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Abstract

We propose a new type of neural networks, Kronecker neural networks (KNNs), that form a general framework for
neural networks with adaptive activation functions. KNNs employ the Kronecker product, which provides an efficient
way of constructing a very wide network while keeping the number of parameters low. Our theoretical analysis reveals
that under suitable conditions, KNNs induce a faster decay of the loss than that by the feed-forward networks. This is
also empirically verified through a set of computational examples. Furthermore, under certain technical assumptions,
we establish global convergence of gradient descent for KNNs. As a specific case, we propose the Rowdy activation
function that is designed to get rid of any saturation region by injecting sinusoidal fluctuations, which include trainable
parameters. The proposed Rowdy activation function can be employed in any neural network architecture like feed-
forward neural networks, Recurrent neural networks, Convolutional neural networks etc. The effectiveness of KNNs
with Rowdy activation is demonstrated through various computational experiments including function approximation
using feed-forward neural networks, solution inference of partial differential equations using the physics-informed
neural networks, and standard deep learning benchmark problems using convolutional and fully-connected neural
networks.

Keywords: Deep neural networks, Kronecker product, Rowdy activation functions, Gradient flow dynamics,
physics-informed neural networks, Deep learning benchmarks

1. Introduction

Neural networks have been very effective in diverse applications of machine learning and scientific machine learn-
ing [1]. Undoubtedly, how to design neural networks plays a central role in efficient training [2]. It has been widely
known that some network architectures can be trained well and also be generalized well [3]. In training neural net-
works, there are many known open issues, such as the vanishing and exploding gradient and the plateau phenomenon
[4, 5, 6]. There are some theoretical works claiming that over-parameterized neural networks trained by gradient
descent can achieve a zero training loss [7, 8, 9, 10, 11, 12]. However, in practice, the possible training time is always
limited and one needs to leverage between the size of neural networks and the number of epochs of gradient-based
optimization.

It has been empirically found that a well-chosen activation function can help gradient descent to not only converge
fast but also to generalize well [13]. A representative example is the rectified linear unit (ReLU) activation that
achieves state-of-the-art performance in many image classification problems [14], and it has been one of the most
popular activation functions for image classification problems. However, there is no rule of thumb of choosing an
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optimal activation function. This has motivated the use of adaptive activation functions by our group and others, see
[15, 16, 17, 17, 18, 19, 20, 21], with varying results demonstrating superior performance over non-adaptive fixed
activation functions in various learning tasks.

In the present work, we propose a new type of neural networks, the Kronecker neural networks (KNN), that
utilizes the Kronecker product [22] in the construction of the weight matrices. We show that KNN provides a general
framework for neural networks with adaptive activation functions, and many existing ones become special instances
of KNNs. As a matter of fact, the KNN is equivalent to the standard feed-forward neural networks (FNN) with a
general adaptive activation function of the following form:

K
fow() = D wpwr),  KeNy, a=(@), =) M
k=1

where ¢;’s are fixed activation functions and @, w are parameters that could be either trainable or fixed. Hence,
the implementation of the KNN does not require that the Kronecker product actually be computed. However, the
Kronecker product allows one to construct a much wider network than a FNN, while maintaining almost the same
number of parameters.

The main findings of our work are summarized below:

e By analyzing the gradient flow dynamics of two-layer networks, we prove theoretically that at least in the
beginning of training, the loss by KNNss is strictly smaller than the loss by the FINNs.

e We establish global convergence of gradient flow dynamics for the two-layer KNNs under certain technical
conditions.

e We propose the adaptive Rowdy activation functions, which is a particular case of a more general KNN frame-
work. In this case, we choose {¢;} to be any standard activation function such as ReLU, tanh, ELU, sine, Swish,
Softplus, etc., and the remaining {¢k}f=2 activation functions are chosen as sinusoidal harmonic functions. The
purpose of choosing such sinusoidal functions is to inject bounded but highly non-monotonic, noisy effects
to remove the saturation regions from the output of each layer in the network, thereby allows the network to
explore more and learn faster.

One of the main weaknesses of deep as well as physics-informed neural networks [23] is related to the problem
of spectral bias [24, 25], which prevents them from learning the high-frequency components of the approximated
functions. To overcome this problem a few approaches have been proposed in the literature. In [26, 27] the authors
introduced appropriate input scaling factors to convert the problem of approximating high frequency components to
lower frequencies. Tancik et al. [28] introduced Fourier features networks that can learn high-frequency functions
by use of Fourier feature mapping. More recently, Wang et al. [29] proposed novel architectures that employ spatio-
temporal and multi-scale random Fourier features to learn high-frequencies involved in the target functions. With
the proposed Rowdy activation functions, the high-frequency components in the target function can be captured by
introducing the high frequency sinusoidal fluctuations in the activation functions. Moreover, the Rowdy activations
can be implemented easily in any neural network architecture such as feed forward neural networks, convolutional
neural networks, recurrent neural networks and the more recently proposed DeepOnets [30]. To demonstrate the
performance of the Rowdy activation functions and to computationally justify our theoretical findings, a number of
computational examples are presented from function approximation, solving partial differential equations, as well as
standard benchmark problems in machine learning. We found that the KNNs are effectively trained by gradient-based
optimization methods and outperform standard FNNs in all the examples we considered here.

