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Executive Summary

Boiler failure could cause loss of life and safety issues, cost hundreds of thousands of dollars in
equipment repairs, property damage and production losses, and drive up the cost of electric
power. Boiler maintenance is challenging and risky for inspectors working on scaffolding in
confined hazardous spaces inside of a boiler and sometimes the space is hard to access. The
operation is also time-consuming due to the large area of vertical structures for inspection and
the tremendous effort needed for scaffolding. Recently, the use of robotics (e.g., drones and
crawlers) in power plants for maintenance is growing rapidly. However, the existing robotics
solutions show two notable technological gaps: no live repair capability, and no Artificial
Intelligence (Al) for smart autonomy.

The objective of this project is to develop an integrated autonomous robotic platform that is
equipped with compact non-destructive evaluation (NDE) sensors to perform live inspection,
operates onboard repair devices to perform live repair, and uses Al for intelligent data fusion and
predictive analysis for automated and smart spatiotemporal inspection, analysis and repair of the
furnace walls in coal-fired boilers. The approach to achieve the objective includes developing
NDE sensors with signal processing techniques, designing and evaluating repair devices for
robots based on fusion and solid-state technologies, and an autonomous robotic platform that can
attach to and navigate on boiler furnace walls using magnetic drive tracks. The robot is also
powered by Al to automate data gathering (e.g., 3D mapping and damage localization) and
predictive analysis.

This project has advanced the state-of-the-art by providing technological breakthroughs
including compact NDE and repair tools for robots, Al capabilities for smart autonomy, and a
robotic platform for automated boiler maintenance. This project has great potential to result in
significant benefits including limiting or eliminating the need to send operators to assess
difficult-to-access or hazardous areas, enabling automated live inspection and repair, avoiding
time consuming scaffolding (especially for partial maintenance during unplanned outage),
collecting comprehensive and well-organized data smartly, and avoiding or limiting the need for
onsite or remote piloting technicians. The impacts can be tremendous in terms of the time and
cost savings, reducing the risk for human operators, and increasing boiler reliability, usability,
and efficiency.

In addition, by developing the new technologies on the autonomous inspection and repair robot,
by involving multiple undergraduate and graduate students working together with the faculty
members on this project, and by generating knowledge and building up collaborations with
industrial partners, this effort will significantly update the education capabilities, support long-
term fundamental research, and maintain the leadership of Colorado School of Mines and
Michigan State University in energy fields.



l. Background and Project Objectives
1. Project Background

Boilers are the largest and one of the most critical components of a thermal power plant, which
convert energy contained in fuel (e.g., coal) into high temperature steam. Damage mechanisms,
including creep, thermo-mechanical fatigue, erosion, cavitation, and corrosion-induced cracking,
take place in the boiler furnace chamber [1]. If damage is left unchecked, catastrophic failures
could occur, causing loss of life and other serious safety issues. Boiler failures also cost hundreds
of millions of dollars in equipment repairs, property damage and production losses, which drives
up the cost of electric power across the U.S. As emphasized by our industrial collaborators from
Xcel Energy Inc. (a utility holding company that operates all Colorado generation stations),
boiler inspection and repair is one of the main focuses during scheduled overhauls.

Boiler maintenance is challenging and dangerous for inspectors working on scaffolding in the
confined space inside a boiler, and sometimes the space is hard to access. The operation is also
time-consuming due to the large area of vertical
structures to inspect and due to the tremendous
effort that is needed for mounting and
dismantling scaffolding. For example, at the
coal-fired Hayden Station [2] in Colorado,
inspectors need to inspect 50,000 ft? of furnace
walls (a.k.a., water walls) inside of the boiler
during a single overhaul (Figure 1), which takes
several days to complete.

Recently, the use of robotics in power plants for
maintenance has been increasing. [3]. For
example, drones (i.e., Unmanned Aerial Vehicles
or UAVs) [4, 5] and robotic crawlers [6, 7] are Figure 1: Hayden Unit 1 scaffolding for manual
developed to inspect boiler furnace walls. Given  inspection and repair.

their promises, the existing robotics technologies

have various disadvantages (Table 1). The two most notable gaps include (1) no live repair
capability, and (2) no Artificial Intelligence (Al) for smart autonomy. Even after damage is
detected, dangerous and time-consuming operations (e.g., scaffolding) are currently still needed
for repair operations. Without autonomy and Al capabilities, well-trained pilot technicians are
required to remotely control the robots or to be onsite when communication is limited, such as
within a boiler. These gaps must be overcome to practically deploy robotic technologies for
spatiotemporal power plant inspection and repair.

2. Research Objectives

The overarching goal of this project was to develop an integrated autonomous robotic platform
that (1) is equipped with advanced non-destructive evaluation (NDE) sensors to perform live
inspection, (2) operate innovative onboard devices to perform live repair, and (3) use Al for
intelligent information fusion and live predictive analysis for smart automated spatiotemporal



inspection, analysis, and repair of furnace walls in coal-fired boilers. The breakthroughs included
compact live NDE and repair tools for robots, Al capabilities for smart autonomy, and an
integrated robotic platform for automated boiler maintenance. The success of this project will
now potentially result in significant benefits, including limiting or eliminating the need to send
operators to assess difficult-to-access or hazardous areas, enabling automated live inspection and
repair, avoiding time consuming scaffolding (especially for partial maintenance during
unplanned outages), and smartly gathering comprehensive and well-organized data. These
impacts will be tremendous in terms of the time and cost savings, reducing the risk for human
operators, and increasing boiler reliability, usability & efficiency.

Table 1. State-of-the-practice manual and robot-assisted inspection methods and their limits

Current Practice Limits

Safety risks caused by environmental hazards and climbing up scaffolding,
time-consuming to mount/dismantle scaffolding, often slow and inaccurate
inspection.

Maintenance by
human inspectors

Limited payload & operation time, requirement of constant human control
UAV/drone-based | (autopilot not feasible yet), dependence on good wireless communication,

inspection typically only visual inspection (NDE-based inspection and repair not feasible
yet).

Robotic inspection | Typically incapable of repair, requirement of constant remote control (no full

crawlers autonomy yet), no Al for smart autonomy and predictive analysis.

The specific objectives of this project included:

e NDE Sensor Design: A compact NDE sensor was designed with crack detection and
assessment capabilities. Signal processing methods were also developed to estimate crack
sizes and improve the NDE sensor’s reliability.

e Repair Tool Design: A repair tool based on friction stir welding (FSW), one of the solid-
state repair methods, was designed. By augmenting FSW with an induction heating unit,
the demand for spindle torque and forging loads can be significantly reduced, enabling
FSW to be used as a compact repair technique.

e Integrated Robotic Platform: A robotic system was designed that leveraged a commercial
robotic platform retrofitted with a customized gantry system, sensors, cleaning, NDE
sensors, and repair tools.

o Atrtificial Intelligence (Al) for Smart Autonomy: Al capabilities were developed to
enable robots to automate data gathering (e.g., to map the environment) and perform
predictive analysis (e.g., to recognize cracks using machine learning methods).

Since this project is a part of the University Coal Research (UCR) program, another major
objective of the project is to inspire, educate and train PhD and MS students to address energy-
related challenges. During the project, multiple PhD students from both universities and several
MS/undergraduate students were included in this project. They were trained and educated in
science and engineering to address the energy-related challenges. The Pls believe education is a
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critical component of the project, and we will integrate research with educational activities to
prepare the next generation scientists and engineers for the energy industry.

II.  Technical Approach, Experimental Results, and Discussion

To address the research goal and objectives, four major technical tasks were performed,
including (1) NDE sensing and assessment, (2) repair device design and control, (3) robotic
platform design, and (4) artificial intelligence development. Specifically, these tasks include the
following subtasks:

e Task 1 — NDE sensing and assessment
o Subtask 1.1 Probe design for robotic platforms
o Subtask 1.2 Signal processing techniques for crack profiling
e Task 2 — Repair device design and control
o Subtask 2.1 Integrated IHA-FSW system
o Subtask 2.2 Repair protocol design
e Task 3 — Robotic platform design
o Subtask 3.1 Robot retrofit for vertical navigation
o Subtask 3.2 Cleaning mechanism design
o Subtask 3.3 NDE integration on robot
o Subtask 3.4 Repair integration on robot
e Task 4 — Artificial intelligence development
o Subtask 4.1 3D mapping and data fusion
o Subtask 4.2 Spatiotemporal damage tracking
o Subtask 4.3 Damage analysis by machine learning

1. Task 1: NDE Sensing and Assessment

A compact NDE sensor was designed with crack detection and assessment capabilities. Signal
processing methods were also developed to estimate crack sizes and improve the NDE sensor’s
reliability.

1.1. Subtask 1.1: NDE Probe Design for Robotic Platforms

Research in nondestructive evolution technologies have been rapidly improved due to their
essential role not only in diagnostic maintenance but also in prognostic maintenance, health
monitoring, quality assessment, and in manufacturing processes. Several nondestructive
evolution methods, NDE, are currently being used to inspect heat exchangers, boiler structures
and tubes. In this section, nondestructive evaluation methods are introduced and applied to
inspect a sample from a boiler structure.

1.1.1. Literature Review
In the relevant literature, several methods have been reported for inspecting boiler structure such

as, visual methods, laser-based inspection, radiography, ultrasonic, microwave near field sensing,
and electromagnetic methods such flux leakage and eddy current.
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Visual inspection uses reflected or transmitted light from test object that is image with the
human eye or other light sensing device. Its applications range from raw material to
finished products and in-service inspection [8]. Although it can be inexpensive and
simple with minimal training required, only surface conditions can be evaluated. For
sophisticated visual inspection, an effective source of illumination required. For boiler
inspection, visual inspection is time consuming and risky task for engineers.

The laser optical technique (LOTIS) uses a rotating laser beam that scans the inner
surface as the probe is pulled out of the tube. The reflected laser beam is picked up by a
lateral detector that measures changes in proximity caused by variations on the internal
diameter (ID) surface [8]. The technique is limited to ID surface inspection with a speed
of up to 3 in./s. The technique also requires the tube to be cleaned to avoid any
unnecessary optical scattering. It has proven applications for large diameter tubes such as
those in reformers and furnaces. Because of its limitations it is mainly used as a
complimentary inspection tool. LOTIS allow permanent records can be obtained from
test results. It also distinguishes inner from outer diameter. Instrumentation can withstand
adverse field conditions. In addition, it can detect flaws under support plates as well as
flaws adjacent to end sheets [9]. However, tubes must be cleaned. Scale or deposit can fill
a flaw which will make it difficult to qualify its depth. The methods are very sensitive to
inspection speed. Instrumentation and probes could be very expensive. The detectability
is limited to 20% and greater, and cannot accurately size discontinuities. According to
[9], the method cannot inspect U-bend tubes.

In radiography techniques, a source of radiation is directed toward the inspected object. A
sheet of radiographic film is placed behind the object. It is used for pipeline inspection
due to its reliability. A disadvantage associated with it is the radiation exposure and
might be challenging for boiler inspection.

Ultrasonic method has become a popular NDE method. The principle is to employ high
frequency acoustic waves to probe the inspected sample. As the acoustic wave penetrates
the sample, the wave is attenuated and/or reflected by any change in the density in the
material. By observing the returned signal many of the characteristics of the material can
be determined [10]. In [11], ultrasonic has been reported as demonstrated good
performance in the determination of actual (remaining) wall thickness for large areas of
tubes and sheet metal. Unlike radiography, ultrasonic NDE has no health risks.
According to [11], it is possible to define defect location very accurately. The reporting
accuracy regarding depth measurement for the latest generation of tools is around +0.4 to
0.5 mm. The highest possible depth resolution that can be achieved is 0.06 mm [12].
However, ultrasonic requires an acoustic coupling and surface preparation [13]. In
addition, training is necessary for ultrasonic inspection.

Ultrasonic internal rotating inspection system (IR1S) is used for NDE evaluation [9]. This
inspection method employs an ultrasonic immersion pulse echo technique. The ultrasonic
transducer is contained in a test head, which fits into and is centered in the tube to be
inspected. The ultrasonic pulses are emitted along a path parallel to the tube axis. A
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rotating 45-degree mirror then reflects these pulses so that they are directed radially on to
the tube wall. It provides information on flaw profile and location i.e., on the ID or OD of
the tube. With real time C-scan capabilities during data collection, pits as small as 1 mm
diameter can be easily detected [8]. It has relatively slower speed of operation and
enquires extensive tube cleaning. It is limited to minimum wall thickness measurement of
0.8mm for carbon steel tubes [8].

Eddy current and flux leakage methods are the most commonly used for inspecting
conductive material. In flux leakage examination methods, the probe consists of a magnet
and two flux leakage sensors, which set up a flux field in the tube wall as it passes
through the tube. The field fluctuates when it encounters a flaw. The flux rate fluctuation
effect is picked up by the coils and displayed on the display apparatus and chart recorder
[8]. A Hall effect element can be added as a combined-type probe, which is used to detect
absolute flux such as gradual wall loss. The output of the Hall effect detector depends on
the orientation of the sensor in the probe relative to the discontinuity and whether the
location of the discontinuity is on the inside or outside surface. The output of the
magnetic flux leakage coils is related to the change of flux caused by the discontinuity
but not the discontinuity size [9]. The method distinguishes ID from OD flaws, can
inspect ferromagnetic tubes up to 3.5 inches in diameter and 0.120 inches wall thickness,
permanent records can be obtained on test results. Instrumentation can withstand adverse
field conditions [9]. Flaws under support plates as well as flaws adjacent to end sheets
can be detected. The method’s simplicity, low cost, air coupling and non-contact
application, made MFL testing suitable for the automated in-line and real time defect
inspection [13].

In eddy current testing, a time varying magnetic field is induced in the sample material by
using a magnetic coil with alternating current. This magnetic field causes an electric
current to be generated in conducting materials. These currents, in turn, produce small
magnetic fields around the conducting materials. The smaller magnetic fields generally
oppose the original field, which changes the impedance of the magnetic coil. Thus, by
measuring the changes in impedance of the magnetic coil as it traverses the sample,
different characteristics of the sample can be identified. Eddy current testing is an
effective method to detect fatigue cracks and corrosion It is suitable for detecting for
example porosity, cross and seam cracks and checking seams and butt welds. testing
electrically conductive materials for the detection of surface and near-surface defects
[14]. Eddy current testing is widely used for inspecting conductive material because it is
cheap and can monitor subsurface defects or defects under insulating coatings without
touching the surface of a specimen [11, 12, 15, 16]. In ECT, probes excited with single or
multi-frequencies employed for the detection and evaluation of surface and sub-surface
defects. For the detection of deep sub-surface defects, higher excitation current is
necessary in single and multi-frequency techniques [14].

For far filed sensing, remote Field Eddy Current (RFEC) is used. The remote field
inspection method is based on the transmission of an electromagnetic field through the
tube material. The exciter coil generates eddy currents at a low frequency in the
circumferential direction. The electromagnetic field transmits through the thickness and
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travels on the outside surface. A receiver coil placed in the remote field zone of the
exciter picks up the field. The separation between the two coils is two to four times the
tube’s inside diameter [9]. RFEC can be used to inspect Ferromagnetic tubes in shell and
tube heat exchanger& boilers. It is well suited for the detection of the following types of
corrosion: general corrosion, erosion, localized corrosion and pitting, support plate fret
wear extending beyond the baffle [8]. However, evaluation of small flaws such as pits
using RFEC can be difficult. Compared to near field eddy current methods,
instrumentation and test probes can be very expensive and requires high inspection skills
for data analysis and evaluation. In RFEC, impingement erosion and wall loss
detectability is limited to approximately 20% and greater. The method needs tube
cleaning and has some limitation to distinguishing inner diameter from outer diameter
defects. Inaccuracy in test results could occur if a discontinuity encountered differs in
geometry from calibration discontinuities. According to [8], RFEC had the highest
reliability of 77% in carbon steel tube inspection.

For ferromagnetic materials, partial saturation eddy current method is used. The full
saturation probe contains conventional eddy current coil and a magnet. The magnetic
field of the magnet saturates the material. Once saturated the relative permeability of the
material drops to one. The strength of the magnets used for saturation is very critical in
this technique. Weaker magnets will not saturate the material and will produce a high
noise to signal ratio. The application of a full saturation eddy current technique depends
on the permeability of the material, tube thickness and diameter [9]. It could be used to
size of outside surface discontinuities. However, inside surface discontinuities cannot be
sized with signal phase analysis because the depth of the discontinuity does not influence
the phase. The inspection speeds up to approximately 60 feet per minute. The method
can distinguish between inner and outer flaws similar to conventional eddy current
method. Compared to other methods it presented reliability and accuracy of test results.
Moreover, it is applicable to non-ferromagnetic and slightly ferromagnetic tubes.
However, instrumentation and test probes can be very expensive and requires high
inspection skills for data analysis and evaluation [9]. For this method, the tube material
should be fully saturated, and tubes must be cleaned.

An effective eddy current method used for conductive and nonconductive material is
pulsed eddy current [17]. PEC testing can be widely used to measure the thickness and
stress and to characterize crack, metal loss, and corrosion of metal materials and carbon
fiber-reinforced plastic [18]. PEC testing possesses many advantages against the
conventional eddy current testing, including more extended detection depth, richer
information about defects and higher robustness of anti-interference. In addition, PEC
testing technology taking pulse as excitation can minimize power consumption, which is
more promising in the development of portable instrument [15, 16]. PEC is more
economical compared to other NDT methods.

Near-field microwave imaging method is a promising nondestructive evaluation
technique that can give a quantitative measure of the surface and sub-surface profile of
lossless or low-loss dielectric materials [19]. Unlike the far field technique, the resolution
of the near-field measurement is not constrained by diffraction limits, since it is
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determined by the probe's aperture size. Thus, it is capable of providing sub-wavelength
resolution. The sub-wavelength resolution microscope was first proposed by Synge in
[20], with experimental designs reported in [21]. Since then, a lot of research has been
focused on the improvement and development of various designs for a microscope
scanning system. Cho et al. achieved millimeter level resolution with frequencies around
1 GHz by using coaxial resonators [22]. Reducing the aperture size by using a sharp
probing tip achieved a spatial resolution of 100 nm, by Gao et al [23]. Bakli et al
presented a scanning system that combines a vector network analyzer and a high
precision interferometer which provides broadband capabilities and high measurement
accuracy [24].

Based on the technical and ecumenical advantages of eddy current inspection of conductive
material, in this project eddy current sensing is proposed for inspected boiler structure. For
robust and reliable inspection, near field microwave sensing using open ended coaxial cable
antenna is also used for inspection.

A. Eddy Current Sensors

Eddy current technigue is based on electromagnetic induction. A time varying electrical current
is energizing a wounded coil (primary current). A magnetic flux is generated at the center of the
wounded coil as shown in Figure 2, which is adopted from [25] for illustration. Based on
Faraday’s induction theorem, the alternating flux generates electrical current in a conductor if it
is placed perpendicular to the flux direction. As a result, circulating electrical currents flows in
the conductor in forms of eddy waves, which are called eddy currents.

\\\ / magnetic field

alternating current —» ™

secondary
magnetic

Figure 2: Primary and secondary magnetic field. Eddy current on the test piece.

The circulating eddy currents generate their own magnetic field which is opposing the primary
magnetic field. The presence of the cracks in the test material disturbs the baths of the eddy
currents, and the secondary marantic field. Thus, changes in secondary magnetic field are used as
indications of the presence of the crack. The following measurements techniques are used to
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measure the marantic field in the eddy current. Induction coils and semiconductor-based device
such as hall sensor, magnetoresistance, and measure are being widely used to measure magnetic
field.

Impedance Variation:

The impedance of the primary coil is modeled by an inductor in series with the resistance of the
wounded coil. As the coil induces electrical current in the secondary material, and the secondary
magnetic field opposes the primary marantic field. The total magmatic filed seen by the coil
involves the information of the secondary field changes. These changes are reflected in the
impedance variation of the coil. As the sensor eddy current are disturbed by discontinuities,
defects, the total impedance decreases as shown in Figure 3.

Defect free Defected
71 Z1.
£ Z2
X X
R " | R ”

Figure 3: Impedance variation due to defects in sample under test.

