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ABSTRACT

This report details a new method for propagating parameter uncertainty (forward uncertainty quan-
tification) in partial differential equations (PDE) based computational mechanics applications. The
method provides full-field quantities of interest by solving for the joint probability density function
(PDF) equations which are implied by the PDEs with uncertain parameters. Full-field uncertainty
quantification enables the design of complex systems where quantities of interest, such as failure
points, are not known apriori. The method, motivated by the well-known probability density func-
tion (PDF) propagation method of turbulence modeling, uses an ensemble of solutions to provide
the joint PDF of desired quantities at every point in the domain. A small subset of the ensem-
ble is computed exactly, and the remainder of the samples are computed with approximation of
the driving (dynamics) term of the PDEs based on those exact solutions. Although the proposed
method has commonalities with traditional interpolatory stochastic collocation methods applied
directly to quantities of interest, it is distinct and exploits the parameter dependence and smooth-
ness of the dynamics term of the governing PDEs. The efficacy of the method is demonstrated
by applying it to two target problems: solid mechanics explicit dynamics with uncertain material
model parameters, and reacting hypersonic fluid mechanics with uncertain chemical kinetic rate
parameters. A minimally invasive implementation of the method for representative codes SPARC
(reacting hypersonics) and NimbleSM (finite- element solid mechanics) and associated software
details are described. For solid mechanics demonstration problems the method shows order of
magnitudes improvement in accuracy over traditional stochastic collocation. For the reacting hy-
personics problem, the method is implemented as a streamline integration and results show very
good accuracy for the approximate sample solutions of re-entry flow past the Apollo capsule ge-
ometry at Mach 30.
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1. INTRODUCTION

Design of high consequence systems relies on robust uncertainty quantification (UQ) of model-
ing and simulation of coupled physics and multi-scale phenomena. Quantifying uncertainty from
myriad physical and algorithmic sources is challenging and, currently, computationally costly. The
influence of uncertainties is particularly severe under extreme conditions and abnormal environ-
ments, precisely where reliability requirements are most important. Mission relevant engineering
simulations involve complex models for which existing UQ approaches are so infeasible as to
prevent even being attempted. The focus of this project is a novel approach for propagating param-
eter uncertainty, i.e. forward uncertainty quantification, in mission relevant engineering simulation
codes that solve computational mechanics problems. In this chapter we first discuss the importance
and challenges of forward UQ and present a high-level overview of existing UQ approaches. We
then motivate the need for an alternative approach that can overcome the computational difficulties
and discuss the goals of our project.

1.1. Forward UQ and existing methods

Generally speaking, UQ is a relatively mature field of study with well-established theory and meth-
ods [2]. Determining the uncertainty of model parameters, given calibration data, and propagating
the parameter uncertainty to design quantities of interest (QoIs) are two of the primary tasks in UQ.
In this work we focus on forward propagation of uncertainty given model parameter uncertainties.
Brute force sampling of the input parameter distributions and propagating through the simulation-
based forward map to obtain samples of the QoIs is a straightforward albeit expensive method of
forward UQ. Given the computational expense of simulations used for engineering analysis and
design, UQ has traditionally relied heavily on efficient and sufficiently accurate surrogate models
of specific QoIs as functions of the uncertain parameters. These surrogate models fall into broad
categories: (a) regression, such as Gaussian processes [3] and radial basis functions [4], which are
relatively expensive; (b) projection, such as polynomial chaos expansions (PCE) [5], which require
the computation of integral-based inner products; and (c) interpolation, such as stochastic colloca-
tion [6], which can be relatively inexpensive and constructed independently of particular values of
output. Given the need to model time-evolving quantities the expense of constructing a surrogate
model can be considerable. The text by R. Smith [7] provides survey of alternative methods.

In particular, stochastic collocation (SC) is a widely-used method. A number of reviews survey the
state of the art. For instance, Eldred [8] compared non-intrusive polynomial chaos expansion (PCE)
with stochastic collocation for the tasks of uncertainty quantification, design under uncertainty,
and reliability analysis. Various methods of constructing these representations, such as regression
and projection, were explored, and their advantages and costs were compared. More recently,
Xiu [6] gave a comprehensive overview of SC in interpolation, regression, and pseudo-projection
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modes; and outlined tensor product and sparse grid schemes. The work also described the use of
unstructured samples via “least interpolation.” The work of Babuška et al. [9] provides a thorough
analysis of convergence and correspondence with stochastic Galerkin techniques for elliptic PDEs
such as equilibrium elasticity with random coefficients.

An alternate category of surrogate models–reduced order models (ROMs) [10, 11, 12]–aim to di-
rectly reduce the complexity of the full computational model by projecting onto a spatio-temporal
subspace. This can make a brute force sampling of the input parameter distributions more feasible
since the ROM surrogates are less expensive than the full order model by orders of magnitude.
Further cost savings can be realized by also projecting onto a subspace of the stochastic dimen-
sions corresponding to the uncertain parameters [13]. Projection based ROMs typically rely on an
offline stage for identifying the subspace, which can be expensive, and PDE non-linearities pose
challenges for the degree of reduction achievable for satisfactory accuracy. Efficient methods to
handle PDE non-linearities while still saving computational expense is an active research topic
[14].

1.2. Goals of the project

Forward UQ is challenging when the computational model is expensive owing to non-linear physics
and/or the sources of uncertainty are many (large stochastic dimension). The current UQ paradigms
offer a choice between extreme computational burden or simplification of a complex computational
model; the current methods either require numerous solves of the complex model or a transforma-
tion of the governing partial differential equations (PDEs) resulting in deep and pervasive code
overhaul. The goal of this project is a novel paradigm for forward UQ that overcomes these and
other challenges while remaining computationally feasible and providing comprehensive uncer-
tainty information. This is achieved by directly solving the probability density function (PDF)
equations resulting from the governing physics: partial differential equations (PDEs) with un-
certain parameters. This provides full probabilistic field information, i.e., the joint PDF of the
solution variables at every point in the computational domain, which is comprehensive and more
information-rich than traditional methods since all statistics of interest are derivable from the full
field joint PDF.

The goals of this project are as follows:

• To expound on the PDF equation approach for forward UQ.

• To develop computationally efficient approaches for solving the PDF equations for forward
UQ.

• To tailor the approach for two target applications–computational solid mechanics and react-
ing hypersonic fluid mechanics–and study the cost versus accuracy tradeoffs.

