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Abstract—The effect of cracks in solar cells on the long-term 
degradation of photovoltaic (PV) modules remains to be deter-
mined. To investigate this effect in future studies, it is necessary 
to quantitatively describe the crack features (e.g. length) and 
correlate them with module power loss. Electroluminescence (EL) 
imaging is a common technique for identifying cracks. However, 
it is currently challenging and time-consuming to identify cracks 
in a large number of EL images and quantify complex crack 
features by human inspection. This article introduces a fast 
semantic segmentation method (∼0.18 s/cell) to automatically 
segment cracks from EL images and algorithms to extract crack 
features. We fne-tuned a UNet neural network model using pre-
trained VGG16 as the encoder and obtained an average F1 
score of 0.875 and an intersection over union (IoU) score of 
0.782 on the testing set. With cracks and busbars segmented, we 
developed algorithms for extracting crack features, including the 
crack-isolated area, the brightness inside the isolated area, and 
the crack length. We also developed an automatic preprocessing 
tool for cropping individual cell images from EL images of PV 
modules (∼0.72 s/module). Our codes are published as open-
source software, and our annotated data set composed of various 
types of cells is published as a benchmark for crack segmentation 
in EL images. 

Index Terms—PV module, crack feature extraction, semantic 
segmentation, deep learning 

I. INTRODUCTION 

Global photovoltaic (PV) installation, with crystalline sil-
icon as the most commonly used material for solar cells, 
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has experienced a rapid increase to meet the high demand 
for clean energy. Solar modules installed in utility-scale PV 
systems are expected to have a long operational lifetime to 
be competitive with conventional energy sources [1]. How-
ever, solar modules in the feld are subject to multiple en-
vironmental stresses like temperature variation, mechanical 
loading, etc. [2] These environmental stresses lead to various 
degradation modes [2], [3] in solar modules and limit their 
durability. Cell fracture is one of the dominant degradation 
modes in the early stage of PV systems [4] and may cause 
a delayed worsening of annual degradation rate [3]. Brittle 
silicon cells in glass/backsheet modules will fracture under 
tensile stress caused by front loading (e.g., snow) in the feld. 
For cracked modules, oscillatory feld wind causes a long-term 
cyclic loading of solar modules. The existence of cracks may 
cause temporary or permanent disconnected areas in a cell, 
but some research shows that cracked modules do not have 
severe power loss [5]. Also, the cyclic loading in cracked 
modules may cause a “recovery” behavior in crack-isolated 
areas [6], [7]. Currently, the effect of cell cracks on module 
electric power and the evolution of cracks in long-term cyclic 
loading is under active investigation [2], [8], [9]. Previous 
work [10], [11] reports that the infuence of cracks may depend 
on various features, including the number, position of cracks, 
and electrical resistance introduced by cracks. It is essential to 
not only detect cracked cells but also quantitatively describe 
crack features which can be used for future research on crack 
effects. 

Micro-cracks are almost invisible to bare human eyes. 
Electroluminescence (EL) imaging is a fast, non-destructive 
method for detecting cracks in solar modules [12], [13], but 
manual inspection and extraction of complex crack features 
from a large number of EL images is not practical. As 
computer vision technology becomes increasingly fast and 
accurate, such tasks can be shifted to computers. Previous 
research [14], [15] has reported various computer vision 
methods to segment cracks from solar cell images. However, 
those methods may be susceptible to variations in types of 
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solar modules and may not perform well on small cracks from 
polycrystalline silicon cells because crystallographic defects 
appear similar to crack lines [16]. Recently, deep learning 
models have been widely used on computer vision tasks, e.g., 
VGG [17], ResNet [18], UNet [19], DeepLab [20], etc. The ap-
plication of deep learning models to EL image analysis covers 
cell classifcation [21]–[24], defect object detection [25]–[28] 
and semantic segmentation of defects [29]–[31]. 

For cell classifcation work, solar cell images are classifed 
into different categories based on defect types. Deitsch et 
al. [21] trained a convolutional neural network (CNN) model 
with an accuracy of 88.42% to classify cells into “functional” 
or “defective”. The data set, consisting of 2,624 cell images, 
was published as a benchmark [32], [33]. However, the models 
are limited to binary classifcation without determining the 
specifc defect categories. Karimi et al. [23] trained three 
models, including random forest (RF) [34], SVM, and CNN 
to classify cells into “good”, “cracked” and “corroded”. The 
CNN model outperformed other models with a 99.71% accu-
racy on their own testing set. 