Measuring the impedance variation of the excitation coil has been widely an effectively used in
eddy current method [26]. An example of the single coil that is used in this experiment is shown
in Figure 4 with 500 turns. Compared to other eddy current sensing methods, it involves less
components and it has direct coupling with the total magmatic flux linking the coil.

i

Figure 4: Impedance variation sensors.
Transmitter and Receiver Coils:
To measure the field directly along with excitation coil, primary coil, another wounded coil is

needed, secondary coil. The primary and the secondary coil acts like a transmitter and receiver.
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The receiver coil is wounded on top of the transmitter coil of the eddy current probe as shown in
Figure 5. The receiver coil of the probe is placed in time varying magmatic field. The magnetic
field seen by the receiver coil is the total magnetic flux that is the magnetic field from the
transmitter coil and the magmatic fields generated by the eddy currents. As a result, voltage
induced across the receiver coil measures the magmatic variation of the eddy current as it
encounters defects and cracks. In this project, the transmitter and receiver are consisting of 200

turns for each.
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Figure 5: Eddy current Transmitter and Receiver coils.
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Figure 6: Near-field microwave microscopic imaging system and block diagram.
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B. Near Field Microwave Sensor

A nearfield microwave imaging system consists of either a single transceiver or a multiple array
of probes, which illuminates the OUT and measures the localized response from the material.
The response varies with electrical properties of the material. However, to achieve high
resolution images, the separation between the tip of the near-field antenna and the surface of the
sample has to be small and stay constant. The precision of that distance will have a significant
influence on accuracy of a near field imaging system.

The block diagram of implemented setup is shown in Figure 6. An 8 GHz RF source generator is
used to feed the nearfield microwave probe. The low output of the source is amplified to +24
dBm and a 3 dB RF splitter is used to divide the amplified signal into a feed and a reference
signal. The directional coupler is connected to the feed signal coming from splitter and also used
to probe the reflected power. The reflected signal is mixed with the reference signal to get any
changes in phase according to the changes in the properties of the object.

The probe used for imaging is a coaxial cable with an open-ended copper tip due to its simple
design, easy availability and wide band frequency response. The experiments are performed by
keeping the tip perpendicular to the object, where the fields are stronger and localized.

1.1.2. NDE Sensor Design

In order to embed the NDE scanning system with the robot platform, a miniaturized NDE system
has been developed and tested. The new portable NDE system requires much less space and
consumes lower power while maintains a similar performance compare to the pervious non-
portable system.

A. Coil Array Design

Considering the technical and economic advantages of eddy current and near-field microwave
sensing methods, both methods are proposed to integrate robotic scanning platform for
inspecting boiler structure. For detecting millimeter and submillimeter width cracks on surface
and subsurface of the inspected specimen, the following specific sensors have been investigated
and implemented: transmitter-receiver (TR) and giant magneto resistive (GMR) for eddy current
sensing and a small diameter tip-based coaxial cable antenna for near field sensing. Although the
scanning results show the scanning system’s capability of detecting the defects with 0.2 mm
width, the long scanning time become one of the constraints that prevent applying these NDE
methods directly on the robot platform. In this case, sensor array which is able to cover more
area in the unit time has been studied through simulation and experiment. To have a better
understanding of coil array properties, a simulation has been performed.
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Figure 7: Simulation model of the coil array.
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Figure 8: S11 simulation result of the coil.
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Figure 9: Coil arrays with different sizes of coils.

B. NDE Sensing System Development

A flowchart of the NDE coil array scanning system has been shown above. A dual-channel
waveform generator is used as the signal source. The coil array sensor is excited by the signal
from ch.1. The signal from ch.2 is used as reference and directly connect to lock-in amplifier.
The lock-in amplifier demodulates the receiving signal using the reference signal and output data
is sampled using a NI data acquisition device.

Signal out
S —»| Sensor
ignal source
Reference
A\ 4 A 4
Lock in
Computer f¢—{ NI-DAQ [« amplifier

Figure 10: Flowchart of coil array scanning system.

The design of the miniaturized NDE system start with miniaturizing of the components. For the
first prototype, a portable version of each part has been selected or developed.
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Sine wave 0~60MHz

Square & Triangle Wave 0~15MHz
Pulse & Arbitrary Wave 0~6MHz
Square rise time <15nS

Pulse width adjustment range | 30nS-40008

Frequency accuracy +20ppm

Frequency stability +1ppm/3h

Figure 11: Spec sheet of the waveform generator.

A High Precision Direct Digital Synthesizer (DDS) based Dual-Channel Arbitrary Waveform
Function Generator has been used as the signal source. The Waveform Function Generator able
to provide up to 60 MHz sine wave to the coil array sensor.

In order to filter out undesired frequencies and reduce noise in the receiving data, a lock-in
amplifier has been employed. Lock-in amplifier is a device that able to extract very small signals
in the presence of a noisy background with the knowledge from the reference signal at same
frequency.

Ln phase::
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R
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Figure 12: Block diagram of Lock-in amplifier.

As the figure shown above, a multiplication has been performed for the input signal with a
reference signal. This multiplication is also termed as demodulation which isolates the specific
frequency of interest from all other frequency components. An adjustable low-pass filter is then
applied to the result to reject the noise and extract the DC component.
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In the complex plane, the input signal Vs(t) can be express as the sum of two vectors.
— ) — R _+i(wst+0) 4 R —i(wst+0)
Vi (t) = V2R - cos(wst + 6) N + N

The process of demodulation can be mathematically expressed as a multiplication of the input
signal with the complex reference signal V,.(t) where

V.(t) = V2e71ort = /2 cos(w,t) — iv2 sin(w,t)
The mixed signal is then expressed by
Z() = X(©) +iY(t) = V(1) - Vi (1) = R[ell(@s—ont+8] 4 o-il(wstwr)t+6]]

with signal components calculated by the summation and subtraction of the signal frequency and
the reference frequency. The averaged mixed signal is given by

Z(t) = R- eil(ws—0r)t+6]

When the reference signal’s frequency is same as the input signal’s w, = w,, the output of the
lock-in amplifier simplifies to

Z(t) = R-el®

The X and Y are the in-phase component the quadrature component obtained using Euler’s
formula exp(iwgt) = cos(wgt) + isin(wgt) as

X = Re(Z) = (V5(t) cos(wst)) = RcosO
Y = Lm(Z) = —(V,(t) sin(wst)) = Rsind
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Figure 13: Functional block diagram of AD630.

For the portable lock-in amplifier, AD630 has been selected to implement the demodulation
process. AD630 is a high precision balanced modulator/demodulator with 2 MHz channel
bandwidth. As the functional block diagram shown above, the chip includes optional input bias
current compensation resistors, common-mode and differential-offset voltage adjustment, and a
channel status output that indicates which of the two differential inputs is active.

Figure 14: Breadboard based lock-in amplifier.

The portable lock-in amplifier has been designed and tested on a breadboard. Two op-amps have
been used to pre-amplifying the signal. A first order low pass filter has been used at the output of
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the demodulator to reject the high frequency noise. A NI-Daq device has been used to sample
filtered signal and convert the analog signal to digital for the further processing.

Figure 15: The first design of the portable NDE system.

The first prototype of the miniaturized NDE has been shown above. The coil array sensor is
attaching on 3D CNC gantry during the scanning. A line scanning result has been shown below.
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Figure 16: 1D scan of the sample using the portable NDE system.

As shown in the figure, the signal is very noisy and only the cracks with 2mm or 3 mm can be
distinguished. These noises may be introduced due to the unstable jumper wire connection.
Therefore, to reduce the jumper wire and improve scanning quality, a PCB that the embedded
most function of the system has been designed and tested.
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In order to have a better control of the system, a microcontroller unit (MCU) has been employed.
As the flowchart shown below, MCU will act as a bridge between the sensing circuits and the
computer. The sensing circuits provide multi-channel scanning ability and convert the analog
signal to digital signal. The MCU collects the data through the 1°C bus and pass the data to the
computer. The computer will map the data to the corresponding location of the sample and
estimate the size of the defect.

Coill.3 Coill.4 Coill.5 Coill.6 Coill.”7

S, e, RS
= &= S &5 =
K VA i

Sensing circuits

|2C § ” :
=

Computer Micro Controller 12C expander

25



)
Access COM port

" Movingthe

scanner

ne scanning

completed

1imm 2mm 3mm 4mm 4.5mm 5mm
depth  depth  depth depth depth depth

Gap between
two plates

Figure 18: Two steel plates with cracks at different depth.
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Figure 19: Line scanning result of the two steel plates.

To test the performance of the scanning, two steel plates have been placed side by side. Each of
plates has 3 cracks with 0.2 mm width and different depths. As shown in the figure above, all
the cracks have been successfully detected. A better signal to noise ratio has been achieved
comparing to the first prototype.

Considerations of NDE Sensor Design:

Many constraints need to be considered when designing the NDE sensing system for the robot.
The sensor's footprint is limited by the design of robotic system as well as the complexity of
testing structures. The allowable maximum power consumption of the entire system is
constrained by the available power supply unit on the robot. There are also many environmental
conditions that could affect the NDE results obtained from the robotic actuating and sensing.
Such would add inevitable uncertainties towards the acquired data or restrict actuation access, in
turn, lowering the fidelity and resolution of NDE data used for further damage assessment and
analysis. To overcome these aforementioned challenges and obtain optimized sensing outcomes,
the proposed NDE sensors were customized to fit in the robotic system and workspace
environment for power plant boiler inspection. These optimizations lead to a lowcost,
lightweight, non-contact, and simplified NDE setup.

To achieve the optimized scanning performance, a parametric study of the coil design has been
done using Ansys HFSS. The simulation studies focus on the sensor's sensitivity to the very
narrow cracks (the width of the crack is less than 0.2 mm) on the boiler wall as well as the
sensor’s scanning area. A sensor with better sensitivity to the interested defect will provide a
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better signal-to-noise ratio and a sensor with larger scanning area will reduce the scanning time.
Two identical coils are simulated with steel plates present on the top of the coil. The lift-off
distance is 1 mm. A crack (0.1 mm x 15 mm) has been introduced to one of the steel plates. The
parametric sweep study simulates different coil dimensions such as the line space, line width,
and the number of turns.

gap

Figure 20: The simulation geometry model. Two identical coils are simulated to study the
difference between the signal from the healthy region and the defective region.

The sensor's sensitivity can be depicted by resonating frequency's magnitude difference when
comparing the healthy and defective regions' scanning data. A general trend can be observed that
as the number of turns increases, the sensitivity of the sensor decreases. However, there is a
trade-off between the scanning area and the sensor's sensitivity. Therefore, a multi-channel eddy
current array has been designed and employed, which allows for surface and subsurface anomaly
detection while meeting the optimization requirements.
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Figure 21: The simulation results of the different dimensions’ coils on the healthy and defective
samples. (a) The magnitudes change at the resonating frequency and (b) The Pareto front of
maximizing the scanning area and the sensitivity of the scanning system.
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1.2. Subtask 1.2: Signal Processing for Crack Profiling

Signal processing techniques were implemented and tailored for robotic platform-based
acquisition. Further, crack profiling methods were also built into the signal processing.
Specifically, postprocessing and filtering methods required to eliminate the sensing noise, and
learning-based crack profiling methods were developed.

1.2.1. Postprocessing for Noise Removal
A. Data Fusion for Noise Removal

Data post-processing methods were studied to achieve a better signal to noise ratio. By
combining images of various sources with different physical properties, pixel-level data fusion
focus on revealing complementary or redundant information about the physical and mechanical
characteristics of a material. In order to improve the accuracy of detection, a method that aim to
extract all the perceptually important features from different original images has been developed.
This data fusion method combines the information to form a fused image in such a way that all
the key features from each input image are still perceivable.

[nforn'latmn Information

preserved in preserved in
approxlmatmn details coefficient
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i Low-frequency
information is

filtered out.

Figure 22: Flowchart of the data fusion method.

A flowchart of the data fusion method has been shown above. After selecting the input data,
discrete wavelet transform (DWT) will be employed to convert the raw data. DWT based image
fusion consists of two steps: selection of the proper wavelet filters and level of decomposition
using formulated parameter, and selection of the proper fusion criterion in wavelet sub band. It
means that fusion is operated on wavelet domain level via DWT of multiple sources combined
with fusion rule and fused image is reconstructed by inverse DWT (IDWT). This method fuse
images at different frequencies from the eddy current sensor.
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I=WeWU) + W) + W(U3) + -+ + W ()]

where I, I,,..., I, are the m images to fuse, ¢ denotes the fusion rule, and Wand W =1 represent
DWT and IDWT respectively. In order to achieve higher quality, wavelet filter, level of
decomposition and corresponding fusion rule should be carefully selected.

Energy risk factor is adopted to select appropriate filter. E,,,;;, = min E,(j). E4(j) is the energy of
)

approximation coefficient at the jt* level of the selected wavelet filter. The wavelet energy
represents the percentage of energy corresponding to the approximation and the detail coefficients.
Ein denotes the minimum energy of the wavelet approximation coefficients (WAC) which
indicate that low-frequency information is removed after decomposition. It is used to filter out
noise and other low-frequency components.

Since useful information could be preserved in low frequencies mixed with noise, the maximized
energy within the wavelet detail coefficients (WDCs) is considered. The energy of denoised
image’s WDCs cannot be higher than the original raw image. Despite of having energy stored
within the WDCs of the denoised image being closer to the energy stored within the WDCs of
the raw image, more importance should be given to WDCs in higher frequencies.

The A108 Steel Boiler Sample has been scanned using different kinds of sensors at different
frequencies. The selected scanning area includes cracks with 200 um and 400 pum width.

Figure 23: The scanning area of the crack sample.
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Figure 24: (a) Eddy current imaging at 30 KHz, (b) Eddy current imaging at 50 KHz, (c) GMR
sensor imaging at 35 KHz.

Figure 25: Data fusion result of scanning data at different frequencies.

Two 1D plots have been shown below to have a better comparison between raw data and data

fusion result. From the figure, the fusion results show that with proper selection of wavelet and
fusion procedure, reliability and SNR can be enhanced.
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Figure 26: 1D plots that compare the raw data and data fusion result. The shading region

indicates the location of sub-mm cracks.

B. Sensing Reliability Improvement

The following images show the testing samples and the 2D scanning result using the developed

sensor in channel 0.
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Figure 27: The 2D scanning results of the steel sample with different depth cracks.

The scanning takes 1500 steps in the X direction with step size 0.1 mm and 20 steps in the Y
direction with step size 1 mm. The lift-off distance is 0.5 mm.

o

Figure 28: Schematic of the coil for the fast scanning.
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Figure 29: Specimens with a rough surface.

More data within the unit distant will provide better resolution of the scanning. However, the
sampling rate is limited by the hardware and can not be increased without constraints.

Therefore, a multi-channel sensor has been employed in the system to cover more scanning areas
without increase the scanning time in the current design. In order to further reduce the scanning
time, a bi-level sensor system is studied. The idea of this system is to use a large sensor to run a
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fast scan and detect the presence of the defects. Then using a small sensor to run a precise scan
and obtain the detailed information of the defects.

A rectangular stretched coil has been simulated for the fast scanning. The size of the coil is 100
mm x15mm, with 23 turns. The trace and spacing of the coil are 6 mil. The coil has been placed
on a steel plate with a crack on the surface. The model simulates the S11 signal when the defects
are close to a different part of the coil. As shown in the Figure 28, the resonant frequency shifted
when the defects present near a different section of the coil. The results indicate that the
rectangular coil is able to detect the defects and also provide the estimated location information
of the defects.

To estimate the reliability of NDE systems, the parameters responsible for noise, such as that is
due to specimens’ surface roughness the change of the lift-off distance, has been studied. Two
specimens with the rough surface have been scanned to study the parameters responsible for
noise,. As shown in the Figure 30, a line scan has been performed on the steel samples with rust
and scratches on its surface.

Figure 30: Specimens with a rough surface.
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Figure 31: The line scanning signal of the steel plate with a polished area and the rusted area.

For the plate sample, the scanning takes 1500 steps in the X direction with a step size of 0.1 mm.
The lift-off distance is 1 mm. As shown in the Figure 31, the noise can be observed on an
average 50Hz fluctuation due to the rough surface and other factors result in the signal frequency
shift on both the polished area and the rusted area. In this case, the rust does not result in the
difference in the signal compared to the polished area.

When the sensor is installed on a robot platform, the lift-off distance may change during the

motion of the robot. Therefore, it is necessary to study the effect of the distance between the

sensor and the sample. Two steel plate samples have been placed side by side and the lift-off
distance from 1mm to 50 mm has been scanned.

Figure 32: Steel samples with different depth of the cracks.
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Figure 33: Line scanning of the steel plate at different liff-off distance.

As shown in the Figure 33, a better contrast of healthy area and defect area can be observed
when the sensor is closer to the sample. The signal is very similar when the lift-off distance is
within 1-20 mm, which indicates a small vibration will not introduce too much noise. The signal
decayed very fast when the lift-off distance is increased from 21 mm to 30 mm. Although the
location of the defects can still be identified from the signal, a lot of information is lost. When
the distance between the sensor and the sample is more the 31 mm, it would be hard to get any
useful information from the sensor.

1.2.2. Crack Profiling by Size Estimation

It is very important to know the size of the cracks. In this project, the NDE scanning system on
the robot will perform a 2D scanning of the sample. With proper data processing methods, the
length and the width of the defects can be accurately detected. However, the depth information
of the defects is not that straightforward. In order to have a better depth estimation, both
experimental tests and numerical simulations have been studied. A numerical simulation model
is developed using Ansys to study the S-parameter change when the sample with different depths
of cracks. The model of a single coil is shown below.
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Figure 34: Coil simulation model with adjustable parameter gap and width.

A 20 X 20 X 5 (Unit: mm) sample with different depth of the cracks has been place on the top of
the coil sensor as shown in Figure 34.
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Figure 35: The steel samples with different depth of cracks on the top of sensor.
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Figure 36: S11 simulation results of crack depths from 1 mm to 5 mm.
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Figure 37: New sample design: A3(Q235) steel with 0.2 mm width at different depths.

The pervious sample contains only through cracks. In order to study the actual performance of
the sensor on different depths, the new sample with different depths of cracks have been
fabricated. The material of the sample is Q235 steel. Three 0.2 mm width cracks with depth from
1 to 3 mm have been introduced to sample 1. The cracks on sample 2 are with same width but
the depths are 4, 4.5 and 5 mm respectively. The samples have been scanned using eddy current
coil array sensor with 1 mm lift-off distance. As shown in the figure, the cracks with different
depth can be easily distinguished. However, more study is still needed to get a good depth
estimation from the data.
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Figure 38: Experiment setup with eddy current array sensor.
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Figure 39: 2D and 1D plot of the scanning imaging.




A. Regression Model for Crack Size Profiling

A model is developed which simply mapping the inputs (signal from the sensor) to outputs
(information of the cracks). In order to study the relationship between the geometry of the cracks
and the raw signal, the steel plates with cracks of different depth have been placed side by side
and scanned multiple times with same setup.

34

3351

Frequency(MHz)
w
n

NN A A
[ | Iy
\|\ ]
|
P
| I

1) 1] |
IREURT
I
v " |

| |

10 156 20 25 30 35
Distance(CM)

Figure 40: Extracting the crack information from raw data.
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Figure 41: The steel sample setup and the schematic.

depth

Each of plates has 3 cracks with 0.2 mm width and different depths (Imm, 2mm, and 3mm for
the first plate; 4mm, 4.5mm, and 5 mm for the second plate). The gap between two plates has

been considered as a through crack with 8 mm depth. This setup using two channels (ChO and
Ch1) with same coil but scanning at different lift off distance (Lmm and 1.5mm).
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A model is trained to learn relationships between the inputs and outputs from the scanning
dataset. During training the model is given both the features of the signal and the labels of the
cracks and then create the link from the former to the latter. After training, the model is
evaluated on a testing data set, where the features are given, and it makes predictions. The
performance of the model is given by comparing the predictions with the known labels to
calculate accuracy.

The raw data is obtained and then used to estimate the actual depth of the cracks. Considering the
limited number of data points, the model has first start with simplest linear regression and then
increase the complexities to prevent the overfitting.
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Figure 42: The prediction values and the errors using linear regression.

A huge discrepancy can be seen between the prediction value and the actual depth. The error rate
of the estimation is very high which means this model is underfitted with low variance and high
bias. Therefore, the polynomial degree of the model should increase which will offer a higher
flexibility and a higher power to allow the model to hit as more data points.
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Figure 43: The prediction values and the errors using polynomial regression.
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As shown in the figure, a huge improve can be seen that the errors of the prediction are much
less. To further improve the prediction accuracy, more training data sets are necessary. The
width information of the cracks is also important and the relationship between the raw data and
the crack width has also been studied.
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Figure 44: Scanning path with different angles and the scanning results.

