U.S. Department of Energy National Energy Technology Laboratory

DOE Award No. DE-FE0031625

FINAL REPORT

Robust Carbon Dioxide Plume Imaging Using Joint
Tomographic Inversion of Seismic Onset Time and
Distributed Pressure and Temperature Measurements

Principal Investigator: Dr. Akhil Datta-Gupta

datta-gupta@tamu.edu 979-847-9030

March 25, 2022
Recipient: Texas A&M Engineering Experiment Station
College Station, TX 77845

DUNS Number: 847205572

Project Grant Period: September 1, 2018 and ending December 31, 2021
Reporting Period End Date: December 31, 2021

Report Term or Frequency: Final

—

\ | L
| ) . -'-.‘.M-_’: | Y
Signature of Submitting Official: / (A 1 D'i’ T

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.

1


mailto:datta-gupta@tamu.edu

Acknowledgment:
This material is based upon work supported by the Department of Energy National Energy
Technology Laboratory under Award Number(s) DE-FE0031625.

Disclaimer:

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.



TABLE OF CONTENTS

EXECULIVE SUMIMAIY .. ..o e e e e e e e e e e e e e eeaannnas 5
IO 10T VT 1o o I 7
I I = 7= od (o {0 U o 8
1.2 Objectives of the Project ............uueiiiii e 12
1.3 PUrpose Of thiS DOCUMENT.........uuuuiiiiiiiiiiiieiiiiiiiiiiieiieeeeeeeeeebeeeeeeeeeeeeeeeeenene 13

2.0 Summary of Technical TasksS ..o 14
2.1 CO2 Plume Tracking Using Pressure and Production Data...................... 14

P22 0 1 0T U Tox o] o PP 14
2.1.2 Field Description and Model Calibration............cccoooeeviiiiiiiiiiiiiceeeenn, 14
2.1.3 Model Calibration Results and Validation ..............ccccooeiiiiiiiiiiiinnneenn. 16
2.1.4 CO2 Plume Propagation............coeeeeieuiiiieeiiiiiee e e e e e 19
2.2 Seismic Time-Lapse ‘Onset’ Times for Imaging Front Propagation .......... 20
2.2.1 INEFOTUCTION ... 20
2.2.2 Onset Time as Seismic Observation for Infrequent Seismic Data ...... 21
2.2.3 Onset Time Inversion Workflow..........ccceeeiiriiiiiiiii e 23
2.2.4 Field APPHCAtION ... 23
2.3 Data Assimilation: Using Pressure, Temperature and Production Data for
PIUME IMAGING ..ttt snnnnnne 27
P2 T R g 10T [FTox 1 To] o AU S 27
2.3.2 Thermal Front Propagation............cccouuiiiiiiiiiiie e 28
2.3.3 Inverse Problem Formulation ... 28
2.3.4 Field APPlICAtioN .........oovviiiee e 29
2.4 Field Application: Identifying Well CONNECHIVItIES ............uuvvvviiiiiiiiiiiiiiiinnne 33
P22t 1 10T U T3 1 o] o S 33
2.4.2 Connectivity Inference WOrkflow ..., 34
2.4.3 Penalty Function Accounting for Well Location Information in Deep
LBAIMMIING - 35
2.4.4 Field APPHCAtION ... 35
2.5 Battelle’s Contribution .........cooooeiiiiiei 38
3.0 Summary and COoNCIUSIONS.........cooiiiiiieiiic e 39
4.0 REFEIENCES ...t e e e e e e e eeeee 41

Appendix A. Abstracts for Peer-Reviewed Publications Created by the Project. 57

3



P AP 2 e e e 59
= 101 PPN 60
P AT 4 .. 61
Appendix B. Technical Contribution of the Subcontractor: Battelle Memorial
IS ULE .o 63



Executive Summary

We develop and demonstrate rapid and cost-effective methodologies for spatio-
temporal tracking of CO2 plumes during geologic sequestration using joint
inversion of seismic data and distributed pressure and temperature
measurements. Key elements of our methodology are: (a) a computationally
efficient approach to pressure and temperature propagation, (b) analysis of time
lapse seismic data using a novel ‘seismic onset time’ approach to detect fluid front
propagation, and (c) data assimilation and uncertainty assessment via joint
inversion of pressure, temperature and time lapse seismic data, and (d) validating
the numerical tomographic inversion using a CO2 injection demonstration projects,
specifically data collected from the from the Petra Nova Parish Holdings CCUS
project in the West Ranch Field, Texas and the Chester-16 reef CO2 injection site
in Northern Michigan which is part of the DOE Midwestern Carbon Sequestration
Project. The research team is led by Texas A&M University and includes Battelle
as a subcontractor with support from Shell, Anadarko, Chevron and JX Nippon.

