
1 

 

 

 

 

 

 

 

 

AI-Enabled Robots for Automated Nondestructive Evaluation  

and Repair of Power Plant Boilers 
 

 

Principal Investigator: 

 

Hao Zhang, Ph.D. 

Colorado School of Mines 

1500 Illinois St., Golden, CO 80401 

Phone: 303-273-3581 

Email: hzhang@mines.edu 

 

 

Co-Investigators: 

 

Yiming Deng, Michigan State University 

Stephen Liu, Colorado School of Mines 

Andrew Petruska, Colorado School of Mines 

Lalita Udpa, Michigan State University 

Zhenzhen Yu, Colorado School of Mines 

 

 

DOE Award Number: DE-FE0031650 

 

Sponsoring Program Office: Office of Fossil Energy (FE) 

 

Date of Report: April 29, 2022 
 

 

  

mailto:hzhang@mines.edu


2 

Disclaimer 
 

This report was prepared as an account of work sponsored by an agency of the United States 

Government. Neither the United States Government nor any agency thereof, nor any of their 

employees, makes any warranty, express or implied, or assumes any legal liability or 

responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 

product, or process disclosed, or represents that its use would not infringe privately owned rights. 

Reference therein to any specific commercial product, process, or service by trade name, 

trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 

recommendation, or favoring by the United States Government or any agency thereof. The views 

and opinions of authors expressed therein do not necessarily state or reflect those of the United 

States Government or any agency thereof. 
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Executive Summary 
 

Boiler failure could cause loss of life and safety issues, cost hundreds of thousands of dollars in 

equipment repairs, property damage and production losses, and drive up the cost of electric 

power. Boiler maintenance is challenging and risky for inspectors working on scaffolding in 

confined hazardous spaces inside of a boiler and sometimes the space is hard to access. The 

operation is also time-consuming due to the large area of vertical structures for inspection and 

the tremendous effort needed for scaffolding. Recently, the use of robotics (e.g., drones and 

crawlers) in power plants for maintenance is growing rapidly. However, the existing robotics 

solutions show two notable technological gaps: no live repair capability, and no Artificial 

Intelligence (AI) for smart autonomy. 

 

The objective of this project is to develop an integrated autonomous robotic platform that is 

equipped with compact non-destructive evaluation (NDE) sensors to perform live inspection, 

operates onboard repair devices to perform live repair, and uses AI for intelligent data fusion and 

predictive analysis for automated and smart spatiotemporal inspection, analysis and repair of the 

furnace walls in coal-fired boilers. The approach to achieve the objective includes developing 

NDE sensors with signal processing techniques, designing and evaluating repair devices for 

robots based on fusion and solid-state technologies, and an autonomous robotic platform that can 

attach to and navigate on boiler furnace walls using magnetic drive tracks. The robot is also 

powered by AI to automate data gathering (e.g., 3D mapping and damage localization) and 

predictive analysis.  

 

This project has advanced the state-of-the-art by providing technological breakthroughs 

including compact NDE and repair tools for robots, AI capabilities for smart autonomy, and a 

robotic platform for automated boiler maintenance. This project has great potential to result in 

significant benefits including limiting or eliminating the need to send operators to assess 

difficult-to-access or hazardous areas, enabling automated live inspection and repair, avoiding 

time consuming scaffolding (especially for partial maintenance during unplanned outage), 

collecting comprehensive and well-organized data smartly, and avoiding or limiting the need for 

onsite or remote piloting technicians. The impacts can be tremendous in terms of the time and 

cost savings, reducing the risk for human operators, and increasing boiler reliability, usability, 

and efficiency. 

 

In addition, by developing the new technologies on the autonomous inspection and repair robot, 

by involving multiple undergraduate and graduate students working together with the faculty 

members on this project, and by generating knowledge and building up collaborations with 

industrial partners, this effort will significantly update the education capabilities, support long-

term fundamental research, and maintain the leadership of Colorado School of Mines and 

Michigan State University in energy fields. 
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I. Background and Project Objectives 
 

1. Project Background  

 

Boilers are the largest and one of the most critical components of a thermal power plant, which 

convert energy contained in fuel (e.g., coal) into high temperature steam. Damage mechanisms, 

including creep, thermo-mechanical fatigue, erosion, cavitation, and corrosion-induced cracking, 

take place in the boiler furnace chamber [1]. If damage is left unchecked, catastrophic failures 

could occur, causing loss of life and other serious safety issues. Boiler failures also cost hundreds 

of millions of dollars in equipment repairs, property damage and production losses, which drives 

up the cost of electric power across the U.S. As emphasized by our industrial collaborators from 

Xcel Energy Inc. (a utility holding company that operates all Colorado generation stations), 

boiler inspection and repair is one of the main focuses during scheduled overhauls.  

 

Boiler maintenance is challenging and dangerous for inspectors working on scaffolding in the 

confined space inside a boiler, and sometimes the space is hard to access. The operation is also 

time-consuming due to the large area of vertical 

structures to inspect and due to the tremendous 

effort that is needed for mounting and 

dismantling scaffolding. For example, at the 

coal-fired Hayden Station [2] in Colorado, 

inspectors need to inspect 50,000 ft2 of furnace 

walls (a.k.a., water walls) inside of the boiler 

during a single overhaul (Figure 1), which takes 

several days to complete.  

 

Recently, the use of robotics in power plants for 

maintenance has been increasing. [3]. For 

example, drones (i.e., Unmanned Aerial Vehicles 

or UAVs) [4, 5] and robotic crawlers [6, 7] are 

developed to inspect boiler furnace walls. Given 

their promises, the existing robotics technologies 

have various disadvantages (Table 1). The two most notable gaps include (1) no live repair 

capability, and (2) no Artificial Intelligence (AI) for smart autonomy. Even after damage is 

detected, dangerous and time-consuming operations (e.g., scaffolding) are currently still needed 

for repair operations. Without autonomy and AI capabilities, well-trained pilot technicians are 

required to remotely control the robots or to be onsite when communication is limited, such as 

within a boiler. These gaps must be overcome to practically deploy robotic technologies for 

spatiotemporal power plant inspection and repair.   

 

2.  Research Objectives  

 

The overarching goal of this project was to develop an integrated autonomous robotic platform 

that (1) is equipped with advanced non-destructive evaluation (NDE) sensors to perform live 

inspection, (2) operate innovative onboard devices to perform live repair, and (3) use AI for 

intelligent information fusion and live predictive analysis for smart automated spatiotemporal 

 

Figure 1: Hayden Unit 1 scaffolding for manual 

inspection and repair. 
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inspection, analysis, and repair of furnace walls in coal-fired boilers. The breakthroughs included 

compact live NDE and repair tools for robots, AI capabilities for smart autonomy, and an 

integrated robotic platform for automated boiler maintenance. The success of this project will 

now potentially result in significant benefits, including limiting or eliminating the need to send 

operators to assess difficult-to-access or hazardous areas, enabling automated live inspection and 

repair, avoiding time consuming scaffolding (especially for partial maintenance during 

unplanned outages), and smartly gathering comprehensive and well-organized data. These 

impacts will be tremendous in terms of the time and cost savings, reducing the risk for human 

operators, and increasing boiler reliability, usability & efficiency.  
 

 

The specific objectives of this project included: 

 

• NDE Sensor Design: A compact NDE sensor was designed with crack detection and 

assessment capabilities. Signal processing methods were also developed to estimate crack 

sizes and improve the NDE sensor’s reliability. 

• Repair Tool Design: A repair tool based on friction stir welding (FSW), one of the solid-

state repair methods, was designed. By augmenting FSW with an induction heating unit, 

the demand for spindle torque and forging loads can be significantly reduced, enabling 

FSW to be used as a compact repair technique.  

• Integrated Robotic Platform: A robotic system was designed that leveraged a commercial 

robotic platform retrofitted with a customized gantry system, sensors, cleaning, NDE 

sensors, and repair tools.  

• Artificial Intelligence (AI) for Smart Autonomy: AI capabilities were developed to 

enable robots to automate data gathering (e.g., to map the environment) and perform 

predictive analysis (e.g., to recognize cracks using machine learning methods).  

 

Since this project is a part of the University Coal Research (UCR) program, another major 

objective of the project is to inspire, educate and train PhD and MS students to address energy-

related challenges. During the project, multiple PhD students from both universities and several 

MS/undergraduate students were included in this project. They were trained and educated in 

science and engineering to address the energy-related challenges. The PIs believe education is a 

Table 1. State-of-the-practice manual and robot-assisted inspection methods and their limits 

Current Practice Limits 

Maintenance by 

human inspectors 

Safety risks caused by environmental hazards and climbing up scaffolding, 

time-consuming to mount/dismantle scaffolding, often slow and inaccurate 

inspection. 

UAV/drone-based 

inspection 

Limited payload & operation time, requirement of constant human control 

(autopilot not feasible yet), dependence on good wireless communication, 

typically only visual inspection (NDE-based inspection and repair not feasible 

yet).  

Robotic inspection 

crawlers 

Typically incapable of repair, requirement of constant remote control (no full 

autonomy yet), no AI for smart autonomy and predictive analysis. 
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critical component of the project, and we will integrate research with educational activities to 

prepare the next generation scientists and engineers for the energy industry.  

 

II. Technical Approach, Experimental Results, and Discussion 
 

To address the research goal and objectives, four major technical tasks were performed, 

including (1) NDE sensing and assessment, (2) repair device design and control, (3) robotic 

platform design, and (4) artificial intelligence development. Specifically, these tasks include the 

following subtasks: 

 

• Task 1 – NDE sensing and assessment 

o Subtask 1.1   Probe design for robotic platforms 

o Subtask 1.2   Signal processing techniques for crack profiling  

• Task 2 – Repair device design and control 

o Subtask 2.1   Integrated IHA-FSW system 

o Subtask 2.2   Repair protocol design 

• Task 3 – Robotic platform design 

o Subtask 3.1   Robot retrofit for vertical navigation 

o Subtask 3.2   Cleaning mechanism design 

o Subtask 3.3   NDE integration on robot 

o Subtask 3.4   Repair integration on robot 

• Task 4 –  Artificial intelligence development  

o Subtask 4.1   3D mapping and data fusion 

o Subtask 4.2   Spatiotemporal damage tracking 

o Subtask 4.3   Damage analysis by machine learning 

 

1. Task 1: NDE Sensing and Assessment 

 
A compact NDE sensor was designed with crack detection and assessment capabilities. Signal 

processing methods were also developed to estimate crack sizes and improve the NDE sensor’s 

reliability. 

 
1.1. Subtask 1.1: NDE Probe Design for Robotic Platforms 

 

Research in nondestructive evolution technologies have been rapidly improved due to their 

essential role not only in diagnostic maintenance but also in prognostic maintenance, health 

monitoring, quality assessment, and in manufacturing processes. Several nondestructive 

evolution methods, NDE, are currently being used to inspect heat exchangers, boiler structures 

and tubes. In this section, nondestructive evaluation methods are introduced and applied to 

inspect a sample from a boiler structure.  

 

1.1.1. Literature Review  

 

In the relevant literature, several methods have been reported for inspecting boiler structure such 

as, visual methods, laser-based inspection, radiography, ultrasonic, microwave near field sensing, 

and electromagnetic methods such flux leakage and eddy current.   
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• Visual inspection uses reflected or transmitted light from test object that is image with the 

human eye or other light sensing device. Its applications range from raw material to 

finished products and in-service inspection [8]. Although it can be inexpensive and 

simple with minimal training required, only surface conditions can be evaluated. For 

sophisticated visual inspection, an effective source of illumination required. For boiler 

inspection, visual inspection is time consuming and risky task for engineers.  

 

• The laser optical technique (LOTIS) uses a rotating laser beam that scans the inner 

surface as the probe is pulled out of the tube. The reflected laser beam is picked up by a 

lateral detector that measures changes in proximity caused by variations on the internal 

diameter (ID) surface [8]. The technique is limited to ID surface inspection with a speed 

of up to 3 in./s. The technique also requires the tube to be cleaned to avoid any 

unnecessary optical scattering. It has proven applications for large diameter tubes such as 

those in reformers and furnaces. Because of its limitations it is mainly used as a 

complimentary inspection tool.  LOTIS allow permanent records can be obtained from 

test results. It also distinguishes inner from outer diameter. Instrumentation can withstand 

adverse field conditions. In addition, it can detect flaws under support plates as well as 

flaws adjacent to end sheets [9]. However, tubes must be cleaned. Scale or deposit can fill 

a flaw which will make it difficult to qualify its depth. The methods are very sensitive to 

inspection speed. Instrumentation and probes could be very expensive. The detectability 

is limited to 20% and greater, and cannot accurately size discontinuities. According to 

[9], the method cannot inspect U-bend tubes.  

 

• In radiography techniques, a source of radiation is directed toward the inspected object. A 

sheet of radiographic film is placed behind the object. It is used for pipeline inspection 

due to its reliability. A disadvantage associated with it is the radiation exposure and 

might be challenging for boiler inspection.  

 

• Ultrasonic method has become a popular NDE method. The principle is to employ high 

frequency acoustic waves to probe the inspected sample. As the acoustic wave penetrates 

the sample, the wave is attenuated and/or reflected by any change in the density in the 

material. By observing the returned signal many of the characteristics of the material can 

be determined [10].  In [11], ultrasonic has been reported as demonstrated good 

performance in the determination of actual (remaining) wall thickness for large areas of 

tubes and sheet metal. Unlike radiography, ultrasonic NDE has no health risks. 

According to [11], it is possible to define defect location very accurately. The reporting 

accuracy regarding depth measurement for the latest generation of tools is around ±0.4 to 

0.5 mm. The highest possible depth resolution that can be achieved is 0.06 mm [12]. 

However, ultrasonic requires an acoustic coupling and surface preparation [13]. In 

addition, training is necessary for ultrasonic inspection. 

 

Ultrasonic internal rotating inspection system (IRIS) is used for NDE evaluation [9]. This 

inspection method employs an ultrasonic immersion pulse echo technique. The ultrasonic 

transducer is contained in a test head, which fits into and is centered in the tube to be 

inspected. The ultrasonic pulses are emitted along a path parallel to the tube axis. A 
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rotating 45-degree mirror then reflects these pulses so that they are directed radially on to 

the tube wall. It provides information on flaw profile and location i.e., on the ID or OD of 

the tube. With real time C-scan capabilities during data collection, pits as small as 1 mm 

diameter can be easily detected [8]. It has relatively slower speed of operation and 

enquires extensive tube cleaning. It is limited to minimum wall thickness measurement of 

0.8mm for carbon steel tubes [8].  

 

• Eddy current and flux leakage methods are the most commonly used for inspecting 

conductive material. In flux leakage examination methods, the probe consists of a magnet 

and two flux leakage sensors, which set up a flux field in the tube wall as it passes 

through the tube. The field fluctuates when it encounters a flaw. The flux rate fluctuation 

effect is picked up by the coils and displayed on the display apparatus and chart recorder 

[8]. A Hall effect element can be added as a combined-type probe, which is used to detect 

absolute flux such as gradual wall loss. The output of the Hall effect detector depends on 

the orientation of the sensor in the probe relative to the discontinuity and whether the 

location of the discontinuity is on the inside or outside surface. The output of the 

magnetic flux leakage coils is related to the change of flux caused by the discontinuity 

but not the discontinuity size [9]. The method distinguishes ID from OD flaws, can 

inspect ferromagnetic tubes up to 3.5 inches in diameter and 0.120 inches wall thickness, 

permanent records can be obtained on test results.  Instrumentation can withstand adverse 

field conditions [9]. Flaws under support plates as well as flaws adjacent to end sheets 

can be detected. The method’s simplicity, low cost, air coupling and non-contact 

application, made MFL testing suitable for the automated in-line and real time defect 

inspection [13].   

 

In eddy current testing, a time varying magnetic field is induced in the sample material by 

using a magnetic coil with alternating current. This magnetic field causes an electric 

current to be generated in conducting materials. These currents, in turn, produce small 

magnetic fields around the conducting materials. The smaller magnetic fields generally 

oppose the original field, which changes the impedance of the magnetic coil. Thus, by 

measuring the changes in impedance of the magnetic coil as it traverses the sample, 

different characteristics of the sample can be identified. Eddy current testing is an 

effective method to detect fatigue cracks and corrosion It is suitable for detecting for 

example porosity, cross and seam cracks and checking seams and butt welds. testing 

electrically conductive materials for the detection of surface and near-surface defects 

[14].  Eddy current testing is widely used for inspecting conductive material because it is 

cheap and can monitor subsurface defects or defects under insulating coatings without 

touching the surface of a specimen [11, 12, 15, 16]. In ECT, probes excited with single or 

multi-frequencies employed for the detection and evaluation of surface and sub-surface 

defects. For the detection of deep sub-surface defects, higher excitation current is 

necessary in single and multi-frequency techniques [14]. 

 

For far filed sensing, remote Field Eddy Current (RFEC) is used.  The remote field 

inspection method is based on the transmission of an electromagnetic field through the 

tube material. The exciter coil generates eddy currents at a low frequency in the 

circumferential direction. The electromagnetic field transmits through the thickness and 
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travels on the outside surface. A receiver coil placed in the remote field zone of the 

exciter picks up the field. The separation between the two coils is two to four times the 

tube’s inside diameter [9].  RFEC can be used to inspect Ferromagnetic tubes in shell and 

tube heat exchanger& boilers. It is well suited for the detection of the following types of 

corrosion: general corrosion, erosion, localized corrosion and pitting, support plate fret 

wear extending beyond the baffle [8]. However, evaluation of small flaws such as pits 

using RFEC can be difficult. Compared to near field eddy current methods, 

instrumentation and test probes can be very expensive and requires high inspection skills 

for data analysis and evaluation.  In RFEC, impingement erosion and wall loss 

detectability is limited to approximately 20% and greater. The method needs tube 

cleaning and has some limitation to distinguishing inner diameter from outer diameter 

defects. Inaccuracy in test results could occur if a discontinuity encountered differs in 

geometry from calibration discontinuities. According to [8], RFEC had the highest 

reliability of 77% in carbon steel tube inspection.  

 

For ferromagnetic materials, partial saturation eddy current method is used.  The full 

saturation probe contains conventional eddy current coil and a magnet. The magnetic 

field of the magnet saturates the material. Once saturated the relative permeability of the 

material drops to one. The strength of the magnets used for saturation is very critical in 

this technique. Weaker magnets will not saturate the material and will produce a high 

noise to signal ratio. The application of a full saturation eddy current technique depends 

on the permeability of the material, tube thickness and diameter [9]. It could be used to 

size of outside surface discontinuities. However, inside surface discontinuities cannot be 

sized with signal phase analysis because the depth of the discontinuity does not influence 

the phase.  The inspection speeds up to approximately 60 feet per minute. The method 

can distinguish between inner and outer flaws similar to conventional eddy current 

method. Compared to other methods it presented reliability and accuracy of test results. 

Moreover, it is applicable to non-ferromagnetic and slightly ferromagnetic tubes. 

However, instrumentation and test probes can be very expensive and requires high 

inspection skills for data analysis and evaluation [9]. For this method, the tube material 

should be fully saturated, and tubes must be cleaned. 

 

An effective eddy current method used for conductive and nonconductive material is 

pulsed eddy current [17].  PEC testing can be widely used to measure the thickness and 

stress and to characterize crack, metal loss, and corrosion of metal materials and carbon 

fiber-reinforced plastic [18]. PEC testing possesses many advantages against the 

conventional eddy current testing, including more extended detection depth, richer 

information about defects and higher robustness of anti-interference. In addition, PEC 

testing technology taking pulse as excitation can minimize power consumption, which is 

more promising in the development of portable instrument [15, 16]. PEC is more 

economical compared to other NDT methods. 

 

• Near-field microwave imaging method is a promising nondestructive evaluation 

technique that can give a quantitative measure of the surface and sub-surface profile of 

lossless or low-loss dielectric materials [19]. Unlike the far field technique, the resolution 

of the near-field measurement is not constrained by diffraction limits, since it is 
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determined by the probe's aperture size. Thus, it is capable of providing sub-wavelength 

resolution. The sub-wavelength resolution microscope was first proposed by Synge in 

[20], with experimental designs reported in [21]. Since then, a lot of research has been 

focused on the improvement and development of various designs for a microscope 

scanning system. Cho et al. achieved millimeter level resolution with frequencies around 

1 GHz by using coaxial resonators [22]. Reducing the aperture size by using a sharp 

probing tip achieved a spatial resolution of 100 nm, by Gao et al [23]. Bakli et al 

presented a scanning system that combines a vector network analyzer and a high 

precision interferometer which provides broadband capabilities and high measurement 

accuracy [24]. 

 

Based on the technical and ecumenical advantages of eddy current inspection of conductive 

material, in this project eddy current sensing is proposed for inspected boiler structure. For 

robust and reliable inspection, near field microwave sensing using open ended coaxial cable 

antenna is also used for inspection.      

 

A.  Eddy Current Sensors   

 

Eddy current technique is based on electromagnetic induction. A time varying electrical current 

is energizing a wounded coil (primary current). A magnetic flux is generated at the center of the 

wounded coil as shown in Figure 2, which is adopted from [25] for illustration. Based on 

Faraday’s induction theorem, the alternating flux generates electrical current in a conductor if it 

is placed perpendicular to the flux direction.  As a result, circulating electrical currents flows in 

the conductor in forms of eddy waves, which are called eddy currents.  

 

 
Figure 2: Primary and secondary magnetic field. Eddy current on the test piece. 

 

The circulating eddy currents generate their own magnetic field which is opposing the primary   

magnetic field.  The presence of the cracks in the test material disturbs the baths of the eddy 

currents, and the secondary marantic field. Thus, changes in secondary magnetic field are used as 

indications of the presence of the crack. The following measurements techniques are used to 
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measure the marantic field in the eddy current. Induction coils and semiconductor-based device 

such as hall sensor, magnetoresistance, and measure are being widely used to measure magnetic 

field.  

 

Impedance Variation: 

   

The impedance of the primary coil is modeled by an inductor in series with the resistance of the 

wounded coil. As the coil induces electrical current in the secondary material, and the secondary 

magnetic field opposes the primary marantic field. The total magmatic filed seen by the coil 

involves the information of the secondary field changes.  These changes are reflected in the 

impedance variation of the coil. As the sensor eddy current are disturbed by discontinuities, 

defects, the total impedance decreases as shown in Figure 3. 

 

 
Figure 3: Impedance variation due to defects in sample under test. 

 

Measuring the impedance variation of the excitation coil has been widely an effectively used in 

eddy current method [26]. An example of the single coil that is used in this experiment is shown 

in Figure 4 with 500 turns. Compared to other eddy current sensing methods, it involves less 

components and it has direct coupling with the total magmatic flux linking the coil.   