The cracks of the current steel plate samples in the Lab are all having same width. In order to get
different width information for the prediction, several scans have been performed along different
angle of the sample. As shown in the figure, the paths parallel and have a 15°, 30°, and 45° angle
with edge have been scanned. The full width at half maximum (minimum) of the signal
waveform has been as the feature parameter to calculate the actual width.
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Figure 45: Error of the width estimation.

More training data sets are necessary to improve the accuracy of the prediction model. Due to the
limited access to the Lab and scanning system, several simulation models have been designed
and analyzed to provide a better understanding of the information extraction.
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In order to study the relationship between the width of the crack and the signal, a steel plate with
a triangle shape through hole has been simulated.

Figure 46: Simulation model for the width information study.

As shown in the figure, the size of the plate is 90 mm x 40 mm x 5 mm. The maximum width of
the crack is 2 mm and the length of the crack is 80 mm. A coil sensor has been placed 1 mm
away from the plate surface and moves along the positive X-direction.
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Figure 47: Simulation results for the width information study.

The S parameter simulation results are shown above. By extracting the magnitude of the resonant
peak, a plot of the signal response at different location is shown above. A monotonically trend
can be observed in the middle of the waveform as expected. The blue shaded parts are the data
collected from the edge of the crack.

A similar model which studies the effect of the crack depth is shown below. A wedge-shaped

notch with the depth changing from 5 mm to 0 mm. The simulation results of the sensor placed
at different location of the notch are shown below.
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Figure 48: Simulation model for the depth information study.

During the scanning, the length of the cracks will also affect the signal. To study the relationship
between the length of the crack and the signal, a steel plate with multiple cracks through hole has
been simulated. These cracks are in same width and the length of them are from 20mm to 2 mm.
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Figure 49: Simulation model and result for the length information study.

The model simulated signal when placing coil sensor on the top of each crack respectively. The
plots of S11 parameter and the minimum magnitude of the resonant peak are shown above.

By clearing (removing some calculation error from the simulation) and organizing the simulation
data from the models, several training data sets have been crated. An estimation error histogram
of the new input data is shown below.
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Figure 50: Estimation error for the simulation result.

The small circular coil has the advantage when s Scanning the shape of defect since it is able to
provide a better resolution. When detecting the present of defect, a sensor with larger size will
allow a better scanning speed since it cover larger scanning area. In this work, a coil with
rectangular shape has also been studied.
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Figure 51: Simulation model and results of the rectangular shaped coil.

A crack with 0.1 mm width has been introduced to the steel plate in the model. The response
signal of a rectangular coil has been simulated. The sensor has been placed at three different
locations: health region, the side of the defect and on the top of the defect. When the sensor is on
the top on the crack, both amplitude and phase change of the signal can be observed. The
simulation results show the detecting ability of large rectangular coil and its potential to work as
a complementary sensor of the circular coil.

B. Learning-Based Methods for Crack Depth Estimation

The raw signal obtained from sensor reflects the properties of the sample under test. However,
the robot system needs to know the shape and location information of the cracks to perform the
fixing procedure. In the previous work, several regression methods have been studied to
extracting the cracks information from the raw signal. In order to improve the estimation
accuracy, a machine learning approach has been studied in this work.

In recent years, more and more Neural Networks models have been developed and shown theirs
promising potential in many areas. Recurrent Neural Networks architectures has shown its
effective in dealing with sequential data like language recognition & processing[27-29], words
sentiment analysis [30, 31], and signal processing. Several promising results and performance
have been shown when Recurrent Neural Networks processing the long sequence of data.
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In this project, the sensor on the robot will keep obtaining data of the scanning sample and a
model that able to track the change of the signal will help the system to provide more accurate

information of the defect on the sample.
e
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Collecting and Importing
the data
Selecting the sub-dataset
Data
Machine cleaning .
learning Converting the data types
approach

Remove the outliers
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model
Building the Training the model
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Model
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Figure 52: Flow chart of the proposed machine learning approach.

In order to achieve a better accuracy, the training time is usually very long for the large database
with the data have complex internal structures which not only result in computational expense
but also means that more parameters are to be learned and more structures need to be tuned. In
order to reduce complexity of the model, some simplified methods are becoming more and more
popular. The simple RNN train a black-box hidden state of their sequential data input. And the

recurrent hidden state can be express [32]:

ht = g(th + Uht—l + b)
Bengio et al. [33] showed that the is difficult to training the model to remember the long-term
relationship using this simple RNN. The long short-term memory (LSTM) model and its variants

have been proposed by Hochreiter and Schmidhuber [34]. The standard LSTM is having 3 gates
and 2 hidden states.
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it = O'(Wixt + Uiht—l + bl)
ft = O-(fot + Ufht—l + bf)
0 = o(Wox + Ughi_1 + by)
€t = [t OcCi_1 + ;O
¢ =gWexy + Uche_q + be)

One of the most famous variants of LSTM is GRU which provide desired accuracy with less
structure.

he =(1—2)0ht_1 + ZtQEt

he = gWyxe + Up(r:Oh_1) + by)
ze = o(Wyxe + Uzhey + by)
e = o(Wpx, + Urhe—q + by)

Different neural network methods have been designed and the tested to find the optimized
structure. The networks model has been trained by a Python code which employ the Keras
library with Theano as a backend. The GRU imported from Keras has been modified to GRUS.
ReLU activation function is selected for all the databases.

In order to generate the data for training, a HFSS model has been designed and simulated. As
shown in the figure, a steel plate with a crack at the center has been created as the sample. The
size of the plate is 120 x 70 x 10 (mm) and the length of the crack is 50 (mm). The depth and the
wide of the crack have been set as variables for the parametric study.

120mm -

70mm

10mm

Figure 53: Schematic the steel plate model.

49



000

-5.00

-10.00

-15.00 —

-20.00 —

aB(S(1,1)

-25.00 —

-30.00

-35.00

-40.00 —

-45.00 T

T T T T T T
100,00 200.00 300.00 400.00 500.00

Figure 54: Simulation results of the cracks with different depth.

The training set of depth information have been generating from 0.1 mm to 5 mm with 0.1 mm
step size. The sensor has been placed on the top of the crack.

The data generated from the simulation needs to be convert to a dataset which includes features
and labels to define the problem. The output labels in this problem are the actual depth/widths of
the cracks. There are multiple parameters that can be used as the features, such as the resonant
frequency, minimum magnitude, and phase change at the specific frequency. In this study, the
model has been trained start from a simplified case: the first three resonant frequencies have
been used as the input and the regression has been considered as a linear function. Therefore, the
relationship of input and output can be written as:

y= f(x) = WiXfre1 T WoXrrep + W3Xfrez + bias
The goal is to minimize the loss function which can be express as:

n
Loss = ZIWxi + bias — y;|

i=1

The estimation results are shown below:
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Figure 55: Depth estimation for the training set and testing set.

To further improve the accuracy of the model, more scanning data have been generated with
different combination of depth and width of the crack.
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Figure 56: Simulation results of the cracks with different depth and width.

The training and testing accuracy has been shown in the figures below. As the training process
repeated, the training accuracy shows an increasing trend while the testing accuracy is

fluctuating. These might due to the parameters selection and also the size of the database of the
model which result in an overfitted.
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Figure 57: Training/testing accuracy and loss of GRU3 with different number of epochs.
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Figure 58: Training/testing accuracy and loss of LSTM with different number of epochs.

2. Task 2: Repair Device Design and Control

A repair tool based on friction stir welding (FSW), one of the solid-state repair methods, was
designed. By augmenting FSW with an induction heating unit, the demand for spindle torque and
forging loads can be significantly reduced, enabling FSW to be used as a compact repair tool.

2.1. Subtask 2.1: Integrated IHA-FSW System
2.1.1. Literature Review

A. FSW Baseline Parameters
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First of all, literature search on typical FSW parameters without involving any preheating
methods for various grades of steels were performed to establish the baseline welding parameters
for the repair of boiler furnish wall steel and identify the required force as a function of welding
parameters. Tables 2-4 below summarize the findings related to stainless steels (Table 2) [34-
43], low carbon steels (Table 3) [44-48], and others (Table 4) [49-52].

Table 2: The FSW parameters for various grades of stainless steels.

Steel Tool Pin Pin Shoulder  Plunge  Tilt Rotation Travel Vertical
rades material length  diameter  diameter depth  angle speed speed force
g (mm) (mm) (mm) (mm) ®) (r/min) (mm/min) (kN)
304 [34] WC* 2.3 35 20 2.3 1.45 1000 63
*
30435 BN 35 550 78
tungste 300
304 [36] n alloy 19 500 102 31
500 120 16
304[37] PCBN 10 15 2.4 0
800 120 14
304 [38] 6 25 300 51 25
12 285 53 10
304 [39] wcC 2.75 7 14 0.4 15 355 66 10
16 450 84 10
304 [40] WC-Co 2.8 5 2 1180 475 7
430[41] WC-Co pinless 0.2 2 900 96
430 [42] wC 2.5 5.7 16 0 1120 125 3.5
410 [43] PCBN 3.7 9.2 25 0 450 60 20
800 60 22

*WC: tungsten carbide; **PCBN: polycrystalline cubic boron nitride.

Table 3: The FSW parameters for low carbon steels.

Pin Pin Shoulder Tilt Rotation Vertic
Tool . - Travel speed al
Steel grades . length  diamete  diameter  angle speed .
material S : (mm/min) force
(mm) r (mm) (mm) ®) (r/min) (kN)
AISI 1006 [44] WC-based 2 1200 60
1018 steel [45]  W-based 6.22 19 0 450-650  25.2-100.8
IF steel [46] WC 1.4 4 12 3 400 100
1012 steel [46] WC 1.4 4 12 3 400 100
C-Mn 1018 15, 18, 11.6-
steel [47] W-0.4Re 6.22 7.9,9.0 21, 24 0 300-900 25.2-126 9.8
AISI 1018 48]  Tungsten 6.22 7.9 19 0 450 25.2 5
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Table 4: The FSW parameters for other kinds of steels.

Steel Tool Pin Pin Shoulder Plunge  Tilt Rotatio Travel Vertical
rades material length diameter  diameter  depth  angle nspeed speed force
g (mm) (mm) (mm) (mm) ®) (r/min)  (mm/min) (kN)
101.6-
X-65 [49] PCBN 5.6 500-600 152.4 28.913
1035 [46] wcC 1.4 4 12 3 400 100
1070 [50] wC 15 4 12 3 800 400
TRIP [51] wC 1.9 2 0 1350 15 5
DH36 [62] W-Re 5.7 36.8 2.5 0 500 250 40

B. FSW Force Requirements

Figure 59(a) below illustrates the vertical force profile corresponding to the FSW process at
different stages [43], including (1) plunging, (2) traveling, and (3) tool retracting. Figure 59(b)
illustrates that the plunging step requires the highest axial force, i.e., vertical force, during the
welding process.

Based on the limited data available, it was found out that the vertical force is generally the
largest forced experienced by the FSW tool. As demonstrated in Table 5 and Figure 60, the
longitudinal force (Fx) is typically less than 20% of the vertical force (F;) [53]. Also, among the
three FSW parameters including travel speed, rotation speed and the pitch value, the FSW tool
travel speed seems to be the dominant factor that determines the force requirements. On the other
hand, J. H. Record et al. [54] performed a comprehensive study on the effect of all sorts of
welding parameters on vertical force during friction stir welding process, as summarized in
Figure 61. It was found out that plunge depth is the most critical factor that determines the
vertical force, while rotation speed is the least.

Table 5: The FSW parameters for X80M steel.

Run No. v(mm/min) o(rpm) v/ Fx(N) F2(N) Fx/F;
1 100 500 0.20 3581 29778 0.12
2 100 350 0.28 3661 32848 0.11
3 100 300 0.33 3877 31893 0.12
4 80 400 0.20 2120 25864 0.08
5 80 300 0.26 2251 26352 0.09
6 120 400 0.30 3611 28242 0.13
7 120 300 0.40 4865 35798 0.136

v-Travel speed; w-Rotational speed; Fx-Longitudinal force; F;-Vertical force.
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Figure 59: (a) Schematic drawing of the FSW process, and (b)the corresponding vertical force.
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Figure 60: Fx/Fz as a function of v/w for FSW steel.
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Figure 61: Pareto charts of effects of experimental inputs on the vertical force.

In order to maximize the mobility of the repair robot, a significant force/power reduction is
desired (i.e., controlled within 3kN for a plunge/repair depth up to 3mm), especially at the initial
plunging stage. Previous studies have demonstrated a reduction of ~30% in vertical forces for
FSW of steels with the aid of induction-heating (IH) during the traveling stage, as tabulated in
Table 6 [55, 56]. However, little to no literature can be found in optimization of the preheating
parameters to reduce the force requirement in plunging stage to/near the level of traveling stage,
which will the one of objectives in this work.

Table 6: The FSW parameters with induction heating (IH) for steels.

Vertical

Pin Pin Shoulder Tilt Rotatio Travel Power of force Vertical
Tool . . . . . force
Steel material length  Dia. diameter angle nspeed speed induction  without with IH
(mm)  (mm) (mm) ®) (r/min)  (mm/min)  coil (kW) IH
(kN)
(kN)
ASTM
A131 [55] PCBN 5 8.9 23.7 0 500 50 40 36 25
Super
duplex PCBN 5 8.9 23.7 0 300 100 40 25 18
stainless
[56]

2.1.2. IHA-FSW System Design

A. FSW Trials with and without Preheating
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Two sets of FSW experiments were performed using a pin length of 2.3mm, with and without
preheating using a tungsten inert gas (T1G) welding torch. The effectiveness of force reduction
by TIG preheating was evaluated preliminarily based on the recorded vertical force values.

Base Material for FSW:

Low carbon steel grade A108 was used for all the experiments. Note that the boiler water wall
material is A106, but A106 is only available in pipe shape. Therefore, at this stage, we chose
A108 in plate format instead for initial welding parameter evaluations. The geometric
dimensions of A108 steel plates are 0.5inch thick, eight-inch wide and one-feet long. The
chemical composition (wt%) of A108 steel is listed in Table 7.

Table 7 - Chemical Composition (in wt%) of A108 steel.

Steel grade C Mn Si P S
A108 0.13-0.20 0.60-0.90 0.15-0.30 0.035 0.035

Experimental Procedure:

For FSW experiments without a preheating source, in order to reduce the tool wear, a 2.3mm
deep hole with a diameter of 5mm was drilled on the top surface of the steel plate, which serves
as the initial plunging hole. The geometry of the FSW tool is shown in Figure 62. Note that
different pin length will be used in future study, including Imm and Omm.

®=10 Unit : mm
| (0]
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RD A
el ‘
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!
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— . > d
o=2.5 ! ; . l p

Figure 62: The schematic diagram of the tool geometric dimensions.

57



Shielding
gas

Figure 63: The physical diagram of the new tool holder.

In the first set of experiments including six runs, a tool holder without a cooling system was
used. In all later experiments, a new tool holder with a proper cooling system was used to ensure
safer long runs at high temperatures introduced by the FSW of steel plates. As shown in Figure
63, the tool holder is equipped with a cooling system and argon shielding gas was used to
prevent oxidation in the steel plates during FSW. The parameters for FSW without and the
corresponding vertical force during the traveling stage are tabulated in the Table 8 and Table 9.
Since the welding parameters were varied to reveal their effects on the vertical forces, the weld
surface quality is not yet optimized.

Table 8: Parameters for FSW without preheating before changing the tool holder.

Run Rotation Travel Plunge Tool Pin  Shoulder Tilt Vertical
No.  speed speed Depth materials length diameter angle Force

(tpm)  (mm/s) (mm) (mm)  (mm) () (kN)
1 400 50 1.00 W-Re 2.3 10 2.5 12.1
2 400 40 0.69 W-Re 2.3 10 2.5 8.5
3 400 40 0.59 W-Re 2.3 10 2.5 6.7
4 400 60 0.55 W-Re 2.3 10 2.5 5.7
5 400 60 0.34 W-Re 2.3 10 2.5 3.5
6 400 80 0.31 W-Re 2.3 10 2.5 3.1

Table 9: Parameters for FSW without preheating after changing the tool holder.
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Run Rotation Travel Plunge Tool Pin  Shoulder Tilt Vertical
No. speed speed Depth materials length diameter angle Force

(pm)  (mm/s) (mm) (mm) (mm) () (kN)
7 400 80 052 W-Re 23 10 25 52
8 400 80 045 W-Re 23 10 25 49
9 400 80 060 W-Re 23 10 25 5.8

Figure 64 illustrates a schematic drawing of the FSW process assisted by preheating. The relative
distance between the welding tool and preheating source and the heat input introduced by
preheating will be optimized through finite element modeling in future. Currently, a Miller TIG
welding machine was used as the preheating source. As shown in Figure 65, this preheating unit
was equipped with a cooling system and argon shielding gas. The TIG welding torch was fixed
in front of the FSW tool, as shown in Figure 65. The relative distance between the welding torch
and FSW tool head can be adjusted along all three dimensions. As an initial trial, the arcing
height and distance between the TIG torch and the rotating tool were selected to be 4mm and
30mm, respectively. In order to avoid overheating during welding, the experiment was firstly
carried out at relatively low TIG current of 25A. The TIG welding machine was firstly turned on,
the welding torch was arced by the arc initiation of a carbon rod. Once the arc became stable, the
pin rotating at 400 rpm plunged into the pre-drilled hole and stayed for five seconds to generate
sufficient heat to soften the base metal. Then the pin began to travel at a set speed. All
experiments were carried out under argon shielding gas. Welding parameters used in this set of
experiments are summarized in Table 10.

(a) FSW Tool Preheating

(b)

Ad = uy -'d
I Rotating tool I I TIG preheating

Advancing Side

Retreating side
istance x

Trailing Edge i
Pin Retreating Side

Figure 64: Schematic diagram of friction stir welding process with preheating: (a) perspective
view and (b) top view.
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Figure 65: The TIG preheating setup.
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Figure 66: Mounting fixture for TIG torch in front of the FSW tool head.

Table 10: Experimental parameters for FSW with preheating after changing the tool holder.

RUN Rotation Travel TIG Plunge Tool Pin Shoulder Tilt Vertical
No speed speed current Depth materials length diameter angle Force
' (pm)  (mm/s) (A) (mm) (mm) (mm) ) (kN)
10 400 80 25 0.55 W-Re 2.3 10 2.5 3.7
11 400 100 25 0.52 W-Re 2.3 10 2.5 3.9
12 400 100 20 0.50 W-Re 2.3 10 2.5 4.3

Initial Results and Discussion:

In the FSW welding experiments without preheating, keeping the travel speed and rotational
speed constant, the effect of plunge depth on the vertical force was revealed by manually
adjusting the plunge depth. Comparison of Sample No. 4 vs No0.10, and Sample No. 7 vs No.11
were also made, to partly reveal the effect of preheating on force reduction as an initial
evaluation, since each pair has the same plunge depth. As discussed in Section 1.2, plunge depth
is the determining factor for vertical force.

Figure 67 summarizes the variation of vertical force as a function of the plunge depth in the first
six experiments using the tool holder without a cooling system, and Figure 68 for these using the
new tool holder with a cooling system. It can be seen that without preheating, the vertical force
decreased with the decreasing plunge depth, although the travel speed was constantly adjusted to
identify the optimal parameters for best weld appearance. The minimum vertical force was about
3.1KkN.
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Furthermore, by introducing TIG preheating, the vertical force of No. 10 and 11 decreased by
about 25-30% in comparison with that of No. 4 and 7, which is in good agreement with the
observations in literature [55, 56]. It should be noted that with the involvement of preheating, the
plunge depth does not seem to be the most influential factor on the vertical force anymore, as
seen in Table 10. This could be possibly caused by a deeper penetration of the TIG torch than the
FSW tool pin. Instead, the influence of travel speed seems to be more significant. More
systematic studies will be performed to provide more insights for such observation.
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Figure 67: The variation of vertical force with the plunge depth for the No.1-6 and 10
experiments.
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Figure 68: The variation of vertical force with the plunge depth using the tool holder with a
cooling system
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The set of experiments used pre-drilled holes to minimize tool wear, which required a larger
plunge depth to maintain a defect-free weld. In future work, the pre-drilled holes will be
eliminated to improve the weld surface quality, reduce plunge depth, and thus further reduce the
vertical force.

B. Heat Analytical Modeling during FSW Process

A large amount of FSW parameters for various types of steel had already been obtained from the
literature review and the experimental studies of this project. However, the experimental
conditions for each study are different, so the collected parameters could only be used for
specific case study. Therefore, it is necessary to understand the relation between FSW parameters
(including rotational speed, travel speed, pin and shoulder geometry, preheating etc.) and power
requirement (e.g., torque and vertical force), and more importantly, establish expressions that can
connect all the inputs and outputs. The established correlation will provide guidance for the
selection and optimization of welding parameters and predict the required power.

