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Abstract

We propose a new type of neural networks, Kronecker neural networks (KNNs), that form a general framework for
neural networks with adaptive activation functions. KNNs employ the Kronecker product, which provides an efficient
way of constructing a very wide network while keeping the number of parameters low. Our theoretical analysis reveals
that under suitable conditions, KNNs induce a faster decay of the loss than that by the feed-forward networks. This is
also empirically verified through a set of computational examples. Furthermore, under certain technical assumptions,
we establish global convergence of gradient descent for KNNs. As a specific case, we propose the Rowdy activation
function that is designed to get rid of any saturation region by injecting sinusoidal fluctuations, which include trainable
parameters. The proposed Rowdy activation function can be employed in any neural network architecture like feed-
forward neural networks, Recurrent neural networks, Convolutional neural networks etc. The effectiveness of KNNs
with Rowdy activation is demonstrated through various computational experiments including function approximation
using feed-forward neural networks, solution inference of partial differential equations using the physics-informed
neural networks, and standard deep learning benchmark problems using convolutional and fully-connected neural
networks.

Keywords: Deep neural networks, Kronecker product, Rowdy activation functions, Gradient flow dynamics,
physics-informed neural networks, Deep learning benchmarks

1. Introduction1

Neural networks have been very effective in diverse applications of machine learning and scientific machine learn-2

ing [1]. Undoubtedly, how to design neural networks plays a central role in efficient training [2]. It has been widely3

known that some network architectures can be trained well and also be generalized well [3]. In training neural net-4

works, there are many known open issues, such as the vanishing and exploding gradient and the plateau phenomenon5

[4, 5, 6]. There are some theoretical works claiming that over-parameterized neural networks trained by gradient6

descent can achieve a zero training loss [7, 8, 9, 10, 11, 12]. However, in practice, the possible training time is always7

limited and one needs to leverage between the size of neural networks and the number of epochs of gradient-based8

optimization.9

It has been empirically found that a well-chosen activation function can help gradient descent to not only converge10

fast but also to generalize well [13]. A representative example is the rectified linear unit (ReLU) activation that11

achieves state-of-the-art performance in many image classification problems [14], and it has been one of the most12

popular activation functions for image classification problems. However, there is no rule of thumb of choosing an13
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optimal activation function. This has motivated the use of adaptive activation functions by our group and others, see14

[15, 16, 17, 17, 18, 19, 20, 21], with varying results demonstrating superior performance over non-adaptive fixed15

activation functions in various learning tasks.16

In the present work, we propose a new type of neural networks, the Kronecker neural networks (KNN), that
utilizes the Kronecker product [22] in the construction of the weight matrices. We show that KNN provides a general
framework for neural networks with adaptive activation functions, and many existing ones become special instances
of KNNs. As a matter of fact, the KNN is equivalent to the standard feed-forward neural networks (FNN) with a
general adaptive activation function of the following form:

φα,ω(x) =

K∑
k=1

αkφk(ωk x), K ∈ N≥1, α = (αk), ω = (ωk), (1)

where φk’s are fixed activation functions and α, ω are parameters that could be either trainable or fixed. Hence,17

the implementation of the KNN does not require that the Kronecker product actually be computed. However, the18

Kronecker product allows one to construct a much wider network than a FNN, while maintaining almost the same19

number of parameters.20

The main findings of our work are summarized below:21

• By analyzing the gradient flow dynamics of two-layer networks, we prove theoretically that at least in the22

beginning of training, the loss by KNNs is strictly smaller than the loss by the FNNs.23

• We establish global convergence of gradient flow dynamics for the two-layer KNNs under certain technical24

conditions.25

• We propose the adaptive Rowdy activation functions, which is a particular case of a more general KNN frame-26

work. In this case, we choose {φ1} to be any standard activation function such as ReLU, tanh, ELU, sine, Swish,27

Softplus, etc., and the remaining {φk}
K
k=2 activation functions are chosen as sinusoidal harmonic functions. The28

purpose of choosing such sinusoidal functions is to inject bounded but highly non-monotonic, noisy effects29

to remove the saturation regions from the output of each layer in the network, thereby allows the network to30

explore more and learn faster.31

One of the main weaknesses of deep as well as physics-informed neural networks [23] is related to the problem32

of spectral bias [24, 25], which prevents them from learning the high-frequency components of the approximated33

functions. To overcome this problem a few approaches have been proposed in the literature. In [26, 27] the authors34

introduced appropriate input scaling factors to convert the problem of approximating high frequency components to35

lower frequencies. Tancik et al. [28] introduced Fourier features networks that can learn high-frequency functions36

by use of Fourier feature mapping. More recently, Wang et al. [29] proposed novel architectures that employ spatio-37

temporal and multi-scale random Fourier features to learn high-frequencies involved in the target functions. With38

the proposed Rowdy activation functions, the high-frequency components in the target function can be captured by39

introducing the high frequency sinusoidal fluctuations in the activation functions. Moreover, the Rowdy activations40

can be implemented easily in any neural network architecture such as feed forward neural networks, convolutional41

neural networks, recurrent neural networks and the more recently proposed DeepOnets [30]. To demonstrate the42

performance of the Rowdy activation functions and to computationally justify our theoretical findings, a number of43

computational examples are presented from function approximation, solving partial differential equations, as well as44

standard benchmark problems in machine learning. We found that the KNNs are effectively trained by gradient-based45

optimization methods and outperform standard FNNs in all the examples we considered here.46

The remainder of the paper is organized as follows. In Section 2 we present the mathematical setup and propose47

the Kronecker neural networks. In Section 3 we present theoretical results, and in Section 4 we report various compu-48

tational examples for function approximation, inferring the solution of partial differential equations and standard deep49

learning benchmark problems. Finally, we conclude in Section 5 with a summary.50

2



2. Mathematical Setup and Kronecker Neural Networks51

A feed-forward neural network of depth D is a function defined through a composition of multiple layers consisting
of an input layer, D − 1 hidden-layers and an output layer. In the lth hidden-layer, Nl number of neurons are present.
Each hidden-layer receives an output zl−1 ∈ RNl−1 from the previous layer, where an affine transformation

Ll(zl−1) , W lzl−1 + bl (2)

is performed. Here, W l ∈ RNl×Nl−1 is the weight matrix and bl ∈ RNl is the bias vector associated with the lth layer.
A nonlinear activation function φ1(·) is applied to each component of the transformed vector before sending it as an
input to the next layer. The activation function is an identity function after an output layer. Thus, the final neural
network representation is given by

uFF(z) = (LD ◦ φ1 ◦ LD−1 ◦ . . . ◦ φ1 ◦ L1)(z), (3)

where the operator ◦ is the composition operator. Let ΘFF = {W l, bl}Dl=1, which represents the trainable parameters in52

the network.53

For a vector v = [v1, · · · , vn]T ∈ Rn, let us recall the various norms of v:

‖v‖1 =

n∑
i=1

|vi|, ‖v‖2 =

n∑
i=1

v2
i , ‖v‖∞ = max

1≤i≤n
|vi|.

