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Abstract—The effect of cracks in solar cells on the long-term
degradation of photovoltaic (PV) modules remains to be deter-
mined. To investigate this effect in future studies, it is necessary
to quantitatively describe the crack features (e.g. length) and
correlate them with module power loss. Electroluminescence (EL)
imaging is a common technique for identifying cracks. However,
it is currently challenging and time-consuming to identify cracks
in a large number of EL images and quantify complex crack
features by human inspection. This article introduces a fast
semantic segmentation method (~0.18 s/cell) to automatically
segment cracks from EL images and algorithms to extract crack
features. We fine-tuned a UNet neural network model using pre-
trained VGG16 as the encoder and obtained an average F1
score of 0.875 and an intersection over union (IoU) score of
0.782 on the testing set. With cracks and busbars segmented, we
developed algorithms for extracting crack features, including the
crack-isolated area, the brightness inside the isolated area, and
the crack length. We also developed an automatic preprocessing
tool for cropping individual cell images from EL images of PV
modules (~0.72 s/module). Our codes are published as open-
source software, and our annotated data set composed of various
types of cells is published as a benchmark for crack segmentation
in EL images.

Index Terms—PV module, crack feature extraction, semantic
segmentation, deep learning

I. INTRODUCTION

Global photovoltaic (PV) installation, with crystalline sil-
icon as the most commonly used material for solar cells,
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has experienced a rapid increase to meet the high demand
for clean energy. Solar modules installed in utility-scale PV
systems are expected to have a long operational lifetime to
be competitive with conventional energy sources [1]. How-
ever, solar modules in the field are subject to multiple en-
vironmental stresses like temperature variation, mechanical
loading, efc. [2] These environmental stresses lead to various
degradation modes [2], [3] in solar modules and limit their
durability. Cell fracture is one of the dominant degradation
modes in the early stage of PV systems [4] and may cause
a delayed worsening of annual degradation rate [3]. Brittle
silicon cells in glass/backsheet modules will fracture under
tensile stress caused by front loading (e.g., snow) in the field.
For cracked modules, oscillatory field wind causes a long-term
cyclic loading of solar modules. The existence of cracks may
cause temporary or permanent disconnected areas in a cell,
but some research shows that cracked modules do not have
severe power loss [5]. Also, the cyclic loading in cracked
modules may cause a “recovery” behavior in crack-isolated
areas [6], [7]. Currently, the effect of cell cracks on module
electric power and the evolution of cracks in long-term cyclic
loading is under active investigation [2], [8], [9]. Previous
work [10], [11] reports that the influence of cracks may depend
on various features, including the number, position of cracks,
and electrical resistance introduced by cracks. It is essential to
not only detect cracked cells but also quantitatively describe
crack features which can be used for future research on crack
effects.

Micro-cracks are almost invisible to bare human eyes.
Electroluminescence (EL) imaging is a fast, non-destructive
method for detecting cracks in solar modules [12], [13], but
manual inspection and extraction of complex crack features
from a large number of EL images is not practical. As
computer vision technology becomes increasingly fast and
accurate, such tasks can be shifted to computers. Previous
research [14], [15] has reported various computer vision
methods to segment cracks from solar cell images. However,
those methods may be susceptible to variations in types of
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solar modules and may not perform well on small cracks from
polycrystalline silicon cells because crystallographic defects
appear similar to crack lines [16]. Recently, deep learning
models have been widely used on computer vision tasks, e.g.,
VGG [17], ResNet [18], UNet [19], DeepLab [20], efc. The ap-
plication of deep learning models to EL image analysis covers
cell classification [21]-[24], defect object detection [25]-[28]
and semantic segmentation of defects [29]-[31].

For cell classification work, solar cell images are classified
into different categories based on defect types. Deitsch et
al. [21] trained a convolutional neural network (CNN) model
with an accuracy of 88.42% to classify cells into “functional”
or “defective”. The data set, consisting of 2,624 cell images,
was published as a benchmark [32], [33]. However, the models
are limited to binary classification without determining the
specific defect categories. Karimi et al. [23] trained three
models, including random forest (RF) [34], SVM, and CNN
to classify cells into “good”, “cracked” and “corroded”. The
CNN model outperformed other models with a 99.71% accu-
racy on their own testing set.