 

 
 

Figure 4: Impedance variation sensors. 

 

Transmitter and Receiver Coils:     

 

To measure the field directly along with excitation coil, primary coil, another wounded coil is 

needed, secondary coil.  The primary and the secondary coil acts like a transmitter and receiver. 
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The receiver coil is wounded on top of the transmitter coil of the eddy current probe as shown in 

Figure 5. The receiver coil of the probe is placed in time varying magmatic field. The magnetic 

field seen by the receiver coil is the total magnetic flux that is the magnetic field from the 

transmitter coil and the magmatic fields generated by the eddy currents. As a result, voltage 

induced across the receiver coil measures the magmatic variation of the eddy current as it 

encounters defects and cracks. In this project, the transmitter and receiver are consisting of 200 

turns for each.   

 
Figure 5: Eddy current Transmitter and Receiver coils. 

 

 
 

Figure 6:  Near-field microwave microscopic imaging system and block diagram. 
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B. Near Field Microwave Sensor   

 

A nearfield microwave imaging system consists of either a single transceiver or a multiple array 

of probes, which illuminates the OUT and measures the localized response from the material. 

The response varies with electrical properties of the material. However, to achieve high 

resolution images, the separation between the tip of the near-field antenna and the surface of the 

sample has to be small and stay constant. The precision of that distance will have a significant 

influence on accuracy of a near field imaging system.  

 

The block diagram of implemented setup is shown in Figure 6. An 8 GHz RF source generator is 

used to feed the nearfield microwave probe. The low output of the source is amplified to +24 

dBm and a 3 dB RF splitter is used to divide the amplified signal into a feed and a reference 

signal. The directional coupler is connected to the feed signal coming from splitter and also used 

to probe the reflected power. The reflected signal is mixed with the reference signal to get any 

changes in phase according to the changes in the properties of the object.  

 

The probe used for imaging is a coaxial cable with an open-ended copper tip due to its simple 

design, easy availability and wide band frequency response. The experiments are performed by 

keeping the tip perpendicular to the object, where the fields are stronger and localized. 

 

1.1.2. NDE Sensor Design  

 

In order to embed the NDE scanning system with the robot platform, a miniaturized NDE system 

has been developed and tested. The new portable NDE system requires much less space and 

consumes lower power while maintains a similar performance compare to the pervious non-

portable system.  

 

A. Coil Array Design 

 

Considering the technical and economic advantages of eddy current and near-field microwave 

sensing methods, both methods are proposed to integrate robotic scanning platform for 

inspecting boiler structure. For detecting millimeter and submillimeter width cracks on surface 

and subsurface of the inspected specimen, the following specific sensors have been investigated 

and implemented: transmitter-receiver (TR) and giant magneto resistive (GMR) for eddy current 

sensing and a small diameter tip-based coaxial cable antenna for near field sensing. Although the 

scanning results show the scanning system’s capability of detecting the defects with 0.2 mm 

width, the long scanning time become one of the constraints that prevent applying these NDE 

methods directly on the robot platform. In this case, sensor array which is able to cover more 

area in the unit time has been studied through simulation and experiment. To have a better 

understanding of coil array properties, a simulation has been performed.   
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Figure 7: Simulation model of the coil array. 

 

 
 

Figure 8: S11 simulation result of the coil.  
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Figure 9: Coil arrays with different sizes of coils.  

 

B. NDE Sensing System Development 

 

A flowchart of the NDE coil array scanning system has been shown above. A dual-channel 

waveform generator is used as the signal source. The coil array sensor is excited by the signal 

from ch.1. The signal from ch.2 is used as reference and directly connect to lock-in amplifier. 

The lock-in amplifier demodulates the receiving signal using the reference signal and output data 

is sampled using a NI data acquisition device.  

 

 
Figure 10:  Flowchart of coil array scanning system. 

 

The design of the miniaturized NDE system start with miniaturizing of the components. For the 

first prototype, a portable version of each part has been selected or developed.   
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Figure 11: Spec sheet of the waveform generator. 

 

A High Precision Direct Digital Synthesizer (DDS) based Dual-Channel Arbitrary Waveform 

Function Generator has been used as the signal source.  The Waveform Function Generator able 

to provide up to 60 MHz sine wave to the coil array sensor.   

 

In order to filter out undesired frequencies and reduce noise in the receiving data, a lock-in 

amplifier has been employed. Lock-in amplifier is a device that able to extract very small signals 

in the presence of a noisy background with the knowledge from the reference signal at same 

frequency.  

 

 
 

Figure 12: Block diagram of Lock-in amplifier. 

 

As the figure shown above, a multiplication has been performed for the input signal with a 

reference signal. This multiplication is also termed as demodulation which isolates the specific 

frequency of interest from all other frequency components. An adjustable low-pass filter is then 

applied to the result to reject the noise and extract the DC component.  
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In the complex plane, the input signal Vs(t) can be express as the sum of two vectors. 

  

Vs(t) = √2R ∙ cos(ωst + θ) =
R

√2
e+i(ωst+θ) +

R

√2
e−i(ωst+θ)                   

 

The process of demodulation can be mathematically expressed as a multiplication of the input 

signal with the complex reference signal Vr(t) where  

 

Vr(t) = √2e−iωrt = √2 cos(ωrt) − i√2 sin(ωrt)              

 

The mixed signal is then expressed by 

 

Z(t) = X(t) + iY(t) = Vs(t) ∙ Vr(t) = R[ei[(ωs−ωr)t+θ] + e−i[(ωs+ωr)t+θ]]    
 

with signal components calculated by the summation and subtraction of the signal frequency and 

the reference frequency. The averaged mixed signal is given by 

 

Z(t) = R ∙ ei[(ωs−ωr)t+θ]               

 

When the reference signal’s frequency is same as the input signal’s  ωr = ωr, the output of the 

lock-in amplifier simplifies to 

 

Z(t) = R ∙ eiθ                

 

The X and Y are the in-phase component the quadrature component obtained using Euler’s 

formula exp(iωst) ≡ cos(ωst) + isin(ωst) as  

 

X = Re(Z) = 〈Vs(t) cos(ωst)〉 = Rcosθ      

Y = Lm(Z) = −〈Vs(t) sin(ωst)〉 = Rsinθ          
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Figure 13: Functional block diagram of AD630. 

 

For the portable lock-in amplifier, AD630 has been selected to implement the demodulation 

process. AD630 is a high precision balanced modulator/demodulator with 2 MHz channel 

bandwidth. As the functional block diagram shown above, the chip includes optional input bias 

current compensation resistors, common-mode and differential-offset voltage adjustment, and a 

channel status output that indicates which of the two differential inputs is active. 

 

 
 

Figure 14: Breadboard based lock-in amplifier. 

 

The portable lock-in amplifier has been designed and tested on a breadboard. Two op-amps have 

been used to pre-amplifying the signal. A first order low pass filter has been used at the output of 
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the demodulator to reject the high frequency noise. A NI-Daq device has been used to sample 

filtered signal and convert the analog signal to digital for the further processing. 

 

 
 

Figure 15: The first design of the portable NDE system. 

 

The first prototype of the miniaturized NDE has been shown above. The coil array sensor is 

attaching on 3D CNC gantry during the scanning. A line scanning result has been shown below. 

 
Figure 16: 1D scan of the sample using the portable NDE system. 

 

As shown in the figure, the signal is very noisy and only the cracks with 2mm or 3 mm can be 

distinguished. These noises may be introduced due to the unstable jumper wire connection. 

Therefore, to reduce the jumper wire and improve scanning quality, a PCB that the embedded 

most function of the system has been designed and tested. 

1 mm 

crack 

2 mm 

crack 

3 mm 

crack 
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In order to have a better control of the system, a microcontroller unit (MCU) has been employed. 

As the flowchart shown below, MCU will act as a bridge between the sensing circuits and the 

computer.  The sensing circuits provide multi-channel scanning ability and convert the analog 

signal to digital signal.  The MCU collects the data through the I2C bus and pass the data to the 

computer. The computer will map the data to the corresponding location of the sample and 

estimate the size of the defect.  
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Figure 17: The flowchart of the communication between computer and microcontroller unit. 

 

 
 

Figure 18: Two steel plates with cracks at different depth.   
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Figure 19: Line scanning result of the two steel plates. 

 

To test the performance of the scanning, two steel plates have been placed side by side. Each of 

plates has 3 cracks with 0.2 mm width and different depths.  As shown in the figure above, all 

the cracks have been successfully detected. A better signal to noise ratio has been achieved 

comparing to the first prototype.  

 

Considerations of NDE Sensor Design: 

 

Many constraints need to be considered when designing the NDE sensing system for the robot. 

The sensor's footprint is limited by the design of robotic system as well as the complexity of 

testing structures. The allowable maximum power consumption of the entire system is 

constrained by the available power supply unit on the robot. There are also many environmental 

conditions that could affect the NDE results obtained from the robotic actuating and sensing. 

Such would add inevitable uncertainties towards the acquired data or restrict actuation access, in 

turn, lowering the fidelity and resolution of NDE data used for further damage assessment and 

analysis. To overcome these aforementioned challenges and obtain optimized sensing outcomes, 

the proposed NDE sensors were customized to fit in the robotic system and workspace 

environment for power plant boiler inspection. These optimizations lead to a lowcost, 

lightweight, non-contact, and simplified NDE setup.  

 

To achieve the optimized scanning performance, a parametric study of the coil design has been 

done using Ansys HFSS. The simulation studies focus on the sensor's sensitivity to the very 

narrow cracks (the width of the crack is less than 0.2 mm) on the boiler wall as well as the 

sensor’s scanning area. A sensor with better sensitivity to the interested defect will provide a 
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better signal-to-noise ratio and a sensor with larger scanning area will reduce the scanning time. 

Two identical coils are simulated with steel plates present on the top of the coil. The lift-off 

distance is 1 mm. A crack (0.1 mm × 15 mm) has been introduced to one of the steel plates. The 

parametric sweep study simulates different coil dimensions such as the line space, line width, 

and the number of turns.  

 

 
Figure 20: The simulation geometry model. Two identical coils are simulated to study the 

difference between the signal from the healthy region and the defective region. 

 

The sensor's sensitivity can be depicted by resonating frequency's magnitude difference when 

comparing the healthy and defective regions' scanning data. A general trend can be observed that 

as the number of turns increases, the sensitivity of the sensor decreases. However, there is a 

trade-off between the scanning area and the sensor's sensitivity. Therefore, a multi-channel eddy 

current array has been designed and employed, which allows for surface and subsurface anomaly 

detection while meeting the optimization requirements.  

 

 
 

Figure 21: The simulation results of the different dimensions’ coils on the healthy and defective 

samples. (a) The magnitudes change at the resonating frequency and (b) The Pareto front of 

maximizing the scanning area and the sensitivity of the scanning system. 
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1.2. Subtask 1.2: Signal Processing for Crack Profiling  

 

Signal processing techniques were implemented and tailored for robotic platform-based 

acquisition. Further, crack profiling methods were also built into the signal processing. 

Specifically, postprocessing and filtering methods required to eliminate the sensing noise, and 

learning-based crack profiling methods were developed. 

 

1.2.1. Postprocessing for Noise Removal 

 

A. Data Fusion for Noise Removal 

 

Data post-processing methods were studied to achieve a better signal to noise ratio. By 

combining images of various sources with different physical properties, pixel-level data fusion 

focus on revealing complementary or redundant information about the physical and mechanical 

characteristics of a material. In order to improve the accuracy of detection, a method that aim to 

extract all the perceptually important features from different original images has been developed.  

This data fusion method combines the information to form a fused image in such a way that all 

the key features from each input image are still perceivable.  

 

 
 

Figure 22: Flowchart of the data fusion method. 

 

A flowchart of the data fusion method has been shown above. After selecting the input data, 

discrete wavelet transform (DWT) will be employed to convert the raw data. DWT based image 

fusion consists of two steps: selection of the proper wavelet filters and level of decomposition 

using formulated parameter, and selection of the proper fusion criterion in wavelet sub band. It 

means that fusion is operated on wavelet domain level via DWT of multiple sources combined 

with fusion rule and fused image is reconstructed by inverse DWT (IDWT). This method fuse 

images at different frequencies from the eddy current sensor. 
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𝐼 = 𝑊−1[𝜑{𝑊(𝐼1) + 𝑊(𝐼2) + 𝑊(𝐼3) + ⋯ + 𝑊(𝐼𝑚)}] 
 

where 𝐼1, 𝐼2,…, 𝐼𝑚 are the 𝑚 images to fuse, 𝜑 denotes the fusion rule, and 𝑊and 𝑊−1 represent 

DWT and IDWT respectively. In order to achieve higher quality, wavelet filter, level of 

decomposition and corresponding fusion rule should be carefully selected.  

 

Energy risk factor is adopted to select appropriate filter. 𝐸𝑚𝑖𝑛 = min
𝑗

𝐸𝑎(𝑗). 𝐸𝑎(𝑗) is the energy of 

approximation coefficient at the 𝑗𝑡ℎ  level of the selected wavelet filter. The wavelet energy 

represents the percentage of energy corresponding to the approximation and the detail coefficients. 

𝐸𝑚𝑖𝑛 denotes the minimum energy of the wavelet approximation coefficients (WAC) which 

indicate that low-frequency information is removed after decomposition. It is used to filter out 

noise and other low-frequency components. 

 

Since useful information could be preserved in low frequencies mixed with noise, the maximized 

energy within the wavelet detail coefficients (WDCs) is considered. The energy of denoised 

image’s WDCs cannot be higher than the original raw image. Despite of having energy stored 

within the WDCs of the denoised image being closer to the energy stored within the WDCs of 

the raw image, more importance should be given to WDCs in higher frequencies. 

 

The A108 Steel Boiler Sample has been scanned using different kinds of sensors at different 

frequencies. The selected scanning area includes cracks with 200 μm and 400 μm width.  

 

 
 

Figure 23: The scanning area of the crack sample. 
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(a) 

 

  
(b) 
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(c) 

Figure 24: (a) Eddy current imaging at 30 KHz,(b) Eddy current imaging at 50 KHz,(c) GMR 

sensor imaging at 35 KHz. 

 
 

Figure 25: Data fusion result of scanning data at different frequencies. 

 

Two 1D plots have been shown below to have a better comparison between raw data and data 

fusion result.  From the figure, the fusion results show that with proper selection of wavelet and 

fusion procedure, reliability and SNR can be enhanced. 
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Figure 26: 1D plots that compare the raw data and data fusion result. The shading region 

indicates the location of sub-mm cracks. 

 

B. Sensing Reliability Improvement 

The following images show the testing samples and the 2D scanning result using the developed 

sensor in channel 0.   
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Figure 27: The 2D scanning results of the steel sample with different depth cracks. 

 

The scanning takes 1500 steps in the X direction with step size 0.1 mm and 20 steps in the Y 

direction with step size 1 mm. The lift-off distance is 0.5 mm.  

 

 

  
Figure 28: Schematic of the coil for the fast scanning. 

 

 
 

Figure 29: Specimens with a rough surface. 

 

More data within the unit distant will provide better resolution of the scanning. However, the 

sampling rate is limited by the hardware and can not be increased without constraints.  

Therefore, a multi-channel sensor has been employed in the system to cover more scanning areas 

without increase the scanning time in the current design.  In order to further reduce the scanning 

time, a bi-level sensor system is studied. The idea of this system is to use a large sensor to run a 
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fast scan and detect the presence of the defects. Then using a small sensor to run a precise scan 

and obtain the detailed information of the defects.  

 

A rectangular stretched coil has been simulated for the fast scanning. The size of the coil is 100 

mm x15mm, with 23 turns. The trace and spacing of the coil are 6 mil.  The coil has been placed 

on a steel plate with a crack on the surface. The model simulates the S11 signal when the defects 

are close to a different part of the coil. As shown in the Figure 28, the resonant frequency shifted 

when the defects present near a different section of the coil. The results indicate that the 

rectangular coil is able to detect the defects and also provide the estimated location information 

of the defects. 

 

To estimate the reliability of NDE systems, the parameters responsible for noise, such as that is 

due to specimens’ surface roughness the change of the lift-off distance, has been studied. Two 

specimens with the rough surface have been scanned to study the parameters responsible for 

noise,. As shown in the Figure 30, a line scan has been performed on the steel samples with rust 

and scratches on its surface.  

 

    
Figure 30: Specimens with a rough surface.  
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Figure 31: The line scanning signal of the steel plate with a polished area and the rusted area. 

 

For the plate sample, the scanning takes 1500 steps in the X direction with a step size of 0.1 mm. 

The lift-off distance is 1 mm. As shown in the Figure 31, the noise can be observed on an 

average 50Hz fluctuation due to the rough surface and other factors result in the signal frequency 

shift on both the polished area and the rusted area.  In this case, the rust does not result in the 

difference in the signal compared to the polished area. 

 

When the sensor is installed on a robot platform, the lift-off distance may change during the 

motion of the robot. Therefore, it is necessary to study the effect of the distance between the 

sensor and the sample. Two steel plate samples have been placed side by side and the lift-off 

distance from 1mm to 50 mm has been scanned.  

 
Figure 32: Steel samples with different depth of the cracks. 
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Figure 33: Line scanning of the steel plate at different liff-off distance. 

 

As shown in the Figure 33, a better contrast of healthy area and defect area can be observed 

when the sensor is closer to the sample. The signal is very similar when the lift-off distance is 

within 1-20 mm, which indicates a small vibration will not introduce too much noise. The signal 

decayed very fast when the lift-off distance is increased from 21 mm to 30 mm. Although the 

location of the defects can still be identified from the signal, a lot of information is lost. When 

the distance between the sensor and the sample is more the 31 mm, it would be hard to get any 

useful information from the sensor. 

 

1.2.2. Crack Profiling by Size Estimation 

 

It is very important to know the size of the cracks. In this project, the NDE scanning system on 

the robot will perform a 2D scanning of the sample. With proper data processing methods, the 

length and the width of the defects can be accurately detected. However, the depth information 

of the defects is not that straightforward. In order to have a better depth estimation, both 

experimental tests and numerical simulations have been studied. A numerical simulation model 

is developed using Ansys to study the S-parameter change when the sample with different depths 

of cracks. The model of a single coil is shown below. 
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Figure 34: Coil simulation model with adjustable parameter gap and width. 

 

A 20 X 20 X 5 (Unit: mm) sample with different depth of the cracks has been place on the top of 

the coil sensor as shown in Figure 34.  

 

 

 
 

Figure 35: The steel samples with different depth of cracks on the top of sensor. 
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Figure 36: S11 simulation results of crack depths from 1 mm to 5 mm. 

 

 
 

Figure 37: New sample design: A3(Q235) steel with 0.2 mm width at different depths. 

 

The pervious sample contains only through cracks. In order to study the actual performance of 

the sensor on different depths, the new sample with different depths of cracks have been 

fabricated. The material of the sample is Q235 steel. Three 0.2 mm width cracks with depth from 

1 to 3 mm have been introduced to sample 1. The cracks on sample 2 are with same width but 

the depths are 4, 4.5 and 5 mm respectively. The samples have been scanned using eddy current 

coil array sensor with 1 mm lift-off distance. As shown in the figure, the cracks with different 

depth can be easily distinguished. However, more study is still needed to get a good depth 

estimation from  the data.  
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Figure 38: Experiment setup with eddy current array sensor. 

 

 
 

 
 

Figure 39: 2D and 1D plot of the scanning imaging. 
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A. Regression Model for Crack Size Profiling 

 

A model is developed which simply mapping the inputs (signal from the sensor) to outputs 

(information of the cracks). In order to study the relationship between the geometry of the cracks 

and the raw signal, the steel plates with cracks of different depth have been placed side by side 

and scanned multiple times with same setup.  

 

Figure 40: Extracting the crack information from raw data. 

 

 
 

Figure 41: The steel sample setup and the schematic. 

 

Each of plates has 3 cracks with 0.2 mm width and different depths (1mm, 2mm, and 3mm for 

the first plate; 4mm, 4.5mm, and 5 mm for the second plate). The gap between two plates has 

been considered as a through crack with 8 mm depth. This setup using two channels (Ch0 and 

Ch1) with same coil but scanning at different lift off distance (1mm and 1.5mm).  
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A model is trained to learn relationships between the inputs and outputs from the scanning 

dataset. During training the model is given both the features of the signal and the labels of the 

cracks and then create the link from the former to the latter. After training, the model is 

evaluated on a testing data set, where the features are given, and it makes predictions. The 

performance of the model is given by comparing the predictions with the known labels to 

calculate accuracy.  

 

The raw data is obtained and then used to estimate the actual depth of the cracks. Considering the 

limited number of data points, the model has first start with simplest linear regression and then 

increase the complexities to prevent the overfitting.  

 

 
 

Figure 42: The prediction values and the errors using linear regression. 

 

A huge discrepancy can be seen between the prediction value and the actual depth. The error rate 

of the estimation is very high which means this model is underfitted with low variance and high 

bias. Therefore, the polynomial degree of the model should increase which will offer a higher 

flexibility and a higher power to allow the model to hit as more data points. 

 

 
 

Figure 43: The prediction values and the errors using polynomial regression. 
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As shown in the figure, a huge improve can be seen that the errors of the prediction are much 

less. To further improve the prediction accuracy, more training data sets are necessary. The 

width information of the cracks is also important and the relationship between the raw data and 

the crack width has also been studied.  

 
 

Figure 44: Scanning path with different angles and the scanning results. 

 

The cracks of the current steel plate samples in the Lab are all having same width. In order to get 

different width information for the prediction, several scans have been performed along different 

angle of the sample.  As shown in the figure, the paths parallel and have a 15⁰, 30⁰, and 45⁰ angle 

with edge have been scanned. The full width at half maximum (minimum) of the signal 

waveform has been as the feature parameter to calculate the actual width.  

 

 
 

Figure 45: Error of the width estimation. 

 

More training data sets are necessary to improve the accuracy of the prediction model. Due to the 

limited access to the Lab and scanning system, several simulation models have been designed 

and analyzed to provide a better understanding of the information extraction.  
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In order to study the relationship between the width of the crack and the signal, a steel plate with 

a triangle shape through hole has been simulated.  

 

 
 

Figure 46: Simulation model for the width information study. 

 

As shown in the figure, the size of the plate is 90 mm x 40 mm x 5 mm. The maximum width of 

the crack is 2 mm and the length of the crack is 80 mm. A coil sensor has been placed 1 mm 

away from the plate surface and moves along the positive X-direction.  

 
 

Figure 47: Simulation results for the width information study. 

 

The S parameter simulation results are shown above. By extracting the magnitude of the resonant 

peak, a plot of the signal response at different location is shown above. A monotonically trend 

can be observed in the middle of the waveform as expected. The blue shaded parts are the data 

collected from the edge of the crack.  