A carbon dioxide (CO2) water-alternating-gas (WAG) pilot was conducted to gain
insights into tertiary oil recovery potential via CO2 flood in the West Ranch Field
as part of the Petra Nova project, the world’s largest post-combustion CO2 capture
and utilization initiative. With a fluvial formation geology and large contrasts in
permeability, this is a challenging and novel application of CO2 enhanced oil
recovery (EOR). We build a predictive dynamic model of the subsurface that
incorporates the multiphase and compositional data acquired during the pilot
operation. The calibrated model is used for the carbon dioxide plume imaging. The
study began with an initialization of the pilot sector model extracted from a
calibrated full-field model. The pilot model calibration follows a two-step
hierarchical workflow. First, we performed a large-scale update of the permeability
distribution by integrating available bottomhole pressure and multiphase
production data. In the second step, local permeability field is fine-tuned using a
streamline-based method to match CO2 breakthrough times at the producers. The
predictive capability of the calibrated model was verified through two blind
validation tests: (1) the model showed good agreement with saturation logs
acquired at two observation wells; and (2) the model reproduced the CO2 recovery
as a fraction of the injected CO2.

The use of seismic onset times has shown great promise for integrating near-
continuous seismic surveys for updating geologic models. In this study, we analyze
the impact of seismic survey frequency on the onset time approach aiming to
extend the application of onset time to infrequent seismic surveys. In addition, we
guantitatively examine the nonlinearity of the onset time method and compare it to
the commonly used amplitude inversion method. We carry out a sensitivity analysis
of seismic survey frequency based on the complete seismic survey data (over 175
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surveys) of steam injection in a heavy oil reservoir (Peace River Unit) in Canada.
Our results show that an adequate onset time map can be obtained from the
infrequent seismic surveys by interpolation between seismic surveys as long as
there is no change in the dominant underlying physics between the successive
surveys. The study also shows that nonlinearity of the onset time method can be -
smaller than that of the amplitude inversion method by several orders of
magnitude. Application to the Brugge benchmark case shows that the onset time
method obtains comparable permeability update as the traditional seismic
amplitude inversion method with faster computation and improved convergence
characteristics.

We extend the streamline-based data integration approach to incorporate
distributed temperature sensor (DTS) data using the concept of thermal tracer
travel time. Then, a hierarchical workflow composed of evolutionary and streamline
methods is employed to jointly history match the DTS and pressure data. Finally,
CO2 saturation and streamline maps are used to visualize the CO2 plume
movement during the sequestration process. The hierarchical workflow is applied
to a carbon sequestration project in a carbonate reef reservoir within the Northern
Niagaran Pinnacle Reef Trend in Michigan, USA. The monitoring data set consists
of distributed temperature sensing (DTS) data acquired at the injection well and a
monitoring well, flowing bottom-hole pressure data at the injection well, and time-
lapse pressure measurements at several locations along the monitoring well. The
history matching results indicate that the CO2 movement is mostly restricted to the
intended zones of injection which is consistent with an independent warm-back
analysis of the temperature data.

In addition to employing simulation models and inverse methods for CO2 plume
imaging, we also initialized a data-driven technology for detecting inter-well
connectivity based on production and pressure data. Our machine-learning
framework is built on the statistical recurrent unit (SRU) model and interprets well-
based injection/production data into inter-well connectivity without relying on a
geologic model. We test it on synthetic and field-scale CO2 EOR projects utilizing
the water-alternating-gas (WAG) process. The validation of the proposed data-
driven inter-well connectivity assessment is performed using synthetic data from
simulation models where inter-well connectivity can be easily measured using the
streamline-based flux allocation. The SRU model is shown to offer excellent
prediction performance on the synthetic case. Despite significant measurement
noise and frequent well shut-ins imposed in the field-scale case, the SRU model
offers good prediction accuracy, the overall relative error of the phase production
rates at most producers ranges from 10% to 30%. It is shown that the dominant
connections identified by the data-driven method and streamline method are in
close agreement.



Texas A&M University, the lead organization in the project, was primarily
responsible for the development of tomographic approaches for CO2 plume
mapping in conjunction with distributed pressure, temperature and seismic onset
time data. Battelle, as a subcontractor, was primarily responsible for the
development of analytical and empirical methods for analyzing transient injection
rate and pressure data from point/line sources such as injection and monitoring
wells. An additional area of emphasis for Battelle was the use of machine learning
for such tasks as inferring reservoir connectivity information from injection-
production data, and identifying variable importance for machine learning-based
proxy models developed from full-physics simulations. The two organizations also
collaborated on the application of the tomographic inversion methodology for a
field data set. The contributions of Battelle as part of this project are documented
in Appendix-B.