For object detection tasks, the type and position of defective 
cells are predicted. Zhao et al. [26] developed an object 
detection model to identify 19 types of defects in half-cell solar 
modules, achieving 70.2% mean Average Precision (mAP). 
The model can localize target defects and draw a bounding box 
around them. Meng et al. [27] developed a YOLO-PV model 
based on YOLO model [35] to identify defects in half-cell PV 
modules. The authors’ model achieved an average precision of 
94.55%, and the inference speed exceeded 35 fps. In one of 
our previous works [28], we also designed a pipeline with a 
YOLO model to automatically inspect millions of solar cells 
in the feld and reported the effects of bush fre damage on 
the solar farm. 

Both the cell classifcation and object detection methods 
mentioned above can automatically identify cracked cells. 
However, they cannot provide more detailed information on 
crack features (e.g., size, shape, etc.), which are essential in 
correlating cracks with PV performance. Therefore, semantic 
segmentation is needed to identify defects at the pixel level 
and provide annotation masks for feature extraction. 

Balzategui et al. [36] utilized a sliding window method to 
obtain a segmented defective region (micro-crack region) in 
the cell image. The authors trained the model on 542 cell 
images and achieved a recall of 92% and a precision of 85% 
at the image level. Using the same data set, Balzategui et 
al. [37] trained a UNet model to segment defects. This end-
to-end method only requires the input of annotated images. 
The authors compared the performance of a UNet model 
without modifcation, a UNet model with some hidden layers 
dropped, and a pre-trained UNet model. The UNet model 
without modifcation achieved a 72.2% true positive rate and 
92.8 % positive predicted value. However, such high scores 
were only calculated on severe cracks (over 800 pixels). Also, 
additional metrics like F1 score and intersection over union 
(IoU) are necessary to evaluate semantic segmentation models. 

Mayr et al. [29] employed a modifed ResNet50 as the 

backbone to drive segmentation from activation maps and Lp 

normalization to aggregate the activation maps. The model 
obtained an F1 score of 0.83 to segment cracks from mono-
and polycrystalline solar cells. 

Rahman et al. [38] incorporated multi-attention networks 
into the UNet model (MAU-net) to extract effective multi-
scale features for defects inspection. This modifed model was 
trained on 620 polycrystalline cell images and obtained an 
IoU of 0.699 and an F1 score of 0.799 to segment cracks and 
fnger interruption. However, this model was only trained on 
polycrystalline cells and might lack generalization on other 
types of solar cells. 

Tian et al. [39] designed a pipeline to select defective 
cells with VGG16 and then segment the defects with the 
UNet++ model. However, the segmentation targets in their 
work were not clearly distinguished. Pratt et al. [40] used 
the UNet model with VGG16 as the encoder to perform an 
end-to-end segmentation of cracks. They also correlated the 
model’s output (e.g. predicted masks) with EL images taken 
during accelerated aging tests. Their model has a similar 
architecture to the model introduced in this paper. However, 
as we will show, our work also introduces algorithms that can 
post-process such data to extract crack features based on the 
model’s output. 

Fioresi et al. [31] trained a Deeplabv3 model with a 
ResNet50 backbone on 17,064 EL images, including 256 sim-
ulated images of PV cells. The model achieved an IoU score of 
57.3% to localize non-defective areas, cracks, contact defects, 
corrosion, and interconnect defects. The authors published 
their data set, but at the time of this writing, the link provided 
in the paper leads to an empty data repository. 

Based on the reviewed publications related to defect seg-
mentation of solar cells, we could see that the UNet model 
and its variants were commonly used because the “skip-
connection” architecture in the UNet model might help with 
the “gradient vanishing” problem and improve the model 
performance in semantic segmentation [41]. However, those 
publications focus on segmenting defects without providing 
further algorithms for post-processing model’s outputs. Some 
previous research without using deep learning models reported 
algorithms for crack feature extraction. Bedrich [42] designed 
quantitative descriptors of crack length and crack orientation. 
Whitaker et al. [43] extracted the length and convex envelope 
area of cracks and correlated the crack features with the 
current-voltage (IV) parameters of mini-modules. However, as 
mentioned above, non-deep learning methods may not perform 
well on polycrystalline silicon cells, and more crack features 
like crack-isolated areas can be extracted. 

