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About BER

The Biological and Environmental Research (BER) program supports transformative science and scientific

user facilities examining complex biological, Earth, and environmental systems for clean energy and climate
innovation. BER research seeks to understand the fundamental biological, biogeochemical, and physical
principles needed to predict a continuum of processes occurring across scales, from molecules and genomes at
the smallest scales to environmental and Earth system change at the largest scales. This research—conducted
at universities, U.S. Department of Energy national laboratories, and research institutions across the country—
is contributing to a future of reliable, resilient energy sources and evidence-based climate solutions.

About BETO

The Bioenergy Technologies Office (BETO) focuses on developing technologies that convert domestic lignocellulosic
biomass (e.g., agricultural residues, forestry residues, dedicated energy crops) and waste resources (e.g., municipal

solid wastes, animal manure, biosolids, plastic waste, biogas) into affordable biofuels and bioproducts that significantly
reduce carbon emissions on a life-cycle basis (minimum of 70% decrease in greenhouse gases) as compared to equivalent
petroleum-based products. These bioenergy technologies can enable a transition to a clean energy economy, create
high-quality jobs, and support rural economies. Key to these activities is a focus on process techno-economics and
life-cycle emissions, ensuring development of economically viable and environmentally friendly technologies.

This report is available at genomicscience.energy.gov/amber-ai-ml/
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Executive Summary

he integration of artificial intelligence and

machine learning (AI/ML) with automated

experimentation, genomics, biosystems design,
and bioprocessing technologies is poised to revolution-
ize scientific investigation and, particularly, bioenergy
research. To identify the opportunities and challenges
in this emerging research area, the U.S. Department
of Energy’s (DOE) Biological and Environmental
Research program (BER) and Bioenergy Technolo-
gies Office (BETO) held a joint virtual workshop on
AI/ML for Bioenergy Research (AMBER) on August
23-25,2022 (see Appendix A: DOE Charge, p. 33).
These interests have since been amplified in a Septem-
ber 2022 Executive Order, “Advancing Biotechnology
and Biomanufacturing Innovation for a Sustainable, Safe,
and Secure U.S. Bioeconomy,” to promote a whole-of-
government approach to biotechnology development
(White House 2022).

Approximately S0 scientists with various backgrounds
and expertise from academia, industry, and DOE
national laboratories met to discuss the opportuni-
ties and challenges of AI/ML for bioenergy research.
Workshop participants were tasked with assessing the
potential for AI/ML and laboratory automation to
advance biological understanding and engineering in
general. They particularly examined how integrating
AI/ML tools with laboratory automation could accel-
erate biosystems design and optimize biomanufactur-
ing. Discussions included the data and computational
infrastructure needed to augment biosystems design
applications and the expertise and workforce develop-
ment efforts urgently required to shift integrated sys-
tems toward bioenergy research more broadly.

Participants discussed many existing and future appli-
cations of AI/ML for biosystems design ranging from
enzymes to plants and microbes, microbiomes, and
bioprocess development. They also identified three key
categories of scientific and technical opportunities and
challenges: high-quality data, AI/ML algorithms, and
laboratory automation.

Several main takeaways emerged from the workshop:

1. Numerous AI/ML and automated experimentation
applications exist for a variety of DOE mission
needs in energy and the environment.

2. Exemplary research grand challenges for which
AI/ML could provide solutions include: building
microbes and microbial communities to specifica-
tions, developing closed-loop autonomous design
and control for biosystems design, and advancing
scale-up and automation.

3. Lack of sufficient high-quality, annotated data
hinders the development of AI/ML applications.

4. New and improved AI/ML tools are needed,
particularly those meeting the specific needs of
the BER and BETO research communities.

S. Trade-offs in performance, cost, and reliability exist
between deploying commercially available versus
building custom-developed instrumentation and
software for automated or autonomous experimen-
tation; translation of manual to automated or auton-
omous methods is often a nontrivial endeavor.

6. Training a new generation of young scientists who
can develop and apply AI/ML tools is needed to
solve long-standing scientific challenges in bioen-
ergy research.

The integration of AI/ML tools and automated
experimentation represents a new data-driven
research paradigm complementary to the traditional
hypothesis-driven research paradigm. This paradigm
accelerates design and optimization of biological
systems and processes for a variety of DOE mission
needs in energy and the environment. The AMBER
workshop broadly explored the potential of this
new paradigm for bioenergy research, of particular
interest to BER and BETO, and identified key chal-
lenges and opportunities that DOE can address in
the coming years by leveraging its unique capabilities
and resources.

U.S. Department of Energy
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1. Artificial Intelligence and Machine
Learning Needs in Bioenergy Research

hanks to recent advances in data science, syn-
T thetic biology, and laboratory automation,

interest is growing in developing artificial
intelligence (AI), machine learning (ML), and auton-
omous experimentation for broader genomics-based
research and biotechnology applications. To explore
the potential of AI/ML and automation in a bioenergy
research paradigm, BER and BETO jointly organized
the AI/ML for Bioenergy Research (AMBER) virtual
workshop (see Appendix B: Workshop Agenda, p. 35).
The meeting included four breakout sessions address-
ing a broad range of topics including microbiomes,
plant-microbe interactions, bioprocess engineering,
infrastructure for data and computing, outreach, and
workforce development (see Appendix C: Breakout
Session Assignments, p. 38).

The breakout groups reported similar AI/ML needs in
their individual application spaces that fall under three
pillars: high quality data, AI/ML algorithms, and labo-
ratory automation (see Fig. 1.1, p. 2). The groups also
identified two characteristics necessary for DOE bio-
energy projects to succeed: transferability and human
centricity. Addressing these needs and characteristics
can help achieve the modeling and engineering of
complex biological systems in specific application
spaces in the bioenergy research paradigm. Applica-
tion spaces comprise end-to-end pipelines at BER and
BETO, from gene target identification and protein
function prediction to scale-up science and distributed
biomanufacturing.

The needs identified in this report are specifically
designed to address technical hurdles in the bioenergy
research paradigm. For example, much of the automa-
tion and real-time bioreactor monitoring tools used

for biofuel and bioproduct process development were
originally designed for the pharmaceutical industry,
which prioritizes time to market rather than titer, rates,
and yield. Repurposing automation and computational
tools from other industries may save development

costs, but workshop participants (see Appendix D, p.
44) emphasized the need to identify inherent biases
that accompany such tools.

Participants focused on bioenergy-specific topics such
as “science of scale-up” for bioproduction to identify
several needs specific to biosystems design and process
development:

® Reducing risks in large-scale studies by developing
transfer functions from lab-scale studies to substan-
tially accelerate bioprocess development timelines.

® Developing autonomous bioprocessing in reactors
to accelerate biofuel research at scale and man-
ufacture vital (or critical) bioproducts through
pandemics, during space travel, or on other planets
(Berliner et al. 2022).

® DPredicting gene and protein function to improve
current strain engineering methods for biofuel and
bioproduct production and populating large lan-
guage models that substantially compress timelines
in strain development.

Designing AI/ML-enabled metagenomics and sys-
tems biology studies to help predict plant-microbe
interactions on a warming planet and engineer soil
microbial communities necessary to counter the
impacts of climate change on crop yield.

Addressing these AI/ML needs will substantially
improve the chances of delivering on BER and BETO
strategic goals.

Workshop participants also identified AI/ML needs
in the end-to-end process pipeline. To achieve dis-
tributed biomanufacturing, biorefineries should be
equipped with computational tools that can continu-
ously optimize processes based on upstream feedstock
attributes, which can substantially impact downstream
fermentation and separation yields. Petroleum refin-
eries have long utilized nonlinear modeling to tune

U.S. Department of Energy
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Fig. 1.1. Modeling and Engineering Complex Biological Systems in the Bioenergy Research Paradigm. Numerous out-
comes (circles at top) can be realized by pursuing fundamental and applied artificial intelligence and machine learning (Al/ML)
research and tool development specific to the bioenergy research paradigm, including high-quality data, Al/ML algorithms,
and laboratory automation (green box at center). Successful projects will include transferability and human centricity features
(yellow left and right boxes) which are fundamental to disruptive changes in the bioenergy field.
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Chapter 1 « Artificial Intelligence and Machine Learning Needs in Bioenergy Research

process conditions and fully convert each batch of
crude oil. However, the practice produces yield vari-
ances in the pre-established suite of products (Hsu

and Robinson 2006; Hu et al. 2002). In the biorefinery
space, downstream unit operations should be chosen
through AI/ML simulations based on prior knowledge
to minimize product yield losses. DOE researchers
should also explore next-generation feedstocks, includ-
ing municipal wastes and C1 compounds like carbon
monoxide, methane, carbon dioxide, and others.

Finally, participants identified researcher engagement
with the community, especially through dynamic
spokespeople, as a necessary endeavor. A large-scale

U.S. Department of Energy

biofoundry providing not only data for researchers to
analyze and publish but also access to the community
could democratize innovation in this field. Investment
in large-scale facilities (e.g., high-throughput plant
transformation and biomanufacturing facilities) can
generate the data necessary to obtain high-fidelity
AI/ML models. By ensuring that these models are
openly available to transfer to industry in real-world
scenarios and for training and other purposes, DOE
can fundamentally impact bioenergy production and
catalyze commercialization and knowledge sharing in

this paradigm.

April 2023
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2. DOE’s Role in Advancing Al/ML

umerous DOE workshops and reports have
N explored how AI/ML can advance science,

with specific focus on where science can
leverage industry and what science-specific needs the
community must address. Another key question is
whether DOE can and should play a specific role in
advancing AI/ML given its unique capabilities. These
reports (e.g, DOE 2020a,b; DOE 2022a,b) have iden-
tified a clear DOE niche in the AI/ML research space:
integration of prior scientific knowledge into AI/ML
solutions for problems at scale.

Knowledge integration should include not only data
but also fundamental chemical, physical, and biolog-
ical principles. These principles are key to achieving
high-quality results, but industry has shown little inter-
est in incorporating them into AI/ML solutions.

DOE can leverage its computational, experimental,
and observational facilities to create large-scale sci-
entific data collections that train AI/ML models for
scientific discovery and extract underpinning scientific
principles. During the COVID-19 pandemic, for exam-
ple, DOE’s National Virtual Biotechnology Laboratory
(NVBL) project developed AI/ML tools to screen for
potential COVID-19 treatment compounds at a scale
not achievable by industry (DOE 2021b). The project
combined the world’s fastest computers with computa-
tional modeling, novel AI/ML models, and fundamen-
tal scientific knowledge.

2.1 Foundation Models
for Complex Tasks

Foundation models are a recent AI/ML trend for
addressing complex tasks. They are the Swiss Army
knives of the AT/ML world and can self-train on
extremely large-scale data minimized, or “tokenized,”
to key characteristics (e.g., text, code, DNA, RNA, pro-
teins, protocols, graphs, images tokenized as patches,
waveforms tokenized as samples, robotic control
sequences, and time-dependent data). The tokenized
characteristics are then lightly customized and used by
a single AI/ML model to tackle diverse tasks.

Foundation models can produce results at scale. For
example, the Generative Pre-Trained Transformer 3
(GPT-3), an autoregressive language model with

175 billion parameters compared to GPT-2’s 1.5 billion
(Brown et al. 2020), permits in-context learning. The
model can be adapted to a downstream task simply by
providing a prompt (i.e., a natural language description
of the task) —an unanticipated emergent property for
which GPT-3 was not trained. DeepMind’s Gato is
another example of such a foundation model (Reed et
al. 2022). It can perform over 600 multimodal complex
tasks including engaging in a dialogue, playing video
games, and controlling a robotic arm to stack blocks.

Many discovery processes in biology and life science
research could be accelerated and enhanced with foun-
dation models, such as complex autonomous experi-
ments at scale that include sample preparation, design,
and execution of broad field studies. Foundation mod-
els in this area could support tasks such as knowledge
distillation from literature and tailor-made generation
of sequences (e.g., nucleic acids, proteins, viruses, and
microbes), small molecules, and research protocols.

DOE is well-positioned to develop foundation mod-
els for science due to its access to extremely large
datasets; deep scientific knowledge and computing
capabilities to train models; and expertise at creating
large, multidisciplinary, mission-oriented teams. In
accordance with DOE'’s mission, this work could fuel
scientific discovery in the research community and
innovation in industry.

2.2 AlI/ML-Based Surrogates
for High-Performance
Computing

Another recent trend in AI/ML for science is the
development of AI/ML-based surrogates for high-
performance computing (HPC). That is, replacing

or augmenting computing-intensive kernels in HPC
applications with machine-learned functions that com-
pute the same function much faster.

U.S. Department of Energy
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Fig. 2.1. Artificial Intelligence and Machine Learning Functions Can Speed High-Performance Computing. The National
Virtual Biotechnology Laboratory project on molecular therapeutics created an integrated computational and experimental
platform for designing COVID-19 therapeutics. [Courtesy Oak Ridge National Laboratory]

The approach has been demonstrated in many problem
domains including physics, climate, computational
fluid dynamics, molecular dynamics, drug docking,
chemistry, density function theory, and others. For
example, DeepDriveMD, a deep-learning-driven adap-
tive molecular simulator for protein folding, benefits
from such augmentation, achieving speedups of >1,000
times to >100 million times (Lee et al. 2019). The
approach was successfully applied during the NVBL
project on molecular therapeutics to scan 100 bil-

lion molecules for potential suitability as COVID-19
treatments (Saadi et al. 2020; see Fig. 2.1, this page).
Recently, hybrid AI/ML HPC solutions were replaced
with end-to-end AI/ML, such as in the protein struc-
ture predictor AlphaFold (Jumper et al. 2021), achiev-
ing similar accuracy much faster.

2.3 Autonomous Control and
Discovery in Experimentation

Finally, AI/ML for science is moving from automated
experimentation to autonomous design, control, and
discovery. Automated workflows simply complete
pre-programmed steps, whereas autonomous exper-
iments use AI/ML to make novel decisions based on

experimental goals and real-time discoveries. AI/ML
algorithms intelligently select new experiments based
on current experimental results, creating a loop that
explores scientific problems more quickly and efhi-
ciently than a human researcher.

Workshop participants presented several early examples
of autonomous experiments relevant to BER and BETO
research, primarily in the field of materials design and
discovery (see Fig. 2.2, p. 7, and “Materials Discovery”
sidebar, p. 8). Much can be learned and leveraged from
existing materials design experiences and tools.

2.4 Data Quality and
Computing Resources

Two critical components underpin novel AI/ML
developments: the availability of large volumes of
high-quality, annotated data and suitable computing
and storage resources to effectively train and execute
DOE-developed AI/ML models. The FAIR standards
( go-fair.org/fair-principles/ ) make DOE data accessi-
ble for AI/ML training:

® Findable: Data should be findable by humans and

computers.

April 2023
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Fig. 2.2. High-Level Paradigm Comparisons for Material and Molecular Sciences. Redox flow batteries (left) exemplify the
current paradigm. A closed-loop discovery process (right) utilizes inverse design and a tightly integrated workflow to enable
faster identification, scale-up, and manufacturing. [From Sanchez-Lengeling, B., and A. Aspuru-Guzik. 2018. “Inverse Molec-
ular Design Using Machine Learning: Generative Models for Matter Engineering,” Science 361(6400), 360-65. Reprinted with
permission from AAAS.]

Accessible: Users and computers know how to
access and use the data.

Interoperable: Data needs to work with more
than one application and workflow for analysis and
integration.

Reusable: Optimizing data reuse (the ultimate
goal of FAIR) requires describing metadata and
data well so they can be replicated and combined in
different settings.

In addition to FAIR, data quality and actionability
must also be considered.

Data Quality

Correctness: Data collection is not error free;
quality checks are needed.

Completeness: Complete data collection may
never be achieved, so ensuring data volume and

coverage are sufficient for a given task is necessary,
along with collecting both positive and negative
experimental results and clearly identifying miss-
ing data.

Bias-Free: Most data are biased due to the the type
and manner collected. Biases must be identified
and made explicit if they cannot be removed or
corrected, including determining the source of bias,
how strong it is, and whether it can be mitigated.

Data Actionability

Reproducible: Science is verifiable through repro-
ducibility of results. Therefore, the data used to
train AI/ML models and the methods used to cre-
ate the data must also be reproducible. A key aspect
to reproducibility is uncertainty quantification.

Continued on p. 10
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The general workflow for materials discovery
consists of synthesis, processing, characteriza-
tion, and performance evaluation. These steps
are traditionally executed sequentially, but
automation and Al/ML methods have sped up
the process by performing and evaluating many
design loops in parallel while still building on
respective outcomes (see figure). A 2019 review
(Stein and Gregoire 2019) assessed the quanti-
tative impact of different types of acceleration,
such as automation, parallelization, ML models,
data repositories, active learning, and automated
reasoning, on traditional materials science dis-
covery workflows.