For object detection tasks, the type and position of defective
cells are predicted. Zhao er al. [26] developed an object
detection model to identify 19 types of defects in half-cell solar
modules, achieving 70.2% mean Average Precision (mAP).
The model can localize target defects and draw a bounding box
around them. Meng et al. [27] developed a YOLO-PV model
based on YOLO model [35] to identify defects in half-cell PV
modules. The authors’ model achieved an average precision of
94.55%, and the inference speed exceeded 35 fps. In one of
our previous works [28], we also designed a pipeline with a
YOLO model to automatically inspect millions of solar cells
in the field and reported the effects of bush fire damage on
the solar farm.

Both the cell classification and object detection methods
mentioned above can automatically identify cracked cells.
However, they cannot provide more detailed information on
crack features (e.g., size, shape, efc.), which are essential in
correlating cracks with PV performance. Therefore, semantic
segmentation is needed to identify defects at the pixel level
and provide annotation masks for feature extraction.

Balzategui et al. [36] utilized a sliding window method to
obtain a segmented defective region (micro-crack region) in
the cell image. The authors trained the model on 542 cell
images and achieved a recall of 92% and a precision of 85%
at the image level. Using the same data set, Balzategui et
al. [37] trained a UNet model to segment defects. This end-
to-end method only requires the input of annotated images.
The authors compared the performance of a UNet model
without modification, a UNet model with some hidden layers
dropped, and a pre-trained UNet model. The UNet model
without modification achieved a 72.2% true positive rate and
92.8 % positive predicted value. However, such high scores
were only calculated on severe cracks (over 800 pixels). Also,
additional metrics like F1 score and intersection over union
(IoU) are necessary to evaluate semantic segmentation models.

Mayr et al. [29] employed a modified ResNet50 as the

backbone to drive segmentation from activation maps and L,
normalization to aggregate the activation maps. The model
obtained an F1 score of 0.83 to segment cracks from mono-
and polycrystalline solar cells.

Rahman et al. [38] incorporated multi-attention networks
into the UNet model (MAU-net) to extract effective multi-
scale features for defects inspection. This modified model was
trained on 620 polycrystalline cell images and obtained an
IoU of 0.699 and an F1 score of 0.799 to segment cracks and
finger interruption. However, this model was only trained on
polycrystalline cells and might lack generalization on other
types of solar cells.

Tian et al. [39] designed a pipeline to select defective
cells with VGG16 and then segment the defects with the
UNet++ model. However, the segmentation targets in their
work were not clearly distinguished. Pratt er al. [40] used
the UNet model with VGG16 as the encoder to perform an
end-to-end segmentation of cracks. They also correlated the
model’s output (e.g. predicted masks) with EL images taken
during accelerated aging tests. Their model has a similar
architecture to the model introduced in this paper. However,
as we will show, our work also introduces algorithms that can
post-process such data to extract crack features based on the
model’s output.

Fioresi et al. [31] trained a Deeplabv3 model with a
ResNet50 backbone on 17,064 EL images, including 256 sim-
ulated images of PV cells. The model achieved an IoU score of
57.3% to localize non-defective areas, cracks, contact defects,
corrosion, and interconnect defects. The authors published
their data set, but at the time of this writing, the link provided
in the paper leads to an empty data repository.

Based on the reviewed publications related to defect seg-
mentation of solar cells, we could see that the UNet model
and its variants were commonly used because the “skip-
connection” architecture in the UNet model might help with
the “gradient vanishing” problem and improve the model
performance in semantic segmentation [41]. However, those
publications focus on segmenting defects without providing
further algorithms for post-processing model’s outputs. Some
previous research without using deep learning models reported
algorithms for crack feature extraction. Bedrich [42] designed
quantitative descriptors of crack length and crack orientation.
Whitaker er al. [43] extracted the length and convex envelope
area of cracks and correlated the crack features with the
current-voltage (IV) parameters of mini-modules. However, as
mentioned above, non-deep learning methods may not perform
well on polycrystalline silicon cells, and more crack features
like crack-isolated areas can be extracted.