By establishing a heat analytical model, the input (e.g., rotational speed, travel speed, tool
geometry etc.) and output parameters (e.g., vertical force) are well connected. By comparing the
experimental results with the calculated results using the model, it is found that this analytical
model has reasonable reliability. The stand construction was also successfully completed.

B.1. The total heat generation of the tool

We first build the analytical model of steady-state during FSW process. The total heat generation
of the tool during the steady-state contains the heat generation of the shoulder, the pin side and
pin head, as expressed below:

Qtool = Qshoulder + Qpin_side + Qpin_bot

where Quwor 1s the total frictional heat generation of the welding process between workpiece and
tool surface profile, Osnoutder, Opin_side and Opin_por are the heat generations from shoulder bottom
surface, pin side and pin bottom surfaces, respectively.

Heat generation of shoulder:

Figure 69(a) shows the bottom view of the shoulder, which is the ring region between R; and R;.
It is assumed that the vertical force is applied uniformly to the shoulder and does not change with
the radius 7;. In this figure, rl is the radius of any rings on shoulder bottom surface, and drl is
the infinite small radius increase from this ring; (b) Side view of the tool., r2 is the radius of
micro-circular truncated cone in side surface, ds is the side length of the micro-circular truncated
cone, dh is the vertical length of the micro-circular truncated cone, h is the distance between the
micro-circular truncated cone, H is the pin length, and « is the angle between pin side and
vertical direction.
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Figure 69: Schematic diagram of the tool: (a) Bottom view of the tool. R1, R2 and R3 are the
radius of shoulder bottom surface, pin top surface and pin bottom surface respectively.

The frictional force on the micro-ring with radius »; and width dr; is [57]:
df = uF = uPdA = uP - 2nrydry
where p is the friction coefficient (1 = 0.4) [58], P is the vertical pressure(Pa), dA is the area of
the micro-ring (m°), r; is the radius of the micro-ring (m), dr; is the width of the micro-ring (m),
and df'is the frictional force (V). Thus, the torque dM (N-m) on micro-ring can be written as [59]:
dM = Tldf = 27TP,uT12dT1

The total torque of the shoulder Mjouider (N-m) is then obtained by integrating dM:

2nuP (R} — R3)
3

Ry Ry
Mshoutder = J aM = 27'[P,UT'12dT1 =
R, R,
Heat generation of the shoulder in unit time gshouder (J/s) can be obtained by multiplying angular
velocity w and torque [60, 61]:
2nwuP(R3 — R3)
Gshoutder = OMsnouider = 3

Assuming the rotating tool travel forward a micro-distance d/ (m) at a certain speed v (m/s), the
heat generation from the tool shoulder during this time period can be written as:

dl _ 2mwuP(R} — R3) y dl

Qshoutder = Gshoutder X ? 3 "

Heat generation of the pin side:
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The shape pin side is a circular truncated cone, whose cone angle is 2a, where « is the angle
between pin side and vertical direction (°), As shown in Figure 69(b). The side area of the micro-
circular truncated cone d4 is:

dA = 2nr,ds

where 7> (m) and ds (m) are radius and side length of the micro-circular truncated cone,
respectively. ds can be written as:

dh

ds =
cosa
, =R;+ htana

where dh is the vertical length of the micro-circular truncated cone (m), R; is the radius of the pin
bottom surface (m), 4 is the distance between the micro-circular truncated cone and the pin head
(m). Then, side area of micro-circular truncated cone dA is:

_ 2n(R3 + htana)dh
B cosa

dA

The side area Az (m?) of the pin can be integrated as:

H2n(R; + htana) 2mR;H 2mtana H?
Asige = dh = + 5T
0 cosa cosa cosa 2

In Figure 69(b), the pressure on the side and bottom of the pin, and the bottom of the shoulder
are all assumed to be P;. The balance of the forces in the vertical direction is as follows:
P,R% + Pym(R? — R?) + P Agiqe Sin @ = PR3
where P is the pressure applied to the tool (Pa). It turns out that P, = P.
The frictional force acting on the micro-circular truncated cone is [57]:
df = uP;dA = uPdA
Then the torque on micro-circular truncated cone dM becomes [59]:

2muP tan(R; + htan a)?dh
cos a

dM = T'de =

And the total torque of the pin side Myin size (N-m) can be integrated as:

H H2muP tan(R; + htan a)?dh
Mpinside = dM =
0 0 cosa
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_ 2nuPH
" 3cosa

(3R? + 3R3H tan a + H?*tan?a)

So the heat generation of the pin side gpin side in unit time is [60, 61]:

2nuwPH 2nwuP (R — R3
Apin_sidze = OMpin sige = 3c'u— (3R3 + 3R3H tan a + H?tan?a) = HP(Ry 3)

osa 3sina

where w is angular velocity of the tool (rad/s).

Therefore, when the rotating tool travel forward a micro-distance d/ (m) at a certain speed v
(m/s), the total heat generation from the pin side during this time period will be

dl  2mwuP(R3 — R3) y dl

i = Qi cige X — = .
me_stde Qpin_side v 3sina v

Heat generation of the pin head:

Figure 70: Schematic diagram of the pin bottom surface.
Similar to the bottom surface of shoulder, the heat generation of the bottom surface of pin can be
analyzed as follow. The frictional force df (N) on the micro-ring with radius 73 and width dr; is
[57]:
df = uF = uPdA = uP - 2mrsdrs

where p is the friction coefficient, P is the vertical pressure stress (Pa), d4 is the area of the
micro-ring (m?), r; is the radius of the micro-ring (m), and dr; is the width of the micro-ring (m).

Thus, the torque on micro-ring dM (N-m) is [59]:
dM = T'3df = 27TP,U.T32dT3

The torque of the pin bottom Myin_po: (N-m) is integrating as:
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M

Ry Ry 2muPR3
pin_bot = f -

dM = 27TP‘LLT32dr3 =
R R 3

The heat generation of the pin bottom in unit time can be obtained by multiplying angular
velocity by torque [60, 61]:
2nwuPR3
Qpin_bot = a)Mpin_bot = T

When the rotating tool travel forward a micro-distance d/ (m) at a certain speed v (m/s), the heat
generation from the pin bottom surface during this time period will be:

dl _ 2nwuPR;3 y dl

Qpin_bot = Qpin_bot X T = 3

v v

To sum up, the total heat generation Qo during the time period of di/v is:

B 2nwuP (RS — R3) N 2nwuPR3 4 2mwuP (R3 — R3) o dl
Qroot = 3sina 3 3 v
B.2. Heat input in the stir zone
The heat required to raise a homogeneous substance to a certain temperature is [62]:

AQ = C, x m X AT

where AQ (J) is the amount of heat needed to uniformly raise the temperature of the substance by
AT (K), Cp (J-kg2-K™2) is the specific heat capacity of the substance, m (kg) is the mass of the
substance.
Assuming the rotating tool travel forward an infinite small distance dl (m), the temperature

increase within the distance dl is dT (K), and the temperature gradient is dT/dl (K/m), the heat
INput Q;npy: (J) into the stir zone is:

aT
Qinput = Cp Xm X (E) X dl

Take low carbon steel as an example, the heat capacity and density of low carbon steel are as
follows [58, 63]: For T < 1073K, C, = 347.27 + 62.34eT/471706 . For T > 1073K, C, =
962.32 Jkg!-K!; p = 7850 kg/m3.

And the mass is product of density and volume V (m?):

m=pXV
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Then the total heat input of the stir zone is:

dT dT
QinputszXmXEXdl=CpoXVXEXdl

The calculation of the volume of the flowable metal around the pin is as follows:

Figure 71: Schematic diagram of the side view of the tool.

The red box in Figure 71(a) indicates the total volume of the pin and flowable base metal around
the pin Viotar (M%):

mH )
Viotar = ?(R1 + Ry X R3 + R3)
And the red shaded area (b) indicates the volume of the pin Vpin (M®):
mH )
Vpin = ?(RZ + Rz X R3 + R3)
The volume of flowable metal around the pin V (m?®) is:

mH ~ TH )
V:?(R1+R1XR3+R3)_?(R2 +R2XR3+R3)

Then, the heat input becomes:

dr
Qinput = Cp X p X (E) X

tH ) nH )
(?(Rl +R1XR3+R3)_?(R2 +R2 XR3+R3))Xdl
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It is assumed that there is no loss of heat generated during the welding process and all the heat is
used to increase the temperature of the base metal. Therefore, heat input can be approximately
equal to the heat generation during the welding process:

Qinput = Qtool

Then dT/dl can be expressed as:

2mwuP (R3 — R3) 4 2mwpPR3 4 2rwuP(R3 — R3) x 1
ar 3sina 3 3 v

dl H H
A ¢, x px (G- (R? + Ry X Ry + R?) — 50 (R + Ry X Ry + R3))

The vertical pressure can be expressed as:

dT mH mH
_CI,pr(W)x(T(Rf+R1xR3+R§)—T(R§+Rz><R3+R§))><dl

(an,u(Rg —RY) N 2nwuR3 N 2nwu(R3 — R%)) L dl
3sina 3 3 v

P

Then the vertical force is

P Goxpx (90) x G (R + Ry x Ry + R — T (RS + R, x Ry + RE)) x dI
mR? <2na),u(R§ —R3) + 2nwpR3 n 2rwp(R; — RS)) 4
3sina 3 3 v
So
TR? X Cyp X p X (%) x CEL(RE + Ry % Ry + RE) = L (RS + R, X Ry + RD) x dl
F =

(27Tw,u(R§ —R3) N 2nwuR3 N 2nwu(R3 — R%)) LAl

3sina 3 3 v

The vertical force can thus be calculated by plugging the parameters into the above equation.

Table 11: The experimental FSW parameters.

Run Rotation Travel Plunge  Pin  Shoulder = Measured dT/dl Calculated  Standard

No. speed speed Depth  length  diameter vertical (K/mm) vertical Deviation
(rpm) (mm/min)  (mm)  (mm) (mm) Force (N) force (N) (N)
1 400 80 0.42 2.3 10 4700 408 5001 320
2 400 80 0.45 2.3 10 4900 421 5056 324
3 400 80 0.52 2.3 10 5200 436 5184 332
4 400 80 0.60 2.3 10 5800 473 5331 341
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The table summarizes four sets of experimental welding parameters. dT/dl was therefore
calculated for each run and a mean value of 435(£28) (K/mm) was obtained. The dT/dl mean
value was then used to estimate the vertical forces. The vertical force from experimental
measurement and theoretical calculation are compared. It indicates that the calculation results
fall approximately within the standard deviation range, which shows the reliability of the
analytical model.

- & - Calculated vertical force
6000 - |_o Measured vertical force
% 5500 -
3
o
&
S 5000 |
5
>
4500 -
" 1 n L " 1 n 1
0.40 0.45 0.50 0.55 0.60

Plunge depth (mm)

Figure 72: Calculated vertical force and measured vertical force as a function of plunge depth
under 2.3 mm pin length condition.

As for the FSW process with pinless tool, one experiment has been carried out so far for initial
evaluation. It is found that the force calculated using the analytical model, 5.5kN, is comparable
to the experimentally measured value 5.2kN, as shown in Table 12.

By using the validated analytical model, it can be estimated that reducing the shoulder diameter
by half, from 10mm to 5mm, can effectively reduce the vertical force from 5.5kN to 2.8kN.
Further reduction in power and force requirement can achieved by introducing preheating, which
has been incorporated into the analytical model.

Table 12: Parameters for FSW using pinless tool and calculated vertical force from analytical
model.

Run Rotation  Travel  Plunge Tool Pin  Shoulder Tilt Measured Calculated

No.  speed speed Depth materials length diameter angle  Vertical vertical
(rpm)  (mm/min) (mm) (mm) (mm) (©) force (N) force
N)
1 400 80 0.22 W-Re 0 10 2.5 5200 5509
2 400 80 0.22 W-Re 0 5 2.5 - 2755
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2.2. Subtask 2.2: Repair Protocol Design
2.2.1. ldentification of Prototype Repair Protocol

The prototype friction stir welding (FSW) repair parameters using a pinless tool were identified
for conditions with and without the assistance of induction preheating, namely, FSW and
induction-heating-assisted friction stir welding (IHA-FSW) processes based on the surface
morphology inspection. Preliminary metallurgical characterizations were carried out to reveal the
effects of repairing process on the base material microstructure.

A. Base material

Low carbon steel grade A108 was used as the base metals for repair experiments. Note that the
boiler water wall material is A106, which can only be found in pipe shape. Therefore, in this
study, A108 in plate format was chosen instead for repair parameter evaluation. The dimensions
of A108 steel plates were 0.5 inch thick, 8 inches wide and 12 inches long. The chemical
composition (wt%) of A108 steel is listed in Table 13.

Table 13: Chemical Composition (in wt%) of A108 steel

Steel grade C Mn Si P S
A108 0.13-0.20  0.60-0.90 0.15-0.30 0.035 0.035

B. Experimental procedure

A pinless W-Re tool with a shoulder diameter of 20mm was employed to carry out the FSW
repair trails, which eliminates the exit hole. Note that the need for repair width and depth will
determine the proper tool geometry with various pin lengths in future, and exit hole can be
eliminated by existing technologies such as a retractable pin tool. The prototype parameters for
FSW and IHA-FSW processes are tabulated in the Table 14.

Table 14: Parameters FSW and IHA-FSW

Rotation Travel IH Plunge Tilt
Sample speed speed power depth angle
(rpm) (mm/min) (kW) (mm) )
FSW (one trial) 500 80 - 0.15 2.5
IHA-FSW (two trials) 400 70 15 0.15 2.5

Preliminary characterizations were performed in the welding trials including profilometry
measurement on weld surfaces, and optical microscopy and hardness mapping on the weld cross-
sections. The metallurgical inspections were performed on the cross-section of the welds after
grinding, polishing and etching with 3 % nitric acid and 97 ml methanol solution. Optical
microscope with the capability of profilometry measurement was also used to obtain the surface
profiles of the welds. Vickers hardness mapping were performed on the transverse cross-
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sections, i.e., the plane perpendicular to the welding direction, with a relative distance of 500 um
between the indents and using a 500 g load and a dwelling time of 10 s.

In terms of the preheating system, a Miller TIG welding machine was previously used as the
preheating source. Our preliminary evaluation on TIG torch preheating indicated that the
minimum safe distance between the torch and the tool limited the amount of heat input as a
preheating source, which was insufficient to influence the FSW process (e.g., to reduce tool
rotation speed for less heat input while maintaining a good repair). Therefore, induction heating
method was selected for further investigation.

Figure 73 shows the Miller induction heating (IH) power source equipped with a cooling system.
The copper coil was mounted in front of the FSW tool, as shown in Figure 74 with a minimum
distance of 20mm. The distance between the coil and steel plate during repair was about 8.5mm.
Laser pyrometer was used to monitor the peak temperature as a function of IH power between
20kW and 5kW. Based on the preliminary laser pyrometer measurement, to provide a preheating
temperature between 700°C and 900°C, a power of 15 kW was selected for further experiment.
Note that the key input parameter for laser pyrometer measurement, i.e., emissivity of steel as a
function of temperature, was greatly influenced by the level of oxidation, since argon shielding
gas was mainly applied surrounding the FSW tool. Therefore, calibration is currently being
conducted for emissivity value in order to provide a more accurate measurement of temperature
profile introduced by IH in future.

The induction preheating was started after turning on the cooling water system. The
programming of IHA-FSW process included:

(1) Preheating for 20s at the weld start point, which is underneath the center of the coil,
(2) Moving the rotating tool to the start point at a speed of 70 mm/min, plunging into the
base metal with a depth of 0.15mm, and dwelling for five seconds to generate sufficient
frictional heat. Note that this dwelling time is much shorter than the FSW process, which
is 28s, in order to generate sufficient frictional heat to soften the material.

(3) Initiating tool travel for a total distance of 70mm.

Finite element (FE) modeling will be performed in future to quantify the heat contribution from

FSW tool and IH, respectively, and potentially further optimize the relative distance between the
welding tool and coil.
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Figure 74: The set up for the IHA-FSW process a) side view; b) bottom view.

C. Results and Discussion

Vertical force profile:

Figure 75 demonstrates the vertical force profile of FSW process exhibiting three distinct regions
including: (1) an initial rise as the tool shoulder becomes in contact with the workpiece, (2) force

reduction as the tool rotates and continues to plunge as softening of material occurs due to
heating, and (3) a rise again as the tool travels forward after dwelling for 28s.
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Figure 75: The vertical force profile as a function of time during FSW.
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Figure 76: The vertical force profiles as a function of time during IHA-FSW (a) trial 1 and (b)
trial 2.
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Figure 76 summarizes the vertical force profiles of IHA-FSW trials. Note that after trial 1
(Figure 76a), it is noticed that the tool had base metal materials sticking in the grooves and
thorough cleaning by grinding was performed before trial 2 (Figure 76b). Moreover, trial 1 was
performed close to the edge of the steel plate and the plate had many trials runs on it, leading to
slight distortion in the plate. In comparison, trial 2 was performed in the center of a new plate
without any previous welding trials and using a carefully cleaned tool. Therefore, data obtained
from trial 2 would be more trustworthy. Trial 1 is still presented here since all the preliminary
characterizations were performed on trial 1.

As shown in Figure 76, the peak vertical force of IHA-FSW is comparable to that of FSW as the
tool first touched the workpiece, which could be caused by a slow initial moving speed of
70mm/min for the tool to move to the start point. In other words, the slow-moving speed to the
start point may have led to excessive heat loss. In addition, the rotating speed in FSW (500rpm)
is higher than that of IHA-FSW (400rpm). Therefore, in the initial pressing stage (1-3 seconds),
the frictional heat generation in FSW were greater than the sum of frictional heat and induction
heat in IHA-FSW. For the next step, the speed of the tool moving to the initial point will to be
maximized in order to minimize the loss of the initial preheating, and thus reduce the peak
vertical force to a value comparable to that of later stages in IHA-FSW.

As shown in Figure 76(b), when the tool started to move forward after a dwelling time of 5s, the
vertical force of IHA-FSW reached a temporary quasi-steady state at a force level of ~4.5kN,
without going through a valley as in FSW in Figure 75. The reason could be that during FSW
the tool dwelled for 25 seconds at the start point while during IHA-FSW it dwelled for 5
seconds. The extra 20 seconds at a fast rotational speed of 500 rpm enabled accumulation of
frictional heat, leading to more severe softening of the base metal at the start point.

Note that while the tool dwelled at the starting point, IH sitting in front of the tool continuously
provided heat input, which caused the force valley present near the end of the early stage of IHA-
FSW in Figure 76(b). After dwelling and as the coil moved along with the FSW tool, a quasi-
steady state was reached again in the later stage of IHA-FSW. The presence of force valley
indicates that to further reduce the vertical force associated IHA-FSW overall. It might be
worthwhile to further investigate the effect of higher power input from IH or lower tool travel
speed, but there would be concerns of surface quality and repair strength as excessive heat is
introduced.

Surface morphology of the repairs:

Periodic band structure is a typical surface morphology of friction stir welds and it is the direct
evidence of periodic plastic deformation. A schematic drawing in Figure 77 demonstrates the
formation mechanism of periodic band structure [66]. During FSW, the rotating tool with a
slight tilt angle enables the rigid metal in front of the tool to plastically flow around the tool and
eventually deposit behind it.
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Figure 77: Formation mechanism of the periodic bands: a)-d) top view at different moments, and
e)-h) the corresponding longitudinal sections.

Figure 77 a) and e) illustrate the position of the tool at to, i.e., the last revolution has just finished
and the shoulder is located at the trough. In the next moment t;-ts, the rotating tool will press the
fresh rigid material at the advancing side (AS) (Figure 77 b and f), extrude it to the retreating
side (RS) (Figure 77 c and g), eventually deposit it behind the tool (Figure 77 d and h), and then
a new revolution starts [66].

At the beginning, the temperature of the fresh rigid material is low, resulting in a higher yield
strength, the fresh rigid material is initially very difficult to be pressed down. Hence, the tool
needs to slightly lift up, as shown in Figure 77 f). When the material flows from the AS to RS, it
is softened sufficiently due to the frictional motion between the tool and base metal (Figure 77
c). As a result, the tool is able to fall back down (Figure 77 g), meanwhile, the plastic material
flows behind the rotating tool and deposits in the trailing edge until the shoulder reaches the
lowest position, that is, the wave trough (Figure 77 h).