Stein and Gregoire described the workflows used
by four different research teams in terms of
these components, including the level of auto-
mation introduced. To determine the speedup
achieved by the automated discovery workflows,
they compared the number of experiments that
could be conducted in one pass with the number
that a traditional experimental workflow would
deliver—assumed to be one experiment per pass.

In Example A (see figure, p. 9), researchers,
researchers optimized growth conditions for car-
bon nanotubes, achieving a speedup of 100 times.
Learning was used to analyze prior experimental
results and propose new experiments by auto-
mated robotics to optimize material combinations
and growth conditions. The same methods could
be applied, for example, to an autonomous bio-
reactor, the synthesis of biological samples, or
growth conditions in a greenhouse or laboratory.

Example B represents a combinatorial explora-
tion of research space like the NVBL molecular
therapeutics project described in Fig. 2.1, p. 6.
The team used large-scale automation to simul-
taneously operate on libraries of up to 2,000
samples, achieving a speedup of 2,000 times.
To meaningfully design, steer, and evaluate
experiments, the team selected high-value tar-
gets using computational screening of candi-
dates. Experts determined the needed growth
conditions. Results of the entire pipeline were
captured, analyzed, and used to inform future
experiments.

Example C describes a combinatorial research
workflow (similar to example B) that achieved
a speedup of 400 times using a combination of

Traditional materials experiment workflow

Planning Synthesis Processing  Characterization

(&)

Data Duality Data Performance
Interpretation Management Evaluation

@‘00

Accelerators

| &@_ @

f N At A
g ctive R |

Learning
Data Automated
Repositaries Reasoning

Automation [ & o ML
Models

Parallelization

Experimental Materials Science Research

Life Cycle. Overview of core research tasks with
arrows indicating the cyclic execution of a tradi-
tional materials science experimental workflow
(top). Acceleration of each task in a workflow

can be obtained by incorporating acceleration
techniques, as represented by six types of
accelerators (bottom). [From Stein, H. S., and J. M.
Gregoire. 2019. “Progress and Prospects for Accel-
erating Materials Science with Automated and
Autonomous Workflows,” Chemical Sciences 10,
9640-9649. Reprinted under a Creative Commons
license (CC BY 3.0).]

automation, parallelization, and expert-driven
integration. Researchers added active learning
to accelerate decisions on the best candidates to
advance to the next step. Final characterization
was further accelerated using real-time analysis
and autonomous selection of the next best sam-
ple to screen.

Example D examined sample evolution. Instead
of using a single bulk experiment, researchers
used several smaller specialized experiments in
parallel to evaluate sample stability and progres-
sion, replacing one large reactor with 36 custom
nanometer-sized reactors. Key improvements in
the autonomous workflow occurred in real-time
monitoring and quality control. Results were
compared to external sources using Al models.
The team achieved a speedup of 500 times.

Continued on p. 9
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Strategies, and Research Goals. Various speedups in the discovery pipeline can be achieved as increas-
ing levels of Al and automation are embedded and more processes become part of the design loop.
Clear parallels with systems biology and synthetic biology workflows can be drawn. [From Stein, H. S.,
and J. M. Gregoire. 2019. “Progress and Prospects for Accelerating Materials Science with Automated and
Autonomous Workflows,” Chemical Sciences 10, 9640-9649. Reprinted under a Creative Commons license
(CCBY 3.0).]
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Using data with confidence requires knowing the
level of uncertainty inherent in the data.

Provenance and Explainability: The origin of data
and results must be available to users in a form that
enables assessment of the correctness and suitabil-
ity of data and AI/ML tools for a task at hand. This
information creates trust in the data for future use.

Range of Validity: Metadata or other concepts can
be used to clearly state boundaries regarding what
purposes data can be used for and where it can or
cannot be used (i.e., broad, limited).

Distilled: Data are summarized, analyzed, and
packaged for specific use cases.

An example of a FAIR data repository is the
collaboration between two DOE projects: the

Artificial Intelligence and Machine Learning for Bioenergy Research: Opportunities and Challenges

National Microbiome Data Collaborative (NMDC;
microbiomedata.org) and Benchmark Datasets

and AI/ML Models with Queryable Metadata
(ENDURABLE; crd.Ibl.gov/divisions/amer/
computer-science-amcr/par/research/endurable/).
ENDURABLE is establishing the means to provide
AI/ML researchers with access to massive data
repositories for developing AI/ML models to solve
problems in microbiome science. More specifically,
ENDURABLE is storing curated NMDC data and
associated metadata and disseminating it for AI/ML
research. These efforts, which follow FAIR principles,
are making microbiome data useable to the deep
learning community and catalyzing the development
of AI/ML models for microbiome data science. Addi-
tionally, defining AI/ML tasks and their necessary data
and metadata breaks down barriers to using AI/ML in
microbiome data science and makes AI/ML research
more broadly reproducible.
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3. Assessing and Supporting Automated
and Autonomous Experimentation

aboratory automation broadly describes the
process, or resultant systems, of replacing human

operators with computational or robotic equiv-

alents in a laboratory setting. Automation aims to
reduce human tedium, repetitive stress, and strain inju-
ries; lower labor and other costs (e.g., reagents through
microfluidic or tiny droplet dispensers); increase
throughput, reproducibility, and reliability; and
extend lab operations toward a 24/7 schedule. Note
that automation is not only physical but also relates

to information and data processing. The advent of AI
has enabled new forms of self-driving or autonomous
experiments and laboratories that use Al and ML to
define a research path as it progresses based on overall
project goals and discoveries made during an experi-
ment (Martin et al. 2023; Beal and Rogers 2020).

Considerable laboratory automation already exists
within DOE-supported national laboratories and aca-
demic research facilities, including both off-the-shelf
commercial and custom systems. When available, com-
mercial systems are generally preferable because they
often are more cost-effective, especially considering the
exceedingly high costs of developing, supporting, and
maintaining custom systems. However, custom systems
might be needed when commercial systems are unavail-
able (e.g,, during early phases of technology develop-
ment or when the market size is too small to justify
commercialization) or are insufficiently configurable,
extendable, or accessible to meet given business needs.

Perhaps not surprisingly, DOE project workflows in
national laboratories and academic institutions are
executed across very heterogeneous robotic, instru-
ment, equipment (e.g., mass spectrometry) ,and
software platforms. Such workflows are especially
prevalent in low technology readiness level (TRL)
research and development environments where cus-
tom automation system components are common.

Many of these workflows, which often constitute much

of DOE’s supported capabilities, have at their core
nonautomated instrumentation that may be difficult
to automate or integrate into automated workflows.
Heterogeneity, at least in the absence of physical stan-
dards (e.g., labware dimensions) and informatic stan-
dards (e.g., data exchange formats), is often required
to conduct bespoke research. However, heterogeneous
platforms place heavy burdens on efforts to integrate,
operate, support, and maintain workflow systems.

In many cases, not all workflow operations can be
automated, so optimizing collaborative workflow con-
tributions from both humans and automated systems
becomes important. These issues also relate to work-
force development, which is essential to ensure that
developers, operators, and maintainers of these hybrid
human and automated systems achieve their perfor-
mance potentials.

DOE project workflows span an automation gradi-
ent from fully manual (i.e., no automation) to semi-
automated (i.e., mixtures of interlaced human and
robotic/software operations) to fully automated (i.e.,
no human operations). In some, perhaps increasing,
instances, these workflows have become fully self-
driving (i.e., beyond full automation and autonomous
iterative/cyclical workflows). Each of these automa-
tion and autonomy levels has a proper time and place
for use with commercial and custom systems. In the
context of this workshop, which emphasized (meta)
data quantity and quality (e.g,, reliability, reproduc-
ibility, and comparability), the more automated and
autonomous a workflow, the better perhaps for sup-
porting AI/ML-directed DOE science and technology
development. However, autonomous workflows may
not always be the best approach; cost, performance,
and reliability trade-offs need to be evaluated in

each case to decide on the best path forward. Future
research not only should focus on new components
that make workflows more automated or autonomous
but also on methods to guarantee their quality, reliabil-
ity, reproducibility, and explainability.
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4. AI/ML Algorithms and Their
Current Bioenergy Applications

orkshop participants discussed potential
V\/ ways in which AI/ML approaches could

enhance current applications in bioenergy.
This chapter describes four areas underlying these
research opportunities: fundamental challenges, pro-

cess development, foundational AI/ML algorithms,
and automated and autonomous experimentation.

4.1 Fundamental Challenges
in Synthetic Biology and
Biosystems Design

Biosystems design, or synthetic biology, aims to engi-
neer biological systems that have novel or improved
functions for basic and applied biological research.
Quantitatively and predictively engineering these
systems—including enzymes; pathways; and whole
genomes of microorganisms, plants, and microbial
communities (microbiomes)—is overwhelmingly
challenging due to their intricate connectivity and
complexity. AI/ML advancements that enable com-
puters to learn automatically from experience have
emerged in recent years as potentially powerful tools
to address this challenge (Carbonell et al. 2019; Volk
etal. 2020). This section highlights four examples of
AI/ML-enabled biosystems design and their devel-
opment challenges to illustrate the status of the field:
(1) enzyme engineering, (2) pathway and metabolic
engineering, (3) plant engineering, (4) and microbi-
ome engineering. For details about specific AI/ML
tools, see Section 4.3: Foundational AI/ML Algo-
rithms for Bioenergy Research, p. 19).

Enzyme Engineering

Enzyme engineering aims to improve enzyme pheno-
types desirable for biotechnological, industrial, and
scientific applications (Yang et al. 2019). Directed
evolution is one of the most widely used and successful
tools (Wang et al. 2021). Despite its success, directed
evolution is time intensive, labor intensive (Yang et al.

2019), and inefficient because beneficial variants
are rare and the possible variant space is enormous
(Hie and Yang 2022).

Recently, the research community has increasingly
applied AI/ML to facilitate enzyme engineering
(Wittmann et al. 2021; Li et al. 2019). Compared

to traditional directed evolution, AI/ML-assisted
directed evolution can be more efficient in locating
beneficial variants with considerably fewer experi-
ments (see Fig. 4.1, p. 14). For example, scientists
developed a deep learning framework called ECNet
(evolutionary context-integrated neural network) to
accurately predict variant fitness (Luo et al. 2021).
Additionally, researchers used an ML algorithm called
upper confidence bound (UCB) to explore a model’s
uncertainty region and simultaneously sample the
region with high fitness (Greenhalgh et al. 2021).
UCB is an iterative process that repeatedly trains

the model with experimentally determined variant-
fitness data and makes predictions of new variants for
follow-on screening. In another example, researchers
developed an in silico directed evolution workflow
based on Markov chain Monte Carlo to engineer
green fluorescent protein and TEM-1 beta lactamase
(Biswas et al. 2021).

Pathway and Metabolic
Engineering

Researchers have effectively used AI/ML to improve
the production of fuels, chemicals, and materials in
only a few design-build-test-learn (DBTL) iterations
and to analyze data to predict new biological inter-
actions or characterize component parts (Volk et al.
2022; see Fig. 4.2, p. 15). For example, in just three
rounds, the BioAutomata platform improved lycopene
production by 77% compared to random screening
(HamediRad et al. 2019). A related platform, the
Automated Recommendation Tool (Radivojevi et al.
2020), demonstrated improved design predictions
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Fig. 4.1. Comparison of Traditional Directed Evolution and Machine Learning (ML)-Assisted Directed Evolution. Tradi-
tional directed evolution (A) uses iterative cycles of diversity generation and screening to find improved variants and discard
information from unimproved variants. ML methods (B) use the data collected in each round of directed evolution to choose
which mutations to test in the next round. Careful choice of which mutations to test decreases the screening burden and
improves outcomes. [Reprinted with permission from Springer Nature from Yang, K. K., et al. 2019. “Machine-Learning-Guided
Directed Evolution for Protein Engineering,” Nature Methods 16, 687-94.]

for fatty acids, and a subsequent study combined
genome-scale models with AI/ML to overproduce
tryptophan (Zhang et al. 2020). A recent example
used sequence information and cell sorting to char-
acterize all promoters in the yeast Saccharomyces
cerevisiae, creating a model that, in principle, could
enable promoter design in an engineered pathway
(Vaishnav et al. 2022). Another example linking gen-
otype to phenotype used a set of kinase knockouts to
predict the yeast metabolome under different knock-
out settings (Zelezniak et al. 2018).

Plant Engineering

Crop domestication and traits could be improved

by addressing a fundamental challenge in plant
biology: understanding how the vast cis-regulatory
DNA sequences that surround genes control gene
expression. To advance this understanding, various
supervised AI/ML models have been trained on
good-quality functional genomics data (e.g., chro-
matin accessibility and transcription factor binding).
For example, inspired by recent progress in zero-shot
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Fig. 4.2. A Standard Workflow that Integrates Machine
Learning (ML) with Metabolic Engineering. First, a library
of variants is constructed and analyzed by assigning labels
to each variant. In this example, labels are assumed to be
titers associated with a pathway on the plasmid. Then, path-
way data is converted to a data matrix where an ML model
is trained to make predictions based on the reserved test
data. New high variants predicted to perform well are then
recommended for future design. [Reprinted with permission
from Volk, M. J., et al. 2022. “Metabolic Engineering: Method-
ologies and Applications,” Chemical Reviews (special section).
©2022 American Chemical Society.]

fitness prediction of protein variants from global lan-
guage models, Benegas et al. (2022) reported the first
zero-shot noncoding variant effect predictor trained on
the genomic sequence of Arabidopsis thaliana. Because
this AI/ML model is trained using only one genome in
an unsupervised manner, it can be easily transferred to
any plant genome for predicting variant-effect fitness
and improving crop traits.

Additionally, genome-editing tools, such as the
CRISPR-Cas system in plants, have enabled DNA
sequence manipulation, helping inform yield improve-
ment and increase stress tolerance. However, relating

+ AI/ML Algorithms and Their Current Bioenergy Applications

phenotypic outcomes to genomic features remains

a huge challenge. Cheng et al. (2021) developed an
evolutionarily informed AI/ML approach to predict
nitrogen use efficiency both within and across species.
van Dijk et al. (2021) discusses, among other topics,
increased efforts in using computer vision for plant
phenotyping, implementing ML for plant-pathogen
interactions, and identifying metabolic pathways.

Microbiome Engineering

Precise microbiome engineering requires accurately
understanding community-level interaction edges
between different microbial species. However, exper-
imental discovery of such edges becomes impractical
in naturally occurring microbiomes, as pairwise com-
binations become prohibitively large. Recent designs
of AI/ML-based approaches employ different classes
of models to predict community interactions and thus
community networks. To predict new interaction
edges in a microbiome context, these models leverage
data (e.g., community interactions) from previous
experiments or prior knowledgebases and generally
understood features of specific microbial species.

For example, DiMucci et al. (2018) developed a ran-
dom forest model capable of predicting previously
unknown pairwise interactions in microbial com-
munities. The study found that for moderately sized
communities (i.e., 20 species), training the model on
just 5% of experimentally confirmed interactions was
sufficient to predict the remaining 95% of interactions
with 80% accuracy. Scientists used the model to rank
the importance of each feature in the trait-level feature
vectors and thus identify the most important traits
governing interaction edge presence in a community.
These results provided not only interpretability to the
model’s predictions but also a framework for hypothe-
sis generation of the mechanisms by which organisms
interact within a community.

Achieving precision microbiome engineering requires
highly refined prior knowledge of both the community
interactions and predictive capabilities of community
performance on modifying any microbe’s function. So
far, scientists have largely applied AI/ML techniques
to the former category. A prospective application path
could involve using AI/ML models to design better
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microbiome engineering strategies for achieving a
desired function. A recent review addresses the role
of ML in microbiome-related research (Hernandez
Medina et al. 2022).

4.2 Process Development

Scale-up process development is often seen as more of
an art than a science (Humphrey 1998; Stocks 2013).
Lab-scale tests in microtiter plates are subject to cap-
illary effects and therefore do not represent scale-up
performance that involves turbulence and heteroge-
neities. Large-scale reactor studies can be resource
intensive, limiting the number of process develop-
ment studies that scientists can perform. Statistical
design-of-experiments approaches can help achieve
statistical confidence but only in a limited portion of
the vast multiparametric experimental design space.
Low representation of experimental space, along with
minimal replication, leads to restricted understanding
of scale-up performance, thereby increasing risk of
failure during commercial production. Scientists and
engineers often rely on intuition to counter unan-
ticipated events (Crater and Lievense 2018), and

this empirical practice explains the apt perception

of scale-up process development as an art. To review
this issue tangibly, breakout groups focused on fer-
mentation and particularly discussed the challenges

of scaling up fermentation processes in bioreactors,
identifying research needs and opportunities related to
(1) data availability, (2) imaging and autonomous bio-
reactors, (3) bioreactor digital twins, (4) downstream
processing, and (S) scale-up science.