• To present software implementations of the method compatible with exemplar Sandia codes:
(1) Sandia Parallel Aerodynamics and Reentry Code (SPARC) [15], and (2) NimbleSM [16],
the open-source Lagrangian finite element code.
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2. TECHNICAL APPROACH

The motivation for solving PDF equations comes primarily from the field of turbulent combus-
tion. Turbulence, an inherently stochastic physical process, can be seen as a source of aleatory
uncertainty. The governing equations for turbulent reacting flow are highly non-linear PDEs:
Navier-Stokes equations governing velocity, and convection- diffusion-reaction balance equations
governing chemical species and enthalpy conservation. The most common approaches for com-
puting turbulent reacting flows adopt a deterministic viewpoint, solving the governing PDEs in
the original (direct numerical simulations (DNS)) or slightly modified forms (large eddy simula-
tions (LES), Reynolds-averaged Navier-Stokes (RANS)); an alternative, fundamentally stochastic,
approach solves a transport equation for the joint PDF of the solution variables (velocity, species
composition, enthalpy) which is derived exactly from the original PDEs. Pope [17] describes the
computational advantages of the PDF equation approach, including ability to handle stiff non-
linear physics and favorable scaling for large-dimensional PDE systems. In contrast parameter
uncertainty is a source of epistemic uncertainty, but the same advantages of the PDF equation
approach can be brought to bear for forward UQ.

2.1. PDF equations for forward UQ

Computational mechanics are typically governed by a set of PDEs of the form

Dφφφ

Dt
= RRR(φφφ,λλλ;XXX , t), (2.1)

where D/Dt is the material derivative, XXX are the spatial coordinates, t is time, λλλ are model pa-
rameters, φφφ(λλλ;XXX , t) is the solution vector, and RRR(φφφ,λλλ;XXX , t) is the driving term encapsulating all the
dynamics governing conservation. If the model parameters are uncertain they can be represented
by a finite dimensional random vector λλλ with probability distribution function (PDF) pλλλ(λλλ). The
stochasticity of the model parameters imply the state vector φφφ is also a random variable. Its PDF,
pφφφ(φφφ;XXX , t), is defined at each material point XXX and time t. In forward uncertainty propagation,
we seek to learn this state distribution pφφφ for a given parameter distribution pλλλ. The notation here
follows that of Pope [18]: the semicolon distinguishes the random variables, which are placed on
the left of the semicolon, from independent deterministic variables which are on the right. Ac-
cordingly, RRR(φφφ,λλλ;XXX , t) denotes RRR is a function of the random variables (φφφ,λλλ) and independent
deterministic variables (XXX , t), and pφφφ(φφφ;XXX , t) denotes the PDF of φφφ as a function of (XXX , t). More-
over, φφφ is typically a vector with multiple components, and hence pφφφ(φφφ;XXX , t) denotes a joint PDF
of all the components of φφφ at any given (XXX , t).
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The exact evolution equation for the state PDF, pφφφ, can be derived formally [18];

Dpφφφ

Dt
=−∇φφφ ·

[
〈RRR|φφφ,λλλ;XXX , t〉pφφφ

]
, (2.2)

where ∇φφφ denotes the gradient operator with respect to φφφ, 〈RRR|φφφ,λλλ;XXX , t〉 is the expectation of RRR
conditioned on φφφ and λλλ, and the ensemble average 〈•〉 is marginalization over other stochastic
variables, e.g. an uncertain boundary condition or inherent chaotic dynamics (e.g. turbulence).
Note that this is for the case of parameter PDF, pλλλ, having no dependence on XXX and t. Following the
steps in [17] one can first derive an evolution equation for the joint PDF, pφφφ,λλλ, in a straightforward
manner by recognizing that λλλ is not governed by any dynamics (derivatives of λλλ with respect to
XXX , t are zero). By marginalizing the pφφφ,λλλ evolution equation over λλλ one obtains Eq. (2.2). The
derivation, and the resulting equation, would be slightly different, but no more complicated, if pλλλ

were a function of XXX or t. In other words the PDF equation approach can naturally admit the case
of model parameters being spatio-temporal random fields. For this project we only focus on the
case of a universal pλλλ. The PDF equation approach for random field parameters have been studied
in previous works [19, 20, 21].

For otherwise deterministic systems (where the only stochasticity is due to parameter uncertainty)
the expectation simplifies to RRR evaluated at the state φφφ for parameter value λλλ at position XXX and time
t. So (2.2) becomes

Dpφφφ

Dt
=−∇φφφ ·

[
RRR(φφφ,λλλ;XXX , t)pφφφ

]
, (2.3)

where the right-hand side is the sensitivity of the probability weighted mean of RRR to the solution φφφ.
Note that the sensitivity of RRR to λλλ is from two sources: (a) directly from the explicit dependence
of RRR on λλλ through the embedded constitutive/closure model, and (b) from the trajectory φφφ(λλλ;XXX , t)
that evolves differently depending on the sample λλλ of ΛΛΛ, as the chain rule

∇∇∇λλλRRR(φφφ,λλλ;XXX , t) = ∂∂∂φφφRRR(φφφ,λλλ;XXX , t)∂∂∂λλλφφφ+∂∂∂λλλRRR(φφφ,λλλ;XXX , t) (2.4)

illustrates. Unfortunately, the evolution equations (2.2) and (2.3), themselves PDES, are high
dimensional even for small-scale problems, and conventional PDE discretization techniques to
solve these becomes computationally intractable.

2.2. Solving PDF equations

For turbulent flows Pope [17] proposes a hybrid Eulerian-Lagrangian strategy for solving a stochas-
tically equivalent system of the PDF equations. The approach, shown in Figure 2-1, proceeds as
follows:

1. Sample the stochastic dimension i.e. drawing samples {λλλs
i : 1≤ i≤ Ns} from the parameter

distribution pλλλ,

2. For each sample initialize a Lagrangian state {x̂xxs
i ,φφφ

s
i ,λλλ

s
i}where the initial position, x̂xxs

i (t = 0),
and state, φφφ

s
i (t = 0), are consistent with the initial and boundary conditions of the problem.
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Figure 2-1. A hybrid Eulerian-Lagrangian PDF equation framework. A traditional mesh
discretized deterministic PDE system (top) can be augmented, under uncertainty, by
particles sampling the stochastic dimensions (bottom) to evolve the joint PDF equa-
tion by evolving particle ODEs.

3. Compute the corresponding sample solution trajectories {φφφs
i (XXX , t) ≡ φφφ(λλλs

i ;XXX , t)} by time
stepping Eq. (2.1). The position of each sample x̂xxs

i is updated with velocity which is usually
a subset of φφφ

s
i for mechanics.

4. Construct the state PDF pφφφ(φφφ;XXX , t) from these sample solutions. This is typically done over
the ensemble of solution trajectories for which XXX = xxxs

i .

This route represents a means to approximate the state PDF, and has the flavor of traditional Monte-
Carlo (MC) methods. Hence, we encounter the familiar slow convergence rate O(1/

√
Ns) of the

empirical PDF to the true distribution. However, the advantage is that the number of samples
scales linearly with the dimensionality of the joint PDF pφφφλλλ, which makes it attractive if φφφ and/or
λλλ are large. Given the slow convergence, the main challenge is to generate the sample trajectories
{φφφs

i (XXX , t) : 1≤ i≤ Ns} more efficiently than directly computing the trajectories, while maintaining
sufficient accuracy.

