skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Algal Biomass Production via Open Pond Algae Farm Cultivation: 2022 State of Technology and Future Research

Technical Report ·
DOI:https://doi.org/10.2172/1984451· OSTI ID:1984451

The annual State of Technology (SOT) assessment is an essential activity for platform research conducted under the Bioenergy Technologies Office (BETO). It allows for the impact of research progress (both directly achieved in-house at the National Renewable Energy Laboratory [NREL] and furnished by partner organizations) to be quantified in terms of economic improvements in the overall biofuel production process for a particular biomass processing pathway, whether based on terrestrial or algal biomass feedstocks. As such, initial benchmarks can be established for currently demonstrated performance, and progress can be tracked toward out-year goals to ultimately demonstrate economically viable biofuel technologies. NREL's algae SOT benchmarking efforts focus both on front-end algal biomass production and separately on back-end conversion to fuels through NREL's "combined algae processing" (CAP) pathway. The production model is based on outdoor long-term cultivation data, enabled by comprehensive algal biomass production trials conducted under the Development of Integrated Screening, Cultivar Optimization, and Verification Research (DISCOVR) consortium efforts, driven by data furnished by Arizona State University (ASU) at the Arizona Center for Algae Technology and Innovation (AzCATI) testbed site. The CAP model is based on experimental efforts conducted primarily under NREL research and development projects. This report focuses on front-end algal biomass production, documenting the pertinent algal biomass cultivation parameters that were input to the NREL open pond algae farm model. Through partnerships under DISCOVR, collaborators at ASU furnished details on cultivation performance metrics including biomass productivity and harvest densities for recent growth trials done at the AzCATI site. The resulting biomass productivity was calculated at 18.5 g/m2/day (ash-free dry weight [AFDW], annual average) for seasonal cultivation of Picochlorum celeri, Tetraselmis striata LANL1001, and Monoraphidium minutum 26B-AM biomass strains at the ASU site. Picochlorum celeri achieved the best productivity from May to September, with Monoraphidium minutum 26B-AM being used in October, November, March, and April, and Tetraselmis striata employed during winter months (December through February). Beyond the standard SOT models, in Appendix C of this report we also present an industry case study evaluating several scenarios reflective of outdoor cultivation data furnished by an industry collaborator. This case study provides a supplementary datapoint on work being performed elsewhere achieving comparable cultivation productivity with more favorable compositional quality, producing biomass enriched in lipids as may be more optimal for conversion upgrading to fuels and products.

Research Organization:
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Bioenergy Technologies Office (BETO)
DOE Contract Number:
AC36-08GO28308
OSTI ID:
1984451
Report Number(s):
NREL/TP-5100-85661; MainId:86434; UUID:9689c978-0dfa-4033-bb55-16cbbdee44b6; MainAdminID:69643
Country of Publication:
United States
Language:
English