Data Availability

Data generated from fermentation campaigns are
acquired from several sensors and often include inad-
equately annotated metadata. This lack of annotation
leads to poor understanding of all interactions among
multiple variables. Consequently, campaign results are
largely unactionable. Data availability alone can be a
challenge, as few online and real-time measurements
are currently accessible with off-the-shelf equipment.

Most researchers use online dissolved oxygen and
off-gas concentration measurements to estimate

product titers, rates, and yields; they then conduct
offline chromatography-based studies to validate these
estimates. However, data acquisition rates from chro-
matography and other studies are very slow. Further-
more, the costs associated with data acquisition from
multiple analytical equipment (offline and online)
lead to low data volumes insufficient for analysis with
a full suite of AI/ML methods. While data can be col-
lected from multiple fermentation campaigns across
several scale-up facilities, very few public facilities can
offer such data volumes. Most data from fermentation
campaigns is located with companies in proprietary
forms, thus making data sharing difficult. Ultimately,
data acquisition, curation, and sharing in bioprocessing
is a challenge that has received very little attention,
even though data forms the backbone of AI/ML
applications.

Data at the laboratory scale (<10 mL) is more readily
available because academic and industrial institutions
can now collect data using microfluidics and microtiter
plates. However, insights cannot yet be transferred
confidently from the lab to bench scale (0.25 L to

10 L) or pilot scale (1,000+ L) for new target-host
combinations.

Similar challenges exist with transferability of different
production systems. While literature is available for a
few processes and production strains (e.g., penicillin
production and Escherichia coli-based processes),
many other industrial processes conducted with non-
canonical microorganisms are not widely published.
Such data will be necessary to transfer insights from
well-studied strains to other systems (e.g., studying
bacterial processes to help inform fungal fermenta-
tions). Knowledge transferability from lab to pilot
scales and among microorganisms is still an ambitious
goal that, at present, is primarily impeded by resource
limitations in bench- and pilot-scale testing.

Imaging and Autonomous
Bioreactors

Fermentation is a critical unit operation in generating
biofuels through biological pathways that depend on
microbial catalysts to convert sugars and intermediates
from agricultural and other waste feedstocks. Due
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to an explosion of tools in the past decade, synthetic
biologists can rapidly engineer microbial hosts and
generate several strain variations with improved pro-
ductivity at the milliliter scale in shake flasks and well
plates. However, researchers face challenges in predict-
ing these strains’ performance in bioreactors, even at
the slightly larger scale of 2 L (Wehrs et al. 2019). As
they grow and survive in bioreactors, microbial hosts
within the same culture undergo both genotypical and
phenotypical changes that often lead to lower produc-
tivity due to fitness-related mutations. Cell viability
tests, sequencing, and omics are direct indicators of
microbial cellular health but are only available post hoc.
Developing novel real-time monitoring methods is
essential for understanding single-cell level changes in
culture while in process.

Real-time imaging, such as feature extraction from sin-
gle cells, is a long-standing approach to assess physio-
logical heterogeneity in mammalian cells (Bevan et al.
2019). Spectroscopy also has the potential to deliver
real-time chemical information. Near-infrared spec-
troscopy at 2 nm resolution can provide information
on bond rotation changes within one degree and bond
length changes of 0.01A. Such data can differentiate
stereoisomers, a capability that state-of-the-art mass
spectrometry measurements cannot provide. Informa-
tion from high-resolution infrared spectroscopy (near
and far) enables AI/ML models to learn signatures of
distinct cell states and phenotypes.

Raman measurements, quantum sensors, and other
modalities are also of interest in providing novel data
that can substantially boost the outcome from AI/ML
methods for fermentation processes. Imaging-based
modalities can be coupled to large investments in
chromatography, mass spectrometry, and transcrip-
tomics, for example, to obtain mechanistic insights
into bioprocesses. In principle, inverting Al-derived
signatures of cell states should be possible to discover
the chemistry that underlies predictive power. Explor-
ing this frontier could enable the passive, nondestruc-
tive monitoring of sample biochemistry. Specifically,
learning to invert the spectral signature into chemistry,
genes, and other relevant information will generate
previously unavailable insights. Imaging microbial
hosts could substantially enhance understanding

of industrial-scale mutations, which could improve
scale-up challenges in biofuel and biochemical pro-
duction processes.

Additionally, new imaging-based datasets will be
essential to develop self-driving bioreactors with fully
automated process control and minimal human inter-
ventions for all modalities (i.e., host-product combi-
nations). Such bioreactors are paramount to removing
the bottleneck in bench-scale process development
capacity. Al infrastructure is needed to learn from data-
driven models, suggest operational perturbations, and
accelerate the pace of process optimization.

The performance of Al-based control in predicting
extreme events and other foundational problems will
lead to exciting new scientific studies and improved
bioproduction processes. At the bench scale, tolerance
for a failed experiment is high, but the cost of a failed
commercial production campaign due to extreme
events can be prohibitive for any company or research
institution. Al-based methods are very suitable for pre-
dicting such events when signal-to-noise regimes are
infinite, especially in reinforcement learning settings.
However, in biology, signal-to-noise is quite low and
onerous, requiring the development of fundamental
new paradigms of specific objective functions, includ-
ing new non-Markovian formulations. Sensor devel-
opment to minimize noise must go hand-in-hand with
algorithm development.

Finally, development is needed for controls that enable
nonexpert users to operate bioreactors for process
development to maximize titers, rates, and yields

of bioenergy molecules. Such efforts can have a far-
reaching impact. For example, applications in defense
and space travel, where austere environments demand
automated production of food, fuel, and medicines via
fermentation, will need controls that users can operate
without the help of expert process engineers.

Bioreactor Digital Twins

Although the pharmaceutical industry already applies
mechanistic modeling for bioreactor studies based
on digital twins, or virtual models designed to accu-
rately represent a physical object or process, few such
studies exist in the biofuel and biochemical domains.
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One reason for this disparity is that large bioreactors
(10,000+ L) are required for biofuel production com-
pared to smaller reactors (~1,000 L) used to produce
pharmaceutical ingredients. Spatial heterogeneity in
process conditions occurs across the height of a large-
scale bioreactor due to the water column’s weight on
bottom layers, which experience higher pressures,
higher oxygen and carbon dioxide concentrations,
and possibly lower glucose concentrations. Through
computational fluid dynamics coupled with metabolic
modeling, researchers have shown that heterogene-
ity in process conditions in large-scale bioreactors
impacts microbial cultures and their productivity
(Haringa et al. 2018). In many cases worldwide, only
global, single-point samples are taken during a pro-
cess, leading to limited information on local process
performance. Novel sensors and data streams from
different parts of a large bioreactor can help describe
spatial heterogeneity and develop digital twins for
simulations that can minimize experimental testing in

large bioreactors.

Downstream Processing

Downstream processing (DSP) refers to one or mul-
tiple unit operations performed on a fermentation
culture after it exits a bioreactor. DSP could involve
a one-step centrifugation or filtration process or a

multistep serial process that includes cell disruption,

extraction, and purification, or evaporation and drying.

The state-of-the-art approach to develop a DSP suit-
able for a particular molecule involves testing several
unit operations in series and parallel. DSP develop-
ment requires large amounts of fermentation broth
(i.e., at least tens of liters but more typically hundreds)
and, although expensive, is essential for establishing an
end-to-end process at large scales prior to commercial-
ization. Researchers can use AI/ML approaches—in
combination with chemical, rheological, and other
physical properties of the fermentation culture and
product—to predict the performance of individual
and combinations of DSP unit operations as well as
their optimal operating conditions. Such solutions can
substantially reduce both the cost and time needed

to identify optimal process pathways, a task currently
conducted using an empirical, trial-based approach.

Finally, most DSP unit operations used in current
biofuel and biochemical production chains were
developed for other industries, such as pharmaceu-
ticals and food. Substantial innovation is needed to
develop unique separation equipment for biofuels
and bioproducts, and AI/ML approaches may help
identify previously unconsidered methods for desir-
able molecules.

Scale-Up Science

To date, lessons learned from the pharmaceutical
industry have guided industrial bioreactor scaling
and development despite many differences between
pharmaceutical and biofuel production. For exam-
ple, biofuels must be manufactured at massively
higher quantities compared to vaccines and other
medicines (i.e., millions of gallons versus thousands
of kilograms). Also, contaminated biofuels, unlike
pharmaceuticals, are salvageable because the batch
ultimately can be purified enough to burn in an
engine. Additionally, scientists can engineer synthetic
and natural microbial communities to generate bio-
fuels, especially communities associated with waste
and second-generation feedstocks (e.g., molasses and
bagasse; Senne de Oliveira Lino et al.). Finally, while
the pharmaceutical industry is typically focused on
the filing time for drug approval from the U.S. Food
and Drug Administration, the biofuels industry is
often working to maximize titers, rates, and yields to
attain economic viability.

The biofuels industry needs much higher capacity for
bench-scale bioreactor studies and could substantially
benefit from sharing specific lessons learned about bio-
fuel processes. However, with no opportunity to pub-
lish such process-based knowledge, lessons learned are
often shared orally. A central knowledge repository and
a self-driving and digital twin approach that enables
conducting multiple experiments in a single bioreac-
tor could maximize resources and commercialization
prospects. Biofuel-centric sensor and tool develop-
ment, along with AI/ML applications, can also lead to
radical improvements in bioprocessing.
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4.3 Foundational Al/ML
Algorithms for Bioenergy
Research

Some of the many AI/ML tools (i.e., development
frameworks and models) broadly used today stem
from industry developments. However, the quality

of available AI/ML solutions varies widely not only

in robustness, reproducibility, and explainability but
also in applicability to scientific challenges. Industry
tool suites that are often good for general tasks require
scientific knowledge integration to produce acceptable
results in research settings. For applications in the BER
mission space, scientists are using AI/ML for increas-
ingly complex applications, and AI/ML-accelerated
data and image analysis is becoming standard in vari-
ous scenarios across the BER community.

The following sections describe six examples of new,
more complex AI/ML opportunities and research
needs in bioenergy: (1) matching AI/ML models to
problems of interest, (2) merging AI/ML predictive
capabilities with mechanistic insight, (3) overcoming
the limited data problem, (4) integrating data from var-
ious resources, (S) quantifying the predictive capacity
of AI/ML models, and (6) developing generally appli-
cable large language models and foundation models.
These examples also highlight future challenges that
could be addressed with AI/ML approaches.

Matching AI/ML Models
to Problems of Interest

Choosing an AI/ML model for the problem of inter-
est depends on multiple factors, such as the nature of
labels or output, the number of data points available
for training the AI/ML model, and the type of input.
Depending on the labels, ML models fall into three
primary categories: classification, regression, and
clustering. If the labels for training the AI/ML model
are not available, clustering can help find similarities
between data points. Small datasets typically restrict
model choice to traditional ML models (e.g., ridge
regression, support vector machines, and random
forest). However, larger quantities of data allow for
the consideration of deep neural networks. Recently,

Greener et al. (2022) developed a guide to ML for
biologists (see Fig. 4.3, p. 20).

While AI/ML seems ideal for the scale and complexity
of synthetic biology problems, limited data availabil-
ity is a critical bottleneck to developing bigger and
better AI/ML models. A new paradigm in addressing
the problem of limited data is manifold learning or,

in other words, feature engineering. This approach
enables representation of complex, high-dimensional
data in low dimensions while capturing problem-
specific information and reducing unnecessary noise.
This outcome can be achieved using techniques from
unsupervised learning such as autoencoders and train-
ing a low-parametrized traditional AT/ML model on
these low-dimensional data representations.

In the case of highly parameterized AI/ML models,
such as deep neural networks, model architecture
can influence prediction capabilities. The simplest
neural network architecture is multilayer perceptron
in which layers of artificial neurons are arranged in a
fully connected fashion. Input types require different
model architectures. For example, convolutional neu-
ral networks (CNNs) can capture local spatial struc-
tures and are most often used for image-like data. One
major application of CNN is to identify or predict
subcellular organization and cell fate using micros-
copy images.

Graph convolutional networks (GCN) are applied in
tasks involving entities connected by defined relation-
ships or interactions. GCNs update node properties

in the network by combining predictions from all
neighboring nodes. They therefore are better suited
for graph-structured biological data, such as molecules
(composed of atoms and bonds) and gene-gene inter-
action networks (composed of genes and interactions).
Alternatively, recurrent neural networks like long
short-term memory are more suited for sequential bio-
logical data, such as time series prediction and protein
function or structure prediction.

Language models from natural language processing
(NLP) provide another framework to encode sequen-
tial data in biology. NLP models, for example, could
treat protein sequences as sentences in a foreign lan-
guage and only make a viable variant or meaningful
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Fig. 4.3. Flowchart Summarizing How to Select a Machine Learning (ML) Model. The overall procedure for training an

ML method is shown along the top. A decision tree to assist researchers in selecting a model is below. However, a simple
overview such as this cannot cover every case. For example, the number of data points required for ML to become applicable
depends on the model being used and the number of features available for each data point, with more features requiring
more data points. Deep learning models that work on unlabeled data also exist. [Reprinted with permission from Greener, G.,
et al. 2022. “A Guide to Machine Learning for Biologists,” Nature Reviews Molecular Cell Biology 23(1), 40-55.]

sentence when amino acids are put in a certain order. patterns and features underlying an AI/ML model to
For instance, Transformer, a state-of-the-art model in be identified using sensitivity analysis, saliency, and
NLP, tracks relationships in sequential data like words attention-based methods. Additionally, genome-scale
in a sentence, thereby learning context and meaning. metabolic models (GEMs) provide features that can
As such, the model can perform translation tasks (e.g., merge AI/ML predictive capabilities with mechanistic
translating an enzyme to the substrate it can catalyze). insight. GEMs are designed to satisfy known biolog-

ical constraints on metabolism, such as reaction stoi-

Merging AI/ML Predictive

chiometry, mass conservation, gene-product-reaction

Capabilities with encoding, and nutrient environment. As a result,
Mechanistic | nSight GEM.-derived features are biologically feasible and
While AI/ML models are known for their predictive can be used to discriminate and interpret differences
capabilities, their inner logic is difficult to interpret between phenotypic states. One example of a GEM-
and thus obstructs scientific understanding of bio- based ML framework is the Metabolic Allele Classi-
logical insights or mechanisms. However, advances fier (MAC), which takes the genome sequence of a
in the field of interpretable AI/ML enable important particular tuberculosis strain as its input and classifies
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strains as either resistant or susceptible to a specific
antibiotic (Kavvas et al. 2020). As MAC provides an
allele-parameterized form of flux balance analysis, sta-
tistical tests between antibiotic-specific resistance and
susceptible strains can provide a biochemical interpre-
tation of the genotype-phenotype map.

Overcoming the Limited Data
Problem in Bioenergy Research

Although AT/ML can greatly benefit synthetic biol-
ogy, it also has some limitations. One major challenge
is that AI/ML is notoriously data hungry (Hsu et al.
2022). Training accurate A/ ML models generally
requires sufficient training data, yet biological data can
be limited by the difficulty and expense of experiments
and data acquisition, which consequently hinder the
training effectiveness of AI/ML models.

Recently, several studies aimed at building AI/ML
models that leverage fewer data points (Wittmann
etal. 2021) revealed that the limited data problem
can potentially be solved using a generative model
(Madani et al. 2020) or a “low-N” model, which relies
on a low number of training data points (Hsu et al.
2022). Generative models create new samples follow-
ing a distribution, making full use of the unlabeled
information abundant in biology. For example, Madani
etal. (2020) successfully applied generative models
to de novo protein design and introduced a protein
language model termed ProGen. Trained on billions
of protein sequences, ProGen can generate protein
sequences with controllable features (e.g., function).
Data-eflicient low-N models offer another potential
solution to data limitations. A low-N study by Hsu
etal. (2022) successfully trained a linear regression
model tasked to predict protein variant effect using as
few as 48 variants.