Most of the work mentioned above presented promising
potential in the defect segmentation of solar cells. However,
further exploration is still needed in several areas: (i) most
work only focuses on segmenting objects (e.g. crack) from
EL images. Feature extraction based on the segmented defects
is needed; (ii) most data sets are not published, so the
comparisons of various models do not use the same testing
set. A benchmark is needed for related research in the future;
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(iii) most training sets contain only one or two specific types of
solar cells and lack diversity. More comprehensive benchmarks
are still needed.

This paper demonstrates a variant of the UNet model using
pre-trained VGG16 as the encoder and algorithms designed to
extract crack features from model-predicted masks. We first
introduced our automatic cell cropping tool, which cropped
out 29,664 individual cell images from module images. The
average processing rate is ~0.72 s/module. The cropped cell
images were used to train our model to segment objects, in-
cluding busbars, crack lines, cross cracks, and dark areas (i.e.,
degradation area) separately. We reported the performance of
our model on the testing set with an average F1 score of 0.875
and an IoU score of 0.782. The average segmentation rate is
~0.18 s/cell. With the segmented cracks and busbars from the
model, we designed algorithms for predicting the worst-case
inactive area on solar cells caused by cracks. We also introduce
our algorithms for extracting crack length and brightness in
the crack-isolated area indicating the disconnection status.
The model and algorithms we designed have been utilized to
quantitatively correlate crack features with module power loss
in accelerated testing and field data sets [9], and we expect
they may serve as a basis for future analysis in the field. The
tools and models presented in this paper are available as part
of the “pv-vision” open-source software [44]. Our cell images
and annotations are also published as a benchmark [45] to
compare segmentation models. We also uploaded our module
images.

This paper primarily focuses on the segmentation of cracks
and the extraction of crack features. The main contributions
of this work are:

(1) We demonstrated a preprocessing tool to crop out
cell images from module images that is robust to complex
backgrounds (e.g. modules mounted on racks).

(2) We published our images and annotations as a bench-
mark to compare segmentation models for analyzing EL
images in future research. The data set contains various types
of solar modules (mono and polycrystalline Si, different busbar
configurations, and different cell number configurations).

(3) We developed a semantic segmentation model to sep-
arately segment busbars, cracks, efc. The model’s perfor-
mance is competitive with previous work, although quantita-
tive comparisons are difficult due to the lack of standardized
benchmarks and a lack of available models with published
hyperparameter information.

(4) We designed algorithms to extract crack features includ-
ing the crack-isolated area, brightness in the crack-isolated
area and crack length based on object masks predicted by
our model. Those features can be used to describe cracks
quantitatively and further correlate cracks with the degradation
of PV modules.

(5) We published our model and algorithms as open-source
software to analyze EL images of solar modules. The tools
have been utilized to analyze crack growth in accelerated
testing [9].
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Fig. 1. Example of annotation targets. (a) An original image of mono-Si cells.
(b) The annotated image. The four classes are annotated in different colors
(purple: “crack”; cyan: “cross”; brown: “busbar”; blue: “dark’).

The remainder of this paper is organized as follows: Sec-
tion II presents the description of our data set. Section III
provides details of the image preprocessing tool, model train-
ing and feature extraction algorithms. Section IV shows the
performance of our model and tools. The conclusions and
outlook are reported in Section V.

II. DATA SET

Our data set contains 1,837 individual cell images for
training and evaluation. The individual cell image is shown in
Figure 1(a). To prepare the data set, we cropped out 445 EL
images of solar modules into 29,664 cell images and randomly
sampled 1,837 of them. The cropping method is demonstrated
in Section III. Those module images were collected from
various data providers, which increases the diversity of data.
Among the 1,837 cell images, 705 of them are monocrystalline
silicon (mono-Si) solar cells and the remaining 1,132 are
polycrystalline silicon (poly-Si) cells; 54 of them have 2
busbars, 441 have 3 busbars, and the remaining 1342 have 4
busbars; 1,078 of them were cropped from modules of 12 x 6
cells, with the remaining 759 from 10 x 6 modules.