(b)

Figure 78: Surface appearance of the FSW specimen.
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Figure 79: (a) Surface appearance of the IHA-FSW trial 1 specimen, and the local morphologies
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Figure 80: Surface morphology of (a) FSW and IHA-FSW trial 1 (b) early stage and (c) later
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Figure 81: Line scan results of the surface morphology of FSW and IHA-FSW trial 1 early stage

and later stage.
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Figure 78 and Figure 79 demonstrate the repair surfaces from FSW and IHA-FSW trial 1,
respectively. Periodic band structure (sometimes called onion ring structure) appears on the weld
surface in both of them. Note that waterjet cutting introduced some minor corrosion pits on the
top surface of FSW specimen, as seen in Figure 78 (c). Therefore, all the other specimens were
cut by LECO MSX sectioning machine instead. Figure 80 summarizes and compares the line
scan results for the three-dimensional periodic patterns of the bands in FSW and IHA-FSW trial
1 specimens.

As the tool moves forward, the process described above occurs periodically, and a periodic band
structure on the weld surface is formed. The intervals between neighboring wave crests or
troughs on the weld surface can be calculated by the following equations:

FSW: d=v/®= (80 mm/min) / (500 rev/min) =160 pm/rev
IHA FSW: d=v/0= (70 mm/min) / (400 rev/min) =175 pm/rev

Figure 81 summarize the line scan results on the surface profiles of FSW and IHA-FSW trial 1
specimens. The measured average crest intervals for FSW is 159um, and 177um and 160um for
the early stage and later stage of IHA-FSW trial 1 sample, respectively. The measured crest
interval of FSW sample is approximately equal to the distance traveled during one revolution of
the tool. The variation in crest interval in the early and later stage of IHA-FSW trial 1 specimen
is under further investigation. Note that characterizations will be performed on IHA-FSW trial 2
specimen to further confirm the presence of such variations.

Moreover, it can be seen that for the weld surface of FSW, the amplitude from wave crest to
trough is 42 um. However, after applying induction heating, the value of the amplitude is
reduced to 12 um in early stage and 27 um in later stage. As mentioned earlier in the section of
vertical force profile, since the induction copper coil dwelled at the initial point for 20 seconds of
preheating before welding, the total heat input in the base metal at the early stage is larger than
that at the later stage. The higher heat input led to excessive softening of materials under the
took, and thus resulted in the flattest band structure.

2.2.2. Metallurgical Characterizations
A. Metallurgical characterizations of FSW specimen:

Figure 82 shows the hardness mapping result from a transverse cross-section (i.e., perpendicular
to the welding direction) machined in the middle of FSW sample. It is observed that stir zone
(SZ) exhibits is the highest hardness in comparison to the other regions such as heat-affected
zone (HAZ) and base metal (BM). The significant increase in hardness is mostly likely
attributed to the grain refinement during FSW[70], as demonstrated in Figure 83 by comparing
Figure 83 g to e. On the other hand, the hardness of the HAZ is the lowest due to grain
coarsening associated with the heat input during welding process.
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Figure 82: The hardness mapping on the weld cross-section of the FSW.

Figure 83: FSW specimen: (a) low-magnification optical micrograph of the weld cross-section,
(b) overlapped images of weld cross-section macrograph and hardness map, and the optical
micrographs of transition between BM and HAZ, and transition between HAZ and SZ.

Figure 83 summarizes the microscopic examination results on the FSW cross section. The BM
exhibits a typical microstructure of low carbon steel, which consists of ferrite (light area) and
pearlite (dark area). The SZ contains fine grains due to dynamic recrystallization (DRX) induced
by frictional heat generated and severe plastic deformation [67]. The Fe-C phase diagram in
Figure 84 can be used to further explain the observed microstructure and the red broken line
indicates the composition of A108 steel [68], although during FSW, equilibrium phase
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transformation may not be representative. In SZ, the material could experience a temperature
above 70% of the melting point, which is way above the Az temperature of A108 of 850°C.
Therefore, SZ experienced complete austenization at peak temperature, and then during cooling
it transformed to a mixture of grain boundary ferrite (GBF), ferrite with aligned second phases
(FS(A)) and nonaligned second phases (FS(NA)), and ferrite/carbide aggregate (FC), as shown
in Figure 83 (g). The HAZ microstructure is highly dependent on the local thermal cycle
experience during FSW. As illustrated in Figure 83 (f), a grain-coarsened HAZ is observed,
where GBF, fc and FS(NA) were observed.
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Figure 84: Fe—C phase diagram with various carbon steel compositions marked out.

B. Metallurgical characterizations of IHA-FSW specimen:

Figure 85 shows the hardness mapping result from a transverse cross-section of IHA-FSW
sample. Different from the results of FSW, it was found that the hardness of the stir zone is
comparable to the BM. But similar to the FSW result is that the hardness of the HAZ is still the
lowest due to grain coarsening associated with the heat input during welding process. The wide
region of hardness reduction on the retreating side is caused by the excessive heat from the wide
induction coil, which can be controlled by an optimized coil geometry. The slight increase in
hardness on the advancing side is caused by work hardening introduced during machining
process, since it is close to the edge of the steel plate.
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Figure 85: Hardness mapping on the weld cross-section of the IHA-FSW.
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Figure 86: IHA-FSW specimen: (a) overlapped images of weld cross-section macrograph and
hardness map, and the optical micrographs of (b) Sz, (c) transition from SZ to HAZ using 200
magnification, (d-f) transition from SZ to HAZ using 500 magnification, (g) HAZ, (h) transition
from HAZ to BM using 500 magnification and (i) BM, where SZ, HAZ and BM represents stir
zone, heat-affected zone and base metal, respectively. GBF': grain boundary ferrite; FS(A):
ferrite with aligned second phases; AF: acicular ferrite; WF: Widmanstatten ferrite; FC: ferrite-
carbide aggregate; a: a-ferrite; P: pearlite.
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Figure 86 summarizes the optical micrographs on the IHA-FSW cross-section. The SZ contains
fine grains due to dynamic recrystallization (DRX) induced by frictional heat generated,
induction preheating and severe plastic deformation. According to the Fe-C phase diagram, in
SZ, the material could also experience a temperature above 70% of the melting point and then
above the As temperature of A108 of 850°C with the auxiliary of induction preheating.
Therefore, SZ austenitized completely at peak temperature, and then during cooling it
transformed to a mixture of grain boundary ferrite (GBF), ferrite with aligned second phases
(FS(A)), acicular ferrite (AF), Widmanstatten ferrite (WF), and ferrite/carbide aggregate (FC), as
shown in Figure 86(b). The HAZ shows coarsened grains due to the slow cooling rate affected
by double thermal cycle from frictional heat and induction preheating, as illustrated in Figure
86(g), where ferrite (o) and pearlite (P) are observed. The BM exhibits a typical microstructure
of low carbon steel, which consists of ferrite (light area) and pearlite (dark area).

Comparison of metallurgical characterization of FSW and IHA-FSW:

Considering all the above experiments, the prototype friction stir welding (FSW) parameters
have been determined to be 500 rpm and 80 mm/min without preheating and 400 rpm and 70
mm/min with 15kW induction heating power (IHA-FSW). Comparing FSW and IHA-FSW, it is
observed that the grain size in SZ of IHA-FSW is larger than that of the FSW. Correspondingly,
the hardness in SZ of IHA-FSW is lower than that of the FSW. Similar phase constituents were
observed in the SZs of FSW and IHA-FSW specimens, but there was a small amount of bainite
forming in SZ of FSW, which indicates that the cooling rate of FSW is slightly higher than that
of IHA-FSW. This may be because under the condition of IHA-FSW, the weld would experience
dual thermal cycles from the induction preheating and the frictional heat, which might lead to a
slower cooling rate during IHA-FSW. The higher cooling rate also makes the grain size of SZ of
FSW a little bit smaller than that of IHA-FSW.

3. Task 3: Robotic Platform Design

A robotic system was designed that leveraged a commercial robotic platform retrofitted with a
customized gantry system, sensors, cleaning, NDE sensors, and repair tools.

3.1. Subtask 3.1: Robot Retrofit for Vertical Navigation

The original robotic platform was the Clearpath Jackal robot. However, the Jackal robot is a
wheel-based robotic platform. Retrofitting the Jackal robot wheels with magnetic tread did not
provide enough attachment force to facilitate welding operations on the vertical furnace wall
surface. A search for a treaded robot was conducted, with the ideal robot selection being the
Reebotic treaded rover platform. A comparison image is shown below with the previous Jackal
robot on the left and Reebotic Rover on the right.
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Figure 87: Jackal wheeled rover (left) and Reebotic treaded rover (right).

After selecting a robotic platform, we began a physics simulation utilizing COMSOL simulation
software to evaluate the pull-force of the robot against the furnace wall surface. Placing 5x1.75”
length bar magnets in between each tread “nub” on the reebotic rover platform results in a total
of 150 magnets total. Attaching the magnets with alternating polarity provides the maximal
amount of force.

Magnetic Track Design:

Figure 88 below illustrates the magnetic field obtained with alternating bar magnet polarity (left)
and magnet arrangement in the footprint of the reebotic rover platform (right).

Cannnnm)

Alternating Polarity g

Figure 88: Alternating polarity magnetic field and rover footprint magnet arrangement.

This magnet arrangement yields a 7kN pull force on flat steel. However, on the furnace wall
surface, the pull force is 1.3kN when the treads are parallel to the tube direction. When the treads
are at a 45-degree rotation relative to the tubes, the force is 1.4kN. Figure 89 below shows the
magnet footprint parallel to the tube direction (top) and treads at 45-degree rotation relative to
the tubes (bottom).
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Figure 89: Footprint parallel to tubes and footprint at 45-degree rotation to tubes.

To better evaluate the magnetic force at different rotations, a simulation was conducted that
rotated the magnetic footprint at 6-degree increments. The results from the rotating simulation
are shown below in Figure 90. The minimum force is 0.73kN at 171 degrees and the max is 2.36
kN at 99 degrees.

Rotation (Degrees) | Force (kN) ] Rotation (Degrees) | Force (kN) | Rotation (Degrees) | Force (kM)
45 1.32 111 1.36 171 0.73
51 1.25 117 1.27 177 1.25
57 0.98 123 0.96 183 1.26
63 1.28 129 1.25 189 0.77
69 1.41 135 1.30 195 1.12
75 1.47 141 1.19 201 1.42
81 1.16 147 1.25 207 1.30
87 1.12 153 2.06 213 1.69
93 1.15 159 1.66 219 1.15
99 1.13 165 1.22 225 1.321
105 2.36

Figure 90: Magnetic footprint rotation vs force.
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It was estimated that we may need a minimum of 3kN of attachment force when performing
welding operations when the robot is parallel to the tube direction. To achieve this force, the
magnet footprint can be augmented with 4x 4” by 4 square packs of similar bar magnets placed
at the edges of the footprints.

Figure 91 below shows that footprint modification with the square magnet packs attached. This
augmentation yields a force of 3.3kN when the treads are parallel to the tubes. This is enough for
welding operations. It is an ongoing effort to determine how to mount and manipulate these 4
magnet packs.
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Figure 91: Magnet footprint with 4" x 4" magnet packs.

Magnetic Track Construction:

To construct the magnetic track system, room temperature vulcanizing (RTV) silicone was
selected to attach the magnets. The used product was chosen for the 1,025 psi tensile strength,
825% elongation and 60 Ibf/in peel strength. Of these qualities, percent elongation and peel
strength are most important because the magnets must be able to travel around the radii of the
tracks. As the magnets are being lifted off the steel surface, the leading edge of the magnet
experiences strong peeling forces. To further improve the holding forces on the magnets, a layer
of steel wire cloth was sandwiched between the tracks and magnets. The wire cloth was sized to
maximize magnetic attraction, flexibility and allow silicone adhesive to flow through the mesh.
For this purpose, 30 x 30 steel mesh with a 0.012 inch wire diameter and 0.021 inch opening size
was suitable. Plastic spacers were installed between the individual magnets to decrease the
mutual attraction and improve track flexibility. However, some of the spacers were ejected
during the driving test from poor adhesion to the silicone. The gaps were later filled with more
adhesive to form a flexible, permanent spacer. The magnets were arranged into blocks of 5 with
alternating polarity to maximize attraction force to the wall. Whenever possible, these blocks
were arranged to attract to their neighboring blocks to maximize wall attraction and minimize
construction difficulty. Closeups of track and construction process are shown below.
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Magnets arranged, cloth cut &  Adhesive applied in rows to  Wire cloth ready for application
surfaces cleaned with xylene completely fill gaps

Wire cloth started at edge to ~ Wire cloth carefully laid down Magnet block ready for
maintain control through adhesive application to track

Figure 92: Illustration of the gluing processes.

The magnets afforded excellent traction and firmly locked the robot against the surface. It was
necessary to drive the robot onto an aluminum plate (pictured) to disengage from the steel wall.
Because turning relies on slippage of the tracks, the turning radius of the robot is under
investigation. After conducting the test, it was discovered that two blocks of magnets had peeled
off the track surface. This was due to a layer of paint that separated from the track surface. These
isolated instances were fixed by scraping the remaining paint off and reapplying the magnets.
Repairs of this nature will be made on an as-needed basis unless the problem becomes more
frequent.

During the driving test, the robot had little difficulty climbing up or down the wall. The motors
were able to drive the tracks despite the weight of the robot and resistance from peeling magnets
off the steel surface. However, the robot drove in a jerking motion and undulated with respect to
the wall. Depending on the accuracy needed to position different pieces of equipment, driving
alone may not be precise enough.
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Figure 93: Illustration of the modified magnetic track closeup.

Figure 94: Illustrations of robot navigation on vertical testing walls.
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The progresses allowed for a successful test of vertical driving capabilities. Several pictures of
the experiments are shown above. A cable can be seen going to the robot, but it only served to
power the device receiving control commands. An on-board battery was used for power during
testing. In the final robot this will be infeasible and replaced with a cable. Consequently, more
weight will be shed and an increase in torque may be possible. During the system integrating
phase, further testing is needed to determine the maximum torque available for carrying a load
up the wall without the battery. However, calculations show that at least one-foot pounds of
torque will be required for every four pounds of weight. The manufacturer of the base robot
platform was unable to give a maximum torque output for the drivetrain and experimentation is
needed. Figure 95 depicts the robot driving vertically on the water wall boiler tube surface under
its own power, attached to wall via magnets on the robot treads.

Figure 95: The robotic platform has been demonstrated traversing a vertical waterwall using
magnets for attachment.

3.2. Subtask 3.2: Cleaning Mechanism Design

For the non-destructive evaluation (NDE) sensors scanning system to accurately detect defects
the surface must be consistently clean and free of defects. To accomplish this, a cleaning
mechanism was affixed to the mobile robot platform. This system removes built-up surface
contaminants to provide a consistent surface for inspection and prepares areas requiring repair
for a weld devoid of contaminant defects. The design integrates a stainless-steel wire brush
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powered by a commercially available angle grinder as shown in Figure 96. The mechanical
design of the system ensures rapid prototyping and modularity to accommodate future iterations
while remaining rigid.

Figure 96: Wire cleaning mechanism initial design. A commercially available angle grinder
powers a stainless-steel wire brush to remove debris from the water wall surface.

Economical, mechanical, and electrical constraints were placed upon the design of the cleaning
mechanism. With consideration to the overall project objective, the design of the wire cleaning
brush system must assimilate with the mobile robot platform and control can be integrated with a
centralized controller. It was desired the mechanism apply a constant force to the water wall to
provide a consistent cleaning action along the length of the brush.

Starting with the initial idea that a wall containing rust and other contaminants needs to be
cleaned in preparation for any cracks in the pipe’s exterior could be fixed. As the brush system
may be used in conjunction with the NDE sensor system the overall width of the brush assembly
was designated to be 6-inches, allowing for single-pass precleaning and evaluation. The brush
wires were designated to be made from stainless steel as this provides the longest life cycle of
commercially available wire brushes while also having a lower potential for contaminant
transfer. With consideration to future system integrations and modifications it was desired the
frame be modular.
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Mechanical Design:

An angle grinder provided a ready-made platform designed for wire brush metal cleaning. One
would provide the desired rotational speed and torque of the brushes while protecting the motor
from dust and debris, while the right-angle gear case provides a compact form factor. To account
for the increased width of the brushes compared to the typical application an 11.0 A DeWalt
DWE402N with a 5/8”-11 threaded arbor was specified.

Threaded Rod Shaft
Internal Retaining Ring

M3 Washer

M3 x 0.35mm
Socket ljead Screw

“—

R3-2RS
Bearing

Bearing Housing

Figure 97: Depiction of the brush shaft stepped shoulder design and interface with the bearing
housing.

A 6-inch wide brush adaptable to an angle grinder is only available as a custom solution which is
costly and has a long lead time. Moreover, when any one section is damaged the entire custom
brush must be replaced. A modular, readily repairable solution was developed by utilizing
standard 4” diameter stainless steel wheel brushes with a 5/8”-11 arbor thread stacked in series
on a 5/87-11 stainless steel threaded rod. To evenly space and secure the wire brushes jam nuts
were placed between successive wheel brushes and on either end. Sharing the same thread size,
the angle grinder arbor and brush shaft were connected via a coupling nut with a jam nut to
ensure the assembly does not back out. On the opposite end of the shaft a shoulder step was
machined to mate with a R3-2RS sealed 440C stainless steel ball bearing. An M3 x 0.35mm
internal thread was placed axially and an 8mm long socket head cap screw with a washer were
used to axially fix the shaft to the bearing. The bearing was placed in a bearing housing and held
axially by internal retaining rings. The shaft-bearing mating is depicted in Figure 97.

By fixing the bearing housing and angle grinder to a frame the brush assembly is fully supported,
enabling parallelism to the work surface thereby creating a consistently clean surface along the
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length of the brush. The angle grinder was affixed to the frame by utilizing the two threaded
holes in the body of the angle grinder initially intended for a side handle. The frame was made
from 10 series 80/20 Inc. T-slotted framing rails, an imperial sized system, but the angle grinder
had M8 x 1.25mm threaded holes. To facilitate attachment of the two male-female hex thread
adapters with an M8 x 1.25mm male thread and %4”-20 female thread was used. For additional
support the angle grinder’s cylindrical body was affixed to a vertical stanchion of the frame with
a hose clamp. The mounting of the angle grinder and the brush assembly can be seen in Figure
98.

Figure 98: Attachment of angle grinder to frame. Vertical stanchion and hose clamp at center
and the two male-female hex thread adapters with an M8 x 1.25mm male thread and % -20
female thread on sides of angle grinder body.
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Figure 99: Angle grinder and brush assembly fully supported and mounted to the 10 series 80/20
Inc. frame.

Keeping with the initial design intent of a modular system to accommodate future improvements
the frame was manufactured using 10 series 80/20 Inc. T-slotted framing rails. The orientation of
the framing rails allows for a variable width brush assembly, change in height of the brush with
respect to the water wall surface, and the brush assembly can be shifted laterally from its
centerline position. To install the frame to the RoboteX Avatar 111 platform a T-slotted framing
rail was mounted to the preexisting threaded inserts with standoffs to place the rail clear of the
1/0 ports of the robot platform. The mounting of the frame to the robot can be seen in Figures 99
and 100.

The finalized frame design simplified the mounting of the angle grinder and employed a single
profile rail aft of the brush assembly as opposed to the initial decoupled design. These changes
reduced the potential points of failure, created a more ridged mounting platform and increased
the vibrational dampening. Due to the viscoelastic behavior screws exhibit in a vibrational
environment, particularly in the high frequency produced by the brush cleaning mechanism,
thread locker was applied to all screws to prevent them coming loose during operation.

92



Figure 100: Overview of wire brush cleaning mechanism.
Electrical Design:

To facilitate teleoperation of the brush system the components of the manual paddle switch were
removed and replaced by an electromagnetic relay. This relay is essentially a switch which we
can control via a control signal rather than a tactile depression of the standard switch. The
20A/10A SPDT relay was wired onto the positive leg of the power cable input, between the
power cable and motor. For this particular relay a 5V signal is required. We utilized a 5V
16MHz Arduino for this version. A 4-channel wireless RF remote control was wired into the
Arduino, providing us with the safety and ease of use of untethered remote control over the brush
system. Typically, there is signal noise associated with triggering a microcontroller from an
external source, particularly with this RF system. To ensure reliably safe control of the brush
cleaning mechanism actuation a 1k€Q resistor voltage divider was added. Additionally, with the
relatively high current of the angle grinder the Arduino is unable to provide a current source high
enough to retain constant solenoid contact. Therefore, a 5V breadboard power supply was
utilized to power both the Arduino microcontroller and the relay. The wiring diagram is included
in Figure 101. The 5V reference for the relay would also be transferred to the Jetson, eliminating
the need for the additional external power supply currently being utilized. A bill of materials for
the wire brush cleaning mechanism is shown in Table 15. the finalized PCB was created as
shown in Figure 102.
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Figure 101: Electrical wiring diagram depicting the connections to remotely control the brush
cleaning system.
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Figure 102: Top and bottom of completed PCB.