For a matrix M ∈ Rm×n where m ≥ n, let σmin(M) be the n-th largest singular value of M. Also, the spectral norm and
the Frobenius norm are defined as

‖M‖ = max
‖x‖=1
‖Mx‖, ‖M‖2F =

m∑
i=1

n∑
j=1

M2
i j,

respectively, where Mi j is the (i, j)-component of M. Let 1s×t be the matrix of size s × t whose entries are all 1s.54

2.1. Kronecker Neural Networks55

Let K be a fixed positive integer. Given a FNN’s parameters ΘFF = {Wl,bl}Dl=1, let us define the l-th block weight
matrix and block bias vector, respectively, by

1K×K ⊗W l =


W l · · · W l

...
. . .

...
W l · · · W l

 ∈ RNlK×Nl−1K , 1K×1 ⊗ bl =


bl

...
bl

 ∈ RNlK ,

where ⊗ is the Kronecker product. Let us define a block activation function ~φ that applies block-wise. That is, for
z j ∈ Rn for 1 ≤ j ≤ K, let z = [z1, · · · , zK]T ∈ RnK and

~φ(z) =


φ1(z1)
...

φK(zK)

 ,
where φ j’s are activation functions applied element-wise. We then construct a neural network from the block weight
matrices and block bias vectors as follows: Let z0 = z be the input and z1 = (1K×K ⊗W1)(1K×1 ⊗ z0) + 1K×1 ⊗ b1. For
2 ≤ l < D,

zl = (1K×K ⊗W l)~φ(zl−1) + 1K×1 ⊗ bl,

and zD = (11×K ⊗WD)~φ(zD−1) + bD. Then, zD is a D-layer FNN having KNl number of neurons at the l-th layer, while56

keeping the number of network’s parameters the same as uFF in Eq. (3).57
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In order to properly scale the block weight matrices and the block bias vectors, we introduce the scaling parameters
ωl, αl ∈ RK . Hereωl is a column vector and αl is a row vector. The scaled block weight matrices and block bias vectors
are given by

W̃ l = (ωl ⊗ αl) ⊗W l, b̃l = ωl ⊗ bl, 1 ≤ l < D,

and W̃D = (11×K ⊗WD) and b̃D = bD. For 1 ≤ l ≤ D, let

zl := L̃l(zl−1) = W̃ lzl−1 + b̃l.

We then obtain the representation given by

uKΘ (z) = (L̃D ◦ ~φ ◦ L̃D−1 ◦ . . . ◦ ~φ ◦ L̃1)(1K×1 ⊗ z). (4)

We refer to this representation as a Kronecker neural network. The set of the network’s parameters is ΘK =58

{W l, bl}Dl=1 ∪ {ω
l, αl}D−1

l=1 .59

We note that the number of neurons in each hidden-layers of the Kronecker networks is K-times larger than60

those of the feed-forward (FF) networks. However, the total number of parameters only differ by 2K(D − 1) due to61

the Kronecker product. Furthermore, the Kronecker network can be viewed as a new type of neural networks that62

generalize a class of existing feed-forward neural networks, in particular, to utilize adaptive activation functions, as63

shown below.64

• If K = 1, ωl = αl = 1 for all l, the Kronecker network becomes a standard FF network (3).65

• If K = 2, ωl
1 = 1, ωl

2 = ω2 for all l, φ1(x) = max{x, 0}, and φ2(x) = max{−x, 0}, the Kronecker network becomes66

a FF network with Parametric ReLU activation [31].67

• If K = 2, ωl
2 = ω for all l, φ1(x) = max{x, 0}, and φ2(x) = (ex − 1) · Ix≤0(x), the Kronecker network becomes a68

FF network with Exponential Linear Unit (ELU) activation [32] if ωl
1 = 1 for all l, and becomes a FF network69

with Scaled Exponential Linear Unit (SELU) activation [33] if ωl
1 = ω′ for all l.70

• If K = 1, the Kronecker network becomes a feed-forward neural network with layer-wise locally adaptive71

activation functions [17, 18].72

• If ωl = 1 for all l and φk(x) = xk−1 for all k, the Kronecker network becomes a feed-forward neural network with73

self-learnable activation functions (SLAF) [20]. Similarly, a FNN with smooth adaptive activation function [16]74

can be represented by a Kronecker network.75

The Kronecker network can be efficiently implemented without constructing the block weight matrices {W̃ l}l and
block bias vectors {b̃l}l. It can be checked that the Kronecker neural network can be expressed by the composition

uK (z) =
(
LD ◦ φ̃

D−1 ◦ LD−1 ◦ . . . ◦ φ̃
1 ◦ L1

)
(z),

where the activation function at the l-th layer is no longer deterministic but depends on the trainable parameters {ωl, αl}

φ̃l(Ll(z);ωl, αl) =

K∑
k=1

αl
kφk(ωl

kLl(z)), l = 1, · · · ,D − 1.

Figure 1 shows a schematic of a three-layer Kronecker neural network.76
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Figure 1: Schematic of a three hidden-layers Kronecker neural network. The yellow circles represent the neurons in the respective hidden-layers.
Unlike the traditional neural network architecture, the output of the neuron in the KNN architecture passes to more than one activation functions.

3. Gradient Flow Analysis of the Kronecker networks77

In this section, we analyze Kronecker networks in the setup of the supervised learning with the square loss func-
tion. Let Tm = {(xi, yi)}mi=1 be a set of m-training data points. The square loss is defined by

L(Θ) =
1
2

m∑
j=1

(uType
Θ

(xi) − yi)2. (5)

Here uType
Θ

(x) is a selected network that could be either a standard FF network uFF
Θ

(x) (3) or a Kronecker network uK
Θ

(x)
(4). Specifically, we consider two-layer networks:

uFF
ΘFF

(x) =

N∑
i=1

ciφ1(wT
i x + bi), uKΘK (x) =

N∑
i=1

ci

 K∑
k=1

αkφk(ωk(wT
i x + bi))

 .
Their corresponding network parameters are denoted by ΘFF = {ci,wi, bi}

N
i=1 and ΘK = {ci,wi, bi}

N
i=1 ∪ {αk, ωk}

K
k=1,

respectively. The goal of learning is to find the network parameters that minimize the loss function:

min
ΘType

L(ΘType) where Type = FF or K . (6)

The gradient descent algorithm is typically applied to solve the minimization problem (6). The algorithm commences
with an initialization of the parameters, Θ(0). At the k-th iteration, the parameters are updated according to

Θ(k) = Θ(k−1) − ηk∇ΘL(Θ)
∣∣∣
Θ=Θ(k) ,

where ηk > 0 is the learning rate for the k-th iteration. The learning rates are typically chosen to be small enough to
ensure the convergence. By letting ηk → 0, we obtain the gradient flow dynamics, the continuous version of gradient
descent. The gradient flow dynamics describes the evolution of the network parameters that change continuously in
time:

Θ̇(t) = −∇ΘL(Θ(t)), t ≥ 0, Θ(0) = Θ(0). (7)
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The loss function, with a slight abuse of notation, is written as L(t). If the Kronecker network is employed, we write78

the loss function as LK (t); if the FF network is employed, we write the loss function as LFF(t).79

For the analysis, we make the following assumptions on the parameter initialization and the activation functions.80

Assumption 3.1. Let c = [c1, · · · , cN]T and ci’s are independently initialized from a continuous probability dis-81

tribution that is symmetric around 0. Also, vi = [wi; bi]’s are independently initialized from a normal distribution82

N(0, Id+1), where IN is the identity matrix of size N. Let ω = 1K×1, where 1s×t is the matrix of size s × t whose entries83

are all 1s.84

Assumption 3.2. Let φk ∈ C1(R) for all k = 1, · · · ,K. Let K ≥ m. For any distinct m data points {z j}
m
j=1 in R, the

K × m matrix Φ is full rank, where it is defined as

[Φ]k j = φk(z j), 1 ≤ k ≤ K, 1 ≤ j ≤ m.

Suppose that a short period of training time is allowed. Due to the limited computational resources, we may
frequently encounter such time-limitation scenarios. Firstly, we are interested in understanding which networks,
between the Kronecker and the FF, is more favorable for the training in terms of the loss. Will there be any advantages
of using the Kronecker network over the standard feed-forward? In what follows, we show that the Kronecker network
produces a smaller loss than that by the standard FF network at least during the early phase of the training. To fairly
compare two networks, we consider the following initialization that makes LK (0) = LFF(0). For any FF initialization
ΘFF(0), we initialize the Rowdy network as follows: ΘK (0) = ΘFF(0) ∪ {ω(0), α(0)} where

ω(0) = 1K×1, α(0) =
[
1 0 · · · 0

]
. (8)

This makes the two networks at the initialization identical, which leads to the identical loss value LK (0) = LFF(0).85

Theorem 3.3. Suppose Assumptions 3.2 and 3.1 are satisfied. Suppose α and ω are initialized according to (8).
Then, with probability 1 over initialization, there exists T > 0 such that

LK (t) < LFF(t), ∀t ∈ (0,T ).

Proof. The proof can be found in appendix Appendix A.86

Theorem 3.3 shows that the Kronecker network induces a faster decay of the loss than that by the FF network at87

the beginning of the training. We remark, however, that this does not imply that the training loss by the Kronecker88

will always remain smaller than the loss by the FF.89

Next, we show that two-layer Kronecker networks whose parameters follow the gradient flow dynamics (7) can
achieve a zero training loss. For the convergence analysis, we assume that ω and c are fixed and we train only for
{wi, bi}

N
i=1 ∪ {αk}

K
k=1. From the training data set {(xi, yi)}mi=1, without loss of generality, we assume that x̃i = [xi; 1/

√
2]

such that ‖x̃i‖ = 1 for 1 ≤ i ≤ m. Let

X =


x̃T

1
...

x̃T
m

 ∈ Rm×(d+1), y =


y1
...

ym

 ∈ Rm. (9)

Theorem 3.4. Under Assumptions 3.1 and 3.2, suppose ci =
‖y‖

Kn
√

mξi where ξi’s are independently and identically
distributed random variables from the Bernoulli distribution with p = 0.5, φk(x)’s are bounded by B in R, α is
initialized to satisfy

K‖α‖∞ ≤ 1,
K∑

k=1

αkEz∼N(0,1)[φk(z)] = 0.

Suppose further that for δ ∈ (0, 1), K satisfies(
λ0
√

K − 2‖y‖2B
)

K ≥ 2(1 + δ)‖y‖2B2, (10)
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where λ0 is defined in Lemma Appendix A.1. Then, with probability at least 1 − e−
mδ2

2‖X‖2 , we have

LK (t) ≤ LK (0)e−
λ0
2 t, ∀t ≥ 0.

Proof. The proof can be found in appendix Appendix B.90

In particular, if B = 1, it can be checked that a sufficient condition for (10) is K ≥ (1 +
√

1 + 4λ0) ‖y‖
2

λ0
. Since91

‖y‖2 = m · 1
m

∑m
i=1 y2

i , we have K = O(m). Its corresponding number of parameters of the Kronecker network is92

2K + N(d + 2) = O(m) + N(d + 2).93

It is worth mentioning that several works [7, 8, 9, 10, 11, 12] analyzed over-parameterized neural networks (that94

is, the number of network parameters is significantly larger than the number of training data) and showed that gradient95

descent can train neural networks to interpolate all the training data. Unlike such existing results on the global96

convergence of gradient descent for significantly over-parameterized two-layer FF networks, the two-layer Kronecker97

NN does not require such severe over-parameterization. The required number of parameters is merely is (d+2)N +2K,98

with K = O(m).99

4. Computational Examples100

Figure 2: Rowdy activation functions: The standard φ1 = ReLU activation function, and the remaining φk = n sin((k − 1)nx), k ≥ 2 activation
functions with n = 1.

The KNN is a general framework for the adaptive activation functions where any combination of activation func-
tions can be chosen. Thus, there is no unique way to choose these activation functions. In this regard, we propose
the Rowdy activation functions and we refer to the corresponding KNN as Rowdy-Net (a neural network with Rowdy
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activation functions). In the Rowdy network, we choose {φ1} to be any standard activation function such as ReLU,
tanh, ELU, sine, Swish, Softplus etc., and the remaining {φk}

K
k=2 activation functions are chosen as

φk(x) = n sin((k − 1)nx) or n cos((k − 1)nx), ∀2 ≤ k ≤ K, (11)

where n ≥ 1 is the fixed positive number acting as scaling factor. The word ‘Rowdy’ means highly fluctuat-101

ing/irregular/noisy, which is used to signify the {φk}
K
k=2 activation functions. Figure 2 shows the Rowdy ReLU ac-102

tivation functions with n = 1 for different K terms. The purpose of choosing such fluctuating terms is to inject103

bounded but highly non-monotonic, noisy effects to remove the saturation regions from the output of each layer in104

the network. On similar grounds, Gulcehre et al. [34] proposed noisy activation functions by adding random noise.105

Similarly, Lee et al. [35] proposed probabilistic activation functions for deep neural networks.106

The scaling factor n plays an important role in terms of convergence of the network training process. There is no
rule of thumb for choosing the value of scaling factor, which basically depends on the specific problem. Our numerical
experiments show that for regression problems like function approximation and inferring the solution of PDEs, values
of n ≥ 1 can accelerate the convergence, but larger values of n can make the optimization algorithm sensitive. The
scaling factor defined with the trainable parameters are initialized in such a way that the initial activation of Rowdy-
Net is the same as the corresponding standard activation function. For more details on the scaling factor, see Jagtap et
al. [17, 18]. In this section, we shall demonstrate the efficiency of the Rowdy-Net by comparing its performance with
the fixed (standard), and layer-wise locally adaptive (L-LAAF) for various regression and classification test cases. For
convenience, we clearly mention the fixed (f) and the trainable (t) parameters with their respective initialization for all
three types of activation functions, namely,