From the 1,837 cell images, we randomly sampled 1,272
images for the training set, 206 for the validation set, and 359
for the testing set. The ratio of the train-val-test set is 7:1:2.
The objects that we want to segment from cell images are
“busbar” lines, “crack” lines, “cross” dots, and “dark’ areas, as
shown in Figure 1. “Cross” dot is the dark dot of a cross crack
that may be caused by point loads on cells. “Dark” area refers
to the degradation areas on cells that appear darker due to lack
of electroluminescence. Although our deep learning model
is trained to predict “dark” area, we designed an alternative
post-processing method to extract the brightness of the crack-
isolated area to better process the partially disconnected area.
This post-processing algorithm is introduced in Section III.
The four objects were annotated on pixel scale, as shown in
Figure 1, and the distribution of each category in the data set
is shown in Table I. The “Total images” column indicates the
number of cell images in each set. The following four columns
(“Crack” to “Dark”) show the number of images that contain
the specific object to segment. Annotations were performed on
Supervisely [46], an online annotation software, by a group
of 8 experienced annotators. Two annotators verified all the
annotation results to ensure the quality of annotations.
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TABLE I
DISTRIBUTION OF CELL IMAGES BY VARIOUS CATEGORIES IN DATA SETS.

Data set Total images | Crack | Busbar | Cross | Dark

Train 1272 493 1272 323 270

Train oversample 1765 986 1765 598 538
Val 206 79 206 57 40

Test 359 120 359 97 68

Test crack 322 290 322 225 171

The training set is imbalanced, where the “crack” class
accounts for 38.8% of the training set. Therefore, we oversam-
pled the images with the “crack™ class so that the “crack” class
accounts for 55.9%, which is comparable to uncracked cells.
The performance was compared between the model trained on
the original training set and the oversampled data set. Only 133
(37%) images in the testing set have “crack” or “cross” crack
objects. To further evaluate the performance of our model on
cracks, we built another testing set named “test crack” with
322 images that only have “crack” lines or “cross” cracks.
Those images are sampled from the 29,664 cell images and
do not overlap with the training and validation sets.

III. METHODS

A. Automatic cropping of cells from module images

An example of the module image to be processed is shown
in Figure 2. The lens distortion of those images has been
corrected by data providers prior to being processed by us.
The inner edges of each solar cell in the solar module are
automatically detected to split a module image into individual
cell images. Since images from different data providers have
various sizes (e.g. 4096 x 2500 pixels, 4240 x 2832 pixels,
etc.), we first transformed the original module image into a
uniform size of 4000 x 2500 pixels. We then binarized the
image using the adaptive thresholding method in OpenCV [47]
to retain edges, as shown in Figure 2(b). After that, we split
the binary image into 100 horizontal strips, each with a size of
4000 x 25 pixels, as schematically illustrated in Figure 2(c).
For each strip, we summed up the grayscale values in the
vertical direction to obtain a cell edge distribution as shown
in Figure 2(d). The grayscale intensity was normalized and
ranged from O (approaching black) to 1 (approaching white).
The edges of solar cells are white in Figure 2(c) and appear as
peaks in Figure 2(d). Afterward, we determined the positions
of cell edges in each strip by detecting the peaks using
“signal.find_peaks” tool from Scipy [48] and fit lines to these
peak positions that represent each edge. We performed an
analogous procedure to fit edges in vertical strips. The detected
edges are demonstrated in Figure 2(e). Figure 2(f) is another
example of detected inner edges in a poly-Si solar module.
This result demonstrates that the cropping algorithm remains
robust when racks are in the background. With inner edges
detected, we crop out each cell by using intersections of edges
as corners of cells. The size is selected to maintain the cell’s
original size in module images, which in our case is 400 x 400
pixels. The cropped cells are shown in Figure 2(g).

The script was executed with Python3 [49] on a MacBook
Pro (2.8 GHz Quad-Core Intel Core i7 processor, 16 GB 2133
MHz LPDDR3 memory).

B. Model training and evaluation

The training data was augmented by horizontal flip, vertical
flip, and random crop. Before performing the random crop,
the images were duplicated three times. Then the images
were cropped at random to 70% - 90% of width and height.
The augmented training set contains 11,448 images, and the
augmented, oversampled training set contains 15,885 images.