Two aspects of this solution strategy present the main research challenges that need to be ad-
dressed:

• Sampling: Even for the simplest problems computing the solutions exactly for all Ns samples
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will be infeasible; it will be tantamount to solving Eq. (2.1) Ns times. Our proposed solution
is to solve a very small subset exactly and all the remaining samples approximately. We
denote the exact samples by {λλλc

j : 1 ≤ j ≤ Nc,Nc � Ns}, and the approximate samples by
{λλλa : λλλ

a ∈ λλλ
s
i ,λλλ

a 6= λλλ
c
j}. This will make the overall cost of the method sub-linear with

respect to Ns and, by extension, sub-linear with respect to the dimensionality of the uncertain
parameters which is key for forward UQ to be cost-effective.

• Closure: A related challenge is “closure” i.e. providing the information required to time
advance all the sample solutions. Our proposal is to use the machinery of the parent code to
compute the dynamics term of the exact solution samples, RRR(φφφc

j,λλλ
c
j, x̂xx

c
j), and provide neces-

sary approximations from these for the dynamics terms of the approximate samples (corre-
sponding to λλλ

a).

To summarize, for a small subset (� Ns) of samples we compute the exact RRR(φφφ,λλλ;XXX , t) using
the parent code machinery (space/time discretizations, constitutive models) and approximate the
RRR for the remaining samples, and time advance all with (2.1). The main distinction between our
method and existing methods is simple. While existing methods attempt to approximate the func-
tion φφφa(XXX , t) = φφφ(λλλa;XXX , t) via projection/regression/collocation in the stochastic dimension (λλλ),
we propose to approximate the functional dependence of RRR on λλλ, and obtain φφφa(XXX , t) by integrat-
ing (2.1). We hypothesize that since the functional dependence of φφφ on λλλ includes non-linearities
stemming from terms involving λλλ as well as other non-linearities in the problem, it is more difficult
to approximate than the functional dependence of RRR on λλλ. Furthermore, our approximation will
preserve boundary conditions and momentum conservation in the approximate solutions. Since
most codes typically compute RRR but do not save it, our method needs to be intrusive. Nevertheless,
the prospect of solving for additional samples on-line with the primary solution is not as dras-
tic as it might seem, and lends itself to many computational savings. Recent work on ensemble
stochastic propagation methods [22, 23] has shown that aspects like contiguous memory access,
data reuse, better vectorization, and aggregation of interprocessor communication yield significant
cost savings over the whole ensemble.

A fundamental difference between computational solid and fluid mechanics is worth pointing out.
Typically, computational fluid mechanics adopts an Eulerian viewpoint and the PDEs are solved
in an Eulerian frame of reference. The schematic in Figure 2-1 hews closer to this scenario. In
contrast solid mechanics adopts a Lagrangian formulation where the displacement of a material
point is itself part of the solution vector and the vector XXX denotes a reference (typically initial)
configuration or position. Regardless, the PDF equation approach can be consistently employed
for both applications.
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3. RESEARCH METHODOLOGY

The main thrust of our research is simply to sample efficiently in the stochastic dimensions (un-
certain parameter, λλλ, space) such that a bare minimum number of sample solutions are computed
exactly and use these to approximate the dynamics term, RRR, for the rest of the samples for time ad-
vancing. Of the approaches listed in section 1.1 stochastic collocation is the most natural starting
point for our purpose. In this chapter we first present a general, broadly applicable, set of approxi-
mation methods we investigated based off of stochastic collocation. Separately, we also present an
alternative approximation method that exploits the specifics of the hypersonic re-entry problem of
interest. This is to demonstrate that the PDF equation approach, by virtue of adhering closely to
the original governing PDEs, can be tailored to the physics of the target problem.

3.1. An Overview of Stochastic Collocation

Stochastic collocation (SC) is a simple technique for approximating in the stochastic dimensions
from a few samples. In this framework, we start with a few collocation points {λλλc

j : 1 ≤ j ≤
Nc} that are typically constructed based on the range of the parameter distribution pλλλ. For any
general quantity of interest, QQQ, that is a function of λλλ, exact computations at the collocation points
{QQQc

j ≡QQQ(λλλc
j) : 1≤ j≤ Ns} and interpolation coefficients {ci j = c(λλλs

i ,λλλ
c
j) : 1≤ i≤ Ns,1≤ j≤ Nc}

computed from the two parameter sets, provide an approximation for any value of λλλ
s
i

QQQ(λλλs
i )≈ Q̃QQ

s
i = ∑

j
ci jQQQc

j. (3.1)

Since the interpolation is completely independent of QQQ, the coefficients {ci j : 1 ≤ i ≤ Ns,1 ≤ j ≤
Nc} can be computed a priori and reused throughout a simulation. This makes SC a very low-cost
and online surrogate model, especially when the number of collocation points is far smaller than
the number of sample points (Nc� Ns).

In one-dimensional parameter spaces λ ∈ [λmin,λmax], the collocation points are typically chosen
from regular grids, e.g. the popular nested Clenshaw-Curtis grid of level l ∈ {0,1,2, . . .} is given
by

λ
c
j = λmax− (λmax−λmin)cos

( j−1)π
2l , 1≤ j ≤ 2l +1 (3.2)

and the interpolation coefficients are computed using Lagrange’s scheme:

ci j = c(λs
i ,λ

c
j) =

Nc

∏
j′=1
j′ 6= j

λs
i −λc

j′

λc
j−λc

j′
(3.3)
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In higher dimensions, tensor products of these one-dimensional grids provide a simple way to
construct the collocation points; however the number Nc of collocation points grows exponentially
with the dimensionality of the parameter space. Fast interpolation schemes, such as sparse grids
[24], alleviate this by systematically discarding specific nodes in the tensor product grid.

3.2. Stochastic Collocation over Dynamics

Traditional application of stochastic collocation has been directly to the state or some functions
of it i.e. φ̃φφ

s
i (XXX , t) = ∑ j ci jφφφ

c
j(XXX , t). Despite the advantages (cheap computational cost, non-

intrusiveness), the surrogates generated this way are typically inaccurate, especially when the
parameter-to-state map is highly nonlinear. We demonstrate this in the context of the Lorenz
system:

ẋ = σ(y− x), ẏ = x(ρ− z)− y, ż = xy−βz. (3.4)

It is a three-dimensional system of nonlinear ordinary differential equations with state vector φφφ =
(x,y,z) and parameters λλλ = (ρ,σ,β). We fix two of the three parameters of the Lorenz system at
σ= 10 and β= 8/3, and treat the third parameter ρ as a random variable with a uniform distribution
in range ρ ∈ [28,144]. For this range, the system goes through a period-doubling bifurcation;
this can be seen in Figure 3-1 where we plot a single trajectory of the Lorenz system starting at
φφφ0 = (1,1,−1) for different values of ρ.
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Figure 3-1. Trajectories of the Lorenz system starting at (1,1,−1) for different val-
ues of the parameter ρ. The remaining two parameters are kept fixed at σ = 10 and
β = 8/3. As we increase the value of ρ, the system undergoes a period-doubling
bifurcation, and the trajectories at the two extremes are drastically different.