Fixed AF : αl
1 = 1 (f); αl

k = 0,∀k ≥ 2 (f); ωl
1 = 1 (f); ωl

k = 0,∀k ≥ 2 (f),

L-LAAF : αl
1 = 1 (f); αl

k = 0,∀k ≥ 2 (f); ωl
1 = 1 (t); ωl

k = 0,∀k ≥ 2 (f),

Rowdy AF : αl
1 = 1 (f); αl

k = 0,∀k ≥ 2 (t); ωl
1 = 1 (t); ωl

k = 1,∀k ≥ 2 (t),

for all l. Note that with this initialization, the initial activation functions for L-LAAF as well as Rowdy-Net in each107

hidden-layer are the same as the fixed activation function. Moreover, the multiplication of scaling factor n in (11) with108

any trainable parameter, say, ωl
1, the initialization is done such that nωl

1 = 1,∀n.109

It is important to note that the KNNs used in our experiments are the modifications of the widely used neural110

network models such as FNNs and CNNs. Accordingly, the plots for the fixed activation function (fixed AF) are the111

results of these widely used neural network models. For example, Figures 12 and 13 compare the FNN vs the KNN,112

as the base architecture is FNN and thus the fixed AF results are those of the FNN. Similarly, Figure 14 compares the113

LeNet (a widely used CNN) and the KNN, and Figure 15 compares the ResNet with convolutions (another widely114

used CNN) and the KNN.115

4.1. Nonlinear discontinuous function approximation116

In this test case we will show the ability of the Rowdy-Net to achieve the machine zero loss value. We also compare
the performance of fixed, L-LAAF and Rowdy-Net with different number of terms. We consider the discontinuous
nonlinear function given by

f (x) =

0.2 sin(6x) For x < 0
1 + 0.1x cos(14x) Otherwise.

The loss function consists of only the data mismatched term.117

The domain is [-3, 3] and the number of training points is just 5, which are fixed for all cases. We used a single
hidden-layer with 40 neurons, cosine activation function, and the learning rate is 8.0e-6. Figure 3 shows the loss
function, and it can be observed that with just a 2-layer shallow neural network the loss function for Rowdy-Net
approaches machine zero precision very quickly. The right figure gives the performance comparison for the fixed,
L-LAAF and the Rowdy-NetK (where the number K signifies the first K number of terms used in the computations)
for the scaling factor n = 10. The Rowdy network performs consistently well by increasing the number of terms. The
right figure shows the effect of scaling factor on the performance of the network. It can be seen that by increasing
the scaling factor the network can be trained faster. As discussed before, the initialization of all adaptive activation
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Figure 3: Nonlinear discontinuous function approximation: The left figure shows the loss function variation using fixed, L-LAAF and Rowdy
activation functions (3, 6 and 9 terms) while the right figure shows the loss function for a 9-term Rowdy network with different scaling factors n.

functions is done such that they are the same as the fixed activation function at initial step, hence, all loss functions
values start from the same point in all the cases. Table 1 shows the comparison of the total normalized computational
cost required for the fixed activation function, L-LAAF and the Rowdy-Net with 3,6 and 9 terms. In this case, the
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Figure 4: Nonlinear discontinuous function approximation: Comparison of different KNN activation functions with Rowdy-Net 9 using scaling
factor 10 for all cases.

Fixed L-LAAF Rowdy-Net3 Rowdy-Net6 Rowdy-Net9
Normalized time 1 1.12 1.26 1.58 1.75

Table 1: Nonlinear discontinuous function approximation: Comparison of total normalized computation time for fixed activation function, L-LAAF
and Rowdy-Net (with 3, 6 and 9 terms) activation functions. The time required for fixed activation function is taken as a baseline.

time required for fixed activation function is taken as a baseline. By increasing the number of terms in the Rowdy-Net,
the computational time increases. Keeping φ1 as cosine activation function, we also compare the Rowdy-Net9 with
different choices for φk, k ≥ 2 as defined below:

KNN1 =

9∑
k=2

αl
k tanh(ωl

kLl(z)), l = 1, . . . ,D − 1. (12)

KNN2 =

9∑
k=2

αl
kReLU(ωl

kLl(z)), l = 1, . . . ,D − 1. (13)

and in the case of KNN3, the φk’s are chosen randomly as φ2 = tanh, φ3 = Sigmoid, φ4 = elu, φ5 = ReLU φ6 =118
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tanh, φ7 = tanh, φ8 = Softmax, φ9 = Swish. Figure 4 shows the comparison of the loss functions for these activation119

functions; clearly, Rowdy-Net9 is trained faster.120

4.2. High frequency function approximation121

In this test case we consider the high frequency sinusoidal functions given by sin(mπx), m = 1, 100 and 200. The122

domain is [0, 2π] and the number of training points is 100, which is fixed for all the cases. We use cosine activation123

function and the learning rate is 4.0e-6. The number of hidden-layers is 3 with 50 neurons in each layer. We use the124

first nine terms of Rowdy activation functions. The scaling factor n = 10 is used in all the cases.125
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Figure 5: High frequency function approximation: Loss function versus number of iterations for sin(mπx), ‘m = 1, 100 and 200, using fixed,
L-LAAF and Rowdy-Net9 activation functions.

Fixed L-LAAF Rowdy-Net9
Normalized time 1 1.11 1.73

Table 2: High frequency function approximation: Comparison of total normalized computation time for fixed activation function, L-LAAF and
Rowdy-Net9 activation function. Time required for fixed activation function is taken as a baseline.

Figure 5 shows the loss functions for fixed, locally adaptive (L-LAAF) and Rowdy-Net9 for sin(mπx),m = 1, 100126

and 200. In all cases, despite using a small learning rate the Rowdy-Net converges faster than the fixed and locally127

adaptive activation functions. Table 2 shows the comparison of total normalized computational cost required for128

the fixed, L-LAAF and the Rowdy-Net9 activation functions. Again, the time required for fixed activation function129

is taken as a baseline. We can see a similar increment in the computation cost requirement for both L-LAAF and130

Rowdy-Net activation functions compared to fixed activation function.131

4.2.1. Effect of high learning rate132

We again perform the same experiment with higher learning rates (LR) 4.0e-3. Figure 6 shows the sin(πx) function133

approximation example. Fixed, L-LAAF and Rowdy activation functions converge faster. In the case of both fixed134

as well as L-LAAF, the loss function goes till 1.0e-6, see figure 6 (left). Furthermore, in the case of Rowdy-Net,135

it can be seen that the loss function decreases till 1.0e-11, but then suddenly goes up. The main reason is the high136

learning rate, which can make the parameters in the Rowdy activation function, and in turn, the Rowdy activation137

function very sensitive during the optimization procedure. Such behavior can be avoided by either using the low138

learning rate or by using the strategy of learning rate annealing [14]. The learning rate annealing can significantly139

affect generalization performance of the neural networks. In particular, training of neural network with a large initial140

learning rate followed by a smaller annealed learning rate can outperform the neural network training with the smaller141

learning rate used throughout. Figure 6 (right) shows the Rowdy-Net9 results with and without learning rate annealing.142

In case with learning rate annealing, we decreased the learning rate from 4e-3 to 1e-4 after 500 iterations. The learning143

rate annealing not only curbs the sensitiveness of Rowdy activation functions, but also decreases the magnitude of144

oscillations in the loss function.145
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Figure 6: Effect of high learning rate on the convergence of fixed, L-LAAF, and Rowdy-Net (left). The Rowdy-Net loss function with and without
learning rate annealing (right).