We fine-tuned a UNet model with a pretrained VGG16
model [17] as the encoder (pretrained on ImageNet [50]).
The model was deployed and trained with Supervisely for
annotation and training convenience. The architecture of our
model is shown in Figure 3. The encoder performs convolution
and max-pooling operations to transform the input images into
deep feature maps. The decoder performs upsampling on the
feature map and outputs the probability map with five layers,
corresponding to the five objects (i.e., “background”, “crack”,
“busbar”, “cross”, “dark”) in our task. The probability map
is used to compute loss during the training process or make
predictions during the inference process. We used negative log
likelihood loss (NLLLoss) [51] as the loss function. The size
of the input layer is 256 x 256 pixels, which is the default size
of the pretrained model. A larger size is possible, but it exceeds
the limitation of our GPU device. The learning rate was set
to 0.001, and the training batch size was 12. The model was
trained for 10 epochs, and the epoch with the lowest loss on
the validation set yielded the final model. We used precision,
recall, F1 score, and IoU to report the performance of our
model. Each score is described as:

TP
Precision = 217 (D
>, TP +FP
TP
Recall = DY (2)
> ;TP +FN
2TP
F, = 21 3)
>°,2TP + FN + FP
>, TP
IoU = 4
oY T S, TP+ FN + FP “

where TP represents true-positives (model correctly identi-
fies a pixel as an existing object), FP represents false-positives
(model detects a pixel as a target object but is wrong). FN
represents false negatives (the model fails to detect a pixel
labeled as a target object). The subscript I represents the
sum over all images in the data set. Our model was trained
on 4 NVIDIA Tesla K80 GPUs (48 GB GDDRS5 memory)
and tested on 1 NVIDIA Tesla K80 GPU (12 GB GDDR5
memory).
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Fig. 2. Process of automatic cell cropping. (a) Original EL image of a mono-Si solar module. (b) Binarized image with edges retained. (c¢) A schematic
illustration of horizontal image strips. The actual strips are much thinner than the schematic image here. (d) Detected peaks on a horizontal strip. The x-axis
is the width of a horizontal strip. The y-axis is the normalized grayscale value. Each peak corresponds to a vertical edge of the solar module. (e) Detected
edges of individual solar cells. (f) Another example of detected inner edges on a poly-Si solar module. (g) Examples of cropped individual solar cells.
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Fig. 3. Architecture of the UNet model. The encoder is a VGG16 model
pretrained on ImageNet. The decoder outputs a probability map with five
layers, corresponding to the five objects (i.e., “background”, “crack”, “busbar”,
“cross”, “dark™) in our task.

C. Crack feature extraction

1) Crack-isolated area prediction: The existence of cracks
in solar cells may cause isolated (electrically disconnected
or degraded) areas that impede the flow of charge carriers.
In the worst case, all charge carriers generated in isolated
areas are blocked from busbars, and those areas subsequently
become inactive parts of solar cells, making no contribu-
tions to output power. Figure 4(a) schematically shows the
example of isolated areas within a solar cell. In this figure,
the blue area indicates the worst-case inactive area because
cracks prevent charge carriers generated in this area from
flowing to busbars. The green arrows represent possible paths

connected to busbars. Herein, we assume that charge carriers
can only reach busbars through fingers that are perpendicular
to busbars. If cracks block all paths to potential busbars,
isolation can occur. However, not all cracks lead to isolation.
In the second row from bottom of the schematic solar cell,
although a diagonally oriented crack exists, it does not result in
isolation because carriers can still reach a busbar by traveling
perpendicularly along fingers. The schematic diagram shows
that charge carriers generated above or below this crack can
still flow to the nearest busbars and contribute to the output
current.