We attempt to approximate the trajectory of the Lorenz system with the same initial condition for
parameter value ρ = 115 using stochastic collocation with Clenshaw-Curtis grid at different levels,
and show the results in Figure 3-2. We note that none of the stochastic collocation approximations
comes remotely is close to the exact trajectory. We can attribute this poor approximation to the
highly nonlinear nature of the parameter-to-state map in the Lorenz system.

Our proposal is simple: instead of directly approximating φφφ as a function of the model parameters
λλλ (traditional SC), we approximate the forcing/dynamics term RRR and integrate over it to obtain
the approximate sample solutions. We hypothesize that the dependence of the dynamics on the
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(b) Standard SC with l = 1 grid
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Figure 3-2. Exact and approximate trajectories of the Lorenz system starting at
(1,1,−1) at parameter values ρ = 115, σ = 10 and β = 8/3. The approximations
are constructed using standard stochastic collocation using nested Clenshaw-Curtis
grids of different levels l. We observe visually that all the approximations are fairly
inaccurate.

parameters will be much simpler than that of the state; indeed, in the example of the Lorenz
system, the dynamics are a linear function of the parameters:

RRR>(φφφ,λλλ) =
[
Rx(φφφ,λλλ) Ry(φφφ,λλλ) Rz(φφφ,λλλ)

]

=
[
x y z xy xz

]

−σ ρ 0
σ −1 0
0 0 −β

0 0 1
0 −1 0

 (3.5)

where “>” indicates a transpose operation converting the column vector RRR into a row-vector.

However, a straightforward application of SC for RRR

RRR(λλλs
i )≈ R̃RR

s
i = ∑

j
ci jRRRc

j (3.6)

will yield no advantage over performing SC over φφφ under certain conditions. Specifically, if such
an approximation were to be used and Eq. (2.1) integrated with linear constant coefficient time
integrators, the approximation and the time integration commute and approximating the dynamics
yields no accuracy advantage [25]. Rather, the dependence of RRR on λλλ as well as φφφ needs to be
teased out for accuracy gains.
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In general ODE systems, especially in the context of our problems of interest where the ODE
systems are derived from spatial discretizations such as finite-element or finite-volume of the un-
derlying PDE, we do not know the exact form of the dynamics and how it depends on the state or
model parameters in advance. In this context, in order to design an application agnostic approach,
we employ dynamics discovery techniques. In this report, we focus on the sparse identification of
non-linear dynamics (SINDy) architecture developed in [26], and extend it to enable prediction at
parameter values where we do not have access to any direct simulation data.

The centerpiece of the SINDy approach is based on a factorization of the dynamics term

RRR>(φφφ,λλλ)︸ ︷︷ ︸
1×Nn

≈ θθθ(φφφ)︸︷︷︸
1×Nb

ΞΞΞλλλ︸︷︷︸
Nb×Nn

(3.7)

Here Nn is the number of components in the state φφφ, and

θθθ(φφφ) =
[
θ1(φφφ) · · · θNb(φφφ)

]
(3.8)

is a set of user chosen basis functions that can be linearly combined using the coefficients from ΞΞΞλλλ

to approximate the dynamics. For instance, a very common choice involves using monomials in φφφ

of degree up to some Np ≥ 0; in this case we can write

θθθ(φφφ) =
[
· · · φφφ

ppp · · ·
]
, ppp = (p1, . . . , pNn), pn ≥ 0,

Nn

∑
n=1

pn ≤ Np (3.9)

where we denote
φφφ

ppp = φ
p1
1 · · ·φ

pNn
Nn

(3.10)

This construction leads to a total of Nb =
(Nn+Np

Np

)
basis functions.

Once we have designed the basis functions depending on the problem of interest, we learn the
unknown coefficients ΞΞΞλλλ at a parameter collocation point λλλ = λλλ

c
j from the data generated from

the exact simulations of the trajectories. In particular, we collect the states φφφ
c
jk ≡ φφφ

c
j(tk) and the

corresponding dynamics evaluations RRRc
jk ≡ RRR(φφφc

jk,λλλ
c
j) along the trajectory at timesteps tk to set up

the linear system (RRR
c
j1)
>

...
(RRRc

jTt
)>


︸ ︷︷ ︸

Tt×Nn

≈

θθθ(φφφc
j1)

...
θθθ(φφφc

jTt
)


︸ ︷︷ ︸

Tt×Nb

ΞΞΞ
c
j︸︷︷︸

Nb×Nn

(3.11)

where we denote ΞΞΞ
c
j = ΞΞΞλλλ

c
j
. After solving this linear system to obtain the coefficients ΞΞΞ

c
j cor-

responding to the dynamics at each of the collocation points, we use stochastic collocation to
construct approximate dynamics of the system at sample points as:

R̂RR(φφφ,λλλs
i ) = θθθ(φφφ)Ξ̂ΞΞ

s
i , Ξ̂ΞΞ

s
i = ∑

j
ci jΞΞΞ

c
j (3.12)

We then numerically integrate this surrogate dynamics to obtain the approximate trajectories φ̂φφ
s
i (t).

As proposed in the original SINDy formulation, we use a sequentially thresholded least squares
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Figure 3-3. Approximate trajectory of the Lorenz system at parameter values ρ = 115,
σ = 10 and β = 8/3 starting at φφφ0 = (1,1,−1) using the dynamics stochastic col-
location approach. We see that this reconstruction is significantly better than the
standard stochastic collocation reconstructions in Figure 3-2. On the right, we com-
pare the errors in approximating the exact trajectory; we see that the Dynamics SC
approach performs significantly better than Standard SC.

algorithm to solve (3.11). This imposes sparsity restrictions on the coefficients and allows us to
identify the most important terms of the dynamics. See [26] for more details about this algo-
rithm.

In Figure 3-3, we plot the approximate trajectory for the Lorenz system at parameter value ρ = 115
using our dynamics stochastic collocation approach. We see that visually this reconstruction is
significantly better than the standard stochastic collocation approximations in Figure 3-2. We also
plotted the divergence of the approximate trajectories using these two approaches from the exact
trajectory — while we see an exponential growth in error in both cases as simulation progresses
(due to the chaotic nature of the system), the growth rate in case of the dynamics SC is much milder
than that for standard SC.

3.3. Hypersonic reacting flow: A special case

One of our target applications–hypersonic reacting flow for re-entry conditions with SPARC– of-
fers a special case. Typically RRR comprises of terms involving spatial derivatives of φφφ e.g. advection,
diffusion. This is what makes the closure of this term challenging; since each Lagrangian sample
carries state, {x̂xxs

i ,φφφ
s
i ,λλλ

s
i}, at a specific spatial location the spatial derivatives in RRR(φφφ,λλλ;XXX , t) intro-

duce a dependence on non-local state (φφφ in some neighbourhood of x̂xxs
i ) that each sample does not

have access to. However, certain terms like chemical reaction sources are functions purely of local
state {φφφs

i ,λλλ
s
i} and these can be evaluated exactly for each sample. If the uncertain parameters λλλ

pertain to such terms then the closure of RRR can be made to take advantage of this1.