4.3. Helmholtz equation146

The Helmholtz equation arises in many real-world problems such as acoustics, vibrating membrane etc. Here147

we employed Physics-Informed Neural Networks (PINNs) [23] to solve the Helmholtz equation. The PINN is a148

simple and efficient method for solving partial differential equations involving sparse and noisy data set. The PINN149

framework can incorporate the given information like governing equation, experimental as well as synthetic (high150

resolution numerical solution) data into the loss function, thereby converts the original problem into an optimization151

problem. The PINN method has been successfully applied to solve many problems in science and engineering, see152

for examples [36, 37, 38, 39, 40, 41, 42, 43].153

The Helmholtz equation in two dimensions is given by

uxx + uyy + k2u = g(x, y), (x, y) ∈ [−1, 1]2, (14)

with appropriate Dirichlet boundary conditions. The forcing term is obtained from the exact solution u(x, y) =

sin(πx) sin(4πy) for k = 1, which is given as

g(x, y) = −π2 sin(πx) sin(4πy) − (4π)2 sin(πx) sin(4πy) + k2 sin(πx) sin(4πy).

Figure 7: Helmholtz equation: Mean and std. deviation of loss function (left) and relative L2 error (right) for up to 30k iterations for fixed AF,
L-LAAF and Rowdy-Net5 (5 terms) using 5 different realizations in each case.
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Figure 8: Helmholtz equation: Layer-wise L-LAAF (Top row) and Rowdy (bottom row) hyperbolic tangent activation functions (Rowdy-Net5). In
the L-LAAF, only the slope of the activation function changes without changing the saturated region but the Rowdy activation function can get rid
of the saturated region, hence, it can be trained faster.

We used a 3 hidden-layers, 30 neurons per layer fully connected neural network with hyperbolic tangent activation154

function. The number of boundary training points is 300, and the number of residual points is 6000, which are155

randomly chosen. The learning rate is 8.0e-3 and the optimizer is ADAM.156
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Figure 9: Helmholtz equation: Loss function (left) and relative L2 error (right), where the Rowdy network is trained for the first 1000 iterations
(blue line) and then switched to L-LAAF network (red dashed line) for the remaining iterations for computational expediency. These results are
also compared with L-LAAF as shown by green dash-dot line.

For the Helmholtz equation we are using a sine fluctuating part with first 5 (Rowdy-Net5) terms, and we also use157

the scaling factor n = 10 in all cases. Figure 7 shows the loss function (left) and relative L2 error (right) up to 30k158

iterations for fixed AF, L-LAAF and Rowdy-Net5 using 5 different realizations in each case. It can be seen that the159

Rowdy-Net performs better than the fixed and locally adaptive activation functions. Figure 8 shows the initial and160

final L-LAAF (top) and Rowdy-Net5 (bottom) activation function for all three hidden-layers. The initial activation161

function is the standard activation function in each case. In L-LAAF, only the slope of the activation function increases162

as expected, but in the case of Rowdy-Net5, the final activation functions are very oscillatory. In the case of PINNs,163

the computational cost increases for Rowdy activation function compared to baseline fixed activation function and164

L-LAAF. One remedy to reduce the computational cost is to employ the transfer learning strategy, i.e., the Rowdy-165
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Net can be trained for the initial period (for few hundred iterations) and then this pre-trained model can be used for166

L-LAAF network for further training. Figure 9 shows the loss function and relative L2 errors, where the Rowdy-net167

was trained for the first 1000 iterations and then switched to L-LAAF network for the remaining iterations. Both168

the loss and error initially jump after switching from Rowdy to L-LAAF networks but they decay thereafter. These169

results are also compared with L-LAAF as shown by green dash-dot line. Another way to reduce the computational170

cost associated with the Rowdy-Net training is, directly include the high-frequency components with the strategy of171

learning rate annealing.172

We further test the convergence speed and accuracy of the proposed Rowdy network for a high frequency solution173

of Helmholtz equation. In this case the exact solution is assumed to be of the form u(x, y) = sin(5πx) sin(10πy). Figure
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Figure 10: High frequency solution of the Helmholtz equation: Loss function (left) and relative L2 error (right) for the fixed activation, L-LAAF
and Rowdy activation functions.
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Figure 11: High frequency solution of the Helmholtz equation: Point-wise absolute errors after 20k iterations for the fixed activation (left), L-LAAF
(middle) and Rowdy activation functions (right).

174

10 shows the loss function and relative L2 error for the fixed activation, L-LAAF and Rowdy activation functions. In175

all cases we used 9e-5 learning rate, the activation function is the hyperbolic tangent, the number of residual points is176

10k, and number of boundary data points is 400. The FNN consist of 3 hidden-layers with 60 neurons in each layer.177

Neither fixed nor L-LAAF converges even after 20k iterations for this problem, whereas the Rowdy-Net5 converges178

faster. The point-wise absolute error after 20k iterations is shown in figure 11 for the fixed activation, L-LAAF179

and Rowdy activation functions. The absolute error is large for both fixed and locally adaptive activation functions,180

whereas Rowdy-Net gives small error.181

4.4. Standard deep learning benchmark problems182

In the previous subsections, we have seen the advantages of the physics-informed Rowdy-Nets. One of the re-183

maining questions is whether or not the advantages remain in the cases without physics information for other types of184
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deep learning applications. This subsection presents numerical results with various standard benchmark problems in185

deep learning to explore the question.186

We first report the results for fully-connected feed-forward neural networks. The results are reported in Figures187

12–13 with the mean values and the uncertainty intervals. The lines are the mean values over three random trials and188

the shaded regions represent the intervals of 2×(the sample standard deviations). As can be seen in the figures, the189

training and testing losses of Rowdy-Nets were lower than those of fixed AF and L-LAAF. In the figures, Rowdy-Net4190

uses K = 4, and Rowdy-Net8 uses K = 8. For all the experiments, we used the network with three layers and 400191

neurons per hidden layer and set the activation functions of all layers of fixed AF to be rectified linear unit (ReLU).192