Based on cracks and busbars detected by the UNet model,
we developed an algorithm to predict the worst-case isolation
areas, as illustrated in Figure 4(b)-(f). We first skeletonized
the annotation masks (Figure 4(c)) of cracks and busbars
using scikit-image [52], as shown in Figure 4(d). Figure 4(d)
is essentially a 400 x 400 matrix, with grayscale values of
background as 0 and crack and busbar annotations other than
0. We used different grayscale values to distinguish crack
and busbar. In each column of this matrix, our algorithm
assigned the same grayscale value of busbar to background
pixels vertically connected to busbars (vertically growing the
busbars until they reached a crack). After iterating over all the
columns, only the isolated areas retained a grayscale value of
0. Figure 4(e) shows the result of the isolated area. Note that
we inverted the grayscale value for better visualization so that
the isolated area appears white. In summary, areas that cannot
be reached perpendicularly from busbars are considered as
isolated by cracks. The equation of calculating the proportion
of isolated area in the binary image Figure 4(e) is:
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Fig. 4. (a) Schematic diagram to explain inactive area prediction algorithm.
Red lines represent cracks. Green arrows represent the flow path of charge
carriers. The blue part indicates the isolation area. (b) The original image of
a poly-Si cell. (c) Annotation masks of cracks and busbars. The masks are
combined in one image for visualization. The UNet model can output masks of
each object separately. (d) Skeletonized masks of cracks and busbars combined
in one image. (e) Crack-isolated area using our algorithm. (f) Original image
in the crack-isolated area. For clarification, (a) is not the schematic diagram
of (b).

binary

cell area

isolated area

(%) = x100% = x100% (5)

cell area

where G2 is the gray-scale value of pixel i that belongs
to the binary image Figure 4(f). “Cell area” in Figure 4(f) is
400 x 400 pixels. This is a simplified computation because, in
the actual situation, the fingers around cracks between busbars
can increase series resistance and influence the electric power
of solar modules.

2) Brightness of crack isolated area: Cracks can cause a
change of break resistance in solar cells and lead to power
loss [10]. The crack resistance can also cause a decrease in
EL intensity in crack-isolated areas. Therefore, the brightness
of the crack-isolated regions in EL images correlates with
power loss, although a well-established relation is still under
investigation. Here we extracted the average gray-scale value
of the isolated area based on our crack-isolated area calculation
algorithm. The equation is:

cell
(i) _ Zieisolated area Gi
isolated — .
isolated area

(6)

where G¢°! is the gray-scale value of pixel 4 that belongs to
the isolated area in the original image, as shown in Figure 4(f).
This method acts as an alternative method to quantify the
severity of the “dark” area in EL images, especially when
the area is partially disconnected.

3) Crack length: The skeletonized crack mask is a binary
(0-1) image with the gray-scale value of cracks of 1 and the
background of 0, as shown in Figure 4(d). Since the width of
the skeletonized crack is 1, the overall crack length per cell

is equal to the number of pixels of the skeletonized crack,
which is equal to the sum of pixel values in the binary figure.
A similar method was also used in previous research [43]. The
equation can be described as:

crack length = Z Ghinary (7)

iecell

where Gi-’i”“ry is the gray-scale value of pixel 4 that belongs
to the binary image of skeletonized crack masks.

IV. RESULTS AND DISCUSSION
A. Cell cropping tool

Figure 2(g) illustrates the results of cell cropping. We first
applied the cropping tool to 576 images of solar modules that
were randomly sampled, and 445 of them were successfully
cropped into 29,664 cell images. Figure 5 demonstrates some
poorly processed modules. Among failed images, ~50% can
be considered as poorly shot based on manual inspection. The
solar modules in those images are truncated, severely tilted
or poorly exposed. Figure 5(a) is a truncated module that
cannot be used for analysis. The module in Figure 5(b) is
severely tilted. We estimate that only 12 out of 576 (~2%)
images are severely tilted so the perspective transform of
severely tilted modules was not included in the beginning
stage of research. However, related perspective transform
algorithms [28] have been added into the latest version of
“pv-vision”. In Figure 5(c), although the photo is clear, the
edges and corners of the module are dark and blend into the
background. The algorithm failed to determine the boundary
between the module and the background. Figure 5(d) was
not transformed, possibly because the contrast between bright
cells and dark inner edges is low, so the algorithm failed to
detect the inner edges. Another possible reason is that its size
(3550 x 1810 pixels) is smaller than others. After transforma-
tion, some information may be lost. We consider Figure 5(a)
a data acquisition error, while errors in Figure 5(b)(c)(d) can
be fixed in the updated version of the open-source tool.