The remainder of the paper is organized as follows. In Section 2 we present the mathematical setup and propose
the Kronecker neural networks. In Section 3 we present theoretical results, and in Section 4 we report various compu-
tational examples for function approximation, inferring the solution of partial differential equations and standard deep
learning benchmark problems. Finally, we conclude in Section 5 with a summary.
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2. Mathematical Setup and Kronecker Neural Networks

A feed-forward neural network of depth D is a function defined through a composition of multiple layers consisting
of an input layer, D — 1 hidden-layers and an output layer. In the " hidden-layer, N; number of neurons are present.
Each hidden-layer receives an output z/~! € R¥-! from the previous layer, where an affine transformation

Ll(zl_l) L WIZ]—] +bl (2)

is performed. Here, W/ € R¥*Nr1 is the weight matrix and 5’ € R™ is the bias vector associated with the I’ layer.
A nonlinear activation function ¢;(-) is applied to each component of the transformed vector before sending it as an
input to the next layer. The activation function is an identity function after an output layer. Thus, the final neural
network representation is given by

U @) = (LpogioLpio...o¢ 0 L)), A3)

D

where the operator o is the composition operator. Let @z = {W', b} PR

the network.
For a vector v = [vy,--- ,v,]7 € R”, let us recall the various norms of v:

which represents the trainable parameters in

n

n
2 2
VI, = E [vil, Ivl* = E Vi, IVlleo = max |vy.
P 1<i<n

i=1

For a matrix M € R™" where m > n, let o, (M) be the n-th largest singular value of M. Also, the spectral norm and
the Frobenius norm are defined as

m n

2 2

M|l = ﬁn“w%IIMXII, M|l = § § M,

||=
i=1 j=1

respectively, where M;; is the (i, j)-component of M. Let 1, be the matrix of size s X ¢ whose entries are all 1s.

2.1. Kronecker Neural Networks
Let K be a fixed positive integer. Given a FNN’s parameters @ = {W/, b’},li 1» let us define the /-th block weight
matrix and block bias vector, respectively, by

wto... W b
Lok @W=| . 1t [eRVEME 10,0 =] e RV,

wtooo. W b

where ® is the Kronecker product. Let us define a block activation function (Z that applies block-wise. That is, for
zieR forl1 < j<K,letz={z, - ,z¢]" € R and

$1(z1)
ré .
¢(Z) = N ’
Pk (zk)
where ¢,’s are activation functions applied element-wise. We then construct a neural network from the block weight

matrices and block bias vectors as follows: Let z° = z be the input and 7' = (Ixxx ® WH(1xx1 ® 2°) + 1gsq ® b'. For
2<Il<D,

2= (Igxx ® WHGE™) + 11 @1,

and 22 = (11x ® W2)(z2~") + bP. Then, z° is a D-layer FNN having KN; number of neurons at the /-th layer, while
keeping the number of network’s parameters the same as u/* in Eq. (3).
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In order to properly scale the block weight matrices and the block bias vectors, we introduce the scaling parameters

! !is a column vector and o/ is a row vector. The scaled block weight matrices and block bias vectors

W', a' € RX. Here w
are given by

le(wl®al)®Wl, El=w1®bl, 1<I<D,
and WP = (1;,x ® WP) and bP = bP. For 1 <[ < D, let
=L =W+ b
We then obtain the representation given by
up @ =(LpodoLpio...ofo L)k ®2). @)

We refer to this representation as a Kronecker neural network. The set of the network’s parameters is @y =
(WLo2, U, o}

We note that the number of neurons in each hidden-layers of the Kronecker networks is K-times larger than
those of the feed-forward (FF) networks. However, the total number of parameters only differ by 2K(D — 1) due to
the Kronecker product. Furthermore, the Kronecker network can be viewed as a new type of neural networks that
generalize a class of existing feed-forward neural networks, in particular, to utilize adaptive activation functions, as

shown below.

o IfK =1, w =a' =1 for all [, the Kronecker network becomes a standard FF network (3).

o IfK=2, wll =1, w’z = wy for all , ¢;(x) = max{x, 0}, and ¢,(x) = max{—x, 0}, the Kronecker network becomes
a FF network with Parametric ReLLU activation [31].

o If K =2, a)l2 = w for all [, ¢;(x) = max{x, 0}, and ¢,(x) = (¢* — 1) - [,<o(x), the Kronecker network becomes a
FF network with Exponential Linear Unit (ELU) activation [32] if wll = 1 for all /, and becomes a FF network
with Scaled Exponential Linear Unit (SELU) activation [33] if wll = '’ for all L.

e If K = 1, the Kronecker network becomes a feed-forward neural network with layer-wise locally adaptive
activation functions [17, 18].

o If ' = 1forallland ¢y(x) = x*~! for all k, the Kronecker network becomes a feed-forward neural network with
self-learnable activation functions (SLAF) [20]. Similarly, a FNN with smooth adaptive activation function [16]
can be represented by a Kronecker network.

The Kronecker network can be efficiently implemented without constructing the block weight matrices {W'}; and
block bias vectors {h'};. It can be checked that the Kronecker neural network can be expressed by the composition

W@ =(Lpod” o Lpio.. 08 0 L1)(2),

where the activation function at the I-th layer is no longer deterministic but depends on the trainable parameters {w’, o'}

K
§(Li@; o) = Y @l Li@), 1=1,---,D~1.
k=1

Figure 1 shows a schematic of a three-layer Kronecker neural network.
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Figure 1: Schematic of a three hidden-layers Kronecker neural network. The yellow circles represent the neurons in the respective hidden-layers.
Unlike the traditional neural network architecture, the output of the neuron in the KNN architecture passes to more than one activation functions.

3. Gradient Flow Analysis of the Kronecker networks

In this section, we analyze Kronecker networks in the setup of the supervised learning with the square loss func-
tion. Let 7, = {(x;, y)}'L, be a set of m-training data points. The square loss is defined by

1
L(©) =5

J

D g =y, 5)
=1

Here ugyp “(x) is a selected network that could be either a standard FF network uf (x) (3) or a Kronecker network uX (x)

(4). Specifically, we consider two-layer networks:

N N

K
ug ()= Y apiwlx+b),  uy ()= ) ci| D ardulwiw] x+ b))

i=1 i=1 k=1

Their corresponding network parameters are denoted by @pr = {c;, w;, bi}fi , and Ogc = {c;, wi, by}
respectively. The goal of learning is to find the network parameters that minimize the loss function:

N Ular ol

min L(Ory,.) where Type = FF or K. (6)

Type

The gradient descent algorithm is typically applied to solve the minimization problem (6). The algorithm commences
with an initialization of the parameters, ®®. At the k-th iteration, the parameters are updated according to

0" = 0% - Vo L(O)|o_gn

where 77, > 0 is the learning rate for the k-th iteration. The learning rates are typically chosen to be small enough to
ensure the convergence. By letting 7, — 0, we obtain the gradient flow dynamics, the continuous version of gradient
descent. The gradient flow dynamics describes the evolution of the network parameters that change continuously in
time:

O(f) = —VoL(O)), t>0, 0(0) = 0. (7)
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The loss function, with a slight abuse of notation, is written as L(¢). If the Kronecker network is employed, we write
the loss function as L¥(¢); if the FF network is employed, we write the loss function as LFF(¢).
For the analysis, we make the following assumptions on the parameter initialization and the activation functions.