We make the following observations about the SPARC target problem:

• SPARC solves the governing PDEs in an Eulerian frame of reference

1Note that RRR cannot be comprised only of terms that have pure local dependence, for if it were then Eq. (2.1) would
be ordinary differential equations (ODEs) and not PDEs.
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• Steady state, and therefore, partial derivatives w.r.t. t (∂t) are zero,

• The uncertain parameters λλλ are those pertaining to thermo-chemical source terms, and

The governing PDEs solved by SPARC are of the form [15]:

∂φφφ

∂t
= CCC + PPP + DDD︸ ︷︷ ︸

non−local

+ ω, (3.13)

where CCC is convective flux, PPP is pressure flux, and DDD is diffusive flux, and these terms are non-local
in nature since they involve spatial derivatives. The reaction term, ω, is purely a function of local
φφφ, as well as the uncertain parameters λλλ. The sample solutions being in a Lagrangian reference
frame, the material derivative in Eq. (2.1) can be written as

Dφφφ

Dt
=

�
�
���
0

∂φφφ

∂t
+v ·∇φφφ = RRR, (3.14)

where v is the velocity (derived from density and momenta which are part of φφφ) and the first term
is zero for steady problems.

For such steady problems the RRR for each streamline is a field quantity and depends explicitly only
on spatial location. However, for the approximate trajectories corresponding to {λλλa}, the dynamics
term is split into ‘local’ and ‘non-local’ components

RRRa ≡ RRR(x̂xxa,φφφa,λλλa) = RRRa
nl(x̂xx

a)+RRRa
l (φφφ

a,λλλa). (3.15)

For the non-local component we perform the usual approximation using the collocation samples

RRRa
nl(x̂xx

a)≈∑
j

ca jRRRa
nl(x̂xx

a,λλλc
j), (3.16)

noting only the explicit dependence on x̂xxa. The local component, the chemical reaction source
term, can be evaluated exactly as RRRa

l ≡ ωa = ω(φφφa,λλλa) since it has no explicit dependence on
spatial location but rather on {φφφa,λλλa}. The rationale here is that this should be more accurate since
the explicit dependence on the parameter value of the sample is being accounted for. It is easy to
show that the non-local component in Eq. (3.15) is

RRRa
nl(x̂xx

a,λλλc
j) = (v ·∇φφφ−ω)(x̂xxa,λλλc

j), (3.17)

i.e. the field quantity (v ·∇φφφ−ω) corresponding to the collocation samples at query location x̂xxa.
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4. RESULTS

We present results of application of our method to the two target problems. Since the target
problems pertain to different applications, our methodology was tailored to take advantage of
the specifics of the applications. We also describe the software resulting from these implemen-
tations.

4.1. Solid mechanics explicit dynamics

Our first target application is solid mechanics explicit dynamics problems with uncertain material
model parameters. Keeping in mind the finite element spatial discretization, used by most solid
mechanics codes, and corresponding temporal discretization for explicit dynamics problems, we
made refinements to accommodate the spatial and and temporal complexity of the problem for
method feasibility.

4.1.1. Improving efficiency by exploiting FEM mesh structure

Since the ODE system results finite element method (FEM) discretization of the domain, the state
vector φφφ can be very high dimensional (Nn� 1). In this context, the number of basis functions can
grow exponentially fast: if we are using monomial basis functions of degree up to Np, then

Nb =

(
Nn +Np

Np

)
∼
√

1
2π

√
Nn +Np

NnNp

(Nn +Np)
Nn+Np

NNn
n NNp

p
(4.1)

from Stirling’s approximation. As a result, the linear system (3.11) can become prohibitively costly
to solve and obtain the coefficients.

In this setup, we can exploit the local nature of the FEM solution method to reduce the number of
effective state variables: we note that for each node in the FEM mesh, the force evaluation depends
only on those nodes which are part of the same FEM element. Thus, the corresponding component
of the dynamics, identified by a material reference point XXX , can be simplified to

RRRXXX(φφφ,λλλ) = RRRXXX(φφφXXXneighbor
,λλλ) (4.2)

where XXXneighbor is the collection of material reference points that are part of an FEM element with
node XXX . This reduces the number of basis functions necessary to represent the dynamics at any
reference point, making the least squares problem tractable.
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Beyond reducing the number of effective variables in the nodal dynamics, this local nature of the
constructed surrogate models can also be helpful in other ways. For instance, in multi-material
solid mechanics simulations, the response of one region of the solid can be constructed completely
independently of another region — potentially leading to more accurate surrogate model for the
overall material model.

4.1.2. Adaptive dynamics stochastic collocation

Our dynamics stochastic collocation method introduced above is not fully online in the same way
standard stochastic collocation is. Learning the dynamics requires state and forcing data from
several timesteps of the exact simulations at the collocation points. On the other hand, once the
dynamics is approximated well enough, there is no need to learn it again (unless the dynamics of
the system suddenly changes, which is rare in practical applications). This suggests an adaptive
approach, where we

1. First reset the learned dynamics by setting the coefficients to zero.

2. Then collect state and forcing data from several timesteps of the exact simulations and learn
the coefficients.

3. Next test the prediction of the learned dynamics against the true dynamics in the exact sim-
ulations; if they do not match within some specified tolerance, we go to step 2 and repeat.

4. Once the learned dynamics has converged to the true dynamics, interpolate the coefficients
and simulate the approximate trajectories at the sample points.

5. Periodically check if the learned dynamics stays consistent with the true dynamics using the
exact simulations; if not we go to step 1 and repeat.

To test the convergence criteria, the user can specify a relative tolerance τrel and an absolute tol-
erance τabs. We say that the learned dynamics has converged at timestep tk and can be used to
construct the states at timestep tk+1 if

‖R̂RR(φφφc
j(tk+1),λλλ

c
j)−RRR(φφφc

j(tk+1),λ
c
j)‖ ≤max{τabs,τrel‖RRR(φφφc

j(tk+1),λ
c
j)‖} (4.3)

for all 1≤ j ≤ Nc.

4.1.3. Software implementation details

We outline the flow of data in constructing the approximate trajectories using dynamics stochastic
collocation in Figure 4-1. We note that apart from collecting the states φφφ

c
j(tk) and corresponding

dynamics evaluations RRRc
j(tk) at different time steps tk for the collocation parameter values λλλ = λλλ

c
j,

1≤ j ≤ Nc to construct the history, the surrogate model generation process is largely independent
from the full simulation model. Consequently, we can write a mostly non-intrusive supplement
code to existing simulation models; we only need access to the data arrays storing the state and
force evaluations in the original simulation code.
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Figure 4-1. Flow of data in constructing the dynamics stochastic collocation surro-
gate models for a dynamical system. On the top, we evolve the state φφφ

c
j(tk) of the

ODE system corresponding to collocation parameter values λλλ = λλλ
c
j for all 1≤ j ≤ Nc.