 

A similar model which studies the effect of the crack depth is shown below. A wedge-shaped 

notch with the depth changing from 5 mm to 0 mm. The simulation results of the sensor placed 

at different location of the notch are shown below. 

Scanning direction 
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Figure 48: Simulation model for the depth information study. 

 

During the scanning, the length of the cracks will also affect the signal. To study the relationship 

between the length of the crack and the signal, a steel plate with multiple cracks through hole has 

been simulated. These cracks are in same width and the length of them are from 20mm to 2 mm. 
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Figure 49: Simulation model and result for the length information study. 

 

The model simulated signal when placing coil sensor on the top of each crack respectively. The 

plots of S11 parameter and the minimum magnitude of the resonant peak are shown above.  

 

By clearing (removing some calculation error from the simulation) and organizing the simulation 

data from the models, several training data sets have been crated. An estimation error histogram 

of the new input data is shown below.  

 
Figure 50: Estimation error for the simulation result. 

 

The small circular coil has the advantage when s Scanning the shape of defect since it is able to 

provide a better resolution. When detecting the present of defect, a sensor with larger size will 

allow a better scanning speed since it cover larger scanning area. In this work, a coil with 

rectangular shape has also been studied.  
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Figure 51: Simulation model and results of the rectangular shaped coil. 

 

A crack with 0.1 mm width has been introduced to the steel plate in the model. The response 

signal of a rectangular coil has been simulated. The sensor has been placed at three different 

locations: health region, the side of the defect and on the top of the defect. When the sensor is on 

the top on the crack, both amplitude and phase change of the signal can be observed. The 

simulation results show the detecting ability of large rectangular coil and its potential to work as 

a complementary sensor of the circular coil.  

 

B. Learning-Based Methods for Crack Depth Estimation 

 

The raw signal obtained from sensor reflects the properties of the sample under test. However, 

the robot system needs to know the shape and location information of the cracks to perform the 

fixing procedure. In the previous work, several regression methods have been studied to 

extracting the cracks information from the raw signal. In order to improve the estimation 

accuracy, a machine learning approach has been studied in this work.  

 

In recent years, more and more Neural Networks models have been developed and shown theirs 

promising potential in many areas. Recurrent Neural Networks architectures has shown its 

effective in dealing with sequential data like language recognition & processing[27-29], words 

sentiment analysis [30, 31], and signal processing. Several promising results and performance 

have been shown when Recurrent Neural Networks processing the long sequence of data. 
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In this project, the sensor on the robot will keep obtaining data of the scanning sample and a 

model that able to track the change of the signal will help the system to provide more accurate 

information of the defect on the sample. 

 

 
 

Figure 52: Flow chart of the proposed machine learning approach. 

 

In order to achieve a better accuracy, the training time is usually very long for the large database 

with the data have complex internal structures which not only result in computational expense 

but also means that more parameters are to be learned and more structures need to be tuned. In 

order to reduce complexity of the model, some simplified methods are becoming more and more 

popular. The simple RNN train a black-box hidden state of their sequential data input. And the 

recurrent hidden state can be express [32]: 

 

𝒉𝒕 = 𝒈(𝑾𝒙𝒕 + 𝑼𝒉𝒕−𝟏 + 𝒃) 

 

Bengio et al. [33] showed that the is difficult to training the model to remember the long-term 

relationship using this simple RNN. The long short-term memory (LSTM) model and its variants 

have been proposed by Hochreiter and Schmidhuber [34]. The standard LSTM is having 3 gates 

and 2 hidden states. 

Machine 
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𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)                                                  

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)                                                 

          𝑐𝑡 = 𝑓𝑡☉𝑐𝑡−1 + 𝑖𝑡☉𝑐̃𝑡                                                         
 𝑐̃𝑡 = 𝑔(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)                                                

 

One of the most famous variants of LSTM is GRU which provide desired accuracy with less 

structure.   

 

ℎ𝑡 = (1 − 𝑧𝑡)☉ℎ𝑡−1 + 𝑧𝑡☉ℎ̃𝑡                                             

ℎ̃𝑡 = 𝑔(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡☉ℎ𝑡−1) + 𝑏ℎ)                                      

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)                                             

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)                                             

 

 

Different neural network methods have been designed and the tested to find the optimized 

structure. The networks model has been trained by a Python code which employ the Keras 

library with Theano as a backend. The GRU imported from Keras has been modified to GRU3. 

ReLU activation function is selected for all the databases.  

 

In order to generate the data for training, a HFSS model has been designed and simulated. As 

shown in the figure, a steel plate with a crack at the center has been created as the sample. The 

size of the plate is 120 x 70 x 10 (mm) and the length of the crack is 50 (mm). The depth and the 

wide of the crack have been set as variables for the parametric study.  

 

 
 

Figure 53: Schematic the steel plate model. 
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Figure 54: Simulation results of the cracks with different depth. 

 

The training set of depth information have been generating from 0.1 mm to 5 mm with o.1 mm 

step size. The sensor has been placed on the top of the crack.   

 

The data generated from the simulation needs to be convert to a dataset which includes features 

and labels to define the problem. The output labels in this problem are the actual depth/widths of 

the cracks. There are multiple parameters that can be used as the features, such as the resonant 

frequency, minimum magnitude, and phase change at the specific frequency. In this study, the 

model has been trained start from a simplified case: the first three resonant frequencies have 

been used as the input and the regression has been considered as a linear function. Therefore, the 

relationship of input and output can be written as: 

 

𝑦 = 𝑓(𝑥) =  𝑤1𝑥𝑓𝑟𝑒1 + 𝑤2𝑥𝑓𝑟𝑒2 + 𝑤3𝑥𝑓𝑟𝑒3 + 𝑏𝑖𝑎𝑠 

 

The goal is to minimize the loss function which can be express as: 

 

𝐿𝑜𝑠𝑠 =  ∑|𝑤𝑥𝑖 + 𝑏𝑖𝑎𝑠 − 𝑦𝑖|

𝑛

𝑖=1

 

 

The estimation results are shown below: 
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Figure 55: Depth estimation for the training set and testing set. 

 

To further improve the accuracy of the model, more scanning data have been generated with 

different combination of depth and width of the crack.  

 

 

 
 

Figure 56: Simulation results of the cracks with different depth and width. 

 

The training and testing accuracy has been shown in the figures below. As the training process 

repeated, the training accuracy shows an increasing trend while the testing accuracy is 

fluctuating. These might due to the parameters selection and also the size of the database of the 

model which result in an overfitted.  
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Figure 57: Training/testing accuracy and loss of GRU3 with different number of epochs. 

 

 
 

Figure 58: Training/testing accuracy and loss of LSTM with different number of epochs. 

 

2. Task 2: Repair Device Design and Control  

 
A repair tool based on friction stir welding (FSW), one of the solid-state repair methods, was 

designed. By augmenting FSW with an induction heating unit, the demand for spindle torque and 

forging loads can be significantly reduced, enabling FSW to be used as a compact repair tool.  

 
2.1. Subtask 2.1: Integrated IHA-FSW System 

 

2.1.1. Literature Review 

 

A. FSW Baseline Parameters 
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First of all, literature search on typical FSW parameters without involving any preheating 

methods for various grades of steels were performed to establish the baseline welding parameters 

for the repair of boiler furnish wall steel and identify the required force as a function of welding 

parameters. Tables 2-4 below summarize the findings related to stainless steels (Table 2) [34-

43], low carbon steels (Table 3) [44-48], and others (Table 4) [49-52].  

 

Table 2: The FSW parameters for various grades of stainless steels.  

 

Steel 

grades 

Tool 

material 

Pin 

length 

(mm) 

Pin 

diameter 

(mm) 

Shoulder 

diameter 

(mm) 

Plunge 

depth 

(mm) 

Tilt 

angle 

(°) 

Rotation  

speed  

(r/min) 

Travel 

speed 

(mm/min) 

Vertical 

force 

(kN) 

304 [34] WC* 2.3 3.5 20 2.3 1.45 1000 63  

304 [35] 
PCBN*

* 
    3.5 550 78  

304 [36] 
tungste

n alloy 
  19   

300 

500 
102 31 

304 [37]  PCBN  10 15 2.4 0 
500 120 16 

800 120 14 

304 [38]    6 25   300 51 25 

304 [39]  WC 2.75 7 

12 

0.4 1.5 

285 53 10 

14 355 66 10 

16 450 84 10 

304 [40]  WC-Co 2.8 5   2 1180 47.5 7 

430 [41]  WC-Co pinless   0.2 2 900 96  

430 [42]  WC 2.5 5.7 16  0 1120 125 3.5 

410 [43]  PCBN 3.7 9.2 25  0 
450 60 20 

800 60 22 

 

*WC: tungsten carbide; **PCBN: polycrystalline cubic boron nitride.  

 

Table 3: The FSW parameters for low carbon steels.  

 

Steel grades 
Tool 

material 

Pin 

length 

(mm) 

Pin 

diamete

r (mm) 

Shoulder 

diameter 

(mm) 

Tilt 

angle 

(°) 

Rotation 

speed 

(r/min) 

Travel speed 

(mm/min) 

Vertic

al 

force 

(kN) 

AISI 1006 [44] WC-based 2    1200 60  

1018 steel [45] W-based 6.22  19 0 450-650 25.2-100.8  

IF steel [46] WC 1.4 4 12 3 400 100  

1012 steel [46] WC 1.4 4 12 3 400 100  

C–Mn 1018 

steel [47] 
W–0.4Re 6.22 7.9, 9.0 

15, 18, 

21, 24 
0 300-900 25.2-126 

11.6-

29.8 

AISI 1018 [48]  Tungsten 6.22 7.9 19 0 450 25.2 5 
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Table 4: The FSW parameters for other kinds of steels. 

 

Steel 

grades 

Tool 

material 

Pin 

length 

(mm) 

Pin 

diameter 

(mm) 

Shoulder 

diameter 

(mm) 

Plunge 

depth 

(mm) 

Tilt 

angle 

(°) 

Rotatio

n speed 

(r/min) 

Travel 

speed 

(mm/min) 

Vertical 

force 

(kN) 

X-65 [49]  PCBN 5.6     500-600 
101.6-

152.4 
28.913 

1035 [46]  WC 1.4 4 12  3 400 100  

1070 [50]  WC 1.5 4 12  3 800 400  

TRIP [51]  WC 1.9   2 0 1350 15 5 

DH36 [52] W-Re 5.7  36.8 2.5 0 500 250 40 

 

B.  FSW Force Requirements 

 

Figure 59(a) below illustrates the vertical force profile corresponding to the FSW process at 

different stages [43], including (1) plunging, (2) traveling, and (3) tool retracting. Figure 59(b) 

illustrates that the plunging step requires the highest axial force, i.e., vertical force, during the 

welding process.  

 

Based on the limited data available, it was found out that the vertical force is generally the 

largest forced experienced by the FSW tool. As demonstrated in Table 5 and Figure 60, the 

longitudinal force (Fx) is typically less than 20% of the vertical force (Fz) [53]. Also, among the 

three FSW parameters including travel speed, rotation speed and the pitch value, the FSW tool 

travel speed seems to be the dominant factor that determines the force requirements. On the other 

hand, J. H. Record et al. [54] performed a comprehensive study on the effect of all sorts of 

welding parameters on vertical force during friction stir welding process, as summarized in 

Figure 61. It was found out that plunge depth is the most critical factor that determines the 

vertical force, while rotation speed is the least. 

 

Table 5: The FSW parameters for X80M steel. 

 
Run No. v(mm/min) ω(rpm) v/ω Fx(N) Fz(N) Fx/Fz 

1 100 500 0.20 3581 29778 0.12 

2 100 350 0.28 3661 32848 0.11 

3 100 300 0.33 3877 31893 0.12 

4 80 400 0.20 2120 25864 0.08 

5 80 300 0.26 2251 26352 0.09 

6 120 400 0.30 3611 28242 0.13 

7 120 300 0.40 4865 35798 0.136 

 

v-Travel speed; ω-Rotational speed; Fx-Longitudinal force; Fz-Vertical force. 
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Figure 59: (a) Schematic drawing of the FSW process, and (b)the corresponding vertical force. 

 

 
 

Figure 60: Fx/Fz as a function of v/ω for FSW steel. 
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Figure 61: Pareto charts of effects of experimental inputs on the vertical force. 

 

In order to maximize the mobility of the repair robot, a significant force/power reduction is 

desired (i.e., controlled within 3kN for a plunge/repair depth up to 3mm), especially at the initial 

plunging stage. Previous studies have demonstrated a reduction of ~30% in vertical forces for 

FSW of steels with the aid of induction-heating (IH) during the traveling stage, as tabulated in 

Table 6 [55, 56]. However, little to no literature can be found in optimization of the preheating 

parameters to reduce the force requirement in plunging stage to/near the level of traveling stage, 

which will the one of objectives in this work.   

 

Table 6: The FSW parameters with induction heating (IH) for steels. 

 

Steel 
Tool 

material 

Pin 

length 

(mm) 

Pin 

Dia. 

(mm) 

Shoulder 

diameter 

(mm) 

Tilt 

angle 

(°) 

Rotatio

n speed 

(r/min) 

Travel 

speed 

(mm/min) 

Power of 

induction 

coil (kW) 

Vertical 

force 

without 

IH 

(kN) 

Vertical 

force 

with IH 

(kN) 

ASTM 

A131 [55]  
PCBN 5 8.9 23.7 0 500 50 40 36 25 

Super 

duplex 

stainless 

[56]  

PCBN 5 8.9 23.7 0 300 100 40 25 18 

 

 

2.1.2. IHA-FSW System Design 

 

A. FSW Trials with and without Preheating  
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Two sets of FSW experiments were performed using a pin length of 2.3mm, with and without 

preheating using a tungsten inert gas (TIG) welding torch. The effectiveness of force reduction 

by TIG preheating was evaluated preliminarily based on the recorded vertical force values.   

 

Base Material for FSW: 

 

Low carbon steel grade A108 was used for all the experiments. Note that the boiler water wall 

material is A106, but A106 is only available in pipe shape. Therefore, at this stage, we chose 

A108 in plate format instead for initial welding parameter evaluations. The geometric 

dimensions of A108 steel plates are 0.5inch thick, eight-inch wide and one-feet long. The 

chemical composition (wt%) of A108 steel is listed in Table 7.  

 

Table 7 - Chemical Composition (in wt%) of A108 steel. 

 

Steel grade C Mn Si P S 

A108 0.13-0.20 0.60-0.90 0.15-0.30 0.035 0.035 

 

Experimental Procedure: 

 

For FSW experiments without a preheating source, in order to reduce the tool wear, a 2.3mm 

deep hole with a diameter of 5mm was drilled on the top surface of the steel plate, which serves 

as the initial plunging hole. The geometry of the FSW tool is shown in Figure 62. Note that 

different pin length will be used in future study, including 1mm and 0mm. 

 

 
 

Figure 62: The schematic diagram of the tool geometric dimensions. 

 



58 

 
 

Figure 63: The physical diagram of the new tool holder. 

 

In the first set of experiments including six runs, a tool holder without a cooling system was 

used. In all later experiments, a new tool holder with a proper cooling system was used to ensure 

safer long runs at high temperatures introduced by the FSW of steel plates. As shown in Figure 

63, the tool holder is equipped with a cooling system and argon shielding gas was used to 

prevent oxidation in the steel plates during FSW. The parameters for FSW without and the 

corresponding vertical force during the traveling stage are tabulated in the Table 8 and Table 9. 

Since the welding parameters were varied to reveal their effects on the vertical forces, the weld 

surface quality is not yet optimized.  

 

Table 8: Parameters for FSW without preheating before changing the tool holder. 

 

Run 

No. 

Rotation 

speed 

(rpm) 

Travel 

speed 

(mm/s) 

Plunge 

Depth 

(mm) 

Tool 

materials 

Pin 

length 

(mm) 

Shoulder 

diameter 

(mm) 

Tilt 

angle 

(°) 

Vertical 

Force 

(kN) 

1 400 50 1.00 W-Re 2.3 10 2.5 12.1 

2 400 40 0.69 W-Re 2.3 10 2.5 8.5 

3 400 40 0.59 W-Re 2.3 10 2.5 6.7 

4 400 60 0.55 W-Re 2.3 10 2.5 5.7 

5 400 60 0.34 W-Re 2.3 10 2.5 3.5 

6 400 80 0.31 W-Re 2.3 10 2.5 3.1 

 

Table 9: Parameters for FSW without preheating after changing the tool holder. 
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Run 

No. 

Rotation 

speed 

(rpm) 

Travel 

speed 

(mm/s) 

Plunge 

Depth 

(mm) 

Tool 

materials 

Pin 

length 

(mm) 

Shoulder 

diameter 

(mm) 

Tilt 

angle 

(°) 

Vertical 

Force 

(kN) 

7 400 80 0.52 W-Re 2.3 10 2.5 5.2 

8 400 80 0.45 W-Re 2.3 10 2.5 4.9 

9 400 80 0.60 W-Re 2.3 10 2.5 5.8 

 

 

Figure 64 illustrates a schematic drawing of the FSW process assisted by preheating. The relative 

distance between the welding tool and preheating source and the heat input introduced by 

preheating will be optimized through finite element modeling in future. Currently, a Miller TIG 

welding machine was used as the preheating source. As shown in Figure 65, this preheating unit 

was equipped with a cooling system and argon shielding gas. The TIG welding torch was fixed 

in front of the FSW tool, as shown in Figure 65. The relative distance between the welding torch 

and FSW tool head can be adjusted along all three dimensions. As an initial trial, the arcing 

height and distance between the TIG torch and the rotating tool were selected to be 4mm and 

30mm, respectively. In order to avoid overheating during welding, the experiment was firstly 

carried out at relatively low TIG current of 25A. The TIG welding machine was firstly turned on, 

the welding torch was arced by the arc initiation of a carbon rod. Once the arc became stable, the 

pin rotating at 400 rpm plunged into the pre-drilled hole and stayed for five seconds to generate 

sufficient heat to soften the base metal. Then the pin began to travel at a set speed. All 

experiments were carried out under argon shielding gas. Welding parameters used in this set of 

experiments are summarized in Table 10. 

 

 

 
 

Figure 64: Schematic diagram of friction stir welding process with preheating: (a) perspective 

view and (b) top view. 

 

Preheating(a)
(b)
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Figure 65: The TIG preheating setup. 
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Figure 66: Mounting fixture for TIG torch in front of the FSW tool head. 

 

Table 10: Experimental parameters for FSW with preheating after changing the tool holder. 

 

Run 

No. 

Rotation 

speed 

(rpm) 

Travel 

speed 

(mm/s) 

TIG 

current 

(A) 

Plunge 

Depth 

(mm) 

Tool 

materials 

Pin 

length 

(mm) 

Shoulder 

diameter 

(mm) 

Tilt 

angle 

(°) 

Vertical 

Force 

(kN) 

10 400 80 25 0.55 W-Re 2.3 10 2.5 3.7 

11 400 100 25 0.52 W-Re 2.3 10 2.5 3.9 

12 400 100 20 0.50 W-Re 2.3 10 2.5 4.3 

 

Initial Results and Discussion: 

 

In the FSW welding experiments without preheating, keeping the travel speed and rotational 

speed constant, the effect of plunge depth on the vertical force was revealed by manually 

adjusting the plunge depth. Comparison of Sample No. 4 vs No.10, and Sample No. 7 vs No.11 

were also made, to partly reveal the effect of preheating on force reduction as an initial 

evaluation, since each pair has the same plunge depth. As discussed in Section 1.2, plunge depth 

is the determining factor for vertical force.    

 

Figure 67 summarizes the variation of vertical force as a function of the plunge depth in the first 

six experiments using the tool holder without a cooling system, and Figure 68 for these using the 

new tool holder with a cooling system. It can be seen that without preheating, the vertical force 

decreased with the decreasing plunge depth, although the travel speed was constantly adjusted to 

identify the optimal parameters for best weld appearance. The minimum vertical force was about 

3.1kN. 
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Furthermore, by introducing TIG preheating, the vertical force of No. 10 and 11 decreased by 

about 25-30% in comparison with that of No. 4 and 7, which is in good agreement with the 

observations in literature [55, 56]. It should be noted that with the involvement of preheating, the 

plunge depth does not seem to be the most influential factor on the vertical force anymore, as 

seen in Table 10. This could be possibly caused by a deeper penetration of the TIG torch than the 

FSW tool pin. Instead, the influence of travel speed seems to be more significant. More 

systematic studies will be performed to provide more insights for such observation. 

 
Figure 67: The variation of vertical force with the plunge depth for the No.1-6 and 10 

experiments. 

 
Figure 68: The variation of vertical force with the plunge depth using the tool holder with a 

cooling system 



63 

 

The set of experiments used pre-drilled holes to minimize tool wear, which required a larger 

plunge depth to maintain a defect-free weld. In future work, the pre-drilled holes will be 

eliminated to improve the weld surface quality, reduce plunge depth, and thus further reduce the 

vertical force.   

 

B. Heat Analytical Modeling during FSW Process 

 

A large amount of FSW parameters for various types of steel had already been obtained from the 

literature review and the experimental studies of this project. However, the experimental 

conditions for each study are different, so the collected parameters could only be used for 

specific case study. Therefore, it is necessary to understand the relation between FSW parameters 

(including rotational speed, travel speed, pin and shoulder geometry, preheating etc.) and power 

requirement (e.g., torque and vertical force), and more importantly, establish expressions that can 

connect all the inputs and outputs. The established correlation will provide guidance for the 

selection and optimization of welding parameters and predict the required power. 

 

By establishing a heat analytical model, the input (e.g., rotational speed, travel speed, tool 

geometry etc.) and output parameters (e.g., vertical force) are well connected. By comparing the 

experimental results with the calculated results using the model, it is found that this analytical 

model has reasonable reliability. The stand construction was also successfully completed. 

 

B.1. The total heat generation of the tool  

 

We first build the analytical model of steady-state during FSW process. The total heat generation 

of the tool during the steady-state contains the heat generation of the shoulder, the pin side and 

pin head, as expressed below: 

 

𝑄𝑡𝑜𝑜𝑙 = 𝑄𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 + 𝑄𝑝𝑖𝑛_𝑠𝑖𝑑𝑒 + 𝑄𝑝𝑖𝑛_𝑏𝑜𝑡 

 

where Qtool is the total frictional heat generation of the welding process between workpiece and 

tool surface profile, Qshoulder, Qpin_side and Qpin_bot are the heat generations from shoulder bottom 

surface, pin side and pin bottom surfaces, respectively. 

 

Heat generation of shoulder: 

 

Figure 69(a) shows the bottom view of the shoulder, which is the ring region between R2 and R1. 