Most of the work mentioned above presented promising 
potential in the defect segmentation of solar cells. However, 
further exploration is still needed in several areas: (i) most 
work only focuses on segmenting objects (e.g. crack) from 
EL images. Feature extraction based on the segmented defects 
is needed; (ii) most data sets are not published, so the 
comparisons of various models do not use the same testing 
set. A benchmark is needed for related research in the future; 
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(iii) most training sets contain only one or two specifc types of 
solar cells and lack diversity. More comprehensive benchmarks 
are still needed. 

This paper demonstrates a variant of the UNet model using 
pre-trained VGG16 as the encoder and algorithms designed to 
extract crack features from model-predicted masks. We frst 
introduced our automatic cell cropping tool, which cropped 
out 29,664 individual cell images from module images. The 
average processing rate is ∼0.72 s/module. The cropped cell 
images were used to train our model to segment objects, in-
cluding busbars, crack lines, cross cracks, and dark areas (i.e., 
degradation area) separately. We reported the performance of 
our model on the testing set with an average F1 score of 0.875 
and an IoU score of 0.782. The average segmentation rate is 
∼0.18 s/cell. With the segmented cracks and busbars from the 
model, we designed algorithms for predicting the worst-case 
inactive area on solar cells caused by cracks. We also introduce 
our algorithms for extracting crack length and brightness in 
the crack-isolated area indicating the disconnection status. 
The model and algorithms we designed have been utilized to 
quantitatively correlate crack features with module power loss 
in accelerated testing and feld data sets [9], and we expect 
they may serve as a basis for future analysis in the feld. The 
tools and models presented in this paper are available as part 
of the “pv-vision” open-source software [44]. Our cell images 
and annotations are also published as a benchmark [45] to 
compare segmentation models. We also uploaded our module 
images. 

This paper primarily focuses on the segmentation of cracks 
and the extraction of crack features. The main contributions 
of this work are: 

(1) We demonstrated a preprocessing tool to crop out 
cell images from module images that is robust to complex 
backgrounds (e.g. modules mounted on racks). 

(2) We published our images and annotations as a bench-
mark to compare segmentation models for analyzing EL 
images in future research. The data set contains various types 
of solar modules (mono and polycrystalline Si, different busbar 
confgurations, and different cell number confgurations). 

(3) We developed a semantic segmentation model to sep-
arately segment busbars, cracks, etc. The model’s perfor-
mance is competitive with previous work, although quantita-
tive comparisons are diffcult due to the lack of standardized 
benchmarks and a lack of available models with published 
hyperparameter information. 

(4) We designed algorithms to extract crack features includ-
ing the crack-isolated area, brightness in the crack-isolated 
area and crack length based on object masks predicted by 
our model. Those features can be used to describe cracks 
quantitatively and further correlate cracks with the degradation 
of PV modules. 

(5) We published our model and algorithms as open-source 
software to analyze EL images of solar modules. The tools 
have been utilized to analyze crack growth in accelerated 
testing [9]. 

Fig. 1. Example of annotation targets. (a) An original image of mono-Si cells. 
(b) The annotated image. The four classes are annotated in different colors 
(purple: “crack”; cyan: “cross”; brown: “busbar”; blue: “dark”). 

The remainder of this paper is organized as follows: Sec-
tion II presents the description of our data set. Section III 
provides details of the image preprocessing tool, model train-
ing and feature extraction algorithms. Section IV shows the 
performance of our model and tools. The conclusions and 
outlook are reported in Section V. 

II. DATA SET 

Our data set contains 1,837 individual cell images for 
training and evaluation. The individual cell image is shown in 
Figure 1(a). To prepare the data set, we cropped out 445 EL 
images of solar modules into 29,664 cell images and randomly 
sampled 1,837 of them. The cropping method is demonstrated 
in Section III. Those module images were collected from 
various data providers, which increases the diversity of data. 
Among the 1,837 cell images, 705 of them are monocrystalline 
silicon (mono-Si) solar cells and the remaining 1,132 are 
polycrystalline silicon (poly-Si) cells; 54 of them have 2 
busbars, 441 have 3 busbars, and the remaining 1342 have 4 
busbars; 1,078 of them were cropped from modules of 12 × 6 
cells, with the remaining 759 from 10 × 6 modules. 