Each entry of the weight matrices was initialized independently by the normal distribution with the standard deviation193

being set to the reciprocal of the square root of 400 for all layers. We used the standard two-moons dataset and two-194

circles dataset with 1000 training data points and 1000 testing data points, generated by the scikit-learn command,195

sklearn.datasets.make moons and sklearn.datasets.make circles [44]. For each dataset, we used mini-196

batch stochastic gradient descent (SGD) with mini-batch size of 64 and the binary cross-entropy loss. We set the197

momentum coefficient to be 0.8, the learning rate to be 0.001, and the weight-decay rate to be 10−4.198

We now report the results for convolutional deep neural networks. Figure 14 shows the results for the following199

standard variant of LeNet [45] with five layers: (1) input layer; (2) convolutional hidden layer with 32 filters of size200

5-by-5 followed by max-pooling and activation functions; (3) convolutional hidden layer with 32 filters of size 5-by-5201

followed by max-pooling and activation functions; (4) fully-connected hidden layer with 256 output units followed202

by activation functions; (5) fully-connected output layer. Figure 15 and Table 3 present the results for the standard203
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Figure 12: Fully-connected neural networks for the two-moons dataset
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Figure 13: Fully-connected neural networks for the two-circle dataset
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Figure 14: LeNet for various standard benchmark image datasets
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Figure 15: ResNet for SVHN: training loss

Activation Test error (%)
Fixed AF 5.36 (0.13)
L-LAAF 5.26 (0.20)

Rowdy-Net2 4.92 (0.08)

Table 3: ResNet for SVHN: test error

pre-activation ResNet with 18 layers [46]. As can be seen in Figure 14–15 and Table 3, the Rowdy-Nets outperformed204

fixed AF and L-LAAF in terms of training and testing performances for the convolutional networks as well. In the205

figures, Rowdy-Net2 uses K = 2, and Rowdy-Net4 uses K = 4. In Figures 14–15, the lines are the mean values over206

five random trials and the shaded regions represent the intervals of 2×(the sample standard deviations). Table 3 reports207

the mean test error and its standard deviation over five random trials for each method. Similarly, Figure 16 and Table208

4 report the result with the same setting (using the same ResNet) for a larger dataset, CIFAR-100. This additional209

result for a larger dataset shows qualitatively the same behaviors as those for smaller datasets.210

For the convolutional networks, we adopted the standard benchmark datasets in deep learning — Semeion [47],211

Fashion-MNIST [48], Kuzushiji-MNIST [49], CIFAR-10 and CIFAR-100 [50], and SVHN [51]. We used all the212

training and testing data points exactly as provided by those datasets. For the Semeion dataset, since the default split213

of training and testing data points is not provided, we randomly selected 1000 data points as training data points from214

the original 1593 data points; the remaining 593 points were used as testing data points. For each dataset, we used the215

standard data-augmentation of images (e.g., random crop and random horizontal flip for CIFAR-10 and CIFAR-100).216

Semeion, Fashion-MNIST, and Kuzushiji-MNIST are the datasets with handwritten digits, images of clothing and217

accessories, and Japanese letters, respectively. CIFAR-10 is a popular dataset containing 50000 training and 10000218

testing images in 10 classes with the image resolution of 32 × 32 with color. CIFAR-100 is a dataset similar to219

CIFAR-10, but it contains 600 images in each class for 100 classes. SVHN is a dataset containing images of street220

view house numbers obtained from Google Street View images.221

As the qualitative behavior was the same over different values of n with ReLU networks in Figures 12–13, we fixed222

n = 1 in the experiments for Figures 14–16 and Tables 3–4. In Figures 14–16 and Tables 3–4, all the model parameters223

were initialized by the default initialization of PyTorch version 1.4.0 [52], which is based on the implementation in the224

previous work [31]. Here, we used the cross-entropy loss. All other hyper-parameters for Figures 14–16 and Tables225
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Figure 16: ResNet for CIFAR-100: training loss

Activation Test error (%)
Fixed AF 35.80 (0.34)
L-LAAF 34.25 (0.29)

Rowdy-Net2 33.40 (0.27)

Table 4: ResNet for CIFAR-100: test error
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3–4 were fixed to be the same values as the those in the experiments for Figures 12–13.226

In summary, the experimental results in this subsection show that the Rowdy-Nets have the potential to improve227

the performance of standard activation functions without any prior physics information.228

5. Summary229

In this work we proposed a novel neural network architecture named as Kronecker neural networks (KNNs),230

which provides a general framework for neural networks with adaptive activation functions. Employing the Kronecker231

product in KNN makes the network wide while at the same time the number of trainable parameters remains low. For232

theoretical studies of the KNN, we analyzed its gradient flow dynamics and proved that at least in the beginning of233

gradient descent training, the loss by KNN is strictly smaller than those by feed-forward networks. Furthermore, we234

also established the global convergence of KNN in an over-fluctuating case. In the same framework, we proposed a235

specific version, the Rowdy neural network (Rowdy-Net), which is a neural network with Rowdy activation functions.236

In the proposed Rowdy activation functions, noise in the form of sinusoidal fluctuations is injected in the activation237

function thereby removing the saturation zone from the output of every layer in the network, which allows the network238

to explore more and learn faster. The Rowdy activation functions easily capture the high-frequencies involved in the239

target function, hence they overcome the problem of spectral bias that is omnipresent in all neural networks as well as240

in PINNs. We also note that the Rowdy activations can be readily implemented in any neural network architecture.241

In the computational experiments we solved various problems such as function approximation using feed-forward242

neural networks and partial differential equation using physics-informed neural networks with standard (fixed) acti-243

vation function, L-LAAF (layer-wise adaptive) and the proposed Rowdy activation functions. In all test cases, we244

obtained substantial improvement in the training speed as well as in the predictive accuracy of the solution. More-245

over, the proposed Rowdy activation functions was shown to accelerate the minimization process of the loss values246

in various standard deep learning benchmark problems such as MNIST, CIFAR, SVHN etc., in agreement with the247

theoretical results.248
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Appendix A. Proof of Theorem 3.3252

Proof. Let Θ be the set of parameters to be trained. Let

Res(X) = [Res(x1), · · · ,Res(xm)]T ∈ Rm

where Res(x j) = u(x j; Θ) − y j. Since L(Θ) = 1
2‖Res(X)‖2 and ∂Res(x j)

∂Θ
=

∂u(x j;Θ)
∂Θ

, we have

∇ΘL(Θ) =

m∑
j=1

Res(x j) ·
∂u(x j; Θ)
∂Θ

.

Note that

d
dt

L(t) =
1
2

d
dt
〈Res(X),Res(X)〉 =

〈
Res(X),

d
dt

Res(X)
〉

=

〈
Res(X),

d
dt

u(X; Θ(t))
〉
.

Let x̃ = [x, 1]T and vi = [wi; bi]. Suppose u(x; Θ) =
∑N

i=1 ci

[∑K
k=1 αkφk(ωk x̃T vi)

]
, where Θ = {ci, vi}

N
i=1 ∪ {αi, ωi}

K
i=1.