Assumption 3.1. Let ¢ = [c1,---,cy]! and c¢;’s are independently initialized from a continuous probability dis-
tribution that is symmetric around 0. Also, v; = [w;; b;]’s are independently initialized from a normal distribution
N(O, I;11), where Iy is the identity matrix of size N. Let w = 1kx1, where 14, is the matrix of size s X t whose entries
are all Is.

Assumption 3.2. Let ¢ € C'(R) forallk = 1,--- ,K. Let K > m. For any distinct m data points {zj};f‘:l in R, the
K x m matrix @ is full rank, where it is defined as

(@) = du(z), 1<k<Kl<j<m.

Suppose that a short period of training time is allowed. Due to the limited computational resources, we may
frequently encounter such time-limitation scenarios. Firstly, we are interested in understanding which networks,
between the Kronecker and the FF, is more favorable for the training in terms of the loss. Will there be any advantages
of using the Kronecker network over the standard feed-forward? In what follows, we show that the Kronecker network
produces a smaller loss than that by the standard FF network at least during the early phase of the training. To fairly
compare two networks, we consider the following initialization that makes L*(0) = LFF(0). For any FF initialization
Orr(0), we initialize the Rowdy network as follows: @4 (0) = Orr(0) U {w(0), a(0)} where

w0 =1ga,  a@=[1 0 - 0| ®)

This makes the two networks at the initialization identical, which leads to the identical loss value L (0) = LFF(0).

Theorem 3.3. Suppose Assumptions 3.2 and 3.1 are satisfied. Suppose a and w are initialized according to (8).
Then, with probability 1 over initialization, there exists T > 0 such that

LX) < (1),  Vte(0,T).
Proof. The proof can be found in appendix Appendix A. O

Theorem 3.3 shows that the Kronecker network induces a faster decay of the loss than that by the FF network at
the beginning of the training. We remark, however, that this does not imply that the training loss by the Kronecker
will always remain smaller than the loss by the FF.

Next, we show that two-layer Kronecker networks whose parameters follow the gradient flow dynamics (7) can
achieve a zero training loss. For the convergence analysis, we assume that w and ¢ are fixed and we train only for
{w;, b,-}fi e {ak}f: - From the training data set {(x;, y;)}} |, without loss of generality, we assume that X; = [x;; 1/ \/5]
such that ||X;|]| = 1 for 1 <i < m. Let

=T

X1 Y1
X = € Rmx(dJrl), y= e R™. (9)
%L m

Theorem 3.4. Under Assumptions 3.1 and 3.2, suppose ¢; = %&- where &;’s are independently and identically

distributed random variables from the Bernoulli distribution with p = 0.5, ¢x(x)’s are bounded by B in R, « is
initialized to satisfy

K
Kldlo <1, ) aBenion[du(@)] = 0.
k=1
Suppose further that for 6 € (0, 1), K satisfies

(10 VK =2llylI’B) K > 2(1 + 6)Ilyl* B, (10)
6
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where Ay is defined in Lemma Appendix A.l. Then, with probability at least 1 — e 27, we have

LX) < IXO)eF,  Vi>o0.
Proof. The proof can be found in appendix Appendix B. O

In particular, if B = 1, it can be checked that a sufficient condition for (10) is K > (1 + V1 + 4/10)%. Since
yl? = m - #Z:’i | yl.z, we have K = O(m). Its corresponding number of parameters of the Kronecker network is
2K + N(d +2) =0(m) + N(d + 2).

It is worth mentioning that several works [7, 8, 9, 10, 11, 12] analyzed over-parameterized neural networks (that
is, the number of network parameters is significantly larger than the number of training data) and showed that gradient
descent can train neural networks to interpolate all the training data. Unlike such existing results on the global
convergence of gradient descent for significantly over-parameterized two-layer FF networks, the two-layer Kronecker

NN does not require such severe over-parameterization. The required number of parameters is merely is (d+2)N +2K,
with K = O(m).

4. Computational Examples

é1 = ReLU b1+ b2 S Pk

Standard ReLU AF

Rowdy RelLU AF
Rowdy ReLU AF

Z}%-:l Or Zi:l o 22:1 Pk

Rowdy ReLU AF

Rowdy RelLU AF

Rowdy ReLU AF

ZZ-:1 Or Zi:l fo)? 2:1 Pk

Rowdy ReLU AF
wn

Rowdy RelLU AF
(&)

Rowdy ReLU AF

Figure 2: Rowdy activation functions: The standard ¢; = ReLU activation function, and the remaining ¢y = nsin((k — 1)nx),k > 2 activation
functions with n = 1.

The KNN is a general framework for the adaptive activation functions where any combination of activation func-
tions can be chosen. Thus, there is no unique way to choose these activation functions. In this regard, we propose
the Rowdy activation functions and we refer to the corresponding KNN as Rowdy-Net (a neural network with Rowdy
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activation functions). In the Rowdy network, we choose {¢;} to be any standard activation function such as ReL.U,
tanh, ELU, sine, Swish, Softplus etc., and the remaining {¢k},’f: , activation functions are chosen as

or(x) = nsin((k — 1)nx) or ncos((k— nx), VY2<k<K, (11)

where n > 1 is the fixed positive number acting as scaling factor. The word ‘Rowdy’ means highly fluctuat-
ing/irregular/noisy, which is used to signify the {qﬁk},’f:z activation functions. Figure 2 shows the Rowdy ReLU ac-
tivation functions with n = 1 for different K terms. The purpose of choosing such fluctuating terms is to inject
bounded but highly non-monotonic, noisy effects to remove the saturation regions from the output of each layer in
the network. On similar grounds, Gulcehre et al. [34] proposed noisy activation functions by adding random noise.
Similarly, Lee et al. [35] proposed probabilistic activation functions for deep neural networks.