From the 1,837 cell images, we randomly sampled 1,272 
images for the training set, 206 for the validation set, and 359 
for the testing set. The ratio of the train-val-test set is 7:1:2. 
The objects that we want to segment from cell images are 
“busbar” lines, “crack” lines, “cross” dots, and “dark” areas, as 
shown in Figure 1. “Cross” dot is the dark dot of a cross crack 
that may be caused by point loads on cells. “Dark” area refers 
to the degradation areas on cells that appear darker due to lack 
of electroluminescence. Although our deep learning model 
is trained to predict “dark” area, we designed an alternative 
post-processing method to extract the brightness of the crack-
isolated area to better process the partially disconnected area. 
This post-processing algorithm is introduced in Section III. 
The four objects were annotated on pixel scale, as shown in 
Figure 1, and the distribution of each category in the data set 
is shown in Table I. The “Total images” column indicates the 
number of cell images in each set. The following four columns 
(“Crack” to “Dark”) show the number of images that contain 
the specifc object to segment. Annotations were performed on 
Supervisely [46], an online annotation software, by a group 
of 8 experienced annotators. Two annotators verifed all the 
annotation results to ensure the quality of annotations. 
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TABLE I 
DISTRIBUTION OF CELL IMAGES BY VARIOUS CATEGORIES IN DATA SETS. 

Data set Total images Crack Busbar Cross Dark 
Train 1272 493 1272 323 270 

Train oversample 1765 986 1765 598 538 
Val 206 79 206 57 40 
Test 359 120 359 97 68 

Test crack 322 290 322 225 171 

The training set is imbalanced, where the “crack” class 
accounts for 38.8% of the training set. Therefore, we oversam-
pled the images with the “crack” class so that the “crack” class 
accounts for 55.9%, which is comparable to uncracked cells. 
The performance was compared between the model trained on 
the original training set and the oversampled data set. Only 133 
(37%) images in the testing set have “crack” or “cross” crack 
objects. To further evaluate the performance of our model on 
cracks, we built another testing set named “test crack” with 
322 images that only have “crack” lines or “cross” cracks. 
Those images are sampled from the 29,664 cell images and 
do not overlap with the training and validation sets. 

III. METHODS 

A. Automatic cropping of cells from module images 

An example of the module image to be processed is shown 
in Figure 2. The lens distortion of those images has been 
corrected by data providers prior to being processed by us. 
The inner edges of each solar cell in the solar module are 
automatically detected to split a module image into individual 
cell images. Since images from different data providers have 
various sizes (e.g. 4096 × 2500 pixels, 4240 × 2832 pixels, 
etc.), we frst transformed the original module image into a 
uniform size of 4000 × 2500 pixels. We then binarized the 
image using the adaptive thresholding method in OpenCV [47] 
to retain edges, as shown in Figure 2(b). After that, we split 
the binary image into 100 horizontal strips, each with a size of 
4000 × 25 pixels, as schematically illustrated in Figure 2(c). 
For each strip, we summed up the grayscale values in the 
vertical direction to obtain a cell edge distribution as shown 
in Figure 2(d). The grayscale intensity was normalized and 
ranged from 0 (approaching black) to 1 (approaching white). 
The edges of solar cells are white in Figure 2(c) and appear as 
peaks in Figure 2(d). Afterward, we determined the positions 
of cell edges in each strip by detecting the peaks using 
“signal.fnd peaks” tool from Scipy [48] and ft lines to these 
peak positions that represent each edge. We performed an 
analogous procedure to ft edges in vertical strips. The detected 
edges are demonstrated in Figure 2(e). Figure 2(f) is another 
example of detected inner edges in a poly-Si solar module. 
This result demonstrates that the cropping algorithm remains 
robust when racks are in the background. With inner edges 
detected, we crop out each cell by using intersections of edges 
as corners of cells. The size is selected to maintain the cell’s 
original size in module images, which in our case is 400×400 
pixels. The cropped cells are shown in Figure 2(g). 

The script was executed with Python3 [49] on a MacBook 
Pro (2.8 GHz Quad-Core Intel Core i7 processor, 16 GB 2133 
MHz LPDDR3 memory). 

B. Model training and evaluation 

The training data was augmented by horizontal fip, vertical 
fip, and random crop. Before performing the random crop, 
the images were duplicated three times. Then the images 
were cropped at random to 70% - 90% of width and height. 
The augmented training set contains 11,448 images, and the 
augmented, oversampled training set contains 15,885 images. 