1.0 Introduction

The US Department of Energy (DOE)’s ongoing research program on “Safe and
Permanent Geologic Storage of CO2” has resulted in significant advances in our
understanding of site characterization, modeling and monitoring technologies for
CO2 sequestration in deep saline aquifers and depleted oil and gas fields. One
key area of focus within this R&D program has been the development of robust
and cost-efficient monitoring technologies and protocols for tracking CO2 plume
migration in the subsurface. Under this funding opportunity announcement (DE-
FOA-0001725), DOE is seeking the development of technologies for delineating
CO2 plumes through monitoring tools and techniques, uncertainty quantification in
plume boundary detection and field validation of the proposed methods. To that
end, this project seeks to develop and demonstrate a robust methodology for
spatio-temporal tracking of CO2 plumes during geologic sequestration
based on the principle of joint tomographic inversion of seismic, pressure
and temperature data. Our motivation stems from the challenges with
conventional approaches to CO2 plume mapping using geophysical monitoring and
modeling based workflows. The former is expensive, and best suited for relatively
low resolution and mostly qualitative estimates of CO2 saturation distributions,
whereas the latter suffers from non-uniqueness and data sufficiency issues.

Our project addresses these shortcomings by means of a novel data integration
workflow that hinges upon joint inversion of data from multiple monitoring sources.
Our approach utilizes interpreted seismic onset time data at periodic intervals), as
well as more frequently monitored downhole pressure and temperature
measurements, to produce a quantitative assessment of the COgz-saturation
distribution at a higher resolution and with lower uncertainty than with seismic data
alone. Our workflow also employs novel forward and inverse modelling strategies
based on the concept of pressure and temperature “arrival times” which result in
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significant computational-efficiency gains. The methodology will be designed to
handle both CO2-oil-brine systems (i.e., depleted oil fields) and CO2-brine systems
(i.e., saline aquifers), and will be validated using field data from ongoing CO:
injection projects. Figure 1 provides an overview of how the proposed streamlined
workflow from our research compares to the conventional workflow based on
geophysical and pressure monitoring.

Acquire pressure Acquire geophysical Acquire pressure Acquire time-lapse
monitoring data Images and temperature seismic data
(seismic, ERT) monitoring data
- l : Compute seismic
Geologic Inversion for Geologic onset time for
Model saturation proxy Model selected attributes
(velocity, resistivity) J,
v l v K
Inversion for Inversion for diffusivity with Outline of plume
ity wi Predictintial CO2 ressure and temperatur propagation using
permeability with |« - pressure and temperature
. . saturation ma i
multiphase simulator ! P tomography Onse'itlme
. l - . - - Joint inversion
Predictfinal CO2 Predict outline of Predict outline of usillg Dlifferelntial
saturation map CO2 plume CO2 plume Evolution MCMC
Current Workflow Proposed Workflow

Figure 1. Overview of current and proposed workflows for CO2 plume

monitoring.

1.1 Background

Class VI Underground Injection Control (UIC) regulations require both direct and
indirect site monitoring to ensure the integrity of CO2 storage and protection of
drinking water sources. As per Environmental Protection Agency (EPA)
requirements under the UIC Program for CO2z Geologic Sequestration Wells,
operators must perform both direct pressure monitoring at injection and monitoring
wells, and indirect monitoring and modeling of the CO2 plume. Indirect monitoring
methods targeted at tracking CO2 plume movement include “seismic, electrical,
gravity, or electromagnetic surveys and/or down-hole CO: detection tools” (EPA
40 CFR Part 146.90). Information from direct pressure monitoring is used to
calibrate reservoir models, from which the spatial extent of the plume can be
inferred. An overview of these two broad classes of approaches, i.e., ()
geophysical imaging based CO2 plume delineation, and (b) reservoir modeling
based CO: plume delineation, is described next, along with recent work on
combining pressure and temperature monitoring with tomographic inversion, which



has the potential to overcome the challenges of the first approach while leveraging
the second approach.

(a) Geophysical imaging based CO, plume delineation

One successful and well established technique for monitoring and verification in
CO: storage reservoirs is the use of seismic imaging. 3D surveys repeated in time
(i.e., “4-D”) cover the largest spatial scale and its robustness and imaging strength
has been demonstrated at field sites. Advanced seismic processing techniques
are required to image the migration of the CO2 within the storage complex. Time-
lapse (4-D) seismic surveys have been successfully applied to image CO2 plumes
in several CCS field projects including Sleipner (Chadwick et al., 2010), Ketzin
(Ivandic et al., 2015), and Cranfield (Zhang et al., 2013).

As COz2 replaces saline water in saturated sandstone reservoirs, a P-wave velocity
reduction may occur in the inter-well region. This velocity change can potentially
be used to monitor CO2 in sandstone aquifers using seismic tomography based on
inversion of travel times or waveforms in order to infer CO2-induced velocity
changes in the observation plane between the wells. Cross-well seismic and VSP
(Vertical Seismic Profiling) surveys have been carried out in the Frio project
(Daley et al., 2008), Michigan Basin project (Gerst et al., 2013), and Ketzin project
(Bergman et al., 2014), among others.