Note that if the standard FF is considered, one can simply drop the terms related α and ω. From the gradient-flow
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dynamics (7), we have

ċi(t) = −

m∑
j=1

 K∑
k=1

αkφk(ωk x̃T
j vi)

 Res(x j) = −Ci · Res(X),

v̇i(t) = −ci

m∑
j=1

x̃ j

 K∑
k=1

αkωkφ
′
k(ωk x̃T

j vi)

 Res(x j) = −Bi · Res(X),

α̇k = −

m∑
j=1

 N∑
i=1

ciφk(ωk x̃T
j vi)

 Res(x j) = −Ak · Res(X),

ω̇k = −

m∑
j=1

 N∑
i=1

ciαk x̃T
j viφ

′
k(ωk x̃T

j vi)

 Res(x j) = −Ωk · Res(X),

for 1 ≤ i ≤ n, 1 ≤ k ≤ K, and

Ci =
[∑K

k=1 αkφk(ωk x̃T
1 vi), · · · ,

∑K
k=1 αkφk(ωk x̃T

mvi)
]
∈ Rm,

Bi = ci

[
x̃1

(∑K
k=1 αkωkφ

′
k(ωk x̃T

1 vi)
)
, · · · x̃m

(∑K
k=1 αkωkφ

′
k(ωk x̃T

mvi)
)]
∈ R(d+1)×m,

Ak =
[∑N

i=1 ciφk(ωk x̃T
1 vi), · · ·

∑N
i=1 ciφk(ωk x̃T

mvi)
]
∈ Rm,

Ωk = αk

[∑N
i=1 ci x̃T

1 viφ
′
k(ωk x̃T

1 vi), · · ·
∑N

i=1 ci x̃T
mviφ

′
k(ωk x̃T

mvi)
]
∈ Rm.

(A.1)

Let C = [C1; · · · ; CN] ∈ RN×m, B = [B1; · · · ; BN] ∈ R(d+1)N×m, A = [A1; · · · ; AK] ∈ RK×m and Ω = [Ω1; · · · ; ΩK] ∈

RK×m. By letting v = (v j) ∈ R(d+1)N , α = (α j), ω = (ω j) ∈ RK , C = (c j) ∈ RN , and Θ =


c
v
α
ω

 ∈ R(d+2)n+2K , we have

ċ = −C · Res(X), v̇ = −B · Res(X), α̇ = −A · Res(X), ω̇ = −Ω · Res(X).

Let M =
[
C; B; A;Ω

]
∈ R((d+2)n+2K)×m. Since Θ̇ = −M · Res(X), it can be checked that ,

d
dt

u(X; Θ(t)) = MT Θ̇ = −MT M · Res(X).

Therefore,

d
dt

L(t) =

〈
Res(X),

d
dt

u(X; Θ(t))
〉

= −‖M · Res(X)‖2

= −‖

C
B
Ω

 · Res(X)‖2 − ‖A · Res(X)‖2.

It follows from Lemma Appendix A.1 that with probability 1 over initialization, we have

‖A · Res(X)‖2 ≥ σ2
min(A)‖Res(X)‖2 > 0,

which implies

d
dt

LRowdy(0) <
d
dt

LFF(0) ≤ 0.
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Note thatΨ in Lemma Appendix A.1 is AT , m ≤ K by Assumption 3.2, and σmin(A) is the m-th largest singular value
of A. Since φk’s are in C1, it follows from the Peano existence theorem [53] that the gradient flow admits a solution
Θ(t) in a neighborhood I0 of t = 0. Since LRowdy(0) = LFF(0), there exists T > 0 such that for all t ∈ (0,T ),

LRowdy(t) < LFF(t),

which shows that the Rowdy network induces a smaller training loss value in the beginning phase of the training.253

Lemma Appendix A.1. Suppose Assumptions 3.1 and 3.2 hold. For any non-degenerate data points {x j}
m
j=1 where

m ≤ K, with probability 1 over {ci, vi}
N
i=1,

[Ψ]k j = ψk(x j), where ψk(x) =

N∑
i=1

ciφk(vT
i x̃), x̃ = [x; 1], 1 ≤ k ≤ K, 1 ≤ j ≤ m,

is full rank. For the later use, let λ0 be the m-th smallest singular value of Ψ.254

Proof. Let Ψk,: and Ψ:, j be the k-th row and the j-th column of Ψ, respectively. Suppose

m∑
k=1

δkΨk,: = 0,

for some δ = [δ1, · · · , δm]T . Then, for each j = 1, · · · ,m, we have

0 =

m∑
k=1

δkψk(xi) =

m∑
k=1

δkcT Φk(xi) = cT

 m∑
k=1

δkΦk(xi)

 , where Φk(xi) =


φk(vT

1 x̃i)
...

φk(vT
N x̃i)

 .
Hence, with probability 1 over the initialization of c, we have

m∑
k=1

δkΦk(xi) = 0 ⇐⇒
m∑

k=1

δkφk(vT
s x̃i) = 0 ∀1 ≤ s ≤ n, 1 ≤ i ≤ m.

With probability 1 over vs, vT
s x1, · · · , vT

s xm are distinct. It then follows from Assumption 3.2 that for each s = 1, · · · , n,

[Φs]ik = φk(vT
s x̃i), 1 ≤ i ≤ m, 1 ≤ k ≤ m,

is full rank. Therefore, we conclude that δ1 = · · · = δK = 0, which implies that Ψ is also full rank.255

Appendix B. Proof of Theorem 3.4256

Proof. It follows from the proof of Theorem 3.3 that

‖
d
dt

Θ(t)‖2 = −
d
dt

L(t) =⇒ ‖Θ(t) − Θ(0)‖ ≤
√

L(0),

for all t ≥ 0. By Lemma Appendix B.3, with probability at least 1 − e−
mδ2

2‖X‖2 ,√
2L(0) ≤ ‖y‖ (1 + (1 + δ)B/K) .
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Note that

‖y‖ (1 + (1 + δ)B/K)
√

2
≤

λ0

2
√

1 + (max j ‖x̃ j‖ · ‖α‖∞)2 · ‖c‖1 · B
√

Km

⇐⇒ ‖c‖1 ≤
λ0

√
2‖y‖ (1 + (1 + δ)B/K)

√
1 + (max j ‖x̃ j‖ · ‖α‖∞)2 · B

√
Km

⇐⇒
‖y‖

K
√

m
≤

λ0
√

2‖y‖ (1 + (1 + δ)B/K)
√

1 + (max j ‖x̃ j‖ · ‖α‖∞)2 · B
√

Km

⇐⇒
1
√

K
≤

λ0
√

2‖y‖2 (1 + (1 + δ)B/K)
√

1 + (max j ‖x̃ j‖ · ‖α‖∞)2 · B
.