We fne-tuned a UNet model with a pretrained VGG16 
model [17] as the encoder (pretrained on ImageNet [50]). 
The model was deployed and trained with Supervisely for 
annotation and training convenience. The architecture of our 
model is shown in Figure 3. The encoder performs convolution 
and max-pooling operations to transform the input images into 
deep feature maps. The decoder performs upsampling on the 
feature map and outputs the probability map with fve layers, 
corresponding to the fve objects (i.e., “background”, “crack”, 
“busbar”, “cross”, “dark”) in our task. The probability map 
is used to compute loss during the training process or make 
predictions during the inference process. We used negative log 
likelihood loss (NLLLoss) [51] as the loss function. The size 
of the input layer is 256×256 pixels, which is the default size 
of the pretrained model. A larger size is possible, but it exceeds 
the limitation of our GPU device. The learning rate was set 
to 0.001, and the training batch size was 12. The model was 
trained for 10 epochs, and the epoch with the lowest loss on 
the validation set yielded the fnal model. We used precision, 
recall, F1 score, and IoU to report the performance of our 
model. Each score is described as: P 

TPP IPrecision = (1) 
I TP + FP 

P 
IRecall = P 

TP 
(2) 

I TP + FN 

P 
IF1 = P 
2TP 

(3) 
I 2TP + FN + FP 

P 
IIoU = P 

TP 
(4) 

I TP + FN + FP 

where TP represents true-positives (model correctly identi-
fes a pixel as an existing object), FP represents false-positives 
(model detects a pixel as a target object but is wrong). FN 
represents false negatives (the model fails to detect a pixel 
labeled as a target object). The subscript I represents the 
sum over all images in the data set. Our model was trained 
on 4 NVIDIA Tesla K80 GPUs (48 GB GDDR5 memory) 
and tested on 1 NVIDIA Tesla K80 GPU (12 GB GDDR5 
memory). 
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Fig. 2. Process of automatic cell cropping. (a) Original EL image of a mono-Si solar module. (b) Binarized image with edges retained. (c) A schematic 
illustration of horizontal image strips. The actual strips are much thinner than the schematic image here. (d) Detected peaks on a horizontal strip. The x-axis 
is the width of a horizontal strip. The y-axis is the normalized grayscale value. Each peak corresponds to a vertical edge of the solar module. (e) Detected 
edges of individual solar cells. (f) Another example of detected inner edges on a poly-Si solar module. (g) Examples of cropped individual solar cells. 

Fig. 3. Architecture of the UNet model. The encoder is a VGG16 model 
pretrained on ImageNet. The decoder outputs a probability map with fve 
layers, corresponding to the fve objects (i.e., “background”, “crack”, “busbar”, 
“cross”, “dark”) in our task. 

C. Crack feature extraction 

1) Crack-isolated area prediction: The existence of cracks 
in solar cells may cause isolated (electrically disconnected 
or degraded) areas that impede the fow of charge carriers. 
In the worst case, all charge carriers generated in isolated 
areas are blocked from busbars, and those areas subsequently 
become inactive parts of solar cells, making no contribu-
tions to output power. Figure 4(a) schematically shows the 
example of isolated areas within a solar cell. In this fgure, 
the blue area indicates the worst-case inactive area because 
cracks prevent charge carriers generated in this area from 
fowing to busbars. The green arrows represent possible paths 

connected to busbars. Herein, we assume that charge carriers 
can only reach busbars through fngers that are perpendicular 
to busbars. If cracks block all paths to potential busbars, 
isolation can occur. However, not all cracks lead to isolation. 
In the second row from bottom of the schematic solar cell, 
although a diagonally oriented crack exists, it does not result in 
isolation because carriers can still reach a busbar by traveling 
perpendicularly along fngers. The schematic diagram shows 
that charge carriers generated above or below this crack can 
still fow to the nearest busbars and contribute to the output 
current. 