Geo-electrical methods are suited for monitoring CO: injected into deep saline
aquifers because the electrical bulk resistivity of the medium is highly sensitive to
compositional changes of the pore-filling fluids (Ramirez et al., 2003). As an
example, monitoring of CO2 plume at the Ketzin site in Germany was carried out
using crosshole and surface-downhole ERT with a permanently installed vertical
electrical resistivity array (Schmidt-Hattenberger et al., 2012). In addition, the
inverted resistivity data were used to derive CO:2 saturation estimates, using
petrophysical data from laboratory experiments. In addition, fiber optic Distributed
Acoustic Sensing (DAS) is a relatively recent technology that uses an optical fiber
cable as a sensor for acoustic signals. A series of field tests have been recently
conducted, including: (1) CO2 storage monitoring pilots within an oil field in
Citronelle, Alabama, (2) Otway sequestration pilot project near Warrnambool,
Victoria, Australia, and (3) Ketzin CO: pilot storage site.

Geophysical monitoring methods provide an indirect means of mapping the CO:2
plume based on a surrogate measure (e.g., sonic velocity, gravity, resistivity) and
its projected response to fluid saturation changes based on some theoretical rock
physics model which can have considerable uncertainty. In addition, the methods
have varying degrees of spatial resolution, as well as cost of implementation.
Additional constraints on such methods include technical and economic
challenges if: (a) the CO2 footprint is spatially extensive, (b) COz2 is preferentially
retained in thin high-permeability zones, or (c) CO2z is moving in zones with
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insufficient sonic velocity contrast. Under such conditions there is no reliable
technique currently available for imaging CO2 plumes.

(b) Modeling-based CO, plume delineation

Modeling of CO2-brine flow for geologic sequestration is commonly performed
using research simulators, e.g., TOUGH2 (Pruess et al., 2011) and STOMP- CO:2
(White et al., 2012) or commercial reservoir simulators from the oil industry, e.g.,
CMG-GEM and ECLIPSE. The outcomes of a “forward model”, given a geologic
description of the subsurface, are fluid pressure and phase saturation at each grid
block in the model domain. In the “inverse modeling” step, the goal is to adjust the
geologic description in order to match observed values of time-dependent dynamic
variables such as pressure, fluid saturation, time-lapse seismic and surface
deformation data. Often, fluid saturation data are directly not measured.
Therefore, calibration of the model to pressure and seismic data (if available)
becomes an indirect means of inferring the extent of the CO2 plume migration
based on the simulator output values of fluid saturations.

One of the key challenges with a modeling-based approach to plume tracking is that the
pressure response is influenced by diffusivity (i.e., ratio of permeability to compressibility),
where the saturation prediction is influenced by advective characteristics (e.g., intrinsic
and relative permeability). There is considerable uncertainty in defining field-scale relative
permeability curves, which are typically measured only at the lab scale. Mishra et al.
(2014) showed that non-unique combinations of intrinsic and relative permeability
coefficients can produce similar pressure match, but different estimates of plume migration
(as depicted in Figure 2). In practice, only a few inverse modeling studies can be expected
to be performed during the course of a project because of data and computation
needs. Manual history matching can be time consuming, cumbersome and difficult
to assess. Traditional inverse methods have relied on numerical perturbation or
adjoined-based sensitivity calculations which can be computationally intensive and
difficult to implement because of the complexity of the algorithms and the
requirements of access to the source code. Thus, only a limited number of
snapshots of the spatial extent of the CO2 plume can be realistically obtained from
the periodic inversion of pressure data. The confidence with modeling-based
plume tracking is also likely to be impacted by issues of non-uniqueness (i.e., same
pressure match leads to different plume images) and resolution (i.e., good
pressure match does not automatically imply a good saturation match) as noted
above. Therefore, some of the potential areas of improvement with the modeling-
based approach can be identified as: (a) better resolution and lower uncertainty in
plume delineation, (b) increased frequency, i.e., (near) real-time, in conversion of
pressure data to spatial plume extent, and (c) computational efficiency for routine
field-scale applications.
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(c) Pressure and temperature tomography based plume delineation

Pressure tomography refers to the use of arrival time of a pressure signal from the
injection to the observation well to infer characteristics of the subsurface (e.g.,
hydraulic diffusivity. Over the last two decades, using concepts similar to seismic
inversion, hydraulic (pressure) tomography has developed as an attractive
alternative for characterizing spatially distributed groundwater aquifer properties
(e.qg., Butler et al., 1999; Brauchler et al., 2007; Vasco and Datta-Gupta, 2016).
Here,). One efficient approach for solving the corresponding inverse problem is
based on the approximation of the transient groundwater flow equation by an
Eikonal equation (e.g., Vasco et al., 2000; Datta-Gupta et al., 2001; Brauchler et
al., 2011). This inversion produces tomograms of hydraulic diffusivity (i.e., ratio of
transmissivity to storativity).