It is assumed that the vertical force is applied uniformly to the shoulder and does not change with 

the radius r1. In this figure, r1 is the radius of any rings on shoulder bottom surface,  and dr1 is 

the infinite small radius increase from this ring; (b) Side view of the tool., r2 is the radius of 

micro-circular truncated cone in side surface, ds is the side length of the micro-circular truncated 

cone, dh is the vertical length of the micro-circular truncated cone, h is the distance between the 

micro-circular truncated cone, H is the pin length, and  𝜶 is the angle between pin side and 

vertical direction. 
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Figure 69: Schematic diagram of the tool: (a) Bottom view of the tool. R1, R2 and R3 are the 

radius of shoulder bottom surface, pin top surface and pin bottom surface respectively.  

 

The frictional force on the micro-ring with radius r1 and width dr1 is [57]:  

 

𝑑𝑓 = 𝜇𝐹 = 𝜇𝑃𝑑𝐴 = 𝜇𝑃 ∙ 2𝜋𝑟1𝑑𝑟1 

 

where 𝜇 is the friction coefficient (𝜇 = 0.4) [58], P is the vertical pressure(Pa), dA is the area of 

the micro-ring (m2), r1 is the radius of the micro-ring (m), dr1 is the width of the micro-ring (m), 

and df is the frictional force (N). Thus, the torque 𝑑𝑀 (N∙m) on micro-ring can be written as [59]:  

 

𝑑𝑀 = 𝑟1𝑑𝑓 = 2𝜋𝑃𝜇𝑟1
2𝑑𝑟1 

 

The total torque of the shoulder Mshoulder (N∙m) is then obtained by integrating 𝑑𝑀: 

 

𝑀𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 = ∫ 𝑑𝑀 = ∫ 2𝜋𝑃𝜇𝑟1
2𝑑𝑟1 =

2𝜋𝜇𝑃(𝑅1
3 − 𝑅2

3)

3

𝑅1

𝑅2

𝑅1

𝑅2

 

 

Heat generation of the shoulder in unit time qshoulder (J/s) can be obtained by multiplying angular 

velocity 𝜔 and torque [60, 61]: 

𝑞𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 = 𝜔𝑀𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 =
2𝜋𝜔𝜇𝑃(𝑅1

3 − 𝑅2
3)

3
 

 

Assuming the rotating tool travel forward a micro-distance dl (m) at a certain speed v (m/s), the 

heat generation from the tool shoulder during this time period can be written as: 

 

𝑄𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 = 𝑞𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 ×
𝑑𝑙

𝑣
=

2𝜋𝜔𝜇𝑃(𝑅1
3 − 𝑅2

3)

3
×

𝑑𝑙

𝑣
 

 

Heat generation of the pin side: 
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The shape pin side is a circular truncated cone, whose cone angle is 2𝛼, where 𝛼 is the angle 

between pin side and vertical direction (°), As shown in Figure 69(b). The side area of the micro-

circular truncated cone dA is: 

 

𝑑𝐴 = 2𝜋𝑟2𝑑𝑠 

 

where r2 (m) and ds (m) are radius and side length of the micro-circular truncated cone, 

respectively. ds can be written as: 

 

𝑑𝑠 =
𝑑ℎ

cos 𝛼
 

𝑟2 = 𝑅3 + ℎ tan 𝛼 

 

where dh is the vertical length of the micro-circular truncated cone (m), R3 is the radius of the pin 

bottom surface (m), h is the distance between the micro-circular truncated cone and the pin head 

(m). Then, side area of micro-circular truncated cone dA is:  

 

𝑑𝐴 =
2𝜋(𝑅3 + ℎ 𝑡𝑎𝑛 𝛼)𝑑ℎ

cos 𝛼
 

 

The side area Aside (m
2) of the pin can be integrated as: 

 

𝐴𝑠𝑖𝑑𝑒 = ∫
2𝜋(𝑅3 + ℎ tan 𝛼)

cos 𝛼
𝑑ℎ

𝐻

0

=
2𝜋𝑅3𝐻

cos 𝛼
+

2𝜋 tan 𝛼

cos 𝛼
∙

𝐻2

2
 

 

In Figure 69(b), the pressure on the side and bottom of the pin, and the bottom of the shoulder 

are all assumed to be P1. The balance of the forces in the vertical direction is as follows: 

 

𝑃1𝜋𝑅3
2 + 𝑃1𝜋(𝑅1

2 − 𝑅2
2) + 𝑃1𝐴𝑠𝑖𝑑𝑒 sin 𝛼 = 𝑃𝜋𝑅2

2 

 

where P is the pressure applied to the tool (Pa). It turns out that 𝑃1 = 𝑃.  

 

The frictional force acting on the micro-circular truncated cone is [57]:  

 

𝑑𝑓 = 𝜇𝑃1𝑑𝐴 = 𝜇𝑃𝑑𝐴 

 

Then the torque on micro-circular truncated cone dM  becomes [59]:  

 

𝑑𝑀 = 𝑟2𝑑𝑓 =
2𝜋𝜇𝑃 tan(𝑅3 + ℎ tan 𝛼)2𝑑ℎ

cos 𝛼
 

 

And the total torque of the pin side Mpin_side (N∙m) can be integrated as: 

 

𝑀𝑝𝑖𝑛𝑠𝑖𝑑𝑒
= ∫ 𝑑𝑀

𝐻

0

= ∫
2𝜋𝜇𝑃 tan(𝑅3 + ℎ tan 𝛼)2𝑑ℎ

cos 𝛼

𝐻

0
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=
2𝜋𝜇𝑃𝐻

3 cos 𝛼
(3𝑅3

2 + 3𝑅3𝐻 𝑡𝑎𝑛 𝛼 + 𝐻2tan2𝛼) 

 

So the heat generation of the pin side qpin_side in unit time is [60, 61]:  

 

𝑞𝑝𝑖𝑛_𝑠𝑖𝑑𝑒 = 𝜔𝑀𝑝𝑖𝑛_𝑠𝑖𝑑𝑒 =
2𝜋𝜇𝜔𝑃𝐻

3cos 𝛼
(3𝑅3

2 + 3𝑅3𝐻 tan 𝛼 + 𝐻2tan2𝛼) =
2𝜋𝜔𝜇𝑃(𝑅2

3 − 𝑅3
3)

3 sin 𝛼
 

 

where 𝜔 is angular velocity of the tool (rad/s). 

 

Therefore, when the rotating tool travel forward a micro-distance dl (m) at a certain speed v 

(m/s), the total heat generation from the pin side during this time period will be 

 

𝑄𝑝𝑖𝑛_𝑠𝑖𝑑𝑒 = 𝑞𝑝𝑖𝑛_𝑠𝑖𝑑𝑒 ×
𝑑𝑙

𝑣
=

2𝜋𝜔𝜇𝑃(𝑅2
3 − 𝑅3

3)

3 𝑠𝑖𝑛 𝛼
×

𝑑𝑙

𝑣
 

 

 

Heat generation of the pin head:  

 

 
 

Figure 70: Schematic diagram of the pin bottom surface. 

 

Similar to the bottom surface of shoulder, the heat generation of the bottom surface of pin can be 

analyzed as follow. The frictional force df (N) on the micro-ring with radius r3 and width dr3 is 

[57]:  

𝑑𝑓 = 𝜇𝐹 = 𝜇𝑃𝑑𝐴 = 𝜇𝑃 ∙ 2𝜋𝑟3𝑑𝑟3 

 

where 𝜇 is the friction coefficient, P is the vertical pressure stress (Pa), dA is the area of the 

micro-ring (m2), r3 is the radius of the micro-ring (m), and dr3 is the width of the micro-ring (m). 

 

Thus, the torque on micro-ring 𝑑𝑀 (N∙m) is [59]:  

 

𝑑𝑀 = 𝑟3𝑑𝑓 = 2𝜋𝑃𝜇𝑟3
2𝑑𝑟3 

 

The torque of the pin bottom Mpin_bot (N∙m) is integrating as: 
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𝑀𝑝𝑖𝑛_𝑏𝑜𝑡 = ∫ 𝑑𝑀 = ∫ 2𝜋𝑃𝜇𝑟3
2𝑑𝑟3 =

2𝜋𝜇𝑃𝑅3
3

3

𝑅1

𝑅2

𝑅1

𝑅2

 

 

The heat generation of the pin bottom in unit time can be obtained by multiplying angular 

velocity by torque [60, 61]: 

𝑞𝑝𝑖𝑛_𝑏𝑜𝑡 = 𝜔𝑀𝑝𝑖𝑛_𝑏𝑜𝑡 =
2𝜋𝜔𝜇𝑃𝑅3

3

3
 

 

When the rotating tool travel forward a micro-distance dl (m) at a certain speed v (m/s), the heat 

generation from the pin bottom surface during this time period will be: 

 

𝑄𝑝𝑖𝑛_𝑏𝑜𝑡 = 𝑞𝑝𝑖𝑛_𝑏𝑜𝑡 ×
𝑑𝑙

𝑣
=

2𝜋𝜔𝜇𝑃𝑅3
3

3
×

𝑑𝑙

𝑣
 

 

To sum up, the total heat generation Qtool during the time period of dl/v is: 

 

𝑄𝑡𝑜𝑜𝑙 = (
2𝜋𝜔𝜇𝑃(𝑅2

3 − 𝑅3
3)

3 sin 𝛼
+

2𝜋𝜔𝜇𝑃𝑅3
3

3
+

2𝜋𝜔𝜇𝑃(𝑅1
3 − 𝑅2

3)

3
) ×

𝑑𝑙

𝑣
 

 

B.2. Heat input in the stir zone 

 

The heat required to raise a homogeneous substance to a certain temperature is [62]:  

 

∆𝑄 = 𝐶𝑝 × 𝑚 × ∆𝑇 

 

where ∆𝑄 (J) is the amount of heat needed to uniformly raise the temperature of the substance by 

∆𝑇 (K), Cp (J·kg-1·K-1) is the specific heat capacity of the substance, m (kg) is the mass of the 

substance. 

 

Assuming the rotating tool travel forward an infinite small distance dl (m), the temperature 

increase within the distance dl is dT (K), and the temperature gradient is dT/dl (K/m), the heat 

input 𝑄𝑖𝑛𝑝𝑢𝑡 (J) into the stir zone is: 

 

𝑄𝑖𝑛𝑝𝑢𝑡 = 𝐶𝑝 × 𝑚 × (
𝑑𝑇

𝑑𝑙
) × 𝑑𝑙 

 

Take low carbon steel as an example, the heat capacity and density of low carbon steel are as 

follows [58, 63]: For 𝑇 < 1073𝐾,  𝐶𝑝 = 347.27 + 62.34𝑒𝑇 471.706⁄  ; For 𝑇 > 1073𝐾, 𝐶𝑝 =

962.32 J∙kg-1∙K-1;  𝜌 = 7850 𝑘𝑔/𝑚3. 

 

And the mass is product of density and volume 𝑉 (m3): 

 

𝑚 = 𝜌 × 𝑉 
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Then the total heat input of the stir zone is:  

 

𝑄𝑖𝑛𝑝𝑢𝑡 = 𝐶𝑝 × 𝑚 ×
𝑑𝑇

𝑑𝑙
× 𝑑𝑙 = 𝐶𝑝 × 𝜌 × 𝑉 ×

𝑑𝑇

𝑑𝑙
× 𝑑𝑙 

 

The calculation of the volume of the flowable metal around the pin is as follows: 

 

 
 

Figure 71: Schematic diagram of the side view of the tool. 

 

 

The red box in Figure 71(a) indicates the total volume of the pin and flowable base metal around 

the pin Vtotal (m
3): 

 

𝑉𝑡𝑜𝑡𝑎𝑙 =
𝜋𝐻

3
(𝑅1

2 + 𝑅1 × 𝑅3 + 𝑅3
2) 

 

And the red shaded area (b) indicates the volume of the pin Vpin (m
3): 

 

𝑉𝑝𝑖𝑛 =
𝜋𝐻

3
(𝑅2

2 + 𝑅2 × 𝑅3 + 𝑅3
2) 

 

The volume of flowable metal around the pin V (m3) is:  

 

V =
𝜋𝐻

3
(𝑅1

2 + 𝑅1 × 𝑅3 + 𝑅3
2) −

𝜋𝐻

3
(𝑅2

2 + 𝑅2 × 𝑅3 + 𝑅3
2) 

 

Then, the heat input becomes:  

 

𝑄𝑖𝑛𝑝𝑢𝑡 = 𝐶𝑝 × 𝜌 × (
𝑑𝑇

𝑑𝑙
) × 

(
𝜋𝐻

3
(𝑅1

2 + 𝑅1 × 𝑅3 + 𝑅3
2) −

𝜋𝐻

3
(𝑅2

2 + 𝑅2 × 𝑅3 + 𝑅3
2)) × 𝑑𝑙 
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It is assumed that there is no loss of heat generated during the welding process and all the heat is 

used to increase the temperature of the base metal. Therefore, heat input can be approximately 

equal to the heat generation during the welding process: 

 

𝑄𝑖𝑛𝑝𝑢𝑡 = 𝑄𝑡𝑜𝑜𝑙 

 

Then dT/dl can be expressed as: 

 

𝑑𝑇

𝑑𝑙
=

(
2𝜋𝜔𝜇𝑃(𝑅2

3 − 𝑅3
3)

3 sin 𝛼 +
2𝜋𝜔𝜇𝑃𝑅3

3

3 +
2𝜋𝜔𝜇𝑃(𝑅1

3 − 𝑅2
3)

3
) ×

1
𝑣

𝐶𝑝 × 𝜌 × (
𝜋𝐻
3

(𝑅1
2 + 𝑅1 × 𝑅3 + 𝑅3

2) −
𝜋𝐻
3

(𝑅2
2 + 𝑅2 × 𝑅3 + 𝑅3

2))
 

 

The vertical pressure can be expressed as: 

 

𝑃 =
𝐶𝑝 × 𝜌 × (

𝑑𝑇
𝑑𝑙

) × (
𝜋𝐻
3

(𝑅1
2 + 𝑅1 × 𝑅3 + 𝑅3

2) −
𝜋𝐻
3

(𝑅2
2 + 𝑅2 × 𝑅3 + 𝑅3

2)) × 𝑑𝑙

(
2𝜋𝜔𝜇(𝑅2

3 − 𝑅3
3)

3 sin 𝛼 +
2𝜋𝜔𝜇𝑅3

3

3 +
2𝜋𝜔𝜇(𝑅1

3 − 𝑅2
3)

3
) ×

𝑑𝑙
𝑣

 

 

Then the vertical force is 

 

𝐹

𝜋𝑅1
2 =

𝐶𝑝 × 𝜌 × (
𝑑𝑇
𝑑𝑙

) × (
𝜋𝐻
3

(𝑅1
2 + 𝑅1 × 𝑅3 + 𝑅3

2) −
𝜋𝐻
3

(𝑅2
2 + 𝑅2 × 𝑅3 + 𝑅3

2)) × 𝑑𝑙

(
2𝜋𝜔𝜇(𝑅2

3 − 𝑅3
3)

3 sin 𝛼 +
2𝜋𝜔𝜇𝑅3

3

3 +
2𝜋𝜔𝜇(𝑅1

3 − 𝑅2
3)

3
) ×

𝑑𝑙
𝑣

 

 

So 

 

𝐹 =
𝜋𝑅1

2 × 𝐶𝑝 × 𝜌 × (
𝑑𝑇
𝑑𝑙

) × (
𝜋𝐻
3

(𝑅1
2 + 𝑅1 × 𝑅3 + 𝑅3

2) −
𝜋𝐻
3

(𝑅2
2 + 𝑅2 × 𝑅3 + 𝑅3

2)) × 𝑑𝑙

(
2𝜋𝜔𝜇(𝑅2

3 − 𝑅3
3)

3 sin 𝛼 +
2𝜋𝜔𝜇𝑅3

3

3 +
2𝜋𝜔𝜇(𝑅1

3 − 𝑅2
3)

3
) ×

𝑑𝑙
𝑣

 

 

The vertical force can thus be calculated by plugging the parameters into the above equation.  

 

Table 11: The experimental FSW parameters. 

 
Run 

No. 

Rotation 

speed 

(rpm) 

Travel 

speed 

(mm/min) 

Plunge 

Depth 

(mm) 

Pin 

length 

(mm) 

Shoulder 

diameter 

(mm) 

Measured 

vertical 

Force (N) 

dT/dl 

(K/mm) 

Calculated 

vertical 

force (N) 

Standard 

Deviation 

(N) 

1 400 80 0.42 2.3 10 4700 408 5001 320 

2 400 80 0.45 2.3 10 4900 421 5056 324 

3 400 80 0.52 2.3 10 5200 436 5184 332 

4 400 80 0.60 2.3 10 5800 473 5331 341 
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The table summarizes four sets of experimental welding parameters. dT/dl was therefore 

calculated for each run and a mean value of 435(±28) (K/mm) was obtained. The dT/dl mean 

value was then used to estimate the vertical forces. The vertical force from experimental 

measurement and theoretical calculation are compared. It indicates that the calculation results 

fall approximately within the standard deviation range, which shows the reliability of the 

analytical model. 

 

 
 

Figure 72: Calculated vertical force and measured vertical force as a function of plunge depth 

under 2.3 mm pin length condition. 

 

As for the FSW process with pinless tool, one experiment has been carried out so far for initial 

evaluation. It is found that the force calculated using the analytical model, 5.5kN, is comparable 

to the experimentally  measured value 5.2kN, as shown in Table 12.  

 

By using the validated analytical model, it can be estimated that reducing the shoulder diameter 

by half, from 10mm to 5mm, can effectively reduce the vertical force from 5.5kN to 2.8kN. 

Further reduction in power and force requirement can achieved by introducing preheating, which 

has been incorporated into the analytical model. 

 

Table 12: Parameters for FSW using pinless tool and calculated vertical force from analytical 

model. 

 
Run 

No. 

Rotation 

speed 

(rpm) 

Travel 

speed 

(mm/min) 

Plunge 

Depth 

(mm) 

Tool 

materials 

Pin 

length 

(mm) 

Shoulder 

diameter 

(mm) 

Tilt 

angle 

(°)  

Measured 

Vertical 

force (N) 

Calculated 

vertical 

force 

(N) 

1 400 80 0.22 W-Re 0 10 2.5 5200 5509 

2 400 80 0.22 W-Re 0 5 2.5 - 2755 
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2.2. Subtask 2.2: Repair Protocol Design  

 

2.2.1. Identification of Prototype Repair Protocol 

 

The prototype friction stir welding (FSW) repair parameters using a pinless tool were identified 

for conditions with and without the assistance of induction preheating, namely, FSW and 

induction-heating-assisted friction stir welding (IHA-FSW) processes based on the surface 

morphology inspection. Preliminary metallurgical characterizations were carried out to reveal the 

effects of repairing process on the base material microstructure. 

 

A. Base material 

 

Low carbon steel grade A108 was used as the base metals for repair experiments. Note that the 

boiler water wall material is A106, which can only be found in pipe shape. Therefore, in this 

study, A108 in plate format was chosen instead for repair parameter evaluation. The dimensions 

of A108 steel plates were 0.5 inch thick, 8 inches wide and 12 inches long. The chemical 

composition (wt%) of A108 steel is listed in Table 13. 

 

Table 13: Chemical Composition (in wt%) of A108 steel 

 

Steel grade C Mn Si P S 

A108 0.13-0.20 0.60-0.90 0.15-0.30 0.035 0.035 

 

B. Experimental procedure 

 

A pinless W-Re tool with a shoulder diameter of 10mm was employed to carry out the FSW 

repair trails, which eliminates the exit hole. Note that the need for repair width and depth will 

determine the proper tool geometry with various pin lengths in future, and exit hole can be 

eliminated by existing technologies such as a retractable pin tool. The prototype parameters for 

FSW and IHA-FSW processes are tabulated in the Table 14.    

 

Table 14: Parameters FSW and IHA-FSW 

 

Sample 

Rotation 

speed 

(rpm) 

Travel 

speed 

(mm/min) 

IH 

power 

(kW) 

Plunge 

depth 

(mm) 

Tilt 

angle 

(°) 

FSW (one trial) 500 80 -  0.15 2.5 

IHA-FSW (two trials) 400 70 15 0.15 2.5 

 

Preliminary characterizations were performed in the welding trials including profilometry 

measurement on weld surfaces, and optical microscopy and hardness mapping on the weld cross-

sections. The metallurgical inspections were performed on the cross-section of the welds after 

grinding, polishing and etching with 3 % nitric acid and 97 ml methanol solution. Optical 

microscope with the capability of profilometry measurement was also used to obtain the surface 

profiles of the welds. Vickers hardness mapping were performed on the transverse cross-
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sections, i.e., the plane perpendicular to the welding direction, with a relative distance of 500 μm 

between the indents and using a 500 g load and a dwelling time of 10 s.  

 

In terms of the preheating system, a Miller TIG welding machine was previously used as the 

preheating source. Our preliminary evaluation on TIG torch preheating indicated that the 

minimum safe distance between the torch and the tool limited the amount of heat input as a 

preheating source, which was insufficient to influence the FSW process (e.g., to reduce tool 

rotation speed for less heat input while maintaining a good repair). Therefore, induction heating 

method was selected for further investigation.  

 

Figure 73 shows the Miller induction heating (IH) power source equipped with a cooling system. 

The copper coil was mounted in front of the FSW tool, as shown in Figure 74 with a minimum 

distance of 20mm. The distance between the coil and steel plate during repair was about 8.5mm. 

Laser pyrometer was used to monitor the peak temperature as a function of IH power between 

20kW and 5kW. Based on the preliminary laser pyrometer measurement, to provide a preheating 

temperature between 700°C and 900°C, a power of 15 kW was selected for further experiment. 

Note that the key input parameter for laser pyrometer measurement, i.e., emissivity of steel as a 

function of temperature, was greatly influenced by the level of oxidation, since argon shielding 

gas was mainly applied surrounding the FSW tool.  Therefore, calibration is currently being 

conducted for emissivity value in order to provide a more accurate measurement of temperature 

profile introduced by IH in future.   

 

The induction preheating was started after turning on the cooling water system. The 

programming of IHA-FSW process included:  

 

(1) Preheating for 20s at the weld start point, which is underneath the center of the coil;  

(2) Moving the rotating tool to the start point at a speed of 70 mm/min, plunging into the 

base metal with a depth of 0.15mm, and dwelling for five seconds to generate sufficient 

frictional heat. Note that this dwelling time is much shorter than the FSW process, which 

is 28s, in order to generate sufficient frictional heat to soften the material. 

(3) Initiating tool travel for a total distance of 70mm.    