Therefore, if

1
√

K
≤

λ0
√

2‖y‖2 (1 + (1 + δ)B/K)
√

1 + (max j ‖x̃ j‖ · ‖α‖∞)2 · B
,

with probability at least 1 − e−
mδ2

2‖X‖2 , we have

‖Θ(t) − Θ(0)‖ ≤
λ0

2
√

1 + (max j ‖x̃ j‖ · ‖α‖∞)2 · ‖c‖1 · B
√

Km

and it follows from Lemma Appendix B.2 that σmin(A(t)) ≥ λ0
2 for all t ≥ 0. Therefore,

L(t) ≤ L(0)e−
λ0
2 t, ∀t ≥ 0.

Since max j ‖x̃ j‖ = 1 and ‖α‖∞ ≤ 1, the proof is completed.257

Lemma Appendix B.1. Suppose Assumptions 3.1 and 3.2 hold. Let Θ = {αi}
K
i=1 ∪ {vi}

N
i=1 and Θ̃ = {α̃i}

K
i=1 ∪ {ṽi}

N
i=1.

Suppose φk(x)’s are bounded by B in R. Then,

‖Ψ(Θ) −Ψ(Θ(0))‖ ≤
√

1 + (max
j
‖x̃ j‖ · ‖α(0)‖∞)2 · ‖c‖1 · B

√
Km · ‖Θ − Θ(0)‖F ,

where Ψ is defined in Lemma Appendix A.1.258

Proof. Let us denote its corresponding networks by

u(x) =

N∑
i=1

ci

K∑
k=1

αkφk(vT
i x̃), ũ(x) =

N∑
i=1

ci

K∑
k=1

α̃kφk(ṽT
i x̃).
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Note that

|ψk(x) − ψ̃k(x)| =

∣∣∣∣∣∣∣
N∑

i=1

ci(αkφk(vT
i x̃) − α̃kφk(ṽT

i x̃))

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
N∑

i=1

ci(α̃k − αk)φk(ṽT
i x̃)

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
N∑

i=1

ciαk(φk(vT
i x̃) − φk(ṽT

i x̃))

∣∣∣∣∣∣∣
≤ B‖c‖1 · |αk − α̃k | + B‖x̃‖ · |αk |

N∑
i=1

|ci| · ‖vi − ṽi‖

≤ B‖c‖1 · |αk − α̃k | + B‖x̃‖ · |αk | · ‖c‖2 · ‖V − Ṽ‖F

≤ B
√
‖c‖21 + (‖x̃‖ · |αk | · ‖c‖2)2

√
|αk − α̃k |

2 + ‖V − Ṽ‖2F ,

where
V =

[
v1, · · · , vN

]
, Ṽ =

[
ṽ1, · · · , ṽN

]
.

Therefore,

‖Ψ − Ψ̃‖ ≤ ‖Ψ − Ψ̃‖F =

√
1 + (max

j
‖x̃ j‖ · ‖α‖∞)2 · ‖c‖1 · B

√
Km · ‖Θ − Θ(0)‖F .
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Lemma Appendix B.2. Let Θ(0) = {αi}
K
i=1 ∪ {vi}

N
i=1 and Θ(t) = {α̃i}

K
i=1 ∪ {ṽi}

N
i=1. Let σmin(A(0)) = λ0. Suppose

‖Θ(t) − Θ(0)‖F ≤
λ0

2
√

1 + (max j ‖x̃ j‖ · ‖α‖∞)2 · ‖c‖1 · B
√

Km
,

for all 0 ≤ t ≤ T. Then σmin(A(t)) ≥ λ0
2 for all 0 ≤ t ≤ T.260

Proof. Observe that

σmin(A(t)) ≥ σmin(A(0)) − ‖A(t) − A(0)‖ ≥
λ0

2
,

where the second inequality follows from Lemma Appendix B.1.261

Lemma Appendix B.3. Suppose α is initialized to satisfy K‖α‖∞ ≤ 1 and

K∑
k=1

αkEz∼N(0,1)[φk(z)] = 0.

Then, with probability at least 1 − e−
mδ2

2‖X‖2 over {vi}
N
i=1,√

2L(0) ≤ ‖y‖ (1 + (1 + δ)B) .

Proof. Let

[Φ]i j =

K∑
k=1

αkφk(vT
i x̃ j), 1 ≤ i ≤ n, 1 ≤ j ≤ m.
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Note that

∣∣∣[Φ − Φ̃]i j

∣∣∣ =

∣∣∣∣∣∣∣
K∑

k=1

αkφk(vT
i x̃ j) −

K∑
k=1

αkφk(ṽT
i x̃ j)

∣∣∣∣∣∣∣
≤

K∑
k=1

|αk | · |φk(vT
i x̃ j) − φk(ṽT

i x̃ j)| ≤ KB‖α‖∞ · ‖x̃T
j (vi − ṽi)‖.

Therefore,
‖Φ − Φ̃‖ ≤ ‖Φ − Φ̃‖F ≤ K‖α‖∞B · ‖X‖ · ‖V − Ṽ‖F ,

which implies that ∣∣∣‖Φc‖ − ‖Φ̃c‖
∣∣∣ ≤ ‖Φ − Φ̃‖ · ‖c‖ ≤ K‖α‖∞B‖c‖ · ‖X‖ · ‖V − Ṽ‖F .

Thus, ‖Φc‖ is a Lipschitz function of V whose Lipschtiz constant is K‖α‖∞B‖c‖ · ‖X‖.262

Also, since ‖x̃ j‖ = 1 for all 1 ≤ j ≤ m, we have

EV [‖Φc‖] ≤
√
EV [‖Φc‖2]

=

√√√√ m∑
j=1

EV


 N∑

i=1

ci

K∑
k=1

αkφk(vT
i x̃ j)

2
=
√

m

√√√√
Eg∼N(0,IN )


 N∑

i=1

ci

K∑
k=1

αkφk(gi)

2
=
√

m

√√√√
‖c‖2Eg∼N(0,1)


 K∑

k=1

αk(φk(g) − E[φk(g)])

2
≤
√

mK‖α‖∞B‖c‖.

We recall (e.g. [54]) that since ‖Φc‖ is a Lipschitz function of V , for V ∼ N(0, Id+1), with probability at least

1 − e−
t2

2(K‖α‖∞B‖c‖·‖X‖)2 ,

‖Φc‖ ≤ EV [‖Φc‖] + t.

By letting t = δ
√

mK‖α‖∞B‖c‖, we conclude that with probability at least 1 − e−
mδ2

2‖X‖2 ,

‖Φc‖ ≤ (1 + δ)
√

mK‖α‖∞B‖c‖.

Since |ci| =
‖y‖

K
√

mn and K‖α‖∞ ≤ 1, with probability at least 1 − e−
mδ2

2‖X‖2 , we have

‖Φc − y‖ ≤ ‖Φc‖ + ‖y‖ ≤ ‖y‖ (1 + (1 + δ)B/K) .
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