The scaling factor n plays an important role in terms of convergence of the network training process. There is no
rule of thumb for choosing the value of scaling factor, which basically depends on the specific problem. Our numerical
experiments show that for regression problems like function approximation and inferring the solution of PDEs, values
of n > 1 can accelerate the convergence, but larger values of n can make the optimization algorithm sensitive. The
scaling factor defined with the trainable parameters are initialized in such a way that the initial activation of Rowdy-
Net is the same as the corresponding standard activation function. For more details on the scaling factor, see Jagtap et
al. [17, 18]. In this section, we shall demonstrate the efficiency of the Rowdy-Net by comparing its performance with
the fixed (standard), and layer-wise locally adaptive (L-LAAF) for various regression and classification test cases. For
convenience, we clearly mention the fixed (f) and the trainable (t) parameters with their respective initialization for all
three types of activation functions, namely,

Fixed AF : o} = 1(f); o, =0,Yk>22(f); o\ =1(; wl=0,Yk>2(®,
L-LAAF : o} =1(f); o, =0,Yk>2(); o\ =1(@1); w}=0,Vk>2(D,
Rowdy AF : o' = 1 (f); ol =0,Vk>2(t); o) =1(); wl=1,Yk>2(),

for all I. Note that with this initialization, the initial activation functions for L-LAAF as well as Rowdy-Net in each
hidden-layer are the same as the fixed activation function. Moreover, the multiplication of scaling factor #n in (11) with
any trainable parameter, say, w’l , the initialization is done such that na)l1 =1,Vn.

It is important to note that the KNNs used in our experiments are the modifications of the widely used neural
network models such as FNNs and CNNs. Accordingly, the plots for the fixed activation function (fixed AF) are the
results of these widely used neural network models. For example, Figures 12 and 13 compare the FNN vs the KNN,
as the base architecture is FNN and thus the fixed AF results are those of the FNN. Similarly, Figure 14 compares the
LeNet (a widely used CNN) and the KNN, and Figure 15 compares the ResNet with convolutions (another widely
used CNN) and the KNN.

4.1. Nonlinear discontinuous function approximation

In this test case we will show the ability of the Rowdy-Net to achieve the machine zero loss value. We also compare
the performance of fixed, L-LAAF and Rowdy-Net with different number of terms. We consider the discontinuous
nonlinear function given by

) 0.2 sin(6x) For x <0
X) =
1+ 0.1x cos(14x) Otherwise.

The loss function consists of only the data mismatched term.

The domain is [-3, 3] and the number of training points is just 5, which are fixed for all cases. We used a single
hidden-layer with 40 neurons, cosine activation function, and the learning rate is 8.0e-6. Figure 3 shows the loss
function, and it can be observed that with just a 2-layer shallow neural network the loss function for Rowdy-Net
approaches machine zero precision very quickly. The right figure gives the performance comparison for the fixed,
L-LAAF and the Rowdy-NetK (where the number K signifies the first K number of terms used in the computations)
for the scaling factor n = 10. The Rowdy network performs consistently well by increasing the number of terms. The
right figure shows the effect of scaling factor on the performance of the network. It can be seen that by increasing
the scaling factor the network can be trained faster. As discussed before, the initialization of all adaptive activation

8
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Figure 3: Nonlinear discontinuous function approximation: The left figure shows the loss function variation using fixed, L-LAAF and Rowdy
activation functions (3, 6 and 9 terms) while the right figure shows the loss function for a 9-term Rowdy network with different scaling factors n.

functions is done such that they are the same as the fixed activation function at initial step, hence, all loss functions
values start from the same point in all the cases. Table 1 shows the comparison of the total normalized computational
cost required for the fixed activation function, L-LAAF and the Rowdy-Net with 3,6 and 9 terms. In this case, the

10!

1071 4

10-3 4

1077 4

1077 4

Loss

1079 4

— VN ‘\

10-11 4 N ™~
——= KNN 2

| — KN

1077 9 ... Rowdy-Net9

0 2000 4000 6000 8000 10000 12000 14000
# iterations

Figure 4: Nonlinear discontinuous function approximation: Comparison of different KNN activation functions with Rowdy-Net 9 using scaling

factor 10 for all cases.

Fixed L-LAAF Rowdy-Net3 Rowdy-Net6 Rowdy-Net9
Normalized time 1 1.12 1.26 1.58 1.75

Table 1: Nonlinear discontinuous function approximation: Comparison of total normalized computation time for fixed activation function, L-LAAF
and Rowdy-Net (with 3, 6 and 9 terms) activation functions. The time required for fixed activation function is taken as a baseline.

time required for fixed activation function is taken as a baseline. By increasing the number of terms in the Rowdy-Net,
the computational time increases. Keeping ¢, as cosine activation function, we also compare the Rowdy-Net9 with
different choices for ¢y, k > 2 as defined below:

9

KNN, = Zaf{ tanh(w} Ly(2)), [ = 1,...,D - 1. (12)
k=2
9

KNN, = Z aiReLU(w, Li(2), 1= 1,...,D - 1. (13)
k=2

1s and in the case of KNN3, the ¢;’s are chosen randomly as ¢, = tanh, ¢3 = Sigmoid, ¢4 = elu,¢s = ReLU ¢¢ =
9
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tanh, ¢7 = tanh, ¢g = Softmax, ¢y = Swish. Figure 4 shows the comparison of the loss functions for these activation
functions; clearly, Rowdy-Net9 is trained faster.

4.2. High frequency function approximation

In this test case we consider the high frequency sinusoidal functions given by sin(mnx), m = 1,100 and 200. The
domain is [0, 2] and the number of training points is 100, which is fixed for all the cases. We use cosine activation
function and the learning rate is 4.0e-6. The number of hidden-layers is 3 with 50 neurons in each layer. We use the
first nine terms of Rowdy activation functions. The scaling factor n = 10 is used in all the cases.

sin(nx) sin(100mx) sin(200mx)

Loss
Loss

—— Rowdy-Net9 1071 — Rowdy-Net9 —— Rowdy-Net9

0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000
# iterations # iterations # iterations

Figure 5: High frequency function approximation: Loss function versus number of iterations for sin(mmx), ‘m = 1,100 and 200, using fixed,
L-LAAF and Rowdy-Net9 activation functions.