Recently, Hu et al. (2015) have suggested that this pressure tomography approach
can be used to map the spatial extent of the CO2 plume. The premise is that CO2
injection creates a transient heterogeneity in the hydraulic properties of the system,
which can then be translated into maps of aquifer diffusivity (mirroring the CO:2
plume migration) via tomographic inversion. However, they point out that
guantitative estimates of the spatial distribution of CO2 saturation are only possible
by calibration with an appropriate multi-phase simulator. To make the approach
computationally feasible, Hu et al (2015) used a single phase emulator to
approximate the multiphase flow of CO2 and brine. Our proposed approach
expands on this idea by advancing the technology in several different areas, as
will be pointed out in the next section.

Distributed temperature surveys are becoming increasingly common to
understand downhole flow conditions, especially in COz injection projects involving
complex well/reservoir domains. The correlated movement of pressure and
thermal pulses in response to CO:2 injection is well known (e.g., Pruess et al.,
2001). In the past, the analysis of temperature data in CO2 projects have been
mostly limited to flow diagnostics based on semi-analytical approach (e.g.,
LaForce et al., 2013). For oil and gas applications, several studies have looked at
the joint inversion of pressure and temperature data for inferring reservoir
properties, and indirectly, the saturation distribution (e.g., Duru et al., 2010; Li et
al., 2011; Ribiero and Horne, 2013). However, the use of an arrival time concept
of the thermal pulse has only been explored recently, and that too in the context of
forward models for two-phase flow in shale gas wells (Cui et al., 2016). We will
build on this experience in the analysis of distributed temperature response to
develop an efficient formalism for modeling temperature ‘front’ propagation and
inversion of distributed temperature measurements along with pressure data,
specifically for the problem of CO2 plume migration.
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(d) Joint tomographic inversion based plume delineation and uncertainty
assessments

In addition to the unresolved issues in seismic and fluid flow modeling, challenges
remain in the area of integrated inversions and uncertainty assessments.
Uncertainty is inherent in dynamic reservoir modeling because of several factors,
the primary ones being the uncertainty in geologic models, errors in forward
modeling and data noise. The uncertainty in reservoir parameters is translated into
uncertainty in reservoir performance for CO2 sequestration that will impact the
economic and operational risk analysis. In the context of the Bayesian inversion,
the solution to the inverse problem is the posterior probability distribution itself.
Therefore, the problem of uncertainty quantification is closely tied to the correct
sampling from the posterior distribution (Efendiev et al., 2008; Ma et al., 2008;
Mondal et al., 2010). Such sampling is nontrivial because the posterior distribution
is defined on a high dimensional space and is not known in a closed form.
Furthermore, the posterior distribution can be both non-Gaussian and multimodal.
This makes rigorous sampling from the posterior distribution extremely
computationally demanding.

Another challenge is the diverse forms of fluid flow and seismic data that can be
potentially conflicting, particularly because of the interpretative nature of the
seismic data. We plan to explore the use of multi-objective algorithms for
probabilistic integration of diverse data types. Use of fast flow simulation for rapid
likelihood computation and faster convergence will be critical to the practical
feasibility of our approach.

1.2 Objectives of the Project

The goal of this project is to develop and demonstrate a rapid and cost-effective
methodology for spatio-temporal tracking of CO:2 plumes during geologic
sequestration using joint tomographic inversion of seismic data and distributed
pressure and temperature measurements. Key elements of our methodology are:
(a) a computationally efficient approach to pressure and temperature propagation
calculations using the Fast Marching Method (FMM), (b) analysis of time lapse
seismic data using a novel ‘seismic onset time’ approach to detect fluid front
propagation , (c) data assimilation and uncertainty assessment via joint Bayesian
inversion of pressure, temperature and time lapse seismic data, and (d) field
validation of the methodology using data collected from ongoing field projects
involving CO: utilization for enhanced oil recovery and frequent time lapse seismic
monitoring. The project team is led by Texas A&M University and includes Battelle
as a subcontractor with support from Shell, Anadarko, Chevron and JX Nippon.

