .A t1)® (.A t2)... ®; (A, tst1)-




Proof: By induction. At first, when At = 7, (17) reduces to (14). Fort = [t1t2 . . . tm), assume that
(17) holds with for each of t1,19, - . ., tm, and we have

R:D(&,1)(z) = Ria™(2)(F(F,t1)(2), F(f,22)(2), - -- VF(f,11)(2))
= Z a":.'ia'("L)(yO)(R:iF(?atl)(z)’ RJ'F(}’Q)(Z)’ R R:iF(}atl)(z))
j=1

= i az3a™ (40) (@ (A, t1) F (£, 1) (0), - - - » B3 (En) F (f 1) (30))

j=1
=S 0 (A, 1) @5 (A, 1) - B (A, ) X
j=1
a(m-) (yO)(F(fa tl)(y())) F(fa t2)(y0)1 AR F(f'; tm.) (y()))
= &;(A,t)D(a, t)(zo)- &

Clearly, lemma (3C) and (3D) also hold for function b together with Runge-Kutta method (B).

LEMMA 3E  If functions a and b are n — 1 times differentiable at y(zn) then

Y (z) = 3 rB)BE)@sr1(A)D(e,t)(y(@a)) + 2s1(B,1)D(a, 1) (y(zn))

. r(t)=m

Proof: Using (13) and the derivative formula for the backward Euler method derived in [ 2], one

has
§F™(z,) = 3 r@BmE)F(F,1)(y(za),

r(t)=m

so that, by lemma (3D),

Ys(-:-nl) =R, +1@(1"') (:I:.,,,) )
= Z T(t)ﬂ""-(t) Rh"‘i'l F(f*) t) (y(ww))

r(t)=m
S r(O)B(1)(Rur1 D@ 1) (y(24)) + +Rurr D(b,8) (y(@n))

r(t)=m

= T r(®)B()(@sr1(A 1) D(a,t)(@a) + +Ps11(B, 1) D (b, ) (20))- o

r(t)=m

i

Proof of Theorem 8A.  (1). Consistency and order of convergence

Without losing generality, assume p < g. Therefore, the method (A) and the method (B) are both
of order p. According to order conditions for standard Runge-Kutta methods ([ 2 ]), one has

Buii(A 1) = By (Brt) = ;%%)(t—) (18)

o ep————

b



for 7(t) < min(p, ¢). Substitute (18) into lemma (3E)

Y (za) = 3 a)(D(a,t)(y(zn)) + D(e, )y (z)))

r(t)=m

= > c@®F(£1)(y(z.)

7(t)=m
= y(m.) (.’B.,,‘)

for all m < min(p, q). Therefore, the Runge-Kutta method (.AB) has order min(p, q), and it is
consistent because min(p, g) > 1.

(2). Stability

The stability of the Runge-Kutta method (AB) comes from the fact that the method is of at least
order 1. According to lemma (3B), Y/, ,(zn) = ¥/(zs) = f(y(z.)). Therefore, a Lipschitz
condition holds at z,, as long as function f(y(z)) is bounded in the solution region. That leads to
the stability of the method.

4. CONCLUDING REMARKS

In this paper, we have proved that applying two different convergent schemes to different terms
of the right hand side of a differential equation yields a new convergent numerical method and the
order of the new method is the smaller order of the original two methods. Obviously, this idea
can be generalized to apply more than two different numerical schemes to different terms in one
equation, the combination is of course a convergent method.

As the further work, we will study how semi-implicit methods improve the absolute stability.
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Implimentations of the Optimal Multigrid Algorithm for
the Cell-centered Finite Difference on Equilateral Triangular Grids

Richard E. Ewing, Ove Savareid and Jian Shen

Institute for Scientific Computation, Texas A & M University
College Station, TX 77843-3404
December, 1993

2t
Abstract

A multigrid algorithm for the cell-centered finite difference on equilateral triangular grids
for solving second-order elliptic problems is proposed. This finite difference is a four-point
star stencil in a two-dimensional domain and a five-point star stencil in a three dimensional
domain. According to our analysis, the advantages of this finite difference are that it is an
O(h?)-order accurate numerical scheme for both the solution and derivatives on equilateral
triangular grids, the structure of the scheme is perhaps the simplest, and its corresponding
multigrid algorithm is easily constructed with an optimal convergence rate.

i
We are interested in relaxation of the equilateral triangular grid condition to certain
general triangular grids and the application of this multigrid algorithm as a numerically rea-
sonable preconditioner for the lowest-order Raviart-Thomas mixed triangular finite element
method. Numerical test results are presented to demonstrate our analytical results and to
investigate the applications of this multigrid algorithm on general triangular grids.

For CoLorADO CONFERENCE ON ITERATIVE METHODS, BRECKENRIDGE, COLORADO,
APRIL 5-9,1994







CONSTRUCTIVE INTERFERENCE II: SEMI-CHAOTIC MULTIGRID
-METHODS

CRAIG C. DOUGLAS*

Abstract. Parallel computer vendors have mostly decided to move towards multi-user, multi-
tasking per node machines. A number of these machines already exist today. Self load balancing on
these machines is not an option to the users except when the user can convince someone to boot the
entire machine in single user mode, which may have to be done node by node.

Chaotic relaxation schemes were considered for situations like this as far back as the middle 1960’.
However, very little convergence theory exists. Further, what exists indicates that this is not really a
good method.

Besides chaotic relaxation, chaotic conjugate direction and minimum residual methods are explored
as smoothers for symmetric and nonsymmetric problems. While having each processor potentially going
off in a different direction from the rest is not what one would strive for in a unigrid situation, the
change of grid procedures in multigrid provide a natural way of aiming all of the processors in the right
direction.

We present some new results for multigrid methods in which synchronization of the calculations on
one or more levels is not assumed. However, we assume that we know how far out of synch neighboring
subdomains are with respect to each other. We can show that the combination of a limited chaotic
smoother and coarse level corrections produces a better algorithm than would be expected.

* Mathematical Sciences Department, IBM Research Division, Thomas J. Watson Research Center,
P. O. Box 218, Yorktown Heights, NY 10598 and Department of Computer Science, Yale University,
P. O. Box 208285 New Haven, CT 06520-8285 E-mail: na.cdouglas@na-net.ornl.gov
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Multigrid Waveform Relaxation on Spatial
Finite Element Meshes.

Jan Janssen (janj@cs.kuleuven.ac.be)
Dept. of Computing Science, Katholieke Universiteit Leuven
Celestijnenlaan 200A, B-3001 Leuven, Belgium

and
Stefan Vandewalle (stefan@ama.caltech.edu)

Applied Mathematics 217-50, Caltech
Pasadena, CA 91125, USA

We shall discuss the numerical solution of a parabolic partial differential
equation

M at) = Lule,) +£(z,1), s€Q, t>0, )

supplied with a boundary condition and given initial values.
The spatial finite element discretization of (1) on a discrete grid Q, leads
to an initial value problem of the form ’

Bi+Au=f, u(0)=wu, t>0, (2)

with B a non-singular matrix.

The waveform relaxation method is a method for solving ordinary differ-
ential equations. It differs from most standard iterative techniques in that it
is a continuous-time method, iterating with functions in time, and thereby
well-suited for parallel computation. For systems of the form (2), the method
can be defined by the splittings B = Mg — N, A = M4 — Ny, and the iter-
ation scheme

Mpi® + Mau = Npa®™D + Nyut9 4 f | (3)

with u(")(O) = ug.
A discrete-time variant can be obtained by discretizing the former scheme

in time using a general linear multistep method. Its defining expression for
solving the ODE g = f(¢,y), y(0) = yo is

1 k k
; Zajyn+j = Eﬂjfn-}-j ’

J=0 3=0




with 7 a constant time-step and y; an approximation of the solution y at
time-level ¢ = i7. We obtain the discrete-time equivalent of (3),

1 ) L v
LS oMl + 3 Ml =
=0 j=0

1& Y k - k
T Z ajNBua(wjl) + ZﬁjNAu1(1,+j1) + Z Bifati » n20.

j=0 §=0 j=0
(4)
Both iteration schemes (3) and (4) can be rewritten as explicit relations,
u® = Ku® D + o and u® = Kul D +o,,

where the subscript 7’ notation denotes sequences of values associated with
successive time-levels, i.e., u, = {u;}%, with N; the number of time-steps.
In terms of the error e® = u{® — u and its discrete-time variant e, we
obtain

e®) = Ke1) and ) =K, eV . (5)

The operators K and X, are called the continuous-time and the discrete-
time waveform relazation operators respectively. The convergence behaviour
of both operators is studied by (discrete) Laplace-transformation of the re-
lations (5). In particular, we can proof that

PUE) = sup p(K(i6) and p(i) = eup p (x(:30)) .

with ¢ and b the characteristic polynomials of the linear multistep formula,
and K(2) = (zMg + M) (2Np + Nj4) the waveform relaxation matrix.

The talk will focus on numerical results for a model problem, i.e., the one-
dimensional heat equation. We compare the obtained results with the derived
theoretical properties for different linear multistep methods and different
finite element basis functions. In general, for Gauss-Seidel splittings of both
matrices B and A, we observe that p(K) =1 — O(h?), i.e., convergence gets
slower as the problem size gets larger.

The convergence of the standard waveform relaxation method can be
accelerated by the multigrid idea, which is known to be very efficient for
solving elliptic PDEs. We will extend this idea to time-dependent problems

e



by choosing all the operations in the multigrid algorithm as operations on
functions in time.

We shall first describe a two-grid cycle for problem (2), obtained by finite
element discretization of (1) on a discrete grid 5. We need two nested grids
g C Qy, arestriction operator r to transform fine-grid functions into coarse-
grid functions, and a prolongation operator p to do the opposite. A two-grid
cycle for the initial value problem (2) calculates a new fine-grid iterate ugk)
out of the former iterate ugk_l) in three stages: pre-smoothing, coarse-grid
correction and post-smoothing.

In the pre-smoothing part, one applies vy standard waveform relaxation
steps on the iterate ugk_l) to obtain a new approximate ;. These waveform
relaxation steps turn out to be very efficient to reduce the high-frequency er-
ror components. However, they fail in reducing the low-frequency error com-
ponents, which is the reason why the standard waveform relaxation method
is slowly converging.

In a two-grid cycle, we reduce the low-frequency error components by the
so-called coarse-grid correction. The correction e, = %, — uy, satisfies the
defect equation Bhéj + Apep = d,. We solve the coarse-grid equivalent of
this defect equation, Byéy + Ager = rdy, interpolate the solution eg to the
fine grid and correct: @y = @y, — pey.

Finally, the post-smoothing part applies v, more standard waveform re-
laxation steps on @ to obtain the new fine-grid iterate ugk).

By introducing the error e(¥) = u*) — y and its discrete-time variant e{*),
we have the following relations between two successive two-grid errors,

e® = Mel1) and e®) = M,elk1)

The operators M and M, are called the continuous-time and the discrete-
time two-grid waveform relazation operators respectively.

Convergence results can be proved, in complete analogy with the standard
waveform relaxation case, by (discrete) Laplace-transformation. We obtain

p(M) = sup p(M(i€)) and p(My) = supp (M (22(6))) .
¢elR =1 T
The matrix M(z) is called the two-grid waveform relaxation matrix, and is
given by
M(z) = K2)(2)(I - p(2Bg + Ag)~'r(2Bs + An)) K®)(2)
K(2) = (2Mp, + Ma,)"*(2Np, + Na,)




Again, these theoretical results are illustrated by means of our model
problem. For a finite element discretization of the ome-dimensional heat
equation with linear basis functions, we can proof that p(M) < ¢, where c is
a h-independent constant. This means that the convergence rate of the two-
grid waveform relaxation method is independent of the problem size. This
result is confirmed by numerical experiments, with several combinations of
different basis functions and linear multistep formulae.




Time-parallel iterative methods for parabolic PDES:
multigrid waveform relaxation and time-parallel multigrid

Stefan Vandewalle
Caltech, Applied Mathematics 217-50, Pasadena, CA 91125

Extended Abstract
1994 Colorado Conference on Iterative Methods

1 Introduction.

Time-stepping methods for parabolic partial differential equations are essentially
sequential. This prohibits the use of massively parallel computers unless the problem
on each time-level is very large. This observation has led to the development of
algorithms that operate on more than one time-level simultaneously; that is to say,
on grids extending in space and in time. The so-called parabolic multigrid methods
solve the time-dependent parabolic PDE as if it were a stationary PDE discretized
on a space-time grid.

In [6, 7], we have investigated the use of multigrid waveform relazation, an algo-
rithm developed by Lubich and Ostermann [1]. The algorithm is based on a multigrid
acceleration of waveform relaxation, a highly concurrent technique for solving large
systems of ordinary differential equations. Another method of this class is the time-
parallel multigrid method. This method was developed by Hackbusch in [2], and was
recently subject of further study by Horton [3, 4]. It extends the elliptic multigrid
idea to the set of equations that is derived by discretizing a parabolic problem in
space and in time.

2 Convergence analysis

Although both methods are very closely related, and although both have been used
successfully for solving a variety of problems, their convergence properties are very
different. In this talk I shall first review previously published convergence results.
I will then present some new insights obtained recently by a two-level exponential




Fourier mode analysis. The latter results assist in understanding some observations
reported earlier in the literature.

I shall consider in particular the robustness of both methods with respect to the
mesh aspect ratio At/(Az)?, where At is the time-increment and Az is the spatial
mesh width. It will be shown that the waveform method is very robust, and attains
typical multigrid convergence rates independent of the spatial mesh size, the time-
increment or the number of time-steps computed simultaneously. The time-parallel
multigrid method, however, is much less robust. Its use is restricted to grids where
the time-increment is large compared to the fine grid spatial mesh size.

I will show that the convergence of the time-parallel method can be improved
considerably by choosing a different coarsening strategy whenever At /(Az)? is below
a critical value. A two-level Fourier mode analysis and results of some numerical
computations with this method are presented in [5].

3 Parallel implementation and complexity

These methods can be implemented on a message passing multicomputer by using a
straightforward grid partitioning. Each process is assigned to a block of unknowns
in the combined space-time grid. Extensive timing results illustrate a significant
performance gain obtainable with the parabolic multigrid methods when compared
to concurrent implementations of a variety of classic time-stepping solvers. In par-
ticular, speed-ups over 300 have been obtained on the Intel Delta. For a similar
problem, solved on the same space-time grid to a similar accuracy, the speed-up of
a standard time-stepping method was limited to about 20.

These methods are also very well suited for implementation on massively par-
allel systems of SIMD type. Assigning one processing element per grid point in
the combined space-time domain leads to algorithms with extremely low parallel
complexities. The methods have been implemented on a 32K Connection Machine.
Timing results illustrate and confirm the theoretically derived complexity estimates.
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Modeling Groundwater Flow on
Massively Parallel Computers

S. F. Ashby, R. D. Falgout, T. W. Fogwell, A. F. B. Tompson

Abstract

We will explore the numerical simulation of groundwater flow in three-
dimensional heterogeneous porous media. An interdisciplinary team of math-
ematicians, computer scientists, hydrologists, and environmental engineers
is developing a sophisticated simulation code for use on workstation clus-
ters and MPPs. To date, we have concentrated on modeling flow in the
saturated zone (single phase), which requires the solution of a large linear
system. We will discuss our implementation of preconditioned conjugate
gradient solvers. The preconditioners under consideration include simple
diagonal scaling, s-step Jacobi, adaptive Chebyshev polynomial precondi-
tioning, and multigrid. We will present some preliminary numerical results,
including simulations of groundwater flow at the LLNL site. We also will
demonstrate the code’s scalability.

Motivation

Groundwater contamination is a major environmental problem at nu-
merous governmental and industrial sites. The Department of Energy, for
instance, is currently cleaning up several of its contaminated sites, including
Lawrence Livermore National Laboratory (LLNL). Mathematical modeling
plays an important role in the design and management of remediation pro-
cedures. For example, simulations are used to predict flow behavior and to
help engineers determine the best location for pumping wells (in a pump-
and-treat scheme).

To enable realistic modeling of large sites, one must take into account
the three-dimensional and heterogeneous nature of the subsurface materi-
als. The physical scale of the site to be modeled (several square kilometers),
and the need to resolve heterogeneities (to within meters), leads to com-
putational grids with upwards of one billion mesh points. To solve such
problems in a reasonable amount of time, one must employ massively paz-
allel computing power and advanced numerical methods.







Two grid iteration with a conjugate
gradient fine grid smoother applied to a
groundwater flow model

M.J. Hagger*, K.A. Cliffefand A. Spence?
January 20, 1994

Abstract

This talk is concerned with the efficient solution of Ax = b, where
A is a large, sparse, symmetric positive definite matrix arising from a
standard finite element discretisation of the groundwater flow problem

V.(kVp) =0

Here k is the coefficient of rock permeability in applications is highly
discontinuous. The discretisation is carried out using the Harwell
NAMMU finite element package, using, for 2D, 9 node biquadratic
rectangular elements, and 27 node biquadratics for 3D. The aim is
to develop a robust technique for iterative solutions of 3D problems
based on a regional groundwater flow model of a geological area with
sharply varying hydrogeological properties. Numerical experiments
with polynomial preconditioned conjugate gradient methods on 2 2D
groundwater flow model were found to yield very poor results, con-
verging very slowly. In order to utilise the fact that A comes from the
discretisation of a PDE we try the two grid method as is well anal-
ysed from studies of multigrid methods, see for example “Multi-Grid

*School of Mathematical Sciences, University of Bath, Claverton Down, Bath
tTheoretical Studies Department, Harwell Laboratories, Didcot
tSchool of Mathematical Sciences, University of Bath, Claverton Down, Bath




Methods and Applications” by W. Hackbusch. Specifically we con-
sider two discretisations resulting in stiffness matrices Ay and A,, of
size N and 7 respectively, where N > n, for both a model problem
and the geological model. We perform a number of conjugate gradi-
ent steps on the fine grid, ie using Ay, followed by an exact coarse
grid solve, using An, and then update the fine grid solution, the exact
coarse grid solve being done using a frontal method factorisation of
A,.. Note that in the context of the standard two grid method this is
equivalent to using conjugate gradients as a fine grid smoothing step.
See, for example, “Analysis and Comparison of Relaxation schemes in
Robust Multigrid and Preconditioned Conjugate Gradient Methods”
by R. Kettler, appearing in “Multigrid Methods” edited by W. Hack-
busch and U. Trottenberg. Experimental results are presented to show
the superiority of the two grid iteration method over the polynomial
preconditioned conjugate gradient method.




Solution of dense systems of linear equations in
electromagnetic scattering calculations

Jussi Rahola
Center for Scientific Computing
P.O. Box 405
FIN-02101 Espoo Finland
rahola@csc.fi

February 15, 1994

Abstract

The discrete-dipole approximation (DDA) is a method for calculating the
scattering of light by an irregular particle. The DDA has been used for ex-
ample in calculations of optical properties of cosmic dust. In this method the
particle is approximated by interacting electromagnetic dipoles. Computation-
ally the DDA method includes the solution of large dense systems of linear
equations where the coefficient matrix is complex symmetric. In our work, the
linear systems of equations are solved by various iterative methods such as the
conjugate gradient method applied to the normal equations and QMR. The
linear systems have rather low condition numbers due to which many iterative
methods perform quite well even without any preconditioning. Some possible
preconditioning strategies are discussed. Finally, some fast special methods
for computing the matrix-vector product in the iterative methods are consid-
ered. In some cases, the matrix-vector product can be computed with the fast
Fourier transform, which enables us to solve dense linear systems of hundreds
of thousands of unknowns.
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An Iterative Parallel Sparse Matrix Equation Solver
With Application to
Finite Element Modeling of Electromagnetic Scattering

Tom Cwik, Vahraz Jamnejad and Cinzia Zuffada
Jet Propulsion Laboratory
California Institute of Technology
Pasadena CA 91109

I. Introduction

The usefulness of finite element modeling follows from the ability to accurately simulate the
geometry and three-dimensional fields on the scale of a fraction of a wavelength. To make this
modeling practical for engineering design, it is necessary to integrate the stages of geometry
modeling and mesh generation, numerical solution of the fields-a stage heavily dependent on the
efficient use of a sparse matrix equation solver, and display of field information. The stages of
geometry modeling, mesh generation, and field display are commonly completed using
commercially available software packages. Algorithms for the numerical solution of the fields need
to be written for the specific class of problems considered. Interior problems, i.e. simulating fields
in waveguides and cavities, have been successfully solved using finite element methods. Exterior
problems, i.e. simulating fields scattered or radiated from structures, are more difficult to model
because of the need to numerically truncate the finite element mesh. To practically compute a
solution to exterior problems, the domain must be truncated at some finite surface where the
Sommerfeld radiation condition is enforced, either approximately or exactly. Approximate
methods attempt to truncate the mesh using only local field information at each grid point, whereas
exact methods are global, needing information from the entire mesh boundary. In this work, a
method that couples three-dimensional finite element (FE) solutions interior to the bounding
surface, with an efficient integral equation (IE) solution that exactly enforces the Sommerfeld
radiation condition is developed [1]. The bounding surface is taken to be a surface of revolution
(SOR) to greatly reduce computational expense in the IE portion of the modeling.

Essential to an efficient solution of the system of equations resulting from the model is a
sparse matrix equation solution algorithm. A partitioned system of equations results from
combining the finite element modeling of the vector wave equation with the boundary integral
equation. The system has a large sparse block resulting from the finite element model, block
diagonal components resulting from the integral equation developed on the SOR, and sparse
rectangular blocks resulting from the coupling of the two representations. This system is solved
for a specific excitation (right-hand-side) using iterative methods appropriate for the general non-
symmetric, complex valued nature of the equations. Moreover, the system is intended to be solved
on coarse-grained, distributed memory machines.




II. The System of Equations

The scatterer and surrounding space are broken into two regions--an interior part containing
the scatterer and freespace region out to a defined surface, and the exterior homogenous part
(Figure 1). To efficiently model fields in the exterior region, the surface bounding the interior is
prescribed to be a surface of revolution. In this interior region, the weak form of the wave
equation is used to model the geometry and fields. The discretization of this equation results in a
complex valued, symmetric matrix representing the fields on the mesh. To truncate the mesh and
model fields both on the surface and everywhere in the exterior medium an integral equation is
used. Fields on the surface are obtained from equivalent tangential currents via an integral over the
boundary using the freespace Green's function kernel. Because the symmetry of the SOR is used
in this equation, the resulting discretized matrix consists of block diagonal pieces—each block
corresponding to the Fourier modes used in the representation of the induced surface currents. Itis
only necessary to match boundary conditions on the SOR to complete the model. Tangential
components of the fields found from the finite element representation are matched with those of the
integral equation representation in a weak integral sense to complete this coupling of the fields.

The resulting system of equations is written as

kK ¢ ol |o
ct o0 zlM=|o )
0o z, z|l7| [

where K is the complex valued symmetric finite element matrix, Zo, Zm. and Zj are the complex
valued block diagonal matrices resulting from the integral equation modeling, and C and C T are
the sparse, complex valued coupling matrices. The dagger represents the Hermitian matrix. H, M
and J are the magnetic fields, magnetic and electric currents respectively, and V; is the excitation
vector.

Figure 1. Geometry of scatterer showing interior and exterior regions.
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Figure 2. Scatter plot figuratively showing structure of system of equations. Darkened
spaces indicate non-zero matrix entries.

Figure 2 shows a representative graphical plot of the sparse equations for a very small system.
Dark areas represent non-zero elements of the matrix equation.

ITI. Solution of the System of Equations

Because three-dimensional modeling is undertaken, it is necessary to not allow fill-in of the
matrix as done in direct LU methods. Even skyline storage methods grow exceedingly memory
intensive due to the bandwidth of a three-dimensional mesh that is generated around the scatterer.
Therefore it is essential to apply iterative methods that only require storage for the matrix and a few
extra vectors. The specific partitioned nature of the system leads to two natural methods of
solution

. Solve the entire system in one step using the non-symmetric iterative quasi minimum
residual (QMR) algorithm [2].
. Solve the system in two steps as follows

1) eliminate H by computing Z, = C'K~'C
2) solve the system

-ZM+Z,J=0 @
ZM+Z,J=V,"

The first step involves performing the operation KX = C, which is accomplished by applying a
symmetric QMR iterative algorithm since K is symmetric. The resulting overall matrix (2) is
treated as dense, and the solution of this second problem is accomplished via a direct LU
decomposition since its size is relatively small.




The first solution requires computing the global matrix-dense vector multiply and transpose
matrix-dense vector multiply necessary at each step of the QMR algorithm. This is accomplished
block-by-block, multiplying the sparse symmetric K matrix, stored in compressed form, by the
appropriate segment of the dense vector; similarly the other components of the system are
multiplied in the proper order. ‘

The second solution again requires a sparse symmetric matrix~dense vector multiply in the
symmetric QMR algorithm for the initial stage of the solution. The dense matrix Zg must then be
stored and combined with the other blocks for the final LU decomposition stage of the algorithm.
Variants of this stage can be made to exploit the properties of the partitioned matrix in (2). It is
noted that when solutions for multiple right-hand-side excitations are required, the one-step
solution can be prohibitive if the solutions must be performed one at a time. The second method is
much more amenable to this case since the excitation only enters in when a the LU decomposition
is formed in the significantly smaller system in (2). We also note that the computation in this
solution is dominated by the calculation of Z since C will have hundreds of columns.