Fixed L-LAAF Rowdy-Net9
Normalized time 1 1.11 1.73

Table 2: High frequency function approximation: Comparison of total normalized computation time for fixed activation function, L-LAAF and
Rowdy-Net9 activation function. Time required for fixed activation function is taken as a baseline.

Figure 5 shows the loss functions for fixed, locally adaptive (L-LAAF) and Rowdy-Net9 for sin(mmx), m = 1,100
and 200. In all cases, despite using a small learning rate the Rowdy-Net converges faster than the fixed and locally
adaptive activation functions. Table 2 shows the comparison of total normalized computational cost required for
the fixed, L-LAAF and the Rowdy-Net9 activation functions. Again, the time required for fixed activation function
is taken as a baseline. We can see a similar increment in the computation cost requirement for both L-LAAF and
Rowdy-Net activation functions compared to fixed activation function.

4.2.1. Effect of high learning rate

We again perform the same experiment with higher learning rates (LR) 4.0e-3. Figure 6 shows the sin(srx) function
approximation example. Fixed, L-LAAF and Rowdy activation functions converge faster. In the case of both fixed
as well as L-LAAF, the loss function goes till 1.0e-6, see figure 6 (left). Furthermore, in the case of Rowdy-Net,
it can be seen that the loss function decreases till 1.0e-11, but then suddenly goes up. The main reason is the high
learning rate, which can make the parameters in the Rowdy activation function, and in turn, the Rowdy activation
function very sensitive during the optimization procedure. Such behavior can be avoided by either using the low
learning rate or by using the strategy of learning rate annealing [14]. The learning rate annealing can significantly
affect generalization performance of the neural networks. In particular, training of neural network with a large initial
learning rate followed by a smaller annealed learning rate can outperform the neural network training with the smaller
learning rate used throughout. Figure 6 (right) shows the Rowdy-Net9 results with and without learning rate annealing.
In case with learning rate annealing, we decreased the learning rate from 4e-3 to le-4 after 500 iterations. The learning
rate annealing not only curbs the sensitiveness of Rowdy activation functions, but also decreases the magnitude of
oscillations in the loss function.
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Figure 6: Effect of high learning rate on the convergence of fixed, L-LAAF, and Rowdy-Net (left). The Rowdy-Net loss function with and without
learning rate annealing (right).

4.3. Helmholtz equation

The Helmholtz equation arises in many real-world problems such as acoustics, vibrating membrane etc. Here
we employed Physics-Informed Neural Networks (PINNs) [23] to solve the Helmholtz equation. The PINN is a
simple and efficient method for solving partial differential equations involving sparse and noisy data set. The PINN
framework can incorporate the given information like governing equation, experimental as well as synthetic (high
resolution numerical solution) data into the loss function, thereby converts the original problem into an optimization
problem. The PINN method has been successfully applied to solve many problems in science and engineering, see
for examples [36, 37, 38, 39, 40, 41, 42, 43].

The Helmholtz equation in two dimensions is given by

e + Uy + Ku = g(x,y), (xr,y) € [-1, 1%, (14)

with appropriate Dirichlet boundary conditions. The forcing term is obtained from the exact solution u(x,y) =
sin(7rx) sin(4xy) for k = 1, which is given as

g(x,y) = —n* sin(nx) sin(4ny) — (47)° sin(x) sin(47y) + k* sin(zx) sin(4ry).

10%¢
0\ I Fixed AF (Std) I Fixed AF (Std)
- - Fixed AF (mean) - - Fixed AF (mean)
103 B L-LAAF (Std) B L-LAAF (Std)
L-LAAF (mean) 0 L-LAAF (mean)
B Rowdy-Net5 (Std) 10 B Rowdy-Net5 (Std)
Rowdy-Net5 (mean)

Rowdy-Net5 (mean)

=
°

Loss
Rel. Ly error

o
S)
~

1 1.5 2 2.5 3

10 . . . . . .
0 0.5 1 1.5 2 2.5 3 0 0.5
No. of iterations %104

No. of iterations x10%

Figure 7: Helmholtz equation: Mean and std. deviation of loss function (left) and relative L, error (right) for up to 30k iterations for fixed AF,
L-LAAF and Rowdy-Net5 (5 terms) using 5 different realizations in each case.
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Figure 8: Helmholtz equation: Layer-wise L-LAAF (Top row) and Rowdy (bottom row) hyperbolic tangent activation functions (Rowdy-Net5). In
the L-LAAF, only the slope of the activation function changes without changing the saturated region but the Rowdy activation function can get rid
of the saturated region, hence, it can be trained faster.

We used a 3 hidden-layers, 30 neurons per layer fully connected neural network with hyperbolic tangent activation
function. The number of boundary training points is 300, and the number of residual points is 6000, which are
randomly chosen. The learning rate is 8.0e-3 and the optimizer is ADAM.

10* 4
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Figure 9: Helmholtz equation: Loss function (left) and relative L, error (right), where the Rowdy network is trained for the first 1000 iterations
(blue line) and then switched to L-LAAF network (red dashed line) for the remaining iterations for computational expediency. These results are
also compared with L-LAAF as shown by green dash-dot line.

For the Helmholtz equation we are using a sine fluctuating part with first 5 (Rowdy-Net5) terms, and we also use
the scaling factor n = 10 in all cases. Figure 7 shows the loss function (left) and relative L, error (right) up to 30k
iterations for fixed AF, L-LAAF and Rowdy-Net5 using 5 different realizations in each case. It can be seen that the
Rowdy-Net performs better than the fixed and locally adaptive activation functions. Figure 8 shows the initial and
final L-LAAF (top) and Rowdy-Net5 (bottom) activation function for all three hidden-layers. The initial activation
function is the standard activation function in each case. In L-LAAF, only the slope of the activation function increases
as expected, but in the case of Rowdy-Net5, the final activation functions are very oscillatory. In the case of PINNs,
the computational cost increases for Rowdy activation function compared to baseline fixed activation function and
L-LAAF. One remedy to reduce the computational cost is to employ the transfer learning strategy, i.e., the Rowdy-
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Net can be trained for the initial period (for few hundred iterations) and then this pre-trained model can be used for
L-LAAF network for further training. Figure 9 shows the loss function and relative L, errors, where the Rowdy-net
was trained for the first 1000 iterations and then switched to L-LAAF network for the remaining iterations. Both
the loss and error initially jump after switching from Rowdy to L-LAAF networks but they decay thereafter. These
results are also compared with L-LAAF as shown by green dash-dot line. Another way to reduce the computational
cost associated with the Rowdy-Net training is, directly include the high-frequency components with the strategy of
learning rate annealing.