The project will develop a robust and cost-effective methodology for indirect
imaging of CO2 plume using interpreted seismic onset time data at periodic
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intervals, as well as more frequently monitored distributed pressure and
temperature measurements, in conjunction with forward and inverse modeling
strategies that are both novel and computationally efficient. An Eikonal formulation
for pressure and temperature propagation during CO:2 injection will be developed
and solved using the Streamlines and Fast Marching Method, making it well-suited
for field-scale applications. Using the propagation time, ‘the time of flight’, as a
spatial coordinate, the 3-D compositional flow equations will be reduced to 1-D
equation leading to orders of magnitude faster flow simulation and CO2 saturation
calculations. A robust and efficient tomographic inversion scheme will be
developed for determining the spatial distribution of two-phase hydraulic diffusivity
from arrival time of pressure and temperature at observation wells. This will lead
to time-lapse delineation of migrating CO2 plume using the diffusivity discontinuity
concept. The seismic data integration will be carried out based on ‘onset times’ —
the calendar time at which a specified seismic attribute deviates from its
background value. The approach is particularly well suited when we have frequent
seismic surveys as multiple surveys are reduced to a single spatial map of onset
times. This will speed up the inversion significantly. For data integration from
multiple sources and uncertainty quantification in detecting plume boundaries, we
will adopt a Bayesian framework using multiobjective algorithms to define a Pareto
front representing the trade-off between multiple data sets during history matching.
The methodology will be designed to handle both CO:2-oil-brine systems (i.e.,
depleted oil fields) and CO2-brine systems (i.e., saline aquifers), and will be
validated using field data from ongoing CO: injection projects. The outcome of the
proposal will advance CO2 plume mapping protocols using novel forward and
inverse modeling techniques to: (a) reduce cost and uncertainty, (b) satisfy
regulatory requirements, (c) provide continuous monitoring and long-term
durability, and (d) cover a large area with improved accuracy.

The fundamental impact of this research would be to provide a practical and cost-
effective methodology for CO2 plume delineation using routine pressure and
temperature measurements together with seismic data. This will facilitate (near)
real-time monitoring of CO2 plumes in field projects needed to meet current
regulatory requirements which stipulate both direct pressure monitoring at injection
and monitoring wells, and indirect (geophysical) monitoring and modeling of the
CO2 plume. The methodology proposed here considers streamlining the fulfillment
of these two requirements by using rapid tomographic inversion for CO2 plume
monitoring.

1.3 Purpose of this Document

The purpose of this document is to provide an overview of the research completed
under this project. A detailed report for each of the technical tasks has been
prepared and uploaded to the DOE’s reporting website and are available to the
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reader who is interested in more details about the methods and results of the
various tasks. The remainder of this final report provides short descriptions of each
of the major technical task efforts and accomplishments.

2.0 Summary of Technical Tasks

2.1 CO2 Plume Tracking Using Pressure and
Production Data

2.1.1 Introduction

The CO2 EOR technology has been applied in different forms, based on specific
nature and conditions of the oil-bearing formations for optimal oil recovery. These
include continuous CO: injection, Water-Alternating-Gas (WAG) Injection, gravity
drainage, huff-and-puff, and so on. Regardless of the process employed for CO2
EOR, proper reservoir management plays a key role in maximizing the value of the
asset using this technology (Wallace and Kuuskraa, 2014). This includes reservoir
characterization to understand the subsurface flow mechanisms, followed by
generation of optimal strategies for improved conformance. Measures to combat
flow conformance problems become particularly vital for gas injection processes
like CO2 WAG. This is because of both viscous fingering and gravity override
effects, due to differences in multiphase fluid properties including viscosity and
density (Orr, 2007).

This study showcases an example of CO2 plume tracking using pressure and
production data. First, we provide a background and description of the field and
we also discuss the initialization of the pilot model. Second, we report the details
of the pilot model calibration, starting from the model parameterization and the
optimization strategy adopted to reduce data misfits in the global step of the
hierarchical workflow. Next, we describe the local model update algorithm which
utilizes streamline-derived arrival time sensitivities to integrate CO2 breakthrough
times into the pilot model. A discussion of the results and validation of the
calibrated model using auxiliary observed data is presented next.

2.1.2 Field Description and Model Calibration

A pilot CO2 WAG operation was conducted in a mature olil field of fluvial sandstone
geology. In our previous work, multi-year field-wide production data and high-
resolution downhole pressure measurements were successfully integrated into the
full-field model to calibrate the reservoir energy and large-scale spatial variations
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of hydraulic conductivity (Olalotiti-Lawal et al., 2019). High-resolution permeability
field calibration in the second stage of the hierarchical history matching workflow
aided an improved reproduction of the field-wide multiphase production data by
the model. Details of the field description, production history and full-field model
calibration are provided in (Olalotiti-Lawal et al., 2019).
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Figure 2. (a) Pilot model (right) initialization from the full-field high-
resolution geologic model (left). (b) Top view of pilot model (c) Fluid phase

envelopes comparison at virgin reservoir condition and current state.