IV. Parallel Implementation

Previously, much experience has been gained in the parallel solution of dense matrix
equations resulting from the solution of electromagnetic scattering problems [3,4]. Using coarse-
grained, distributed memory machines, the overlap of communication and computation, as well as
efficient communication structures for matrix factorization were developed. This work led to high
performance algorithms for the dense systems. The extensions to the sparse system outlined above
is not as clear. The sparse K matrix has about 15 non-zero entries per row, independent of the
order of that matrix—an order that easily reaches into several hundred thousand. For efficient
solutions, preconditioners are necessary to reduce the number of iterations, and hopefully wall
clock time of the solution.

The first solution outlined above is amenable to parallel implementation on machines such
as the Intel Paragon. A scheme to perform the parallel matrix-vector multiplies can be arrived at,
allowing solutions that scale with the machine. The K matrix is decomposed onto the processors
using a recursive inertial partitioning algorithm [5]; the other blocks are more easily decomposed
due to their structure. It appears that preconditioning of this system can not be successfully
accomplished.

The second solution is not so easily parallelized due to the two-step nature of the algorithm.
The initial stage can be completed as a subset of the first solution outlined above. It is then
necessary to rearrange data forming the reduced system (2). This step can require a possible large
amount of communication and data storage. In either solution, the performance found in the dense
methods mentioned above will not be found in the sparse solvers due to inefficient cache usage
resulting from the sparse data. The second solution method can reduce this inefficiency if blocks
of the C matrix are operated on simultaneously in the first stage of this algorithm—completing




sparse matrix-dense matrix multiplies in the iterative algorithm rather than sparse matrix-dense
vector operations. The second solution is also more amenable to preconditioning due to the nature
of the K matrix.

This talk will focus on the iterative solvers developed for both solution methods outlined
above. Material specific to parallel implementation issues currently underway will also be
discussed.
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ON THE RELATION BETWEEN TRADITIONAL ITERATIVE METHODS AND
MODERN MULTILEVEL/DOMAIN DECOMPOSITION METHODS
MICHAEL GRIEBEL

INSTITUT FUR INFORMATIK, TECHNISCHE UNIVERSITAT MUNCHEN
D-80290 MUNCHEN, GERMANY

Abstract. In recent years, it has turned out that many modern iterative algorithms (multigrid
schemes, multilevel preconditioners, domain decomposition methods etc.) for solving problems resulting
from the discretization of PDEs can be interpreted as additive (Jacobi-like) or multiplicative (Gauss-
Seidel-like) subspace correction methods. The key to their analysis is the study of certain metric
properties of the underlying splitting of the discretization space V into a sum of subspaces Vi,i=1.,J
resp. of the variational problem on V into auxiliary problems on these subspaces.

Here, we propose a modified approach to the abstract convergence theory of these additive and
multiplicative Schwarz iterative methods, that makes the relation to traditional iteration methods more
explicit. To this end we introduce the enlarged Hilbert space V = Vp X ... x V7 which is nothing
else but the usual construction of the cartesian product of the Hilbert spaces V; and use it now in the
discretization process. This results in an enlarged, semidefinite linear system to be solved instead of
the usual definite system.

Then, modern multilevel methods as well as domain decomposition methods simplify to just tradi-
tional (block-) iteration methods. Now, the convergence analysis can be carried out directly for these
traditional iterations on the enlarged system, making convergence proofs of multilevel and domain
decomposition methods more clear, or, at least, more classical. The terms that enter the convergence
proofs are exactly the ones of the classical iterative methods. It remains to estimate them properly. The
convergence proofs itself follow basically line by line the old proofs of the respective traditional iterative
methods. Additionally, new multilevel/domain decomposition methods are constructed straightfor-
wardly by now applying just other old and well known traditional iterative methods to the enlarged
system.

Thus, this approach closes the gap between traditional iterative methods and modern multi-
level/domain decomposition algorithms. These results may be viewed as an extension of the recent
surveys [X, Y] and [GO].
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Multigrid with Red Black SOR Revisited

Irad Yavneh
Faculty of Computer Science
Technion—TIsrael Institute of Technology
Haifa 32000, Israel

December 1993

Abstract

Optimal relaxation parameters are obtained for red-black point
Gauss-Seidel relaxation in multigrid solvers of a family of elliptic equa-
tions. The resulting relaxation schemes are found to retain high effi-
ciency over an appreciable range of coefficients of the elliptic opera-
tor, yielding simple, inexpensive and fully parallelizable smoothers in
many situations where more complicated and less cost-effective block-
relaxation and/or partial coarsening are commonly used.







IMPLICIT EXTRAPOLATION METHODS FOR MULTILEVEL
FINITE ELEMENT COMPUTATIONS

MICHAEL JUNG AND ULRICH RUDE

FACHBEREICH MATHEMATIK
TECHNISCHE UNIVERSITAT CHEMNITZ-ZWICKAU
D-09009 CHEMNITZ
GERMANY
E-MAIL: DR.MICHAEL.JUNG@MATHEMATIK.TU-CHEMNITZ.DE
E-MAIL: RUEDE@MATHEMATIK.TU-CHEMNITZ.DE

Abstract. The finite element package FEMGP has been developed to solve elliptic and parabolic
problems arising in the computation of magnetic and thermomechanical fields. FEMGP implements
various methods for the construction of hierarchical finite element meshes, a variety of efficient
multilevel solvers, including multigrid and preconditioned conjugate gradient iterations, as well as
pre- and postprocessing software. Within FEMGP, multigrid T-extrapolation can be employed to
improve the finite element solution iteratively to higher order. This algorithm is based on an implicit
extrapolation, so that the algorithm differs from a regular multigrid algorithm only by a slightly
modified computation of the residuals on the finest mesh. Another advantage of this technique is,
that in contrast to explicit extrapolation methods, it does not rely on the existence of global error
expansions, and therefore neither requires uniform meshes nor global regularity assumptions. In the
paper we will analyse the r-extrapolation algorithm and present experimental results in the context
of the FEMGP package. Furthermore, the T-extrapolation results will be compared to higher order
finite element solutions.

1. Introduction. Multigrid methods have been shown to be very efficient solvers
for elliptic partial differential equations (PDE). In this paper we are concerned with
the so-called 7-extrapolation method, see Brandt [1] and Hackbusch [2]. The 7-
extrapolation algorithm is an extension of conventional multigrid that can improve
the accuracy of the numerical result by implicitly using higher order approximations.
In particular we will show that one step of multigrid r-extrapolation for piecewise
linear C? finite elements is equivalent to using quadratic elements.

In this paper we focus on self-adjoint second order linear elliptic partial differential
equations of the form

1) | Lu=f in Q

where Q is a polygonal domain in IR?, and suitable boundary conditions. In the
examples in Section 3 we will use the equations of elasticity as a typical model proble:n.

In order to discretize (1) we employ the standard finite element (FE) approach.
Consider a family of triangulations 73 of 2. The approximation of the solution space
by piecewise linear continuous functions leads to a family of discrete systems

(2) Lhuh = fh .

To define a multilevel scheme, we introduce the operator I%, to be a linear inter-
polation from the approximation space on 7o5 to 7. Besides the weighted restriction
I?h = (I3,)T we also use the injection operator I2h defined by simply dropping the
nodal values of the refined mesh. Further note, tha.t the finite element dlscretlzatlon
process implies the Galerkin condition Lop = Ih L;,

Our experimental framework is the Finite EIement Multi-Grid Package FEMGP
developed at the Technische Universitdt Chemnitz-Zwickau for the solution of elliptic
and parabolic problems arising in the computation of magnetic and thermomechanical

1




fields. The equivalence of 7-extrapolation to using higher order finite elements justifies
its application for unstructured meshes as produced within FEMGP.

2. r-extrapolation. The classical full approzimation storage multigrid algorithm
(FAS) for the solution of (2) consists of the following steps.

3) Smooth Lyup = fa

4) = LoglPup — IZ*Lyuy
() fon = IBPfatuwrh,

(6) Solve Lonuzn = fan

(7 un = unt+Ify (u2h - I%h“h)
(8) Smooth Luup = fa

For w = 1 and linear operators Ly and Loy these steps are equivalent to the conven-
tional correction storage (CS) multigrid method (see Brandt [1]). The FAS scheme
is commonly used as the basis of nonlinear multigrid methods. For w # 1, the FAS
method performs an implic’. extrapolation of the equations. In contrast to direct
extrapolation methods, this so-called T-extrapolation method does not require global
error expansions, but can be applied even when global expansions are not available.

T

FIG. 1. Refined element

r-extrapolation for these situations can be justified by analysing the structure
of the finite element stiffness matrices. Consider a finite element mesh 725, and
a refined mesh 7;. Fig. 1 depicts an element T' € T, and 11,7%,73,T4 € Th.
Let L2n(T) denote the element stiffness matrix for linear trial functions in T°, and
Li(T) denote the stiffness matrix assembled from the four linear element stiffness
matrices Ly (Th), Lu(T2), Ln(Ts), La(Ts). For a scalar equation Lon(T) € R3*3 and
Li(T) € R**®. The refined mesh defines nodal points in T35 that can also be used
as a nodal basis of quadratic elements. Denote the corresponding quadratic element
stiffness matrix for Ton by Q21(T) € RS*S. Furthermore, the injection operator
1% : R® — R3 can be used formally to map the nodal values for the refined element
to the unrefined one.

For symmetric elliptic operators with constant coefficients in T2, we now have
the identity

© Qun(T) = 3Ln(T) — 5 Lan (DI
2

X CERCRIRIN




Because of the linearity of the assembly process this identity also holds for the global
stiffness matrix. Equation (9) can be proved by an elementary, but tedious analysis
based on explicitly setting up the stiffness matrices. A complete proof will be given
in the full version of this paper.

Another approach for proving (9) is based on asymptotic expansions for quadra-
ture rules over the triangle, see Riide [9]. This more general analysis shows that the
method can be used when the coefficients are not constant. In this case the linear
combination constitutes an appropriate numerical quadrature formula for the quadra-
tic element stiffness matrix. This analysis also opens the possibility to generalize this
technique to higher order. Some preliminary results in this direction are contained in
Riide [7].

When (9) has been established, it is easy to prove that with w = 4/3, (4-7) is an
iteration with a fixed point uj defined by

(10) Q2nun = fa.
To see this, we note that a fixed point of (4-7) satisfies
% (uon — I2Pup) = 0.
This is implied by
Fon — LonT3Pup = 0

and
4 1
I’ (fh = gLnun + g(Iih)TLth?,"uh) =0,

which shows (10).

Note that the iteration (4-7) has infinitely many fixed points only one of which
is given by Lemma (10). If iteration (4-7) is used in isolation, the limit depends on
the initial value with which the iteration is started. If used in combination with the
smoothing steps (3) and (8), the limit value becomes uniquely determined, however,
the overall iteration converges to a different limit, because now two iterations with
different fixed points are combined. A perturbation analysis as in Hackbusch [2] or
Riide [6] can be used to show that the accuracy of the quadratic approximation is
only perturbed by negligible higher order terms. Alternatively, smoothers may be
developed that are consistent with the higher order stiffness matrix, see McCormick
and Riide [3] and [8].

Finally note that a consistent higher order representation of the right hand side
f can be obtained by a further straightforward modification of (5).

3. Numerical Example. The example in this section shows that the FE dis-
cretization using linear triangular elements combined with an extrapolation step in the
multigrid algorithm leads to the same results as the FE discretization with quadratic
elements.

We consider a problem of linear elasticity in the state of plane stress. The starting
point for a FE discretization of such a problem is the variational formulation, i.e.




Find the displacement field u = (u, uz)T € Vp, such that

1+ V/ [32:1 Oz + Bz, Ozg + 1= levu div v+
( ? 1(0u;0 bv, 8
1 OUg vy Ove _
2 (3:82 Oz + Oz 62:1)] de = /92,101 + g2,2v2 ds
'n

holds for all test functions v € V.

Here g3 = (g2,1,92,2)" denotes the surface tractions, E is Young’s elasticity mo-
dulus, and v is the Poisson ratio. The space Vp is defined by Vo = {v € [H Q)P :
vi(z) = va(z) = 0 on I'p} and 8Q = Tp UTy. The geometry of Q, the initial
triangulation, and the coefficients used are depicted in Fig. 2.

% LT

E = 196 GPa

v = 03

g21 = 0
F=1000 N on the upper part

922 = of the boundary
0 otherwise

77777
Tp

F1G. 2. Shape of domain and date for test prodlem.

Starting with the coarsest triangulation which is shown in the figure we generate
a sequence of nested triangular meshes 7y, ¢ = 1,2,..., I. Corresponding to each
triangulation 7, we define the FE space V spanned by the usual continuous piecewise
linear functions. As result of the discretization process we obtain a sequence of systems

Lyug=fg, ¢=1,2,...,1,

of the algebraic FE equations.

For solving the system Lju; = fi we use a multigrid algorithm that gives us a
FE solution with the same discretization error as in the case of a FE discretization
with piecewise quadratic function. As mentioned in Section 2 the FE stiffness matrix
Qi1 obtained by a FE discretization on the triangulation 7;—, with p-hierarchically
quadratic functions is equivalent to the matrix

_ﬁ - Ll—l 45-[’1)111
1= 4—L S-L )
3imv  3Imm

where the blocks Lym, Lmy, 2nd Ly, are the parts of the stiffness matrix

(Ll—l Lum
Ly, Lm
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which we obtain by means of the two-level hierarchical basis ((I — 1,1) hierarchical
basis) with piecewise linear functions.
We perform the following steps in our multigrid algorithm.

Algorithm MGEX

Let be given the initial guess u§1,o). Set k= 1.

1. Transform the vector u§1’0) in the two-level hierarchical basis.
2. Fork=1,2,...,k.:
(a) Perform v, iteration steps of the Gauss-Seidel method for solving the
system

k,0
meul,m = fl,m - Lmvug’v' )

such that we get an approximate solution #; ,, and ufk’l) = (uglf,’o), Trm)T.
(b) Compute the defect

4
di-y = fi1 — Lz-lufﬁ,’l) - ngmug:,’,l)-
(c) Solve the system

Lisywiey = finy
by means of a usual multigrid (! — 1)-grid) algorithm (see. e.g. [2]).
(d) Compute the new approximation ufk’z
ufk’z) = (ugf;l) + w1, ug,’}))T.
(e) Perform v, iteration steps of the Gauss-Seidel method for solving the
system

(E:2)
1

meul,m = fl,m — Lmyu v

such that we get a approximate solution % ,, and ugk’l) = (usk'z), T1m)T.
(f) Set

ufFHL0) o),
3. Transform the vector ufk“o) into the usual nodal basis

We use this algorithm without steps 1 and 3 for solving the preconditioning sy-
stems within the preconditioned conjugate gradient method applied to the system

(12) Lw=fi, fi=(fi, %flm)T

of algebraic linear equations. The resulting algorithm is equivalent to a preconditioned
conjugate gradient (PCCG) algorithm for solving the system

(13) Qiaw = fi

obtained by a FE discretization with p-hierarchical quadratic functions. Table 1
demonstrates this equivalence by showing the computed energies for the extrapolation
algorithm compared to the explicit use of a quadratic finite element approximation.
The CPU-time needed to obtain the solution of the systems (12) and (13) are almost
the same.
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TABLE 1
Comparison of T-extrapolation and guadratic elements

l energy norm of the solution u; d termined by
the algorithm MGEX | the (PCCG) method for the system (13)
3 6.343895 6.343875
4 6.419340 6.419311
5 6.453745 6.453784

4. Conclusion. Starting form the multigrid T-extrapolation algorithm, we have
constructed an iterative method that implicitly generates a higher order approxima-
tion. The method is equivalent to using higher order finite elements, but is cheaper
because no complicated assembly process is required and the defect evaluation requires
only computations with simple low order stiffness matrices. The practical usefulness
of the method is shown for a problem in linear elasticity.
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Multilevel First-Order System Least Squares for PDEs

by
Steve McCormick

The purpose of this talk is to analyze the least-squares finite element method for second-
order convection-diffusion equations written as a first-order system. In general, standard
Galerkin finite element methods applied to non-self-adjoint elliptic equations with
significant convection terms exhibit a variety of deficiencies, including oscillations or
nonmonotonicity of the solution and poor approximation of its derivatives. A variety of
stabilization techniques, such as up-winding, Petrov-Galerkin, and stream-line diffusion
approximations, have been introduced to eliminate these and other drawbacks of standard
Galerkin methods. Yet, although significant progress has been made, convection-diffusion
problems remain among the more difficult problems to solve numerically. The first-order
system least-squares approach promises to overcome these deficiencies.

This talk develops ellipticity estimates and discretization error bounds for elliptic
equations (with lower order terms) that are reformulated as a least-squares problem for an
equivalent first-order system. The main results are the proofs of ellipticity and optimal
convergence of multiplicative and additive solvers of the discrete systems.
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A MULTIGRID PRECONDITIONER FOR THE SEMICONDUCTOR
EQUATIONS

JUAN C. MEZA » AND RAY S. TUMINARO t

Currently, integrated circuits are primarily designed in a ‘trial and error’ fashion.
That is, prototypes are built and improved via experimentation and testing. In the near
future, however, it may be possible to significantly reduce the time and cost of designing
new devices by using computer simulations. To accurately perform these complex sim-
ulations in three dimensions, however, new algorithms and high performance computers
are necessary. .

In this paper we discuss the use of multigrid preconditioning inside a semiconductor
device modeling code, DANCIR. The DANCIR code is a full three-dimensional simu-
lator capable of computing steady-state solutions of the drift-diffusion equations for a
single semiconductor device and has been used to simulate a wide variety of different
devices. At the inner core of DANCIR is a solver for the nonlinear equations that
arise from the spatial discretization of the drift-diffusion equations on a rectangular
grid. These nonlinear equations are resolved using Gummel’s method which requires
three symmetric linear systems to be solved within each Gummel iteration. It is the
resolution of these linear systems which comprises the dominant computational cost of
this code. The original version of DANCIR uses a Cholesky preconditioned conjugate
gradient algorithm to solve these linear systems. Unfortunately, this algorithm has a
number of disadvantages: 1) it takes many iterations to converge (if it converges), 2) it
can require a significant amount of computing time, and 3) it is not very parallelizable.

To improve the situation, we consider a multigrid preconditioner. The multigrid
method uses iterations on a hierarchy of grids to accelerate the convergence on the finest
grid. To adapt the multigrid method to the drift-diffusion equations, interpolation, pro-
jection, and coarse grid discretization operators need to be developed. Developing these
operators in the context of the drift-diffusion equations requires some care due to the
presence of greatly varying physical phenomena including wide scale variation in PDE
coeficients and small scale phenomena such as contact points. In both cases, the de-
velopment of operator dependent interpolation and projection is essential to improving
the performance. Further, the presence of the oxide layer requires some care to insure
that the different operators and the grid hierarchy adequately approximate the PDE
on all levels. Finally, the presence of a severely stretched grid gives rise to anisotropic
phenomena which requires a suitable relaxation procedure.

A two-dimensional version of a multigrid scheme was developed and incorporated
into the DANCIR code. The multigrid method can be used with highly variable PDE

* This work was supported by the Applied Mathematical Science Program, U.S. Department of
Energy, Office of Energy Research and was performed at Sandia National Laboratories operated for
the U.S. Department of Energy under contract No. DE-AC04-94AT1.85000.

! Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS),
Toulouse, France




coefficients, an oxide layer, small contact regions, and anisotropic behavior. The result-
ing scheme is fast, parallel, and requires many fewer iterations than the ILU scheme
that it replaced. On several sample problems ranging from 1,617 to 82,937 unknowns,
we improved the performance by a factor of between 2 and 4 over the ILU precondi-
tioner. Extensions to the three-dimensional case are straight-forward and planned for
the future.

Finally, we note that while we have used a multigrid solver for the linear equations
that arise within Gummel’s method, there are potentially much greater savings if the
Gummel technique can be replaced by a nonlinear multigrid iteration. We have not
pursued this, but we hope that this study will give insight into this possibility.




Preconditioned CG-Solvers and Finite Element Grids

R. Bauer and S. Selberherr
Institute for Microelectronics, Technical University of Vienna
Gusshausstrasse 27-29, A-1040 Vienna, Austria
Phone +43/1/58801-3854, FAX 443/1/5059224, E-mail: bauer@iue.tuwien.ac.at

Introduction

To extract parasitic capacitances in wiring structures of integrated circuits we developed
the two- and three~-dimensional finite element program SCAP (Smarr Caracrzancs Avaravsis
Proaram). The program computes the task of the electrostatic field from a solution of Pos-
son’s equation via finite elements and calculates the energies from which the capacitance
matrix is extracted. The unknown potential vector, which has for three-dimensional appli-
cations 5000 — 50000 unknowns, is computed by a ICCG solver. Currently three- and six-
node triangular, four- and ten-node tetrahedronal elements are supported.

The capacitance matrix for a charge balanced n~conductor problem has n (n—1)/2 entries
and can be extracted by n (n — 1)/2 energy runs. For each run it is necessary to apply
a linearly independent potential vector to the contacts and calculate the electrostatical
energy. Since the Poisson equation is linear it is only necessary to compute n potential
vectors and build up the missing potential vectors from old vectors by superposition.

The variational formulation of the solution of the Euler equation

div (2,3, 2) grad 9(z,y,2) =0 ()

is an equivalent formulation of the minimization of the functional

I=¢ / e(2,y,2) ((%)2 + (%)2 + (g—f)z) &V —min, (2)

G

which represents exactly twice the electrostatic field energy E,,.

Matrix Assembling

For linear shape functions (only for these) we obtain for the assembled stiffness Matrix an
M - Matrix (S is an M-Matrix if s;; > 0,8;; < 0fori£ 7, Sis nonsingular and S-* > 0)
based on a Delaunay grid in two dimensions. In [6] it is shown by a counterexample
that a three-dimensional Delaunay triangulation does not in general satisfy the condition.
Additional boundary nodes have to be inserted to achieve a M~Matrix.

For the following discretization on a triangular partitioning of the domain, using linear
shape functions, some criterions have to be satisfied in order to obtain a positive interior
connection value between two nodes.

The unknown function 7 is approximated by a combination of linear shape functions for
the three triangle corner nodes 1 to 3.

P(€) = Y1 N+ Ny + 91 N3 Ni=1-¢—9q Ny =¢ Ny=79 (3)




The transformed formulation for a normalized tirangular element in £,7 coordinates with
inserted shape functions reads

N ONT N 8NT 6N ONT
— T = . T
1= 44" dédn b + B ¥ G/(&E 5y 5 ag ) ddn v+

8¢ o¢

ON 6N7T
G¢T/—a;7"§5’ dédn ¥ (4)
!

with the geometric coefficients
A = ((ys—wn) +(es—21))/J

B = —((ys—w1) (¥a— 1)+ (23— 21) (22 — 1))/J
C = ((y2—w)+(za—2:)’)/J
J = (m3—21) (¥3— y1) — (23— 1) (y2 — Y1) (5)

integration over the elements yields
A+2B+C —-A-B -B-C
—~A-B A B
-B-C B C

(6)

B | =

Saq =

(7)

Figure 1: Delaunay criterion

All entries s.; ; > 0 of the stiffness matrix of this element fullfill the M—Matrix criterion. For
the off-diagonals, for instance sy3 the matrix entry in the element matrix becomes positive
if the angle opposite two nodes (in this example v becomes obtuse. For the corresponding
in the global stiffness matrix we have to examine the edge ¢ which is shared amongst two
triangles. To obtain an M-Matrix the sum of the entries in the global stiffness matrix at
each connection has to be negative! Assuming the vertex numbering shown in Fig. 1, we
obtain the following criterion for a positive connectivity between nodes 2 and 3.
a-b d-e
+

laxb|  |dxe|
This equation assumes that we have the same material for the two adjacent triangles. In
the case of different permittivities in different segments we have to rewrite the equation to

g1 cot y+ez cot §>0. (9)

>0 coty+cotd>0 or y+b<7 (8)

As a conclusion we can see that for the general case even the Delaunay criterion or sphere
criterion in two dimensions does not guarantee an M~Matrix as stiffness matrix. For higher
order shape functions, the element stiffness matrix have positive and negative off-diagonal
entries and therefore are no M-Matrices.




Preconditioner

For preconditioning the stiffness matrix a CG algorithm an incomplete Cholesky factor-
ization in conjunction with the Eisenstat trick [3) is used. If § is not an M~Matrix
the Cholesky decomposition will certainly not give a regular splitting. As consequence the
factorization of S is not always stable.

This has observed for some examples with quadratic shape functions and bad grid quality.
To overcome this non-M-Matrix problem Manteuffel [5] introduced a damping factor for
the off diagonal elements for the preconditioner. For the diagonally scaled stiffness matrix

1

5 = I-B, Sd=I—mB

(10)

with a sufficiently large @, S4 will be diagonally dominant. Experiments have shown that
an a of 1.5 is an appropriate value for our problems. On the other hand it is evident
that the solver looses efficiency by this method.

We observed that only for some nodes in the factorization the recursion starts to get negative
D =D - diag (L -D~* . U) (11)

and the CG-Solver diverges. Therefore a simple idea is to eliminate these negative en-
tries which arise from positive off-diagonal entries and to revert the sign of negative
diag (L D~* U) contributions and proceed. For our examples with the discretized Laplace
operator we achieved always convergence. Node ordering for bandwidth reduction improves
the solver speed but decreases the overall performance.