Experimental Results:

Testing of the mechanism went as expected. The cleaning mechanism withstood the torque of the
motor and stayed mounted to the robot. The grinder was able to power the rotation of the brush
while being pressed into a metal sheet. Once removed from the metal it was evident that the
mechanism had removed most of the built-up grime. While the brush system cleaned the surface,
it was inconsistent due to less than required preload force of the brush on the surface plate, as
shown in Figure 103. This lessened preload did not force the bristles at the outer diameter to
splay out as designed. To remedy this additional preload force was applied. Additionally, the
space between each wire wheel could be decreased and/or the static system currently controlling
the downforce could be made to be dynamic with a hinge and spring system.
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Table 15: Bill of materials for cleaning mechanism.

18-8 Stainless Threaded Rod,
5/87-11

Wire Wheel Brush, 4”
Diameter 5/8”-11 Thread
18-8 Stainless Steel Coupling
Nut, 5/8”-11 Thread

18-8 Jam Nut, 5/8”-11, Packs
of 10

R3-2RS Sealed Ball Bearing
Ball Bearing Housing
12114 Carbon Steel Hex Bar,
5/8” Wide

Pipe Clamp, Smooth Band,
1 to 5 Clamp ID

Y-20 x 7/8” SHCS, Washer,
Economy T-nut

10 S 17 Single Horizontal
Base

1” x 2” T-Slotted Extrusion
1” x 1 T-Slotted Extrusion
10 S 12 Hole 90 Degree
Joining Plate

Y-20 x ¥5” FBHSCS &
ECON T-nut

10 S 4 Hole Inside Corner
Bracket

10 S 6 Hole Inside Corner
Bracket

10 S 2 Hole Inside Corner
Bracket

10 S 4 Hole 90 Degree
Joining Plate

10 S 4 Hole Joining Plate
DeWalt Angle Grinder
SparkFun Beefcake Relay
Control Kit (\Ver. 2.0)
Arduino Pro Mini 328 —
5V/16MHz

4 Channel Wireless RF
Remote Control

SparkFun FTDI Basic
Breakout — 5V

Breadboard

SparkFun Breadboard Power
Supply

Wall Adapter Power Supply
—9VDC, 650mA

1 Foot

5 Feet
3 Feet
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Brush Shaft

Brush

Shaft-Grinder Coupler
Brush Securement
Shaft Support

Bearing Support
Grinder Attachment
Grinder Attachment
Brush Support Frame
Brush Support Frame
Brush Support Frame
Brush Support Frame
Brush Support Frame
Brush Support Frame
Brush Support Frame
Brush Support Frame
Brush Support Frame
Brush Support Frame
Brush Support Frame
Brush Rotational Motor
Motor Control

Relay Control

Remote Relay Control

Serial Communication

Wire Connections
Relay Power

Relay Power
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McMaster-Carr

McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
80/20 Inc.
80/20 Inc.
80/20 Inc.
80/20 Inc.
80/20 Inc.
80/20 Inc.
80/20 Inc.
80/20 Inc.
80/20 Inc.
80/20 Inc.
80/20 Inc.
Amazon
SparkFun
SparkFun
Amazon

SparkFun

SparkFun
SparkFun

SparkFun

98804A123

4896A71
90268A035
91847A540
6138K64
2829N2
6606K212
5420K4
3471

5860

1020

1010

4128

3321

4113

4175

4119

4150

4167
DWE402N
KIT-13815
DEV-11113
XY-DIM-5V
DEV-09716

PRT-12002
PRT-13032

TOL-15314



Figure 103: Brush system removing mill scale from an A36 steel plate.

3.3. Subtask 3.3: NDE Integration on Robot

The NDE sensor and the enclosure was designed and integrated with the robot. The enclosure is
5.25” L x 5” W x 0.75” H, all parts non-conductive. The housing is made out of Acetal
homopolymer (Delrin) and the glass is reinforced with nylon 6/10 fasteners. Currently a Jetson
TX2 is being utilized to control the system. At the moment, this size of this device doesn’t
currently fit with in the specifications that are being tested. The team is currently considering
switching to a Jetson Nano for a smaller form-factor solution.

Figure 104: Enclosure design visualization.

The enclosure is 6.28” L x 6.01” W x 0.69” H, all parts non-conductive. The housing is made out
of Acetal homopolymer (Delrin). On the top of the enclosure (Figure 105), there are 12 ¥4-20
holes for securing to the enclosure to the RoboteX Avatar I11. Thermal inserts will be placed into
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these holes. Securing the cover plate will be Nylon socket cap head screws. On the bottom of the
enclosure (Figure 106), the plastic wear plate will be secured with double-sided foam tape for
easy access to the sensor as well as replacing the wear plate once damaged. The plate has a
thickness of 1/16™ to ensure the best detection. An indentation was created for the foam tape so
that the distance from the wear plate and the sensor was as close to 1/16™ as possible.

Figure 105: Top of enclosure top of PCB Sensor.

Figure 106: Bottom of enclosure and bottom of PCB Sensor.

Without a gantry system, the NDE sensor can be mounted to the underside of the mobile robot,
as shown in Figure 107, where it is pressed against and swept along the steel surface by a spring-
loaded mechanism. By keeping the sensor close to the surface during operation, variations in lift-
off are minimized which in turn increases NDE data reliability.
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Figure 107: Example of installing the NDE sensor on the robotic platform.

Figure 108 depicts the assembly of a gantry system with NDE capability (the gantry design is
discussed in the next section). The system has a sub-millimeter scanning resolution along a
single axis and has repair capability along the two-dimensional repair plane. The NDE sensor has
an eight channel, two-layer, staggered eddy current coil array which sends data over two separate
USB ports to the robots main Nvidia Jetson TX2 computer. The gantry system is controlled via a
low-level Latte Panda computer which communicated with the Jetson TX2 over ethernet and
controls the motors which give the gantry its xyz freedom of movement. Mounted to the gantry
mechanism are four electromagnets seen on its corners. When the robot needs to execute a
repair, these magnets are energized so the gantry will remain adhered to the boiler wall while the
welding tool plunges into the material.
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Figure 108: NDE sensor installation.

3.4. Subtask 3.4: Repair Integration on Robot

To effectively perform the FSW task on the robot, the repair system must meet the following
specifications:

Spindle power of 1.5 kW

Spindle speed of 450 RPM

Minimum plunge force (Z-axis) of 8.25 kN (5.5 kN specified by welding group, 1.5
safety factor)

450 N traverse force in X, Y-axis

The X, Y, Z axis shall be autonomous and controllable from a single central controller
The frame and method of X, Y, Z axis control shall be rigid enough to prevent tool
fracture

A. Gantry System Design Analysis
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We first developed the CAD model of the gantry system. It uses of ball screws and railed
carriages due to their high accuracy and resistance to back drive, as well as high factors of safety
towards dynamic loading. Further design to the gantry system came in the form of
electromagnets at the base of the system, so that the system can ground itself to the climbing
surface while the stir welding process is active. The electromagnets specified are capable of 2400
Ibs of force, achieving a factor of safety of 1.3. The gantry has also been significantly improved
within its compactness, achieving the necessary range of motion for the drill press while being
less than half the size within its forward and lateral dimensions (49x47x57 cm versus 17x27x24
cm). This is achieved through more efficient use of the ball screw and rail systems. A final
gantry design is the capability of mounting the NDE sensor about its bottom lateral strut. This
will allow for rescanning of the crack surface, removing any accuracy of the sensor lost while the
robot drives forwards.

All components of the design are subject to high reaction forces from the stir welding process,
and as such were checked thoroughly using solid mechanics concepts. The gantry will also
undergo comprehensive finite element analysis when the CAD model and part selection have
been finalized. As demonstrated within Table 16, all components have sufficient factors of
safety. These have been calculated using:

FOS— yteld_force FOS -
applied_force

yield_stress

applied_stress

Table 16: Factors of safety for the gantry system design.

Part Applied Forces Dynamic Loading Factor of Safety
Capacity

Carriage and Rail 8 kN Vertical Force | 2,400 Ibs 1.3

Ball Screw 450 N Axial Force 85,000 psi 14.7

Ball Nut 450 N Axial Force 150 Ibs 1.5

Further improvements to the gantry were made through motor reselection for the ball screw
travelling systems. Crucially, using a geared brushed motor with an encoder yields the necessary
gantry travel accuracy (+/- 0.05 mm, with desired accuracy being +/- 0.5 mm, as described in the
following equation), while being lower cost, lower amperage, and lower voltage:

screw_pitch:=0.125 in +
gear_reduction:=62
motor_accuracy =360 deg

motorfaccura,cy

~— .screw_pitch=0.051 mm
2 7+ gear_reduction

The performance of the selected motors falls within the torque necessary with a factor of safety
of 2.0, while also being capable of eight times faster rpm at lower torque such that the gantry can
travel quickly:
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Fnec'°P'c FneC°P'c
Tmotm‘ = : s Tgﬂarboa': = ﬂ
2.7 Nscrew_eff * Ggear_redm: * Ngearboz_eff 2em- Nscrew_eff
Sspeed Sspeed
RPM,, 10r = *2 TG yeur reduc RPM g irpon = B +2 m=25.197 rpm
pitch pitch
T, otor=10.188 N «mm T yearbor=0.474 N +m
RPM,, i0or=1562.205 rpm RPM 10, = 25.197 Tpm

With the motors being of a lower voltage and amperage, smaller positional drivers are also now
viable, allowing use of an Arduino and Adafruit motor shield to control the entire gantry system.

Table 17: Reselected motor specifications.

Motor Properties Motor Values
Necessary Voltage 12V

Max Speed at high load 130 rpm

Max Continuous Torque 0.23 N*m
Required Continuous Torque 0.115 N*m
Max Continuous Current 0.64 A

The designed parameters of the gantry system are listed as follows:
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Factors of Safety:

| 2400 Ib
Poisen'=2125+in  d,p0 =16 mm FOS ¢4y yiage ;:WNJC =1.334
F’wcld::s'kN 77:96
mass:=25 kg :=0.003
150 Ibf
T ) ) FOSyu puii= “A50 N =1.483
Abu.ILscrcw = 4 . droot =0.312 in
Fyeld . 85000 psi
T nec_ball_screw *= = =5770.868 pst FOSbathcrew =———————=14.729
A ball_screw O e ¢_ball_screw
Motor Accuracy:
screw_pitch:=0.125 in
gear_reduction:=62
motor_accuracy:=360 deg
t
e or_accurac%; «screw_pitch=0.051 mm
2 7 - gear_reduction
Motor Specifications:
nscrewfeff:: .96 ngearbomfeff:z .75 Fnec =450-2 N
Ppitch =.125-in Sspecd =80 py =3.15 min Ggem'_’r’edwe =62
T o Fnc(: * L pitch T 1 Fﬂ,(:(: 1 Pp’itch
t — gearbor *— -~
T U N serew_eff * “ gear_reduc * 'lgearbox_eff T = Hserew_eff
2.7memy G n 2.mm
Soee Sepee
RPMmotor:: speed 27 G_r}car_rcduc RP gearbox = PSP"-Cd +2 w=25.197 rpm
pitch pitch
H‘intor = RPJ\’fnmtor * Tmotor HPgearbo:n = RPMgearboa': * Tgea.rbo:z:
T, oor=10.188 N-mm T pearbor=0-474 N-m
RPM ., 010r = 1562.205 rpm RPM b0 =25.197 Tpm
HP,,n=1.667 W HP o =1.25 W

B. CAD Modeling of the Gantry System for Repair Tool Integration

The section discusses refining, verifying and finalizing the gantry design shown below. This
included locating and ordering items with long lead times, identifying viable drivers and other
electronic components, modifying the previous design to conform to the prepared drill press,
running FEA on all load bearing components and improving the quality of selected components
where it was deemed necessary.
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Figure 109: Side view of gantry system design.

Figure 110: Front view of gantry system design.
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The final design modularly interfaces with the robot casing using a reinforced 8020 frame. The
design is able to stir weld within a range of 5.9 x 5.3in forward and laterally using high precision
ball screws to orient the stir welder. The drill press that is used to stir weld, shown in greater
detail below, has been modified with a 113 N*m geared motor so that it can be autonomously
lowered with 8 kN of force, as well as a ball screw attachment to allow it to travel laterally.

* i

Figure 111: Detailed view of a modified drill press.

Given that the gantry is expected to endure large forces (8 kN vertical loading and 450 N horizontal
loading) during the stir welding process, all load bearing machined components have been tested
through FEA. Alongside the ordered components part documentation, satisfactory factors of safety
have been verified:

Table 18: Finalized factors of safety for the gantry system design.

Part Applied Forces Dynamic Loading Minimum Factor of
Capacity Safety (FOS)

Carriage and Rail 8 kN Vertical Force 2,400 Ibs 2.7

Ball Screw 450 N Axial Force 85,000 psi 14.7

Ball Nut 450 N Axial Force 150 Ibs 15

Electromagnets 8KN Vertical Force 1,700 Ibs 1.9

Cast Iron Drill Press  |113 N*m Torque &  |via FEA 1.6

8 kN Vertical Force &
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450 N Axial Force

Gantry Center 8 kN Vertical Force & |via FEA 4.7
450 N Axial Force
Gantry Siding 8 kN Vertical Force & |via FEA 5.0

450 N Axial Force

FOS
2,500e +01
l 2.260e +01
_ 2.020e+01
. 1.780e+01
. 1.540e+01
| 1.300e+01
_ 1.060e+01
- 8.200e+00

- 5.800e+00

I 3.400e +00
1.000e +00

Figure 112: FEA of the factor of safety for the gantry center.

FOS

5.068e +00
/

Figure 113: FEA of the factor of safety for the gantry siding.

This gantry system has also been designed to address rough terrain, with suspension being
applied to both the sides of the gantry (Figure 114), as well as the NDE sensor (Figure 115). This
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will allow for a minimum of 1in of suspension, though this can be easily adjusted by replacing
the suspension springs with springs of different stiffness or shortening their available length with
spacers. The electromagnets, seen at the center of Figure 114, have been strengthened, yielding a
factor of safety of 1.9.

Figure 114: Gantry sleds.

Figure 115: States of suspension applied to the sensor mounting.

We then designed and integrated an electronics box that can autonomously and safely control the
electromagnets, positioning motors and drill press. A second critical focus was within refining
the repair tool design to be both lightweight and sturdy. The finalized CAD design of the gantry
system is shown in Figure 116.
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Figure 116: Finalized CAD design of the repair tool and gantry system.

C. Repair Tool and Gantry System Assembly
Actuation of the Repair Tool:

The drill press selected as a repair tool for the gantry system is from Milwaukee tools, and hosts
a 1600 Ibs of drill point pressure and 400 drill rpm, which are within necessary specifications.
The X and Y axis movement of the repair tool bit is propelled by three C7 accuracy grade ball
screws (two in parallel on the Y axis). These ball screws are mounted through BK12 and BF12
Pillow Block Type Supports, with a custom 3D printed component to reduce axial play and
vibration when the system is welding, shown within Figure 118. This component is mounted to
the brushed DC 30:1 gearmotors which drive the ball screws, which allow for accuracy within
~+/- 0.5mm linear travel with a maximum thrust of 900N (twice as much on the Y axis due to it
being driven by two motors in parallel).
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Figure 117: Ball screw mounting and custom 3D printed stabilizing component.

Z axis movement of the repair tool is produced by automating the manually controlled rack and
pinion within the Milwaukee 41208-1 drill press. A Maxon brushed DC gearmotor has been
installed in place of the standard user operated handle, shown in Figures 119. This gearmotor,
alongside the further gear reduction via the rack and pinion, can allow for plunging force in
excess of 8000N.

Figure 118: Milwaukee 4208-1 Electromagnet Drill Press with manual handle and custom
Maxon motor.
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Movement on the X, Y and Z axes is controlled from the arduino and accompanying BTS7960
motor drivers using PID. This is not necessary to prevent overshoot or manage acceleration
given the high gear ratios produced through the motor gearing, X and Y axis ball screws and Z
axis rack and pinion. However, PID in this case can allow for a target velocity that the motors try
to reach and maintain. As a result, if the motors are travelling at an ideal rpm and encounter an
increase in resistance, the PID will provide more current to the motor to compensate and
maintain the ideal rpm. This is done in code by having a dynamic target position that is
constantly incrementing away from the current position. When the dynamic target position
reaches the actual final position, it will stop incrementing and allow the current position to catch
up. At higher desired velocity, the target position will increment away faster. As a result of this
code, if the motor encounters resistance and it begins slowing down, the gap between the
dynamic target position and current position will increase, leading to more current being
provided until the gap begins to close.

This can be analogized to a man running towards a tree while being accompanied by their dog.
The man (or dynamic target position) will continue at a regular pace until they reach the tree (or
final position). The (well behaved) dog will not try to outrun the man, and will keep at a constant
distance unless the man speeds up, in which case the dog will proportionally speed up. If the dog
is having more trouble walking (let’s say there’s snow), they will put in more effort to keep at a
normal pace with their owner.

Electromagnets & Frame:

The majority of the repair tool frame is composed of 3”x1”” 8020 stock with framing brackets,
shown in Figure 119. This allows for reduced weight and 8020 tracks to be used for non load
bearing components (For example, mounting of the electronics box, electromagnet transformer,
and hose clamps for wire management). Load-bearing joints use ¥4-20 bolts or larger for a
minimum 20 FOS alongside lock nuts to avoid issues from system vibration. Gantry motion is
stabilized and reinforced through HIWIN 15mm linear rails mounted onto the 8020. The central
delrin piece (delrin being chosen over aluminum or steel after rigorous FEA analysis for the sake
of modifiability, weight and price) is mounted through the linear rails to the 8020 frame, and is
propelled using ball nuts on the aforementioned ball screws.
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Figure 119: Repair tool frame on the gantry system.

The system can be magnetized to steel using four 120V AC electromagnets shown in Figure 120
to prevent backlash from the welding process. In response to the maximum backlash of 8000N,
these electromagnets have a FOS of 1.9. To prevent residual magnetization causing the gantry to
be stuck to the steel after welding is complete, these electromagnets are controlled via a
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transformer shown within Figure 120, which temporarily flips the magnetic current to quickly
separate the electromagnets and steel.

SL11YM 008 JUsLIND
2aA oL} ndino

A0k E-T100

rsec-sce (008)

Figure 120: Electromagnets and transformer.
Electronics:

The repair tool is controlled via a combination of electronics placed within the enclosure seen in
Figure 121, and the wiring diagram within Figure 122. The brain of the electronics is an arduino
MEGA ADK, selected for it’s large number of pins. A LattePanda was previously used, and is
compatible with the current system. However, after it was damaged from a miswire during
testing, it was decided to replace it with a less expensive control board, with the MEGA ADK
being fully capable of handling the system requirements (the reason the LattePanda was initially
selected was that it could handle the main program, which the MEGA ADK currently receives
over serial through a laptop. If the system needed to be fully wireless like it might within a
production model this would be unviable, but for current prototyping it is reasonable). As seen
within Figure 122, the MEGA ADK controls power to the drill and electromagnets using relays,
and controls the gantry (X and Y axis) motors and vertical (Z axis) motor using BTS7960
drivers. It also receives data from the five limit switches, shown in Figure 121, installed on the
gantry to shut down motors if the gantry tries to go beyond its bounds. To prevent miswiring or
shorting, a custom PCB shown within Figure 121 has been designed to mount to the MEGA
ADK and connect through ribbon cable to all other electronics.
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Figure 121: Electronics case, limit switches and custom PCB.

We also integrate motor controllers onto the gantry mechanism. They are designed to move the
end effector of the repair tool in vertical direction, as well as, along the surface of the material
under repair. We focused on integration of the motor controllers onto the system. Initially it was
intended to control the motors using a Basic Micro MCP236 DC motor controller. However due
to numerous challenges and ineffective troubleshooting in configuring the controller over the
serial bus, we instead decided to use a EPOS4 micro 24/5 CAN module instead, which offers the
appropriate hardware for control of the gantry mechanisms motors.