Integrating Data from
Various Resources

Data integration from different types is often an
empirical task that requires testing to find the
highest-performing model for the specific biological
objective (Kim et al. 2016; Nguyen and Wang 2020;
Zampieri et al. 2019). Integration techniques include

multimodal ML in which (1) alearned function at
various stages of the learning pipeline brings various
data streams together (Culley et al. 2020) or (2)

data is mapped to an intermediate data structure that
hypothetically represents the underlying biological
ontology (Cho et al. 2016; Ma et al. 2018). Addi-
tionally, enforcing constraints such as mass balance
between reaction and product in a chemical reaction
can encode biophysical information into neural net-
works (Wang et al. 2022). Other approaches can
encode domain knowledge into physics-inspired
neural networks where loss functions are designed to
optimize a domain-specific property (Ji et al. 2021).
Encoding domain knowledge and mechanistic knowl-
edge directly into AI/ML models is a more promising
pursuit than either parallel mechanistic and AI/ML
models joined at the final stage for prediction or mech-
anistic models used to generate features for AI/ML

models.

Quantifying Predictive
Capacity of Al/ML Models

Quantifying the overall predictive performance of
AI/ML models requires multiple metrics. However,
trade-ofts between metrics are typical; for instance,
optimizing mean squared error might result in lower
correlation. Additionally, optimizing loss functions
might drastically increase overall model complexity.
For example, Salis et al. (2009) used a linear model
instead of a popular nonlinear model like an artificial
neural network to create the promoter calculator that
provides an explainable mode for RNA polymerase
binding and transcription. Since metrics can bias
data processing and model development, evaluation
metrics must be considered at the origin of project
planning. Ultimately, the engineering goal is tightly
bound to evaluation metrics. As a best practice, a wide
variety of balanced metrics should be reported to
enable future developers to benchmark against previ-
ous results for the same or similar tasks. When work-
ing on an unprecedented learning task, metrics should
be compared to mechanistic models that can make
similar comparisons.
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Developing Generally Applicable
Large Language Models
and Foundation Models

Recently emerging as the preeminent strategy for
scaling AI/ML model capabilities, large language
models (LLMs), foundation models, and their under-
lying technologies have quickly revolutionized NLP
and computer vision. In less than 4 years, LLMs have
grown more than a thousandfold. Current models—
namely, Open AI's Generative Pre-trained Transformer
3 (GPT-3), Google’s Language Model for Dialogue
Applications (LaMDA) and Pathways Language
Model (PaLM), and Google subsidiary DeepMind’s
Gopher—take in terabytes of data to train hundreds
of billions of parameters. At these scales, LLMs have
demonstrated unprecedented, and often uncanny,
capabilities not only in language generation quality but
also understanding and reasoning about the knowl-
edge they ingest. These capabilities and the further
potential of LLMs pose an important opportunity to
drive and accelerate systems and synthetic biology
research. Thanks largely to their flexibility in digest-
ing different data sources (e.g,, text, images, signals,
and spectra) at tremendous scales, LLMs and their
derivatives have achieved state-of-the-art results not
only in general language and image tasks but also in
biological literature parsing. Examples include Bidirec-
tional Encoder Representations from Transformers for
Biomedical Text Mining (BioBERT'), DNA sequence
analysis (DNABERT), gene regulatory analysis (Gen-
eBERT), protein structure prediction (AlphaFold2),
and others. These models have also been extraordi-
narily successful in multitask and multimodal appli-
cations, including the construction of sparse expert
models such as Switch Transformers and Google’s
Generalist Language Model (GLaM), which may scale
to trillions of parameters.

4.4 Automated and
Autonomous Experimentation

AI/ML has profoundly impacted automation. Pro-
duction arrays and test robotic platforms are now
available for automating DBTL cycles, and compu-
tational control over the build and test steps enables
the development of closed-loop systems performing

AI/ML-driven scientific experiments. This capability
can significantly reduce the combinatorial complexity
of a given problem, optimizing systems faster than tra-
ditional methods.

Preliminary efforts in self-driving microfluidics labora-
tories for systematic titer, rate, and yield improvements
in synthetic biology have produced a semiautomated
process that leverages a droplet-based microfluidic
system to enable CRISPR-based gene editing and
high-throughput screening on a chip (Iwai et al. 2022).
CRISPR-based engineering demonstrated the system’s
capabilities in two test cases: (1) function disruption
of the galactokinase gene (galK) in E. coli and (2) tar-
geted engineering of the glutamine synthetase gene
(glnA) and the blue-pigment synthetase gene (bpsA)
to improve indigoidine production in E. coli.

Newer autonomous experiments go beyond pure pro-
cess automation. While automated experiments follow
a predefined plan, autonomous experiments instead
adapt and suggest new experimental pathways based
on developments during an experiment. These early
autonomous experiments are supported by several key
technologies, such as (1) optimal experimental design,
which determines the next best step given a set of
experimental goals; (2) decision-making under uncer-
tainty, which assesses and expresses the underpinning
AI/ML model’s confidence in the available informa-
tion used for decision-making; and (3) unsupervised
and reinforcement learning, which provides a means
for continuous learning throughout the experiment
with potential system and user feedback to improve
the outcome. A few examples of successful imple-
mentations of first prototypes include BioAutomata
for synthetic biology (see sidebar, BioAutomata: A
Self-Driving Biofoundry for Biosystems Design, p. 23)
and Brookhaven National Laboratory’s National Syn-
chrotron Light Source II (NSLS-II) for materials dis-
covery and physics (BNL 2021). An even more recent
demonstration showed the interaction between two
beamlines at NSLS-II via AI/ML, each informing the
other of further explorable regions of interest during
parallel experiments. The approach has shown great
promise not only in making experiments more efficient
but also in significantly accelerating discovery. The
developed principles could be equally applied to bio-
logical experiments with great impact.
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BioAutomata: A SeIf—Drivihg
Biofoundry for Biosystems Design

A fully integrated biofoundry, BioAutomata
enables closed-loop design and optimization

of biological systems (HamediRad et al. 2019).
After setting initial parameters, designing the
sequence space of variable regions (e.g., pro-
moter variants in a combinatorial pathway
assembly), and defining objective functions,
BioAutomata selects which experiments expect

the highest yield improvements. It then per-
forms those experiments, generates and learns
from data, and updates its predictive model
based on newly presented evidence. Using this
new information, BioAutomata decides which
experiments to perform next to reach a user's
goal while simultaneously working to minimize
experiments conducted and project costs.

BioAutomata: An Integrated Robotic System for Autonomous Experimentation Driven by Artificial Intel-
ligence and Machine Learning (Al/ML). The platform was developed by researchers from DOE's Center for
Advanced Bioenergy and Bioproducts Innovation (CABBI). [Courtesy CABBI]
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5. Opportunities and Challenges

I/ML and automated experimentation present
A key opportunities and challenges for advanc-

ing biological understanding and engineering,
especially in bioenergy, biosystems design, and bio-
manufacturing. These opportunities intersect three
research grand challenges and require addressing gaps
in (1) experimental, data, and computing infrastruc-
ture; (2) various bioenergy applications of AI/ML,
such as genotype to phenotype prediction, biosystems
design, and bioprocessing; and (3) education, training,
and workforce development. By leveraging its unique
capabilities and resources, DOE is well-positioned to
realize AI/ML-based opportunities for missions in
energy and environment.

5.1 Science Challenges

Three exemplary research grand challenges could ben-
efit from AI/ML solutions.

1. Microbes and Microbial Communities Built to
Specifications. AI/ML could design genomes with
predefined properties for specific environments,
ensuring that genomes perform as expected. A key
needed novel foundational AI/ML capability is the
use of specifications, theory, and experiments to
learn new biology.

2. Closed Loop Autonomous Design and Control
for Biosystems Design. Autonomous, self-driving
experiments that optimize facility resources, reduce
the number of experiments, and limit redundant
data collection are poised to profoundly transform
experimentation by searching for new experimental
parameters and settings and targeting new bio-
logical materials and processes. Key needed novel
foundational AI/ML capabilities are human-in-the-
loop hypothesis creation and testing, the ability
to work with few data, and delivery of trustworthy
solutions.

3. Bioprocess Scale-Up and Automation. Translat-
ing research progress into industrial bioengineering
innovation requires scale-up of experiments at

multiple scales (e.g., from microtiter plates to flasks
to large and highly mixed bioreactors instrumented
with comparable measurements for integration).
Key needed capabilities are good-quality data and
metadata, available and accessible data and com-
puting at scale, the ability to work with few data,
and digital twins for guidance.

Similar AI/ML needs exist for all three grand
challenges:

® Massive, annotated datasets or, alternatively, the

ability to learn from few data.
® DPredictive capabilities to foresee outcomes.
® Trustworthy AI/ML.

® Effective collaboration between humans and

AI/ML (e.g., in developing and testing hypotheses).

AI/ML models capable of executing on small edge
devices as part of larger complex workflows.

Availability of objective-based decision-making
under uncertainty (i.e., optimal experimental

design).

Efficient and effective capture of expert knowledge
in AI/ML models.

Digital twins to design, accompany, guide, and
inform complex experiments.

® Ontologies in addition to AI/ML for support-
ing technologies (e.g., robotics and sensors) and
AI/ML-specific computing infrastructure, meta-
data, and data standards.

5.2 Technology Gaps

Breakout participants discussed challenges in exper-
imental, data, and computing infrastructure relevant
to BER and BETO application areas and AI/ML.
These challenges included concerns about automation,
standardization, and data quality; underdevelopment
and use of certain methodologies and tools; commu-
nication and technology gaps between biological and
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computational domains; and current funding models’
lack of coordination at scale, which impedes risk-
taking, agility, and innovation.

Laboratory Automation

Tension and trade-offs exist between deployment of
commercial, off-the-shelf instrumentation and soft-
ware versus custom development (or retroﬁtting).
Desirable systems are encompassing and stable yet
flexible enough to be adapted to changing needs. Sev-
eral representative systems and environments would
require hybrid commercial and custom components,
including AI/ML algorithm-directed robotic (as well
as microfluidic) systems capable of collecting large
amounts of diverse data in a nondestructive manner, to
guide AI/ML systems that explore bioprocess optimi-
zation space in bioreactors.

Automation gradients also pose challenges. Translating
manual to automated methods is often nontrivial, but
an additional challenge for semimanual workflows is
the difficulty in achieving enough contiguous auto-
mated method coverage to avoid frequent interleaving
of manual and automated steps.

Data Infrastructure

Important challenges in data infrastructure include
data exchange standardization, data quality, and data
privacy (especially commercial). Integrating heteroge-
neous software, data, and automation across vendors
and developers is difficult, partly due to a lack of stan-
dardized metadata formats, vocabularies, and syntaxes.
Likewise, ontologies may be too static as founda-
tional models evolve over time. However, dynamic
data ontologies and exchange standards can create
interface-breaking changes, so these systems must have
clear change management processes, proper migration
procedures, and ongoing contact with stakeholders to
maintain stability.

A key challenge in the development of capable AI/ML
models for scientific discovery is the need for very
large, high-quality datasets suitable for the research
questions at hand. Data quality matters more than the
amount because high-quality negative data is required

for ML and model development. Given the necessary
scale and coverage of these datasets to avoid gaps or
undesirable biases, small research efforts no longer
have the capacity to create them. Instead, automated
coordinated campaigns are needed, enabled by changes
in experimental design. Autonomous experiments and
laboratories can play key roles in these campaigns, but
they present their own implementation challenges. An
additional data-related challenge is how to build mod-
els on top of a foundation of private (e.g., company-
owned) primary data and make the trained models
available to the public without revealing the primary
data and creating issues with intellectual property or

copyrights.

Digital Twins

Building predictive digital twins (or using AI/ML to
automatically develop them) requires new types of
tools to reliably predict nonintuitive targets and pro-
duce more accurate multiscale modeling of biological
systems and processes. A big challenge in metabolic
engineering, for example, is researchers’ tendency to
rely on gene targets reported in the literature. Pow-
erful computational tools, whether biophysical, ML,
or a combination, could predict nonintuitive targets
for metabolic engineering (e.g., genes of unknown
function or not reported in the literature) that could
significantly benefit system performance. However,
the reliability of these predictions, either actual or
perceived, has not surpassed the threshold needed to
secure resources. Perceptions of reliability and risk may
be confounded by metabolic engineers if, for example,
they do not understand how biophysical or ML mod-
els work and thus cannot assess risk versus reward.

Technology Adoption

Computing infrastructure-related challenges include
barriers to technology adoption and establishment of
benchmarks that encourage adoption. As technologies
show success, their adoption increases. However, early
success can lead to algorithm fatigue. In such cases, the
continuous release of new algorithms that are not nec-
essarily improved based on community-accepted met-
rics contributes to the reluctance to adopt new ones.

April 2023

U.S. Department of Energy



Benchmarks must therefore be established to test new
algorithms, models, and methods and a leaderboard
established to publicize tool performance based on the
benchmarks. The frequent gap between benchmark
performance and usefulness for novel scientific discov-
ery must also be addressed.

Interdisciplinary Communication

Similar challenges affect interdisciplinary commu-
nication and the accessibility of AI/ML capabilities
and data repositories to nonexperts. Many are related
to interactions between experimentalist and compu-
tational teams and ensuring that each understands

the parlance of the other. Part of the solution could

be to improve and simplify software and automation
user interfaces or low-code environments to make a
subset of AI/ML capabilities accessible (e.g., 20% of
the functionality that will satisfy 80% of needs) while
simultaneously preventing nonexperts from misusing
the tools or misinterpreting their results. Similarly, the
substantial effort required to enter data into repository
systems (e.g., laboratory information management sys-
tems and electronic notebooks) could be minimized
by developing AI/ML-guided methods to capture
metadata or extract raw instrumental data for deposit
into Al/ ML-serving data systems.

Risk Appetite

The reluctance to take risks, which is difficult to eval-
uate, presents an inertial challenge to innovation, such
as in metabolic engineering efforts that would benefit
from pursuing nonintuitive targets. Researchers in
resource-constrained environments are less likely

to take risks, often developing small, bespoke infra-
structures without coordination with other groups,
rendering them difficult to maintain and support. Such
factors produce incremental improvements that are
more evolutionary than revolutionary.

Efforts to foster higher-level coordination across dif-
ferent endeavors and provide the resources needed to
encourage innovation and risk-taking will help develop
core solutions to big common challenges. Overarching
organizations could achieve this by helping knit together
experimental, data, and computing infrastructure.

Chapter 5 « Opportunities and Challenges

A related challenge for researchers developing technol-
ogies and capabilities, as opposed to those pursing sci-
entific goals, is how to prepare specific and quantitative
milestone-driven plans that deliver accountability to
funders without a commitment to prescribed features
or specifications that would impede agility and respon-
siveness to users’ unanticipated and often changing
needs. One possible approach to this challenge, which
is compatible with user-centered design practices, is

to prescribe procedural milestones (e.g., conduct cus-
tomer discovery interviews and develop features prior-
itized by these interviews).

Autonomous Experiments
and Laboratories

Many research directions in DOE’s mission space (e.g.,
systems biology and biosystems design) will require
moving toward autonomous laboratories driven by
AI/ML. These capabilities will enable researchers to
execute high-throughput experiments (e.g., microbial
systems from growth through omics data generation
and molecular structure determination) and leverage
high-throughput robotic laboratories capable of pro-
ducing datasets on the order of 100,000 data points in
run times of a few days. Autonomous infrastructure
must be rapidly configurable for different organisms,
instruments, experiments, and protocols. Scientists
will require the ability to define growth goals and qual-
ity criteria directly to robotic AI/ML control systems,
enabling generation of high-throughput, population-
scale, multiple-omics data types. Below are several
exemplary unmet needs.

Capture Expert Knowledge to Drive Autonomous
Experiments and Laboratories. For AI/ML-enabled
bioenergy research, establishing high-throughput facil-
ities for plant cell experiments at scale is important.
Nearly all existing large-scale robotic laboratories were
developed for microbial or mammalian cell systems, so
hardware and software are needed to address the unique
challenges of plant biotechnology. Plant biotechnology
expertise (e.g., cell transformation and growth) must be
transferred to AI/ML systems that will drive robots.

Establish Environmentally Hardy Technology for
Field-Scale Autonomous Experiments and Lab-
oratories. Automated field sites capable of carrying
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out large-scale field trials autonomously, as well as
autonomous greenhouse facilities, must be established.
Commercial solutions (e.g., from the agriculture
community) must be leveraged as much as possible to
enable remote surveys of plant health, growth condi-
tions, stress tolerance, and optimal growth conditions
within environmental constraints. In the research
space, development of a species-agnostic platform
may be a required investment for planting systems and
plant identification tracking systems (e.g., 100,000
plantlets = field = assays = data). In addition, there
is a need to integrate AI/ML into small sensors, small
robots, large field equipment, and remote sensing.