Based on cracks and busbars detected by the UNet model, 
we developed an algorithm to predict the worst-case isolation 
areas, as illustrated in Figure 4(b)-(f). We frst skeletonized 
the annotation masks (Figure 4(c)) of cracks and busbars 
using scikit-image [52], as shown in Figure 4(d). Figure 4(d) 
is essentially a 400 × 400 matrix, with grayscale values of 
background as 0 and crack and busbar annotations other than 
0. We used different grayscale values to distinguish crack 
and busbar. In each column of this matrix, our algorithm 
assigned the same grayscale value of busbar to background 
pixels vertically connected to busbars (vertically growing the 
busbars until they reached a crack). After iterating over all the 
columns, only the isolated areas retained a grayscale value of 
0. Figure 4(e) shows the result of the isolated area. Note that 
we inverted the grayscale value for better visualization so that 
the isolated area appears white. In summary, areas that cannot 
be reached perpendicularly from busbars are considered as 
isolated by cracks. The equation of calculating the proportion 
of isolated area in the binary image Figure 4(e) is: 
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Fig. 4. (a) Schematic diagram to explain inactive area prediction algorithm. 
Red lines represent cracks. Green arrows represent the fow path of charge 
carriers. The blue part indicates the isolation area. (b) The original image of 
a poly-Si cell. (c) Annotation masks of cracks and busbars. The masks are 
combined in one image for visualization. The UNet model can output masks of 
each object separately. (d) Skeletonized masks of cracks and busbars combined 
in one image. (e) Crack-isolated area using our algorithm. (f) Original image 
in the crack-isolated area. For clarifcation, (a) is not the schematic diagram 
of (b). 

P binary isolated area i∈cell Gi p(%) = ×100% = ×100% (5)
cell area cell area 

binary where G is the gray-scale value of pixel i that belongs i 
to the binary image Figure 4(f). “Cell area” in Figure 4(f) is 
400 × 400 pixels. This is a simplifed computation because, in 
the actual situation, the fngers around cracks between busbars 
can increase series resistance and infuence the electric power 
of solar modules. 

2) Brightness of crack isolated area: Cracks can cause a 
change of break resistance in solar cells and lead to power 
loss [10]. The crack resistance can also cause a decrease in 
EL intensity in crack-isolated areas. Therefore, the brightness 
of the crack-isolated regions in EL images correlates with 
power loss, although a well-established relation is still under 
investigation. Here we extracted the average gray-scale value 
of the isolated area based on our crack-isolated area calculation 
algorithm. The equation is: P 

Gcell 
i∈isolated area iΦ̄isolated = (6)
isolated area 

where Gcell is the gray-scale value of pixel i that belongs to i 
the isolated area in the original image, as shown in Figure 4(f). 
This method acts as an alternative method to quantify the 
severity of the “dark” area in EL images, especially when 
the area is partially disconnected. 

3) Crack length: The skeletonized crack mask is a binary 
(0-1) image with the gray-scale value of cracks of 1 and the 
background of 0, as shown in Figure 4(d). Since the width of 
the skeletonized crack is 1, the overall crack length per cell 

is equal to the number of pixels of the skeletonized crack, 
which is equal to the sum of pixel values in the binary fgure. 
A similar method was also used in previous research [43]. The 
equation can be described as: X 

binary crack length = G (7)i 
i∈cell 

binary where G is the gray-scale value of pixel i that belongs i 
to the binary image of skeletonized crack masks. 

IV. RESULTS AND DISCUSSION 

A. Cell cropping tool 

Figure 2(g) illustrates the results of cell cropping. We frst 
applied the cropping tool to 576 images of solar modules that 
were randomly sampled, and 445 of them were successfully 
cropped into 29,664 cell images. Figure 5 demonstrates some 
poorly processed modules. Among failed images, ∼50% can 
be considered as poorly shot based on manual inspection. The 
solar modules in those images are truncated, severely tilted 
or poorly exposed. Figure 5(a) is a truncated module that 
cannot be used for analysis. The module in Figure 5(b) is 
severely tilted. We estimate that only 12 out of 576 (∼2%) 
images are severely tilted so the perspective transform of 
severely tilted modules was not included in the beginning 
stage of research. However, related perspective transform 
algorithms [28] have been added into the latest version of 
“pv-vision”. In Figure 5(c), although the photo is clear, the 
edges and corners of the module are dark and blend into the 
background. The algorithm failed to determine the boundary 
between the module and the background. Figure 5(d) was 
not transformed, possibly because the contrast between bright 
cells and dark inner edges is low, so the algorithm failed to 
detect the inner edges. Another possible reason is that its size 
(3550 × 1810 pixels) is smaller than others. After transforma-
tion, some information may be lost. We consider Figure 5(a) 
a data acquisition error, while errors in Figure 5(b)(c)(d) can 
be fxed in the updated version of the open-source tool. 