The assembled repair tool on the gantry system is shown by Figure 123. Stabilizing 8020 bracing
has been added to the front of the design, as well as hoist rings and handles to allow for
manageable lifting, which is critical given the cumulative weight of the frame, motors and
electromagnets (~90lbs in total). Though considerable, this level of weight is lower than the
previous iteration which used comparatively heavy aluminum blocks for the frame. The current
design preserves the strength of the system while reducing weight through the use of 17x3” 8020
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framing. This framing also allows for greater customizability of wiring mounts and other features
through the use of T-nuts.

120V

1440W
AC
Cutlet

av
Battery

120V
1440W
AC

Outlet

120V AC 11.5A

24V DC 10.4A

24V DC 3Ax3

25A
Terminal
120V AC Block

Figure 122: Repair tool wiring diagram.

110V DC 0.5A x4

Figure 123: Assembled repair tool on the gantry system.

114



Experimental Results in Lab Environments:

We focused on designing the larger steel plate, and designing and machining the material inserts
in house (of which there are five of each material - delrin, aluminum and steel). The aluminum
backing seen within Figure 124 also had to be machined in house, and allow for the material
inserts to be bolted onto the larger steel plate. The testing plate is large enough to cover the
repair tool’s electromagnets, with the material inserts covering the entirety of the repair tools
range. The testing plate being composed of steel allows for activation of the electromagnet
systems, which also allows for safe testing of the welding process. Furthermore, the material
inserts are able to be quickly removed and reinserted without removal of the repair tool, allowing
for a streamlined testing process.

Figure 124: Testing plate, material inserts and stir welding bit.

The gantry operates on an arduino in communication with a Windows PC (further referred to as
the PC). On queuing from the PC the gantry will initialize arduino code alongside
electromagnets and cooling fans. On a second queuing the gantry will begin a homing sequence.
From here, positional data and related target velocities can be sent to the arduino, with the gantry
completing these tasks to produce welds on previously cracked plates. On failure of any of these
tasks or the startup and homing processes, the arduino will send a descriptive error code to the
PC and shut down safely.
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Figure 125: Close up of X direction results, and X (left) and Y (right) welding passes.

The designed repair tool on the gantry system is able to apply ~8000N of drill pressure to a
15cmx15cm section of aluminum or delrin testing material using a stir welding bit shown within
Figure 124, and using that pressure alongside the drill itself, can weld together previously
cracked sections of that testing material.

As can be seen from Figures 125, the repair tool is capable of multiple welding passes in both the
X and Y direction. Figure 125 shows that X direction welding is more stable (given that the bit
has less vibration while travelling, leading to a less crooked weld). This is due to one of two
possibilities - one is that moving along the grain of the metal material yields less vibration, and
two is that the overall gantry frame better supports X travel. This could be tested by using
material that has grain travelling in the Y rather than X direction, or rotating the repair tool
ninety degrees (which would require it to be locked to the floor manually rather than with its
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electromagnets given that the testing plate does not support the repair tool in that orientation). A
second current issue can be seen with the thinner starting weld on the top weld, and multiple
other welds in Figure 125. This is due to the drill not moving immediately following the plunge,
likely due to too much initial pressure on the plate. As a result, the bit first sits at the start of the
weld, then following the PID code described in the following actuation section ‘jumps ahead’ in
order to maintain the overall desired velocity. This can be resolved by adjusting the starting
plunging force, as well as improving the PID algorithm.

4. Task 4: Artificial Intelligence Development

In this task, artificial intelligence (Al) capabilities were developed to enable robots to automate
data gathering (e.g., to map the environment) and perform predictive analysis (e.g., to track
cracks across multiple inspections and to recognize cracks using machine learning methods).

4.1. Subtask 4.1: 3D Mapping and Data Fusion

Algorithms for 3D mapping and data fusion were developed and analyzed. The goal is to create a
mapping algorithm capable of accurately mapping industrial boiler environments and capture
multi-layer information such as surface defects or navigation landmarks. A custom, voxel-based
loop closure detection technique has been developed and an over simultaneous localization and
mapping (SLAM) package was also developed.

Simultaneous localization and mapping (SLAM) can be thought of as two components: the front
end and back end. The front end is responsible for data acquisition and data fusion. The back end
is responsible for error minimization and maintaining an accurate, global representation of the
world. Loop closure detection described above is a component of the back-end of SLAM. In
order to enable SLAM on the boiler inspection and repair rover, it is critical to develop a full
SLAM package that includes both a front end and a back end.

A key component of enabling simultaneous localization and mapping for robots is loop closure
detection. Loop closure detection describes the capability of mobile robots to recognize
previously visited locations. This recognition helps to minimize accumulated error encountered
during navigation. Figure 126 below visualizes the loop closure detection problem. The green
trajectory might illustrate the robot’s path in the real-world while the red trajectory might
illustrate the estimated robot path. Notice how the amount of difference between the red and
green paths increases as the robot navigates; this is because the error compounds as navigation
occurs. Enabling a robot to recognize the red dot as the green dot can enable the robot to correct
the error accumulated during navigation.

In support of this capability, the team developed a novel loop-closure detection capability called
Voxel-Based Representation Learning (VBRL). VBRL utilizes only point cloud data collected
from a LiDAR sensor for loop closure detection. It is capable of learning both voxel importance
and feature extraction modality importance for the loop closure detection task. Figure 127 below
illustrates the VBRL method.
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Given a set of 3D point clouds acquired during robot navigation, VBRL learns which 3D voxels
are important to differentiating between point clouds as well as which feature extraction
modality is most important. Weighting the place recognition algorithm with these learned
weights yields more accurate loop closure detection results than simply using the feature
extraction modalities alone. The team is confident that this loop closure detection method will
provide accurate loop closure detection results in the industrial boiler wall environment.

Estimated pose

' loop closure correction

@ Real pose

Figure 126: Loop closure detection visualized.

The latest release of MATLAB (R2019B) includes a navigation toolbox with a graph-based
representation of 3D navigation data. In addition, MATLAB has a few built-in functions for
point cloud registration. A preliminary SLAM software package has been developed this project
that uses normal distribution transform for point cloud registration, MATLAB navigation
toolbox algorithms for maintaining a graph data structure, and VBRL for loop closure detection.

For boiler repair and inspection the capability of tagging surface defects to the navigation map is
critical. MATLAB’s pose graph data structure in the navigation toolbox can easily be augmented
to contain more metadata about the environment. Tagging pose graph nodes with information
ranging from surface defects, navigation landmarks, to plain text is possible.

A. Problem Formulation

Notations: Given a matrix M = {m;;} € R**V , we refer to its i-th row and j-th column as m‘

and m;. Its Frobenius norm is computed by || M [Iz= /zg*zlzj?’:lmizj. Given a vector m € R", its

£,-norm is defined as || m |l,= VvmTm

Given a set of point cloud instances acquired during long-term LiDAR-based navigation over
different scenarios, each point cloud is divided into a set of voxels. Then, multiple feature types
are extracted from each of these voxels and we defined a modality as the features computed from
a specific feature descriptor. The multi-modal features extracted from all voxels are denoted as X
= [X1,...,%n] ERY™ x; eR4 is the vector of features extracted from all the voxels of the i-
th 3D point cloud, which is a concatenation of features from all m modalities, such that d =
Xit,Zj-,d;j, where d;; is the dimensionality of the i-th feature modality in the j-th voxel,
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and v is the total number of voxels. The corresponding long-term scenarios (e.g., summer
and winter) are represented as Y = [y1, . . ., Yn] € R™*¢, where ¢ denotes the number of
scenarios and yi is the scenario indicating vector, with each element y;; € {0, 1} denoting
that the i-th 3D point cloud is collected from j-th scenario. Then, we formulate place
recognition based on 3D point clouds as a regularized optimization problem:

minL(X, Y; W) + AR(W)

where L(.) is the loss function, R(.) is the sparsity-inducing regularization term, and A > 0 is a
trade-off hyperparameter to balance the loss function and the regularization term. The model
parameter W is a weight matrix, which represents the importance of the features in X to
represent the scenarios Y in general. By learning the weight matrix W in Eqg. (1), we learn
features that are more important towards place recognition. That is, the features that are more
important towards place recognition have higher weights and the less important features have
weights closer to zero. The loss function is designed to encode the error of using the learned
model to represent the scenarios, which can be defined as L(X, Y; W) = miny, || XTW —Y |12

The solution to the optimization problem defined in Eqg. (1) W =[wa, ..., Wc] € RY*¢ where
w; € RY denotes the weights of features from all views and modalities to represent the i-th
scenario. Since wj contains the weights of features from m-modalities in all voxels, it can be

further denoted as w; = [wi, ..., w™]T.In addition, since each wij includes the weights of

features (extracted from the j-th modality with respect to the i-th scenario) from all voxels, it can
- -1 -V -k

be further divided into v parts as w] = [w} e W ] € R where w] " denotes the weights

of features extracted from the k-th voxel and j-th modality with respect to the i-th scenario.
Learning Representative VVoxels and Feature Modalities:

When performing place recognition, we hypothesize that some voxels within the 3D point cloud
are more representative than others. To identify representative voxels for place recognition, we
introduce a regularization term called a voxel norm. Formally this norm is a sparsity-inducing
norm that can be mathematically defined as R, (W) = Z¥_; | W [I. This voxel norm Ry, is used
as a regularization term in our optimization formulation to enforce the grouping effect of the
multimodal features shared among different scenarios and promote sparsity among different voxels.

Algorithm 1: The proposed iterative algorithm to solve the formulated problem in Eq. (3)

Input : X = [x;,-- ,X,] € R*" and Y = [yy,---,y,] €R"*e
Let ¢ = 1. Initialize W (¢) by solving n&ifn L(X,Y;W).

1
2 while not converge do
3 Calculate the block diagonal matrix D(¢ + 1), where the k-th diagonal block of D(t + 1) is "szLT\F
4 Calculate the block diagonal matrix f)(t + 1), where each element of the matrix ﬁ(f + 1), is given as
) 1
(o + 2w )-
5 | Foreach w;(1<i<c), wi(t+1)= ((XX)" + \D(t +1)
~ =1
+)\2D(T+ 1)) (ny).
6 | t=t+1

Output: W = W(t) € Rixe
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Different feature modalities usually capture different characteristics of a place. Some feature
modalities can be more representative to describe a place than others. Thus, it is also beneficial to
identify the importance of feature modalities to improve long-term place recognition performance.
Accordingly, we also propose a regularization term to identify representative feature modalities
under the unified regularized optimization framework, which is named modality norm. It is
mathematically defined as:

Ry(W) = Z2 I Wl + =2, T WE I,

which is a combination of two structured sparsity-inducing norms. The first term applies the
Frobenius norm within each modality and then applies a group £-norm across different
modalities. By enforcing sparsity among modalities, this term allows the VBRL method to
identify representative modalities that have larger weights, and to make the weights of non-
representative features tend towards 0. The second term in Eq. (2) denotes the £, ;-norm (i.e., a
£,-norm for each column and #;-norm across different columns) used to enforce the sparsity of
the columns of W and grouping effect of the weights in each column. By enforcing sparsity of
individual features, this norm helps recognize representative individual features and assign a zero
value to the weights of non-representative features (e.g., from noise).

Incorporating both of the regularization terms to identify representative voxels and feature
modalities, our final formulation of learning voxel-based multimodal representations for place
recognition can be defined as the following regularized optimization problem:

min,, LCX, Y; W) + 1Ry (W) + 12Rm (W)

where A1 and 12 denote trade-off hyperparameters to govern the balance between the loss function
and the structured sparsity-inducing norms.

Voxel-Based Multimodal Place Recognition:

Once the formulated regularized optimization problem in Eq. (3) is solved based on Algorithm 1,
the optimal weight matrix W* is obtained. Given the feature vector x € R¢ that is extracted from
all voxels and feature modalities in a query 3D point cloud, and a feature vector from a template
3D point cloud ¥ € R%, we compute a similarity score between this query and template point
clouds as follows:

s = Z Z wa (D) * wy () * (| — %)

i=1j=1

where xi; denotes the vector features from the i-th modality and the j-th voxel, ww (i) is sum of all
weights of features in the i-th feature modality, and wy (j) is sum of all weights of features in the
j-th voxel. When this score is above a user-defined threshold, the query 3D point cloud is
determined as a match with the template 3D point cloud.
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Figure 127: Illustration of the VBRL approach for loop closure detection in SLAM on 3D point
cloud data.

B. Experimental Results

In our implementation, each 3D point cloud scan from LiDAR is divided into many voxels. From
each voxel five different feature descriptors are extracted including (1) covariance of points
contained within the voxel, (2) Histogram of Oriented Gradients (HOG) features of a snapshot of
the point cloud in the XY plane, (3) XZ plane, (4) YZ plane, and (5) Subvoxel Occupancy.

The subvoxel occupancy feature is obtained simply by dividing a voxel into 8 equal subvoxels. If
the subvoxel is occupied by any points, a 1 is written to the feature matrix. Otherwise a 0 is
written. As opposed to concatenating these features together from each voxel, VBRL operates
with the intuition that learning a shared representation of the overall scene from multiple data
instances and weighting the feature matrix accordingly will fuse the feature modalities more
effectively for loop closure detection.

Experiments are evaluated both qualitatively and quantitatively. To showcase that VBRL learns
a better representation of a LIDAR scan than feature extraction alone, we compare VBRL (11 =
10 and A2 = 0.1) to performing loop closure detection with features concatenated together (11 =0
and A2 = 0), voxel learning only (11 = 10 and 4> = 0), and modality learning only (A1 = 0 and 22 =
0.1).

Results on Autonomous Driving Simulation:

At first, we evaluate the performance of our VBRL approach to perform 3D point cloud based
long-term place recognition by extensive experimenting on data obtained from the AirSim
simulator. AirSim [71] is an autonomous driving simulator developed by Microsoft to facilitate
the development of self-driving vehicle methods in a virtual environment. We collect the dataset
in AirSim’s cityscape environment with roads, skyscrapers, parks, and dynamically moving cars
and pedestrians. A virtual LIDAR sensor is installed on top of a vehicle to record the point cloud
data from the virtual environment. The point cloud based LIiDAR scans are collected from 210
unique locations within the environment. These scans are first collected in clear, sunny weather.
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This set of point cloud scans constitute one scenario of training our VBRL approach. Then, point
cloud scans are collected from these locations from the self-driving vehicle during snow and fog
conditions forming the second scenario. All of the 210 locations were distinctive to one another
and there was no overlap. To perform the experiments on simulated data and evaluate our
approach, we used 160 point cloud scans for training and a disjoint set of 50 point clouds are
designated for testing. It is to be noted that the training and testing data doesn’t have any overlap
to make sure that our approach can learn a robust weight matrix W, that can be used to perform
place recognition in new and unseen locations.
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Figure 128: Qualitative and quantitative experimental results over the AirSim simulations.

The main challenges associated with this dataset are the dynamic cars and pedestrians. The
LiDAR scans are robust to changes in lighting conditions and are not affected by the virtual
snow. However, because fog, as well as snow, could reflect lasers, certain LIDAR points may be
represented as noise, affecting the representation of the scene adversely. This is a key challenge
in present-day place recognition using point clouds because autonomous vehicles need to operate
in snow, fog, rainy seasons. However, this dataset doesn’t provide data with variation in
vegetation. Illustrated in Figure 128 are the place recognition results based on our VBRL
approach and its comparison to baseline approaches. The qualitative results on 3D point cloud
scan matches are illustrated in Figure 128(a) The template point clouds from the snow scene that
obtain the maximum matching score are shown in the top row, while the query scenes from the
clear scene are shown in the bottom row. It is observed that our VBRL approach can match
point clouds, despite changes in lighting conditions and weather, thus proving the capability to
perform long-term place recognition.

The classification problem is analyzed quantitatively using the standard precision-recall curve.
Figure 128(b) shows the precision-recall performance of VBRL when compared with features
concatenated together, discriminative voxels alone, and discriminative features alone. We
observe that using feature concatenation alone we achieve minimal performance in point cloud-
based place recognition. Using discriminative features increases the performance, as the area
under the curve increases. Introducing the discriminative voxel learning approach increase the
performance even more. Finally, we observe the performance of our VBRL approach, where it
obtains the maximum area under the curve when compared with previous methods, indicating the
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best performance. Therefore, by fusing multiple feature modalities together and weighting them
based on importance, the VBRL approach yields the best results for loop closure detection.

The modality weights learned automatically for the AirSim dataset are shown in Figure 130(a).
The Subvoxel Occupancy feature is the most important with a weight of 30% and the covariance
feature is the second most important with a weight of 29%. The three HOG feature importance
range from 4% for HOG-XY to 28% for HOG-XZ.

The learned voxel weights are shown via a color map above in Figure 130. Voxels occurring
more towards the center of the workspace are learned to be weighted as more important in place
recognition. This makes sense as the center voxels are most likely to be occupied because they
are closest to the sensor origin and in a LIDAR scan point clouds are more populated in the
center. Apart from this, we also analyze the relative importance of the different layers of voxels
(top, middle, and bottom) when performing place recognition using point clouds in the AirSim
dataset. It was observed that the relative importance of bottom, middle and top layer was
37.08%, 42.22%, and 20.72% respectively. This indicated that the bottom and middle layer were
critical towards point cloud based place recognition.
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Figure 129: Experimental results over the NCLT dataset for long-term 3D point cloud-based
place recognition in different seasons.

Results over the NCLT Dataset:

The North Campus Long Term (NCLT) [72] dataset is collected at the University of Michigan
by a mobile robot driven around the campus. There are 27 separate sessions with varying robot
routes in the dataset, which occur over the course of 15 months and span multiple times of day
and seasons. The dataset contains long-term changes in lighting conditions, vegetation, and
weather. Two sessions are chosen: one collected in June and the other in December. These
seasons are selected as they have overlapping routes and seasonal changes. A Velodyne HDL-
32E LiDAR sensor was used to collect 3D point cloud data of the environment and was mounted
on the mobile robot.

This dataset has dynamic pedestrians and also has vegetation changes. Change is vegetation is
typically observed with seasonal changes and is important to be addressed in the LAC problem,
to perform long term place recognition. The NCLT dataset includes 850 LIiDAR scans from the
month of June and a corresponding 850 LiDAR scans from the month of December. For this set
of experiments, we choose 700 instances of point clouds for training and for testing a disjoint set
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of 150 point cloud scans are taken. Again, it is to be noted that the training and testing data
doesn’t have any overlap in order to make sure that our approach is robust.

The qualitative results of the performance of our VBRL approach are provided in Figure 129(a)
in which query scans from the data collected in June are shown on the bottom row and resulting
matches from December are shown in the top row. Our VBRL approach is able to recognize
scenes from 3D point cloud data despite vegetational, seasonal and structural changes (such as
leaves falling off of trees).

Figure 129(b) shows the qualitative precision-recall analysis of VBRL on the NCLT dataset.
Once again, it is observed that VBRL yields greater area under the precision-recall curve than
discriminative voxels, discriminative features, or feature concatenation. Additionally, the learned
modality weights obtained are shown. The learned voxel weights are also shown in Figure
130(b) and results obtained are similar to the AirSim dataset in that the center voxels are learned
to be of more importance than the outer voxels.

The learned voxel weights are also shown in Figure 130(b). An analysis of weights of the
different voxel layers showed that the bottom, middle and top layer have their relative
importance as 33.92%, 54.62%, and 11.46% respectively. Quite contrasting to the results
obtained in the AirSim dataset, we see that the top layer has very little importance. The bottom
layer’s importance also decreases. However, the middle layer plays a major role in place
recognition. The NCLT dataset was majorly collected when the robot traverses over open areas
and didn’t have any tall structures throughout its route. Thus, the bottom and top layer’s
importance is less, whereas the middle layer has the most importance as it has the maximum
number of important features that are critical in place recognition as opposed to the AirSim point
cloud data which had point cloud scans of tall buildings nearby.

Discussion:

We performed additional experiments to further analyze our approach. The results are shown in
Figure 130. Figure 130(a) shows the importance of feature modalities for the AirSim
simulations. Figure 130(b) shows the importance of voxels for long-term place recognition using
the NCLT dataset, where the robot is located in the center of the point cloud at position (0, 0).
Figure 130(c) illustrates the performance variations of our VBRL approach given different
hyperparameter values over NCLT.

Importance of Voxels and Feature Modalities: Our VBRL approach can automatically estimate
the importance of each of the voxels and feature modalities while training. The relative
importance of voxels is illustrated in Figure 130(b). Intuitively, points closer to us are more
important towards performing place recognition. It is analogous to the fact that humans also use
nearby points such as street signs and buildings to recognize places rather than using mountains
in the distance. Accordingly, our approach indicates that point clouds near the center are of more
importance. On the other hand, voxels far away from the center are of least importance and thus
their weights are close to zero. The importance of feature modalities are illustrated in Figure
130(a). The pie chart here indicates the relative importance of different feature modalities
towards performing voxel- based place recognition. It is observed that Subvoxel occupancy,
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Covariance and HOG-XZ have an importance of 30%, 29% and 28% respectively and are
equally important in general, whereas HOG-XY is of least importance.