Address Increased Complexity Due to Scale for
Autonomous Experiments and Production. Many
differences exist between current pharmaceutical para-
digms and those suitable for biofuels and bioproducts.
BETO applications often require translation to scale
and reliability. Needs include massively increased
product quantities, more concern about scaling, less
concern about batch contamination, and more atten-
tion to the potential benefits of including feedstock-
associated microbes. Unlike the pharmaceutical
industry, the biofuels and bioproducts community
faces key questions that involve (1) determining how
to investigate microbial communities that thrive on
feedstocks and with other microbial communities that
feedstocks introduce into a process and (2) under-
standing the evolution of microbial communities

in large-scale bioreactors. Accelerating biofuels and
bioproducts research requires identifying which scales
must be measured to predict behavior and detecting
emergent, divergent phenomena and their causes.
These fundamental capabilities will enable autono-
mous production at scale.

Facilitate Training of AI/ML Models for Bioenergy
Scenarios. The advanced AI/ML research community
requires data and computing infrastructure capabilities
beyond those available today, specifically:

® Data Archives — Needs include new services from

existing data archives, such as AI/ML-ready data

sufficiently labeled and cleaned for immediate use
in AI/ML training. Users require tools to identify
gaps in existing data collections and automatically

initiate additional data collection campaigns of
varying sizes to fill those gaps, linking to computing
and experimental facilities and projects.

Computing Resources — Training large-scale
AI/ML models requires sufficient computing
resources.

New AI/ML Training Infrastructure — Scien-
tists need capabilities for combining or leveraging
large, potentially multidisciplinary data collections
that support AI/ML designs, development, and
training. Data should be permanently available on
AI/ML-specific computing hardware for medium
timescales of months to years (depending on the
project or campaign) with the ability to share data
and models with others.

® Integrative Technology Test Labs — Many of the
described scenarios rely on integrating AI/ML with
robotics, sensors, or domain-specific edge devices.
Test laboratories would benefit these scenarios by
enabling researchers to rapidly integrate and test
solutions, particularly for complex experiments.

Al/ML Challenges

AI/ML challenges identified in the workshop fall into
three principal needs: (1) new or improved AI/ML
methods, (2) tools that meet the specific needs of BER
and BETO research communities, and (3) industry
partnerships.

Opportunities for autonomous operation of exper-
iments, laboratories, and field sites cannot be fully
met with existing AI/ML models and methods.

New research is needed to enable the bold science
grand challenges outlined by workshop participants.
Several science communities have conducted first-
of-their-kind autonomous experiments, but they
remain limited in scope. Fully autonomous complex
experiments, laboratory operations, and field sites will
require AI/ML models for hundreds to thousands of
different tasks for controlling every aspect of the work,
including devising hypotheses, predicting results, and
choosing paths that optimize scientific outcomes based
on set research goals. Some of these needed capabili-
ties exist today, but others, like models for hypothesis
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generation and translation of scientific goals, are in
their infancy at best. An even bigger challenge is cus-
tomizing so many models to widely varying experi-
ments; the training data and available workforce are
currently insufficient to accomplish this customization.

Foundation models could provide a pathway to
autonomous operation of experiments, laboratories,
and field sites, but they are still untried in scientific
research. Furthermore, even the most advanced foun-
dation models can currently perform only 600 dif-
ferent tasks, which may be insufficient in a bioenergy
research paradigm. Given their proven potential for
easy customization once trained and their general ver-
satility, foundation models warrant more research to
explore how they can be used to support autonomous
operation.

In existing automated or basic autonomous experi-
ments, the inclusion of specialized scientific knowledge
is key to successful AI/ML solutions. This knowledge
goes beyond what is included in data and requires the
explicit incorporation of foundational scientific princi-
ples and tacit expert knowledge (e.g., for sample prepa-
ration). To scale up such efforts, the community must
develop methods for knowledge capture that are more
efficient, more robust, and better directed.

AI/ML-ready data will be key to advancing the impact
of AI/ML in the field of biology. BER, with its signifi-
cant enabling infrastructure of experimental and com-
putational facilities, could create data ready for AI/ML
training at the needed scale (e.g, to facilitate training
of new foundation models). Clear definitions, bench-
marks, and standards will be needed to determine
which metadata, provenance, data preparation, and
other techniques will enable data to be easily utilized
in AI/ML training without resource-intensive data
identification, cleaning, or preparation.

However, gathering sufficient training data will be
impossible in some situations. Consequently, new
AI/ML models that can cope with little training data
must be developed, along with methods to create more
information-rich training input. This active research
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field requires more investments and robust testing of
new methods.

Many settings in autonomous experimentation and
observation will require embedding AI/ML models in
edge computing devices with limited computational
capabilities (e.g., instruments, sensors, and drones).
This integration will require developing compact
AI/ML models that have capabilities similar to larger
models but use less computing power. Furthermore,
many edge devices, particularly those in the field, have
limited network connectivity, making upgrades and
retraining difficult. New methods are needed to enable
unsupervised in situ retraining of these compact
AI/ML models while maintaining their quality and
correctness.

Finally, BER- and BETO-supported biologists must
be able to trust the AI/ML solutions they wish to
deploy. Therefore, developing robust, reproducible,
and explainable models is important. All three qual-
ities are being actively researched, but significant
progress is needed to achieve easy-to-use, standard-
ized approaches that can be integrated broadly in all
AI/ML solutions.

5.3 Application Challenges

AI/ML could help address BER and BETO application
areas facing scientific and technical challenges. Some
of these challenges are specific, while others are more
general and crosscutting.

General challenges include associating genotype with
phenotype and elucidating relationships between
biological components. High-throughput phenotypic
measurements are only possible in very few cases, and
substantial genotype data is often not available for

the systems seeking phenotype prediction. Forward
phenotype prediction may uncover missing biological
knowledge, whereas inverse design (i.e., designing to
achieve a particular specification) uncovers design
principles and additional gaps in biology and is perhaps
a more compelling goal. Approaches are needed that
use integrated datasets to elucidate biological relation-

ships leading to testable hypotheses.
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Domain-specific challenges include:

® Engineering enzymes with specified kinetics, sub-

strate specificity, and other properties.

® Engineering microbial communities in situ and at
scale for pathogen protection; carbon sequestra-
tion; community stability; carbon dioxide (CO,)
and water cracking; nitrogen fixation; stress pro-
tection (e.g., drought); nutrient mobilization;
hydrogen, phosphate, and carbon cycling; and
closed-loop, energy-efficient regenerative biopro-
duction using waste or C1 feedstocks.

® Characterizing microbial gene-environment inter-
actions effectively, which is prerequisite to foun-
dational understanding, prediction, and inverse
design, including microenvironments within
bioreactors.

Improving bioreactor performance for bioprocess
scale-up. Optimizing fermentations could be pur-
sued through a variety of approaches, including
changing feedstock injection sites, redesigning
vessels to improve mixing and mass transfer, adding
sensing methods that are easier to interpret and act
upon, and leveraging microbial population hetero-
geneity to improve process robustness.

® Scaling bioprocess information to better inform
laboratory-scale experiments since many biopro-
cess developers lack regular access to pilot, let alone
industrial, scales.

Engineering plants to: create specific transcrip-
tional levels or transcriptional circuits, implement
metabolic pathways within chloroplasts, enhance
stress resistance (e.g., to pathogens, drought, or
other environmental factors), redesign photosyn-
thesis, achieve nitrogen-fixing endosymbiosis,
improve crops for animal agriculture, achieve a
foundational understanding of plant develop-
ment including interactions at the tissue level,
predict how a plant will perform under different
environmental conditions, sequester CO,, and
integrate plant biology with climate and economic
modeling.

5.4 Workforce Development,
Diversity, Outreach, and
Social Responsibility

Data-driven design of biological systems represents

an emerging paradigm in basic and applied biological
research. Currently, few bioenergy researchers are well-
versed in both AI/ML and biology. Therefore, encour-
aging and facilitating research collaborations between
computational scientists and biologists is important,
along with training a new generation of scientists to
develop and apply AI/ML tools to long-standing sci-
entific challenges in bioenergy research.

Workshop participants discussed community devel-
opment issues related to education, outreach, work-
force development, partnerships with other funding
agencies, and social responsibilities and ethics (see
Appendix C: Breakout Session Assignments, p. 38).
The session opened with two talks: “Applying a
Human-Centered Design Approach for AI/ML Edu-
cational Outreach” and “Charting a Course for a Resil-
ient and Competitive Future—Bioeconomy Strategy
Engagement and Recommendations for Training.” The
talks provided valuable recommendations from related
efforts and potential leverageable strategies, including
the Task Force on Synthetic Biology and the Bioecon-
omy at Schmidt Futures. Key takeaways compiled from
participant breakout groups are described below.

Workforce Development

Participants were deeply engaged in conversations on
education, training, and workforce development. Sim-
ilar key themes emerged in multiple breakout groups,
including building an interdisciplinary workforce,
ensuring workforce diversity and inclusiveness, and
creatively engaging the public. The breakout group on
workforce development discussed how to train the
workforce to become synergistic with AI/ML and
how to encourage established, senior professionals to
welcome new technology. Two main challenges that
emerged from discussions were competition to retain
data scientists and engineers and the need for an inter-
disciplinary workforce.
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Competing with the private sector for a highly trained
workforce is another challenge potentially attributable
to salary, impact, job stability, and professional growth
opportunities. Industry may be perceived as having
more impact than government and academia and as
being more related to real-world challenges as, for
example, the AI/ML industry increasingly publishes
open-source tools. Other distinctions between indus-
try and academia are the current incentive mechanisms
for principal investigators and faculty and what might
be most appropriate for data scientists and engineers.

Another primary topic of discussion was creating an
interdisciplinary workforce. Most graduate students
and postdocs currently working in bioenergy research
are unfamiliar with AI/ML algorithms and automa-
tion and the kinds of problems AI/ML can solve. A
lack of understanding of different types of model-
derived knowledge can limit researchers moving into
ML-driven bioenergy research from non-ML fields.
Conversely, graduate students and postdocs who are
experts in AI/ML are not necessarily familiar with
the major scientific challenges related to bioenergy
research.

Overcoming these knowledge and skill gaps and train-
ing a new generation of scientists well-versed in both
AI/ML and biology require making AI/ML more
accessible to biological experimentalists and recruit-
ing talented computational scientists to bioenergy
research. DOE can create targeted opportunities for
collaboration and cross-training. Examples include
hackathons, CASP-like competitions, kaggle com-
petitions, protein design competitions, or “protein-
paloozas” to encourage collaboration between
biologists and computer scientists. Participants also
discussed training opportunities to overcome knowl-
edge and skill gaps, including 1- to 2-year postbacca-
laureate programs, flexible certificates similar to MBA
programs, and internship opportunities. In addition,
effort is needed to excite researchers about AI/ML
potential and motivate them to enter their data into
databases. Finally, communication of common stan-
dards among researchers is needed to ensure proper
and rigorous model validation standards.
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Strategies to build a more interdisciplinary workforce
involve: (1) increasing incentives for interdisciplinary
research and team-based science, including funding
mechanisms for computational and experimental sci-
entists; (2) building more transdisciplinary research
centers and training opportunities; and (3) gaining
recognition from funders. To engage computer scien-
tists with bioenergy research, participants suggested
more cross-training opportunities, additional funding
mechanisms for data scientists, and increased recog-
nition of deep knowledge in computational and engi-
neering areas.

Diversity

Workforce breakout group participants also focused on
ways to ensure diversity and inclusiveness in the devel-
oping workforce, noting that diversity is especially poor
in computational areas. Multiple strategies to increase
diversity include: (1) adopting better, more inclusive
hiring practices; (2) developing mechanisms to support
partnerships with minority-serving institutions (MSIs);
(3) offering more targeted summer research oppor-
tunities for undergraduate students from MSIs and
historically black colleges and universities; (4) ensuring
diverse representation at meetings and workshops;

(5) connecting with rural communities, including land
grant universities and extension scientists; and (6) cre-
ating additional internship opportunities.

Outreach

Four main themes emerged from the outreach break-
out group, several of which synergize with the diver-
sity discussion. First, early inclusion of biology and
computational science into students’ education paths
is important. More programs that ease student access
to curricula (e.g., industry internships and iCLEM)
are needed at the high school and college levels. Early
introduction to interdisciplinary training between
computational science and biology will enable greater
access to AI/ML in bioenergy research. Additionally,
creative activities like AlphaFold games will engage
and broaden participation.

Second, participants discussed the lack of student
funding for nonmedical biotechnology training
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programs. Biology-related internships are difficult to
scale and are comparatively expensive. A potential
solution is to create engaging virtual programs that
provide students with hands-on experience when
in-person opportunities are unavailable.

Third, participants recommended using better metrics
to incentivize outreach efforts, suggesting the impor-
tance of tracking science impact in ways other than
just number of publications. Number of citations, such
as for datasets, could be another metric of success.
Faculty could also support additional mentees or help
promote the field in other ways.

Finally, participants discussed the implications of public
misconceptions of bioenergy research, such as geneti-
cally modified organisms (GMOs). Using spokespeople
to help communicate the benefits of nonmedical bio-
tech would help dispel myths. Social media platforms
are good avenues to disseminate interesting work in

the field.

Social Responsibility and Ethics

The social responsibility and ethics breakout partic-
ipants also discussed misconceptions and disinfor-
mation in the public domain, along with potential
outreach efforts to better inform people about the

field and publicly funded eftorts. An emphasis on crit-
ical thinking and risk-benefit trade-off analysis could
be accomplished by (1) creating training materials

and activities that bridge AI/ML, biosecurity, and
research communities; (2) ensuring that materials
resonate with the community (i.e., what is the impact
on health and employment); (3) increasing researcher
engagement with professional creatives (e.g., writ-

ers) to develop interesting and accurate narratives;

(4) providing small supplemental funding mechanisms
to attract professional creatives to produce new forms
of content; and () including social and ethical consid-
erations in agency reports for policy-makers.

Participants also discussed the importance of diver-
sity, equity, inclusion, and accessibility (DEIA) in

workforce development. At all educational levels
(vocational, undergraduate, and graduate), programs
and training opportunities are needed that combine
biology with computer science or applied mathemat-
ics. One approach that can scale quickly is a hybrid
training environment that provides most materials
online (e.g,, videos, standard operating procedures,
and quizzes) while also offering hands-on experience.
In addition, industry engagement is key to building
new, more inclusive collaboration models such as
internships and visiting positions.

When considering DEIA, participants also explored
how to identify real versus perceived risk in applying
AI/ML to biotechnology. Three suggestions were
discussed. First, mechanisms should be developed

to screen potentially harmful cases early. Identifying
risks and risk tolerance at an early stage can constrain
research but defining risks and mitigation strategies
is critically important. Considering the potential dual
use of technologies might also be helpful. Second,
biosecurity tools (e.g., environmental sequencing

for pathogen detection) should be developed and
used to assess ecological risks of environmentally
deployed GMOs and engage regulators and the pub-
lic on rational risk analysis and governance. Finally,
transparency, care, and caution should be pillars that
guide the impacts of biotechnology applications. This
is especially critical in ethically dubious applications
such as explosives or narcotics production.

Finally, this breakout group considered ways to equita-
bly distribute the benefits and risks of technology. One
key suggestion was to distribute biomanufacturing,
especially jobs, where the raw materials are sourced
(e.g., in the agricultural Midwest). Also critical for
equitable benefit distribution is considering the geog-
raphy of next-generation feedstocks, including agricul-
ture, forestry, municipal wastes, and C1s. This model
will require both capital infrastructure build-out and
local workforce training for biomanufacturing jobs.
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DOE Charge

Department of Energy
Washington, D.C.

Recent advances in computing and data analytics have resulted in powerful artificial intelligence and
machine learning (AI/ML) techniques with significant potential for use in biotechnology and broader
genomics-based research. These techniques combined with advances in automation in the laboratory offer
the ability to rapidly accelerate the design and optimization of biological systems and processes for a variety
of DOE mission needs in energy and the environment.

A previous joint BER-BETO workshop in April 2021, “Designing for Deep Decarbonization: Accelerating the
U.S. Bioeconomy,” identified several areas within the transportation, industry, and agricultural sectors within
the U.S. economy where advances in biotechnology were poised to make significant contributions (DOE
2021a). The Biological and Environmental Research (BER) program within DOE’s Office of Science (SC)
and the Bioenergy Technology Office (BETO) within DOE’s Office of Energy Efficiency and Renewable
Energy (EERE) have an interest in accelerating the pace of development and transition of biotechnology
solutions out to industry as part of an overall strategy to promote a globally competitive U.S. bioeconomy.