B. Model performance 

We trained separate CNN models on the original training 
set and oversampled training set. The performance of each 
model on the validation set is illustrated in Figure 6. Recall 
is the fraction of actual pixels of objects that were correctly 
labeled by the model, whereas precision is the fraction of 
predicted pixels of objects that are identifed correctly. F1 
score and IoU scores balance both precision and recall. IoU 
score penalizes bad segmentation (FP and FN) more than F1 
score. In Figure 6, both macro F1 and IoU scores show that the 
oversampling method can improve the model’s performance. 
Therefore, the model we fnally selected is the model trained 
on the oversampled training set. Its average F1 score is 0.882 
and average IoU score is 0.795, as listed in Table II. 

We also tested the performance of our model on the two 
testing sets (i.e., original testing set and testing set with 
cracked cells only) to investigate the generalization of the 
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Fig. 5. Examples of challenges in processing module images. (a) is a truncated 
module. (b) is a severely tilted image. (c) is a module with dark edges and 
corners. (d) was not cropped, probably due to low image contrast or smaller 
image size. 

Fig. 6. Performance of models on the validation set. The scores (a) recall, (b) 
precision, (c) F1, (d) IoU are computed based on each category. The “macro” 
represents the average score of the four target categories. The two models 
were trained on the original and oversampled training sets respectively. Note 
that some points overlap with each other. 

Fig. 7. Performance of the model on the testing set. This model was trained 
on the oversampled training set. “Test” means the original testing set with 
the same distribution of categories as the population. “Test crack” means the 
testing set that merely contains cracked cells. Note that some points overlap 
with each other. 

TABLE II 
MACRO AVERAGE METRICS OF THE OPTIMAL MODEL ON THE VALIDATION 

SET AND TWO TESTING SETS. 

Data set Avg Precision Avg Recall Avg F1 Avg IoU 
Val 0.886 0.879 0.882 0.795 
Test 0.883 0.867 0.875 0.782 

Test crack 0.884 0.852 0.867 0.770 

Fig. 8. Examples of segmented objects from UNet model. For each subfgure, 
the left is the ground truth, and the right is the prediction. (a)(b) are poly-Si 
cells, and (c)(d) are mono-Si cells. The four classes are predicted in different 
colors (purple: “crack”; cyan: “cross”; brown: “busbar”; blue: “dark”). The 
“cross” type defect is circled for better visualization. 

model. The performance is shown in Table II and Figure 7. 
Table II illustrates that our model retains good performance 
when generalizing to new data, i.e., the F1 (0.875) and IoU 
(0.782) scores on the original testing set are not signifcantly 
lowered compared to scores on the validation set. Also, 
Figure 7 shows that when dealing with cracked cells only, our 
model still obtained similar F1 and IoU scores to the original 
testing set. 

Figure 8 illustrates some example predictions from the fnal 
model on the testing set. Figure 8(a)(b) are poly-Si cells and 
(c)(d) are mono-Si cells. The left image of each sub-fgure 
shows the manually annotated objects and the right image 
shows the prediction from the UNet model. It can be seen 
that the predicted annotations show high consistency with the 
manual ones. Figure 8(b) illustrates that the model can still 
identify cracks correctly when there are crack-like textures on 
poly-Si cells. Also, the model can precisely detect cracks of 
different orientations, especially in Figure 8(c) where cracks 
have horizontal, obliquely upward and obliquely downward 
orientations. Figure 8(d) shows that the model can detect the 
“Y” shaped cracks. 

Some shortcomings of the model are shown in Figure 9. 
The model does not identify small cracks around the “cross” 
objects very accurately, as shown in Figure 9(a). The model 
may also miss some cracks for severely shattered cells, like 
Figure 9(b). Figure 9(c) shows that the “dark” area is not 
well identifed, although cracks are identifed correctly. The 
main reason is that it is hard to defne precisely whether 
areas with medium brightness should be defned as “dark” 
areas. For example, the crack-enveloped area in Figure 9(c) is 
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Fig. 9. Examples of shortcomings of the model. For each subfgure, the 
left is the ground truth, and the right is the prediction. The four classes are 
predicted in different colors (purple: “crack”; cyan: “cross”; brown: “busbar”; 
blue: “dark”). The “cross” type defect is circled for better visualization. 

Fig. 11. (a)(b) Results from inactive area prediction tool. Figures from 
left to right are the original image, the isolated area (white area) generated 
from manual annotations and the isolated area from UNet-predicted crack 
annotations. (c) Comparison of isolated area proportion from manual and 
UNet-predicted crack annotations across all cells in the “test crack” data set. 
The red line is a reference line where y = x. (d) Distribution of predicted 
inactive area proportion in the “test crack” set. 