 

Finite element (FE) modeling will be performed in future to quantify the heat contribution from 

FSW tool and IH, respectively, and potentially further optimize the relative distance between the 

welding tool and coil.   
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Figure 73: The induction heating source. 

  
 

Figure 74: The set up for the IHA-FSW process a) side view; b) bottom view. 

 

C. Results and Discussion 

 

Vertical force profile: 

 

Figure 75 demonstrates the vertical force profile of FSW process exhibiting three distinct regions 

including: (1) an initial rise as the tool shoulder becomes in contact with the workpiece, (2) force 

reduction as the tool rotates and continues to plunge as softening of material occurs due to 

heating, and (3) a rise again as the tool travels forward after dwelling for 28s.  
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Figure 75: The vertical force profile as a function of time during FSW. 

 

 
 

Figure 76: The vertical force profiles as a function of time during IHA-FSW (a) trial 1 and (b) 

trial 2. 
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Figure 76 summarizes the vertical force profiles of IHA-FSW trials. Note that after trial 1 

(Figure 76a), it is noticed that the tool had base metal materials sticking in the grooves and 

thorough cleaning by grinding was performed before trial 2 (Figure 76b). Moreover, trial 1 was 

performed close to the edge of the steel plate and the plate had many trials runs on it, leading to 

slight distortion in the plate. In comparison, trial 2 was performed in the center of a new plate 

without any previous welding trials and using a carefully cleaned tool. Therefore, data obtained 

from trial 2 would be more trustworthy. Trial 1 is still presented here since all the preliminary 

characterizations were performed on trial 1.  

 

As shown in Figure 76, the peak vertical force of IHA-FSW is comparable to that of FSW as the 

tool first touched the workpiece, which could be caused by a slow initial moving speed of 

70mm/min for the tool to move to the start point. In other words, the slow-moving speed to the 

start point may have led to excessive heat loss. In addition, the rotating speed in FSW (500rpm) 

is higher than that of IHA-FSW (400rpm). Therefore, in the initial pressing stage (1-3 seconds), 

the frictional heat generation in FSW were greater than the sum of frictional heat and induction 

heat in IHA-FSW. For the next step, the speed of the tool moving to the initial point will to be 

maximized in order to minimize the loss of the initial preheating, and thus reduce the peak 

vertical force to a value comparable to that of later stages in IHA-FSW. 

 

As shown in Figure 76(b), when the tool started to move forward after a dwelling time of 5s, the 

vertical force of IHA-FSW reached a temporary quasi-steady state at a force level of ~4.5kN, 

without going through a valley as in FSW in Figure 75.  The reason could be that during FSW 

the tool dwelled for 25 seconds at the start point while during IHA-FSW it dwelled for 5 

seconds. The extra 20 seconds at a fast rotational speed of 500 rpm enabled accumulation of 

frictional heat, leading to more severe softening of the base metal at the start point.  

 

Note that while the tool dwelled at the starting point, IH sitting in front of the tool continuously 

provided heat input, which caused the force valley present near the end of the early stage of IHA-

FSW in Figure 76(b). After dwelling and as the coil moved along with the FSW tool, a quasi-

steady state was reached again in the later stage of IHA-FSW. The presence of force valley 

indicates that to further reduce the vertical force associated IHA-FSW overall. It might be 

worthwhile to further investigate the effect of higher power input from IH or lower tool travel 

speed, but there would be concerns of surface quality and repair strength as excessive heat is 

introduced. 

 

Surface morphology of the repairs: 

 

Periodic band structure is a typical surface morphology of friction stir welds and it is the direct 

evidence of periodic plastic deformation. A schematic drawing in Figure 77 demonstrates the 

formation mechanism of periodic band structure [66].  During FSW, the rotating tool with a 

slight tilt angle enables the rigid metal in front of the tool to plastically flow around the tool and 

eventually deposit behind it. 
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Figure 77: Formation mechanism of the periodic bands: a)-d) top view at different moments, and 

e)-h) the corresponding longitudinal sections. 

Figure 77 a) and e) illustrate the position of the tool at t0, i.e., the last revolution has just finished 

and the shoulder is located at the trough. In the next moment t1-t3, the rotating tool will press the 

fresh rigid material at the advancing side (AS) (Figure 77 b and f), extrude it to the retreating 

side (RS) (Figure 77 c and g), eventually deposit it behind the tool (Figure 77 d and h), and then 

a new revolution starts [66]. 

 

At the beginning, the temperature of the fresh rigid material is low, resulting in a higher yield 

strength, the fresh rigid material is initially very difficult to be pressed down. Hence, the tool 

needs to slightly lift up, as shown in Figure 77 f). When the material flows from the AS to RS, it 

is softened sufficiently due to the frictional motion between the tool and base metal (Figure 77 

c). As a result, the tool is able to fall back down (Figure 77 g), meanwhile, the plastic material 

flows behind the rotating tool and deposits in the trailing edge until the shoulder reaches the 

lowest position, that is, the wave trough (Figure 77 h).  

 

   
 

Figure 78: Surface appearance of the FSW specimen. 
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Figure 79: (a) Surface appearance of the IHA-FSW trial 1 specimen, and the local morphologies 

in (b) early stage and (c) later stage. 

 

 
 

Figure 80: Surface morphology of (a) FSW and IHA-FSW trial 1 (b) early stage and (c) later 

stage. 

 

 
 

Figure 81: Line scan results of the surface morphology of FSW and IHA-FSW trial 1 early stage 

and later stage. 
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Figure 78 and Figure 79 demonstrate the repair surfaces from FSW and IHA-FSW trial 1, 

respectively. Periodic band structure (sometimes called onion ring structure) appears on the weld 

surface in both of them. Note that waterjet cutting introduced some minor corrosion pits on the 

top surface of FSW specimen, as seen in Figure 78 (c). Therefore, all the other specimens were 

cut by LECO MSX sectioning machine instead. Figure 80 summarizes and compares the line 

scan results for the three-dimensional periodic patterns of the bands in FSW and IHA-FSW trial 

1 specimens.  

 

As the tool moves forward, the process described above occurs periodically, and a periodic band 

structure on the weld surface is formed. The intervals between neighboring wave crests or 

troughs on the weld surface can be calculated by the following equations: 

 

FSW: d=v/ω= (80 mm/min) / (500 rev/min) =160 μm/rev 

IHA FSW: d=v/ω= (70 mm/min) / (400 rev/min) =175 μm/rev 

 

Figure 81 summarize the line scan results on the surface profiles of FSW and IHA-FSW trial 1 

specimens. The measured average crest intervals for FSW is 159μm, and 177μm and 160μm for 

the early stage and later stage of IHA-FSW trial 1 sample, respectively. The measured crest 

interval of FSW sample is approximately equal to the distance traveled during one revolution of 

the tool. The variation in crest interval in the early and later stage of IHA-FSW trial 1 specimen 

is under further investigation. Note that characterizations will be performed on IHA-FSW trial 2 

specimen to further confirm the presence of such variations.  

 

Moreover, it can be seen that for the weld surface of FSW, the amplitude from wave crest to 

trough is 42 μm. However, after applying induction heating, the value of the amplitude is 

reduced to 12 μm in early stage and 27 μm in later stage. As mentioned earlier in the section of 

vertical force profile, since the induction copper coil dwelled at the initial point for 20 seconds of 

preheating before welding, the total heat input in the base metal at the early stage is larger than 

that at the later stage. The higher heat input led to excessive softening of materials under the 

took, and thus resulted in the flattest band structure. 

 

2.2.2. Metallurgical Characterizations 

 

A. Metallurgical characterizations of FSW specimen: 

 

Figure 82 shows the hardness mapping result from a transverse cross-section (i.e., perpendicular 

to the welding direction) machined in the middle of FSW sample. It is observed that stir zone 

(SZ) exhibits is the highest hardness in comparison to the other regions such as heat-affected 

zone (HAZ) and base metal (BM).  The significant increase in hardness is mostly likely 

attributed to the grain refinement during FSW[70], as demonstrated in Figure 83 by comparing 

Figure 83 g to e.  On the other hand, the hardness of the HAZ is the lowest due to grain 

coarsening associated with the heat input during welding process. 
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Figure 82: The hardness mapping on the weld cross-section of the FSW. 

 

 
 

Figure 83: FSW specimen: (a) low-magnification optical micrograph of the weld cross-section, 

(b) overlapped images of weld cross-section macrograph and hardness map, and the optical 

micrographs of transition between BM and HAZ, and transition between HAZ and SZ. 

Figure 83 summarizes the microscopic examination results on the FSW cross section. The BM 

exhibits a typical microstructure of low carbon steel, which consists of ferrite (light area) and 

pearlite (dark area). The SZ contains fine grains due to dynamic recrystallization (DRX) induced 

by frictional heat generated and severe plastic deformation [67].  The Fe-C phase diagram in 

Figure 84 can be used to further explain the observed microstructure and the red broken line 

indicates the composition of A108 steel [68], although during FSW, equilibrium phase 
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transformation may not be representative. In SZ, the material could experience a temperature 

above 70% of the melting point, which is way above the A3 temperature of A108 of 850°C. 

Therefore, SZ experienced complete austenization at peak temperature, and then during cooling 

it transformed to a mixture of grain boundary ferrite (GBF), ferrite with aligned second phases 

(FS(A)) and nonaligned second phases (FS(NA)), and ferrite/carbide aggregate (FC), as shown 

in Figure 83 (g). The HAZ microstructure is highly dependent on the local thermal cycle 

experience during FSW. As illustrated in Figure 83 (f), a grain-coarsened HAZ is observed, 

where GBF, fc and FS(NA) were observed.  

 

  
 

Figure 84: Fe–C phase diagram with various carbon steel compositions marked out. 

B. Metallurgical characterizations of IHA-FSW specimen: 

 

Figure 85 shows the hardness mapping result from a transverse cross-section of IHA-FSW 

sample. Different from the results of FSW, it was found that the hardness of the stir zone is 

comparable to the BM. But similar to the FSW result is that the hardness of the HAZ is still the 

lowest due to grain coarsening associated with the heat input during welding process. The wide 

region of hardness reduction on the retreating side is caused by the excessive heat from the wide 

induction coil, which can be controlled by an optimized coil geometry. The slight increase in 

hardness on the advancing side is caused by work hardening introduced during machining 

process, since it is close to the edge of the steel plate. 
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Figure 85: Hardness mapping on the weld cross-section of the IHA-FSW. 

 

 
 

Figure 86: IHA-FSW specimen: (a) overlapped images of weld cross-section macrograph and 

hardness map, and the optical micrographs of (b) SZ, (c) transition from SZ to HAZ using 200 

magnification, (d-f) transition from SZ to HAZ using 500 magnification, (g) HAZ, (h) transition 

from HAZ to BM using 500 magnification and (i) BM, where SZ, HAZ and BM represents stir 

zone, heat-affected zone and base metal, respectively.  GBF: grain boundary ferrite; FS(A): 

ferrite with aligned second phases; AF: acicular ferrite; WF: Widmanstatten ferrite; FC: ferrite-

carbide aggregate; α: α-ferrite; P: pearlite.   
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Figure 86 summarizes the optical micrographs on the IHA-FSW cross-section. The SZ contains 

fine grains due to dynamic recrystallization (DRX) induced by frictional heat generated, 

induction preheating and severe plastic deformation. According to the Fe-C phase diagram, in 

SZ, the material could also experience a temperature above 70% of the melting point and then 

above the A3 temperature of A108 of 850°C with the auxiliary of induction preheating. 

Therefore, SZ austenitized completely at peak temperature, and then during cooling it 

transformed to a mixture of grain boundary ferrite (GBF), ferrite with aligned second phases 

(FS(A)), acicular ferrite (AF), Widmanstätten ferrite (WF), and ferrite/carbide aggregate (FC), as 

shown in Figure 86(b). The HAZ shows coarsened grains due to the slow cooling rate affected 

by double thermal cycle from frictional heat and induction preheating, as illustrated in Figure 

86(g), where ferrite (α) and pearlite (P) are observed. The BM exhibits a typical microstructure 

of low carbon steel, which consists of ferrite (light area) and pearlite (dark area). 

 

Comparison of metallurgical characterization of FSW and IHA-FSW: 

 

Considering all the above experiments, the prototype friction stir welding (FSW) parameters 

have been determined to be 500 rpm and 80 mm/min without preheating and 400 rpm and 70 

mm/min with 15kW induction heating power (IHA-FSW). Comparing FSW and IHA-FSW, it is 

observed that the grain size in SZ of IHA-FSW is larger than that of the FSW. Correspondingly, 

the hardness in SZ of IHA-FSW is lower than that of the FSW. Similar phase constituents were 

observed in the SZs of FSW and IHA-FSW specimens, but there was a small amount of bainite 

forming in SZ of FSW, which indicates that the cooling rate of FSW is slightly higher than that 

of IHA-FSW. This may be because under the condition of IHA-FSW, the weld would experience 

dual thermal cycles from the induction preheating and the frictional heat, which might lead to a 

slower cooling rate during IHA-FSW. The higher cooling rate also makes the grain size of SZ of 

FSW a little bit smaller than that of IHA-FSW. 

 

3. Task 3: Robotic Platform Design 

 
A robotic system was designed that leveraged a commercial robotic platform retrofitted with a 

customized gantry system, sensors, cleaning, NDE sensors, and repair tools. 

 
3.1. Subtask 3.1: Robot Retrofit for Vertical Navigation 

 

The original robotic platform was the Clearpath Jackal robot. However, the Jackal robot is a 

wheel-based robotic platform. Retrofitting the Jackal robot wheels with magnetic tread did not 

provide enough attachment force to facilitate welding operations on the vertical furnace wall 

surface. A search for a treaded robot was conducted, with the ideal robot selection being the 

Reebotic treaded rover platform. A comparison image is shown below with the previous Jackal 

robot on the left and Reebotic Rover on the right.  
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Figure 87: Jackal wheeled rover (left) and Reebotic treaded rover (right). 

 

After selecting a robotic platform, we began a physics simulation utilizing COMSOL simulation 

software to evaluate the pull-force of the robot against the furnace wall surface. Placing 5x1.75” 

length bar magnets in between each tread “nub” on the reebotic rover platform results in a total 

of 150 magnets total. Attaching the magnets with alternating polarity provides the maximal 

amount of force.   

 

Magnetic Track  Design: 

 

Figure 88 below illustrates the magnetic field obtained with alternating bar magnet polarity (left) 

and magnet arrangement in the footprint of the reebotic rover platform (right).  

 

 

 
 

Figure 88: Alternating polarity magnetic field and rover footprint magnet arrangement. 

 

This magnet arrangement yields a 7kN pull force on flat steel. However, on the furnace wall 

surface, the pull force is 1.3kN when the treads are parallel to the tube direction. When the treads 

are at a 45-degree rotation relative to the tubes, the force is 1.4kN. Figure 89 below shows the 

magnet footprint parallel to the tube direction (top) and treads at 45-degree rotation relative to 

the tubes (bottom).  
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Figure 89: Footprint parallel to tubes and footprint at 45-degree rotation to tubes. 

 

To better evaluate the magnetic force at different rotations, a simulation was conducted that 

rotated the magnetic footprint at 6-degree increments. The results from the rotating simulation 

are shown below in Figure 90. The minimum force is 0.73kN at 171 degrees and the max is 2.36 

kN at 99 degrees.  

 

 
 

Figure 90: Magnetic footprint rotation vs force. 

 



85 

It was estimated that we may need a minimum of 3kN of attachment force when performing 

welding operations when the robot is parallel to the tube direction. To achieve this force, the 

magnet footprint can be augmented with 4x 4” by 4” square packs of similar bar magnets placed 

at the edges of the footprints.  

 

Figure 91 below shows that footprint modification with the square magnet packs attached. This 

augmentation yields a force of 3.3kN when the treads are parallel to the tubes. This is enough for 

welding operations. It is an ongoing effort to determine how to mount and manipulate these 4 

magnet packs.  

 

 
 

Figure 91: Magnet footprint with 4" x 4" magnet packs. 

 

Magnetic Track Construction:  

 

To construct the magnetic track system, room temperature vulcanizing (RTV) silicone was 

selected to attach the magnets. The used product was chosen for the 1,025 psi tensile strength, 

825% elongation and 60 lbf/in peel strength. Of these qualities, percent elongation and peel 

strength are most important because the magnets must be able to travel around the radii of the 

tracks. As the magnets are being lifted off the steel surface, the leading edge of the magnet 

experiences strong peeling forces. To further improve the holding forces on the magnets, a layer 

of steel wire cloth was sandwiched between the tracks and magnets. The wire cloth was sized to 

maximize magnetic attraction, flexibility and allow silicone adhesive to flow through the mesh. 

For this purpose, 30 x 30 steel mesh with a 0.012 inch wire diameter and 0.021 inch opening size 

was suitable. Plastic spacers were installed between the individual magnets to decrease the 

mutual attraction and improve track flexibility. However, some of the spacers were ejected 

during the driving test from poor adhesion to the silicone. The gaps were later filled with more 

adhesive to form a flexible, permanent spacer. The magnets were arranged into blocks of 5 with 

alternating polarity to maximize attraction force to the wall. Whenever possible, these blocks 

were arranged to attract to their neighboring blocks to maximize wall attraction and minimize 

construction difficulty. Closeups of track and construction process are shown below.  
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Magnets arranged, cloth cut & 

surfaces cleaned with xylene 

Adhesive applied in rows to 

completely fill gaps 

Wire cloth ready for application 

Wire cloth started at edge to 

maintain control 

Wire cloth carefully laid down 

through adhesive 

Magnet block ready for 

application to track 

 

Figure 92: Illustration of the gluing processes. 

 

The magnets afforded excellent traction and firmly locked the robot against the surface. It was 

necessary to drive the robot onto an aluminum plate (pictured) to disengage from the steel wall. 

Because turning relies on slippage of the tracks, the turning radius of the robot is under 

investigation. After conducting the test, it was discovered that two blocks of magnets had peeled 

off the track surface. This was due to a layer of paint that separated from the track surface. These 

isolated instances were fixed by scraping the remaining paint off and reapplying the magnets. 

Repairs of this nature will be made on an as-needed basis unless the problem becomes more 

frequent.  

 

During the driving test, the robot had little difficulty climbing up or down the wall. The motors 

were able to drive the tracks despite the weight of the robot and resistance from peeling magnets 

off the steel surface. However, the robot drove in a jerking motion and undulated with respect to 

the wall. Depending on the accuracy needed to position different pieces of equipment, driving 

alone may not be precise enough.  
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Figure 93: Illustration of the modified magnetic track closeup.  

 

      
 

Figure 94: Illustrations of robot navigation on vertical testing walls. 



88 

 

The progresses allowed for a successful test of vertical driving capabilities. Several pictures of 

the experiments are shown above. A cable can be seen going to the robot, but it only served to 

power the device receiving control commands. An on-board battery was used for power during 

testing. In the final robot this will be infeasible and replaced with a cable. Consequently, more 

weight will be shed and an increase in torque may be possible. During the system integrating 

phase, further testing is needed to determine the maximum torque available for carrying a load 

up the wall without the battery. However, calculations show that at least one-foot pounds of 

torque will be required for every four pounds of weight. The manufacturer of the base robot 

platform was unable to give a maximum torque output for the drivetrain and experimentation is 

needed. Figure 95 depicts the robot driving vertically on the water wall boiler tube surface under 

its own power, attached to wall via magnets on the robot treads. 

 

 
 

Figure 95: The robotic platform has been demonstrated traversing a vertical waterwall using 

magnets for attachment. 

 

3.2. Subtask 3.2: Cleaning Mechanism Design 

 

For the non-destructive evaluation (NDE) sensors scanning system to accurately detect defects 

the surface must be consistently clean and free of defects. To accomplish this, a cleaning 

mechanism was affixed to the mobile robot platform. This system removes built-up surface 

contaminants to provide a consistent surface for inspection and prepares areas requiring repair 

for a weld devoid of contaminant defects. The design integrates a stainless-steel wire brush 
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powered by a commercially available angle grinder as shown in Figure 96. The mechanical 

design of the system ensures rapid prototyping and modularity to accommodate future iterations 

while remaining rigid. 

 

 
 

Figure 96: Wire cleaning mechanism initial design. A commercially available angle grinder 

powers a stainless-steel wire brush to remove debris from the water wall surface. 

 

Economical, mechanical, and electrical constraints were placed upon the design of the cleaning 

mechanism. With consideration to the overall project objective, the design of the wire cleaning 

brush system must assimilate with the mobile robot platform and control can be integrated with a 

centralized controller. It was desired the mechanism apply a constant force to the water wall to 

provide a consistent cleaning action along the length of the brush. 

 

Starting with the initial idea that a wall containing rust and other contaminants needs to be 

cleaned in preparation for any cracks in the pipe’s exterior could be fixed. As the brush system 

may be used in conjunction with the NDE sensor system the overall width of the brush assembly 

was designated to be 6-inches, allowing for single-pass precleaning and evaluation. The brush 

wires were designated to be made from stainless steel as this provides the longest life cycle of 

commercially available wire brushes while also having a lower potential for contaminant 

transfer. With consideration to future system integrations and modifications it was desired the 

frame be modular. 
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Mechanical Design: 

 

An angle grinder provided a ready-made platform designed for wire brush metal cleaning. One 

would provide the desired rotational speed and torque of the brushes while protecting the motor 

from dust and debris, while the right-angle gear case provides a compact form factor. To account 

for the increased width of the brushes compared to the typical application an 11.0 A DeWalt 

DWE402N with a 5/8”-11 threaded arbor was specified. 

 

 
 

Figure 97: Depiction of the brush shaft stepped shoulder design and interface with the bearing 

housing. 

 

A 6-inch wide brush adaptable to an angle grinder is only available as a custom solution which is 

costly and has a long lead time. Moreover, when any one section is damaged the entire custom 

brush must be replaced. A modular, readily repairable solution was developed by utilizing 

standard 4” diameter stainless steel wheel brushes with a 5/8”-11 arbor thread stacked in series 

on a 5/8”-11 stainless steel threaded rod. To evenly space and secure the wire brushes jam nuts 

were placed between successive wheel brushes and on either end. Sharing the same thread size, 

the angle grinder arbor and brush shaft were connected via a coupling nut with a jam nut to 

ensure the assembly does not back out. On the opposite end of the shaft a shoulder step was 

machined to mate with a R3-2RS sealed 440C stainless steel ball bearing. An M3 x 0.35mm 

internal thread was placed axially and an 8mm long socket head cap screw with a washer were 

used to axially fix the shaft to the bearing. The bearing was placed in a bearing housing and held 

axially by internal retaining rings. The shaft-bearing mating is depicted in Figure 97. 