Example

The capacitance matrix for the following three-dimensional crosstalk example of two bitlines
of a DRAM~-Cell can be extracted by three runs with different applied contact potentials.
To reduce the crosstalk to other bitlines the trick of twisted pairs will be used here. The
disadvantage of the method is that the parasitic capacitances are increased and therefore
more line driver current is required. Fig. 2 shows the significant parts of the arrangement:
a ground plane (1), the bitline with contact pads (2) and a second bitline (3). The con-
ductors are assumed to have infinite conductivity and are representing Dirichlet boundary
conditions. Fig. 3 shows the whole discretized domain. On the outside boundary homoge-
nous Neumann boundary conditions are assumed except from the bottom plane which is a
Dirichlet contact.




On an HP755 we got the following results:

17673 Tetrahedrons 141384 Tetrahedrons

Shape Functions linear quadratic linear

Matrix size: (3664,7.23) | (26480,13.93) (26480, 7.56)

Capn 5.81-1071F | 5.29 - 1071F 5.43 - 101 F

Cap1s 1.64-10"1F | 1.60-1072F 1.61.107F

Capas 4.11.1071¢F | 3.39.10"¥F 3.58 . 107 F

CcG

num, iterations 80 186 (186) ! - 162

used time 1.40s 40s (40s) 23.05

ICCG

num. iterations 38 92 (77) ‘ 83

used time 1.50s 24.0s (21s) . 15.0s
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Modeling the Diffusion of Phosphorus in Silicon
in 3-D

KAREN R. BAKER
The University of Texas at Austin
Department of Mathematics
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December 23, 1993

Abstract: The use of matrix precondi-
tioning in semiconductor process simula-
tion is examined. The simplified nonlin-
ear single-species model for the diffusion
of phosphorus into silicon is considered.
The experimental three-dimensional sim-
ulator, PEPPERS3, which uses finite differ-
ences and the numerical method of lines to
implement the reaction-diffusion equation
is modified to allow NSPCG to be called to
solve the linear system in the inner New-
ton loop. Use of NSPCG allowed various
accelerators such as Generalized Minimal
Residual (GMRES) and Conjugate Gradi-
ent (CG) to be used in conjunction with
preconditioners such as Richardson, Ja-
cobi, and Incomplete Cholesky.

I. INTRODUCTION

Silicon is presently the most impor-
tant semiconductor in the electronics in-
dustry. One of the first terms encoun-
tered in the study of semiconductor pro-

*Supported by the National Science Founda-
tion, Grant 26-1002-0820, University of Texas at
San Antonio, Advisor: Dr. Walter Richardson

cess simulation is VLSI. This is an ab-
breviation for very large scale integration
and refers to integrated circuits contain-
ing tens of thousands to several million
transistors on a silicon chip with device
critical dimensions less than a half mi-
cron. Device dimensions have continued
to shrink over the past few years increas-
ing the need for accurate simulation tools
for process modeling. Process simulation
consists of implementing a mathematical
model of a physical process on a computer
and then using the implementation to rep-
resent the actual physical procedure. This
is very cost effective for the industry since
the number of wafer split-runs necessary
during the fabrication phase of the inte-
grated circuit is greatly reduced [3]. It is
through a sequence of process steps that
the resistors, capacitors, and transistors
are formed on a silicon wafer.

II. THE PHYSICAL MODEL

This paper addresses only doping pro-
file simulation and, in particular, the
doping profiles obtained while modeling




the diffusion of phosphorus into silicon
in three dimensions. It is important to
accurately model this type of diffusion
since phosphorus is used as a dopant
in the lightly doped extension region of
LDD (Lightly Doped Drain) structures in
NMOS transistors [3]. For intrinsic (low
concentration) diffusion, the linear single-
species diffusion equation, %—Ct- = DAC,is
adequate. In this case, the impurity con-
centration is less than the intrinsic elec-
tron concentration, m;, which is approx-
imately 10'® cm™3 at 1000°C. The pro-
file for this model is essentially Gaussian,
For extrinsic (high concentration) diffu-
sion, the profile exhibits anomalous be-
havior in the form of kinks, shoulders, and
tails. If this unusual behavior is to be ex-
plained, it is necessary to model a nonlin-
ear diffusion process.

The starting silicon material (wafers)
on which the circuits are fabricated have
what is called a single crystal form which
means there is a periodic arrangement of
atoms throughout the entire solid. Its
lattice is diamond cubic as shown in
Figure 1(2). Suppose phosphorus, P, is
diffusing into the silicon. As an illustra-
tion as to how the lattice is perturbed,
- consider the simplified 2-D slice shown in
Figure 1(b). A substitutional phosphorus
atom is in lattice site “a,” site “b” is a
vacancy, and site “c” is an interstitial, a
silicon atom between lattice sites. All of
these are examples of point defects.

Over the past few years, movement has
been away from phenomenological mod-
els to point defect models. Yoshida, Fair,
and others postulated that diffusion is
more than a simple random-walk near-
est neighbor interchange mechanism—
it is vacancy assisted. Specifically, in

SILICON LATTICE
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(b) 2-D Slice of Perturbed Lattice

Figure 1: (a) shows the silicon lattice.
In (b), “a” is the site of a substi-
tutional phosphorus atom, “b” is a
vacancy, and “c” is an interstitial.
©Lattice Press, 1986 [4]
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1971, Yoshida proposed that the diffusion
mechanism was formation of phosphorus-
vacancy pairs (E centers) which diffused
through the lattice. His model incorpo-
rated the fact that vacancies exist in var-
ious charge states and in concentrations
proportional to the Fermi level [5]:

[V7]=[V]iexp (Epk:_,', Ei) :

Thermodynamically, it is more likely for
an impurity atom to bond with a va-
cancy than to exchange sites directly with
a neighbor. Consequently, diffusivity is
concentration-dependent via

n>n = [V-]>>[V_]i = D>D;.

These assumptions result in a compound
diffusion coefficient given by

D(n) = (1)

Do+D_ (5—) + D_ (3)2 + D, (’—;-) .

Thus, diffusivity is dependent on concen-
tration of excess electrons or, more sim-
ply stated, on the concentration of the
dopant. For phosphorus, D, is negligi-
ble. Under the assumptions of thermal
equilibrium, np = n?, and charge neutral-
ity, n4+C4 = p+Cp, the nonlinear single-
species diffusion model for phosphorus be-
comes

aC

ot

where C is the impurity concentration

and n(C) = %(C-{- /C? +4n?) is the

electron concentration. Since it is the
least expensive to implement and run,
Equation 2 is the most widely used model

=V - {D(C)[VC +CV(lnn)]} (2)
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Figure 2: A phosphorus predeposi-
tion simulation at 900°C for 10 min-
utes using the single-species model
is shown. The experimental data is
from [6].

for nonlinear diffusion. This is the nonlin-
ear single-species model implemented in
PEPPERS3, the experimental process sim-
ulator originally developed by Dr. Walter
Richardson. PEPPERS is the driver for
the code which will be used to solve Equa-
tion 2 in 3-D. In Figure 2, the profile data
obtained empirically by Yoshida is shown
as well as the pseudo one-dimensional
profile produced by PEPPER3 ([6], [2]).
Note the plateau, kink, and tail in the
phosphorus profile of the experimental
data.

III. THE NUMERICAL ASPECTS

The partial differential equation of
the nonlinear single-species is discretized
using the Numerical Method of Lines




-2

=

Figure 3: Seven-point Finite Differ-
ence Stencil for the Spatial Dis-
cretization

(NMOL). This method converts a partial
differential equation such as

%’_ =V - (D(C)VC) + F(s,t,C)

to a large system of coupled ordinary dif-
ferential equations which is continuous-
in-time but discrete-in-space. A seven-
point finite difference stencil is used for
the spatial discretization. See Figure 3.
Concentration dependent diffusivities are
evaluated midway between adjacent grid
points.  For simplicity, assume that
{k:}i, is the grid spacing in the z-
direction. Then,

(D(C)Ce): =

Ci;31—-C; Ci=Ci—
D(Ciyy)- === - D(Ci-y) - “5
kitki—1
2

A quasi-uniform mesh has an accuracy
of O(k?), and extension to the three-
dimensional case is straightforward. The
magnitude of the drift term in the non-
linear model of Equation 2 is small, so
“ypwinding” is not required. Under the

assumption of charge neutrality, its effect
may be accounted for by using the field
enhancement factor,

~ C
D(C)=D(C) |1 .

(C)=D(C) ( + m)
This simplifies the implementation.
NMOL is effective since there are no large
first order spatial derivatives, i.e. convec-
tive or drift terms, present. Three types of
test problems of increasing numerical dif-
ficulty are included in PEPPER3. Each
test case represents a predeposition at
800°C in which phosphorus diffuses from
the wafer surface. The initial concentra-
tion of phosphorus is zero in the single-
species model. Reflecting boundary con-
ditions are enforced on the bottom and
the four sides and an appropriate Dirich-
let condition is imposed on the top sur-
face. In Problem A, phosphorus diffuses
in from the entire surface. Since this is in
effect a one-dimensional diffusion, PEP-
PERS3 output can be checked against that
of a commercial one-dimensional simula-
tor such as FLASH. In Problem B, the
phosphorus diffuses through two narrow
strips on the top surface. This problem
represents a 2-D diffusion solved numeri-
cally in 3-D. Again output can be checked
against a commercial 2-D simulator such
as SSUPREM4. Problem C requires solu-
tion in three dimensions since phosphorus
is diffusing through an L-shaped region
on the wafer surface and symmetry in the
physical domain is lost. See Figure 4.

To solve the nonsymmetric linear sys-
tem of the Quasi-Newton loop, it is ad-
visable to use a projection method rather
than a direct or relaxation method. The
linear system that arises from the dis-
cretization is large and sparse; so, a di-




Figure 4: (Geometry for the test
problems, A, B, and C) Phosphorus
diffuses through the indicated por-
tion of the 2.0ym x 2.0pm x 5.0pum
brick.

rect method such as LU decomposition is
not recommended due to fill-in, cost of pe-
ripheral storage, and round-off error ne-
cessitating multiple preceision arithmetic.
While projection methods and relaxation
methods are both iterative, they are dis-
tinguishable. If the system is of order n,
then the projection method converges to
the unique solution in at most n itera-
tions and, in practice, far fewer. On the
other hand, a relaxation method such as
Jacobi, Gauss-Seidel, and SOR (Succes-
.sive Over-Relaxation), is said to have con-
verged to an approximate solution when a
user-specified tolerance has been satisfied.

In the linear problem, U; = U,,, stiff-
ness is exhibited since the Jacobian ma-
trix Fy has eigenvalues whose real parts
are large in magnitude and negative.
As the spatial discretization is refined,

these large negative eigenvalues increase
in magnitude. Since the solution is still
smooth, a finite difference method that
doesn’t require a very small step size is
desirable. As will be seen later in this re-
port, the nonlinear problem of Equation
2 also results in a stiff system. This is
the motivation for examining BDF (Back-
ward Differentiation Formulae) methods
in conjunction with NMOL. In general,
when multistep methods are applied to
stiff problems, h can be of the same or-
der of magnitude as the time scale of the
problem, and the error remains bounded.
Those BDF methods of practical use are
given by

g
u, = Eajun_,- +hBou, 1<¢g<5.
i=1

If Bp = 1 and @y = 1, then this re-
duces to implicit Euler. For graphs of
the stability regions of these methods,
see Gear’s Numerical Initial Value Prob-
lems in Ordinary Differential Egquations
[1]. The eigenvalue analysis will confirm
that LSODP (Livermore Solver for Ordi-
nary Differential equations - Projection)
is a good choice for the integrator for this
model. Under stiff options, it uses BDF
methods and solves the resulting nonlin-
ear system by a Quasi-Newton technique.

Solving the linear system of the inner
Newton loop is the most computation-
ally intensive part of any diffusion code.
When a second derivative operator is dis-
cretized using a finite difference scheme,
the resultant matrix has a spectrum that
is dependent upon the grid spacing. As
the mesh is refined, the matrix becomes
increasingly ill-conditioned. Because of
this, the operator V - (D(C)VC) of the
single-species model results in an increas-




ingly stiff system of ODE'’s and a mildly
nonsymmetric linear system. PEPPER3
was modified to call NSPCG (Nonsym-
metric Preconditioned Conjugate Gradi-
ent) so that combinations of accelerators
and preconditioners could be run on the
model of Equation 2. Since PEPPER3 is
written in the programming language C
and LSODP and NSPCG are written in
Fortran, care had to be exercised in the
passing of parameters and pointers. Af-
ter revision, the calling sequence within
PEPPERS3 was C calling Fortran calling
C.

IV. RESULTS

All runs were on the Cray Y-MP8/864 at
the Center for High Performance Com-
puting (CHPC), Austin, Texas. To
test the nonlinear single-species model
of PEPPERS3 with preconditioning, sev-
eral combinations of accelerators and
preconditioners were run on the Cray.
Two of the more interesting results
are contrasted. Problem Cl of size
208 was run using GMRES (Gener-
alized Minimal Residual Method) as
the accelerator with the matrix pre-
conditioners, RICH3 (L. F. Richard-
son’s Method), JAC3 (Jacobi Method),
and IC3 (Incomplete Cholesky Method),
where the 3 indicates that nonsymmetric
diagonal storage of the seven nonzero di-
agonal, subdiagonals, and superdiagonals
is being used. Then the same problem was
rerun using CG (Conjugate Gradient) as
the accelerator and the same three pre-
conditioners. The splitting matrix, Q, for
RICHS3 is the identity matrix. Thus, it
represents the null preconditioner. This
“preconditioner” was used as a point of

reference to assess the effect of precondi-
tioning the Jacobian of the linear system
of the Newton loop. For the precondi-
tioner JAC3, the diagonal of the iteration
matrix is the splitting matrix, and in IC3
an incomplete LU decomposition of the
iteration matrix is used for Q. The level
of fill-in allowed in the factorization is ad-
justable; but, in this case, no fill-in was al-
lowed beyond the original matrix nonzero
pattern. It is because of the finite dif-
ference scheme used in the discretization
that the iteration matrix for the single-
species model has exactly seven nonzero
diagonals.

With IC preconditioning, GMRES and
CG gave similar results when run on the
nonlinear single-species problem. This is
not too surprising since both are conju-
gate direction methods and under certain
conditions GMRES reduces to CG. Three
types of comparisons for each combina-
tion were done: number of time steps
versus order of the method, number of
time steps versus size of time step, and
number of time steps versus the average
Krylov subspace dimension. As shown in
Figure 7, GMRES/JAC and GMRES/IC
yielded the desired consistent increase in
step size by the integrator, and CG/IC
yielded a comparable result as well. Fig-
ure 6 shows that use of the preconditioner
IC resulted in an estimated Krylov sub-
space of very low dimension. As shown in
Figure 5, GMRES/JAC and GMRES/IC
each steadily increased to an order of 3,
which is optimum. CG/IC gave a similar
result, but both CG/JAC and CG/RICH
took over twice as many time steps with a
decrease in method order. Overall, GM-
RES/IC gave the best results. There was
a strong indication that the harder the
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problem is to solve numerically and the
larger the problem size, the more pre-
conditioning may be expected to result
in a lower CPU time and a better per-
formance. The timed results using prob-
lem C1 of size 203 are shown in Figure 9.
The chart clearly indicates that precon-
ditioning in combination with the accel-
erator GMRES is effective. GMRES/IC
was the only combination which processed
uneventfully with no Code 1 warnings
from NSPCG (i.e. failure to converge
in itmax = 10 iterations). In contrast,
CG/IC processed but with numerous such
warnings from the solver. A comparison
of the number of seconds of CPU time
to solve the 103 problem for each of the
test cases is shown in Figure 8. It will be
noted that the problem size of 103 was not
sufficiently large to demonstrate fully the
benefits of preconditioning.

It can be shown that each eigenvalue
of a positive definite matrix is a positive
number. From this result it follows that
each eigenvalue of a negative definite ma-
trix is a negative number. In LSODP,
the subroutine EWSET is called before
each internal integration step to set an ar-
ray of error weights, EWT. In the routine
that loads the coefficient matrix needed
by NSPCG it is possible to output the
matrix b * elo * D-1F'D where F' is the
system Jacobian, h is the time step size,
elo is the integration coefficient of the
BDF method, and D is a diagonal ma-
trix containing the reciprocal of the er-
ror weight entries. The transformation
F' — D-'F'D is a similarity transforma-
tion which preserves eigenvalues.

If a model yields a symmetric, positive
definite Jacobian F' or even a nonsym-
metric positive definite Jacobian, then the

e
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eigenvalues for the Richardson iteration
matrix will be real and negative. For the
nonlinear single-species model it is non-
symmetric negative definite. The fact
that this matrix is definite, guarantees
convergence of the accelerator GMRES.
The scaling done by LSODP does not nec-
essarily preserve symmetry. The itera-
tion matrix computed for the nonlinear
A1 problem of size 5% had real eigenvalues
concentrated on the interval (—2.5,0) and
for size 10% the interval was (—14,0). Fig-
ure 10 shows the spectrum of the iteration
matrix for Problem Al of size 103 for the
integration steps 60, 70, and 80, respec-
tively. The eigenvalues are clearly nega-
tive with an increasing spectral radius as
the integration proceeds, and they lie in
the region of absolute convergence for the

BDF methods.

V. CONCLUSIONS

Process simulation to aid in modeling
the diffusion of phosphorus in silicon in
three dimensions addresses a real world
problem which is of vital interest to the
semiconductor industry. A preconditioner
and an accelerator appropriate for the so-
lution of the single-species model have
been identified. The eigenvalue analysis
completed for this problem indicates that
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the computed results are in agreement
with mathematical theory and also con-
firms the choice of an integrator such as
LSODP which uses BDF methods. From
what has been shown, as the problem be-
comes larger and stiffer, preconditioning
will result in marked improvement in effi-
ciency.
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GRANDCHILD OF THE FREQUENCY
DECOMPOSITION MULTIGRID METHOD

J. BE. Dendy, Jr.
Theoretical Division, MS-B284
Los Alamos National Laboratory
Los Alamos, N. M. 87545

and

C. C. Tazartes
Dept. of Mathematics, U. C. L. A.

Abstract. Previously we considered the frequency decomposition multi-
grid method and rejected it becuase it was not robust for problems with
discontinuous coefficients. In this paper we show how to modify the method
so as to obtain such robustness while retaining robustness for problems with
anisotropic coefficients. We also discuss application of this method to a prob-
lem arising in global ocean modeling on the CM-5.







On Multigrid Methods
for
Image Reconstruction from Projections

Van Emden Henson Mark Limber Bruce T. Robinson
Naval Postgraduate School =~ Simon Fraser University =~ Naval Postgraduate School
Monterey, CA Burnaby, B.C., Canada Monterey, CA

The sampled Radon transform of a 2D function can be represented as a continuous linear
map R : L' — R¥. The image reconstruction problem is: given a vector b € R¥, find
an image (or density function) u(z,y) such that Ru = b. Since in general there are
infinitely many solutions, we pick the solution with minimal 2-norm.

Numerous proposals have been made regarding how best to discretize this problem. One
can, for example, select a set of functions ¢; that span a particular subspace Q C L2,
and model R : @ — RN. The subspace ) may be chosen as a member of a sequence of
subspaces whose limit is dense in L*.

One approach to the choice of {2 gives rise to a natural pizel discretization of the image
space. In this setting the equation u(z,y) = Y w;é;(z,y) can be written as u = R*w,
where R* : RV — § is the adjoint operator for R. The problem then becomes that of
finding a vector w satisfying RR*w = b. This last may be written as Bw = b where B
is a square matrix representing RR*.

Two possible choices of the set {@;} are the set of characteristic functions of finite-width
“strips” representing energy transmission paths and the set of intersections of such strips.

We have studied the eigenstructure of the matrices B resulting from these choices and the
effect of applying a Gauss-Seidel iteration to the problem Bw = b. There exists a near
null space into which the error vectors migrate with iteration, after which Gauss-Seidel
iteration stalls.

We attempt to accelerate convergence via a multilevel scheme, based on the principles of
McCormick’s Multilevel Projection Method (PML). Coarsening is achieved by thickening
the rays which results in a much smaller discretization of an optimal grid, and a halving of
the number of variables. This approach satisfies all the requirements of the PML scheme.
We have observed that a multilevel approach based on this idea accelerates convergence
at least to the point where noise in the data dominates.







A nonlinear multigrid solver for a semi-Lagrangian potential
vorticity-based barotropic model on the sphere.

Ruge, J., Li, Y., McCormick, S. F., Brandt, A. and Bates, J. R.:

The formulation and time discretization of problems in meteorology
are often tailored to the type of efficient solvers available for
use on the discrete problems obtained. A common procedure is to
formulate the problem so that a constant (or latitude-dependent)
coefficient Poisson-like equation results at each time step, which
is then solved using spectral methods. This both limits the scope
of problems that can be handled and requires 1linearization by
forward extrapolation of nonlinear terms, which, in turn, requires
filtering to control noise.

Multigrid methods do not suffer these limitations, and can be
applied directly to systems of nonlinear equations with wvariable
coefficients. Here, a global barotropic semi-Lagrangian model,
developed by the authors, is presented which results in a system of
three coupled nonlinear equations to be solved at each time step.
A multigrid method for the solution of these equations is
described, and results are presented.
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Multigrid Mapping and Box Relaxation for Simulation of the
Whole Process of Flow Transition in 3-D Boundary Layers *
Chaoqun Liu and Zhining Liu

Center for Computational Mathematics
University of Colorado at Denver

Denver, Colorado 80217-3364

Abstract

A new multilevel technology was developed in this study which provides a successful nu-
merical simulation for the whole process of flow transition in 3-D flat plate boundary layers,
including linear growth, secondary instability, breakdown, and transition on a relatively coarse
grid with low CPU cost. A fourth-order finite difference scheme on stretched and staggered
grids, a fully implicit time-marching technique, a semi-coarsening multigrid based on the
so-called approximate line-box relaxation, and a buffer domain for the outflow boundary con-
ditions were all employed for high-order accuracy, good stability, and fast convergence. A new
fine-coarse-fine grid mapping technique was developed to catch the large eddies and represent
main roles of small eddies to keep the code running after the laminar flow breaks down. The
computational results are in good agreement with linear stability theory, secondary instabil-
ity theory, and some experiments. The computation also reproduced the K-type and C-type
transition observed by laboratory experiments. The CPU cost for a typical case is around 2 —

9 CRAY-YMP hours.

*This work was supported by NASA Langley Research Center under grant number NAS1-10312 and by
ICOMP/NASA Lewis Research Center under 93 turbulence modeling program.
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Experimental and Theoretical Studies of Iterative
Methods for Nonlinear, Nonsymmetric Systems Arising
in Combustion

Thomas Hagstrom
Department of Mathematics and Statistics
The University of New Mexico
Albuquerque, NM 87131

Krishnan Radhakrishnan
Sverdrup Technology - Lewis Research Group
Brook Park, OH 44135

We report on some iterative methods which we have tested for use in
combustion simulations. In particular, we have developed a code to solve
zero Mach number reacting flow equations with complex reaction and diffu-
sion physics. These equations have the form of a nonlinear parabolic system
coupled with constraints. In semi-discrete form, one obtains DAE’s of index
two or three depending on the number of spatial dimensions. We have imple-
mented a fourth order (fully implicit) BDF method in time, coupled with a
suite of fourth order explicit and implicit spatial difference approximations.

Most codes we know of for simulating reacting flows use a splitting strat-
egy to march in time. This results in a sequence of nonlinear systems to
solve, each of which has a simpler structure than the one we are faced with.
The rapid and robust solution of the coupled system is the essential require-
ment for the success of our approach. We have implemented and analyzed
nonlinear generalizations of conjugate gradient-like methods for nonsymmet-
ric systems, including CGS and the quasi-Newton based method of Eirola
and Nevanlinna. We develop a general framework for the nonlinearization of
linear methods in terms of the acceleration of fixed-point iterations, where
the latter is assumed to include the ‘preconditioning’. Our preconditioning
is a single step of a split method, using lower order spatial difference ap-
proximations as well as simplified (Fickian) approximations of the diffusion
physics.




We also have developed a code for the computation of steadily propagat-
ing flames. This results in a nonlinear eigenvalue problem for the system of
equations described above. Here we have implemented a version of the recur-
sive projection method (RPM) of Schroff and Keller. This method involves
the enhancement of a general fixed point iteration with a Newton iteration
on a low-dimensional subspace. This subspace is adaptively modified based
on the behavior of the iterations. Our basic fixed point iteration is in fact a
time step of a split (or unsplit) method. Various constraint equations, such
as normalizations to fix the phase of the traveling wave as well as equations
relevant to mesh distribution, are solved via the Newton method in addition
to equations identified by the RPM adaptations.

We display numerical experiments for both simplified models as well as
complex, physically more accurate systems. Some theoretical results for
model systems are also given.




Preconditioned Time-Difference Methods for
Advection-Diffusion -Reaction Equations*

(Abstract)

Colin Arof Garry Rodriguet Donald Wolitzer t

Introduction

Explicit time differencing methods for solving differential equations are ad-
vantageous in that they are easy to implement on a computer and are intrinsi-
cally very parallel. The disadvantage of explicit methods is the severe restric-
tions placed on stepsize due to stability. Stabilty bounds for explicit time dif-
ferencing methods on advection-diffusion-reaction problems are generally quite
severe and implicit methods are used instead. The linear systems arising from
these implicit methods are large and sparse so that iterative methods must be
used to solve them. In this paper we develop a methodology for increasing
the stability bounds of standard explicit finite differencing methods by combin-
ing explicit methods, implicit methods, and iterative methods in a novel way to
generate new time-difference schemes, called preconditioned time-difference
methods.