For this work, the full-field model was converted to a compositional model. A sector
model subsuming the pilot location was generated from the calibrated full-field
model as shown in Figure 2 (a). The pilot CO2 WAG operation was conducted with
an inverted 5-spot pattern flooding. Two observation wells O1 and O2, shown in
Figure 2 (b), were used to acquire reservoir saturation logs to monitor CO2 plume
movement during the pilot period. To ensure physical consistency, phase and
component fluxes at the pilot boundaries throughout the pilot test period were
mapped from the full-field onto the pilot model, as shown in Figure 2 (a) and (b).
Pressure field, phase saturations and component mole fractions were initialized
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directly from the full-field profiles obtained from the compositional simulation of the
multi-year history of the reservoir. As expected, due to variation in fluid
compositions through the long production history of the field, moderate changes in
fluid phase behavior can be noticed between reservoir fluids at virgin conditions
and at the current state. This is shown in comparison of the phase envelopes
(pressure-temperature diagrams) in Figure 2 (c).

The CO2 WAG pilot entails 19 days of COz2 injection followed by 1 year of water
injection. The time series data sets acquired during this operation include
multiphase production data, CO2 mole fraction at the producers and wellhead
pressure data. For all producers and injector, the bottomhole pressure data was
estimated from the wellhead pressure data using a multiphase vertical lift model.

We follow a two-step hierarchical approach for the calibration of the pilot model
(Yin et al., 2011) as described in the general workflow schematic in Figure 3. In
the first step, we focus on a global update of spatial distribution of the model
permeability field and the relative permeability functions. We apply the Grid
Connectivity Transform (GCT) which enables spatial updates of the permeability
field using a small set of basis functions (Bhark et al., 2011; Olalotiti-Lawal and
Datta-Gupta, 2019). In the second step, we fine-tune the pilot model permeability
field by matching CO: arrival times at the producers using the streamline-based
Generalized Travel Time Inversion (GTTI) algorithm (Cheng et al., 2005; Cheng et
al., 2004; He et al., 2002).

Streamline-Based

Compositional Pilot Model Generalized Travel

Genetic Algorithm for

Model Setup

Parameterization

misfit reduction

Time Inversion

+ Initialized with full-field
model

+ Boundary fluxes
imposed from full-field
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+  GCT for permeability

update

« Three phase relative

permeability

« Misfit Defined by Well
Oil Prod. Rate

+ Gas Prod. Rate, and

«  Water prod. Rate

+  WellBHP

¢+ Local permeability

update

*  Minimize mismatchin

CO2 arrival times

True Reconstructed
T e E 2

N

100% dof <2% dof

Figure 3. Hierarchical pilot model calibration workflow

2.1.3 Model Calibration Results and Validation

A plot of the data misfit reduction obtained from GA in the global model calibration
step is shown in Figure 4 (a). Although, the ‘best’ model is selected as the one with
the least data misfit at the end of the 20 generations, we also provide a boxplot of
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the normalized distribution of the parameters in the 80 members of the population
in the last generation in Figure 4 (b).
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Figure 4. Global update results showing (a) data misfit reduction with
generation and (b) normalized distribution of updated parameters
Production matches obtained from the pilot model calibration are summarized in
Figure 5. The initial model response, the model response after the global update

and after the local update are compared with the observed data. The results show
improved matches for all 4 wells in terms of gas production rate.
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Figure 5. Comparison of Gas production Rates (GPR) at each stage of the
model calibration (plot-scale suppressed per operator request).

It is expected that a significant portion of injected CO:z: is trapped in the subsurface
and the proportion recovered provides an indication of the quality of sweep in the
subsurface (Melzer, 2012). A field-wide comparison of COz2 recovery between the
initial and updated models is shown in Figure 6. An early CO2 breakthrough is
obtained from the initial model response and hence, CO:2 recovery is
overestimated. This behavior can be attributed to the preferential flow path of CO2
toward PRD4, as shown in the production responses in Figure 5, resulting in early
breakthrough of CO2 and overall poor CO2 sweep in the subsurface. The CO:2
recovery was brought within the range of the observed data in the field in the
calibrated pilot model. The updated model response also showed good agreement
with the observed data in terms of CO2 breakthrough time.
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Figure 7. Reservoir saturation logs (sigma responses) comparison between
observed data, initial model response and calibrated model response at

observations well O1

Next, we compared the model response with gas saturation logs at an observation
well O1. The locations of the observation well O1 relative to the other wells in the
pilot pattern are shown in Figure 7. The observed data is compared with the gas
saturation profiles at the wells. The wireline measurements serve as proxy for
reservoir saturation logs (sigma responses) so that time variations in the
measurements at specific zones down the observation well indicate gas invasion
through that zone. CO:2 is expected to flow into Zone 2 of the reservoir at the
location of O1 according to the observed data. While this could not be reproduced
by the initial model, the profile is correctly captured in the updated model.