We further test the convergence speed and accuracy of the proposed Rowdy network for a high frequency solution
of Helmholtz equation. In this case the exact solution is assumed to be of the form u(x, y) = sin(57x) sin(107ry). Figure
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Figure 10: High frequency solution of the Helmholtz equation: Loss function (left) and relative L, error (right) for the fixed activation, L-LAAF

and Rowdy activation functions.
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Figure 11: High frequency solution of the Helmholtz equation: Point-wise absolute errors after 20k iterations for the fixed activation (left), L-LAAF
(middle) and Rowdy activation functions (right).
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10 shows the loss function and relative L, error for the fixed activation, L-LAAF and Rowdy activation functions. In
all cases we used 9e-5 learning rate, the activation function is the hyperbolic tangent, the number of residual points is
10k, and number of boundary data points is 400. The FNN consist of 3 hidden-layers with 60 neurons in each layer.
Neither fixed nor L-LAAF converges even after 20k iterations for this problem, whereas the Rowdy-Net5 converges
faster. The point-wise absolute error after 20k iterations is shown in figure 11 for the fixed activation, L-LAAF
and Rowdy activation functions. The absolute error is large for both fixed and locally adaptive activation functions,
whereas Rowdy-Net gives small error.

4.4. Standard deep learning benchmark problems

In the previous subsections, we have seen the advantages of the physics-informed Rowdy-Nets. One of the re-
maining questions is whether or not the advantages remain in the cases without physics information for other types of
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deep learning applications. This subsection presents numerical results with various standard benchmark problems in
deep learning to explore the question.

We first report the results for fully-connected feed-forward neural networks. The results are reported in Figures
12-13 with the mean values and the uncertainty intervals. The lines are the mean values over three random trials and
the shaded regions represent the intervals of 2x(the sample standard deviations). As can be seen in the figures, the
training and testing losses of Rowdy-Nets were lower than those of fixed AF and L-LAAF. In the figures, Rowdy-Net4
uses K = 4, and Rowdy-Net8 uses K = 8. For all the experiments, we used the network with three layers and 400
neurons per hidden layer and set the activation functions of all layers of fixed AF to be rectified linear unit (ReLU).
Each entry of the weight matrices was initialized independently by the normal distribution with the standard deviation
being set to the reciprocal of the square root of 400 for all layers. We used the standard two-moons dataset and two-
circles dataset with 1000 training data points and 1000 testing data points, generated by the scikit-learn command,
sklearn.datasets.make_moons and sklearn.datasets.make_circles [44]. For each dataset, we used mini-
batch stochastic gradient descent (SGD) with mini-batch size of 64 and the binary cross-entropy loss. We set the
momentum coefficient to be 0.8, the learning rate to be 0.001, and the weight-decay rate to be 1074,

We now report the results for convolutional deep neural networks. Figure 14 shows the results for the following
standard variant of LeNet [45] with five layers: (1) input layer; (2) convolutional hidden layer with 32 filters of size
5-by-5 followed by max-pooling and activation functions; (3) convolutional hidden layer with 32 filters of size 5-by-5
followed by max-pooling and activation functions; (4) fully-connected hidden layer with 256 output units followed
by activation functions; (5) fully-connected output layer. Figure 15 and Table 3 present the results for the standard
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Figure 12: Fully-connected neural networks for the two-moons dataset
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Figure 13: Fully-connected neural networks for the two-circle dataset
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pre-activation ResNet with 18 layers [46]. As can be seen in Figure 1415 and Table 3, the Rowdy-Nets outperformed
fixed AF and L-LAAF in terms of training and testing performances for the convolutional networks as well. In the
figures, Rowdy-Net2 uses K = 2, and Rowdy-Net4 uses K = 4. In Figures 1415, the lines are the mean values over
five random trials and the shaded regions represent the intervals of 2x(the sample standard deviations). Table 3 reports
the mean test error and its standard deviation over five random trials for each method. Similarly, Figure 16 and Table
4 report the result with the same setting (using the same ResNet) for a larger dataset, CIFAR-100. This additional
result for a larger dataset shows qualitatively the same behaviors as those for smaller datasets.

For the convolutional networks, we adopted the standard benchmark datasets in deep learning — Semeion [47],
Fashion-MNIST [48], Kuzushiji-MNIST [49], CIFAR-10 and CIFAR-100 [50], and SVHN [51]. We used all the
training and testing data points exactly as provided by those datasets. For the Semeion dataset, since the default split
of training and testing data points is not provided, we randomly selected 1000 data points as training data points from
the original 1593 data points; the remaining 593 points were used as testing data points. For each dataset, we used the
standard data-augmentation of images (e.g., random crop and random horizontal flip for CIFAR-10 and CIFAR-100).
Semeion, Fashion-MNIST, and Kuzushiji-MNIST are the datasets with handwritten digits, images of clothing and
accessories, and Japanese letters, respectively. CIFAR-10 is a popular dataset containing 50000 training and 10000
testing images in 10 classes with the image resolution of 32 x 32 with color. CIFAR-100 is a dataset similar to
CIFAR-10, but it contains 600 images in each class for 100 classes. SVHN is a dataset containing images of street
view house numbers obtained from Google Street View images.