Background
We give a simple description of the method by considering the solution of a
system of linear ordinary differential equations

du _ Au, u(0) = u,, (0.1)
dt
where A is an n X n matrix. Such differential equations are generally solved by

explicit, implicit or hybrid predictor-corrector methods.

*This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

tDepartment of Applied Science, University of California, Davis, Calif. and Lawrence
Livermore National Laboratory, Livermore, Calif., 94550

{Department of Mathematics and Computer Science, Calif. State Univ., Hayward, Calif.,
94542




General explicit multi-step methods are given by

4
u™tl = " P(AtA)un
j=0

where the P;’s are real polynomials. General implicit methods take the form

£
= " Q;(AtA)un (0.2)
j=—1
where the Q;’s are real polynomials. Note that implicit methods require 2 linear
system to be solved:

- Qa(AAN™ = 3 gy (AtA)".

=0

Predictor-corrector methods attempt to get the best of both worlds by defining
an approximation w1 to un+! by an explicit scheme

)
urH® = Z P;(AtA)u™—d
j=0

and then correcting this approximation by an implicit scheme

£
un+1('+l) — Q_I(AtA)un-l-l(‘) + 2 QJ.(AtA)u""’j, s=12,.... (0.3)
ji=0

Convergence occurs if the spectral radius of Q_1(AtA) is less than unity. This
is generally true only if At is extremely small.

The linear systems in implicit methods can be very large and very sparse
and often require iterative methods for their solution. The particular iterative
method that is used depends significantly on the properties of the matrix and
the type of computer that is to be used.

First order iterative methods are defined by first introducing a matrix split-
ting

M - N =[I- Q-1(AtA)] (0.4)

and then iterating in the following fashion:

4
Mu+H ) = Nur+ ¢ 4 ZQJ-(AtA)u“"j, s=12,....
j=0

The splitting is chosen so that the spectral radius of M~!N is less than unity
so that convergence of the iteration is assured. The iteration can be terminated




when the norm of the residual falls below some threshhold or it can be termi-
nated after a fixed number of iterations, say k, so that u»+! = u*+1* for each
n.

Precondtioined Time Differencing

Preconditioned time differencing methods begin by using a classical explicit
method to yield an initial guess for an iterative scheme. This iterative scheme is
then used to solve an implicit equation where only a fixed number of iterations
are taken. That is,

£
un+1(°) — EIJj(AtA)un—j
i=0

and

£
Mu ) = Nyt + Z Qi(AA™, s=1,2,...,m (0.5)
ji=0

for a splitting M — N of (I — Q_1(AtA)). We then take un+! = un+10™

We note that the preconditioned time differencing method is related to the
waveform relaxation method on linear problems where the explicit operator is
the identity matrix.

An example of a preconditioned time-diferencing method is given by a Forward-
Euler method as the explicit part and a Backward-Euler method as the implicit
part. The preconditioner is the point-Jacobi matrix with only one iteration
being taken. Specifically, this preconditioned time-differencing method is the
following;:

1. Initial Guess for Iterative Method: Forward Euler Method.
w1 = (T4 AtA)u?;
2. Overrelaxed Jacobi Matrix Splitting of the Backward Euler Matrix:
(I-AtA)=M-N,
M = c diagonal(I - AtA), ¢> 0.
3. Preconditioned Time Differencing Method.

w1 = Mot N v}, s=12...,m.

We take m =1 so that this preconditioned scheme takes the following form.

Mu"*! = {N(I + AtA)u” + u”} (0.6)




or
u*! = C(At)u” (0.7)
where
C(At) = AtPM™1A? + AtA +1 (0.8)
Matrix stability of (0.7) demands that p(C(A?)) < 1.

Test Problems

We use the above preconditioned time differencing scheme (0.7) to solve
the system of ordinary differential equations arising from a method of lines
discretization of the K-dimensional diffusion equation

K
Ou &u
E—-aiil-a??, a>0, (09)
and the K-dimensional scalar advection-diffusion equation
Ou
o +p-Vu=€V-Vu, p,e=constants. (0.10)

Convergence of the method for the above equations is established. Stabilty
ranges for At/Az and At/Az? are calculted by both a Von-Neumann stability
analysis and a matrix stability analysis. Computations are given that verify
these results. We then show experimentally that these stability ranges still
hold when the precondtioned time differencing method (0.7) is used to solve the
one-dimensional Burgers’ equation

ou Ou 0%u

U = €. 1
+ Yoz = oa2 (0.1)
Finally, we test the preconditioned time differencing method using different

explicit methods, preconditioners, and iteration counts for solving the following

highly stiff, nonlinear reaction equations arising from an atomospheric model:

1 = —kii1yr — kannye + ksyes + kayoyr — kryiya + 2k12y7 + kasye
Yo = kiyiyr — kayrys — keysyz — ksyaye — k1zyz — k142

Ys = 2ksysyo — key2ys + kryiya + ksyava — koysys — kysys + 2k1sys
Ya = keyays — kryrya — ksyoys — koysya — 2k1095 + k1193Ys

¥s = kiovi — k1niysys — k1sys

where the k; are reaction constants and the ys,yr,ys, Yo represent chemical
species in instantaneous equilibrium.




Preconditioned Iterative Methods for Unsteady Non-Newtonian
Flow between Eccentrically Rotating Cylinders

D.Rh.Gwynllyw and T.N.Phillips
Department of Mathematics,
University of Wales,
Aberystwyth SY23 3BZ,
Wales, UK.

December 14, 1993

Abstract

The journal bearing is an essential part of all internal combustion engines as a means of
transferring the energy from the piston rods to the rotating crankshaft. It consists essentially
of an inner cylinder (the journal), which is part of the crankshaft, and an outer cylinder (the
bearing), which is at the end of the piston rod. In general, the two cylinders are eccentric
and there is a lubricating film of oil separating the two surfaces. The addition of polymers
to mineral (Newtonian) oils to minimize the variation of viscosity with temperature has the
added effect of introducing strain-dependent viscosity and elasticity.

The physical problem has many complicating features which need to be modelled. It is a fully
three-dimensional problem which means that significant computational effort is required to
solve the problem numerically. The system is subject to dynamic loading in which the journal
is allowed to move under the forces the fluid imparts on it and also any other loads such as
that imparted by the engine force. The tentre of the journal traces out a nontrivial locus in
space. In addition, there is significant deformation of the bearing and journal and extensive
cavitation of the oil lubricant.

In the present study we restrict ourselves to the two-dimensional statically loaded problem.
In previous work ([6], [7], [5]) a single domain spectral method was used which employed a
bipdlar coordinate transformation to map the region between the journal and the bearing
onto a rectangle. The flow variables were then approximated on this rectangle using Fourier-
Chebyshev expansions. However, to allow for future possible deformation of the journal and
bearing surfaces due to increased load in the dynamically loaded case we have decided to use
a more versatile spectral element formulation.

The governing equations for a generalized Newtonian fluid comprise the conservation of
momentum

p (% + v.Vv) =-Vp+ V.T, (1)
the conservation -of mass
Vwv=0, (2)




and the constitutive equation
T = 29(7)d, (3)

where p is the density, 7 is the variable viscosity, ¥ = /2 trace(d)? is the shear-rate. T is the
extra-stress tensor and d = %( Vv+(Vv)T)is the rate of deformation tensor. The constitutive
equation written in this form can easily be modified to incorporate viscoelasticity. The journal
and bearing have radii R; and Rp, respectively, with the distance between the centres of the
cylinders given by e. The bearing is kept at rest. while the journal is rotated at an angular
velocity Q. The eccentricity is defined by € = e/c, where ¢ = Rp — Ry is known as the gap.

The region between the journal and bearing is partitioned into a number of spectral elements.
Each physical element is mapped onto the parent element [-1,1] X [-1,1). A Legendre
Gauss-Lobatto grid is used on the parent element. On the parent element the velocity and
extra-stress components are approximated by interpolating polynomials whose nodes are the
Gauss-Lobatto nodes, and the pressure by an interpolating polynomial whose nodes are the
interior Gauss-Lobatto nodes. Therefore the pressure approximation is of degree N — 2
if the velocity approximation is of degree N. The velocity and pressure approximations
corresponding to element k are therefore

N N
Vi€ = 50 D vEhi(E)hi(n), (4)
1=0 j=0
N-1N-1
phE,n) =S S ok ihi(©)hi(n). (5)
i=1 j=1

With the velocity and pressure approximation spaces thus chosen the Babuska-Brezzi com-
patibility condition is satisfied. There are no spurious pressure modes in the pressure approx-
imation.

The solution of the steady problem is found by marching the time-dependent equations
forward in time. The following time-splitting scheme is used:

Lv—vhy = 2vghdt - —A”—tvn.vV", (6)
_P_(Vn+1 —v) = —vpntl + V2L (7)

vyttt = 0. (8)
Equation (6) is an explicit equation for v*. The solution of (7) and (8) requires the inversion

of an unsteady Stokes operator at each time step. This is the computationally intensive part
of the algorithm.

The weak form of the unsteady Stokes problem is set up by multiplying each equation by
an appropriate test function, integrating over each element and using Green’s theorem. The
corresponding discrete system is formed by replacing the integrals by appropriate quadrature
rules whose nodes are the Gauss-Lobatto nodes points and choosing a sequence of test
functions which span the appropriate approximation space. This leads to the system

Av+oBv-DTp = g, 9)
Dv = h (10)




where o = 2/At. Block Gaussian elimination yields a symmetric positive definite system for

the pressure
Sp=c (11)

where § = D(A+ oB)"'DT and ¢ = —~D(A + 0B)~'g + h. The system (11) is solved for
the vector of pressure unknowns. Since this system is solved using an iterative method, the
preconditioned conjugate gradient method. the stiffness matrices do not need to be set up.
Instead they are kept in elemental form.

It is documented in [2] and in other papers that, for the steady problem, the condition
number of S, using the pressure mass matrix as preconditioner, is near unity and hence is
well-conditioned for use in a preconditioned conjugate gradient algorithm. This result depends
on the element aspect ratios. However, the geometry of the journal bearing is such that the
elemental aspect ratios which are proportional to @ = ¢/2wrR; are very large. At large
eccentricities the aspect ratios are much less than 1/100. Not even significantly redefining the
elements would overcome this problem. As the aspect ratio increases the condition number of
S increases with a small cluster of eigenvalues leaving the ‘nice cluster’ and tending towards
zero. Using the usual pressure mass matrix as a preconditioner the preconditioned conjugate
gradient method will fail to converge within the theoretical maximum /V iterations indicating
that round-off errors dominate.

Direct solution methods for (11) are undesirable because of the considerable time required
in preprocessing S. Furthermore, due to the bad conditioning of S we find that Choleski
decomposition gives inaccurate results.

Efficient preconditioners for § are therfore essential for the efficient solution of (11) using the
preconditioned conjugate gradient method at each time step. The unsteady Stokes problem
is notoriously difficult to precondition [4]. We considered two choices for the preconditioning
matrix. The first was based on the diagonal of the pressure mass matrix. This matrix
comprises nonzero entries which are the tensor products of the quadrature weights used in
setting up the discrete variational formulation (9)-(10). This preconditioner, although cheap
to form, was not as powerful as the second choice.

Note that the entries of S are dependent, among other things, on the eccentricity e. We
denote this dependence by S(¢). The second choice for preconditioner was to use the Choleski
decomposition of S(0) as the preconditioner for S(¢€). Although the Choleski factorization of
5(0) is unsuitable if used to invert the system directly, it does, however, provide a very
powerful preconditioner. For a fixed number of elements and a fixed degree of polynomial
approximation this preconditioner yielded condition numbers independent of Af. At very
high eccentricities it is necessary to replace the preconditioner S(0) by S(eo), where €o > 0.

For the dynamically loaded case the matrix S is independent of the orientation of the cylinders
with respect to a fixed coordinate axis and hence the preconditioners mentioned above are
equally valid for this problem.

The condition numbers of the preconditioned systems will be presented showing the depen-
dence on the various parameters of the problem as well as the discretization parameters.
Results will be presented which illustrate the reduction in the condition number and iter-
ations when using preprocessed matrices as preconditioners and also the improvement in
accuracy over supposedly exact direct methods. Accuracy is measured by comparing the
loads and couples on the journal for the steady statically loaded case with those obtained in




(6] and also with lubrication theory [1]. Good agreement with previously published results is
demonstrated.
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Fast non-Symmetric Iterations and Efficient Preconditioning
for Navier-Stokes Equations

David Silvester { and Howard Elman }

Abstract.

Discretisation of the steady-state Navier-Stokes equations:

M (u.grad )u — vV?u 4 gradp =0

divu = 0.
in some flow domain & C IRY, (d = 2 or 3), gives a system of non-linear algebraic
equations for discretised variables u (the velocity), and p (the pressure). We as-
sume that appropriate boundary conditions are imposed. The non-linear equation
system can be linearised using a fixed-point (Picard) iteration to give a matrix

system of the form:

@ (5 %)()-(0)

which must be solved at every iteration. The matrix A is block diagonal, and
consists of d convection-diffusion operators, one for each component of velocity.
Two difficulties arise when solving (2). Firstly, the matrix 4 is not symmetric,
although under certain conditions the symmetric part is positive definite. Secondly,
the overall system is indefinite. This makes the design of fast and efficient iterative

solvers for discretised Navier-Stokes operators an extremely challenging task.

Our objective is to analyse the convergence of preconditioned Krylov subspace
iterations (for example, GMRES or QMR) applied to unsymmetric linear systems
of the form (2). In practice, direct solution of (2) (via sparse elimimation) may
be possible in the case d = 2, but direct solution is not feasible when d = 3. Note

f UMIST, Manchester M60 1QD, United Kingdom
I University of Maryland, College Park, MD 20742




that high accuracy solutions are not usually required, and a “good” initial solution

estimate is readily available.

The approach that we adopt builds on our earlier work (cf. [1],[2],[3]) in the
symmetric (Stokes) case. In particular, we concentrate on mixed finite element
approximations of (1). Our analysis assumes that the preconditioning is of the

form:
3) My O\ _(A Bt

O Mg/ \B 0)’
where M4 is some approximation of A, typically a multigrid or line relaxation
preconditioner, and the operator Mg approximates the Schur complement matrix
BA™1B*. The analysis leads to bounds on the eigenvalue distribution of the
preconditioned system in terms of two parameters: h (the characteristic mesh

size) and v (the viscosity). Our theoretical results are reinforced by numerical

experiments, a selection of which will also be presented.
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Friday Evening’s Workshop
Robust Iterative Methods

Organizer: Youcef Saad

Abstract

In spite of the tremendous progress achieved in retent years in the general area of iterative
solution techniques, there are still a few obstacles to the acceptance of iterative methods it a
number of applications. These applications give rise to very indefinite or highly ill-conditioned non
Hermitian matrices. Trying to solve these systems with the simple-minded standard preconditioned
Krylov subspace methods can be a frustrating experience. With the mathematical and physical
models becoming more sophisticated, the typical linear systems which we encounter today are far
more difficult to solve than those of just a few years ago. This trend is likely to accentuate. This
workshop will discuss (1) these applications and the types of problems that they give rise to; and
(2) recent progress in solving these problems with iterative methods. The workshop will end with
a hopefully stimulating panel discussion with the speakers.

Speakers

¢ Youcef Saad, University of Minnesota
“Tterative solvers in industrial applications: are we kidding ourselves?”

s Mike Heroux, Cray Research
“Some current thallenges for industrial CFD applications”

o Wei Pai Tang, University of Waterloo
“Multi-stage ILU preconditioners for semiconductor device
simulation”
(in collaboration with Qing Fang, Peter Forsyth, John McMacken)

e Larry Wigton, Boeing Computer Services
“Experiences with Matrix-Iterative Solvers at Boeing”

¢ Alex Yeremin, Russian Academy of Sciences and Elegant Mathematics, Inc.
“Numerical experiences with advanced iterative solvers for industrial applications”




-
s
. -

PO
RO




Colorado Conference
on Iterative Methods

Saturday, April 9

Preconditioners I
Chair: Steve Ashby
Room A

8:00 - 8:25 Edmond Chow
Approximate Inverse Preconditioners for General Sparse Matrices

8:25 - 8:50 Xiaoge Wang
CIMGS: An Incomplete Orthogonal Factorization Preconditioner

8:50-9:15 L. Kolotilina
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Approximate inverse preconditioners for general sparse matrices

Edmond Chow and Youcef Saad
University of Minnesota
Department of Computer Science
Minneapolis MN 55455

Preconditioned Krylov subspace methods are often very efficient in solving sparse linear
matrices that arise from the discretization of elliptic partial differential equations.
However, for general sparse indifinite matrices, the usual ILU preconditioners fail, often
because of the fact that the resulting factors L and U give rise to "unstable" forward and
backward sweeps. In such cases, alternative preconditioners based on approximate
inverses may be attractive. We are currently developing a number of such preconditioners
based on iterating on each column to get the approximate inverse. For this approach to be
efficient, the iteration must be done in sparse mode, i.e., we must use "sparse-matrix by
sparse-vector" type operations. We will discuss a few options and compare their
performance on standard problems from the Harwell-Boeing collection.
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CIMGS: An Incomplete Orthogonal
Factorization Preconditioner

Xiaoge Wang
Computer Science Department
Indiana University-Bloomington

Kyle Gallivan
ECE Department, University of Illinois—Urbana,

Randall Bramley
Computer Science Department
Indiana University-Bloomington *

January 3, 1994

This paper introduces, analyzes, and tests a preconditioning method for
conjugate gradient (CG) type iterative methods. We start by examining
incomplete Gram-Schmidt factorization (IGS) methods in order to motivate
the new preconditioner. We show that the IGS family is more stable than
IC, and they successfully factor any full rank matrix. Furthermore, IGS
preconditioners are at least as effective in accelerating convergence of CG
type iterative methods as the incomplete Cholesky (IC) preconditioner. The
drawback of IGS methods are their high cost of factorization. This motivates
finding a new algorithm, CIMGS, which can generate the same factor in a
more efficient way.

The new preconditioner (called CIMGS) is derived from and shown to be
equivalent to IMGS, a member of the IGS family, and so for any full rank
matrix it does not breakdown in exact arithmetic. In addition to preserv-

*Work supported by NSF grants CCR-9120105 and CDA-9309746




ing the effectiveness of IMGS, it also greatly reduces the cost of computing
the preconditioner. Although originally designed for preconditioning least
squares problems, it is also applicable to more general symmetric positive
definite matrices. An error analysis shows that numerically CIMGS is less
likely to be rank deficient than Cholesky factorization. This implies that
CIMGS is more robust than either IC or complete Cholesky factorization.
For systems whose normal equation, are M-matrices, CIMGS induces a
regular splitting. We also prove that under this assumption, CIMGS gener-
ates a factor R which is elementwise closer to the complete Cholesky factor
than the factor R produced by IC. This shows that for M-matrices, CIMGS
is better than IC in approximating the full Cholesky factor. Further re-
sults show that CIMGS better approximates the complete Cholesky factor
R° as the set of dropped positions gets smaller, and lies between complete
Cholesky factorization and incomplete Cholesky factorization in its approx-
imation properties. These properties usually hold numerically, even when
AT A is not an M—matrix. When the target sparsity pattern of the incom-
plete factor satisfies a mild and easily verified (or enforced) property, the
upper triangular factor CIMGS generates is the same as the one incomplete
Cholesky factorization does. This provides a radically different method of
stabilizing IC factorization, based solely on the target sparsity pattern.
Numerical test results are presented that show

1. CIMGS in practice is robust. It succeeds for all 30 of our test problems,
while Cholesky fails for 6 and IC fails for 18 problems.

2. CIMGS preconditioned CG is competitive with or superior to IC pre-
conditioned CG in efficiency.

3. CIMGS preconditioned CG is competitive with complete Cholesky fac-
torization applied to the normal equations in both robustness and effi-
ciency.




Incomplete Block SSOR Preconditionings for High Order
Discretizations

L.Kolotilina

Steklov Mathematical Institute

Fontanka 27, 191011 St.Petersburg, Russia
E-mail: liko @ lomi.spb.su

This talk considers the solution of linear algebraic systems Az = b re-
sulting from the p-version of the Finite Element Method (FEM) using PCG
iterations. Contrary to the h-version, the p-version ensures the desired ac-
curacy of a discretization not by refining an original finite element mesh but
by introducing higher degree polynomials as additional basis functions which
permits to reduce the size of the resulting linear system as compared with
the h-version.

The suggested preconditionings are the so-called Incomplete Block SSOR,
(IBSSOR) preconditionings. Assuming that A = (Ay), 1 < 4,7 < m, is
a block partitioning of a symmetric positive definite matrix A an IBSSOR
preconditioner B for A is constructed in the form

B=(D+L)D™Y(D + L"),

where D = Diag(fin, ceny Zimm) and A; is a s.p.d. approximation to Aj;,? =
1,...,m. In the context of the p-version of the FEM instead of the com-
monly used block partitionings based on a domain decomposition technique
we consider the so-called hierarchical p-partitionings. These partitionings are
constructed recursively and at each p-refinement step the stiffness matrix A
is partitioned into a 2 x 2 block form

An Ax
A=
( An Az )’
where the first block A;; corresponds to the "old” basis functions while As,
corresponds to the "new” basis functions.
Using hierarchical p-partitionings eusures that to construct an IBSSOR

preconditioner after a p-refinement we nead only to construct an approxima-
tion to the new diagonal block of A while other diagonal blocks are already

1




approximated. This is in contrast with the domain decomposition approach
where at each p-refinement step one needs to construct the whole precondi-
tioner a new.

The suggested preconditionings are analyzed theoretically and provided
with the results of numerical experiments for 3D linear elasticity problems
showing that the IBSSOR-CG algorithms based on the hierarchical p parti-
tionings outperforms the IBSSOR-CG algorithms based on the domain de-
composition approach. Moreover, sometimes the hierarchical p partitionings
based IBSSOR-CG algorithms provide a unique way to compute the solution
to highly ill-conditioned 3D FE systems.

————— - - .- o — — -
= NEE Mo e Ty Tl m TN '_’ PRI B -



BLOCK-BORDERED DIAGONALIZATION AND PARALLEL
ITERATIVE SOLVERS

Fernando Alvarado

Hasan Dag

Monika ten Bruggencate

Department of Electrical and Computer Engineering
The University of Wisconsin — Madison

Abstract

One of the most common techniques for enhancing
parallelism in direct sparse matrix methods is the re-
organization of a matrix into a blocked-bordered struc-
ture. Incomplete LDU factorization is a very good pre-
conditioner for PCG in serial environments. However,
the inherent sequential nature of the preconditioning
step makes it less desirable in parallel environments.
This paper explores the use of BBD (Blocked Bordered
Diagonalization) in connection with ILU precondition-
ers. The paper shows that BBD-based ILU precondi-
tioners are quite amenable to parallel processing. Ne-
glecting entries from the entire border can result in a
blocked diagonal matrix. The result is a great increase
in parallelism at the expense of additional iterations.
Experiments on the Sequent Symmetry shared memory
machine using (mostly) power system type matrices in-
dicate that the method is generally better than con-
ventional ILU preconditioners and in many cases even
better than partitioned inverse preconditioners, with-
out the initial setup disadvantages of partitioned inverse
preconditioners.

1 Introduction
A set of sparse linear system of equations
Ax =b, (1)

can be solved by either Gaussian elimination-based di-
rect methods or iterative methods. Direct methods
produce an exact solution to the machine precision,
whereas iterative methods produce an approximate so-
lution. The solution part in direct methods is preceded
by an ordering and a symbolic factorization.

An iterative method to solve an n x n linear system
starts with an initial approximation x° to the solution

x and generates a sequence of vectors {x*}$2, that con-
verges to the solution x. One of the most widely used
iterative methods, when matrix 4 in (1) is symmetric
positive definite, is the preconditioned conjugate gradi-
ent method. Below we present PCG algorithm for the

sake of completeness. For more details see (8, 11, 17].

Initialize;

Select x9
Let r® = b — Ax°
Solve M 0 « 0
Let p® — £°
Iterate:
ar  —  —(%%,r¥)/(pF, ApF)
x¥+1 o xF_oyp
P oF o Aph
Solve M §F+l — pk+1
B e (FH )G )
pk+1 — i:k-{-l + ﬁkpk

The matrix M defines the preconditioner matrix im-
plicitly. Every iteration requires one matrix vector
product, two inner products, three saxpy operations,
two scalar comparisons and the solution of a linear set
of equations, M¥ = r. All operations except the solu-
tion of the linear equations can be done in parallel. This
paper improves the parallelism of the linear equations
solver.

1.1 Incomplete LU (ILU) Preconditioners

" Given a symmetric positive definite matrix A, the
Cholesky factorization of A is

A=LLT 2)

For large systems A is usually sparse. Due to fill-in, L
can be considerably less sparse than A. Thus instead
of using L, an approximation to L denoted by L can be
used: .

A=LLT+B 3)

where B # 0 is an error matrix, and T is a lower trian-
gular matrix, which is more sparse than L. This matrix
implicitly defines M = LLT (M is never computed ex-
plicitly) and it is called an incomplete factorization of
A [11, 13, 17].

_. There are several ways of constructing and defining
L. One way is to construct I, and then discard those




entries within L that correspond to zero positions in A.
This approach is inefficient in that it requires the com-
putation of the entire L matrix, which is often a costly
step. A better way to perform this computation is to
simply perform an ordinary factorization of a matrix,
but preclude the creation of any new nonzeros. That is,
all computation involving fills is suppressed during the
factorization process. This simple departure from ordi-
nary LU factorization is the “level 0” ILU algorithm.