Hyperparameter Selection: The hyperparameters 11 and A2 in our formulation of the final
objective function, Eq.(3) are designed to control the strength of regularization norms over
learning descriptive voxels and feature modalities respectively. Their optimal values can be
determined using cross-validation during training. From the result in Figure 130(c) we observe
that when /1 = 10 and /> = 0.1, VBRL statistically obtains the best accuracy while performing 3D
point cloud based place recognition. In general, the range 4; € {1,100} and A, € {0.01,1} can
result in satisfactory results, which demonstrates that both of the regularization terms are useful
to improve performance.

\ Subvoxel Occupancy: 30%

HOG-XY: 4%

HOG-YZ: 9%

HOG-XZ: 28%
(a) Modality importance for AirSim (b) Voxel weights for NCLT (c) Hyperparameter analysis

Figure 130: Experimental results over the NCLT dataset in different seasons.
C. Robot Mapping
We also implemented Simultaneous Localization and Mapping (SLAM) methods based on

LiDAR data. The place recognition methods can be used to close the loop in the constructed map
thus increasing the mapping accuracy.

Figure 131: LiDAR observation.
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Figure 132: Example of 3D robot mapping.

4.2. Subtask 4.2: Spatiotemporal Damage Tracking

Given the previous designed SLAM algorithm, we can figure out if the current place we used to
visited before. Given the damages recorded in the previous observation and the current
observation of the same place, we need to identify the correspondences of the damages recorded
at different times but the same place. In this task, we aim to achieve the tracking of damages,
which is a process of associating individual or multiple damages over time at the same place. We
split the tracking problem into two situations, including the tracking of the single damage and
multiple damages. Thus, we designed two algorithms for the two situations separately.

A. Single Damage

Nowadays, re-identification attracts wide attention in computer vision and robotics, which is
defined as the process of determining whether a given individual object has already appeared in
other observations.

For the tracking of the single damge, we can treat it as the re-identification of the single object,
because both of the problems aim to determinate the same object from different perspectives. For
a single damage, the perspective of observing it varies over time. Thus, the re-identification
technique can be used to decide if the current damage is the previous damage we observed in
order to associate individual damage recorded at different times but the same place.
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Figure 133: Structure of single object/crack re-identification.
The process of re-identification is presented as above, which includes 4 main steps:

Stepl: The input image pass through the backbone network (ResNet50) to extract high-level
features of the original image. The extracted features are encoded in the tensor T.

Step2: Given the tensor T, we split it into M (M=6) parts associating with 6 parts of the object
(e.g, head, shoulder, arm, waist, leg, feet). Afterwards, we average all the column vector f;,i =
1,2, ..., M in each part into a single column vector g;,i = 1,2, ..., M in order to downsample the
high-dimension input tensor T.

Step3: In order to futher downsample the feature vector to reduce the computing cost, we
employ a 1X1 convolutional layer to reduce the dimension of g; into h;,i = 1,2, ..., M.

Step4: Given the downsampled feature vector h;, we can predict the 1D of the each part of the
original object as follows:

exp (Wh;

ID = softmax(W, h;) = l\f(—lTl)
L=y Wi hi

where W; is the learnable parameters for each part in the classifer defined above. During testing,

we can easily concatenate all features h;,i = 1,2,...,M intoabigone H = [hq, h,, ..., h,,], and
the final preciditon is similarly defined as softmax(WTH)

B. Multiple Damages

If there exist multiple objects (e.g., damages) in an observation, the tracking of multiple objects
with identical or similar appearance is very challenging, as shown in Figure 134. In each of the
observation of the same place, the objects denote damages with similar appearance (e.g., apples
or banana). The tracking of multi damages over time is equivalent to identify the
correspondences of objects between the two observations.
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We proposed a graph matching method for the tracking of multiple objects that integrates visual
and spatial information describing the objects to identify the correspondence of objects between
two perspectives. From one of the perspectives, we represent multiple detected objects as a
graph, where each node corresponds to a detected object, where edges between nodes describe
the spatial distance between objects and an attribute vector associated with each node describes
the object’s visual appearance. We represent the other perspective with a similar graph. Thus,
our graph representation integrates both visual and spatial information about the detected objects
in both observations.

Given these two graph representations generated from the two observations, we formulate the
tracking of multiple objects as a graph matching problem, which uses constrained optimization to
identify corresponding objects between two views based on the similarity of the visual and
spatial information of the objects encoded in each graph as shown in the below figure.

Figure 134: Graph representations of the observation with multiple objects.

In order to track the correspondences between two graphs G = {V,F,E} and G’ = {V',F’,E"}
objects. V = {vq, vy, ..., v, } is the nodes set, where v; denotes the position of objects and n is the
number of objects in graph G. F = {f1, f, ..., fu} IS the feature set, where f; denotes the visual
feature of the i-th object in graph G. E = {e;;,i =1,2,..,n,j = 1,2,...,n,i # j} is the edge
set, where e; jdenoting the distance between node v; and v; in graph G. Finally, we formulate the
tracking problem as the following graph matching problem:

m)?xATX +XTSX st X1y < Tgxayr X Ly < L

where X = {Xg;) € {0, 1}{"n'}} denotes the correspondence matrix, with Xy = 1 denoting that
the i-th node in G and the i’-th node in G’ are matched, and 1 is a vector with all elements equal
tol. A= {A{”:}} € R™'} denotes the visual similarity between visual feature f; € F of the i-th
object in graph G and f’; € F' of the I’-th object in graph G’. And § = {S{ii,ﬂ,}} e Rlnn'xnn’}
denotes the spatial similarity between edge e;; € E in graph G and edge e’;, j, € E'in graph G’.
Formally, the visual and spatial similarities can be calculated as follows:
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The first term in our designed formulation represents the accumulated similarity between visual
appearances of the objects in the two graphs, which sums all visual appearance similarities. The
second term denotes the accumulated spatial similarities of the objects in two graphs, which sums
all distance similarities of edges between two graphs.

4.3. Subtask 4.3: Damage Analysis by Machine Learning
A. Machine Learning for Crack Classification

Two machine learning approaches were developed for crack classification using our collected
simulated NDE data. We first developed a regularized ridge classification method as follows:

miny, lly" —wTx|3 + allwll3

The goal is to minimize the objective function. Where x is our feature vector, w is our learned
weight matrix and y are the observations. Alpha is a hyperparameter multiplied into the
regularization term to avoid overfitting. Alpha was selected as one for this implementation. The
target variables are then converted to positive and negative one and a binary classification is
achieved based on positive or negative regression.
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Figure 135: CNN architecture for crack classification.

We also implemented a convolutional neural network (CNN). The network architecture can be
seen in Figure 135. The network has a total of 11 layers and utilized the “adam” gradient descent
optimization algorithm. Four layers are convolutional utilizing a rectified linear activation
function. Three layers are maximum pooling layers, there is one flatten layer and 3 dense layers.
The model was trained for 5 epochs.
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Figure 136: Date generation through randomization for model training.

The data set consists of 60,000 data instances of 10 separate crack depths of three separate scan
velocities at four different levels of vibration. The eddy current scans were collected from the
Michigan State University’s scanning gantry system. Each instance is a text file where each row
represents an array of resonating frequencies at that rows position of the scan. To work with our
models these files are first converted to 227x227 RGB images. A crack can be seen as a sharp
change in contrast. Furthermore, the models are supervised, and thus data need to be labeled
“positive” or “negative” for model training. This was done by taking a cropped subsection of
each image that represents a healthy region and a damaged region. Initially both models yielded
poor results as the images were cropped in the same location for all the data, thus a randomized
offset anywhere in the range that the damage would still occupy the image as well as a random
rotation angle between 0 and 180 degrees were generated and applied to each image before
taking the cropped subsection (Figure 136).

Table 19: Experimental results from the ridge classifier and CNN.

Ridge Model Convolutional Neural Network

Precision | Recall F1-Score | Support | Precision | Recall F1-Score | Support
0 0.95 0.95 0.95 29920 0.98 0.99 0.98 29920
1 0.94 0.94 0.94 30080 0.99 0.98 0.98 30080
Accuracy 0.95 60000 0.98 60000
Macro 0.95 0.95 0.95 60000 0.98 0.98 0.98 60000
avg
Weighted | 0.95 0.95 0.95 60000 0.98 0.98 0.98 60000
avg

We first evaluated the ridge classifier. This approach requires some data preprocessing and

feature extraction. Each image is first converted to greyscale. We then utilize the canny edge
detection method to find sharp changes in gradient. We then crop teach image at its bounding
rectangle and extract the histogram of oriented gradients (HOG) feature. We then flatten this
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image into a one-dimensional feature vector. Then two machine learning methods were applied
to classify the feature vectors. From the results listed in Table 19, it is clear that the deep learning
approach outperforms the regularization approach, thus this is the model we selected for crack
classification.

B. Machine Learning for Crack Localization and Estimation

As a unique challenge to execute effective repairs, it is not only necessary to classify damage
accurately, but also feed damage locations into the global map of robot’s environment through
data fusion. To achieve this goal, simple classification approaches such as the ridge classifier or
traditional convolutional neural networks are not adequate for this application because they are
only able to classify whether an object is within an image, but have no awareness of where the
object is within the image. To address this, an instance-based semantic segmentation method is
utilized. This approach differs from traditional semantic segmentation in that it can detect the
number of instances of a certain class instead of grouping them together as a single object. As
this approach is only concerned with a single object class (damaged area) inside the entire scan
region and there may exist multiple cracks within the same scan, the proposed instance-based
approach is ideal for this particular application.

Our approach utilizes a two-staged mask region-based convolutional neural network (mask
RCNN) as shown in Figure 137. First, data are fed into a traditional CNN for a cropped
subsection, called an anchor, of each NDE scan image. To support training multiple images per
batch, all images are resized such that the shortest edge is 800 pixels, but the aspect ratio of the
original image is preserved. For each, or any, anchor where crack instances are detected, a
proposal of its bounding box is generated and stored in memory. The next stage merges each
anchor containing the same instance of detected damage region as a single instance. Lastly, a
pixel mask is generated for each predicted instance of the damage class.
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Figure 137: Mask R-CNN process, architecture, and pixel mask generation.
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To train any neural network model, a sufficiently large training dataset, and for this application,
NDE data of representative cracks for power plant boiler structures are needed. A dataset with
the number of required samples is currently not feasible to obtain. This would require NDE scans
to be collected from hundreds of thousands of naturally occurring cracks in steel plates which is
too difficult and expensive to carry out at this time. Therefore, a transfer learning approach
which builds off the Resnet101 pre-trained model is utilized. Resnet101 is a 101- layer CNN,
which has been pre-trained on dataset containing over 15 million labeled images.

Utilizing this model allows us to build off learned features from other data eliminating the need
to retrain an entire model. 100 images of representative data instances were annotated and given
to the model for training, which is implemented on 8 GPUs for 160,000 iterations with a learning
rate of 0.02, a weight decay of 0.0001 and momentum of 0.9. These parameters were chosen
because, in addition to minimizing the chance of overfitting, they have been shown to provide an
optimal balance between training time and premature convergence to a sub-optimal solution.
Once the model is trained, given an NDE scan containing a damaged region, the model will find
the location of the damage and generate a pixel mask overlaid onto the scan image at the precise
location of the damage.
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Figure 138: Normalized frequency shifts with different lift-off distance of the NDE sensor.

After the model has generated pixel masks over boiler damage instances, the location of each
instance is calculated. The coordinates of a centroid are calculated by dividing the range of pixels
that the masks occupy in horizontal and vertical directions by two. These image plane locations
and the distance per pixel in the scan region correspond to where the damage exists on the boiler
wall. With this information, the robot can then accurately position itself such that its repair probe
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is able to reach the region in need of repair. The steam corrosion, oxygen corrosion, alkali
corrosion, and corrosion under the scale are ever-present in a power plant boiler. The rough
surfaces caused by the corrosions result in the vibration during the movement of the robot.
Therefore, the lift-off distance of the eddy current coil array may change due to the vibration
during the inspection, which challenges the reliability of the NDE data.

The eddy current coil array is placed with the lift-off distance in the range from 0 mm to 5 mm
with a step size of 0.1 mm and 6 mm to 50 mm with a step size of 1 mm to inspect the sample 2.
As shown in Figure 138, all cracks have been successfully detected quantitatively, where the
different normalized shifts of the resonance frequency of the eddy current sensor are correlated
with the different depths of the narrow cracks. The normalized frequency shift decreases slightly
with the increase of the lift-off distance of the eddy current sensor. According to the results, the
crack detection capability of the sensor is basically not influenced by the lift-off distance in the
range from O mm to 5 mm.

A crack depth prediction algorithm based on the kernel-based Gaussian Process Regression
(GPR) is performed to estimate the depth of the cracks obtained at different lift-off distance
range from O mm to 5 mm. There are 50 crack signals obtained at each depth of the cracks. 35
crack signals are randomly selected from the 50 crack signals in each depth of the cracks to form
a training dataset. The GPR model is expressed as y = b(x)” B + [(x), where:

I(x)~ GP(O,k(x,x’)),b(x) € RP

and 1(x;) is the latent variable. The Matern 5/2 kernel:

5 V5r 512 V5r
k(xi,xj|6) = of 1+T+3 exp| ———
l

of o

is used as the covariance function of the Gaussian process, where i is the number of the dataset,
ol is the characteristic length scale, af is the signal standard deviation, and:

r= \/(xi - xj)T(xi - xj) -

The trained GPR predicts the values of depths of the testing dataset, which consists of the rest 15
crack signals of the 50 crack signals in each depth of the cracks. Figure 139 shows the estimated
depth of the crack obtained from the testing sets using the trained GPR model. Meanwhile, the
true depth of the crack is also shown in Figure 139 for the comparison. The mean absolute error
and the root mean square error are as low as 0.0018 mm and 0.002mm. The result shows that the
developed GPR model can estimate the crack depth with a low estimation error and a high
degree of prediction accuracy and stability.
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Software System Integration:

All software is managed through the Robot Operating System (ROS). ROS provides a
convenient framework for managing robotic software. Code is organized into segments called
“nodes”. ROS then allows for communication between these processes in the form of
“publishing” or “subscribing” to a certain “topic”. Figure 140 displays the design.

The architecture is a three-layer system depicted by the colored boxes. The ovals within each
layer represent the nodes and the arrows between them represent the topics. All sensing and low-
level perception is handled in the perception layer. The color depth node handles the RGB depth
processing from an Intel Realsense D435 depth camera. The Lidar node handles the low-level
processing of a 3D laser scan from an Ouster lidar sensor. The IMU node processes the data
obtained from an inertial measurement unit and the encoder node reads odometry data from the
robots built in wheel encoders.

All higher-level processing such as robot reasoning through machine learning is handled in the
cognition layer. Data from all the robotic perception sensors are published and read by the
odometry fusion node. The odometry fusion node uses a ROS package utilizing an extended
Kalman filter which eliminates sensor noise as well as provides a better state estimate of the
robots’ location by fusing the odometry data from the robot’s perception sensors. NDE data from
the NDE sensor alone are not compatible with our machine learning approaches as a 2-
dimentional image representation of the scan region is needed. Thus, the reconstruction node
subscribes to the topics published by the NDE sensor and odometry fusion. The node then uses
this information to fuse the data to the appropriate format. The machine learning algorithm is
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implemented in the classification node. This node uses a machine learning method to classify the
damage. The localization node subscribes to both the odometry fusion node and classification
node. It is the responsibility of this node to track where in the robots local and global map
damage exists and to command the nodes in the action layer.

The action layer contains two nodes which handle all the physical maneuverability of the robot
and its repair mechanism. The motor control node is the node which commands the robots built
in motors which navigate the boiler. The tooling controller node sends commands to the robots
the low-level Latte Panda computer which handles the xyz motion of the NDE sensor and the
repair tool end effector.
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Figure 140: Robotic software architecture.

NDE

I1l. Summary and Future Work

Boiler failure could cause loss of life and safety issues, cost hundreds of thousands of dollars in
equipment repairs, property damage and production losses, and drive up the cost of electric
power. Boiler maintenance is challenging and risky for inspectors working on scaffolding in con-
fined hazardous spaces inside of a boiler and sometimes the space is hard to access. The
operation is also time-consuming due to the large area of vertical structures for inspection and
the tremendous effort needed for scaffolding. Recently, the use of robotics (e.g., drones and
crawlers) in power plants for maintenance has been growing rapidly. However, the existing
robotics solutions show two notable technological gaps: no repair capability, and no Artificial
Intelligence (Al) for smart autonomy.
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The overarching goal of this project focused on developing an integrated autonomous robotic
platform that is equipped with compact non-destructive evaluation (NDE) sensors to perform
inspection, operate onboard repair devices in order to perform repair, and use Al for intelligent
data fusion and predictive analysis for automated and smart spatiotemporal inspection, analysis
and repair of the furnace walls in coal-fired boilers. The approach to achieve the objective
includes developing NDE sensors with signal processing techniques, designing and evaluating
repair devices based on fusion and solid-state technologies, and an autonomous robotic platform
that is integrated with the NDE sensor and the repair tool. The robot will also be powered by Al
to automate data gathering (e.g., 3D mapping and damage localization) and predictive analysis.

This project well aligns with the Fossil Energy Objective: “Advance technologies to improve the
efficiency, reliability, emissions, and performance of existing fossil-based power generation,”
by developing “advanced sensors and controls to help increase coal plant efficiency, reduce
forced outages, and avoid downtime related to equipment failures.” Maturing this developed
robotic technology has the potential to make great impacts in terms of time and cost savings,
reducing the risk for human operators, and increasing boiler reliability, usability, and efficiency.
In addition, by developing involving multiple students and faculty members in this research, and
by generating knowledge and building up collaborations with industrial partners, this project has
improved the education capabilities, supported long-term fundamental research, and enhanced
the leadership of the involved universities in energy fields.

This project performs fundamental research to prove the concept of an Al-enabled robot with
integrated nondestructive evaluation sensors and repair tools. The technological components
were integrated into a robot system, and we performed system evaluation and validation in the
laboratory environment. Although the developed system is a good starting point for a further
robotic solution for boiler wall damage evaluation within power plants, there are still many
technical gaps existing with further development desired to make this developed system feasible
in the field. Future follow-up projects may address several future topics:

(1) A major consideration is that many powerplant boiler house walls consist of an array of water
tubes in addition to simple uniform steel surfaces. These surfaces present a challenge given the
non-uniform distance of the NDE coil array which results in distorted sensor readings that cannot
be accurately evaluated by the Al model. Similarly, further improvements are needed to address
this non-uniform distance for repair.

(2) Improving NDE sensing technology to detect multiple types of damages is a necessary future
topic. The developed NDE sensor basically only uses a single sensing technology based on eddy
current and mainly only considers cracks in this project. Several other sensing technologies, e.g.,
based on acoustic sensing and magnetic flux leakage (MFL), can be further developed and used
together to improve detection accuracy. Improved controls of the sensors are also needed to
address the issue that the scan along a crack occurs parallel to robot’s direction of travel. In this
case, the sensor in this project would detect a minimal change in uniformity which may lead to
damages becoming unclassified. This problem may be addressed by designing an improved
sensing control method for performing multiple scans along the same surface but in
perpendicular directions.
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(3) Further improvement requires the need for a large-scale dataset of representative damages for
power plant boiler inspection, which requires a large number of NDE data instances for training.
Relative to what was possible for this project, obtaining this large number of datasets was not
feasible, nor is the number of datasets to achieve a properly trained system known. Another
difficulty is the computational complexity of deep learning methods. Deep learning methods
typically requires significant overhead during training due to the need to run an individual deep
networks over various regions of the same image. More data-efficient deep learning methods are
needed to identify cracks, other damages, and in general, anomalies.

(4) It is also possible to further extend the concepts and methods in this project to use a similar
robotic system for other structural analysis applications from other various energy or civil related
fields. A closer approximation for full autonomy would in turn significantly improve the results
from required maintenance within power plants and other energy facilities, in terms of
decreasing time used to obtain a damage analysis and repair of the system under test, enhancing
quantitative results for objectifying damages, decreasing the likelihood of cataclysmic system
failure, and overall improvements in human safety by minimizing human interaction within
hazardous regions that require inspection.
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