 

By fixing the bearing housing and angle grinder to a frame the brush assembly is fully supported, 

enabling parallelism to the work surface thereby creating a consistently clean surface along the 
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length of the brush. The angle grinder was affixed to the frame by utilizing the two threaded 

holes in the body of the angle grinder initially intended for a side handle. The frame was made 

from 10 series 80/20 Inc. T-slotted framing rails, an imperial sized system, but the angle grinder 

had M8 x 1.25mm threaded holes. To facilitate attachment of the two male-female hex thread 

adapters with an M8 x 1.25mm male thread and ¼”-20 female thread was used. For additional 

support the angle grinder’s cylindrical body was affixed to a vertical stanchion of the frame with 

a hose clamp. The mounting of the angle grinder and the brush assembly can be seen in Figure 

98. 

 

 
 

Figure 98: Attachment of angle grinder to frame. Vertical stanchion and hose clamp at center 

and the two male-female hex thread adapters with an M8 x 1.25mm male thread and ¼”-20 

female thread on sides of angle grinder body. 
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Figure 99: Angle grinder and brush assembly fully supported and mounted to the 10 series 80/20 

Inc. frame. 

 

Keeping with the initial design intent of a modular system to accommodate future improvements 

the frame was manufactured using 10 series 80/20 Inc. T-slotted framing rails. The orientation of 

the framing rails allows for a variable width brush assembly, change in height of the brush with 

respect to the water wall surface, and the brush assembly can be shifted laterally from its 

centerline position. To install the frame to the RoboteX Avatar III platform a T-slotted framing 

rail was mounted to the preexisting threaded inserts with standoffs to place the rail clear of the 

I/O ports of the robot platform. The mounting of the frame to the robot can be seen in Figures 99 

and 100.  

 

The finalized frame design simplified the mounting of the angle grinder and employed a single 

profile rail aft of the brush assembly as opposed to the initial decoupled design. These changes 

reduced the potential points of failure, created a more ridged mounting platform and increased 

the vibrational dampening. Due to the viscoelastic behavior screws exhibit in a vibrational 

environment, particularly in the high frequency produced by the brush cleaning mechanism, 

thread locker was applied to all screws to prevent them coming loose during operation. 
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Figure 100: Overview of wire brush cleaning mechanism. 

 

Electrical Design: 

 

To facilitate teleoperation of the brush system the components of the manual paddle switch were 

removed and replaced by an electromagnetic relay. This relay is essentially a switch which we 

can control via a control signal rather than a tactile depression of the standard switch. The 

20A/10A SPDT relay was wired onto the positive leg of the power cable input, between the 

power cable and motor. For this particular relay a 5V signal is required. We utilized a 5V 

16MHz Arduino for this version. A 4-channel wireless RF remote control was wired into the 

Arduino, providing us with the safety and ease of use of untethered remote control over the brush 

system. Typically, there is signal noise associated with triggering a microcontroller from an 

external source, particularly with this RF system. To ensure reliably safe control of the brush 

cleaning mechanism actuation a 1kΩ resistor voltage divider was added. Additionally, with the 

relatively high current of the angle grinder the Arduino is unable to provide a current source high 

enough to retain constant solenoid contact. Therefore, a 5V breadboard power supply was 

utilized to power both the Arduino microcontroller and the relay. The wiring diagram is included 

in Figure 101. The 5V reference for the relay would also be transferred to the Jetson, eliminating 

the need for the additional external power supply currently being utilized. A bill of materials for 

the wire brush cleaning mechanism is shown in Table 15. the finalized PCB was created as 

shown in Figure 102. 
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Figure 101: Electrical wiring diagram depicting the connections to remotely control the brush 

cleaning system. 
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Figure 102: Top and bottom of completed PCB. 

 

 

Experimental Results: 

 

Testing of the mechanism went as expected. The cleaning mechanism withstood the torque of the 

motor and stayed mounted to the robot. The grinder was able to power the rotation of the brush 

while being pressed into a metal sheet. Once removed from the metal it was evident that the 

mechanism had removed most of the built-up grime. While the brush system cleaned the surface, 

it was inconsistent due to less than required preload force of the brush on the surface plate, as 

shown in Figure 103. This lessened preload did not force the bristles at the outer diameter to 

splay out as designed. To remedy this additional preload force was applied. Additionally, the 

space between each wire wheel could be decreased and/or the static system currently controlling 

the downforce could be made to be dynamic with a hinge and spring system. 
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Table 15: Bill of materials for cleaning mechanism. 

ITEM Quantity Purpose Source Part # 

18-8 Stainless Threaded Rod, 

5/8”-11 

1 Foot Brush Shaft McMaster-Carr 98804A123 

Wire Wheel Brush, 4” 

Diameter 5/8”-11 Thread 

6 Brush McMaster-Carr 4896A71 

18-8 Stainless Steel Coupling 

Nut, 5/8”-11 Thread 

1 Shaft-Grinder Coupler McMaster-Carr 90268A035 

18-8 Jam Nut, 5/8”-11, Packs 

of 10 

1 Brush Securement McMaster-Carr 91847A540 

R3-2RS Sealed Ball Bearing 1 Shaft Support McMaster-Carr 6138K64 

Ball Bearing Housing 1 Bearing Support McMaster-Carr 2829N2 

12L14 Carbon Steel Hex Bar, 

5/8” Wide 

1 Foot Grinder Attachment McMaster-Carr 6606K212 

Pipe Clamp, Smooth Band, 

1” to 5” Clamp ID 

1 Grinder Attachment McMaster-Carr 5420K4 

¼-20 x 7/8” SHCS, Washer, 

Economy T-nut 

2 Brush Support Frame 80/20 Inc. 3471 

10 S 1” Single Horizontal 

Base 

1 Brush Support Frame 80/20 Inc. 5860 

1” x 2” T-Slotted Extrusion 5 Feet Brush Support Frame 80/20 Inc. 1020 

1” x 1” T-Slotted Extrusion 3 Feet Brush Support Frame 80/20 Inc. 1010 

10 S 12 Hole 90 Degree 

Joining Plate 

4 Brush Support Frame 80/20 Inc. 4128 

¼-20 x ½” FBHSCS & 

ECON T-nut 

86 Brush Support Frame 80/20 Inc. 3321 

10 S 4 Hole Inside Corner 

Bracket 

1 Brush Support Frame 80/20 Inc. 4113 

10 S 6 Hole Inside Corner 

Bracket 

1 Brush Support Frame 80/20 Inc. 4175 

10 S 2 Hole Inside Corner 

Bracket 

6 Brush Support Frame 80/20 Inc. 4119 

10 S 4 Hole 90 Degree 

Joining Plate 

2 Brush Support Frame 80/20 Inc. 4150 

10 S 4 Hole Joining Plate 1 Brush Support Frame 80/20 Inc. 4167 

DeWalt Angle Grinder 1 Brush Rotational Motor Amazon DWE402N 

SparkFun Beefcake Relay 

Control Kit (Ver. 2.0) 

1 Motor Control SparkFun KIT-13815 

Arduino Pro Mini 328 – 

5V/16MHz 

1 Relay Control SparkFun DEV-11113 

4 Channel Wireless RF 

Remote Control 

1 Remote Relay Control Amazon XY-DJM-5V 

SparkFun FTDI Basic 

Breakout – 5V 

1 Serial Communication SparkFun DEV-09716 

Breadboard 1 Wire Connections SparkFun PRT-12002 

SparkFun Breadboard Power 

Supply 

1 Relay Power SparkFun PRT-13032 

Wall Adapter Power Supply 

– 9VDC, 650mA 

1 Relay Power SparkFun TOL-15314 
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Figure 103: Brush system removing mill scale from an A36 steel plate. 

 
3.3. Subtask 3.3: NDE Integration on Robot 

 

The NDE sensor and the enclosure was designed and integrated with the robot. The enclosure is 

5.25” L x 5” W x 0.75” H, all parts non-conductive. The housing is made out of Acetal 

homopolymer (Delrin) and the glass is reinforced with nylon 6/10 fasteners. Currently a Jetson 

TX2 is being utilized to control the system. At the moment, this size of this device doesn’t 

currently fit with in the specifications that are being tested. The team is currently considering 

switching to a Jetson Nano for a smaller form-factor solution. 

 

 
 

Figure 104: Enclosure design visualization. 

 

The enclosure is 6.28” L x 6.01” W x 0.69” H, all parts non-conductive. The housing is made out 

of Acetal homopolymer (Delrin).  On the top of the enclosure (Figure 105), there are 12 ¼-20 

holes for securing to the enclosure to the RoboteX Avatar III. Thermal inserts will be placed into 
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these holes. Securing the cover plate will be Nylon socket cap head screws. On the bottom of the 

enclosure (Figure 106), the plastic wear plate will be secured with double-sided foam tape for 

easy access to the sensor as well as replacing the wear plate once damaged. The plate has a 

thickness of 1/16th” to ensure the best detection. An indentation was created for the foam tape so 

that the distance from the wear plate and the sensor was as close to 1/16th  as possible. 

 

 
Figure 105: Top of enclosure top of PCB Sensor. 

 

 
 

Figure 106: Bottom of enclosure and bottom of PCB Sensor. 

 

Without a gantry system, the NDE sensor can be mounted to the underside of the mobile robot, 

as shown in Figure 107, where it is pressed against and swept along the steel surface by a spring-

loaded mechanism. By keeping the sensor close to the surface during operation, variations in lift-

off are minimized which in turn increases NDE data reliability. 
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Figure 107: Example of installing the NDE sensor on the robotic platform. 

 
Figure 108 depicts the assembly of a gantry system with NDE capability (the gantry design is 

discussed in the next section). The system has a sub-millimeter scanning resolution along a 

single axis and has repair capability along the two-dimensional repair plane. The NDE sensor has 

an eight channel, two-layer, staggered eddy current coil array which sends data over two separate 

USB ports to the robots main Nvidia Jetson TX2 computer. The gantry system is controlled via a 

low-level Latte Panda computer which communicated with the Jetson TX2 over ethernet and 

controls the motors which give the gantry its xyz freedom of movement. Mounted to the gantry 

mechanism are four electromagnets seen on its corners. When the robot needs to execute a 

repair, these magnets are energized so the gantry will remain adhered to the boiler wall while the 

welding tool plunges into the material.    
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Figure 108: NDE sensor installation. 

 
3.4. Subtask 3.4: Repair Integration on Robot 

 

To effectively perform the FSW task on the robot, the repair system must meet the following 

specifications: 

 

• Spindle power of 1.5 kW 

• Spindle speed of 450 RPM 

• Minimum plunge force (Z-axis) of 8.25 kN (5.5 kN specified by welding group, 1.5 

safety factor) 

• 450 N traverse force in X, Y-axis 

• The X, Y, Z axis shall be autonomous and controllable from a single central controller 

• The frame and method of X, Y, Z axis control shall be rigid enough to prevent tool 

fracture 

A. Gantry System Design Analysis 

 

NDE Sensor 

Electromagnet 

Repair tool 
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We first developed the CAD model of the gantry system. It uses of ball screws and railed 

carriages due to their high accuracy and resistance to back drive, as well as high factors of safety 

towards dynamic loading. Further design to the gantry system came in the form of 

electromagnets at the base of the system, so that the system can ground itself to the climbing 

surface while the stir welding process is active. The electromagnets specified are capable of 2400 

lbs of force, achieving a factor of safety of 1.3. The gantry has also been significantly improved 

within its compactness, achieving the necessary range of motion for the drill press while being 

less than half the size within its forward and lateral dimensions (49x47x57 cm versus 17x27x24 

cm). This is achieved through more efficient use of the ball screw and rail systems. A final 

gantry design is the capability of mounting the NDE sensor about its bottom lateral strut. This 

will allow for rescanning of the crack surface, removing any accuracy of the sensor lost while the 

robot drives forwards. 

 

All components of the design are subject to high reaction forces from the stir welding process, 

and as such were checked thoroughly using solid mechanics concepts. The gantry will also 

undergo comprehensive finite element analysis when the CAD model and part selection have 

been finalized. As demonstrated within Table 16, all components have sufficient factors of 

safety. These have been calculated using: 

 

 
 

Table 16: Factors of safety for the gantry system design. 

 

Part Applied Forces Dynamic Loading 

Capacity 

Factor of Safety 

Carriage and Rail 8 kN Vertical Force 2,400 lbs 1.3 

Ball Screw 450 N Axial Force 85,000 psi 14.7 

Ball Nut 450 N Axial Force 150 lbs 1.5 

 

Further improvements to the gantry were made through motor reselection for the ball screw 

travelling systems. Crucially, using a geared brushed motor with an encoder yields the necessary 

gantry travel accuracy (+/- 0.05 mm, with desired accuracy being +/- 0.5 mm, as described in the 

following equation), while being lower cost, lower amperage, and lower voltage: 

 

 
 

The performance of the selected motors falls within the torque necessary with a factor of safety 

of 2.0, while also being capable of eight times faster rpm at lower torque such that the gantry can 

travel quickly: 
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With the motors being of a lower voltage and amperage, smaller positional drivers are also now 

viable, allowing use of an Arduino and Adafruit motor shield to control the entire gantry system.  

 

Table 17: Reselected motor specifications. 

 

Motor Properties Motor Values 

Necessary Voltage 12 V 

Max Speed at high load 130 rpm 

Max Continuous Torque 0.23 N*m 

Required Continuous Torque 0.115 N*m 

Max Continuous Current 0.64 A 

 

The designed parameters of the gantry system are listed as follows: 
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B. CAD Modeling of the Gantry System for Repair Tool Integration 

 

The section discusses refining, verifying and finalizing the gantry design shown below. This 

included locating and ordering items with long lead times, identifying viable drivers and other 

electronic components, modifying the previous design to conform to the prepared drill press, 

running FEA on all load bearing components and improving the quality of selected components 

where it was deemed necessary. 
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Figure 109: Side view of gantry system design. 

 

 
 

Figure 110: Front view of gantry system design. 
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The final design modularly interfaces with the robot casing using a reinforced 8020 frame. The 

design is able to stir weld within a range of 5.9 x 5.3in forward and laterally using high precision 

ball screws to orient the stir welder. The drill press that is used to stir weld, shown in greater 

detail below, has been modified with a 113 N*m geared motor so that it can be autonomously 

lowered with 8 kN of force, as well as a ball screw attachment to allow it to travel laterally.  

 

 
 

Figure 111: Detailed view of a modified drill press. 

 

Given that the gantry is expected to endure large forces (8 kN vertical loading and 450 N horizontal 

loading) during the stir welding process, all load bearing machined components have been tested 

through FEA. Alongside the ordered components part documentation, satisfactory factors of safety 

have been verified: 

 

Table 18: Finalized factors of safety for the gantry system design. 

 

Part Applied Forces Dynamic Loading 

Capacity 

Minimum Factor of 

Safety (FOS) 

Carriage and Rail 8 kN Vertical Force 2,400 lbs 2.7 

Ball Screw 450 N Axial Force 85,000 psi 14.7 

Ball Nut 450 N Axial Force 150 lbs 1.5 

Electromagnets 8kN Vertical Force 1,700 lbs 1.9 

Cast Iron Drill Press 113 N*m Torque & 

8 kN Vertical Force & 

via FEA 1.6 
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450 N Axial Force 

Gantry Center 8 kN Vertical Force & 

450 N Axial Force 

via FEA 4.7 

Gantry Siding 8 kN Vertical Force & 

450 N Axial Force 

via FEA 5.0 

 

 
 

Figure 112: FEA of the factor of safety for the gantry center. 

 

 

 
 

Figure 113: FEA of the factor of safety for the gantry siding. 

 

This gantry system has also been designed to address rough terrain, with suspension being 

applied to both the sides of the gantry (Figure 114), as well as the NDE sensor (Figure 115). This 
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will allow for a minimum of 1in of suspension, though this can be easily adjusted by replacing 

the suspension springs with springs of different stiffness or shortening their available length with 

spacers. The electromagnets, seen at the center of Figure 114, have been strengthened, yielding a 

factor of safety of 1.9. 

 

 
 

Figure 114: Gantry sleds. 

 

 
 

Figure 115: States of suspension applied to the sensor mounting. 

 

We then designed and integrated an electronics box that can autonomously and safely control the 

electromagnets, positioning motors and drill press. A second critical focus was within refining 

the repair tool design to be both lightweight and sturdy. The finalized CAD design of the gantry 

system is shown in Figure 116. 
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Figure 116: Finalized CAD design of the repair tool and gantry system. 

 

C. Repair Tool and Gantry System Assembly 

 

Actuation of the Repair Tool:  

 

The drill press selected as a repair tool for the gantry system is from Milwaukee tools, and hosts 

a 1600 lbs of drill point pressure and 400 drill rpm, which are within necessary specifications. 

The X and Y axis movement of the repair tool bit is propelled by three C7 accuracy grade ball 

screws (two in parallel on the Y axis). These ball screws are mounted through BK12 and BF12 

Pillow Block Type Supports, with a custom 3D printed component to reduce axial play and 

vibration when the system is welding, shown within Figure 118. This component is mounted to 

the brushed DC 30:1 gearmotors which drive the ball screws, which allow for accuracy within 

~+/- 0.5mm linear travel with a maximum thrust of 900N (twice as much on the Y axis due to it 

being driven by two motors in parallel). 
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Figure 117: Ball screw mounting and custom 3D printed stabilizing component. 

 

Z axis movement of the repair tool is produced by automating the manually controlled rack and 

pinion within the Milwaukee 41208-1 drill press. A Maxon brushed DC gearmotor has been 

installed in place of the standard user operated handle, shown in Figures 119. This gearmotor, 

alongside the further gear reduction via the rack and pinion, can allow for plunging force in 

excess of 8000N.  

 

 
 

Figure 118: Milwaukee 4208-1 Electromagnet Drill Press with manual handle and custom 

Maxon motor. 
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Movement on the X, Y and Z axes is controlled from the arduino and accompanying BTS7960 

motor drivers using PID. This is not necessary to prevent overshoot or manage acceleration 

given the high gear ratios produced through the motor gearing, X and Y axis ball screws and Z 

axis rack and pinion. However, PID in this case can allow for a target velocity that the motors try 

to reach and maintain. As a result, if the motors are travelling at an ideal rpm and encounter an 

increase in resistance, the PID will provide more current to the motor to compensate and 

maintain the ideal rpm. This is done in code by having a dynamic target position that is 

constantly incrementing away from the current position. When the dynamic target position 

reaches the actual final position, it will stop incrementing and allow the current position to catch 

up. At higher desired velocity, the target position will increment away faster. As a result of this 

code, if the motor encounters resistance and it begins slowing down, the gap between the 

dynamic target position and current position will increase, leading to more current being 

provided until the gap begins to close.  

 

This can be analogized to a man running towards a tree while being accompanied by their dog. 

The man (or dynamic target position) will continue at a regular pace until they reach the tree (or 

final position). The (well behaved) dog will not try to outrun the man, and will keep at a constant 

distance unless the man speeds up, in which case the dog will proportionally speed up. If the dog 

is having more trouble walking (let’s say there’s snow), they will put in more effort to keep at a 

normal pace with their owner. 

 

Electromagnets & Frame: 

 

The majority of the repair tool frame is composed of 3”x1” 8020 stock with framing brackets, 

shown in Figure 119. This allows for reduced weight and 8020 tracks to be used for non load 

bearing components (For example, mounting of the electronics box, electromagnet transformer, 

and hose clamps for wire management). Load-bearing joints use ¼-20 bolts or larger for a 

minimum 20 FOS alongside lock nuts to avoid issues from system vibration. Gantry motion is 

stabilized and reinforced through HIWIN 15mm linear rails mounted onto the 8020. The central 

delrin piece (delrin being chosen over aluminum or steel after rigorous FEA analysis for the sake 

of modifiability, weight and price) is mounted through the linear rails to the 8020 frame, and is 

propelled using ball nuts on the aforementioned ball screws. 
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Figure 119: Repair tool frame on the gantry system. 

 

The system can be magnetized to steel using four 120V AC electromagnets shown in Figure 120 

to prevent backlash from the welding process. In response to the maximum backlash of 8000N, 

these electromagnets have a FOS of 1.9. To prevent residual magnetization causing the gantry to 

be stuck to the steel after welding is complete, these electromagnets are controlled via a 
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transformer shown within Figure 120, which temporarily flips the magnetic current to quickly 

separate the electromagnets and steel. 

 

 
 

Figure 120: Electromagnets and transformer. 

 

Electronics: 

 

The repair tool is controlled via a combination of electronics placed within the enclosure seen in 

Figure 121, and the wiring diagram within Figure 122. The brain of the electronics is an arduino 

MEGA ADK, selected for it’s large number of pins. A LattePanda was previously used, and is 

compatible with the current system. However, after it was damaged from a miswire during 

testing, it was decided to replace it with a less expensive control board, with the MEGA ADK 

being fully capable of handling the system requirements (the reason the LattePanda was initially 

selected was that it could handle the main program, which the MEGA ADK currently receives 

over serial through a laptop. If the system needed to be fully wireless like it might within a 

production model this would be unviable, but for current prototyping it is reasonable). As seen 

within Figure 122, the MEGA ADK controls power to the drill and electromagnets using relays, 

and controls the gantry (X and Y axis) motors and vertical (Z axis) motor using BTS7960 

drivers. It also receives data from the five limit switches, shown in Figure 121, installed on the 

gantry to shut down motors if the gantry tries to go beyond its bounds. To prevent miswiring or 

shorting, a custom PCB shown within Figure 121 has been designed to mount to the MEGA 

ADK and connect through ribbon cable to all other electronics.  
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Figure 121: Electronics case, limit switches and custom PCB. 

 

We also integrate motor controllers onto the gantry mechanism. They are designed to move the 

end effector of the repair tool in vertical direction, as well as, along the surface of the material 

under repair. We focused on integration of the motor controllers onto the system. Initially it was 

intended to control the motors using a Basic Micro MCP236 DC motor controller. However due 

to numerous challenges and ineffective troubleshooting in configuring the controller over the 

serial bus, we instead decided to use a EPOS4 micro 24/5 CAN module instead, which offers the 

appropriate hardware for control of the gantry mechanisms motors. 

 

The assembled repair tool on the gantry system is shown by Figure 123. Stabilizing 8020 bracing 

has been added to the front of the design, as well as hoist rings and handles to allow for 

manageable lifting, which is critical given the cumulative weight of the frame, motors and 

electromagnets (~90lbs in total). Though considerable, this level of weight is lower than the 

previous iteration which used comparatively heavy aluminum blocks for the frame. The current 

design preserves the strength of the system while reducing weight through the use of 1”x3” 8020 
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framing. This framing also allows for greater customizability of wiring mounts and other features 

through the use of T-nuts. 

 

 
 

Figure 122: Repair tool wiring diagram. 