The numerical performance of an ILU algorithm can
be improved if some fill-in is permitted to occur. The
simplest possibility is to permit the occurrence of fills
that involve original matrix entries, but preclude the
creation of fill entries that depend on prior fills. This is
the “level 1” ILU algorithm. Further levels of fills based
on prior fills may be permitted, defining higher level
incomplete factorization algorithms. The more levels
that are included, the closer L can be expected to be
to L. However, more accurate also implies denser.

Other alterations to the basic ILU algorithm include
the use of numerically-based rather than topology-
based ILU [16], and the use of ordering prior to per-
forming the ILU factorization [5].

1.2 Partitioned Inverse Preconditioners

This section provides a brief review of the partitioned
inverse method for solving sparse linear equations [3, 6].
A sparse set of linear equations (1) is solved by direct
methods by first ordering A to reduce fills during fac-
torization [15], factoring A into the product of a lower
triangular matrix L and an upper triangular matrix U,
and then solving:

Ly = b 4
Ux = ¥y (5)
where (4) is solved for y by forward substitution, and
(5) is solved for x by backward substitution. If A is

symmetric, then U = LT. The remainder of the pa-
per assumes that A is symmetric and positive definite.

Define:
w=1rL"! (6)
The forward and back substitution steps (4) and (5) are
replaced with the matrix-vector products:
y = Wb ()
x = Wly (8)
These products are quite amenable to parallel process-

ing. The matrix L can also be expressed as the product
of elementary matrices:

L=1ILs---Ly 9)

where the elementary matrix L; is an identity matrix
except for its #** column, which contains column 7 of L.
The inverse of L can be written as:

W=L"1'=W,Waey--- W) (10)

The matrix W is a lower triangular matrix that is usu-
ally considerably denser than L. Its graph is the tran-
sitive closure of the graph associated with L [3].

An alternate representation for W is based on group-
ing the elementary inverse factors W; into m groups of
adjacent factor:

W = WonWino1 - WA (11)

where each W is the aggregate of several elementary
inverse factor W;. By aggregating the product in (10)
into m factors rather than just one factor, the com-
bined sparsity structure of these m factors of W can
be the same as the structure of L itself. With suitable
ordering and partitioning algorithms, it is usually pos-
sible to have m < n [3, 4, 6, 12]. It is also possible
to increase the sparsity of the W factors by discarding
small entries of precluding the creation of new entries
in W. This approximation defines a partitioned inverse
preconditioner [1].

1.3 Block Bordered Preconditioners

One of the most common structures for enhancing
parallelism in direct sparse matrix methods is the re-
organization of a matrix into a blocked-bordered struc-
ture. Recent work by Zecevic et al [18] on the heuristics
for bordered blocked methods based on structural de-
compositions ideas has resulted in a class of surprisingly
effective recursive block-bordering methods which can
be applied to arbitrary structure matrices. The meth-
ods are based loosely on the ideas of structural decom-
position [18], and can also be related to earlier concept
of diakoptics on sparse matrix applications [2, 9, 10].
For another reference on partitioning see also [14] for
partitioning based on the Laplacian matrix.

The BBD algorithm is as follows:

1. Determine the valence of all nodes
2. Select a threshold valence value

3. Place all rows/columns with valences greater than
the threshold in the lower right hand corner of the
matrix.

4. Determine the blocked connected components of
the matrix with the lower corner rows/columns re-
moved

5. Selectively move rows from the lower corner back
into the upper portion provided that their effect
on density and/or block structure is not too sig-
nificant

6. Group small blocks into single blocks

7. Repeat the bordering/blocking heuristics on the
lower right hand corner block




The last step is surprising. Because no connectivity
structure was required of the rows placed on the border
(e.g., they did not have to form a separator or any other
special structure), the recursion is quite effective. The
tests that follow consider various BBD and approxima-
tion heuristics as preconditioners for the PCG method.
Figure 1 shows a 118 x 118 matrix ordered to a BBD
form (no fills added).
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Fig. 1: Topology of a 118 x 118 power system matriz
after ordering with BBD prior to the addition of any
fills (level 0 preconditioner).

2 Experimental Results

The experiments reported in this section use power
system sparse matrices. Power system problems are
usually not well-structured [7] and the average number
of nonzeros per row is usually very low (about four),
Thus, the use of vector computers or parallel processors
has not been very successful to date. Some of the best
results have been obtained by ordering these matrices
such that either denser rows or columns are formed or
the profile of the matrix is reduced [5].

Figure 2 illustrates the solution times as a function
of the number of processors using a Sequent Symme-
try computer for three methods. The time required to
setup the partitioned inverse preconditioner is not con-
sidered in this figure. The BBD method assumes that
the matrix is block-bordered according to the BBD al-
gorithm, and the resulting structure is used within a
level 1 ILU preconditioner. The BD curve refers to the
same case but where all entries in the border are also
discarded. The number of iterations to convergence is
sometimes greater but the total solution time is lower.
Tables 1 and 2 give details about the number of itera-
tions and other statistics for four different precondition-
ers and matrices. In Tables 1 and 2 p refers to number
of processors, BBD refers to blocked border diagonal-
based preconditioner, BD same as BBD but borders

are discarded. The W indicates partitioned inverse pre-
conditioner obtained from ILU1 by full inversion, and
W is same as W but no inversion fills allowed. When
W is used as preconditioner the number of iterations
sometimes become much larger than that of W but less
number of arithmetic operations makes it competitive
sometimes better preconditioner than W. The row iter
in tables refers to number of iterations for PCQG.

Table 1: CPU times(s) for 1084x1084 matrix with four
different preconditioners.

D CPU time(s)
BBD|BD| W | w [ILUI
1| 9.2 [10.6] 3.2 [3.04] 393
2 [5.04]5.7]1.72]1.68| 334
4 (334132 9.9 79
811.9]19].58|.51] 40
iter| 9 |34 4| 7| 4

Table 2: CPU times (sec) for 1993x1993 matrix with
four different preconditioners.

P CPU time(s)
BBD|BD| W | w [ILU1
1 120.1(8.3{14.5/6.8/1062
2 110.214.51 7.2 13.7| 544
4156 (351412261
8| 3.5 (1.4]22](1.1] 114
17125 1.9]1.5[0.8] 49
iter[] 9 (121 2 |7 2
zzno‘
i <-BBD
g1af
g We>
ol
I [T a1}

8 10
Number of Processors

Fig. 2: Cpu time(ms) for a 1993 x 1993 power system
matriz. BBD refers to block-bordering without discard-
ing eniries, BD refers to block-bordering discarding all
border entries, and W refers to the partitioned inverse
preconditioner obiained by inversion of the ILU level 1
factors.




3 Conclusions

Results on a limited number of experiments sug-
gest that block-bordering methods (particularly ap-
proximate block-bordering methods after discarding the
border) can be effective preconditioners in parallel en-
vironments.
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Iterative Methods for Stationary

Convection-dominated Transport Problems
S.W. Bova
G.F. Carey
Computational Fluid Dynamics Laboratory
The University of Texas at Austin

Abstract

It is well known that many iterative methods fail when applied to nonlinear sys-
tems of convection-dominated transport equations. Most sucessful methods for obtain-
ing steady-state solutions to such systems rely on time-stepping through an artificial
transient, combined with careful construction of artificial dissipation operators. These
operators provide control over spurious oscillations which pollute the steady state solu-
tions, and, in the nonlinear case, may become amplified and lead to instability. In the
present study, we investigate Taylor Galerkin and SUPG-type methods and compare
results for steady-state solutions to the Euler equations of gas dynamics. In partic-
ular, we consider the efficiency of different iterative strategies and present results for
representative two-dimensional calculations.







Velocity-Vorticity Formulation of
Three-Dimensional, Steady, Viscous, Incompressible Flows

by

A. J. Meir
Department of Mathematics
Auburn University
Auburn, AL 36849-5310

In this work we discuss some aspects of the velocity-vorticity formulation of three-dimensional,
steady, viscous, incompressible flows. We describe reasonable boundary conditions that should be
imposed on the vorticity and a compatibility condition that the vorticity must satisfy.

This formulation may give rise to efficient numerical algorithms for approximating solutions
of the Stokes problem, which in turn yields an iterative method for approximating solutions of the
Navier-Stokes equations.







A Multilevel Approximate Projection for
Incompressible Flow Calculations

Louis H. Howell
Lawrence Livermore National Laboratory
Livermore, CA 94550

An adaptive-mesh projection algorithm for unsteady, variable-density, incompress-
ible flow at high Reynolds number has been developed in the Applied Mathematics
Group at LLNL [1]. A grid-based refinement scheme combines the theoretical effi-
ciencies of adaptive methods with the computational advantages of uniform grids [4],
while a second-order Godunov method provides a robust and accurate treatment of
advection in the presence of discontinuities without excessive dissipation [3]. This pa-
per focuses on the work of the present author concerning the approximate projection
itself, which involves the numerical inversion of the operator V - (1/p)V on various
subsets of the adaptive grid hierarchy.

The projection is approximate in the sense that it does mot enforce an exact
discrete version of the divergence-free constraint, but it shares several valuable math-
ematical properties with exact projection methods. A single-grid version of this pro-
jection was introduced in [2]. I discuss the advantages of this method over exact
formulations, and give a detailed discussion of the appropriate treatment of coarse-
fine interfaces. Three basic variations are given: one based on bilinear elements which
yields a 9-point 2D Laplacian stencil in uniform parts of the mesh, one based on linear
triangular elements which yields a 5-point stencil, and an extension of the latter to a
7-point stencil in 3D.

Solution methods are discussed with an emphasis on efficiency for vector architec-
tures. Since finer levels are advanced with smaller time steps than coarser levels, two
distinct projection problems arise. In one, the projection must be performed on a
single level, consisting of a union of rectangular patches. In the other, synchronization
at the end of a coarse time step requires simultaneous solution on two or more levels,
including special difference formulas at the coarse-fine interface. Interesting variable-
density problems can involve abrupt density jumps of several orders of magnitude,
e.g. the 800-to-1 discontinuity between water and air. A combination of multilevel,
multigrid and conjugate-gradient techniques is required for efficient solution of these
problems on the adaptive-grid hierarchy.

Some other multilevel methods, e.g. FAC [5], derive the relationships between
coarse and fine grid data from the multigrid algorithm used to solve the system.
In contrast, the present scheme operates with interface stencils determined by the
structure of the discrete projection operator, on a grid structure determined by the
requirements of the fluid simulation. Refinement ratios other than two between coarse
and fine levels are supported. Four is a common choice.




Figure 1: In the level-project multigrid cycle (top), operations apply only to interior
points of a level. In the sync-project multilevel cycle (bottom) two operations are
defined that cross the coarse-fine interface—computing the residual, and restricting
it to the coarse grid.

Additional temporary levels of refinement may be created by the multilevel solver.
Since coarse-fine discretizations are only defined between the main levels of the hier-
archy, however, the addition of intermediate levels can make the multilevel iteration
follow a more complicated pattern than a simple V-cycle. Figure 1 shows typical mul-
tilevel cycles for both the level-project and sync-project operations, while Figure 2
illustrates the coarse-fine interface stencils.

Most of the programming for this project has been done in C++-, using a variety of
data structures for representation of the adaptive mesh hierarchy, auxiliary geometric
information, numerical data, boundary conditions, etc. Efficient execution, however,
has required that most numerical work be delegated to kernel routines written in
FORTRAN. Other efficiency issues range from fast evaluation of inner products on
the adaptive mesh to reduction in subroutine call overhead.

Preliminary timings for the 2D level-project on a Cray YMP for a typical 19-
grid test problem show 6.9 psec/zone for the constant-density 5-point stencil, in-
cluding divergence and gradient expense, with the residual reduced by a factor of
108 (6 V-cycles). The constant-density 9-point stencil required 7.9 pusec/zone, while
the variable-density 9-point stencil took 17.4 pusec/zone. Additional timings will be
presented, along with other numerical examples for problems in both two and three
dimensions.
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Figure 2: Stencils at grid edges and corners, shown for a refinement ratio of four. On
the left, the stencil for V - oV ¢ uses ¢ values defined at nodes (solid circles) and o
values defined at cells (open circles). Also, the divergence stencil for V- V uses V
defined at these same (open) cell positions. On the right are the stencils for restricting
residuals to the coarse grid.
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SIMULATION OF VISCOUS FLOWS USING A
MULTIGRID-CONTROL VOLUME FINITE ELEMENT METHOD

N.A. Hookey
Memorial University of Newfoundland
Faculty of Engincering and Applied Science
S§t. John's, Newfoundland, Canada, A1B 3X5

Abstract

This paper discusses 2 multigrid- control volume finite element method (MG CVFEM) for
the simulation of viscous fluid flows. The CVFEM is an equal-order primitive variables
formulation that avoids spurious solution fields by incorporating an appropriate pressure
gradient in the velocity interpolation functions. The resulting set of discretized equations is
solved wsing a coupled equation line solver (CELS) that solves the discretized momaentum
and continnity equations simultaneously along lincs in the calculation domain. The CVFEM
has been implemented in the context of both FPMV- and V-cycle multigrid algorithms, and
preliminary results indicate a five to ten fold reduclion in exeention times,

Numerical Method

Tho CVFEM presented in this paper is based on the equal-order methads proposed by
Prakash [1], Hookey and Daliga [2}, and Hookey [3]. These methods were successful, how-
aver, the author was not satisfied with the convergenca rates of the CVIEM for compressibla
flows developed in [3]. Independently, McCormick {4] developed & finite volume element
method (FVEM), which is similar to the CVFEM, and implemented this method in the
context of both MG and fast adaptive composite (FAC) grids. This provided the impe-
tus to improve the cfficiency of the current CVFEM’s by using wultigrid techniques, The
remainder of this paper presents a brief description of the CVFEM, the implementation
details in the context of MG, and preliminary results from a benchmark problem.
Gioverning equations, The governing equations for steady, incompressible, two-

dimensional, viscous fluid flow may be written in the following form [5}:
6.j=5’ s 6‘-[}’:0 (l)

where 7 is the mass flux vector p#, and J is the combined convection diffusion flux vector
for the approptiate dependent variable, For the x-momentum equation:

ap

J = ptu - /A7u ; 8§ = 5" -
.

(2)

with similar expressions for the y-momentum equation.
Applying the appropriate conservation principle to a control volume V', which ig fixed
in space, iniegral forms of Eq. (1) can be obtained:

.ﬂ*L:/sm/ . / i ds — :

where 8V is the surface of the control volurue, and # is the unit outward normal to the
differential acen ds,




Domain discretization. In this equal-order CVFEM, the domain is discretized with
three node triangular elements, and all dependent variables are stored at all of the nodes in
the mesh. The discretization is based on a structured mesh to facilitate the implamentation
of the multigrid algorithm. Control volumes are constructed aronnd each node by connecting
the centroid of each clement with the midpoints of its three sides. A sample discretization
is shown in Fig. 1.

Interpolation functions. Values of p, ¢ and the appropriate source term § are evalu-
ated at the centroid of an element, and these centroidal values are assumed to provail over
the corresponding element. Pressure is interpolated linearly within an element.

The velocity components are interpolated by funclions sitnilar to those proposed in
[1, 2,3]. These functions are defined with respect to a flow-oriented Cartosian coordinate
(X,Y) coordinate system, specific to each element, as shown in Fig. 2. The origin of the
coordinate system is located at the centroid of the element, and the X axis is aligned with
the element average velocity vector, ,,.

If it is assumed, only for deriving a suitable interpolation function for the velacity
components, that ply, prevails over an element, the resulting equation governing the steady-
state transport of © momentum within the element, in the X,Y coordinate systein is:

dn u Pu "
p[fav'a—k: =n (W + 5}-,-5) + 8 (4)

where {7, ix the arithmetic mean of the nodal values of /. An element Peclot number,
Pep, and an exponential variable, £, which responds to Pea and the direction of ¥, can
be defined as:

(jl g L e ,X’ - X"‘ -
Pea = B0 U= Xom) 5 €= g (e (0 S 28) 1) 0

where X0 and X4 are the maximum and minimum nodal values of X for an element,
respectively, ‘T'his new variable, £, is used to propose the [ollowing # interpolation function
[3], which is a solution to Eq. (4):

. op’ X (1 —1/N) ,2) .
= - _' .-'u —_—— —— e — ———— 5
= A+ BY +Cy + (s i ) (pr'm. o Y (6)

where N > . An interpolation function for v may be derived in a similar manner. It
should be noted that it is the inclusion of the pressure gradient in the velocity interpolation
fuuctions, and the resuliant coupling of the velacity and pressure fields at the iuterpolation
funciion level, which permits the development of this equal-order CVFEM.

Algebraie approximations. To pravide an algebraic approximation to the integral
conservation equations, Eq. (3), the interpolation function for u is substituted into Eq. (2),
and within each eclement the convection diffusion flux across a control volume face k is
integrated and separated into the following components:

My,

-

ety ds = Cfuy + Chug + Chus + E¥pn 4+ Epy + Bhpa + B* (7)

The volumetric integration of the sowrce tern in Eq. (3) results in additional prossure

terms in the discrevized momentum equation. An expression similar to Bq. (7) arises for
the integration of the flux of y momentum across coutrol volume face k.




The interpolation functions for u and v are used to provide an algebraic approximation
to the integral of the mass flux across a control volume face & within an element. This
integral may be written in the following form:

My,
A G- iy ds = le'th + Cl-fuz + chug + dfvy + d§v2 + divs + i + e + ehpa + 0% (R)
Note that both the # and » interpolation funclions contain an element-based pressure
gradient, thus the appearance of pressure terms in this integral.

Discretized equations. When the integrated fluxes across the control volume faces in
all of the cloments are ovaluated and added appropriately, the rosult is a set of simultaneous
nonlinear algebraic equations represeniing the conservation of momentwin and mass for each
control volume in the mesh. These equations can be written in the following form:

a,u,..Za uJ+b,p,+Zb“ €]
J=1
n . k¢
ajv; = Z alv; + bfpi + ) bp; + df (10)
j=1 J=1
ofpi = 3 ap; + b + Zb"u, et Y+ (1)
7=1 i=1

for the z,y momentum, and continuity equntlons, respectively. The number of neighbor
nodes, n, depends on the orientation of the eletnents within the mesh, as shown in Fig. 1,
and in this formulation n < 8.

Solution of the discretized equations. Previous CVFEMs have used some form of
the SIMPLE algorithm [1, 2, 7], howaever, the implementation of an equal-order CVEEM in
the context uf & SIMPLEC algorithin, although successlul, was not satisfactory [2], This led
to the development of a CELS to solve the couplad discretization equations [3]. The solver
used here is wore complicated than a previous CELS for a staggered grid finite volume
method [6), due to the equations that arise in CVFEM’. This solution technique has beeu
shown 1o be wore robust and efficient than SIMPLE-type algorithms (6], and it is perhaps
a hetter choice for use in the context of wultigrid.

Along a particular 7 or j line in the computational mesh, the discretized momentum
and continuity equations, Egs. (9)-(11) are tridiagonal in pressure and the appropriate
velocity components, when the off-line terms are evaluated using currently available values
and lumped into the d; terms. This allows the derivation of a coupled solver which solves
the discretized momentum and continuity equations simultaneously along a line in the
caleulation domain. Tt is similar in concept to a coupled TDMA or ‘Thomas algorithm. Lhe
recursion relations are written in the following forms:

n; = Q:""-H-l + R.:"‘U,'.;.[ 4 S:-":l),'.g.l + Z,u

= Qiuiv1 + Rivipa + S'piv1 + Z¢
P = QPuir + Rivigr + SPpiga + 77 (12)
and the R, @, 5, and Z coefficients are derived by appropriate substituion of Fq. (12) into
Eqs, (9)-(11), The CELS solves for , v and p simultancously along a line using Fq. (12),

and iteratively improves the overall sulution by sweeping the caleulution domain line-by-
live. One iteration in the CFLS consists of one sweep of all 4 lines followed by a sweep of

3




all 7 lines. Iterations in the solver are terminated when the norms of the residuals from the
three discretized equations in the current iteration are a desired fraction of the norms of
the residuals on entering the solver.

Multigrid. The CVFEM has been implemented in FMV- and V-cycle multigrid al-
gorithms. In both cases the coarse to fine grid transfers use linear interpolation, and fine
to coarse grid transfers use full weighting, which is particularly well suited to control vol-
ume formulations. Tha velocity and pressure fields from the current finest grid solution are
used to determine the coefficients in the discretized equations for the grid lovel on which
the solution is currontly procceding. At each grid level, the coefficients in the discretized
equations are evalnated, and the CELS is used until the appropriate convergence criteria is
met. Otherwise there is no major difference from the FMV- or V.cyvcle MQ described by
McCormnick [1].

Results

Preliminary results have been generated for a square driven cavity problem, written in the
following nondimensional form;

(7- V)it = -Vp+ LRV : V.r=0 (1)
Re
with u and v zero on the boundaries of the domain, except for the tap wall, where 1 = |,
and p at the conter node in the domain is set to zero.

All runs were performed nsing FORTRAN on a DEC R4000 Model 610 AXDP, however,
it should be noted that the code is not optimal, as the solver and coeflicient routinas are
written in a general mauner for solution on nonuniform grids. Thus far, a five to ten fold
reduction in execution times has been obtained from the use of multigrid, Detailed results
will be presented at the conference,

Conclusion

The successful implementation of a MG-CVFEM for the solution of viscous incompressible
ftows has clarified several issnes prior to the application of FAC grid technigues in the context
of CVFEM’s. Areas of future research will concentrate on continued refinewent of the M( -
CVFEFEM, in partienlar the simplification and optimization ol the implementation, and the
inclusiou of turbulence models in the context of both incompressible and compressible flows.
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Figure 1: Discretization of a domain with Figure 2: A typical three-node triangular
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volumes (dashed lines). X, Y coordinate systems.
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Parallel preconditioning for the solution of
nonsymmetric banded linear systems

P. Amodio? F. Mazzia®

Many computational techniques require the solution of banded linear S¥se
tems. Common examples derive from the solution of partial differential equa-
tions and of boundary value problems. In particular we are interested in the
parallel solution of block Hessemberg lincar systems

Gx =1, (1)
where
( Dy Bz ... En \
C: 'D; En
"c ..- ..‘ E'— i
o= Al P

Dyay Encyn
\ Cn Dy )

arising from the solution of ordinary differential equations by meaas of boundary
value methods (BVMs), even if the considered preconditioning may be applied
to any block banded linear system.

BVMs have been cxtensively investigated in the Jast fow years and their
stability properties give promising results [6, 7). In (2] a new class of BVMs,
called Reverse Adams, which are BV-A-stable for orders up to 6, and BV-Ap-
stable for orders up to 9, have been studied. To analyze the structure of the

obtained coefficient matrix, consider the solution of 2 linear initial value problem
{ Y'=Al)y+b(t) €[t 1) 3)
¥(to) = yo

by means of a k-step Reverse Adams BVM. This mothod leads to the discrete
problem

*Dipartirente di Matcmatica, Universiti dj Baxi, Via E. Orabona 4, 1-70125 Bari, Italy,
email; 00110570® vm.cata.jt




r k
Yo —¥ner = Iy Eﬁfn(fi(tn—wi) + b(tn-141)), n=1... ,N~k+1
J 1?0 .
Yn —Yn-1= hn Eﬁgn(A(tn—H-i) + b(t”—l-l-!'))’ n=N-k+ 2’ ey N
=0

Pe=N—n4]

\ Yo given

(4)
where h; is the stepsize, t) < ) < ... < tny = Uy are the mesh points, ¢; =
ti—1+ he, and BE, are the coefficients of the k-step Reverse Adams method with
variable stepsize.

In matrix form, (4) is equivalent to the Jinear system (1) whose coefficient
matrix G is like in (2). For & = 2 the block tridiagonal linear system has alreday
been solved in [4] by means of a parallel version of the Gauss-Seidel iteration
and in [5, 3] by means of parallel preconditionings based on the implicit Euler
method and the lower block bidiagonal part of the coefficient matrix. All these
methods result to be competitive with respect to the existing ones, in particular
with respect to direct methods when A(t) is of medium-lacge size.

The generalization of all these methods to the solution of (1) - (2) may be not
efficient. Direct methods (for example domain decomposition methods) require
too much fill-in vectors, while the Gauss-Seidel method may loose its converging
propertics, since it is not always true that the iteration matrix has spectral
radius less than ope. Therefore, our attention is turned to conjugate gradient-
type itcrative methods that sre suitable, provided that a good preconditioning
improves its rate of convergence.

First of all, consider the following splitting for the matrix G:

G=L+U,
wherc
Dy
p=| P
" Cw Dw

is non singular, since we choose the stepsizes in the stability domains of the
BVM considered.

For small-medium size blocks, the preconditioning based on L seems to be
quite efficient. The solution of the preconditioned system may be performed in
parallel by means of one of the algorithms derived from the paralle] factorizations
of tridiagonal matrices described in {1].




When the blocks are large and sparse, the paralle]l direct method which
solves the linear system with the preconditioning as coefficient matrix results
to be too expensive because any parallel factorization perform matrix-matrix
multiplications which destroys the sparsity pattern of its blocks. Therefore we
need different preconditionings for this class of matrices.

Consider as an approximation of G~! the matrix P-1 < (I-L=nyL,
This is equivalent of performing two steps of the Gauss-Seidel iteration with the
null vector as initial approximation. We have:

PG =(I=- L)L YL+ U) =1 - (L=U)?,
that is, the cigenvalues of the preconditioned matrix are inside the ball with
center in 1 and radius p((L~*V)?).