To build the surrogate models, we record the evolution history (external to the origi-
nal simulation) consisting of the states and dynamics evaluations, and use SINDy to
learn the dynamics coefficients ΞΞΞ

c
j. Interpolating these coefficients (using stochas-

tic collocation) leads us to the functional representation of the surrogate dynamics
R̂RR

s
i (·), which we integrate to construct the approximate states φφφ

s
i (tk).

We implemented this dynamics stochastic collocation scheme as a C++ library named ODEUQ. It
has the following build dependencies:

• BLAS and LAPACK for linear algebra (in particular, the SINDy least squares solve),

• yaml-cpp for parsing input parameters,

• HDF5 for basic simulation output, and

• Optionally MPI if HDF5 was built with parallel IO support.

The ODEUQ library provides two main setups for constructing surrogate dynamics and evolving a
dynamical system:

1. The odeuq::OdeSystem class is suitable for simple systems; it creates an abstraction for
the underlying first/second order ODE system. All the bookkeeping tasks, such as memory
allocations and evolving the exact and approximate trajectory ensembles, are handled au-
tomatically. The user can use an YAML file to feed model inputs, collocation and sample
parameter values, interpolation coefficients etc. to the generated odeuq_run executable and
obtain HDF5 files consisting of full-field quantities of interest.
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2. The odeuq::UqModelBase class is provided for more complicated use cases, e.g. the ex-
isting numerical simulation code is using custom data management and the ODE evolution
cannot be easily encapsulated. We provide an example of this below.

In either case, an ODEUQ user will write a child class and implement the necessary methods. This
modular design will allow the user to essentially create a wrapper around existing simulation codes
with UQ capabilities.

For a concrete example of the second approach, consider adding dynamics SC uncertainty propa-
gation capabilities to the NimbleSM library [16] — it is an open source C++ code for Lagrangian
finite-element code for solid mechanics simulations with support for multi-material solids. We can
specify density, bulk modulus and shear modulus of each of the materials as program input — these
are our dynamics parameters. The code can run multiple exact simulations at specified collocation
parameter values, and implements a data manager object that exposes the corresponding displace-
ment, velocity and acceleration data arrays for each exact simulation. In this setup, we wrote a
nimble_odeuq::UqModel class derived from the odeuq::UqModelBase implementing:

• Model initialization, where we retrieve the NimbleSM data manager, allocate memory for
storing the displacement and acceleration history, and initialize separate surrogate dynamics
models for each exact and approximate trajectories.

• Simulation initialization, where we prepare for time integration by computing lumped masses,
setting up boundary condition enforces etc.

• Exact time stepping, where we evolve the system state corresponding to a single exact tra-
jectory; much of this code is a copied from the NimbleSM implementation.

• Approximate time stepping, where we evolve system state corresponding to a single approx-
imate trajectory; this code is the same as exact time stepping except that the acceleration is
computed from the surrogate dynamics.

Rest of the bookkeeping tasks, such as testing for surrogate convergence, training the exact dy-
namics surrogates and interpolating the approximate surrogate dynamics, are handled by methods
of the odeuq::UqModelBase class. Other than these adaptations, we needed to write/modify a few
additional lines of code for

• Retrieving the node-neighbor structure from nimble::GenesisMesh (FEM mesh); this is
used by nimble_odeuq::UqModel.

• Adjusting the main() entry point and nimble::NimbleMain() driver routine to properly
parse additional parameters for dynamics SC learning and call the nimble_odeuq::UqModel
object.

Putting all of this together, we obtain a nimble_odeuq executable which takes the standard NimbleSM
input file as well as an additional YAML file describing dynamics SC configurations, and generates
HDF5 files consisting of the full-field quantities of interest.
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4.1.4. 1D Solid Bar Impact Simulation

We first consider a simple solid mechanics problem in one dimension. A solid bar moving at a
constant velocity impacts a wall; then the displacement u(X , t) is governed by

ρ0utt = σX (4.4)

where ρ0 is the density of the bar and σ is the stress. Let L be the length of the bar, then the
displacement field satisfies the initial conditions:

u(X , t = 0) = 0, ut(X , t = 0) =

{
0 if x = 0
v0 if 0 < x≤ L

(4.5)

where v0 is the initial velocity of the bar. We assume the left end of the bar is fixed and the right
end is free:

u(X = 0, t) = 0, uX(X = L, t) = 0 (4.6)

The constitutive relation connecting the stress and displacement is given by

σ = ε0uX(1+ ε1u2
X)(1+ ε2u2

X) · · · (4.7)

Here λλλ = (ε0,ε1,ε2, . . .) are the model parameters.

We discretize the spatial domain [0,L] into (Nn− 1) uniform elements of length h = L/(Nn− 1)
and denote the nodes as xn = (n−1)h for 1≤ n≤ Nn. Then imposing linear basis functions within
each element, we approximate the PDE solution as

u(X , t)≈
Nn

∑
n=1

φn(t)ωn(X), ωn(X) =


(X− xn−1)/h if 0≤ xn−1 ≤ X ≤ xn

(xn+1−X)/h if xn ≤ X ≤ xn+1 ≤ L
0 otherwise

(4.8)

where φφφ(t) = (φ1(t), . . . ,φNn(t)) is governed by an ODE of the form

φ̈φφ = RRR(φφφ,λλλ). (4.9)

To construct the surrogate models, we apply the Dynamics SC approach described in Section 3.2
to each component of this dynamics and assume

Rn(φφφ,λλλ) = Rn(φn−1,φn,φn+1,λλλ)≈ θθθn(φn−1,φn,φn+1)ξξξn,λλλ (4.10)

with monomial basis functions θθθn.

In our numerical experiments, we discretize the bar of length L = 2 and density ρ0 = 1 using
Nn = 101 uniformly placed FEM nodes and impose an initial velocity v0 = −0.1. We choose
a two-parameter constitutive relation with ε1,ε2 ∼ Uniform[1.5,2.5] and draw Ns = 128 random
samples where we would like to construct the approximate trajectories. We choose the collocation
points using a sparse grid constructed from level l = 1 nested Clenshaw-Curtis grid, and use up
to fifth degree monomials in constructing the SINDy basis functions. For timestepping, we use
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Figure 4-2. Comparison of the Standard SC and Dynamics SC surrogates for the two-
parameter bar impact system. Error is computed as the difference in u(x, t) and ut(x, t)
between the approximate and the corresponding exact trajectories. The shaded re-
gions encompass the range of errors over 128 approximate trajectories, and the solid
lines represent the mean over the trajectories.

a Strömer-Verlet integrator for 2000 timesteps of size ∆t = 10−2 s. To construct the surrogate
dynamics, we use data from only the first 10 s of the collocation trajectories; the second half of the
sample trajectories are then constructed using this learned dynamics.