Building on the previous workshop, the AI/ML for Bioenergy Research (AMBER) workshop should explore
the integration of AI/ML techniques within genomics-enabled basic and applied science and biodesign for
optimization of biological systems and processes (a fully automated laboratory system to accelerate iterative
design-build-test-learn systems) and toward advancing biomanufacturing. The use of AI/ML within an auto-
mated laboratory affords the ability for iterative learning that builds on previous data collection and character-
istics of the chassis organism (microbe or plant) to accelerate the optimization and design of new metabolic
processes for the production of desirable products and/or new functions. The pairing of AI/ML techniques
with automated instrumentation could lead to significant improvements not only in the more rapid design and
optimization of engineered organisms but also, if applied broadly, in the potential to change scientific investi-
gation in general.

The AMBER workshop should specifically focus on the broader scientific potential and immediate applica-
tions of integrated AI/ML systems with automation in the laboratory. Workshop participants should be tasked
with assessing the potential for AI/ML systems to advance the understanding of biology in general, how
integration of AI/ML techniques with automation in the laboratory could accelerate the design of biological
systems and optimize biomanufacturing, what data and compute infrastructure would be needed in such sys-
tems, and what expertise and workforce development efforts would be needed to shift toward these systems
within the broader science. We anticipate the recruitment of a broad and diverse group of participants that
would bring multidisciplinary expertise and knowledge to this effort. The participants would have expertise
with applications in AI/ML (related to areas of genomics, protein/structure prediction, imaging, synthetic
biology, lab automation and bioprocess development), data resource needs, and expertise in the areas of plant
and microbial systems (with experts outside these systems to be invited to bring in additional perspectives).
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As the growth of more sophisticated AI/ML models, fueled by the availability of ever larger datasets within
the DOE infrastructure, enables more automated analyses through the use of robotics, the stage is set for
potentially game-changing approaches to scientific investigation. The integration of AI/ML techniques with
automated experimentation offers powerful new approaches to research that not only take better advantage of
previous research results and data but iteratively build on and learn from new information generated within
these envisioned approaches to science. In addition to experimental design approaches, AI/ML can have
immediate impacts on bioprocess design for biomanufacturing as it is industrially practiced through more
precise control of conditions in bioreactors. These discussions are very important across both SC and EERE
programs as DOE looks to take advantage of breakthroughs in data science within a scientific complex rich in
computational and experimental capabilities.

We are excited about the workshop attendees sharing their thoughts, expertise, and imagination during the
AMBER workshop discussions and look forward to exciting times ahead for biological science and biotech-
nology development where DOE plays an important and leading role.

Sincerely,

R. Todd Anderson

Director, Biological Systems Science Division
Biological and Environmental Research program
Office of Science

Jay Fitzgerald

Chief Scientist

Bioenergy Technologies Office

Office of Energy Efficiency and Renewable Energy
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Workshop Agenda

August 23-25, 2022

All times Eastern

August 23, 2022

Session 1: Workshop Goals and Introduction to Artificial Intelligence/Machine Learning

12:00 p.m.

12:30 p.m.

1:10 p.m.
1:35 p.m.

2:35 p.m.

4:05 p.m.

Welcome and Opening

Welcome

Opening Remarks, Motivation, Background

Objectives and Structure

Introduction into Al for Biology

Advanced Research Directions in Al for Science,

Energy, and Security
Break

Huimin Zhao (University of lllinois,
Urbana-Champaign)

R. Todd Anderson (U.S. Depart-
ment of Energy), Jay Fitzgerald
(U.S. Department of Energy)
Huimin Zhao

Moderator: R. Todd Anderson

Rick Stevens (Argonne National
Laboratory)

Opportunities and Challenges in Emerging Al/ML-enabled Bioenergy Research

Short Talks and Panel Discussion

Structuring Data for Statistical Learning

Opportunities and Challenges in Emerging

Al/ML-Enabled Bioenergy

Recent Advances of Al for Biology and
Biotechnology

Elevator Pitch Presentations

Concluding Notes from Day 1

Moderator: Kerstin Kleese
van Dam (Brookhaven National
Laboratory)

Kjiersten Fagnan (DOE Joint Genome
Institute)

Dmitry Grapov (Amyris)

Marinka Zitnik (Harvard University)

Moderator: Nathan Hillson
(Lawrence Berkeley National
Laboratory)

Huimin Zhao
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August 24, 2022

Session 2: Defining Focus on Applications of Al/ML for Bioenergy Research

12:00 p.m.

12:05 p.m.

12:35 p.m.

2:05 p.m.
2:30 p.m.

Opening Remarks Huimin Zhao, Deepti Tanjore
(Lawrence Berkeley National
Laboratory)

Presentations and Q&A Moderator: Deepti Tanjore

Al- and XAl-Driven Systems Biology Daniel Jacobson (Oak Ridge National
Laboratory)

Taking the Cellular Perspective: A Multiscale, Cees Haringa (Delft University of

Computation-Driven Approach to Bioprocess Technology)
Design, Operation, and Optimization

Breakout Groups Moderator: Huimin Zhao
2-1 AI/ML Applications - Biology (Microbe/Microbiome)

2-2 AI/ML Applications - Biology (Plant)

2-3 AI/ML Applications - Biodesign (Microbe/Microbiome)
2-4 AI/ML Applications - Biodesign (Plant)

2-5 Al/ML Applications - Process

Break

Report Out Moderator: Deepti Tanjore

Session 3: Al/ML Approaches to Meet Bioenergy Research Needs

3:15 p.m. Opening Remarks Deepti Tanjore
3:20 p.m. Presentations and Q&A Moderator: Kerstin Kleese van Dam
Mathematically-Based Al/ML to Guide and James Sethian (University of
Analyze Experiments: Autonomous Self-Driving  California, Berkeley)
Labs, Complex Inversion, and Reconstruction
from Limited Scientific Data
Integrated Mechanistic and Al/ML Approach Frank Alexander (Brookhaven
for Bioenergy National Laboratory)
3:50 p.m. Breakout Groups Moderator: Huimin Zhao
3-1 AlI/ML Approaches
3-2 AI/ML Approaches
3-3 AI/ML Approaches
3-4 AI/ML Approaches
3-5 AlI/ML Approaches
5:20 p.m. Break
5:45 p.m. Report Outs Moderator: Kerstin Kleese van Dam
6:30 p.m. Concluding Notes Day 2 Kerstin Kleese van Dam
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Appendix B + Workshop Agenda

Session 4: Data and Compute Infrastructure Needed

12:00 p.m.
12:05 p.m.

12:35 p.m.

2:05 p.m.
2:30 p.m.

Opening Remarks Nathan Hillson

Presentations and Q&A Moderator: Nathan Hillson

Data and Compute Infrastructure Needed for Héctor Garcia Martin (Lawrence
AI/ML in Bioenergy Research Berkeley National Laboratory)

ML for CRISPR Genome Editing: A Case Study for Matt Hudson (University of lllinois,
Enhanced Methods in Agricultural Genetics Urbana-Champaign)

Breakout Groups Moderator: Kerstin Kleese van Dam

4-1 Data and Compute Infrastructure - Large-Scale Experimental Facilities
4-2 Data and Compute Infrastructure - Automation

4-3 Data and Compute Infrastructure - Laboratory-Based Research

4-4 Data and Compute Infrastructure - Computational Science

4-5 Data and Compute Infrastructure - Biological System Design and Control

Preparation for Report Out

Report Outs Moderator: Kerstin Kleese van Dam

Session 5: Community Development Including Outreach, Engagement, and Training

3:15 p.m.
3:20 p.m.

4:10 p.m.

5:10 p.m.
5:35 p.m.
6:05 p.m.
6:10 p.m.

Opening Remarks Huimin Zhao
Presentations and Q&A Moderator: Huimin Zhao

Applying a Human-Centered Design Approach  Rachel Switzky (University of lllinois,
for AI/ML Educational Outreach Urbana-Champaign)

Charting a Course for a Resilient and Competi- Mary Maxon (Schmidt Futures)
tive Future: Bioeconomy Strategy Engagement
and Recommendations for Training

Breakout Groups Moderator: Huimin Zhao

5-1 Community Development - Education

5-2 Community Development - Outreach

5-3 Community Development - Workforce Development

5-4 Community Development - Partnerships with Other Funding Agencies

5-5 Community Development - Social Responsibilities/Ethics

Break
Report Outs Moderator: Huimin Zhao
Concluding Notes Day 3 Huimin Zhao

Workshop Co-chairs Meeting
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Breakout Session Assignments

Session 2: AI/ML Applications
2-1 Biology: Microbe/Microbiome

Adam Arkin, group leader
Lawrence Berkeley National Laboratory

Emiley Eloe-Fadrosh
DOE Joint Genome Institute

Kjiersten Fagnan
DOE Joint Genome Institute

Ee-Been Goh
Zymergen, Inc.

Kerstin Kleese van Dam
Brookhaven National Laboratory

Shinjae Yoo
Brookhaven National Laboratory

Mary Maxon
Schmidt Futures

Arvind Ramanathan
Argonne National Laboratory

Rick Stevens
Argonne National Laboratory

Dawn Adin, observer
U.S. Department of Energy

Wayne Kontur, observer

U.S. Department of Energy

2-2 Biology: Plant
Sue Rhee, group leader
Carnegie Institution for Science

Arti Singh, group leader
lowa State University

Kristofer Bouchard
Lawrence Berkeley National Laboratory

Mary J. Dunlop
Boston University

Daniel Jacobson
Oak Ridge National Laboratory

Lee Ann McCue
Pacific Northwest National Laboratory

Carlos Soto
Brookhaven National Laboratory

Marinka Zitnik
Harvard University

Resham Kulkarni, observer
U.S. Department of Energy

Ramana Madupu, observer
U.S. Department of Energy

Catherine Ronning, observer
U.S. Department of Energy

2-3 Biodesign: Microbe/Microbiome

Héctor Garcia Martin, group leader
Lawrence Berkeley National Laboratory

Dmitry Grapov
Amyris

Lydia Kavraki

Rice University

Nina Lin

University of Michigan
Christopher Long

Ginkgo Bioworks, Inc.

Costas Maranas
The Pennsylvania State University

Chris Mungall
Lawrence Berkeley National Laboratory

Peter St. John
National Renewable Energy Laboratory

Huimin Zhao
University of lllinois, Urbana-Champaign

R. Todd Anderson, observer
U.S. Department of Energy

Boris Wawrik, observer

U.S. Department of Energy

2-4 Biodesign: Plant

Shin-Han Shiu, group leader
Michigan State University

Frank Alexander
Brookhaven National Laboratory
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Qun Liu
Brookhaven National Laboratory

Baskar Ganapathysubramanian
lowa State University

Nathan Hillson
Lawrence Berkeley National Laboratory

James Sethian
University of California, Berkeley

Matthew Hudson
University of Illinois, Urbana-Champaign

Rachel Switzky
University of Illinois, Urbana-Champaign

Neeraj Kumar
Pacific Northwest National Laboratory

Pablo Rabinowicz, observer
U.S. Department of Energy

Amy Swain, observer
U.S. Department of Energy

2-5 Process
Cees Haringa, group leader
Delft University of Technology

Gyorgy Babnigg
Argonne National Laboratory

Ben Brown
Lawrence Berkeley National Laboratory

Deepti Tanjore
Lawrence Berkeley National Laboratory

Corey Hudson
Sandia National Laboratories

Adam Perer
Carnegie Mellon University

Gina Tourassi
Oak Ridge National Laboratory

Bobbie-Jo Webb-Robertson
Pacific Northwest National Laboratory

Gayle Bentley, observer
U.S. Department of Energy

Jay Fitzgerald, observer
U.S. Department of Energy

Paul Sammak, observer
U.S. Department of Energy
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Session 3: Al/ML Approaches
3-1 Al/ML Approaches

Arvind Ramanathan, group leader
Argonne National Laboratory

Adam Arkin
Lawrence Berkeley National Laboratory

Emiley Eloe-Fadrosh
DOE Joint Genome Institute

Kjiersten Fagnan
DOE Joint Genome Institute

Ee-Been Goh
Zymergen, Inc.

Kerstin Kleese van Dam
Brookhaven National Laboratory

Mary Maxon
Schmidt Futures

Rick Stevens
Argonne National Laboratory

Shinjae Yoo
Brookhaven National Laboratory

Dawn Adin, observer
U.S. Department of Energy

Wayne Kontur, observer

U.S. Department of Energy

3-2 Al/ML Approaches

Carlos Soto, group leader
Brookhaven National Laboratory

Kristofer Bouchard
Lawrence Berkeley National Laboratory

Mary J. Dunlop
Boston University

Daniel Jacobson
Oak Ridge National Laboratory

Lee Ann McCue
Pacific Northwest National Laboratory

Sue Rhee
Carnegie Institution for Science

Arti Singh
lowa State University
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Marinka Zitnik
Harvard University

Resham Kulkarni, observer
U.S. Department of Energy

Ramana Madupu, observer
U.S. Department of Energy

Catherine Ronning, observer
U.S. Department of Energy
3-3 Al/ML Approaches

Costas Maranas, group leader
The Pennsylvania State University

Héctor Garcia Martin
Lawrence Berkeley National Laboratory

Chris Mungall
Lawrence Berkeley National Laboratory

Dmitry Grapov
Amyris

Lydia Kavraki

Rice University

Nina Lin

University of Michigan

Christopher Long
Ginkgo Bioworks, Inc.

Peter St. John
National Renewable Energy Laboratory

Huimin Zhao
University of lllinois, Urbana-Champaign

R. Todd Anderson, observer
U.S. Department of Energy

Boris Wawrik, observer

U.S. Department of Energy

3-4 Al/ML Approaches

Neeraj Kumar, group leader
Pacific Northwest National Laboratory

Frank Alexander
Brookhaven National Laboratory

Qun Liu
Brookhaven National Laboratory

Baskar Ganapathysubramanian
lowa State University

Nathan Hillson
Lawrence Berkeley National Laboratory

James Sethian
University of California, Berkeley

Matthew Hudson
University of lllinois, Urbana-Champaign

Rachel Switzky
University of lllinois, Urbana-Champaign

Shin-Han Shiu
Michigan State University

Pablo Rabinowicz, observer
U.S. Department of Energy

Amy Swain, observer

U.S. Department of Energy

3-5 Al/ML Approaches

Ben Brown, group leader
Lawrence Berkeley National Laboratory

Gyorgy Babnigg
Argonne National Laboratory

Cees Haringa
Delft University of Technology

Corey Hudson
Sandia National Laboratories

Adam Perer
Carnegie Mellon University

Deepti Tanjore
Lawrence Berkeley National Laboratory

Gina Tourassi
Oak Ridge National Laboratory

Bobbie-Jo Webb-Robertson
Pacific Northwest National Laboratory

Gayle Bentley, observer
U.S. Department of Energy

Jay Fitzgerald, observer
U.S. Department of Energy

Paul Sammak, observer
U.S. Department of Energy
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Session 4: Data and
Compute Infrastructure

4-1 Large-Scale Experimental Facilities

Lee Ann McCue, group leader
Pacific Northwest National Laboratory

Matthew Hudson
University of lllinois, Urbana-Champaign

Rachel Switzky
University of lllinois, Urbana-Champaign

Daniel Jacobson
Oak Ridge National Laboratory

Gina Tourassi
Oak Ridge National Laboratory

Kerstin Kleese van Dam
Brookhaven National Laboratory

James Sethian

University of California, Berkeley
Arti Singh

lowa State University

Rick Stevens
Argonne National Laboratory

R. Todd Anderson, observer
U.S. Department of Energy

Amy Swain, observer
U.S. Department of Energy

4-2 Automation
Ben Brown, group leader
Lawrence Berkeley National Laboratory

Shinjae Yoo, group leader
Brookhaven National Laboratory

Gyorgy Babnigg
Argonne National Laboratory

Emiley Eloe-Fadrosh
DOE Joint Genome Institute

Qun Liu
Brookhaven National Laboratory

Ee-Been Goh
Zymergen, Inc.