The paraliel implementation of this algorithm is obtained by using two steps
of the parallel Gauss-Seidel iteration [4] as preconditioning. Suppose to have
b processors, we consider the splitting G = L, + U,, where L, is upper block
bidiagonal with Jower bidiagonal matrices as maijn diagonal (see Figure 1).

A e e m- e - - o Am —

t
!
1
|
}

Figure 1: Parallel splitting on p = 3 processors for the matrix G. The elements
of L3 are represented by black points.

The most important properties of this splitting are that, for p < n/2, it is
highly parallelizable and P(L7 Up) = p(L=1U). Therefore, we expect the same
rate of convergence and an efficiency of altmost 1.

Moreover, since in our problem the elernents of the last upper off-diagonals of
Up and L, are small in modulus, it is pessible to neglect them and consider the

preconditioning matrix P,ﬁ" =(I-1;" ULy, where Uy and L}, have only few

3




{one or two) upper off-diagonals. ‘This choice minimizes data communi¢ations
and reduces the number of operations of the whole algorithm,
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Preconditioning the pressure operator for the time
dependent Stokes problem

Authors: James H. Bramble and Joseph E. Pasciak
Abstract

In implicit time stepping procedures for the linearized Navier Stokes equations, a linear perturbed
Stokes problem must be solved at each time step. Many methods for doing this require a good
preconditioner for the resulting pressure operator (Schur complement). In contrast to the time
independent Stokes equations where the pressure operator is well conditioned, the pressure
operator for the perturbed system becomes more illconditioned as the time step is reduced
(and/or the Reynolds number is increased). We escribe methods for solving the coupled
velocity/pressure systems and, in particular, show how to construct good preconditioners for the
poorly conditioned pressure operator.







A Framework for the Construction of Preconditioners
for Systems of PDE

S. Holmgren? and K. Otto?

Department of Scientific Computing, Uppsala University
Box 120, S-751 04 Uppsala
Sweden
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Abstract

We consider the solution of systems of partial differential equations (PDE) in 2D or 3D using precon-
ditioned CG-like iterative methods. The PDE is discretized using a finite difference scheme with arbitrary
order of accuracy. The arising sparse and highly structured system of equations is preconditioned using a
discretization of a modified PDE, possibly exploiting a different discretization stencil. The preconditioner
corresponds to a separable problem, and the discretization in one space direction is constructed so that the
corresponding matrix is diagonalized by a unitary transformation. If this transformation is computable using
a fast O(nlog, n) algorithm, the resulting preconditioner solve is of the same complexity. Also, since the
preconditioner solves are based on a dimensional splitting, the intrinsic parallelism is good.

Different choices of the unitary transformation are considered, e.g., the discrete Fourier transform, sine
transform, and modified sine transform. The preconditioners fully exploit the structure of the original
problem, and it is shown how to compute the parameters describing them subject to different optimality
constraints. Some of these results recover results derived by e.g. R. Chan, T. Chan, and E. Tyrtyshnikov,
but here they are stated in a “PDE context”.

Numerical experiments where different preconditioners are exploited are presented. Primarily, high-
order accurate discretizations for first-order PDE problems are studied, but also second-order derivatives
are considered. The results indicate that utilizing preconditioners based on fast solvers for modified PDE
problems yields good solution algorithms. These results extend previously derived theoretical and numerical
results for second-order approximations for first-order PDE, exploiting preconditioners based on fast Fourier
transforms.

} This work was supported by the Swedish National Board for Industrial and Technical Development
(NUTEK)
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Abstract

In the framework of developing software for the prediction of flows in hydraulic turbine
components, Reynolds averaged Navier-Stokes equations coupled with k-w two-equation turbu-
lence model are discretized by finite element method. Since the resulting matrices are large,
sparse and nonsymmetric, strategies based on CG-type iterative methods must be devised. A
segregated solution strategy decouples the momentum equation, the k transport equation and
the w transport equation. These sets of equations must be solved while satisfying constraint
equations. Experiments with orthogonal projection method are presented for the imposition of
essential boundary conditions in a weak sense.

Introduction

To carry out computations of incompressible turbulent viscous flow in 3D domains, Reynolds av-
eraged Navier-Stokes equations coupled with k-w two-equation turbulence model are discretized by
finite element. After linearizations by Newton-Raphson, it results in the solution of linear systems
of equations. These systems are characterized by large, sparse and nonsymmetric matrices. To solve
these linear systems of equations, we are routinely using a direct method based upon LU factoriza-
tion. The consideration of larger problems leads us to consider CG-type iterative solvers for these
systems. It implies modification of solution strategies, which must take into account the constraints
to which the set of equations are subjected.

This paper starts with the description of the governing equations and their discretization. The
solution strategies and the solution algorithms are presented, followed by an application.

*Also Ph.D. Student from Mechanical Engineering Dept, Ecole Polytechnique de Montréal




Governing Equations and Discretization

The Reynolds averaged Navier-Stokes equations for incompressible, turbulent viscous flow are for-
mulated as

p(uVYu-Vo = 0 (€))
Vu = 0 (2)

with

o=—pg+pg T(w), T(w)=[Vu+VT], pgr=ptpr
where u is the fluid velocity vector, p is the density, p is the dynamic viscosity, pr is the turbulent
viscosity, p is the pressure, g is the metric tensor and o is the stress tensor. The momentum and

the continuity equations are completed by the kinetic energy k transport equation and the turbulent
frequency w transport equation (k-w two-equation model [1]):

p(uV)k = V-(uVE) - pCukw+ prD (3)
p(uV)w = V- (VW) — pCuow® + pCuy D 4)
with E
T:T
;‘k:/“'{"u—T—J ﬂw=ﬂ+'#_T) D‘:'_': ,uT:p_
Ok Ow 2 w

‘where Cy =0.09, Cy1 = 5/9, Cuz = 3/40, o1, =2 and 0, = 2.

On a computational domain Q with a boundary T and an external normal n, the weak Galerkin
weighted residual formulation of Reynold averaged Navier-Stokes and k-w turbulence model are the
following;:

/[p(uV)u]ﬁ aQ +/ueff'r(u) Vu dQ —/pV-'t'Z dQ = /(o-n)n’i dr' (5)
9) Q Q r
—/qV-u dQ =0 (6)
Q
/ [p(uV)k] & d + / piVEVE dQ + / pClkwk dQ = / prDE dQ + / I Ok ar (7)
o) 2 ) 3 r on
/[p(uV)w] @ dQ +/,quw Vo dQ +/pr2w2c’5 dQ = /pC’wlD{J dQ + uwé’ga dr (8)
Q Q 2 Q r On

In practice, a streamline-upwind Petrov-Galerkin technique (SUPG) [2] is used to modify the test
functions of the convection and source terms of the transport equations. Continuous quadratic ap-
proximations are used for velocity, kinetic energy and turbulent frequency, while linear discontinuous
approximation is used for the pressure. The turbulent viscosity pr is computed by projection to the
nodes of the elements on a L? basis.

Solution Strategies

The coupling of the two transport equations to the Navier-Stokes equations leads to a highly nonlin-
ear set of equations. Also, it results in a large matrix system that requires high storage especially if
a direct method is used. Gauss-Seidel approach is used, hence solving momentum, then £ transport,
then w transport. From one equation to the other, the updated values of the former equations are
injected in the current one, resulting in a block Gauss-Seidel decomposition of the global system.




Launder-Spalding law of the wall [1] is used to model the flow between the physical wall and
boundary of the computational domain. On these boundaries, a zero-normal velocity constraint is
introduced.

With the above segregated solution strategy, the values of £ and w must be updated at each
global step. It was found convenient to impose the essential boundary conditions in a weak sense.
For example, to solve —V2u = 0 with u = u, on some part of the boundary, the following variational
formulation can be written:

/va.wdn-/ @pdl = 0 ©)
Q T,

—/ Fu—wu)dl = 0 (10)

P

It can be shown that p is in fact the multiplier g—z. This formulation of the problem results in the

following system of equations:
A BT Ul _| F
B o|lrP|T|D (11)

This system of equations is very similar to the Stokes problem, where U stands for the veloc-
ity vector and P stands for the pressure. In addition to the incompressibility constraint, other
constraints can be applied: nodal periodicity, flow rate, zero-normal velocity and so forth.

Solution Algorithms

We are interested in solving system of equations similar to (11), where A is a nxn nonsymmetric
matrix and B is a mxn matrix. There are mainly three approaches to solve this type of systems:
mixed, penalized and projected. For the description of these approaches, homogeneous constraint is
considered.

With the mixed approach, all the unknowns are solved simultaneously. In addition to the fact
that the matrix is large ((n + m) x(n + m)), the matrix can be indefinite.

A penalty method reduces the number of unknowns by eliminating the variable P and replacing
it by an approximation (r, BU). The constraint is only respected up to a certain level depending
on the value r,. Moreover, the penalty parameter 7, must be sufficiently large (e.g., rp = 108), thus
leading to ill-conditioning and to possible rounding-off errors. It inhibits the use of iterative methods.
To reduce the round-off errors, an improved approach is the augmented Lagrangian algorithm based
on Uzawa method [3]. It stems from a descent method. Starting with an initial guess for P,

Repeat

(A+rBTB)U" = F - BTP"
prtt = pr 4 pBU™

Until |F — BTP — AU|| > € or ||BU|| > €cTr

While the penalty parameter r can be smaller than 7, (e.g., » = 10°), the system is still ill-
conditioned. The term rBT B can be constructed element by element if a discontinuous approxima-
tion is used to interpolate P. For a continuous approximation, the construction of rBT B requires
the explicit construction of the matrices BT and B. In such a case, it is preferable to consider the
next approach.

The last approach is based on an orthogonal projection method which reformulates the system as
PAP =Pf, withP =1-BT (BT)Jr and CT is the Moore-Penrose pseudoinverse of nxm matrix C,
as described by Bramley [4]. The orthogonal projection method based on conjugate gradient method




was analyzed by Bramley [4] for the generalized Stokes problem. This approach is particularly suited
to CG-type iterative methods which require the results of matrix vector products. The orthogonal
projector P on the null space of B doesn’t have to be explicitly constructed. The typical operation
y = Pv is decomposed in the following way:

y = (I-BTBT
y = (I-BYBBH)B)v
y = v—BTR 'R TBw

where R is the Cholesky factor of the symmetric and positive definite (m xm) BBT matrix. The
iterative methods proceed in the space where the constraint is satisfied. The variable P is computed
by the following relation P = (BT)(F — BU).

Applications

To test the imposition of essential boundary conditions in a weak sense, a two-dimensional advection-
diffusion problem is considered
u-Vo = V-(aVyp)

on a unit square, with @ = 0.02, u = (cos67.5%,5in67.5°) and ¢|r = 0.0 except on a portion of a
side where ¢|p, = 1.0. The computational domain is discretized by 800 triangular elements with
linear interpolation.

This new constrained problem represented by equation (11) is solved with the orthogonal pro-
jection approach. Since the matrix A is nonsymmetric, the projection method must be based on
CG-type iterative methods. For this numerical experiment, these iterative methods are BICG [5]
CGS [6], BICGSTAB [7], QMR-two-term [8], TFQMR [9], GMRES(k) [10] and CGNE [11].

To have a point of comparison, the usual way of treating essential boundary conditions has also
been considered. The same CG-type iterative methods have been applied.

The numerical experiments have been performed within MATLAB 4.0. The convergence histories
of the relative residuals (]|7||2/||7o||2) for both approaches are presented in figure 1. For the system
of equations resulting from the usual treatment of boundary conditions, all the iterative methods
are converging to the specified convergence criteria. For the new constrained problem solved by the
projection approach, GMRES(10), BICGSTAB and CGNE (CGNR, not shown) methods succeeded
in finding the solution, while CGS, BiCG, QMR and TFQMR failed. Further tests will be performed
and presented at the conference.
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Multilevel Turbulence Simulations

Eli Tziperman, Irad Yavneh and Shlomo Ta'asan
The Weizmann Institute of Science, Rehovot 76100, Israel.

We propose a novel method for the simulation of turbulent flows, that is motivated by and based
on the Multigrid (MG) formalism. The method, called Multilevel Turbulence Simulations (MTS),
is potentially more efficient and more accurate than LES.

In many physical problems one is interested in the effects of the small scales on the larger ones, or
in a typical realization of the flow, and not in the detailed time history of each small scale feature.
MTS take advantage of the fact that the detailed simulation of small scales is not needed at all
times, in order to make the calculation significantly more efficient, while accurately accounting for
the effects of the small scales on the larger scale of interest.

In MTS, models of several resolutions are used to represent the turbulent flow. The model
equations in each coarse level incorporate a closure term (roughly corresponding to the tau
correction in the MG formalism that accounts for the effects of the unresolvable scales on that
grid. The finer resolution grids are used only a small portion of the simulation time in order to
evaluate the closure terms for the coarser grids, while the coarse resolution grids are then used to
accurately and efficiently calculate the evolution of the larger scales.

The methods efficiency relative to direct simulations is of the order of the ratio of required
integration time to the smallest eddies turnover time, potentially resulting in orders of magnitude
improvement for a large class of turbulence problems.







PRECONDITIONING TECHNIQUES FOR CONSTRAINED VECTOR POTENTIAL
INTEGRAL EQUATIONS, WITH APPLICATION TO 3-D MAGNETOQUASISTATIC
ANALYSIS OF ELECTRONIC PACKAGES*

M. KAMON! AND J. R. PHILLIPS?

Abstract.

In this paper techniques are presented for preconditioning equations generated by discretizing constrained vector integral
equations associated with magnetoquasistatic analysis. Standard preconditioning approaches often fail on these problems.
We present a specialized preconditioning technique and prove convergence bounds independent of the constraint equations
and electromagnetic excitation frequency. Computational results from analyzing several electronic packaging examples are
given to demonstrate that the new preconditioning approach can sometimes reduce the number of GMRES iterations by more
than an order of magnitude.

1. Introduction. The recently developed multipole-accelerated iterative methods for solving poten-
tial integral equations have renewed interest in using discretized integral formulations for the numerical
solution of geometrically complicated three-dimensional problems [1, 2]. As multipole-based approaches
use implicit matrix representations which can not be easily directly factored, the success of such approaches
hinges on reliable convergence of the underlying iterative method. To aid in insuring rapid iteration conver-
gence, multilevel and local inversion preconditioners have been developed for discretized integral equations,
and these techniques substantially accelerate convergence rates for fine discretizations [3, 4]. However,
multipole-accelerated iterative methods have provided the greatest benefit for engineering applications,
which, because of the low accuracy requirements, rarely use fine discretizations.

In this paper, we address the problem of preconditioning systems of equations generated from coarse
discretizations of integral equations associated with magnetoquasistatic analysis of complicated three-
dimensional geometries. Such analyses are used to aid in the design of a wide variety of electronic packages
and electromechanical systems [5]. In the next section, we briefly describe a low-order vortex-like scheme for
numerically solving the constrained vector integral equation associated with magnetoquasistatic analysis. In
section 3, we examine an electronic packaging example to demonstrate that several standard preconditioning
techniques fail to significantly accelerate GMRES [6] convergence. In section 4, we develop a specialized
sparsification approach to preconditioning, and prove that the approach eliminates the deleterious effects
of the constraint equations. Also, we show that in the uniform discretization, the preconditioner results
in a frequency-independent convergence bound. In section 5, we present computational results from
combining these new preconditioning techniques with our multipole-accelerated iterative approach. The
results are used to show that on difficult electronic packaging examples, the new preconditioning approach
can sometimes reduce the number of GMRES iterations by more than an order of magnitude.

2. Background. An integral formulation for magnetoquasistatic analysis can be derived as a special
case of the Fourier-transformed Maxwell’s equations [7, 8]. The derivation leads to a volume-integral
equation of the form

1) I +io [ 20 _ay o _vem),
v llr—=||

with the constraint
2 V-J = L(r),

where r,+' € R? are locations in 3-space, V is the volume containing electrical conductors, ®(r) € C is
a scalar potential, J(r) € C? is an electric current density, I,(r) is a given applied current source whose
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volume integral is zero, and w is the Fourier transform frequency. Of primary engineering interest is the
relationship between an applied source and the resulting scalar potential as a function of w.

2.1. Galerkin Discretization. Typically, (1) is solved by first representing the unknown current
density, J, as a weighted sum of orthogonal basis functions,

b
(3) J(r) =) Lwi(r).

i=1

Here, w, (), ...,u’:b(r) - R® — R3 are the vector basis functions, and Ii,...,I; € C are the unknown
weights. A system of equations for the weights is then generated by applying a Galerkin procedure to the
volume integral in (1). That is, the weights are determined by insuring that for each wj,

b b Lan:(r) - ws(r'

) < wj, (Y Lwi(r) +iw / L= I‘""("), i) gy — (=V&(r))) >=0

= v flr =i

where < a(r),b(r) > denotes the inner product given by Ja(+') - b(r")dV. Exploiting the basis function
orthogonality leads to a simpler system of the form

b are . cans (!
(5) I,-/ / w;(r') .w;(r)dv’dv-l-iw/ Liz Liwj(r) - wi(r )dv’dv+/ w;(r)Ve(r')dv' =0
vJv vJve llr — =) v

For most engineering calculations, only moderate accuracy is required, and therefore methods based
on easily implemented piecewise-constant expansion functions are commonly used. In these methods, a
conductor volume is divided into b brick-shaped filaments, as shown in Figure 1. The current density in
the #** filament is then approximated as J = %?I;, where I; € R3 is the unit vector along the filament
length, I, is the net current flow, and a; is the filament cross-sectional area. Substituting this low order
representation in (5) results in a system of the form

(6) : (R+wL)ly — Vs = ZI, - V3 = 0,

where I € C? is the vector of filament currents, R € R%*? is a diagonal matrix whose diagonals are given
by R;; = (filament length)/a;, L € R?*? is a dense, symmetric positive definite matrix whose elements
are given by

1 - ,
(M Li; = -a,-_a; /v / ’ -”T_—_—r,—“dv dv,

and V; € C? is the vector of filament voltages whose ithentry is the scalar potential difference at the two
ends of the #*® filament, averaged over the filament’s cross-section.

2.2. Equation System. Current conservation, (2), implies that at the n points where filaments join,
the associated filament and source currents must sum to zero. This is directly a statement of Kirchoff’s
current law law [9], and can be represented as

(8) Al = 1,,

where each column of the incidence matrix A € R"*? contains two nonzero entries, —1 and 1 and I, is a
mostly zero vector with nonzeros corresponding to the source currents in (2).

This nodal analysis approach to formulating current conservation can be combined with (6), yielding
a system of equations for the branch currents and scalar potentials given by

® 12 e ]=15]

where &, is the average of ® over the filament cross-sections that meet at a given point.
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Current Flow

5 filaments

7 filaments

FiG. 1. Single pin of a pin-connect divided into 5 sections, each of which is & bundle of §5 filaments.

For complicated problems, the number of branches can easily exceed 20, 000. Therefore, since Z € C**?
is dense, (9) will be too expensive to factor directly for complicated problems. Also, iterative methods
converge very slowly when applied to solving (9), as the system has two different scales of equations, and so
it is extremely poorly conditioned. Instead, it is possible to reformulate the system using mesh analysis [9] to
eliminate the explicit current conservation equations. Mesh analysis avoids explicitly representing current
conservation in much the same way as a vortex method avoids explicitly enforcing a zero divergence
condition.

Mesh analysis can most easily be described by referring to the graph of nodes and branches which
represents the connected network of filaments. Specifically, the n points where filaments join are associated
with n nodes in the graph, and the filaments themselves are associated with b branches in the graph. The
meshes in this graph are all the closed loops of branches which do not enclose any other branch. The
unknowns are mesh currents, denoted I,, and each mesh loop has an associated mesh current flowing
around it. When necessary, filament currents can be determined from mesh currents by computing
differences. Note also that the since & is a scalar potential, the integral of its gradient around any closed
loop is zero. This implies that the sum of the branch voltages (defined in (6)) around any mesh must be
zero unless there is an outside source, and these constraints can be represented by

(10) MV =V,

where V; is the vector of voltages across each branch except for the source branches, V; is a mostly zero
source vector, and M € R**™ is the mesh matrix, where m =}’ — n + 1 is the number of meshes and ¥’
is the number of current filaments plus the number of source branches. The relationship between branch
currents and branch voltages given in (6) is unchanged, but the branch currents must now be computed
from the mesh currents using

(11) M, =L,

where I, € C™ is the vector of mesh currents, and M* is the transpose of the mesh matrix above.
Combining (11) with (10) and (6) yields

(12) MZIM'I, =V,.

Although MZM? is generally much better conditioned than the system in (9), for many examples
the matrix is still quite ill-conditioned. Consider the two microprocessor packaging examples shown in
Figures 2 and 3. Figure 2 shows thirty-five metal pins of a structure used to connect an integrated circuit
chip to a printed circuit board. A coarse discretization of this structure yields a 689x689 MZM? matrix
which has a condition number, k¥ &~ 10%. Figure 3 is an example of a printed circuit board to which the
connector in Figure 2 might be attached. The printed circuit board is two thin metal sheets sandwiching
255 small copper lines. Coarsely discretizing this structure yields a 751x751 matrix with a condition
number, x & 10%. From the spectrum shown in Fig. 4 of MLM?®, one can see that, while most of the
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FIG. 2. Half of a pin-connect packege. Thirty-five pins F1G. 3. A portion of a printed circuit board. Two thin
shown. resistive planes sandwich 255 copper lines. Only the oxtline
of the planes is drawn.
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FIG. 4. Eigenvalue spectrum of MLM?® for a coarse discretization of the printed circuit board ezample

eigenvalues are in the interval [1071°,10~7], the remaining isolated eigenvalues are located toward the
origin in the interval [10~13,10~1%]. Such small eigenvalues are not easily cancelled with the polynomial
produced by the Krylov-subspace methods, so they will significantly slow convergence unless eliminated
through preconditioning.

3. Standard preconditioning methods. In this section we discuss the results of applying various
standard preconditioners to M ZM*. In general, the GMRES iterative method applied to solving (12) can
be significantly accelerated by preconditioning if there is an easily computed good approximation to the
inverse of MZM?*. We denote the approximation to (MZM?*)~! by P~!, in which case preconditioning
the GMRES algorithm is equivalent to using GMRES to solve

(13) (MZMYP lz=V,

for the unknown vector z. The mesh currents are then computed with I, = P~ 1z.

Local Inversion. An easily computed good approximation to (MZM*)~1 can be constructed by
noting that the most tightly coupled meshes are ones which are physically close. To exploit this observation,
for each mesh i, the submatrix of MZM?* corresponding to all meshes near mesh ¢ is inverted directly.
Then, the row of the inverted submatrix associated with mesh i becomes the ith row of P~1. This idea was
originally suggested in [3] and [10]. We refer to this preconditioner as a “local-inversion” preconditioner,
because it is formed by inverting physically localized problems.




FIG. 5. Two ground plane meshes due to ezternal sources. One mesh includes the filaments along the path from point A
to B and the other from C to D. The filaments that make xp the plane are drawn one-third their actxal width for illustration.

A problem arises in forming this preconditioner when a mesh contains many branches. In this case,
the branches may span much of the problem domain and what is ‘local’ is no longer obvious. Consider
the example in Fig. § of two sources attached to a thin square sheet discretized into an nxn grid of
meshes. Regardless of the level of discretization, most of the meshes include only four branches but
the meshes resulting from the two sources include roughly n branches and span much of the problem
domain. Therefore, much of the problem can be physically close to these large meshes. For this reason,
the large meshes associated with sources cannot be included in the preconditioner, otherwise excessively
large subproblems would be inverted directly.

Sparsity Pattern Based Preconditioners. Another idea is to perform incomplete LU factorization
of MZM?* based on the sparsity pattern of M RM*. Incomplete LU is generally ineffective, however, because
MZM?! is not necessarily diagonally dominant and therefore ignored terms can become more significant.
Another approach along the same lines is to “sparsify” M ZM? to have the sparsity pattern of M RM® and
then compute the exact LU factorization of the sparsified matrix, P.

Fig. 6 shows the results of applying the local-inversion preconditioner, the sparsity-based precondi-
tioner, plus an example of the sparsified-L class of preconditioners to be discussed below. The M ZM?
matrix is 751751 and corresponds to the printed-circuit board example of Fig. 3 in the high frequency
limit, that is, as w — co. The high frequency case is chosen because it has been found to demonstrate
the worst case convergence for the sparsified preconditioners, as discussed in the next section. A point
worth noting here is that for these sparsified preconditioners in the low frequency limit, w — 0, both
P and MZM' — MRM?* and therefore (MZM*)P-! — I. The local-inversion preconditioner shows
approximately the same convergence behavior at low and high frequency.

From Fig. 6 it is apparent that local-inversion and sparsity-based preconditioning only slightly
accelerated convergence. Note that this example includes approximately 300 large meshes.

4. Positive definite sparsifications of L. .

To develop a better preconditioner, instead of sparsifying MZM?® as described above, consider
sparsifying the partial inductance matrix, L, and then generating the preconditioner by directly factoring
the sparse result, P = M(R+ jwL,)M?*, where L, is the sparsified partial inductance matrix. We call this
class of preconditioners “sparsified-L.”

4.1. The high frequency limit. As w — oo, the preconditioned matrix reduces to
(MLM*)(ML,M*)~1. In what follows, it will be shown that L, should be chosen to be symmetric positive

s
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definite for this sparsified-L class of preconditioners to be effective.

Lemma 4.1. The product of real symmetric positive definite matrices has positive eigenvalues.