 

 
 

Figure 123: Assembled repair tool on the gantry system. 
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Experimental Results in Lab Environments: 

 

We focused on designing the larger steel plate, and designing and machining the material inserts 

in house (of which there are five of each material - delrin, aluminum and steel). The aluminum 

backing seen within Figure 124 also had to be machined in house, and allow for the material 

inserts to be bolted onto the larger steel plate. The testing plate is large enough to cover the 

repair tool’s electromagnets, with the material inserts covering the entirety of the repair tools 

range. The testing plate being composed of steel allows for activation of the electromagnet 

systems, which also allows for safe testing of the welding process. Furthermore, the material 

inserts are able to be quickly removed and reinserted without removal of the repair tool, allowing 

for a streamlined testing process.  

 

 
 

Figure 124: Testing plate, material inserts and stir welding bit. 

 

The gantry operates on an arduino in communication with a Windows PC (further referred to as 

the PC). On queuing from the PC the gantry will initialize arduino code alongside 

electromagnets and cooling fans. On a second queuing the gantry will begin a homing sequence. 

From here, positional data and related target velocities can be sent to the arduino, with the gantry 

completing these tasks to produce welds on previously cracked plates. On failure of any of these 

tasks or the startup and homing processes, the arduino will send a descriptive error code to the 

PC and shut down safely.  
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Figure 125: Close up of X direction results, and X (left) and Y (right) welding passes. 

 

The designed repair tool on the gantry system is able to apply ~8000N of drill pressure to a 

15cmx15cm section of aluminum or delrin testing material using a stir welding bit shown within 

Figure 124, and using that pressure alongside the drill itself, can weld together previously 

cracked sections of that testing material.  

 

As can be seen from Figures 125, the repair tool is capable of multiple welding passes in both the 

X and Y direction. Figure 125 shows that X direction welding is more stable (given that the bit 

has less vibration while travelling, leading to a less crooked weld). This is due to one of two 

possibilities - one is that moving along the grain of the metal material yields less vibration, and 

two is that the overall gantry frame better supports X travel. This could be tested by using 

material that has grain travelling in the Y rather than X direction, or rotating the repair tool 

ninety degrees (which would require it to be locked to the floor manually rather than with its 
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electromagnets given that the testing plate does not support the repair tool in that orientation). A 

second current issue can be seen with the thinner starting weld on the top weld, and multiple 

other welds in Figure 125. This is due to the drill not moving immediately following the plunge, 

likely due to too much initial pressure on the plate. As a result, the bit first sits at the start of the 

weld, then following the PID code described in the following actuation section ‘jumps ahead’ in 

order to maintain the overall desired velocity. This can be resolved by adjusting the starting 

plunging force, as well as improving the PID algorithm. 

 

4. Task 4: Artificial Intelligence Development 

 
In this task, artificial intelligence (AI) capabilities were developed to enable robots to automate 

data gathering (e.g., to map the environment) and perform predictive analysis (e.g., to track 

cracks across multiple inspections and to recognize cracks using machine learning methods). 

 
4.1. Subtask 4.1: 3D Mapping and Data Fusion 

 

Algorithms for 3D mapping and data fusion were developed and analyzed. The goal is to create a 

mapping algorithm capable of accurately mapping industrial boiler environments and capture 

multi-layer information such as surface defects or navigation landmarks. A custom, voxel-based 

loop closure detection technique has been developed and an over simultaneous localization and 

mapping (SLAM) package was also developed.  

 

Simultaneous localization and mapping (SLAM) can be thought of as two components: the front 

end and back end. The front end is responsible for data acquisition and data fusion. The back end 

is responsible for error minimization and maintaining an accurate, global representation of the 

world. Loop closure detection described above is a component of the back-end of SLAM. In 

order to enable SLAM on the boiler inspection and repair rover, it is critical to develop a full 

SLAM package that includes both a front end and a back end.  

 

A key component of enabling simultaneous localization and mapping for robots is loop closure 

detection. Loop closure detection describes the capability of mobile robots to recognize 

previously visited locations. This recognition helps to minimize accumulated error encountered 

during navigation. Figure 126 below visualizes the loop closure detection problem. The green 

trajectory might illustrate the robot’s path in the real-world while the red trajectory might 

illustrate the estimated robot path. Notice how the amount of difference between the red and 

green paths increases as the robot navigates; this is because the error compounds as navigation 

occurs. Enabling a robot to recognize the red dot as the green dot can enable the robot to correct 

the error accumulated during navigation.  

 

In support of this capability, the team developed a novel loop-closure detection capability called 

Voxel-Based Representation Learning (VBRL). VBRL utilizes only point cloud data collected 

from a LiDAR sensor for loop closure detection. It is capable of learning both voxel importance 

and feature extraction modality importance for the loop closure detection task. Figure 127 below 

illustrates the VBRL method.  
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Given a set of 3D point clouds acquired during robot navigation, VBRL learns which 3D voxels 

are important to differentiating between point clouds as well as which feature extraction 

modality is most important. Weighting the place recognition algorithm with these learned 

weights yields more accurate loop closure detection results than simply using the feature 

extraction modalities alone. The team is confident that this loop closure detection method will 

provide accurate loop closure detection results in the industrial boiler wall environment.  

 

 
 

Figure 126: Loop closure detection visualized. 

 

The latest release of MATLAB (R2019B) includes a navigation toolbox with a graph-based 

representation of 3D navigation data. In addition, MATLAB has a few built-in functions for 

point cloud registration. A preliminary SLAM software package has been developed this project 

that uses normal distribution transform for point cloud registration, MATLAB navigation 

toolbox algorithms for maintaining a graph data structure, and VBRL for loop closure detection.  

 

For boiler repair and inspection the capability of tagging surface defects to the navigation map is 

critical. MATLAB’s pose graph data structure in the navigation toolbox can easily be augmented 

to contain more metadata about the environment. Tagging pose graph nodes with information 

ranging from surface defects, navigation landmarks, to plain text is possible.  

 

A. Problem Formulation  

 

Notations: Given a matrix 𝐌 = {m𝑖𝑗} ∈ ℜu×v , we refer to its i-th row and j-th column as 𝐦𝑖  

and 𝐦𝑗 . Its Frobenius norm is computed by ∥ 𝐌 ∥F= √𝛴𝑖=1
𝑢 𝛴𝑗=1

𝑣 𝑚𝑖𝑗
2 . Given a vector 𝐦 ∈ 𝕽𝑣, its 

ℓ2-norm is defined as ∥ 𝐦 ∥2= √𝐦T𝐦    

 

Given a set of point cloud instances acquired during long-term LiDAR-based navigation over 

different scenarios, each point cloud is divided into a set of voxels. Then, multiple feature types 

are extracted from each of these voxels and we defined a modality as the features computed from 

a specific feature descriptor. The multi-modal features extracted from all voxels are denoted as X 

= [x1, . . . , xn] ∈ 𝕽𝒅×𝒏. xi ∈𝕽𝒅 is the vector of features extracted from all the voxels of the i-

th 3D point cloud, which is a concatenation of features from all m modalities, such that 𝑑 =
 Σ𝑖=1

𝑚 Σ𝑗=1
𝑣 𝑑𝑖𝑗, where 𝑑𝑖𝑗 is the dimensionality of the i-th feature modality in the j-th voxel, 
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and v is the total number of voxels. The corresponding long-term scenarios (e.g., summer 

and winter) are represented as Y = [y1, . . . , yn] ∈ 𝕽𝒏×𝒄, where c denotes the number of 

scenarios and yi is the scenario indicating vector, with each element 𝑦𝑖𝑗 ∈ {0, 1} denoting 

that the i-th 3D point cloud is collected from j-th scenario. Then, we formulate place 

recognition based on 3D point clouds as a regularized optimization problem: 

 

min L(X, Y; W) + λR(W) 

 

where ℒ(. ) is the loss function, ℛ(. ) is the sparsity-inducing regularization term, and λ ≥ 0 is a 

trade-off hyperparameter to balance the loss function and the regularization term. The model 

parameter W is a weight matrix, which represents the importance of the features in X to 

represent the scenarios Y in general. By learning the weight matrix W in Eq. (1), we learn 

features that are more important towards place recognition. That is, the features that are more 

important towards place recognition have higher weights and the less important features have 

weights closer to zero. The loss function is designed to encode the error of using the learned 

model to represent the scenarios, which can be defined as L(X, Y; W) =  𝑚𝑖𝑛𝑊 ∥ 𝑋𝑇𝑊 − 𝑌 ∥𝐹
2 . 

 

The solution to the optimization problem defined in Eq. (1) W = [w1, . . . , wc] ∈ ℛ𝑑×𝑐 where 

𝒘𝑖 ∈ ℜ𝑑 denotes the weights of features from all views and modalities to represent the i-th 

scenario. Since wi contains the weights of features from m-modalities in all voxels, it can be 

further denoted as 𝐰𝐢  =  [𝐰𝐢
𝟏, . . . , 𝐰𝐢

𝐦]T. In addition, since each 𝑤𝑖
𝑗
 includes the weights of 

features (extracted from the j-th modality with respect to the i-th scenario) from all voxels, it can 

be further divided into 𝑣 parts as 𝐰𝐢
𝐣
 =  [𝐰𝐢

𝐣𝟏

, . . . , 𝐰𝐢
𝐣𝐯

] ∈ ℜ𝑑𝑖𝑗  where 𝑤𝑖
𝑗𝑘

denotes the weights 

of features extracted from the k-th voxel and j-th modality with respect to the i-th scenario. 

 

Learning Representative Voxels and Feature Modalities: 

 

When performing place recognition, we hypothesize that some voxels within the 3D point cloud 

are more representative than others. To identify representative voxels for place recognition, we 

introduce a regularization term called a voxel norm. Formally this norm is a sparsity-inducing 

norm that can be mathematically defined as ℛ𝑉(𝐖) =  Σ𝑖=1
𝑣 ∥ 𝐖𝑖 ∥𝐹 . This voxel norm ℛ𝑉 is used 

as a regularization term in our optimization formulation to enforce the grouping effect of the 

multimodal features shared among different scenarios and promote sparsity among different voxels.  
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Different feature modalities usually capture different characteristics of a place. Some feature 

modalities can be more representative to describe a place than others. Thus, it is also beneficial to 

identify the importance of feature modalities to improve long-term place recognition performance. 

Accordingly, we also propose a regularization term to identify representative feature modalities 

under the unified regularized optimization framework, which is named modality norm. It is 

mathematically defined as: 

 

ℛ𝑀(𝐖) =  Σ𝑖=1
𝑚 ∥ 𝐖𝑖 ∥𝐹  + Σ𝑖=1

𝑑 ∥ 𝐖𝑖 ∥2 

 

which is a combination of two structured sparsity-inducing norms. The first term applies the 

Frobenius norm within each modality and then applies a group ℓ1-norm across different 

modalities. By enforcing sparsity among modalities, this term allows the VBRL method to 

identify representative modalities that have larger weights, and to make the weights of non- 

representative features tend towards 0. The second term in Eq. (2) denotes the ℓ2,1-norm (i.e., a 

ℓ2-norm for each column   and ℓ1-norm across different columns) used to enforce the sparsity of 

the columns of W and grouping effect of the weights in each column. By enforcing sparsity of 

individual features, this norm helps recognize representative individual features and assign a zero 

value to the weights of non-representative features (e.g., from noise). 

Incorporating both of the regularization terms to identify representative voxels and feature 

modalities, our final formulation of learning voxel-based multimodal representations for place 

recognition can be defined as the following regularized optimization problem: 

 

𝑚𝑖𝑛𝑤 L(X, Y; W) + λ1RV (W) + λ2RM (W) 

 

where λ1 and λ2 denote trade-off hyperparameters to govern the balance between the loss function 

and the structured sparsity-inducing norms. 

 

Voxel-Based Multimodal Place Recognition: 

 

Once the formulated regularized optimization problem in Eq. (3) is solved based on Algorithm 1, 

the optimal weight matrix 𝑾∗ is obtained. Given the feature vector 𝑥 ∈  ℜ𝑑 that is extracted from 

all voxels and feature modalities in a query 3D point cloud, and a feature vector from a template 

3D point cloud 𝑥̃ ∈ ℜ𝑑 , we compute a similarity score between this query and template point 

clouds as follows: 

 

𝒔 = ∑ ∑ 𝒘𝑴(𝒊) ∗ 𝒘𝑽(𝒋) ∗ (|𝒙𝒊𝒋 − 𝒙̃𝒊𝒋|)

𝒗

𝒋=𝟏

𝒎

𝒊=𝟏

 

 

where xij denotes the vector features from the i-th modality and the j-th voxel, wM (i) is sum of all 

weights of features in the i-th feature modality, and wV (j) is sum of all weights of features in the 

j-th voxel. When this score is above a user-defined threshold, the query 3D point cloud is 

determined as a match with the template 3D point cloud. 
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Figure 127: Illustration of the VBRL approach for loop closure detection in SLAM on 3D point 

cloud data.  

 

B. Experimental Results 

 

In our implementation, each 3D point cloud scan from LiDAR is divided into many voxels. From 

each voxel five different feature descriptors are extracted including (1) covariance of points 

contained within the voxel, (2) Histogram of Oriented Gradients (HOG) features of a snapshot of 

the point cloud in the XY plane, (3) XZ plane, (4) YZ plane, and (5) Subvoxel Occupancy. 

 

The subvoxel occupancy feature is obtained simply by dividing a voxel into 8 equal subvoxels. If 

the subvoxel is occupied by any points, a 1 is written to the feature matrix. Otherwise a 0 is 

written. As opposed to concatenating these features together from each voxel, VBRL operates 

with the intuition that learning a shared representation of the overall scene from multiple data 

instances and weighting the feature matrix accordingly will fuse the feature modalities more 

effectively for loop closure detection. 

 

Experiments are evaluated both qualitatively and quantitatively. To showcase that VBRL learns 

a better representation of a LiDAR scan than feature extraction alone, we compare VBRL (λ1 = 

10 and λ2 = 0.1) to performing loop closure detection with features concatenated together (λ1 = 0 

and λ2 = 0), voxel learning only (λ1 = 10 and λ2 = 0), and modality learning only (λ1 = 0 and λ2 = 

0.1). 

 

Results on Autonomous Driving Simulation: 

      

At first, we evaluate the performance of our VBRL approach to perform 3D point cloud based 

long-term place recognition by extensive experimenting on data obtained from the AirSim 

simulator. AirSim [71] is an autonomous driving simulator developed by Microsoft to facilitate 

the development of self-driving vehicle methods in a virtual environment. We collect the dataset 

in AirSim’s cityscape environment with roads, skyscrapers, parks, and dynamically moving cars 

and pedestrians. A virtual LiDAR sensor is installed on top of a vehicle to record the point cloud 

data from the virtual environment. The point cloud based LiDAR scans are collected from 210 

unique locations within the environment. These scans are first collected in clear, sunny weather. 
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This set of point cloud scans constitute one scenario of training our VBRL approach. Then, point 

cloud scans are collected from these locations from the self-driving vehicle during snow and fog 

conditions forming the second scenario. All of the 210 locations were distinctive to one another 

and there was no overlap. To perform the experiments on simulated data and evaluate our 

approach, we used 160 point cloud scans for training and a disjoint set of 50 point clouds are 

designated for testing. It is to be noted that the training and testing data doesn’t have any overlap 

to make sure that our approach can learn a robust weight matrix W, that can be used to perform 

place recognition in new and unseen locations.  

 

 
 

Figure 128: Qualitative and quantitative experimental results over the AirSim simulations. 

 

The main challenges associated with this dataset are the dynamic cars and pedestrians. The 

LiDAR scans are robust to changes in lighting conditions and are not affected by the virtual 

snow. However, because fog, as well as snow, could reflect lasers, certain LiDAR points may be 

represented as noise, affecting the representation of the scene adversely. This is a key challenge 

in present-day place recognition using point clouds because autonomous vehicles need to operate 

in snow, fog, rainy seasons. However, this dataset doesn’t provide data with variation in 

vegetation. Illustrated in Figure 128 are the place recognition results based on our VBRL 

approach and its comparison to baseline approaches. The qualitative results on 3D point cloud 

scan matches are illustrated in Figure 128(a) The template point clouds from the snow scene that 

obtain the maximum matching score are shown in the top row, while the query scenes from the 

clear scene are shown in the bottom row.  It is observed that our VBRL approach can match 

point clouds, despite changes in lighting conditions and weather, thus proving the capability to 

perform long-term place recognition. 

 

The classification problem is analyzed quantitatively using the standard precision-recall curve. 

Figure 128(b) shows the precision-recall performance of VBRL when compared with features 

concatenated together, discriminative voxels alone, and discriminative features alone. We 

observe that using feature concatenation alone we achieve minimal performance in point cloud-

based place recognition. Using discriminative features increases the performance, as the area 

under the curve increases. Introducing the discriminative voxel learning approach increase the 

performance even more. Finally, we observe the performance of our VBRL approach, where it 

obtains the maximum area under the curve when compared with previous methods, indicating the 
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best performance. Therefore, by fusing multiple feature modalities together and weighting them 

based on importance, the VBRL approach yields the best results for loop closure detection. 

The modality weights learned automatically for the AirSim dataset are shown in Figure 130(a). 

The Subvoxel Occupancy feature is the most important with a weight of 30% and the covariance 

feature is the second most important with a weight of 29%. The three HOG feature importance 

range from 4% for HOG-XY to 28% for HOG-XZ. 

 

The learned voxel weights are shown via a color map above in Figure 130. Voxels occurring 

more towards the center of the workspace are learned to be weighted as more important in place 

recognition. This makes sense as the center voxels are most likely to be occupied because they 

are closest to the sensor origin and in a LiDAR scan point clouds are more populated in the 

center. Apart from this, we also analyze the relative importance of the different layers of voxels 

(top, middle, and bottom) when performing place recognition using point clouds in the AirSim 

dataset. It was observed that the relative importance of bottom, middle and top layer was 

37.08%, 42.22%, and 20.72% respectively. This indicated that the bottom and middle layer were 

critical towards point cloud based place recognition. 

 
Figure 129: Experimental results over the NCLT dataset for long-term 3D point cloud-based 

place recognition in different seasons. 

 

Results over the NCLT Dataset: 

 

The North Campus Long Term (NCLT) [72] dataset is collected at the University of Michigan 

by a mobile robot driven around the campus. There are 27 separate sessions with varying robot 

routes in the dataset, which occur over the course of 15 months and span multiple times of day 

and seasons. The dataset contains long-term changes in lighting conditions, vegetation, and 

weather. Two sessions are chosen: one collected in June and the other in December. These 

seasons are selected as they have overlapping routes and seasonal changes. A Velodyne HDL-

32E LiDAR sensor was used to collect 3D point cloud data of the environment and was mounted 

on the mobile robot.  

 

This dataset has dynamic pedestrians and also has vegetation changes. Change is vegetation is 

typically observed with seasonal changes and is important to be addressed in the LAC problem, 

to perform long term place recognition. The NCLT dataset includes 850 LiDAR scans from the 

month of June and a corresponding 850 LiDAR scans from the month of December. For this set 

of experiments, we choose 700 instances of point clouds for training and for testing a disjoint set 
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of 150 point cloud scans are taken. Again, it is to be noted that the training and testing data 

doesn’t have any overlap in order to make sure that our approach is robust. 

 

The qualitative results of the performance of our VBRL approach are provided in Figure 129(a) 

in which query scans from the data collected in June are shown on the bottom row and resulting 

matches from December are shown in the top row. Our VBRL approach is able to recognize 

scenes from 3D point cloud data despite vegetational, seasonal and structural changes (such as 

leaves falling off of trees). 

 

Figure 129(b) shows the qualitative precision-recall analysis of VBRL on the NCLT dataset. 

Once again, it is observed that VBRL yields greater area under the precision-recall curve than 

discriminative voxels, discriminative features, or feature concatenation. Additionally, the learned 

modality weights obtained are shown. The learned voxel weights are also shown in Figure 

130(b) and results obtained are similar to the AirSim dataset in that the center voxels are learned 

to be of more importance than the outer voxels. 

 

The learned voxel weights are also shown in Figure 130(b). An analysis of weights of the 

different voxel layers showed that the bottom, middle and top layer have their relative 

importance as 33.92%, 54.62%, and 11.46% respectively. Quite contrasting to the results 

obtained in the AirSim dataset, we see that the top layer has very little importance. The bottom 

layer’s importance also decreases. However, the middle layer plays a major role in place 

recognition. The NCLT dataset was majorly collected when the robot traverses over open areas 

and didn’t have any tall structures throughout its route. Thus, the bottom and top layer’s 

importance is less, whereas the middle layer has the most importance as it has the maximum 

number of important features that are critical in place recognition as opposed to the AirSim point 

cloud data which had point cloud scans of tall buildings nearby. 

 

Discussion: 

 

We performed additional experiments to further analyze our approach. The results are shown in 

Figure 130. Figure 130(a) shows the importance of feature modalities for the AirSim 

simulations. Figure 130(b) shows the importance of voxels for long-term place recognition using 

the NCLT dataset, where the robot is located in the center of the point cloud at position (0, 0). 

Figure 130(c) illustrates the performance variations of our VBRL approach given different 

hyperparameter values over NCLT. 

 

Importance of Voxels and Feature Modalities: Our VBRL approach can automatically estimate 

the importance of each of the voxels and feature modalities while training. The relative 

importance of voxels is illustrated in Figure 130(b). Intuitively, points closer to us are more 

important towards performing place recognition. It is analogous to the fact that humans also use 

nearby points such as street signs and buildings to recognize places rather than using mountains 

in the distance. Accordingly, our approach indicates that point clouds near the center are of more 

importance. On the other hand, voxels far away from the center are of least importance and thus 

their weights are close to zero. The importance of feature modalities are illustrated in Figure 

130(a). The pie chart here indicates the relative importance of different feature modalities 

towards performing voxel- based place recognition. It is observed that Subvoxel occupancy, 
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Covariance and HOG-XZ have an importance of 30%, 29% and 28% respectively and are 

equally important in general, whereas HOG-XY is of least importance. 

 

Hyperparameter Selection: The hyperparameters λ1 and λ2 in our formulation of the final 

objective function, Eq.(3) are designed to control the strength of regularization norms over 

learning descriptive voxels and feature modalities respectively. Their optimal values can be 

determined using cross-validation during training. From the result in Figure 130(c) we observe 

that when λ1 = 10 and λ2 = 0.1, VBRL statistically obtains the best accuracy while performing 3D 

point cloud based place recognition. In general, the range 𝜆1 ∈ {1, 100} and 𝜆2 ∈ {0.01, 1} can 

result in satisfactory results, which demonstrates that both of the regularization terms are useful 

to improve performance. 

 

 
Figure 130: Experimental results over the NCLT dataset in different seasons.  