In Figure 4-2, we compare the errors in the approximate states u(x, t) and their time derivatives
ut(x, t) constructed using the standard and dynamics stochastic collocation methods at different
times t. We observe that the errors using the dynamics stochastic collocation scheme is several
orders of magnitude smaller than those using the standard stochastic collocation scheme.
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Velocity Error
Standard SC

Displacement Error
Dynamics SC

Velocity Error
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Figure 4-3. Comparison of average errors over multiple approximate trajectories con-
structed using the standard stochastic collocation and dynamics stochastic colloca-
tion surrogates. The nominal NimbleSM simulation models a solid pseudo-3D bar
moving with uniform velocity that is clamped at time t = 0 at the right end. Along
each column, we plot the evolution of the error at times t = 2.5× 10−3, 5.0× 10−3,
7.5×10−3, and 1.0×10−2 seconds using the same color scale for one state variable
(displacement or velocity) and one surrogate model (standard SC or dynamics SC).
The upper limit of the color scale varies across the columns. Note that the errors
from the dynamics SC surrogates are orders of magnitude smaller than those from
the standard SC surrogates.

4.1.5. NimbleSM 2D Bar Impact Simulation

We now consider a pseudo-3D variant of the bar impact simulation using the NimbleSM software
package. The displacement u(X , t) ∈ R3 evolves as

ρ0utt = ∇ ·σ (4.11)

We assume the material is elastic, i.e. the dependence of stress σ the strain ε = 1
2(∇u+∇uT ) is

expressed as
σ = 2µε+λ tr(ε)I (4.12)

where µ and λ are the Lame parameters; for a material with bulk modulus K and shear modulus G
we have

µ = G, λ = K− 2
3

G (4.13)

The solid bar extends 0.40 m along the x-direction, 0.05 m along the y-direction and 0.01 m along
the z-dimension. The material has density ρ0 = 7,850 kg/m3 and shear modulus G = 77 GPa;
we treat the bulk modulus as stochastic with distribution K ∼ Uniform[80 GPa,240 GPa]. We
discretize the simulation domain using 1,600 hexahedral FEM elements organized in a 80×10×2
grid; each element is a cube with side length of 0.01 m. The bar is moving with an initial uniform
velocity of v0 = (10.0,0.1,0.0) m/s, and at time t = 0, the right end surface is clamped. We use the
Strömer-Verlet integrator simulating 10,000 time steps of this system using a step size of 10−6 s.

31



In our experiments, we simulate three trajectories exactly (corresponding to K = 80, 160, and
240 GPa values), and construct approximate trajectories at 16 other parameter values using our
dynamics stochastic collocation approach. In Figure 4-3, we compare the accuracy of the approxi-
mate trajectories generated using our approach against those generated using standard SC. We see
that our errors are orders of magnitudes smaller than those from standard SC.

4.2. Reacting hypersonic fluid mechanics: Apollo re-entry simulation

Our second target problem is hypersonic flow with thermo-chemical non-equilibrium involving
dissociation reactions and shocks. We considered re-entry simulation of the well known Apollo
capsule geometry at Mach 30 with SPARC. A schematic of the geometry is shown in Fig. 4-4.
Flow over only the forebody was considered, and a 2D axisymmetric domain covering an upstream
region bounded in the y direction by the symmetry axis and the uppermost location (labelled ‘2’
in the geometry schematic) was used. A 2D curvi-linear structured mesh of 65536 quadrilateral
elements was employed along with the cell-centered finite volume spatial discretization in SPARC.
Inflow conditions specified at the left boundary were a density of 5× 10−4 kg/m3, an x velocity
of 9.798×103 m/s, and translational and vibrational temperatures of 257.86 K. The top boundary
was specified as an outflow, the right boundary as an isothermal no-slip wall at 2500 K, and sym-
metry conditions at the lower boundary. No turbulence models were activated. Figure 4-4 shows
the steady state solution in terms of the contours of translational temperature over the domain.

Figure 4-4. Schematic of the Apollo capsule geometry is shown on the left. The plot
on the right shows contours of translational temperature from a SPARC simulation at
Mach 30.

We used the two temperature formulation of Park [1], solving for translational and vibrational
modes of temperature, to model thermal non-equilibrium and a 5-species chemical mechanism
consisting of N2, O2, NO, N, O to model dissociation chemistry. The parameters of the Arrhenius
type kinetics rate expressions have considerable uncertainty and variations of orders of magnitude
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have been reported in literature for some of them [27]. We considered two of these parameters for
UQ: (1) the collision coefficients for the dissociation reaction of N2, and (2) the pre-exponential
factor for the exchange reaction N2 + O⇔ NO + N.

4.2.1. Implementation of sampled streamlines integration

As outlined in section 3.3, this case offers a specialization in terms of propagating parameter uncer-
tainty. Since its a steady fluid mechanics problem the Lagrangian sample solutions are effectively
streamlines traversing the domain. To keep the method implementation non-intrusive to SPARC
we implemented SAMURAI, a stand-alone python library for streamline integration for steady
reacting flow problems. The main design features of SAMURAI are:

• A class hierarchy to setup a generic 2D flow domain.

• Class methods to load SPARC solution data saved in exodus format to set up the field quan-
tities.

• A bilinear interpolant to perform interpolation of field values from the corners of a quadri-
lateral element to any interior location.

• A integrator class that uses SciPy’s solve_ivp function to solve ODEs and time advance a
streamline state from an initial condition.

• A class to define a reaction mechanism and compute reaction source terms for prescribed
values of rate parameters.

Using SAMURAI we compute the streamline solutions for all the approximate samples corre-
sponding to λλλ

a. Since we are using a tailored, and more accurate treatment, of the driving term
RRRa as outlined in section 3.3, we use only two collocation samples, λmin and λmax, to provide
the approximation for the ‘non-local’ part RRRa

nl in Eq. 3.15. Effectively, since every sample
λmin < λa < λmax, we are doing an interpolation for RRRa

nl .

Our streamline integration proceeds in the following steps:

1. Perform SPARC simulations corresponding to λmin and λmax offline. Save the solution data
to exodus files.

2. Use the class hierarchy in SAMURAI to read the two solution exodus files. Set up domain in
terms of quadrilateral element nodes, and the bilinear interpolant to compute field quantities.

3. Setup the reaction model.

4. Initialize streamlines with initial parameter values sampled within (λmin,λmax), and desired
initial location and state consistent with the boundary conditions.

5. Integrate the streamlines using SAMURAI’s integrator class, i.e. solve Eq. (2.1). For the
two components of the ODE dynamics:
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• The non-local component is defined in Eq. 3.17. Compute the term (v ·∇φφφ−ω) for each
of the collocation sample solutions, and use the bilinear interpolant to interpolate to the
current streamline location x̂xxa. Then interpolate along the λ dimension corresponding
to the streamline sample λa.

• The local component is computed exactly using the reaction mechanism class of SAMU-
RAI with the streamline state {φφφa,λa}.