Proof. Let A and B be real symmetric positive definite matrices, then A=1/2 and B~1/2 exist and are
also symmetric positive definite. AB has the same eigenvalues as

(14) D= A—1/2ABA1/2 - Al/2BA1/2 - (B1/2A1/2)t(BI/2A1/2) =C'(C.

Then, for any vector z, 2Dz = (Cz)!(Cz) = y'y > 0, where y = Cz. Therefore, D has positive

eigenvalues. 0
Theorem 4.2. If L, is symmetric positive definite, then the preconditioned system,

(MLM*)(ML,M*)~! has positive eigenvalues.

Proof. For any z, let y = M*z. Then z*(MLM*)z = y* Ly > 0 since L is positive definite. Following
a similar argument for ML, M* and using Lemma 4.1, the theorem is proved. |

As an example, consider choosing L, to be a threshold sparsification of L, that is, form L, by zeroing
all terms except those that satisfy L?j > €|L;iLj;|, for some €. In this case, L, is not necessarily positive
definite. Fig. 7 compares this preconditioner for ¢ = 0.1 to the preconditioner formed by taking L, to be
only the diagonal of L, which is obviously positive definite. Fig. 7 clearly indicates that using the threshold
sparsification preconditioner results in slower convergence than using the diagonal-of-L preconditioner.
This can be explained by examining the spectra of the preconditioned matrices in Fig. 8. For both cases,
the eigenvalues seem similarly clustered, except the threshold preconditioned matrix has a distribution of
negative eigenvalues while the diagonal-of-L preconditioned matrix does not.

Theorem 4.2 leads to the result that the condition number of preconditioned system in the high
frequency limit is bounded independent of the mesh matrix, M.

Theorem 4.3. If L, is positive definite, then

K[(MLMY)YML,M*)™ 1 < w(LL?)

where, for a matrix with positive eigenvalues A, the condition number x(A) is defined as k(A4) =
Amax(A)/Amin(A4) and Apax(4) ; Amin(A) are the maximum and minimum eigenvalues, respectively.
Proof. For the matrix A = MLM® with preconditioner P = ML,M?, and with the maximum
eigenvalue Apax(AP~Y), there is some y such that AP~ly = MAnaxy. Then for z = P-ly, the
generalized eigenvalue problem MLM'z = AnaxML,M'z is satisfied. Therefore, Apax(AP~!) =
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*MLM'z/z*ML,M'z and so there is also a vector ¥ = M’z such that Apax(AP~!) = u'LufutL,u
and so

Amax(AP™Y) < max tg”;
By a similar argument,
v'Ly
Amin(AP~1) > min Ly

and thus
K[MLMYML,M*)"Y) < (LL;?)

0
The above two theorems lead to the conclusion that one should focus on choosing positive definite I,
matrices. As described above, the sparsest approach would be to take the diagonal of L. Another approach
is to divide physical space into cubes and then to include in L, principal submatrices of L corresponding to
the groups of filaments contained inside each cube where a filament may be included in only one cube. Thus,
by appropriately numbering the branches, L, can be written as a block diagonal matrix, and therefore we
refer to it as a “cube-block” preconditioner.
Theorem 4.4. L, for the cube-block preconditioner is positive definite.
Proof. The set of eigenvalues of a block diagonal matrix is the union of the sets of eigenvalues from each
block. Since L is symmetric positive definite, so are all of its principal submatrices (See, for instance [11],
p. 397). Given the block diagonals of L, are principal submatrices of L, the theorem is proved. 0

4.2, The general case. Under certain conditions the bound on GMRES convergence in the limit as
w — oo holds for all w.

Theorem 4.5. Given a problem discretized with filaments of uniform size, a.nd assuming that the
GMRES algorithm uses the diagonal-L preconditioner, the residual at iteration k, r* = b— Z(w)z*, where
Z(w) is the preconditioned Z, satisfies

4]
(15) Tk L/T ’

where k = k(LL;}) = k(L), independent of frequency. The following observation and short lemma will
be used to prove Theorem 4.5.




Observation 4.6. If all filaments are of the same size, the matrices R and L are constant along the main
diagonal. The preconditioner P constructed from the main diagonal of L is P = (r + iwl)M M*, where r
and [ are the diagonal elements of R and L respectively.

Lemma 4.7. Given Z = M(rI+ iwL)M?, and P = M(r + iwl)M*, the preconditioned matrix

(16) Z=p-izp-}

is of the form

(17) Z = Ce*IT + joI)

where T' = T* is real-symmetric and C, 0,0 € R.
Proof. As MM? is symmetric positive-definite, P~! may be factored as P~1 = P~ P-4 with

(18) Pt = \/-—-,-._i—-——;?—l(MM‘)'*

Combining with Eq. 16,

~izp-t = [ -4 LM (MM —
(19) p-izp [z.wI+(MM) MLM' (MM ]H_M
or
: 2
“dzp-t = Y __i;
(20) P~3iZp T [ieI +T]
with 8 =tan™1 5, 6 = —r/w,
(21) T=(MM)"IMLM (MM}
M LM?! is positive-definite since L is, and therefore T is symmetric positive-definite. 1]

We are now ready to prove Theorem 4.5.
Proof. From Lemma 4.7, Z is of the form T + ioI, T symmetric positive definite. Therefore, using
Theorem 4 in [12], the computed iterates z* satisfy

o=k . 2 2
lb— Az0|| = RE + 1/RF = RF

with R = ¢(w) + \/c(w)? — 1, and where
Vmax(T)? + 02 + v/ Amin(T)? + 02

(22)

(23) e(w) = Amax(T) — Amin(T)
Since ‘

_ /\max(T) + Amin (T) - K(T) +1
(24) c(w) < coo = Amax (L) = dmin(T) — #(T) =1
Then

(25) R< co+ ’__c§°—1= Ve +1 < Ve(L)+1
VET) =1~ /(L) -1
which combined with Eq. 22 proves the theorem. 1]
Remark. The preconditionﬁed ma;trix Z is normal and ~its eigenvalues lie on a ling in~the complex plane,
Proof. Defining C = s, Z is normal since ZZH = C*T? + 02I) = ZHZ. The eigenvalues

A(Z) = Ce®(io + M(T)) clearly lie on a line, as the A(T) are real. o

8"
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Preconditioner Size of | Preconditioner Total Total number | Average # of

type MZM? factor time execution time | of iterations | iters. per solve
diagonal-L 751x751 0.26 450.46 729 41
cube-block 751x751 6.07 254.35 374 21
diagonal-L 1099x1099 0.81 1042.57 760 42
cube-block 1099x1099 11.86 755.12 518 29
diagonal-L 2101x2101 3.43 1901.58 760 42
cube-block 2101x2101 44.91 1381.15 502 28
diagonal-L 4351x4351 15.87 5522.79 842 47
cube-block 4351x4351 174.13 4609.96 641 36
diagonal-L 7501x7501 46.24 8894.92 883 49
cube-block 7501x7501 452.11 7309.18 635 35

TABLE 1

Ezecution times and ileration counts for disgonal-of-L and cube-block preconditioning of the printed circuit board
example. Times are in CPU seconds for the DEC AXP3000/500.

5. Computational results. To compare the relative merits of the cube-block, diagonal-of-I, and
local-inversion preconditioners, consider the pin-connect example of Fig. 2 and the printed circuit board
(PCB) example of Fig. 3. For this experiment, the pin-connect was discretized into 3488 filaments which
corresponds to 3305 meshes and each of the thin planes in the PCB was discretized into a 60 x 60 grid of
meshes giving a total 7501 meshes including the copper lines. The GMRES error in the solution at high
frequency as a function of iteration is plotted in Fig. 9 for the pin-connect example, and in Fig. 10 for the
PCB example. As the figures clearly show, the block diagonal preconditioners are an improvement over
the diagonal-of-L and local-inversion preconditioners. It is worth noting that, unlike the PCB example,
for the pin-connect example, local-inversion preconditioning did better than diagonal-of-L. This behavior
can be expected since there are only 35 large meshes which must be excluded from the local-inversion
preconditioner.

From Table 1 it can be observed that the time to compute the preconditioners is negligible compared
to the total execution time, although for larger problems, the time required to compute the cube-
block preconditioner may become significant. Also, the required number of iterations for either of the
preconditioners does not grow rapidly with problem size.




6. Conclusions and Acknowledgments. In this paper we developed the sparsified-L class of
preconditioners for the linear systems generated by integral equations associated with magnetoquasistatic
analysis. This class of preconditioner was shown to eliminate the apparent ill-conditioning caused by the
constraint equations. For the two industrial examples presented in this paper, the preconditioners can
significantly reduce the number of GMRES iterations.

The authors would like to thank Jacob White for his enthusiasm and guidance.
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Iterative Methods for Toeplitz-like Matrices

Thomas Huckle
Institut fir Angewandte Mathematik und Statistik
Universitat Wiirzburg

D-97074 Wirzburg, F.R.G.

Abstract, In this paper we will give a survey on iterative methods for solving linear
equations with Toeplitz matrices, Block Toeplitz matrices, Toeplitz plus Hankel matrices,

and matrices with low displacement rank. We will treat the following subjects:

- optimal (w)-circulant preconditioners as a generalization of circulant preconditioners;

- Optimal implementation of circulant-like preconditioners in the complex and real case;

- preconditioning of near-singular matrices; what kind of preconditioners can be used
in this case;

- circulant preconditioning for more general classes of Toeplitz matrices; what can be
said about matrices with coefficients that are not [;-sequences;

- preconditioners for Toeplitz least squares problems, for block Toeplitz matrices, and

for Toeplitz plus Hankel matrices;

Key Words. Fourier Transform, Sine Transform, Toeplitz matrices, preconditioned con-

jugate gradient method

AMS(MOS) Subject Classifications. 65F10,65N06
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A Modified Direct Preconditioner for Indefinite Symmetric
Toeplitz Systems

AUTHORS:
Paul Concus
Lawrence Berkeley Lab
Berkeley, CA

and

Paul Saylor
Dept of Computer Science
The University of Illinois
Urbana, IL.

ABSTRACT:

A modification is presented of the classical $0(n~2)$ algorithm of
Trench for the direct solution of Toeplitz systems of equations.
The Trench algorithm can be guaranteed to be stable only for
matrices that are (symmetric) positive definite; it is generally
unstable otherwise. The modification permits extension of the
algorithm to compute an approximate inverse in the indefinite
symmetric case, for which the unmodified algorithm breaks down when
principal submatrices are singular. As a preconditioner, this
approximate inverse has an advantage that only matrix-vector
multiplications are required for the solution of a linear systen,
without forward and backward solves. The approximate inverse so
obtained can be sufficiently accurate, moreover, that, when it is
used as a preconditioner for the applications investigated,
subsequent iteration may not even be necessary. Numerical results
are given for several test matrices. The perturbation to the
original matrix that defines the modification is related to a
perturbation in a quantity generated in the Trench algorithm; the
associated stability of the Trench algorithm is discussed.
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ABSTRACT:

Circulant Preconditioners with Unbounded Inverses:
Why Non-Optimal Preconditioners May Possess
a Better Quality Than Optimal Ones

Eugene E. Tyrtyshnikov

Institute of Numerical Mathematics
Russian Academy of Sciences
Leninski Prosp. 32-A
Moscow 117334, Russia
E-mail: tee@Radonis.iasnet.com

There exist several preconditioning strategies for systems of
linear equations with Toeplitz coefficient matrices. The most
popular of them are based on the Strang circulants and the Chan
optimal circulants. Let A _n be an n-by-n Toeplitz matrix. Then
the Strang preconditioner S_n copies the central n/2 diagonals
of A_n while other diagonals are determined by the circulant
propertles of S_n. The Chan circulant C_n coincides with the
minimizer of the deviation 2 . n - Cn in the sense of the matrix
Frobenius norm. At the first glance the Chan circulant should
provide a faster convergence rate since it exploits more
information on the coefficient matrix.

The preconditioning quality is heavily dependent on
clusterization of the preconditioned eigenvalues. According to
recent results by R.Chan we know that both considered circulants
possess the clustering property if the coefficient Toeplitz
matrices A_n are generated by a function which first belongs to
the Wiener class and second is separated from zero. Both
circulants provide approximately the same clustering rate, and
therefore both should possess the same preconditioning quality.

However, the most interesting case is the one when the genera-
ting function may take the zero value, and hence the circulants
have unbounded in n inverses. In these cases the Strang precondi-
tioners may appear to be singular and we recommend to use the
so called improved Strang preconditioners (in which a zero eigen-
value of the Strang circulant is replaced by some positive value).

For example, if the generating function is of the form




£(x) = 2 - 2 cos(x)

the Chan optimal circulants provide the preconditioned matrices
of sizes

n = 256, 512, 1024
which have respectively
26, 40, 77

eigenvalues located at least at the distance 0.1 from the point 1.
For the Strang circulants the corresponding numbers of eigenvalues
are equal to

3, 2, 3.

Therefore, the (improved ) Strang circulants may lead to a better
clustering rate than the Chan optimal circulants.

We show that the 'Strang vs Chan' comparision problem is indeed
reduced to the 'Dirichlet vs Fejer' (or 'Fourier vs Cesaro')
comparison problem. One could expect that the smoother the
generating function is the faster the clustering rate should be.
We prove that this statement holds true only for the Strang circu-
lants. At the same time, the smoothness of the generating
functions does not affect the clustering rate of the Chan optimal
circulants. Various numerical examples provide excellent
illustrations of our theory of the clustering rate estimates.

We also prove that the very restrictive requirement ~ that the
generating function should belong to the Wiener class - can be
substantially relaxed. We show that for nonsymmetric Toeplitz
coefficient matrices the clustering point exists for the singular
values of the preconditined matrix. )

We emphasize that our clusterization theorems can be extended
to the case of multilevel Toeplitz matrices preconditioned by
multilevel circulant preconditioners. The multilevel case is very
important for industrial applications since in this case fast
direct solution methods can not compete with the iterative solution
methods.




A Remark on Band-Toeplitz Preconditions for Hermitian Toeplitz Systems

by
Seymour V. Parter**

Jaechil You*

Abstract: This note presents a modification of an idea of R.H. Chan and P.T.P. Tang.
Let £(0) > 0 be a real valued, bounded, continuous function defined on (—m, ). Let T,[f]
be the Toeplitz matrix of order 7 4 1 generated by f(0). Chan and Tang suggest that for
given £ > 1 one chose g¢(0) > 0 as a real valued function of fixed degree £ which minimizes

“(—%fl)” . They construct g(0) via the Remez algorithm. Then T, [gs]~! is used as

the precg;Ldition for To[f]. We suggest that g(0) be chosen as the even trigonometric
polynomial of minimal degree which “matches” f(0) at all points 6; at which f(6) assumes
its minimum. Clearly this g(6) is much easier to determine taht the g4(6). This choice is
based on earlier work on the extreme eigenvalues of Hermitian Toeplitz matrices and the
more recent work of Manteuffel and Parter on Preconditioning finite element discretizations
of elliptic operators. It is shown that the condition number of T,,[g] ™! Tiy[F] is uniformly
bounded for all n. Experimental results demonstrate the efficacy of these preconditioners.

b Department of Computer Science and Department of Mathematics, University of Wisconsin-Madison, Madison,
‘WI 53706
* Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706
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An optimal iterative solver for the Stokes Problem

Andy Wathen, University of Bristol, UK
David Silvester, UMIST, UK

Discretisations of the classical Stokes Problem for slow viscous incompressible flow
give rise to systems of equations of the form

A Bt u f
(5 %) () -(9) 0
for the velocity u and the pressure p, where the coefficient matrix is symmetric but
necessarily indefinite. The square submatrix A is symmetric and positive definite and
represents a discrete (vector) Laplacian and C may be the zero matrix or more generally
will be symmetric positive semi-definite.

For ‘stabilised’ discretisations (C' # 0) and discretisations which are inherently
‘stable’ (C' = 0) and so do not admit spurious pressure components even as the mesh
size, h, approaches zero, the Schur compliment —C — BA~1BT has spectral condition
number independent of h (given also that B is bounded).

In this paper we will show how this property together with a multigrid precondi-
tioner only for the Laplacian block A yields an optimal solver for the Stokes problem
through use of the Minimum Residual iteration. That is, combining Minimum Residual
iteration for (1) with a block preconditioner which comprises a small number of multi-
grid V-cycles for the Laplacian block A together with a simple diagonal scaling block
provides an iterative solution procedure for which the computational work grows only
linearly with the problem size.

We will give numerical results and some comparison with the more traditional

approach of solving the a Schur compliment system by (Hestenes-Stiefel) Conjugate
Gradients.

References.

1. Wathen, A.J. & Silvester, D.J., 1993, ‘Fast iterative solution of stabilised Stokes
systems Part I: Using simple diagonal preconditioners’, SIAM J. Numer. Anal. 30(3),
630-649.

2. Silvester, D.J. & Wathen, A.J., ‘Fast iterative solution of stabilised Stokes sys-
tems Part II: Using general block preconditioners’, to appear in SIAM J. Numer Anal.,
September 1994.
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On the convergence of inexact Uzawa algorithms

Bruno D. Welfert
Department of Mathematics
Arizona State University
Tempe, AZ 85287-1804

We consider the solution of symmetric indefinite systems of the type

(5 %)(5)=(1) ®

where A and C are symmetric positive definite and semi-definite, respectively.
Systems of the type (1) arise frequently in quadratic minimization problems, as
well as mixed finite element discretizations of fluid flow equations.

The Uzawa algorithm is based on a (block) preconditioning of the system

(1) by the matrix
_( A
=5 )

for some o > 0, and is appropriate even when C = 0. The corresponding
iteration converges if and only if

2
o< ETEY @

. An inexact version of this algorithm was presented in [1], where M is now of

the type
_{ Mn
w=("3 1)

It has been observed that the choice M;; = A is not always optimal, i.e.,
does not always yield the smallest asymptotic convergence rate for the resulting
algorithm.

In this presentation, we investigate the effect of Mi; on the global con-
vergence and give a few heuristics, confirmed by numerical experiments, for
choosing M.

Alternate (symmetric) preconditionings will also be analyzed and compared
numerically.

[1 ] H. C. Elman and G. H. Golub, Inezact and Preconditioned Uzawa Algo-
rithms for Saddle Point Problems, Tech. Rep. CS-TR-3075, University of
Maryland, College Park, May 1993.
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The Asymptotic Convergence Factor
for a Polygon under a Perturbation

XIEZHANG LI?

Abstract

Let
Ax=Db (1)

be a large system of linear equations, where A € C¥*N, nonsingular and b € C~. A
few iterative methods for solving (1) have recently been presented in the case where A is
nonsymmetric. Many of their algorithms consist of two phases:

Phase I: estimate the extreme eigenvalues of A;

Phase II: construct and apply an iterative method based on the estimates.

For convenience, (1) is rewritten as an equivalent fixed-point form,

x=Tx+c. (2)

Let  be a compact set excluding 1 in the complex plane, and let its complement in the
extended complex plane be simply connected. The asymptotic convergence factor (ACF)
for Q, denoted by £(£2), measures the rate of convergence for the asymptotically optimal
semiiterative methods for solving (2), where o(T') C Q.

Suppose that £ is a polygon whose vertices are the extreme eigenvalues of T'. We con-
sider how x(§2) changes if a vertex of {2 is perturbated. In this paper, a general variation
formula for () is presented by the application of Hadamard’s variation formula.

Let § be a polygon obtained as a result of a perturbation ee® of a vertex of 2, where
€ is a small positive parameter and 0 < ¢ < 2w. The ACF for € can be represented up to
the first order of the perturbation,

K(§2) = 5(Q)(L + ge + o(e)), (3)

where the sensitivity g of the ACF to a perturbation is given by an integral independent
of ¢,
Some numerical experiments are given in this paper.

Department of Mathematics & Computer Science, Georgia Southern University, Statesboro, GA 30460, U. S.
A, (e-mail: xli@gsu.cs.gasou.edu) ’
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A. Basermann* Parallelizing Iterative Solvers for Sparse Systems of Equations and
Eigenproblems on Distributed-Memory Machines
Thursday, 10:40 - 11:05, Room B

J.R. Bates A Nonlinear Multigrid Solver for a Semi-Lagrangian Potential
Vorticity-Based Barotropic Model on the Sphere
Friday, 5:35 - 6:00, Room A

R. Bauer* Preconditioned CG-Solvers and Finite Element Grids
Friday, 10:40 - 11:05, Room B

S.W. Bova* Tterative Methods for Stationary Convection-Dominated Transport
Problems
Saturday, 8:00 - 8:25, Room B

W.E. Boyse* A Sparse Matrix Iterative Method for Efficiently Computing
Multiple Simultaneous Solutions
Wednesday, 5:10 - 5:35, Room A
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James H. Bramble

Randall Bramley
Randall Bramley*
Clemens W. Brand*

A. Brandt

Are Magnus Bruaset*
Monika ten Bruggencate

Martin Bucker*
Xiao-Chuan Cai*
G.F. Carey

G.F. Carey

G.F. Carey

G.F. Carey

M.L.B. Carvalho

Preconditioning the Pressure Operator for the Time Dependent
Stokes Problem
Friday, 5:35 - 6:00, Room A

CIMGS: An Incomplete Orthogonal Factorization Preconditioner
Saturday, 8:25 - 8:50. Room A

Solving Linear Inequalities in a Least Squares Sense
Tuesday, 11:05 - 11:30, Room B

Preconditioned Iterations to Calculate Extreme Eigenvalues
Tuesday, 4:45 - 5:10, Room B

A Nonlinear Multigrid Solver for a Semi-Lagrangian Potential
Vorticity-Based Barotropic Model on the Sphere
Friday, 5:35 - 6:00, Room A

Object-Oriented Design of Preconditioned Iterative Methods
Wednesday, 4:45 - 5:10, Room B

Block-Bordered Diagonalization and Parallel Iterative Solvers
Saturday, 9:15 - 9:40, Room A

An Implementation of the TFQMR-Algorithm on a Distributed
Memory Machine
Thursday, 11:30 - 11:55, Room B

Domain Decomposition Based Iterative Methods for Nonlinear Elliptic Finite
Element Problems
Tuesday, 10:15 - 10:40, Room A

PCG: A Software Package for the Iterative Solution of Linear Systems on
Scalar, Vector & Parallel Computers
Weidnesday, 8:00 - 8:25, Room B

Maximizing Sparse Matrix Vector Product Performance in MIMD Computers
Thursday, 8:50 - 9:15, Room B

On the Relationship Between ODE Solvers and Iterative Solvers for Linear
Equations
Thursday, 5:10 - 5:35, Room B

Tterative Methods for Stationary Convection-Dominated Transport Problems
Saturday, 8:00 - 8:25, Room B

A Parallel Implementation of an EBE Solver for the Finite Element Method
Thursday, 11:05 - 11:30, Room B
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Tony F. Chan

Tony Chan*

Jen Yuan Chen

Edmond Chow*

Christina Christara*

KA. Cliffe

Paul Concus

Jane Cullum*

Tom Cwik*

Hasan Dag

Tugral Dayar*

J.E. Dendy, Jr.*

Craig C. Douglas*

Tobin Driscoll*

Composite-Step Product Methods for Solving Nonsymmetric Linear Systems
Thursday, 9:15 - 9:40, Room A

Multigrid and Multilevel Domain Decomposition for Unstructured Grids
Tuesday, 11:05 - 11:30, Room A

MGMRES: A Generalization of GMRES for Solving Large Sparse
Nonsymmetric Linear Systems
Thursday, 11:30 - 11:55, Room A

Approximate Inverse Preconditioners for General Sparse Matrices
Saturday, 8:00 - 8:25, Room A

Schwarz and Multilevel Methods for Quadratic Spline Collocation
Tuesday, 9:15 - 9:40, Room A

Two Grid Iteration With a Conjugate Gradient Fine Grid Smoother Applied to
a Groundwater Flow Model
Friday, 8:25 - 8:50, Room B

A Modified Direct Preconditioner for Indefinite Symmetric Toeplitz Systems
Saturday, 5:10 - 5:35, Room A

Peaks, Plateaus, Numerical Instabilities, and Achievable Accuracy in Galerkin
and Norm Minimizing Procedures for Solving Ax=b
Wednesday, 10:40 - 11:05, Room A

An Tterative Parallel Sparse Matrix Equation Solver with Application to Finite
Element Modeling of Electromagnetic Scattering
Friday, 9:15 - 9:40, Room B

Block-Bordered Diagonalization and Parallel Iterative Solvers
Saturday, 9:15 - 9:40, Room A

On the Effects of Using the GTH method in the Iterative
Aggregation/Disaggregation Technique
Wednesday, 5:35 - 6:00, Room A

Grandchild of the Frequency Decomposition Multigrid Methods
Friday, 4:45 - 5:10, Room A

Constructive Interference II: Semi-Chaotic Multigrid Methods
Friday, 8:25 - 8:50, Room A

Conformal Mapping and Convergence of Krylov Iterations
Wednesday, 8:00 - 8:25, Room A
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Vladimir Druskin*

H. Carter Edwards

Stanley C. Eisenstat

Howard Elman

Richard E. Ewing

Vance Faber

R.D. Falgout

Charlotte F. Fischer

T.W. Fogwell

Diederik Fokkema*

Roland Freund

Roland Freund*

Kyle Gallivan

E. Gallopoulos*

Explicit and Implicit ODE Solvers Using Krylov Subspace Optimization:
Application to the Diffusion Equation andParabolic Maxwell's System
Thursday, 4:45 - 5:10, Room B

VOILA-A Visual Object-Oriented Iterative Linear Algebra Problem Solving
Environment
Wednesday, 5:10 - 5:35, Room B