As the qualitative behavior was the same over different values of n with ReLU networks in Figures 12—-13, we fixed
n = 1 in the experiments for Figures 14—16 and Tables 3—4. In Figures 14—16 and Tables 3—4, all the model parameters
were initialized by the default initialization of PyTorch version 1.4.0 [52], which is based on the implementation in the
previous work [31]. Here, we used the cross-entropy loss. All other hyper-parameters for Figures 14—-16 and Tables
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4x10°

3x10°

Activation  Test error (%)

Fixed AF 35.80 (0.34)

L-LAAF 34.25(0.29)
Rowdy-Net2  33.40 (0.27)

train loss

Table 4: ResNet for CIFAR-100: test error

Figure 16: ResNet for CIFAR-100: training loss
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3—4 were fixed to be the same values as the those in the experiments for Figures 12—13.
In summary, the experimental results in this subsection show that the Rowdy-Nets have the potential to improve
the performance of standard activation functions without any prior physics information.

5. Summary

In this work we proposed a novel neural network architecture named as Kronecker neural networks (KNNis),
which provides a general framework for neural networks with adaptive activation functions. Employing the Kronecker
product in KNN makes the network wide while at the same time the number of trainable parameters remains low. For
theoretical studies of the KNN, we analyzed its gradient flow dynamics and proved that at least in the beginning of
gradient descent training, the loss by KNN is strictly smaller than those by feed-forward networks. Furthermore, we
also established the global convergence of KNN in an over-fluctuating case. In the same framework, we proposed a
specific version, the Rowdy neural network (Rowdy-Net), which is a neural network with Rowdy activation functions.
In the proposed Rowdy activation functions, noise in the form of sinusoidal fluctuations is injected in the activation
function thereby removing the saturation zone from the output of every layer in the network, which allows the network
to explore more and learn faster. The Rowdy activation functions easily capture the high-frequencies involved in the
target function, hence they overcome the problem of spectral bias that is omnipresent in all neural networks as well as
in PINNs. We also note that the Rowdy activations can be readily implemented in any neural network architecture.

In the computational experiments we solved various problems such as function approximation using feed-forward
neural networks and partial differential equation using physics-informed neural networks with standard (fixed) acti-
vation function, L-LAAF (layer-wise adaptive) and the proposed Rowdy activation functions. In all test cases, we
obtained substantial improvement in the training speed as well as in the predictive accuracy of the solution. More-
over, the proposed Rowdy activation functions was shown to accelerate the minimization process of the loss values
in various standard deep learning benchmark problems such as MNIST, CIFAR, SVHN etc., in agreement with the
theoretical results.
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Appendix A. Proof of Theorem 3.3
Proof. Let O be the set of parameters to be trained. Let
Res(X) = [Res(x}), - - - ,Res(x,,)]” € R™

where Res(xj) = I/l(xj;@) - Yj. Since L(®) = 2||Res(X)||2 and (?Res(xj) _ au((;é;@)

, we have

VoL(©) = ZRes(x,) M

Note that

ditL(t) = di(Res(X),Res(X)) = <Res(X), %RGS(X)> <Res(X) d —u(X; G)(t))>

1

2dt
Let & = [x,1]" and v; = [w;; b;]. Suppose u(x;®) = 3N, ¢; [Zle ak(ﬁk(wkchvi)], where © = {c;, v}, U{a;, wik,.
Note that if the standard FF is considered, one can simply drop the terms related @ and w. From the gradient-flow
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dynamics (7), we have

m

K
¢i(t) = l akrbk(wkx Vi)
k=1

Res(x;) = —=C; - Res(X),

.
—_

m K
WD) = —c; ) &; (Z akwk¢;(wkx§vi)] Res(x;) = —B; - Res(X),

j=1 k=1
N

Z c,-d)k(wkfc]T-v,-)] Res(x;) = —A; - Res(X),

2)
|

@y = —
N
iy = —

DM T

j=

i=1

Z ciakxjfvi¢,;(wkx§vi)] Res(x;) = = - Res(X),

forl<i<n,1<k<K,and

Ci= [Zle TSR RTINS yA ak(pk(wki,];,vi)] eR",
Bi=c¢; [561 (Z;{il akwk‘p]/((wkj{"i))a
Ak
Qi

En (20, cxend (@i Tv)))| € RO, A
[, sy, - B, ctadi| e R, '

N
(073 [Z, IC)C V1¢k(0-)kx Vi),

Zf\il cii;,v@;((wkfc;v,-)] e R™.
Let C = [Cy;--- ;Cy] € RV, B = [By;-+- ;By] € ROV A = [Af;--- ;Ag] € RF and @ = [Q);-+- ;Qk] €
c

= (W) €RX,C=(c)eR, and © = ; € R@+m2K e have

RX*m By letting v = (v;) € RN ¢ = (), w

w

¢ = -C-Res(X), v = —B - Res(X), @ = —A - Res(X), @ = —Q - Res(X).

Let M = [C; B;A; Q] € R@+2n+2Kxm Qince @ = —M - Res(X), it can be checked that

%u(X; ) =M"0 =-M"M - Res(X).

Therefore,

—L(t) = <Res(X) —u(X; @(r))> = —||M - Res(X)|?

C
B
Q

= —|l| B|- Res(X)II* - [|A - Res(X)|I*.

It follows from Lemma Appendix A.1 that with probability 1 over initialization, we have

A - Res(X)I? = 02 (A)[Res(X)|> > 0,

min

which implies

5 LFovay (0 < 4 SLT0) <0,
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Note that W in Lemma Appendix A.1is A7, m < K by Assumption 3.2, and o,in(A) is the m-th largest singular value
of A. Since ¢’s are in C', it follows from the Peano existence theorem [53] that the gradient flow admits a solution

O(f) in a neighborhood I of ¢ = 0. Since LRV (0) = LFF(0), there exists T > 0 such that for all ¢ € (0, T,

LROWdy(t) < LFF(I),

which shows that the Rowdy network induces a smaller training loss value in the beginning phase of the training. [

Lemma Appendix A.l. Suppose Assumptions 3.1 and 3.2 hold. For any non-degenerate data points {x j};”:l where

m < K, with probability 1 over {c;, vil¥

i=1

N
[Wlkj = Yu(xj), where Y(x) = Z c,-qﬁk(viT)”c), X =[x;1], 1<k<K/1<j<m,

i=1
is full rank. For the later use, let 1y be the m-th smallest singular value of V.