Fig. 10. Performance of the model on mono-Si and poly-Si cells. The F1 
score was computed based on the validation set. 

partially disconnected and not totally dark, so it is ambiguous 
even for annotators to determine the “dark” area. Another 
example is shown in Figure 9(d), where the model counts 
some dark margins as “dark” areas which are inconsistent 
with annotation. Also, the brightness of the disconnected 
area is infuenced by the injected current. IEC TS 60904-
13 [53] shows that a partially disconnected area caused by 
mode B cracks exhibits high contrast with Isc applied but 
lower contrast with 10%Isc applied. Therefore, the lack of 
a rigorous defnition in such analyses of what constitutes a 
disconnected area led to inconsistent manual annotations and 
further justifes the use of the feature extraction of isolated area 
brightness as an alternate method. Another shortcoming we 
noticed is that the model may perform worse on poly-Si cells 
than mono-Si cells, especially for “cross” object as shown in 
Figure 10. The possible reason is that poly-Si cells show more 
complex surface textures (e.g., dislocation clusters). This could 
be improved by using more poly-Si cells during the training 
process or modifying the loss function to add more penalties 
when the model wrongly processes the poly-Si cells. 

C. Crack-isolated area prediction 

Both crack length and brightness of isolated area extraction 
algorithms depend on the process of the crack-isolated area 

prediction algorithm, so we tested the performance of the 
isolated area prediction algorithm. An example of the predicted 
crack-isolated area is shown in Figure 11(a)(b). We applied 
this algorithm to the “test crack” set where all cells have 
cracks. By comparing areas generated from true and predicted 
crack annotations across the entire “test crack” set, the F1 
score is 0.905, and the IoU score is 0.827. Figure 11(c) 
shows a high consistency between the inactive area proportion 
calculated from manual and UNet-predicted crack annotations, 
with a Pearson correlation coeffcient [54] of 0.987. The 
predicted inactive area proportion in the testing set has a 
distribution shown in Figure 11(d) where 75% of cells have 
inactive areas lower than 6.86%, and the average proportion is 
4.54%. 31.4% of those cracked cells have zero inactive areas, 
which means they have potentially insignifcant cracks such 
as the one in the middle of Figure 4(b). Thus, an important 
result of this analysis is that, at least in the context of our data 
set, the presence of cracks does not imply a large power loss 
area. Further analysis and comparison to measured power data 
may help to separate more problematic cracks from those that 
are less likely to induce power loss. 

V. CONCLUSION AND OUTLOOK 

This paper introduced methods for automatic crack seg-
mentation and crack feature extraction tools to process EL 
images of solar modules. We trained a UNet model to per-
form semantic segmentation of solar cells to segment “crack” 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.



lines, “cross” cracks, “busbars”, and “dark” areas. The model 
exhibits good performance, with a macro-average F1 score of 
0.875 and an IoU score of 0.782 on the testing set. We further 
tested the model’s performance specifcally on cracked cells 
and obtained an F1 score of 0.867 and an IoU score of 0.770. 

We developed algorithms to extract crack features based 
on the annotation masks predicted from our model, including 
crack-isolated area, brightness of the isolated area and crack 
length. We evaluated our algorithm for predicting the worst-
case crack-isolated area on the testing set and obtained an F1 
score of 0.905 and an IoU score of 0.827. With this algorithm, 
we analyzed the inactive area proportion of the “test crack” 
data set and found that 31.4% of cells have cracks with no 
isolated areas, suggesting that some cracks may not result in 
power loss, at least initially. 

The open-source tools and model weights are published 
on Github [44]. Our data is published on the DuraMat Data 
Hub [45]. Future work could further refne the model by 
training with more EL images with other types of cells (e.g., 
half-cut cells) by transfer learning and develop circuit models 
translating the worst-case isolated area into a maximum power 
loss value. Also, additional EL images with 10%Isc applied 
might be needed for better crack identifcation since previous 
research [10] shows that some cracks can be hidden in images 
with Isc applied but appear more obvious in 10%Isc images. 
With the crack segmentation model and crack feature extrac-
tion algorithms, we can correlate those features with current-
voltage (IV) parameters to quantify how cracks infuence the 
degradation of PV modules. One could further apply the tools 
to time-series images to investigate how crack features evolve 
over time, e.g., how cracks may progressively grow larger and 
ultimately lead to the formation of inactive areas. We also 
plan to apply the tools to large-scale feld data to quantify the 
possible degradation of PV modules caused by cracks. 
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