Choosing the Forcing Terms in an Inexact Newton Method
Tuesday, 8:50 - 9:15, Room B

Fast Non-Symmetric Iterations and Efficient Preconditioning for Navier-Stokes
Equations
Friday, 6:00 - 6:25, Room B

Implementations of the Optimal Multigrid Algorithm for the Cell-Centered
Finite Difference on Equilateral Triangular Grids
Friday, 8:00 - 8:25, Room A

Minimal Residual Method Stronger than Polynomial Preconditioning
Wednesday, 10:15 - 10:40, Room A

Modeling Groundwater Flow on Massively Parallel Computers
Friday, 8:00 - 8:25, Room B

Overlapping Domain Decomposition Preconditioners for the Generalized
Davidson Method for the Eigenvalue Problem
Tuesday, 5:10 - 5:35, Room B

Modeling Groundwater Flow on Massively Parallel Computers
Friday, 8:00 - 8:25, Room B

Generalized Conjugate Gradient Squared
Thursday, 8:00 - 8:25, Room A

A Look-Ahead Variant of TFQMR
Thursday, 8:50 - 9:15, Room A

Block Quasi-Minimal Residual Iterations for Non-Hermitian Linear Systems
Thursday, 8:25 - 8:50, Room A

CIMGS: An Incomplete Orthogonal Factorization Preconditioner
Saturday, 8:25 - 8:50. Room A

Matrix-Valued Polynomials in Lanczos Type Methods
Thursday, 10:15 - 10:40, Room A
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Marc Garbey* A Schwarz Alternating Procedure for Singular Perturbation Problems
Tuesday, 8:50 - 9:15, Room A

Andre Garon Iterative Solvers for Navier-Stokes Equations - Experiments with Turbulence
Model

Saturday, 10:15 - 10:40, Room B

R. Ghanem Multilevel Adaptive Solution Procedure for Material Nonlinear Problems in
Visual Programming Environment
Wednesday, 5:35 - 6:00, Room B

Eldar Giladi* On the Interplay Between Inner and Quter Iterations for a Class of Iterative
: Methods
Wednesday, 6:00 - 6:25, Room A

Michael Griebel* On the Relation Between Traditional Iterative Methods and Modern
Multilevel/Domain Decomposition Methods
Friday, 10:15 - 10:40, Room A

William Gropp Portable, Parallel, Reusable Krylov Space Codes
Wednesday, 9:15 - 9:40, Room B

Karl Gustafson* Computational Trigonometry
Wednesday, 11:05 - 11:30, Room A

D.Rh. Gwynllyw* Preconditioned Iterative Methods for Unsteady Non- Newtonian Flow Between
Eccentrically Rotating Cylinders
Friday, 5:35 - 6:00, Room B

MJ. Hagger* Two Grid Iteration With a Conjugate Gradient Fine Grid Smoother Applied to
a Groundwater Flow Model
Friday, 8:25 - 8:50, Room B

Thomas Hagstrom* Experimental and Theoretical Studies of Iterative Methods for Nonlinear,
Nonsymmetric Systems Arising in Combustion
Friday, 4:45 - 5:10, Room B

Linda Hayes* VOILA-A Visual Object-Oriented Iterative Linear Algebra Problem Solving
Environment
Wednesday, 5:10 - 5:35, Room B

Linda Hayes ITPACK Project: Past, Present, and Future
Wednesday, 6:00 - 6:25, Room B
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Qing He

Qing He*

Parallel Algorithms for Unconstrained Optimization by Multisplitting with
Inexact Subspace Search - The Abstract
Tuesday, 10:40 - 11:05, Room B

- Parallel Algorithms for Unconstrained Optimizations by Multisplitting

Thursday, 4:45 - 5:10, Room A

Matthias Heinkenschloss*Numerical Solution of Control Problems Governed by Nonlinear Differential

Lina Hemmingsson*
Van Henson*

Mike Heroux

Michael Heroux*

S. Holmgren*

N.A. Hookey*

Louis Howell*

Jie Hu
Dan Hu*

Thomas Huckle*

Equations
Tuesday, 11:30 - 11:55, Room B

Analysis of Semi-Toeplitz Preconditioners for First-Order PDEs
Thursday, 5:10 - 5:35, Room A

On Multigrid Methods for Image Reconstruction from Projections
Friday, 5:10 - 5:35, Room A

Advancements and Performance of Iterative Methods In Industrial Applications
Codes on Cray Parallel/Vector Supercomputers
Tuesday, 10:40 - 11:05, Room B

Performance Analysis of High Quality Parallel Preconditioners Applied to 3d
Finite Element Structural Analysis
Wednesday, 11:30 - 11:55, Room B

A Framework for the construction of preconditioners for systems of PDE
Saturday, 11:05 - 11:30, Room A

Simulation of Viscous Flows Using a Multigrid-Control Volume Finite Element
Method
Saturday, 9:15 - 9:40, Room B

A Multilevel Approximate Projection for Incompressible Flow
Calculations
Saturday, 8:50 - 9:15. Room B

A Divide-and-Inner Product Parallel Algorithm for Polynomial Evaluation
Thursday, 8:00 - 8:25, Room B

Parallelizing Sylvester-Like Operations on a Distributed Memory Computer
Thursday, 8:25 - 8:50, Room B

Iterative Methods for Toeplitz-Like Matrices
Saturday, 4:45 - 5:10, Room A
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Scott A. Hutchinson

Scott Hutchinson*

Masao Igarasi*

Vahraz Jamnejad

Jan Janssen*

Wayne Joubert

Wayne Joubert

Wayne Joubert

Wayne Joubert*

Michael Jung*

M. Kamon*

Yimin Kang*

Hans G.Kaper

Parallel Performance of a Preconditioned CG Solver for Unstructured Finite
Element Applications
Thursday, 8:00 - 8:25, Room B

A Two-Level Parallel Direct Search Implementation for Arbitrarily Sized
Objective Functions
Tuesday, 10:15 - 10:40, Room B

On the Convergence Processes of Newton-Raphson Iteration Methods
Tuesday, 8:25 - 8:50, Room B

An Tterative Parallel Sparse Matrix Equation Solver with Application to Finite
Element Modeling of Electromagnetic Scattering
Friday, 9:15 - 9:40, Room B

Multigrid Waveform Relaxation on Spatial Finite Element Meshes
Friday, 8:50 - 9:15, Room A

Minimal Residual Method Stronger than Polynomial Preconditioning
Wednesday, 10:15 - 10:40, Room A

Some Comparison of Restarted GMRES and QMR for Linear and Nonlinear
Problems
Thursday, 11:05 - 11:30, Room A

On the Relationship Between ODE Solvers and Iterative Solvers for Linear
Equations
Thursday, 5:10 - 5:35, Room B

PCG: A Software Package for the Iterative Solution of Linear Systems on
Scalar, Vector & Parallel Computers
Wednesday, 8:00 - 8:25, Room B

Implicit Extrapolation Methods for Multilevel Finite Element Computations
Friday, 11:05 - 11:30, Room A

Preconditioning Techniques for Constrained Vector Potential Integral
Equations, with Application to 3-D Magnetoquasistatic Analysis of Electron
Packages

Saturday,\ 11:05-11:30, Room B

Convergence Analysis of Combinations of Different Methods
Thursday, 6:00 - 6:25, Room B

A Schwarz Alternating Procedure for Singular Perturbation Problems
Tuesday, 8:50 - 9:15, Room A
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C.T. Kelley*

D. Kim*

Seongjai Kim*

David R. Kincaid*

Emanuel Knill*

Leonid Knizhnerman

H.S. Kohli*

Lilia Kolotilina

L. Kolotilina*

T. Korsmeyer

E.B. Las Casas

Y. Li

Lei Li*

Xiezhang Li*

GMRES and Integral Operators
Tuesday, 5:35 - 6:00, Room A

Multilevel Adaptive Solution Procedure for Material Nonlinear Problems in
Visual Programming Environment
Wednesday, 5:35 - 6:00, Room B

Parallel Iterative Procedures for Approximate Solutions of Wave Propagation
by Finite Element and Finite Difference Methods
Tuesday, 10:40 - 11:05, Room A

ITPACK Project: Past, Present, and Future
Wednesday, 6:00 - 6:25, Room B

Minimal Residual Method Stronger than Polynomial Preconditioning
Wednesday, 10:15 - 10:40, Room A

Explicit and Implicit ODE Solvers Using Krylov Subspace Optimization:
Application to the Diffusion Equation andParabolic Maxwell's System
Thursday, 4:45 - 5:10, Room B

Maximizing Sparse Matrix Vector Product Performance in MIMD Computers
Thursday, 8:50 - 9:15, Room B

Performance Analysis of High Quality Parallel Preconditioners Applied to 3d
Finite Element Structural Analysis
Wednesday, 11:30 - 11:55, Room B

Incomplete Block SSOR Preconditionings for High Order Discretizations
Saturday, 8:50 - 9:15. Room A

Comparing Precorrected-FFT and Fast Multipole Algorithms for Solving
Three-Dimensional Potential Integral Equations
Tuesday, 4:45 - 5:10, Room A

A Parallel Implementation of an EBE Solver for the Finite Element Method
Thursday, 11:05 - 11:30, Room B

A Nonlinear Multigrid Solver for a Semi-Lagrangian Potential Vorticity-Based
Barotropic Model on the Sphere
Friday, 5:35 - 6:00, Room A

A Divide-and-Inner Product Parallel Algorithm for Polynomial Evaluation
Thursday, 8:00 - 8:25, Room B

The Asymptotic Convergence Factor for a Polygon Under a Perturbation
Saturday, 5:35 - 6:00, Room B
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Mark Limber

Zhining Liu

Chaogun Liju*

A. Lorber*

Andrew Lumsdaine*

Thomas Manteufffel

F. Mazzia

Steve McCormick

Steve McCormick*

Steven M. McKay*

R.T. McLay

Bruce McMillin

AJ. Meir¥

On Multigrid Methods for Image Reconstruction from Projections
Friday, 5:10 - 5:35, Room A

Multigrid Mapping and Box Relaxtion for Simulation of the Whole Process of
Flow Transition in 3-D Boundary Layers
Friday, 6:00 - 6:25, Room A

Multigrid Mapping and Box Relaxtion for Simulation of the Whole Process of
Flow Transition in 3-D Boundary Layers
Friday, 6:00 - 6:25, Room A

On the Relationship Between ODE Solvers and Iterative Solvers for Linear
Equations
Thursday, 5:10 - 5:35, Room B

Krylov-Subspace Acceleration of Time Periodic Waveform Relaxation
Thursday, 5:35 - 6:00, Room B

Minimal Residual Method Stronger than Polynomial Preconditioning
Wednesday, 10:15 - 10:40, Room A

Parallel Preconditioning for the Solution of Nonsymmetric Banded Linear
Systems
Saturday, 10:15 - 10:40, Room A

A Nonlinear Multigrid Solver for a Semi-Lagrangian Potential Vorticity-Based
Barotropic Model on the Sphere
Friday, 5:35 - 6:00, Room A

Multilevel First-Order System Least Squares for PDE'S
Friday, 11:30 - 11:55, Room A

The Use of the Spectral Method within the Fast Adaptive Composite Gid
Method
Tuesday, 11:30 - 11:55, Room A

Maximizing Sparse Matrix Vector Product Performance in MIMD Computers
Thursday, 8:50 - 9:15, Room B

Adapting Implicit Methods to Parallel Processors
Thursday, 10:15 - 10:40, Room B

Velocity-Vorticity Formulation of Three-Dimensional, Steady, Viscous,
Incompressible Flows
Saturday, 8:25 - 8:50. Room B
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N. J. Meyers*

Juan C. Meza

Harry K. Moffat

Harry K. Moffat

Ron Morgan*

Noel M. Nachtigal*
Tadao Nakamura
Olavi Nevanlinna*

Kwong T. Ng

Andy Nikishin

M.E. Oman

K. Otto

Maryse Page*

An Iterative Method for the Solution of Linear Systems Using the Faber
Polynomials for Annular Sectors
Wednesday, 8:50 - 9:15, Room A

A Multigrid Preconditioner for the Semiconductor Equations
Friday, 10:15 - 10:40, Room B

A Two-Level Parallel Direct Search Implementation for Arbitrarily Sized
Objective Functions
Tuesday, 10:15 - 10:40, Room B

Parallel Performance of a Preconditioned CG Solver for Unstructured Finite
Element Applications
Thursday, 8:00 - 8:25, Room B

Some Comparison of Restarted GMRES and QMR for Linear and Nonlinear
Problems
Thursday, 11:05 - 11:30, Room A

A Look-Ahead Variant of TFQMR
Thursday, 8:50 - 9:15, Room A

A Divide-and-Inner Product Parallel Algorithm for Polynomial Evaluation
Thursday, 8:00 - 8:25, Room B

Convergence of Arnoldi Method
Wednesday, 11:30 - 11:55, Room A

A Twio-Level Parallel Direct Search Implementation for Arbitrarily Sized
Objective Functions
Tuesday, 10:15 - 10:40, Room B

Performance Analysis of High Quality Parallel Preconditioners Applied to 3d
Finite Element Structural Analysis
Wednesday, 11:30 - 11:55, Room B

The Numerical Solution of Total Variation Minimization Problems in Image
Processing
Tuesday, 5:10 - 5:35, Room A

A Framework for the construction of preconditioners for systems of PDE
Saturday, 11:05 - 11:30, Room A

Iterative Solvers for Navier-Stokes Equations - Experiments with Turbulence
Model
Saturday, 10:15 - 10:40, Room B
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Victor Pan*

Seymour Parter*

J.E. Pasciak*

Michael Pernice*

Svetozara Petrova

J.R. Phillips

J.R. Phillips*

Tim Phillips

Claude Pommerell*

Gene Poole*

Krishnan Radhakrishnan

Jussi Rahola*

Larry Reeves*

New Algorithms for the Symmetric Tridiagonal Eigenvalue Computation
Tuesday, 5:35 - 6:00, Room B

A Remark on Band-Toeplitz Preconditions for HermitianToeplitz Systems
Saturday, 6:00 - 6:25, Room A

Preconditioning the Pressure Operator for the Time Dependent Stokes
Problem
Saturday, 10:40 - 11:05, Room A

Domain Decomposed Preconditioners with Krylov Subspace Methods as
Subdomain Solvers
Tuesday, 8:00 - 8:25, Room A

Preconditioned Iterations to Calculate Extreme Eigenvalues

Comparing Precorrected-FFT and Fast Multipole Algorithms for Solving
Three-Dimensional Potential Integral Equations
Tuesday, 4:45 - 5:10, Room A

Preconditioning Techniques for Constrained Vector Potential Integral
Equations, with Application to 3-D Magnetoquasistatic Analysis of Electron
Packages

Saturday, 11:05 - 11:30, Room B

Preconditioned Iterative Methods for Unsteady Non- Newtonian Flow Between
Eccentrically Rotating Cylinders
Friday, 5:35 - 6:00, Room B

Migration of Vectorized Iterative Solvers to Distributed Memory Architectures
Wednesday, 8:25 - 8:50, Room B

Advancements and Performance of Iterative Methods In Industrial Applications
Codes on Cray Parallel/Vector Supercomputers
Wednesday, 10:40 - 11:05, Room B

Experimental and Theoretical Studies of Iterative Methods for Nonlinear,
Nonsymmetric Systems Arising in Combustion

Solution of Dense Systems of Linear Equations in Electromagnetic Scattering
Calculations
Friday, 8:50 - 9:15, Room B

Adapting Implicit Methods to Parallel Processors
Thursday, 10:15 - 10:40, Room B
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Rosemary Renaut*
Shu-Mei C. Richman*

Bruce T. Robinson

Garry Rodrigue

Ulrich Rude

John Ruge*

Roland Ruhl

Youcef Saad

Youcef Saad
Youcef Saad*

Ove Saevareid

Paul Saylor*

A.A. Seidl

Parallel Algorithms for Unconstrained Optimization by Multisplitting with
Inexact Subspace Search - The Abstract
Tuesday, 10:40 - 11:05, Room B

A Component Analysis Based On Serial Results for Analyzing Performance of
Parallel Iterative Programs
Wednesday, 11:05 - 11:30, Room B

On Multigrid Methods for Image Reconstruction from Projections
Friday, 5:10 - 5:35, Room A

Preconditioned Time-Difference Methods for Advection- Diffusion-Reaction
Equations
Friday, 5:10 - 5:35, Room B

Implicit Extrapolation Methods for Multilevel Finite Element Computations
Friday, 11:05 - 11:30, Room A

A Nonlinear Multigrid Solver for a Semi-Lagrangian Potential Vorticity-Based
Barotropic Model on the Sphere
Friday, 5:35 - 6:00, Room A

Migration of Vectorized Iterative Solvers to Distributed Memory Architectures
Wednesday, 8:25 - 8:50, Room B

Overlapping Domain Decomposition Preconditioners for the Generalized
Davidson Method for the Eigenvalue Problem
Tuesday, 5:10 - 5:35, Room B

Approximate Inverse Preconditioners for General Sparse Matrices
Saturday, 8:00 - 8:25, Room A

P_SPARSLIB: A Parallel Sparse Iterative Solution Package
Wednesday, 8:50 - 9:15, Room B

Implementations of the Optimal Multigrid Algorithm for the Cell-Centered
Finite Difference on Equilateral Triangular Grids
Friday, 8:00 - 8:25, Room A

A Modified Direct Preconditioner for Indefinite Symmetric Toeplitz Systems
Saturday, 5:10 - 5:35, Room A

A Sparse Matrix Iterative Method for Efficiently Computing Multiple
Simultaneous Solutions
Wednesday, 5:10 - 5:35, Room A
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S, Selberherr

John N, Shadid

John Shadid*

Qasim Sheikh

Jian Shen*

R.P. Silva*

David Silvester

David Silvester*

V. Simoneini

Gerard L.G. Sleijpen

Barry Smith

Barry Smith

Barry Smith*

Danny C. Sorensen

Preconditioned CG-Solvers and Finite Element Grids
Friday, 10:40 - 11:05, Room B

A Two-Level Parallel Direct Search Implementation for Arbxtranly Sized
Objective Functions
Tuesday, 10:15 - 10:40, Room B

Parallel Performance of a Preconditioned CG Solver for Unstructured Finite
Element Applications
Thursday, 9:15 - 9:40, Room B

Performance Analysis of High Quality Parallel Preconditioners Applied to 3d
Finite Element Structural Analysis
Wednesday, 11:30 - 11:55, Room B

Implementations of the Optimal Multigrid Algorithm for the Cell-Centered
Finite Difference on Equilateral Triangular Grids :
Friday, 8:00 - 8:25, Room A

A Parallel Implementation of an EBE Solver for the Finite Element Method
Thursday, 11;05 - 11:30, Room B

An Optimal Iterative Solver for the Stokes Problem
Saturday, 4:45 - 5:10, Room B

Fast Non-Symmetric Iterations and Efficient Preconditioning for Navier-Stokes
Equations
Friday, 6:00 - 6:25, Room B

Matrix-Valued Polynomials in Lanczos Type Methods
Thursday, 10:15 - 10:40, Room A

Generalized Conjugate Gradient Squared
Thursday, 8:00 - 8:25, Room A

Schwarz and Multilevel Methods for Quadratic Spline Collocation
Tuesday, 9:15 - 9:40, Room A

Multigrid and Multilevel Domain Decomposition for Unstructured Gnds
Tuesday, 11:05 - 11:30, Room A

Portable, Parallel, Reusable Krylov Space Codes
Wednesday, 9:15 - 9:40, Room B

Parallelizing Sylvester-Like Operations on a Distributed Memory Computer
Thursday, 8:25 - 8:50, Room B
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A. Spence

Gerhard Starke*

Andpreas Stathopoulos*

William J. Stewart

S.L. Swift

Tedd Szeto*

Shlomo Ta'asan

Johannes Tausch*

C.C. Tazartes

Kim-Chuan Toh*

A.F.B. Tompson

C.S. Tong

Lloyd N. Trefethen

Lloyd N. Trefethen

Two Grid Iteration With a Conjugate Gradient Fine Grid Smoother Applied to
a Groundwater Flow Model
Friday, 8:25 - 8:50, Room B

Subspace Orthogonalization for Substructuring Preconditioners for
Nonsymmetric Systems of Linear Equations
Wednesday, 9:15 - 9:40, Room A

Overlapping Domain Decomposition Preconditioners for the Generalized
Davidson Method for the Eigenvalue Problem
Tuesday, 5:10 - 5:35, Room B

On the Effects of Using the GTH method in the Iterative
Aggregation/Disaggregation Technique
Thursday, 8:25 - 8:50, Room B

Maximizing Sparse Matrix Vector Product Performance in MIMD Computers
Thursday, 8:50 - 9:15, Room B

Composite-Step Product Methods for Solving Nonsymmetric Linear Systems
Thursday, 9:15 - 9:40, Room A

Multilevel Turbulence Simulations
Saturday, 10:40 - 11:05, Room B

Equivalent Preconditioners for Boundary Element Methods
Thursday, 5:35 - 6:00, Room A

Grandchild of the Frequency Decomposition Multigrid Methods
Friday, 4:45 - 5:10, Room A

Convergence Estimates for Iterative Methods Via the Kreiss Matrix Theorem
on a General Complex Domain
Wednesday, 8:25 - 8:50, Room A

Modeling Groundwater Flow on Massively Parallel Computers
Friday, 8:00 - 8:25, Room B

Domain Decomposition Methods for Solving an Image Problem
Tuesday, 8:25 - 8:50, Room A

Conformal Mapping and Convergence of Krylov Iterations
Wednesday, 8:00 - 8:25, Room A

Convergence Estimates for Iterative Methods Via the Kreiss Matrix Theorem
on a General Complex Domain
Wednesday, 8:25 - 8:50, Room A
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Anne E. Trefethen*

W.K. Tsui ¥

Ray S. Tuminaro*

Eugene E. Tyrtyshnikov*

Eli Tziperman*

Stefan Vandewalle

Stefan Vandewalle*

Curt Vogel

Curt Vogel*

Eugene L. Wachspress*

J.G. Wade*

Homer F. Walker*

Xiaoge Wang*

Andy Wathen*

The Conjugate Gradient NAS Parallel Benchmark on the IBM SP1
Wednesday, 10:15 - 10:40, Room B

Domain Decomposition Methods for Solving an Image Problem
Tuesday, 8:25 - 8:50, Room A

A Multigrid Preconditioner for the Semiconductor Equations
Friday, 10:15 - 10:40, Room B

Circulant Preconditioners with Unbounded Inverses: Why Non-Optimal
Preconditioners may Possess a Better Quality than Optimal Ones
Saturday, 5:35 - 6:00, Room A

Multilevel Turbulence Simulations
Saturday, 10:40 - 11:05, Room B

Multigrid Waveform Relaxation on Spatial Finite Element Meshes
Friday, 8:50 - 9:15, Room A

Time-Parallel~Iterative Methods for Parabolic PDEs: Multigrid Waveform
Relaxation and Time-Parallel Multigrid
Friday, 9:15 - 9:40, Room A

Iterative Methods for Distributed Parameter Estimation in Parabolic PDE
Tuesday, 6:00 - 6:25, Room A

The Numerical Solution of Total Variation Minimization Problems in Image
Processing
Tuesday, 5:10 - 5:35, Room A

Recent ADI Iteration Analysis and Results
Wednesday, 4:45 - 5:10, Room A

Iterative Methods for Distributed Parameter Estimation in Parabolic PDE
Tuesday, 6:00 - 6:25, Room A

Choosing the Forcing Terms in an Inexact Newton Method
Tuesday, 8:50 - 9:15, Room B

CIMGS: An Incomplete Orthogonal Factorization Preconditioner
Saturday, 8:25 - 8:50. Room A

An Optimal Iterative Solver for the Stokes Problem
Saturday, 4:45 - 5:10, Room B
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Bruno Welfert*

J. White*

Beata Winnicka

Donald Wolitzer

Z.Q. Xue

Irad Yavneh

Irad Yavneh*

Alex Yeremin

David M. Young

David Young*

Tong Zhang

Cinzia Zuffada

On the Convergence of Inexact Uzawa Algorithms
Saturday, 5:10 - 5:35, Room B

Comparing Precorrected-FFT and Fast Multipole Algorithms for Solving
Three-Dimensional Potential Integral Equations
Tuesday, 4:45 - 5:10, Room A

Solving Linear Inequalities in a Least Squares Sense
Tuesday, 11:05 - 11:30, Room B

Preconditioned Time-Difference Methods for Advection- Diffusion-Reaction
Equations
Friday, 5:10 - 5:35, Room B

GMRES and Integral Operators
Tuesday, 5:35 - 6:00, Room A

Multilevel Turbulence Simulations
Saturday, 10:40 - 11:05, Room B

Multigrid with Red Black SOR Revisited
Friday, 10:40 - 11:05, Room A

Performance Analysis of High Quality Parallel Preconditioners Applied to 3d
Finite Element Structural Analysis
Wednesday, 11:30 - 11:55, Room B

ITPACK Project: Past, Present, and Future
Wednesday, 6:00 - 6:25, Room B

MGMRES: A Generalization of GMRES for Solving Large Sparse
Nonsymmetric Linear Systems
Thursday, 11:30 - 11:55, Room A

The Conjugate Gradient NAS Parallel Benchmark on the IBM SP1
Wednesday, 10:15 - 10:40, Room B

An Iterative Parallel Sparse Matrix Equation Solver with Application to Finite
Element Modeling of Electromagnetic Scattering
Friday, 9:15 - 9:40, Room B