 

C. Robot Mapping 

 

We also implemented Simultaneous Localization and Mapping (SLAM) methods based on 

LiDAR data. The place recognition methods can be used to close the loop in the constructed map 

thus increasing the mapping accuracy. 

 

 
 

Figure 131: LiDAR observation. 
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Figure 132: Example of 3D robot mapping.  

 
4.2. Subtask 4.2: Spatiotemporal Damage Tracking 

 

Given the previous designed SLAM algorithm, we can figure out if the current place we used to 

visited before. Given the damages recorded in the previous observation and the current 

observation of the same place, we need to identify the correspondences of the damages recorded 

at different times but the same place. In this task, we aim to achieve the tracking of damages, 

which is a process of associating individual or multiple damages over time at the same place. We 

split the tracking problem into two situations, including the tracking of the single damage and 

multiple damages. Thus, we designed two algorithms for the two situations separately. 

 

A. Single Damage 

 

Nowadays, re-identification attracts wide attention in computer vision and robotics, which is 

defined as the process of determining whether a given individual object has already appeared in 

other observations.  

 

For the tracking of the single damge, we can treat it as the re-identification of the single object, 

because both of the problems aim to determinate the same object from different perspectives. For 

a single damage, the perspective of observing it varies over time. Thus, the re-identification 

technique can be used to decide if the current damage is the previous damage we observed in 

order to associate individual damage recorded at different times but the same place.  
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Figure 133: Structure of single object/crack re-identification. 

 

The process of re-identification is presented as above,  which includes 4 main steps: 

 

Step1: The input image pass through the backbone network (ResNet50) to extract high-level 

features of the original image. The extracted features are encoded in the tensor T. 

 

Step2: Given the tensor T, we split it into M (M=6) parts associating with 6 parts of the object 

(e.g, head, shoulder, arm, waist, leg, feet). Afterwards, we average all the column vector 𝒇𝒊, 𝑖 =
1,2, … , 𝑀 in each part into a single column vector 𝒈𝒊, 𝑖 = 1,2, … , 𝑀  in order to downsample the 

high-dimension input tensor T. 

 

Step3: In order to futher downsample the feature vector to reduce the computing cost, we 

employ a 1X1 convolutional layer to reduce the dimension of 𝒈𝒊 into 𝒉𝒊, 𝑖 = 1,2, … , 𝑀. 

 

Step4: Given the downsampled feature vector 𝐡𝐢, we can predict the ID of the each part of the 

original object as follows: 

 

ID = softmax(𝑊𝑖
𝑇hi) =

exp (𝑊𝑖
𝑇hi)

∑ 𝑊𝑗
𝑇hi

M
{j=1}

 

 

where 𝑊𝑖 is the learnable parameters for each part in the classifer defined above. During testing, 

we can easily concatenate all features  𝒉𝒊, 𝑖 = 1,2, … , 𝑀 in to a big one  𝐻 = [ℎ1, ℎ2, … , ℎ𝑚], and 

the final preciditon is similarly defined as softmax(𝐖𝐓𝑯) 

 

B. Multiple Damages 

 

If there exist multiple objects (e.g., damages) in an observation, the tracking of multiple objects 

with identical or similar appearance is very challenging, as shown in Figure 134. In each of the 

observation of the same place, the objects denote damages with similar appearance (e.g., apples 

or banana). The tracking of multi damages over time is equivalent to identify the 

correspondences of objects between the two observations. 
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We proposed a graph matching method for the tracking of multiple objects that integrates visual 

and spatial information describing the objects to identify the correspondence of objects between 

two perspectives. From one of the perspectives, we represent multiple detected objects as a 

graph, where each node corresponds to a detected object, where edges between nodes describe 

the spatial distance between objects and an attribute vector associated with each node describes 

the object’s visual appearance. We represent the other perspective with a similar graph. Thus, 

our graph representation integrates both visual and spatial information about the detected objects 

in both observations.  

 

Given these two graph representations generated from the two observations, we formulate the 

tracking of multiple objects as a graph matching problem, which uses constrained optimization to 

identify corresponding objects between two views based on the similarity of the visual and 

spatial information of the objects encoded in each graph as shown in the below figure. 

 

 
 

Figure 134: Graph representations of the observation with multiple objects. 

 

In order to track the correspondences between two graphs 𝐆 = {𝐕, 𝐅, 𝐄} and 𝐆′ = {𝐕′, 𝐅′, 𝐄′} 

objects. 𝐕 = {𝐯𝟏, 𝐯𝟐, … , 𝐯𝐧} is the nodes set, where vi denotes the position of objects and n is the 

number of objects in graph 𝐆. 𝐅 = {𝒇𝟏, 𝒇𝟐, … , 𝒇𝐧} is the feature set, where fi denotes the visual 

feature of the i-th object in graph 𝐆.  𝐄 = {𝒆𝒊,𝒋, 𝒊 = 𝟏, 𝟐, … , 𝒏, 𝒋 = 𝟏, 𝟐, … , 𝒏, 𝒊 ≠ 𝒋} is the edge 

set, where 𝒆𝒊,𝒋denoting the distance between node vi and vj in graph G. Finally, we formulate the 

tracking problem as the following graph matching problem: 

 

max
X

𝑨𝑻𝑿 + 𝑿𝑻𝑺𝑿     𝑠. 𝑡. 𝑿𝟏{𝒏′×𝟏} ≤ 𝟏{𝒏×𝟏}，  𝑿𝑻𝟏{𝒏×𝟏} ≤ 𝟏{𝒏′×𝟏}  

 

where 𝐗 = {𝐗{𝐢𝐢′} ∈ {𝟎, 𝟏}{𝐧𝐧′}} denotes the correspondence matrix, with 𝐗{𝐢𝐢′} = 𝟏 denoting that 

the i-th node in G and the i’-th node in G’ are matched, and 1 is a vector with all elements equal 

to 1.  𝑨 = {𝑨{𝒊𝒊′}} ∈ 𝑹{𝒏𝒏′} denotes the visual similarity between visual feature 𝒇𝒊 ∈ 𝑭 of the i-th 

object in graph G and 𝒇′𝒊 ∈ 𝑭′ of the I’-th object in graph G’. And 𝑺 = {𝑺{𝒊𝒊′,𝒋𝒋′}} ∈ 𝑹{𝒏𝒏′×𝒏𝒏′} 

denotes the spatial similarity between edge 𝒆𝒊,𝒋 ∈ 𝑬 in graph G and edge 𝒆′𝒊′,𝒋′ ∈ 𝑬′in graph G’. 

Formally, the visual and spatial similarities can be calculated as follows: 
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𝐀{𝒊𝒊′} =  
𝒇𝒊𝒇𝒊′

′

||𝒇𝒊|| ||𝒇𝒊′
′ ||

 

𝐒{𝐢𝐢′,𝐣𝐣′} = exp (− (𝑒{𝑖,𝑗} − 𝑒{𝑖′,𝑗′}
′ )

2
) 

 

The first term in our designed formulation represents the accumulated similarity between visual 

appearances of the objects in the two graphs, which sums all visual appearance similarities. The 

second term denotes the accumulated spatial similarities of the objects in two graphs, which sums 

all distance similarities of edges between two graphs.  

 

4.3. Subtask 4.3: Damage Analysis by Machine Learning 

            

A. Machine Learning for Crack Classification 

 

Two machine learning approaches were developed for crack classification using our collected 

simulated NDE data. We first developed a regularized ridge classification method as follows: 

 

𝑚𝑖𝑛𝑤‖𝑦𝑇 − 𝑤𝑇𝑥‖2
2 + 𝛼‖𝑤‖2

2 

 

The goal is to minimize the objective function. Where x is our feature vector, w is our learned 

weight matrix and y are the observations. Alpha is a hyperparameter multiplied into the 

regularization term to avoid overfitting. Alpha was selected as one for this implementation. The 

target variables are then converted to positive and negative one and a binary classification is 

achieved based on positive or negative regression.  

 

 
 

Figure 135: CNN architecture for crack classification. 

 

We also implemented a convolutional neural network (CNN). The network architecture can be 

seen in Figure 135. The network has a total of 11 layers and utilized the “adam” gradient descent 

optimization algorithm. Four layers are convolutional utilizing a rectified linear activation 

function. Three layers are maximum pooling layers, there is one flatten layer and 3 dense layers. 

The model was trained for 5 epochs.  
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Figure 136: Date generation through randomization for model training. 

 

The data set consists of 60,000 data instances of 10 separate crack depths of three separate scan 

velocities at four different levels of vibration. The eddy current scans were collected from the 

Michigan State University’s scanning gantry system. Each instance is a text file where each row 

represents an array of resonating frequencies at that rows position of the scan. To work with our 

models these files are first converted to 227x227 RGB images. A crack can be seen as a sharp 

change in contrast. Furthermore, the models are supervised, and thus data need to be labeled 

“positive” or “negative” for model training. This was done by taking a cropped subsection of 

each image that represents a healthy region and a damaged region. Initially both models yielded 

poor results as the images were cropped in the same location for all the data, thus a randomized 

offset anywhere in the range that the damage would still occupy the image as well as a random 

rotation angle between 0 and 180 degrees were generated and applied to each image before 

taking the cropped subsection (Figure 136).  

 

Table 19: Experimental results from the ridge classifier and CNN. 

 
 Ridge Model Convolutional Neural Network 

 Precision Recall F1-Score Support Precision Recall F1-Score Support 

0 0.95 0.95 0.95 29920 0.98 0.99 0.98 29920 

1 0.94 0.94 0.94 30080 0.99 0.98 0.98 30080 

Accuracy   0.95 60000   0.98 60000 

Macro 

avg 

0.95 0.95 0.95 60000 0.98 0.98 0.98 60000 

Weighted 

avg 

0.95 0.95 0.95 60000 0.98 0.98 0.98 60000 

 

We first evaluated the ridge classifier. This approach requires some data preprocessing and 

feature extraction. Each image is first converted to greyscale. We then utilize the canny edge 

detection method to find sharp changes in gradient. We then crop teach image at its bounding 

rectangle and extract the histogram of oriented gradients (HOG) feature. We then flatten this 
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image into a one-dimensional feature vector. Then two machine learning methods were applied 

to classify the feature vectors. From the results listed in Table 19, it is clear that the deep learning 

approach outperforms the regularization approach, thus this is the model we selected for crack 

classification.  

 

B. Machine Learning for Crack Localization and Estimation 

 

As a unique challenge to execute effective repairs, it is not only necessary to classify damage 

accurately, but also feed damage locations into the global map of robot’s environment through 

data fusion. To achieve this goal, simple classification approaches such as the ridge classifier or 

traditional convolutional neural networks are not adequate for this application because they are 

only able to classify whether an object is within an image, but have no awareness of where the 

object is within the image. To address this, an instance-based semantic segmentation method is 

utilized. This approach differs from traditional semantic segmentation in that it can detect the 

number of instances of a certain class instead of grouping them together as a single object. As 

this approach is only concerned with a single object class (damaged area) inside the entire scan 

region and there may exist multiple cracks within the same scan, the proposed instance-based 

approach is ideal for this particular application.  

 

Our approach utilizes a two-staged mask region-based convolutional neural network (mask 

RCNN) as shown in Figure 137. First, data are fed into a traditional CNN for a cropped 

subsection, called an anchor, of each NDE scan image. To support training multiple images per 

batch, all images are resized such that the shortest edge is 800 pixels, but the aspect ratio of the 

original image is preserved. For each, or any, anchor where crack instances are detected, a 

proposal of its bounding box is generated and stored in memory. The next stage merges each 

anchor containing the same instance of detected damage region as a single instance. Lastly, a 

pixel mask is generated for each predicted instance of the damage class. 

 

 
Figure 137: Mask R-CNN process, architecture, and pixel mask generation. 
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To train any neural network model, a sufficiently large training dataset, and for this application, 

NDE data of representative cracks for power plant boiler structures are needed. A dataset with 

the number of required samples is currently not feasible to obtain. This would require NDE scans 

to be collected from hundreds of thousands of naturally occurring cracks in steel plates which is 

too difficult and expensive to carry out at this time. Therefore, a transfer learning approach 

which builds off the Resnet101 pre-trained model is utilized. Resnet101 is a 101- layer CNN, 

which has been pre-trained on dataset containing over 15 million labeled images.  

 

Utilizing this model allows us to build off learned features from other data eliminating the need 

to retrain an entire model. 100 images of representative data instances were annotated and given 

to the model for training, which is implemented on 8 GPUs for 160,000 iterations with a learning 

rate of 0.02, a weight decay of 0.0001 and momentum of 0.9. These parameters were chosen 

because, in addition to minimizing the chance of overfitting, they have been shown to provide an 

optimal balance between training time and premature convergence to a sub-optimal solution. 

Once the model is trained, given an NDE scan containing a damaged region, the model will find 

the location of the damage and generate a pixel mask overlaid onto the scan image at the precise 

location of the damage.  

 

 
 

Figure 138: Normalized frequency shifts with different lift-off distance of the NDE sensor. 

 

After the model has generated pixel masks over boiler damage instances, the location of each 

instance is calculated. The coordinates of a centroid are calculated by dividing the range of pixels 

that the masks occupy in horizontal and vertical directions by two. These image plane locations 

and the distance per pixel in the scan region correspond to where the damage exists on the boiler 

wall. With this information, the robot can then accurately position itself such that its repair probe 
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is able to reach the region in need of repair. The steam corrosion, oxygen corrosion, alkali 

corrosion, and corrosion under the scale are ever-present in a power plant boiler. The rough 

surfaces caused by the corrosions result in the vibration during the movement of the robot. 

Therefore, the lift-off distance of the eddy current coil array may change due to the vibration 

during the inspection, which challenges the reliability of the NDE data.  

 

The eddy current coil array is placed with the lift-off distance in the range from 0 mm to 5 mm 

with a step size of 0.1 mm and 6 mm to 50 mm with a step size of 1 mm to inspect the sample 2. 

As shown in Figure 138, all cracks have been successfully detected quantitatively, where the 

different normalized shifts of the resonance frequency of the eddy current sensor are correlated 

with the different depths of the narrow cracks. The normalized frequency shift decreases slightly 

with the increase of the lift-off distance of the eddy current sensor. According to the results, the 

crack detection capability of the sensor is basically not influenced by the lift-off distance in the 

range from 0 mm to 5 mm. 

 

A crack depth prediction algorithm based on the kernel-based Gaussian Process Regression 

(GPR) is performed to estimate the depth of the cracks obtained at different lift-off distance 

range from 0 mm to 5 mm. There are 50 crack signals obtained at each depth of the cracks. 35 

crack signals are randomly selected from the 50 crack signals in each depth of the cracks to form 

a training dataset. The GPR model is expressed as y = b(𝑥)𝑇𝛽 + 𝑙(𝑥), where: 

 

𝑙(𝑥) ~ 𝐺𝑃(0, 𝑘(𝑥, 𝑥′)), b(𝑥) ∈ 𝑅𝑝 

 

and l(𝑥𝑖) is the latent variable. The Matern 5/2 kernel: 

 

 k(𝑥𝑖, 𝑥𝑗|θ) = 𝜎𝑓
2 (1 +

√5𝑟

𝜎𝑙
+

5𝑟2

3𝜎𝑙
2) 𝑒𝑥𝑝 (−

√5𝑟

𝜎𝑙
) 

 

is used as the covariance function of the Gaussian process, where i is the number of the dataset, 

𝜎𝑙 is the characteristic length scale, 𝜎𝑓 is the signal standard deviation, and:  

 

𝑟 = √(𝑥𝑖 − 𝑥𝑗)
𝑇

(𝑥𝑖 − 𝑥𝑗) . 

 

The trained GPR predicts the values of depths of the testing dataset, which consists of the rest 15 

crack signals of the 50 crack signals in each depth of the cracks. Figure 139 shows the estimated 

depth of the crack obtained from the testing sets using the trained GPR model. Meanwhile, the 

true depth of the crack is also shown in Figure 139 for the comparison. The mean absolute error 

and the root mean square error are as low as 0.0018 mm and 0.002mm. The result shows that the 

developed GPR model can estimate the crack depth with a low estimation error and a high 

degree of prediction accuracy and stability. 
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Figure 139: The true and prediction values using GPR method. 

 

Software System Integration: 

 

All software is managed through the Robot Operating System (ROS). ROS provides a 

convenient framework for managing robotic software. Code is organized into segments called 

“nodes”. ROS then allows for communication between these processes in the form of 

“publishing” or “subscribing” to a certain “topic”.  Figure 140 displays the design.  

 

The architecture is a three-layer system depicted by the colored boxes. The ovals within each 

layer represent the nodes and the arrows between them represent the topics. All sensing and low-

level perception is handled in the perception layer. The color depth node handles the RGB depth 

processing from an Intel Realsense D435 depth camera. The Lidar node handles the low-level 

processing of a 3D laser scan from an Ouster lidar sensor. The IMU node processes the data 

obtained from an inertial measurement unit and the encoder node reads odometry data from the 

robots built in wheel encoders.  

 

All higher-level processing such as robot reasoning through machine learning is handled in the 

cognition layer. Data from all the robotic perception sensors are published and read by the 

odometry fusion node. The odometry fusion node uses a ROS package utilizing an extended 

Kalman filter which eliminates sensor noise as well as provides a better state estimate of the 

robots’ location by fusing the odometry data from the robot’s perception sensors. NDE data from 

the NDE sensor alone are not compatible with our machine learning approaches as a 2-

dimentional image representation of the scan region is needed. Thus, the reconstruction node 

subscribes to the topics published by the NDE sensor and odometry fusion. The node then uses 

this information to fuse the data to the appropriate format. The machine learning algorithm is 
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implemented in the classification node. This node uses a machine learning method to classify the 

damage. The localization node subscribes to both the odometry fusion node and classification 

node. It is the responsibility of this node to track where in the robots local and global map 

damage exists and to command the nodes in the action layer.  

 

The action layer contains two nodes which handle all the physical maneuverability of the robot 

and its repair mechanism. The motor control node is the node which commands the robots built 

in motors which navigate the boiler. The tooling controller node sends commands to the robots 

the low-level Latte Panda computer which handles the xyz motion of the NDE sensor and the 

repair tool end effector. 

 

 
 

Figure 140: Robotic software architecture. 

 

III. Summary and Future Work 
 

 

Boiler failure could cause loss of life and safety issues, cost hundreds of thousands of dollars in 

equipment repairs, property damage and production losses, and drive up the cost of electric 

power. Boiler maintenance is challenging and risky for inspectors working on scaffolding in con-

fined hazardous spaces inside of a boiler and sometimes the space is hard to access. The 

operation is also time-consuming due to the large area of vertical structures for inspection and 

the tremendous effort needed for scaffolding. Recently, the use of robotics (e.g., drones and 

crawlers) in power plants for maintenance has been growing rapidly. However, the existing 

robotics solutions show two notable technological gaps: no repair capability, and no Artificial 

Intelligence (AI) for smart autonomy. 
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The overarching goal of this project focused on developing an integrated autonomous robotic 

platform that is equipped with compact non-destructive evaluation (NDE) sensors to perform 

inspection, operate onboard repair devices in order to perform repair, and use AI for intelligent 

data fusion and predictive analysis for automated and smart spatiotemporal inspection, analysis 

and repair of the furnace walls in coal-fired boilers. The approach to achieve the objective 

includes developing NDE sensors with signal processing techniques, designing and evaluating 

repair devices based on fusion and solid-state technologies, and an autonomous robotic platform 

that is integrated with the NDE sensor and the repair tool. The robot will also be powered by AI 

to automate data gathering (e.g., 3D mapping and damage localization) and predictive analysis.  

 

This project well aligns with the Fossil Energy Objective: “Advance technologies to improve the 

efficiency, reliability, emissions, and performance of existing fossil-based power generation,”  

by developing “advanced sensors and controls to help increase coal plant efficiency, reduce 

forced outages, and avoid downtime related to equipment failures.” Maturing this developed 

robotic technology has the potential to make great impacts in terms of time and cost savings, 

reducing the risk for human operators, and increasing boiler reliability, usability, and efficiency. 

In addition, by developing involving multiple students and faculty members in this research, and 

by generating knowledge and building up collaborations with industrial partners, this project has 

improved the education capabilities, supported long-term fundamental research, and enhanced 

the leadership of the involved universities in energy fields. 

 

This project performs fundamental research to prove the concept of an AI-enabled robot with 

integrated nondestructive evaluation sensors and repair tools. The technological components 

were integrated into a robot system, and we performed system evaluation and validation in the 

laboratory environment. Although the developed system is a good starting point for a further 

robotic solution for boiler wall damage evaluation within power plants, there are still many 

technical gaps existing with further development desired to make this developed system feasible 

in the field. Future follow-up projects may address several future topics:  

 

(1) A major consideration is that many powerplant boiler house walls consist of an array of water 

tubes in addition to simple uniform steel surfaces. These surfaces present a challenge given the 

non-uniform distance of the NDE coil array which results in distorted sensor readings that cannot 

be accurately evaluated by the AI model. Similarly, further improvements are needed to address 

this non-uniform distance for repair. 

 

(2) Improving NDE sensing technology to detect multiple types of damages is a necessary future 

topic. The developed NDE sensor basically only uses a single sensing technology based on eddy 

current and mainly only considers cracks in this project. Several other sensing technologies, e.g., 

based on acoustic sensing and magnetic flux leakage (MFL), can be further developed and used 

together to improve detection accuracy. Improved controls of the sensors are also needed to 

address the issue that the scan along a crack occurs parallel to robot’s direction of travel. In this 

case, the sensor in this project would detect a minimal change in uniformity which may lead to 

damages becoming unclassified. This problem may be addressed by designing an improved 

sensing control method for performing multiple scans along the same surface but in 

perpendicular directions.  
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(3) Further improvement requires the need for a large-scale dataset of representative damages for 

power plant boiler inspection, which requires a large number of NDE data instances for training. 

Relative to what was possible for this project, obtaining this large number of datasets was not 

feasible, nor is the number of datasets to achieve a properly trained system known. Another 

difficulty is the computational complexity of deep learning methods. Deep learning methods 

typically requires significant overhead during training due to the need to run an individual deep 

networks over various regions of the same image. More data-efficient deep learning methods are 

needed to identify cracks, other damages, and in general, anomalies. 

 

(4) It is also possible to further extend the concepts and methods in this project to use a similar 

robotic system for other structural analysis applications from other various energy or civil related 

fields. A closer approximation for full autonomy would in turn significantly improve the results 

from required maintenance within power plants and other energy facilities, in terms of 

decreasing time used to obtain a damage analysis and repair of the system under test, enhancing 

quantitative results for objectifying damages, decreasing the likelihood of cataclysmic system 

failure, and overall improvements in human safety by minimizing human interaction within 

hazardous regions that require inspection.  
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