Proof. Let Wi, and V. ; be the k-th row and the j-th column of P, respectively. Suppose

zml k¥ =0,
=1

for some 6 = [d1,- -, 6,,]7. Then, for each j=1,---,m, we have
m m m ¢k(V{XZ)
0= dwnlx) = ) 8’ Dulox) = " (Z 6k<1>k<x,-)], where  ®;(x) =
k=1 k=1 k=1 ¢k(V17\-]ji)
Hence, with probability 1 over the initialization of ¢, we have
Zékd)k(x,-) =0 = Zékdbk(vffc,-) =0 Yl<s<nl<i<m.
k=1 k=1
With probability 1 over vy, vsTxl, cee vSTxm are distinct. It then follows from Assumption 3.2 that foreach s = 1, - - -
@y = pe(vi%), 1<i<m1<k<m,
is full rank. Therefore, we conclude that 6; = - -+ = dx = 0, which implies that ¥ is also full rank.

Appendix B. Proof of Theorem 3.4

Proof. 1t follows from the proof of Theorem 3.3 that

d d
IIEG(I)II2 = -7 L0 = 1160) - 80) < VLO).

mo?

for all r > 0. By Lemma Appendix B.3, with probability at least 1 — ¢ 2ixi?

V2L0) < |lyll (1 + (1 + 0)B/K).
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Note that

llyll(1 + (1 +6)B/K) < Ao
V2 2T+ (max; 15[l [ledleo)? - llclly - BVKm
= lelly < A
V2lIyll (1 + (1 + 6)B/K) /T + (max; [[5]| - lellw)? - BVKm
il _ Xy
K~m ~ 2yl (1 + (1 + 6)B/K) /1 + (max; [|5]] - lall)? - BVKm
1 Ao

= — < .
VK = V2lylP (1 + (1 + 6)B/K) /T + (max; [[5]- lellw)? - B
Therefore, if

i X

VK = V2IyIP (1 + (1 + 6)B/K) /T + (max; 51 - llallo)? - B

ms?

with probability at least 1 — ¢ 247, we have

Ao
21 + (max; [|%]] - [lalleo)? - llcll - BVKm

18(r) — B©O)] <

and it follows from Lemma Appendix B.2 that o-yn (A(?)) > %" for all ¢ > 0. Therefore,

L) < LO)e 2, Vi>0.

27 Since max; ||X;]| = 1 and |||l < 1, the proof is completed.

Lemma Appendix B.1. Suppose Assumptions 3.1 and 3.2 hold. Let ©® = {a,-}i’i1 U {v,-}f\i1 and ®
Suppose ¢r(x)’s are bounded by B in R. Then,

I¥(®) - ¥(©©O)Il < \/1 + (mJaX 1% - llecO)lleo)? - llelly - B VEm - 1|© = ©O)ll

28 where W is defined in Lemma Appendix A.l.

Proof. Let us denote its corresponding networks by
N K N K
w9 = >c ) (0D, a) =Y ¢ ) i B).

=1 k= i

1 i=1 k=1

1

20



Note that

N

D el ) - @i )

i=1

() = di(x)] =

N N
~ ~T ~ T ~ ~T ~
< D il — g )| + | cionev] %) — (57 1)
i=1 i=1
N
< Bllclly -l = Gl + BIF - laxl D leil - v = W]

i=1
< Bllclly - lag = @l + BIE - lax| - licll2 - IV = Vil

< B\l + (13l - ol - ell)? s — il + 11V — VI,

where
Vel ooow], V[ e, wl

Therefore,

¥ — Pl < 1Y - Pllr = \/1 + (m;chIIJ?jII “llalleo)? - llelly - BVKm - [|© — ©(0)|F.
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Lemma Appendix B.2. Ler ©(0) = {a/i}{il U {vi}f\il and O(t) = {Eyi}{il u {fq}ﬁ\il. Let 0min(A(0)) = Ay. Suppose

Ao

16(r) — BO)lF < ,
21+ (max; 151l - [lello)? - llclly - BVKm

w0 forall0 <t <T.Then omin(A(t)) > %for all0<t<T.

Proof. Observe that
A
Tmin(A(1)) 2 omin(A(0)) — [|A(7) — AO)]| > 70

261 where the second inequality follows from Lemma Appendix B.1.

Lemma Appendix B.3. Suppose « is initialized to satisfy K||a|| < 1 and

K
Z B no,n[¢(2)] = 0.
k=1

mo?

Then, with probability at least 1 — e 257 over {v;}

=1

V2LO) < |yll(1 + (1 +6)B).

Proof. Let

K
[®];; = Zak(pk(viT)?j), l<i<nl<j<m
k=1
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Note that

K

K
@ - D] = > axe07 %) = " ude 37 %))
k=1

k=1

K
< D lud - 18] %) = e )1 < KBllalos - IF] (v = 7)1l
k=1

Therefore,
1@ - @ < [|® - P||r < Klleloo B - IX]] - [V = VlF,
which implies that
lll®cll - 1Dl < 1@ — @ - llcll < KlledleoBllcll - 1 X1 - [V = V|

Thus, ||®c|| is a Lipschitz function of V whose Lipschtiz constant is K]|a||.Bllc]| - || X]|.
Also, since ||%;|| = 1 for all 1 < j < m, we have

Ey[ll®cl] < VEv[l®c|?]
N K
% [Zcizak%(\/?fﬁ)]

i=1 k=

N K
= W\ g~N(0,Iy) (Z szak¢k(gz ]

i=1 k=1

2

[
gk
=

—_

2

2

K
= «/f%\ lelPEyg-ni0.1) [Z (i) - E[¢k<g>]>]

k=1

IA

VmKllallwBlicll-

We recall (e.g. [54]) that since ||®c]|| is a Lipschitz function of V, for V.~ N(O, I;;), with probability at least

[
1 — e 2KlalioBlelxiD? |

®cl| < Ey[ll®cll] + ¢

mo?

By letting ¢t = § v/mK]||@||« Bl|c||, we conclude that with probability at least 1 — e~ 2% |

[®cll < (1 +6) VmK]|alleBlicll-

mo?

Since |¢;| = K”\y”M and K||a|| < 1, with probability at least 1 — ¢ 2%7 , we have

[®c - yll < [[®c]l + lIyll < llyll (1 + (1 +6)B/K).
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