B. Model performance

We trained separate CNN models on the original training
set and oversampled training set. The performance of each
model on the validation set is illustrated in Figure 6. Recall
is the fraction of actual pixels of objects that were correctly
labeled by the model, whereas precision is the fraction of
predicted pixels of objects that are identified correctly. F1
score and IoU scores balance both precision and recall. ToU
score penalizes bad segmentation (FP and FN) more than F1
score. In Figure 6, both macro F1 and IoU scores show that the
oversampling method can improve the model’s performance.
Therefore, the model we finally selected is the model trained
on the oversampled training set. Its average F1 score is 0.882
and average IoU score is 0.795, as listed in Table II.

We also tested the performance of our model on the two
testing sets (i.e., original testing set and testing set with
cracked cells only) to investigate the generalization of the
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Fig. 5. Examples of challenges in processing module images. (a) is a truncated
module. (b) is a severely tilted image. (c) is a module with dark edges and
corners. (d) was not cropped, probably due to low image contrast or smaller
image size.
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Fig. 6. Performance of models on the validation set. The scores (a) recall, (b)
precision, (c) F1, (d) IoU are computed based on each category. The “macro”
represents the average score of the four target categories. The two models
were trained on the original and oversampled training sets respectively. Note
that some points overlap with each other.
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TABLE II
MACRO AVERAGE METRICS OF THE OPTIMAL MODEL ON THE VALIDATION
SET AND TWO TESTING SETS.

Data set Avg Precision | Avg Recall | Avg FI | Avg IoU
Val 0.886 0.879 0.882 0.795
Test 0.883 0.867 0.875 0.782

Test crack 0.884 0.852 0.867 0.770
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Fig. 8. Examples of segmented objects from UNet model. For each subfigure,
the left is the ground truth, and the right is the prediction. (a)(b) are poly-Si
cells, and (c)(d) are mono-Si cells. The four classes are predicted in different
colors (purple: “crack™; cyan: “cross”; brown: “busbar”; blue: “dark™). The
“cross” type defect is circled for better visualization.

model. The performance is shown in Table II and Figure 7.
Table 1II illustrates that our model retains good performance
when generalizing to new data, i.e., the F1 (0.875) and IoU
(0.782) scores on the original testing set are not significantly
lowered compared to scores on the validation set. Also,
Figure 7 shows that when dealing with cracked cells only, our
model still obtained similar F1 and IoU scores to the original
testing set.

Figure 8 illustrates some example predictions from the final
model on the testing set. Figure 8(a)(b) are poly-Si cells and
(c)(d) are mono-Si cells. The left image of each sub-figure
shows the manually annotated objects and the right image
shows the prediction from the UNet model. It can be seen
that the predicted annotations show high consistency with the
manual ones. Figure 8(b) illustrates that the model can still
identify cracks correctly when there are crack-like textures on
poly-Si cells. Also, the model can precisely detect cracks of
different orientations, especially in Figure 8(c) where cracks
have horizontal, obliquely upward and obliquely downward
orientations. Figure 8(d) shows that the model can detect the
“Y” shaped cracks.

Some shortcomings of the model are shown in Figure 9.
The model does not identify small cracks around the “cross”
objects very accurately, as shown in Figure 9(a). The model
may also miss some cracks for severely shattered cells, like
Figure 9(b). Figure 9(c) shows that the “dark” area is not
well identified, although cracks are identified correctly. The
main reason is that it is hard to define precisely whether
areas with medium brightness should be defined as “dark”
areas. For example, the crack-enveloped area in Figure 9(c) is
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Fig. 9. Examples of shortcomings of the model. For each subfigure, the
left is the ground truth, and the right is the prediction. The four classes are
predicted in different colors (purple: “crack”; cyan: “cross”; brown: “busbar”;
blue: “dark”). The “cross” type defect is circled for better visualization.
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Fig. 10. Performance of the model on mono-Si and poly-Si cells. The F1
score was computed based on the validation set.

partially disconnected and not totally dark, so it is ambiguous
even for annotators to determine the “dark” area. Another
example is shown in Figure 9(d), where the model counts
some dark margins as “dark” areas which are inconsistent
with annotation. Also, the brightness of the disconnected
area is influenced by the injected current. IEC TS 60904-
13 [53] shows that a partially disconnected area caused by
mode B cracks exhibits high contrast with I;. applied but
lower contrast with 10%I. applied. Therefore, the lack of
a rigorous definition in such analyses of what constitutes a
disconnected area led to inconsistent manual annotations and
further justifies the use of the feature extraction of isolated area
brightness as an alternate method. Another shortcoming we
noticed is that the model may perform worse on poly-Si cells
than mono-Si cells, especially for “cross” object as shown in
Figure 10. The possible reason is that poly-Si cells show more
complex surface textures (e.g., dislocation clusters). This could
be improved by using more poly-Si cells during the training
process or modifying the loss function to add more penalties
when the model wrongly processes the poly-Si cells.