Dmitry Grapov
Amyris
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Mary Maxon
Schmidt Futures

Arvind Ramanathan
Argonne National Laboratory

Resham Kulkarni, observer
U.S. Department of Energy

Boris Wawrik, observer
U.S. Department of Energy

4-3 Laboratory-Based Research
Bobbie-Jo Webb-Robertson, group leader
Pacific Northwest National Laboratory

Mary J. Dunlop
Boston University

Corey Hudson
Sandia National Laboratories

Costas Maranas
The Pennsylvania State University

Adam Perer
Carnegie Mellon University

Sue Rhee
Carnegie Institution for Science

Shin-Han Shiu
Michigan State University

Huimin Zhao
University of lllinois, Urbana-Champaign

Marinka Zitnik
Harvard University

Gayle Bentley, observer
U.S. Department of Energy

Catherine Ronning, observer
U.S. Department of Energy

4-4 Computational Science
Chris Mungall, group leader
Lawrence Berkeley National Laboratory

Frank Alexander
Brookhaven National Laboratory

Carlos Soto
Brookhaven National Laboratory

Kjiersten Fagnan
DOE Joint Genome Institute

U.S. Department of Energy

April 2023

41



42

Artificial Intelligence and Machine Learning for Bioenergy Research: Opportunities and Challenges

Baskar Ganapathysubramanian
lowa State University

Nathan Hillson
Lawrence Berkeley National Laboratory

Lydia Kavraki
Rice University

Peter St. John
National Renewable Energy Laboratory

Dawn Adin, observer
U.S. Department of Energy

Wayne Kontur, observer
U.S. Department of Energy

Ramana Madupu, observer
U.S. Department of Energy

Paul Sammak, observer
U.S. Department of Energy

4-5 Biological System Design and Control

Héctor Garcia Martin, group leader
Lawrence Berkeley National Laboratory

Adam Arkin
Lawrence Berkeley National Laboratory

Kristofer Bouchard
Lawrence Berkeley National Laboratory

Deepti Tanjore
Lawrence Berkeley National Laboratory

Cees Haringa
Delft University of Technology

Neeraj Kumar

Pacific Northwest National Laboratory
Nina Lin

University of Michigan

Christopher Long
Ginkgo Bioworks, Inc.

Jay Fitzgerald, observer
U.S. Department of Energy

Pablo Rabinowicz, observer
U.S. Department of Energy

Session 5: Community
Development

5-1 Education
Rachel Switzky, group leader
University of lllinois, Urbana-Champaign

Emiley Eloe-Fadrosh
DOE Joint Genome Institute

Matthew Hudson
University of lllinois, Urbana-Champaign

Daniel Jacobson
Oak Ridge National Laboratory

Gina Tourassi
Oak Ridge National Laboratory

Kerstin Kleese van Dam
Brookhaven National Laboratory

Lee Ann McCue
Pacific Northwest National Laboratory

James Sethian
University of California, Berkeley

Arti Singh
lowa State University

Rick Stevens
Argonne National Laboratory

R. Todd Anderson, observer
U.S. Department of Energy

Amy Swain, observer
U.S. Department of Energy

5-2 Outreach

Ee-Been Goh, group leader
Zymergen, Inc.

Gyorgy Babnigg
Argonne National Laboratory

Arvind Ramanathan
Argonne National Laboratory

Ben Brown
Lawrence Berkeley National Laboratory

Dmitry Grapov
Amyris

Qun Liu
Brookhaven National Laboratory

April 2023

U.S. Department of Energy



Mary Maxon
Schmidt Futures

Shinjae Yoo
Brookhaven National Laboratory

Resham Kulkarni, observer
U.S. Department of Energy

Boris Wawrik
U.S. Department of Energy

5-3 Workforce Development
Chris Mungall, group leader
Lawrence Berkeley National Laboratory

Frank Alexander
Brookhaven National Laboratory

Mary J. Dunlop
Boston University

Corey Hudson
Sandia National Laboratories

Costas Maranas
The Pennsylvania State University

Shin-Han Shiu
Michigan State University

Sue Rhee
Carnegie Institution for Science

Bobbie-Jo Webb-Robertson
Pacific Northwest National Laboratory

Huimin Zhao
University of Illinois, Urbana-Champaign

Marinka Zitnik
Harvard University

Gayle Bentley, observer
U.S. Department of Energy

Catherine Ronning, observer
U.S. Department of Energy

5-4 Partnerships with Other
Funding Agencies

Kjiersten Fagnan, group leader
DOE Joint Genome Institute

Baskar Ganapathysubramanian
lowa State University

Appendix C « Breakout Session Assignments

Nathan Hillson
Lawrence Berkeley National Laboratory

Lydia Kavraki
Rice University

Adam Perer
Carnegie Mellon University

Carlos Soto
Brookhaven National Laboratory

Peter St. John
National Renewable Energy Laboratory

Wayne Kontur, observer
U.S. Department of Energy

Ramana Madupu, observer
U.S. Department of Energy

Paul Sammak, observer
U.S. Department of Energy

5-5 Social Responsibilities/Ethics
Nina Lin, group leader
University of Michigan

Adam Arkin
Lawrence Berkeley National Laboratory

Kristofer Bouchard
Lawrence Berkeley National Laboratory

Héctor Garcia Martin
Lawrence Berkeley National Laboratory

Deepti Tanjore
Lawrence Berkeley National Laboratory

Cees Haringa
Delft University of Technology

Neeraj Kumar
Pacific Northwest National Laboratory

Christopher Long
Ginkgo Bioworks, Inc.

Dawn Adin, observer
U.S. Department of Energy

Jay Fitzgerald, observer
U.S. Department of Energy

Pablo Rabinowicz, observer
U.S. Department of Energy

U.S. Department of Energy

April 2023

43



44

Workshop Participants and Position Papers

Organizing Committee

Huimin Zhao (Chair)
University of Illinois,
Urbana-Champaign

Nathan Hillson (Co-Chair)
Lawrence Berkeley National
Laboratory

Kerstin Kleese van Dam (Co-Chair)
Brookhaven National Laboratory

Deepti Tanjore (Co-Chair)
Lawrence Berkeley National
Laboratory

Participants

Frank Alexander
Brookhaven National Laboratory

Adam Arkin
Lawrence Berkeley National Laboratory

Gyorgy Babnigg
Argonne National Laboratory

Kristofer Bouchard
Lawrence Berkeley National Laboratory

Ben Brown
Lawrence Berkeley National Laboratory

Mary J. Dunlop
Boston University

Emiley Eloe-Fadrosh
DOE Joint Genome Institute

Kjiersten Fagnan
DOE Joint Genome Institute

Baskar Ganapathysubramanian
lowa State University

Héctor Garcia Martin
Lawrence Berkeley National Laboratory

Resham Kulkarni
DOE Office of Science

R. Todd Anderson
DOE Office of Science

Jay Fitzgerald
DOE Office of Energy Efficiency and
Renewable Energy

Gayle Bentley
DOE Office of Energy Efficiency and
Renewable Energy

Ee-Been Goh

Zymergen, Inc.

Dmitry Grapov

Amyris

Cees Haringa

Wayne Kontur
DOE Office of Science

Ramana Madupu
DOE Office of Science

Pablo Rabinowicz
DOE Office of Science

Delft University of Technology

Corey Hudson
Sandia National Laboratories

Matthew Hudson
University of lllinois, Urbana-Champaign

Daniel Jacobson
Oak Ridge National Laboratory

Lydia Kavraki
Rice University

Neeraj Kumar

Pacific Northwest National Laboratory
Nina Lin

University of Michigan

Qun Liu
Brookhaven National Laboratory

April 2023

U.S. Department of Energy



Christopher Long
Ginkgo Bioworks, Inc.

Costas Maranas
The Pennsylvania State University

Mary Maxon
Schmidt Futures

Lee Ann McCue
Pacific Northwest National Laboratory

Chris Mungall
Lawrence Berkeley National Laboratory

Adam Perer
Carnegie Mellon University

Arvind Ramanathan
Argonne National Laboratory

Sue Rhee
Carnegie Institution for Science

James Sethian
University of California, Berkeley

Shin-Han Shiu
Michigan State University

Appendix D + Workshop Participants and Position Papers

Arti Singh
lowa State University

Carlos Soto
Brookhaven National Laboratory

Peter St. John
National Renewable Energy Laboratory

Rick Stevens
Argonne National Laboratory

Rachel Switzky
University of lllinois, Urbana-Champaign

Gina Tourassi
Oak Ridge National Laboratory

Bobbie-Jo Webb-Robertson
Pacific Northwest National Laboratory

Shinjae Yoo
Brookhaven National Laboratory

Marinka Zitnik
Harvard University

Position Papers

“The Data, Computing, and Experimental Infrastructures
Needed to Integrate Al/ML Approaches into Biological
Research: Developing Self-Driving Laboratories for
Al-Driven Science,” by Gyorgy Babnigg, Casey Stone,
Doga Ozgulbas, Rafael Vescovi, Dion Antonopoulos,
Arvind Ramanathan, Thomas Brettin.

“Microfluidics Self-Driving Labs for Systematic TRY
Improvement in Synthetic Biology,” by Héctor Garcia
Martin.

“Al for Crop Improvement with Reduced Input for Future
Environments,” by Matthew Hudson.

“State of the Art Bioreactor Operation: Self-Driving Biore-
actor Adapting with Biological Changes Position Paper,”
by Deepti Tanjore.

“Image Analysis for Quantifying Biofuel Production in
Single Cells,” by Mary J. Dunlop.

“Al/ML for Integration of Multi-Scale and Multi-Modal
Bioimaging Data for Bioenergy Research,” by Qun Liu,
Xiao Zhang, Yuewei Lin.

“Large Language Model (LLM)-Enabled Knowledge Base
for Systems & Synthetic Biology,” by Carlos Soto.

“Biological Applications of Optimal Prior Development
and Transfer Learning,” by Francis J. Alexander.

“Al-Enabled Data Integration and Fusion for Optimal
Bioenergy/Bio-product Design,” by Arvind Ramanathan,
Alexander Brace, Thomas Brettin, Austin Clyde, Gautham
Dharuman, lan Foster, Michael Irvin, Carla Mann,
Priyanka Setty, Rick Stevens, Max Zvyagin.

U.S. Department of Energy

April 2023

45



46

Artificial Intelligence and Machine Learning for Bioenergy Research: Opportunities and Challenges

References

Beal, J., and M. Rogers. 2020. “Levels of Autonomy in Synthetic
Biology Engineering,” Molecular Systems Biology 16(12), e10019.
DOI:10.15252/msb.202010019.

Benegas, G., et al. 2022. “DNA Language Models are Powerful
Zero-Shot Predictors of Non-Coding Variant Effects,” bioRxiv, pre-
print. DOI1:10.1101/2022.08.22.504706.

Berliner, A. J., et al. 2022. “Space Bioprocess Engineering on the
Horizon,” Communications Engineering 1(13). DO1:10.1038/
s44172-022-00012-9.

Bevan, N,, et al. 2019. “Quantifying Cell Subsets and Heterogene-
ity in Living Cultures Using Real Time Live-Cell Analysis,” Cancer
Research 79(13) Supplement, 2156. DO1:10.1158/1538-7445.
AM2019-2156.

Biswas, S., et al. 2021. “Low-N Protein Engineering with Data-
Efficient Deep Learning,” Nature Methods 18, 389-396.
DOI:10.1038/s41592-021-01100-y.

BNL. 2021. “Physics on Autopilot: Brookhaven National Lab
Applies Al to Make Big Experiments Autonomous,” Brookhaven
National Laboratory. 10 November 2021. bnl.gov/newsroom/
news.php?a=219206

Brown, T. B, et. al. 2020. “Language Models are Few Shot
Learners,” arXiv, 205.14165v4, preprint. DOI:10.48550/
arXiv.2005.14168S.

Carbonell, P, et al. 2019. “Opportunities at the Intersection of Syn-
thetic Biology, Machine Learning, and Automation,” ACS Synthetic
Biology 8(7), 1474-1477.DOI:10.1021/acssynbio.8b00540.

Cheng, C.-Y,, et al. 2021. “Evolutionarily Informed Machine
Learning Enhances the Power of Predictive Gene-to-Phenotype
Relationships,” Nature Communications 12, 5627. DOI:10.1038/
$41467-021-25893-w.

Crater, J. S, and J. C. Lievense. 2018. “Scale-Up of Industrial
Microbial Processes,” FEMS Microbiology Letters 365(13), fny138.
DOI:10.1093/femsle/fny138.

Cho, H,, et al. 2016. “Compact Integration of Multi-Network
Topology for Functional Analysis of Genes,” Cell Systems 3(6),
540-548.e5.DOI:10.1016/j.cels.2016.10.017.

Culley, C., et al. 2020. “A Mechanism-Aware and Multiomic
Machine-Learning Pipeline Characterizes Yeast Cell Growth,”
PNAS 117(31), 18869-18879. DO1:10.1073/pnas.2002959117.

Dijk, A. D.J. van, et al. 2021. “Machine Learning in Plant Science
and Plant Breeding,” iScience 24(1), 101890. DOI:10.1016/j.
is¢i.2020.101890.

DiMucci, D,, et al. 2018. “Machine Learning Reveals Missing
Edges and Putative Interaction Mechanisms in Microbial Eco-
system Networks,” mSystems 3(S), €00181-18. DOI:10.1128/
mSystems.00181-18.

GFISCO. 2019. “FAIR Principles,” GO FAIR International Sup-
port and Coordination Office. go-fair.org/fair-principles/

Greener, J. G, et al. 2022. “A Guide to Machine Learning for
Biologists,” Nature Reviews Molecular Cell Biology 23(1), 40-5S.
DOI:10.1038/s41580-021-00407-0.

Greenhalgh, J. C,, et al. 2021. “Machine Learning-Guided Acyl-

ACP Reductase Engineering for Improved In Vivo Fatty Alcohol
Production,” Nature Communications 12(5825). DOI:10.1038/

s41467-021-25831-w.

HamediRad, M., et al. 2019. “Towards a Fully-Automated
Algorithm-Driven Platform for Biosystems Design,” Nature Com-
munications 10(5150). DOI:10.1038/s41467-019-13189-z.

Haringa, C,, et al. 2018. “Computational Fluid Dynamics Simula-
tion of an Industrial P. chrysogenum Fermentation with a Coupled
9-Pool Metabolic Model: Towards Rational Scale-Down and
Design Optimization,” Chemical Engineering Science 175, 12-24.
DOI:10.1016/j.ces.2017.09.020.

Herndndez Medina, R., et al,, et al. 2022. “Machine Learning and
Deep Learning Applications in Microbiome Research,” ISME Com-
munications 2(98). DOI:10.1038/543705-022-00182-9.

Hie, B. L., and K. K. Yang. 2022. “Adaptive Machine Learning for
Protein Engineering,” Current Opinion in Structural Biology 72,
145-152.DOI:10.1016/.sb1.2021.11.002.

Hsu, C,, et al. 2022. “Learning Protein Fitness Models from
Evolutionary and Assay-Labeled Data,” Nature Biotechnology 40,
1114-1122.DOI:10.1038/541587-021-01146-5.

Hsu, C. S., and P. R. Robinson, Eds. 2006. Practical Advances
in Petroleum Processing, Springer-Verlag, New York.
DOI:10.1007/978-0-387-25789-1.

Hu, S, et al. 2002. “Combine Molecular Modeling with Optimi-
zation to Stretch Refinery Operation,” Industrial and Engineering
Chemistry Research 41(4), 825-841. DO1:10.1021/ie0010215.

Humphrey, A. 1998. “Shake Flask to Fermentor: What Have We
Learned?” Biotechnology Progress 14(1), 3-7. DOI:10.1021/
bp970130k.

Iwai, K., et al. 2022. “Scalable and Automated CRISPR-Based
Strain Engineering Using Droplet Microfluidics,” Microsystems and
Nanoengineering 8(31). DOI:10.1038/s41378-022-00357-3.