4.2.2. Accuracy of streamline integration

The methodology described allows us to compute streamlines to trace the solution through the
domain and its variability with respect to the uncertain parameter. The streamlines can be initial-
ized in a select region to focus the UQ study on specific portions of the domain as desired. The
streamlines ensemble spanning the parameter range provide the PDFs of the solution quantities at
any location. As with the solid mechanics problem, our main objective is to assess the acuracy
of streamline solution methodology along with the closure outlined in section 3.3. Since the ap-
proximation in the stochastic dimension is a simple interpolation between λmin and λmax, i.e. all
approximate samples satisfy λmin < λa < λmax, for the accuracy assessment we present streamlines
results corresponding to the median parameter value λa = 0.5(λmin +λmax). For comparison with
the (approximate) streamlines we perform a corresponding SPARC simulation a posteriori for this
parameter value to provide the benchmark data.

Table 4-1. The parameters of the UQ study for the Apollo re-entry problem, both spec-
ified in a logarithmic scale. The first parameter is based on K, a factor multiplying
all the collision coefficients for the N2 dissociation reaction (there is one coefficient
for each species, ranging from 7×1018 to 3×1019). The ∗ denotes the nominal value
prescribed by Park [1]; for the first parameter the nominal value is λmax. The second
parameter is based on C, the pre-exponential factor, for the exchange reaction. Here
the nominal parameter value, 6.4×1014, corresponds to λmin.

λ Description Reaction λmin λmax
log10(K) K: collision coefficients factor N2 + M⇔ N + N + M -3.0 1.0∗

log10(C) C: pre-exp factor N2 + O⇔ NO + N 14.80618∗ 15.80618

The two parameters considered for the UQ study, and their range of uncertainty, are listed in Table
4-1. Both are prescribed in a logarithmic scale to account for the orders of magnitude variation in
the UQ study. For the first parameter, corresponding to the collision coefficients of the N2 dissoci-
ation reaction, its value was reduced from the nominal by three orders of magnitude while for the
second parameter, corresponding to the pre-exponential factor of the exchange reaction, its value
was increased from the nominal by one order of magnitude. Figure 4-5 illustrates the sensitivity
of the SPARC solution to the two UQ parameters studied, by plotting quantities along a x line seg-
ment spanning the shock close to the symmetry axis (y = 0.1). As to be expected, decreasing the
collision coefficients for N2 dissociation (case-1) results in a higher concentration relative to the
nominal case. Similarly, increasing the pre-exponential factor of the exchange reaction (case-2)
leads to more NO being formed at the shock. The trends are also interesting for the two compo-
nents of temperature, with a higher sensitivity of the temperature at the shock in case-1, leading to
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overall higher temperature values at the shock for this case. On the other hand case-2 results in a
decrease in temperature relative to the nominal case.
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Figure 4-5. Plots of solution quantities along a x line segment spanning the shock,
at y = 0.1, illustrate the solution sensitivity to the two UQ parameters. Since case-1
pertains to a parameter affecting N2 reaction, and case-2 pertains to one affecting NO,
only these species are shown, along with translational and vibrational temperatures.

For both cases streamlines were initialized close to the inflow boundary, but upstream of the shock,
at various locations along a tangential coordinate, with the streamline spacing varying exponen-
tially with tangential distance from the axis of symmetry. Figure 4-6 shows the streamlines,
coloured by enthalpy, for validation case-1 (λa = 0.5(λmin + λmax)), along with enthalpy from
the true SPARC solution. The plot on the right shows the relative error of enthalpy over all the
streamlines. Considering that enthalpy is not a part of the solution state φφφ, but rather a non-linear
function of all elements of φφφ (species mass fractions, velocity, density, temperature), a maximum
relative error of 20% indicates a high accuracy of the overall streamline solutions. Note also that
the error is high only near the vicinity of the shock, as expected, and quite low away from it.

Figure 4-7 show the streamlines enthalpy for case-2, which shows a slightly higher relative error,
40%, compared to case-1. The rationale behind showing enthalpy is that it is a key quantity used
in the modelling of wall heat transfer from SPARC solutions, which is a key quantity of interest
for modelling thermal ablation. Another key quantity is kinetic energy, which is also a derived
quantity, and this is shown for both cases, along with the relative error in Figure 4-8. It is evident
that kinetic energy is also recovered accurately from the streamline solutions, with a relative error
of only a maximum of 12%.
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Figure 4-6. Plots of enthalpy computed from the streamline solutions for case-1 (top-
left). The streamlines are initialized just upstream of the shock close to the inflow
boundary at locations increasingly spaced along a tangential coordinate. The corre-
sponding enthalpy at each node from an actual SPARC solution is shown (top-right),
along with the relative error (bottom).

Finally, the two chemical species most sensitive to the two parameters varied are N2 and NO
and these quantities from the streamlines are shown in Figures 4-9 and 4-10 for case-1 and -2,
respectively. For these comparisons, to avoid division by zero, we show the absolute error instead
of the relative error. Still, comparing the color scales of the actual quantities with the absolute
error, it is evident that the error is smaller by an order of magnitude.
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Figure 4-7. Plots of enthalpy computed from the streamline solutions for case-2 (left),
and the corresponding relative error (right) with respect to a full SPARC solution.
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Figure 4-8. Plots of kinetic energy computed from the streamline solutions for (left),
and the corresponding relative error (right) with respect to a full SPARC solution. The
plots on the top are for case-1, and the bottom for case-2.
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Figure 4-9. Plots of N2 mass fraction computed from the streamline solutions for
case-1 (left), and the corresponding relative error (right) with respect to a full SPARC
solution.

Figure 4-10. Plots of NO mass fraction computed from the streamline solutions for
case-2 (left), and the corresponding relative error (right) with respect to a full SPARC
solution.
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5. CONCLUSIONS AND FUTURE WORK

With numerical models for high consequence applications becomes commonplace, the need for
extensive UQ of these computational models is self-evident. At the same time, potentially high
computational cost of these simulation models requires us to rely on surrogate models, such as
stochastic collocation, for efficient uncertainty propagation. We presented a method of improving
the accurate of stochastic collocation surrogate models in the context of ODE systems by introduc-
ing a separation between state variables and stochastic parameters in the dynamics evaluation. The
dynamics surrogates are constructed in a data-driven fashion and are minimally invasive, leading
to easy integration with existing simulation codes.

We note that in the current form of dynamics surrogate construction, we do not impose any con-
straints such as conservation of energy. In future, we will utilize such conservation laws to con-
struct physically robust surrogates. We also wish to compare the performance of our method
against existing surrogate construction frameworks such as physics-informed neural networks
(PINNs) [28] and neural ODEs [29]. An associated issue that needs to be addressed is ensur-
ing stability of the temporal integration of the samples with approximate dynamics, since this is
not explicitly guaranteed. Approaches that deal with approximation of dynamics, e.g. discrete em-
pirical interpolation of manifold (DEIM) used in conjunction with projection-based reduced order
models (ROMs), have a similar issue and literature in this field could be used to address stability
of approximation. Our long-term objective is to provide this UQ capability in Sandia codes. To
that end we will chart a path for integrating SAMURAI with SPARC+ARIA, and ODEUQ with
SIERRA-SM.
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