C. Crack-isolated area prediction

Both crack length and brightness of isolated area extraction
algorithms depend on the process of the crack-isolated area

0 10 20 30 40 0 10 20 30 40 50
Predicted (%) Inactive area proportion(%)

Fig. 11. (a)(b) Results from inactive area prediction tool. Figures from
left to right are the original image, the isolated area (white area) generated
from manual annotations and the isolated area from UNet-predicted crack
annotations. (c) Comparison of isolated area proportion from manual and
UNet-predicted crack annotations across all cells in the “test crack™ data set.
The red line is a reference line where y = x. (d) Distribution of predicted
inactive area proportion in the “test crack™ set.

prediction algorithm, so we tested the performance of the
isolated area prediction algorithm. An example of the predicted
crack-isolated area is shown in Figure 11(a)(b). We applied
this algorithm to the “test crack” set where all cells have
cracks. By comparing areas generated from true and predicted
crack annotations across the entire “test crack” set, the F1
score is 0.905, and the IoU score is 0.827. Figure 11(c)
shows a high consistency between the inactive area proportion
calculated from manual and UNet-predicted crack annotations,
with a Pearson correlation coefficient [54] of 0.987. The
predicted inactive area proportion in the testing set has a
distribution shown in Figure 11(d) where 75% of cells have
inactive areas lower than 6.86%, and the average proportion is
4.54%. 31.4% of those cracked cells have zero inactive areas,
which means they have potentially insignificant cracks such
as the one in the middle of Figure 4(b). Thus, an important
result of this analysis is that, at least in the context of our data
set, the presence of cracks does not imply a large power loss
area. Further analysis and comparison to measured power data
may help to separate more problematic cracks from those that
are less likely to induce power loss.

V. CONCLUSION AND OUTLOOK

This paper introduced methods for automatic crack seg-
mentation and crack feature extraction tools to process EL
images of solar modules. We trained a UNet model to per-
form semantic segmentation of solar cells to segment “crack”
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lines, “cross” cracks, “busbars”, and “dark’ areas. The model
exhibits good performance, with a macro-average F1 score of
0.875 and an IoU score of 0.782 on the testing set. We further
tested the model’s performance specifically on cracked cells
and obtained an F1 score of 0.867 and an IoU score of 0.770.

We developed algorithms to extract crack features based
on the annotation masks predicted from our model, including
crack-isolated area, brightness of the isolated area and crack
length. We evaluated our algorithm for predicting the worst-
case crack-isolated area on the testing set and obtained an F1
score of 0.905 and an IoU score of 0.827. With this algorithm,
we analyzed the inactive area proportion of the “test crack”
data set and found that 31.4% of cells have cracks with no
isolated areas, suggesting that some cracks may not result in
power loss, at least initially.

The open-source tools and model weights are published
on Github [44]. Our data is published on the DuraMat Data
Hub [45]. Future work could further refine the model by
training with more EL images with other types of cells (e.g.,
half-cut cells) by transfer learning and develop circuit models
translating the worst-case isolated area into a maximum power
loss value. Also, additional EL images with 10%1,. applied
might be needed for better crack identification since previous
research [10] shows that some cracks can be hidden in images
with I,. applied but appear more obvious in 10%I,. images.
With the crack segmentation model and crack feature extrac-
tion algorithms, we can correlate those features with current-
voltage (IV) parameters to quantify how cracks influence the
degradation of PV modules. One could further apply the tools
to time-series images to investigate how crack features evolve
over time, e.g., how cracks may progressively grow larger and
ultimately lead to the formation of inactive areas. We also
plan to apply the tools to large-scale field data to quantify the
possible degradation of PV modules caused by cracks.
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