April 2023

U.S. Department of Energy


https://doi.org/10.15252/msb.202010019
https://www.biorxiv.org/content/10.1101/2022.08.22.504706v1
https://www.nature.com/articles/s44172-022-00012-9
https://www.nature.com/articles/s44172-022-00012-9
https://doi.org/10.1158/1538-7445.AM2019-2156
https://doi.org/10.1158/1538-7445.AM2019-2156
https://doi.org/10.1038/s41592-021-01100-y
https://www.bnl.gov/newsroom/news.php?a=219206
https://www.bnl.gov/newsroom/news.php?a=219206
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2005.14165
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.1021%2Facssynbio.8b00540&data=05%7C01%7Ckerrjn%40ornl.gov%7Cdad0e8f39f27480400ed08db20ef5f47%7Cdb3dbd434c4b45449f8a0553f9f5f25e%7C1%7C0%7C638139984709562482%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=QM430r4YkOHpqIqznLMnQxNwhessRlhp%2FAYfi4K5kWs%3D&reserved=0
https://doi.org/10.1038/s41467-021-25893-w
https://doi.org/10.1038/s41467-021-25893-w
https://doi.org/10.1093/femsle/fny138
https://doi.org/10.1016/j.cels.2016.10.017
https://www.pnas.org/doi/10.1073/pnas.2002959117
https://pubmed.ncbi.nlm.nih.gov/33364579/
https://pubmed.ncbi.nlm.nih.gov/33364579/
https://journals.asm.org/doi/10.1128/mSystems.00181-18
https://journals.asm.org/doi/10.1128/mSystems.00181-18
https://www.go-fair.org/fair-principles/
https://doi.org/10.1038/s41580-021-00407-0
https://www.nature.com/articles/s41467-021-25831-w
https://www.nature.com/articles/s41467-021-25831-w
https://www.nature.com/articles/s41467-019-13189-z
https://doi.org/10.1016/j.ces.2017.09.020
https://www.nature.com/articles/s43705-022-00182-9
https://doi.org/10.1016/j.sbi.2021.11.002
https://www.nature.com/articles/s41587-021-01146-5
https://link.springer.com/book/10.1007/978-0-387-25789-1
https://www.scopus.com/record/display.uri?eid=2-s2.0-0037138680&origin=inward
https://aiche.onlinelibrary.wiley.com/doi/full/10.1021/bp970130k
https://aiche.onlinelibrary.wiley.com/doi/full/10.1021/bp970130k
https://www.nature.com/articles/s41378-022-00357-3

Ji, W,, et al. 2021. “Stiff-PINN: Physics-Informed Neural Network
for Stiff Chemical Kinetics,” The Journal of Physical Chemistry A
125, 8098-8106. DOI:10.1021/acs.jpca.1c05102.

Jumper, J,, et al. 2021. “Highly Accurate Protein Structure Pre-
diction with AlphaFold,” Nature §96, 583-589. DOI:10.1038/
s41586-021-03819-2.

Kavvas, E. S, et al. 2020. “A Biochemically-Interpretable Machine
Learning Classifier for Microbial GWAS,” Nature Communications
11,2580.DOI:10.1038/s41467-020-16310-9.

Kim, M., et al. 2016. “Multi-Omics Integration Accurately Pre-
dicts Cellular State in Unexplored Conditions for Escherichia coli,”
Nature Communications 7, 13090. DOI:10.1038 /ncomms13090.

Lee, H,, et al. 2019. “DeepDriveMD: Deep-Learning Driven Adap-
tive Molecular Simulations for Protein Folding,” arXiv, preprint.
DOI:10.48550/arXiv.1909.07817.

Li, G, et al. 2019. “Can Machine Learning Revolutionize Directed
Evolution of Selective Enzymes?” Advanced Synthesis and Catalysis
361,2377-2386.D0I:10.1002/adsc.201900149.

Luo, Y, etal. 2021. “ECNet Is an Evolutionary Context-Integrated
Deep Learning Framework for Protein Engineering,” Nature Com-
munications 12, 5743. DOI1:10.1038/s41467-021-25976-8.

Ma, J,, et al. 2018. “Using Deep Learning to Model the Hierarchical
Structure and Function of a Cell,” Nature Methods 15,290-298.
DOI:10.1038/nmeth.4627.

Madani, A., et al. 2020. “ProGen: Language Modeling for Protein
Generation,” arXiv, preprint. DOI:10.1101/2020.03.07.982272.

Martin, H. G, et al. 2023. “Perspectives for Self-Driving Labs in
Synthetic Biology,” Current Opinion in Biotechnology 79, 102881.
DOI:10.1016/j.copbio.2022.102881.

Nguyen, N. D,, and D. Wang. 2020. “Multiview Learning for
Understanding Functional Multiomics,” PLOS Computational Biol-
0gy 16,e1007677. DOI1:10.1371/journal.pcbi.1007677.

Radivojevi¢, T, et al. 2020. “A Machine Learning Automated Rec-
ommendation Tool for Synthetic Biology,” Nature Communications
11, 4879.DOI:10.1038/s41467-020-18008-4.

Reed, S, et al. 2022. “A Generalist Agent,” arXiv, preprint.
DOI:10.48550/arXiv.2205.06175.

Saadi, A. al-, et al. 2020. “IMPECCABLE: Integrated Modeling
Pipeline for COVID Cure by Assessing Better Leads,” arXiv, pre-
print. DOI1:10.48550/arXiv.2010.06574.

Salis, H. M.,, et al. 2009. “Automated Design of Synthetic Ribosome
Binding Sites to Control Protein Expression,” Nature Biotechnology
27,946-950. DOI1:10.1038/nbt.1568.

Appendix E ¢ References

Sanchez-Lengeling, B, and A. Aspuru-Guzik. 2018. “Inverse
Molecular Design Using Machine Learning: Generative Models for
Matter Engineering” Science 361 (6400), 360-365.DOI1:10.1126/
science.aat2663.

Senne de Oliveira Lino, F, et al. 2021. “Complex Yeast—Bacteria
Interactions Affect the Yield of Industrial Ethanol Fermen-
tation,” Nature Communications 12, 1498. DOI:10.1038/
s41467-021-21844-7.

Stein, H. S., and J. M. Gregoire. 2019. “Progress and Prospects for
Accelerating Materials Science with Automated and Autonomous
Workflows,” Chemical Science 10, 9640-9649. DO1:10.1039/
C9SC03766G.

Stocks, S. M., 2013. “Ch. 7: Industrial Enzyme Production for the
Food and Beverage Industries: Process Scale Up and Scale Down.”
In Microbial Production of Food Ingredients, Enzymes and Nutraceu-
ticals. Eds. McNeil, B., et al. Woodhead Publishing, Cambridge,
Mass. elsevier.com/books/microbial-production-of-food-ingredien
ts-enzymes-and-nutraceuticals/mcneil /978-0-85709-343-1

U.S.DOE. 2022a. AI@DOE: Interim Executive Report. U.S. Depart-
ment of Energy Office of Science. DOI:10.2172/1872103.

U.S. DOE. 2022b. Artificial Intelligence for Earth System Predictabil-
ity (AI4ESP): 2021 Workshop Report. U.S. Department of Energy
Office of Science. publications.anl.gov/anlpubs/2022/09/177828.
pdf

U.S. DOE. 2021a. Designing for Deep Decarbonization: Acceler-
ating the U.S. Bioeconomy Workshop Report. U.S. Department

of Energy Office of Energy Efficiency and Renewable Energy

and Office of Science. biosciences.Ibl.gov/wp-content/
uploads/2021/12/21-BA0O-3054-Designing-the-Bioeconomy-for-
Deep-Decarbonization-Report_vS.pdf

U.S. DOE. 2021b. National Virtual Biotechnology Laboratory:
Report on Rapid R&D Solutions to the COVID-19 Crisis.

U.S. Department of Energy Office of Science. science.osti.gov/-/
media/nvbl/pdf/NVBL_Technical Report.pdf

U.S. DOE. 2020a. AI for Science: Report on the Department of
Energy (DOE) Town Halls on Artificial Intelligence (AI) for Science.
U.S. Department of Energy Office of Science. publications.anl.gov/
anlpubs/2020/03/158802.pdf

U.S. DOE. 2020b. Advanced Scientific Computing Advisory Commit-
tee (ASCAC) Subcommittee Report on AI/ML, Data-Intensive Science
and High-Performance Computing. U.S. Department of Energy
Office of Science. science.osti.gov/-/media/ascr/ascac/pdf/meet-
ings/202009/AI4Sci-ASCAC_202009.pdf

Vaishnay, E. D,, et al. 2022. “The Evolution, Evolvability and
Engineering of Gene Regulatory DNA,” Nature 603, 455-463.
DOI:10.1038/541586-022-04506-6.

U.S. Department of Energy

April 2023

47


https://doi.org/10.1021/acs.jpca.1c05102
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41467-020-16310-9
https://www.nature.com/articles/ncomms13090
https://arxiv.org/abs/1909.07817
https://doi.org/10.1002/adsc.201900149
https://www.nature.com/articles/s41467-021-25976-8
https://www.nature.com/articles/nmeth.4627
https://www.biorxiv.org/content/10.1101/2020.03.07.982272v2
https://www.sciencedirect.com/science/article/pii/S0958166922002154?via%3Dihub
https://doi.org/10.1371/journal.pcbi.1007677
https://www.nature.com/articles/s41467-020-18008-4
https://arxiv.org/abs/2205.06175
https://arxiv.org/abs/2010.06574
https://www.nature.com/articles/nbt.1568
https://www.science.org/doi/10.1126/science.aat2663
https://www.science.org/doi/10.1126/science.aat2663
https://www.nature.com/articles/s41467-021-21844-7
https://www.nature.com/articles/s41467-021-21844-7
https://pubs.rsc.org/en/content/articlelanding/2019/sc/c9sc03766g
https://pubs.rsc.org/en/content/articlelanding/2019/sc/c9sc03766g
http://www.elsevier.com/books/microbial-production-of-food-ingredients-enzymes-and-nutraceuticals/mcneil/978-0-85709-343-1
http://www.elsevier.com/books/microbial-production-of-food-ingredients-enzymes-and-nutraceuticals/mcneil/978-0-85709-343-1
https://doi.org/10.2172/1872103
https://publications.anl.gov/anlpubs/2022/09/177828.pdf
https://publications.anl.gov/anlpubs/2022/09/177828.pdf
https://biosciences.lbl.gov/wp-content/uploads/2021/12/21-BAO-3054-Designing-the-Bioeconomy-for-Deep-Decarbonization-Report_v5.pdf
https://biosciences.lbl.gov/wp-content/uploads/2021/12/21-BAO-3054-Designing-the-Bioeconomy-for-Deep-Decarbonization-Report_v5.pdf
https://biosciences.lbl.gov/wp-content/uploads/2021/12/21-BAO-3054-Designing-the-Bioeconomy-for-Deep-Decarbonization-Report_v5.pdf
https://science.osti.gov/-/media/nvbl/pdf/NVBL_Technical_Report.pdf
https://science.osti.gov/-/media/nvbl/pdf/NVBL_Technical_Report.pdf
https://publications.anl.gov/anlpubs/2020/03/158802.pdf
https://publications.anl.gov/anlpubs/2020/03/158802.pdf
https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/202009/AI4Sci-ASCAC_202009.pdf
https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/202009/AI4Sci-ASCAC_202009.pdf
https://www.nature.com/articles/s41586-022-04506-6

48

Artificial Intelligence and Machine Learning for Bioenergy Research: Opportunities and Challenges

Volk, M. J,, et al. 2022. “Metabolic Engineering: Methodologies
and Applications,” Chemical Reviews. DOI:10.1021/acs.chem-
rev.2c00403. In review.

Volk, M. J,, et al. 2020. “Biosystems Design by Machine Learning,”
ACS Synthetic Biology 9(7), 1514-1533. DO1:10.1021/
acssynbio.0c00129.

Wang, H,, et al. 2022. “Chemical-Reaction-Aware Molecule Repre-
sentation Learning,” International Conference on Learning Relations.
openreview.net/forum?id=6sh3pIzKS-

Wang, Y, et al. 2021. “Directed Evolution: Methodologies
and Applications,” Chemical Reviews 121(20), 12384-12444.
DOI:10.1021/acs.chemrev.1c00260.

Wehrs, M., et al., 2019. “Engineering Robust Production Microbes
for Large-Scale Cultivation,” Trends in Microbiology 27(6), 524
537.D01I:10.1016/j.tim.2019.01.006.

White House. 2022. Executive Order on Advancing Biotechnol-

ogy and Biomanufacturing Innovation for a Sustainable, Safe,

and Secure U.S. Bioeconomy. whitehouse.gov/briefing-room/
presidential-actions/2022/09/12/executive-order-on-
advancing-biotechnology-and-biomanufacturing-innovation-for-a-
sustainable-safe-and-secure-american-bioeconomy/

Wittmann, B. ], et al. 2021. “Advances in Machine Learning for
Directed Evolution,” Current Opinion in Structural Biology 69,
11-18.DOI:10.1016/j.sbi.2021.01.008.

Yang, K. K., et al. 2019. “Machine-Learning-Guided Directed
Evolution for Protein Engineering,” Nature Methods 16, 687-694.
DOI:10.1038/541592-019-0496-6.

Zampieri, G., et al. 2019. “Machine and Deep Learning Meet
Genome-Scale Metabolic Modeling,” PLOS Computational Biology
15, e1007084. DOI:10.1371/journal.pcbi.1007084.

Zelezniak, A., et al. 2018. “Machine Learning Predicts the
Yeast Metabolome from the Quantitative Proteome of Kinase
Knockouts,” Cell Systems 7(3), 269-283.e6. DOI:10.1016/j.
cels.2018.08.001.

Zhang, J., et al. 2020. “Combining Mechanistic and Machine
Learning Models for Predictive Engineering and Optimization
of Tryptophan Metabolism,” Nature Communications 11, 4880.
DOI:10.1038/s41467-020-17910-1.

April 2023

U.S. Department of Energy


https://doi.org/10.1021/acs.chemrev.2c00403
https://doi.org/10.1021/acs.chemrev.2c00403
https://pubs.acs.org/doi/10.1021/acssynbio.0c00129
https://pubs.acs.org/doi/10.1021/acssynbio.0c00129
https://openreview.net/forum?id=6sh3pIzKS-
https://pubs.acs.org/doi/full/10.1021/acs.chemrev.1c00260
https://www.sciencedirect.com/science/article/pii/S0966842X19300198
https://www.whitehouse.gov/briefing-room/presidential-actions/2022/09/12/executive-order-on-advancing-biotechnology-and-biomanufacturing-innovation-for-a-sustainable-safe-and-secure-american-bioeconomy/
https://www.whitehouse.gov/briefing-room/presidential-actions/2022/09/12/executive-order-on-advancing-biotechnology-and-biomanufacturing-innovation-for-a-sustainable-safe-and-secure-american-bioeconomy/
https://www.whitehouse.gov/briefing-room/presidential-actions/2022/09/12/executive-order-on-advancing-biotechnology-and-biomanufacturing-innovation-for-a-sustainable-safe-and-secure-american-bioeconomy/
https://www.whitehouse.gov/briefing-room/presidential-actions/2022/09/12/executive-order-on-advancing-biotechnology-and-biomanufacturing-innovation-for-a-sustainable-safe-and-secure-american-bioeconomy/
https://pubmed.ncbi.nlm.nih.gov/33647531/
https://www.nature.com/articles/s41592-019-0496-6
https://doi.org/10.1371/journal.pcbi.1007084
https://pubmed.ncbi.nlm.nih.gov/30195436/
https://pubmed.ncbi.nlm.nih.gov/30195436/
https://www.nature.com/articles/s41467-020-17910-1

Acronyms and Abbreviations

Al
AMBER

BER
BETO

BioBERT

bpsA

C1 compounds

CABBI

Cas

CNN

co,
COVID-19
CRISPR

DBTL
DEIA

DOE

DNABERT

DSP

ECNet

EERE

ENDURABLE

artificial intelligence

Artificial Intelligence and Machine
Learning for Bioenergy Research

DOE Biological and Environmental
Research program

DOE Bioenergy Technologies Office

Bidirectional Encoder Representations
from Transformers for Biomedical
Text Mining

blue-pigment synthetase gene
one-carbon molecules

DOE's Center for Advanced Bioenergy
and Bioproducts Innovation

CRISPR-associated protein
convolutional neural network
carbon dioxide

coronavirus disease 2019

clustered regularly interspaced short
palindromic repeats

design-build-test-learn cycle
diversity, equity, inclusion, and
accessibility

U.S. Department of Energy

Bidirectional Encoder Representations
from Transformers for DNA sequence
analysis

downstream processing

evolutionary context-integrated
neural network

DOE Office of Energy Efficiency
and Renewable Energy

Benchmark Datasets and Al/ML
Models with Queryable Metadata

FAIR

galK
GCN
GEM
GeneBERT

GLaM
ginA
GMO
GPT
HPC
iCLEM

LaMDA

LLM
MAC
ML
msi
NLP
NMDC

NSLS-II

NVBL

PaLM
SC

findable, accessible, interoperable,
reusable

galactokinase gene
graph convolutional network
genome-scale metabolic model

Bidirectional Encoder Representations
from Transformers for gene
regulatory analysis

Google’s Generalist Language Model
glutamine synthetase gene
genetically modified organism
Generative Pre-Trained Transformer
high-performance computing

Introductory College-Level Experience
in Microbiology

Google's Language Model for
Dialogue Applications

large language model
Metabolic Allele Classifier
machine learning
minority-serving institution
natural language processing

National Microbiome Data
Collaborative

Brookhaven National Laboratory’s
National Synchrotron Light Source Il

National Virtual Biotechnology
Laboratory

Google’s Pathways Language Model
DOE Office of Science

U.S. Department of Energy
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