2.1.4 CO2 Plume Propagation

In Figure 8, visual comparisons of the CO2 plume between the initial and updated
models at the end of CO: injection are provided. In all the plots presented, the
plume shape was obtained at a threshold value of 0.3 CO2 model fraction. As
shown in Figure 8, CO2 never flowed towards PRD3 due to the poor hydraulic
connectivity with INJ in the initial model. This was corrected in the updated model
and the simulation response showed CO:2 breakthrough at PRD3 as in the
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observed data. Overall, while CO2 sweep appears to be improved in the updated
model compared to the initial one, both models show preferential CO2 flow within
Zones 1, 2 and 4 and practically no flow in Zone 3.
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Figure 8. Visual comparison of CO2 plume migration between initial and

calibrated models.

2.2 Seismic Time-Lapse ‘Onset’ Times for Imaging
Front Propagation

2.2.1 Introduction

With the development of seismic monitoring technology, the use of time-lapse (4D)
seismic data for characterization of subsurface flow has become increasingly
popular. A number of successful field applications of reservoir management based
on 4D seismic data have demonstrated its power and efficacy (Behrens et al.,
2002; Fahimuddin et al., 2010; Landrg et al., 2001; Landrg et al., 1999; Watanabe
et al.,, 2017; Hetz et al.,, 2017). The integration of 4D seismic data into high-
resolution geologic models usually involves least-squares-based minimization to
match the simulated seismic response and the observed seismic signals
(Dadashpour, Mohsen et al., 2010; Dadashpour et al., 2009; Falcone et al., 2004;
Gosselin et al., 2003; Gosselin et al., 2001; Rey et al., 2009; Rey et al., 2012;
Rwechungura, R.W. et al., 2012; Vasco, 2004; Watanabe et al., 2017; Tang et al.,
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2018). The objective function for the minimization has mostly focused on matching
the seismic amplitude, travel-time, waveform, etc. Such inverse problems are
usually highly nonlinear and ill-posed and can easily cause the solution to
converge to a local minimum, leading to an inadequate history match (Cheng et
al., 2005). More recently, the seismic inversion method based on the seismic onset
times has shown great potential for integrating 4D seismic data into high-resolution
geologic models (Hetz et al., 2017; Vasco et al., 2015; Vasco et al., 2014). Vasco
et al. (2014) introduced the seismic onset time as the calendar time at which a
measured quantity, such as seismic travel time or reflection amplitude, begins to
deviate from its background value. Using the concept of seismic onset time,
multiple sets of 4D seismic data can be converted into a single onset time map,
which can be used for dynamic model updating (Hetz et al., 2017).

In the previous research, the onset time approach has shown its efficacy and
robustness for integrating frequent seismic surveys where the propagation of
saturation front could be captured in detail with the short time span between
seismic surveys. However, due to the high cost associated with conducting seismic
surveys, frequent seismic surveys are usually not commonly available. For most
field situations, seismic surveys are usually conducted more infrequently, typically
in months or years. To overcome the lower time resolution in infrequent seismic
data, we examined the use of various interpolation methods to calculate the onset
time map. We also demonstrate the advantage of onset time approach for seismic
data integration by comparing the onset time inversion method with the traditional
seismic amplitude inversion method using the Brugge benchmark case. Moreover,
the nonlinearity associated with these two methods has been quantitatively
investigated.

2.2.2 Onset Time as Seismic Observation for
Infrequent Seismic Data

The onset times (Vasco et al., 2015) are defined as the calendar times at which
the measured time-lapse attributes begin to deviate from their initial or background
values above a pre-defined threshold value. Using the onset time approach,
multiple sets of time-lapse seismic data can be converted into a single onset time
map, which represents the propagation of the change (change in the fluid
saturation, pressure, temperature, etc.) within the reservoir.

To illustrate the onset time approach, a 2D synthetic case with five-spot
waterflooding pattern is shown below (Figure 9). Consider that 5 sets of time-lapse
seismic surveys were conducted over a perid of 2200 days. Every two consecutive
seismic surveys are either 400 or 600 days apart, rather sparse in time. The
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observed acoustic impedance maps and the methodology to calculate the onset
time map for these infrequent seismic surveys are shown in Figure 10.
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Figure 9. 2D (50x50) waterflooding case
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Figure 10. Onset time calculation for infrequent seismic surveys
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2.2.3 Onset Time Inversion Workflow

Prior model and
Observed data
i
—| Forward Simulation
!
Calculate Seismic Onset Time
Using Petro Elastic Model

Data Misfit < tol

lterate or n_iter = iter_max

I Trace Streamline |
!
l Compute Sensitivity |

!

Update model
(Solve Inversion)

Figure 11. Onset time inversion workflow

The onset time map is a valuable representation of the propagation of change in
the reservoir, which can be used for dynamic modeling and model calibration
through a history matching process. The onset time inversion workflow for
integrating time-lapse seismic data is shown in Figure 11. The objective of seismic
inversion is to update the prior model parameter based on the observed seismic
data. The seismic inversion is conducted in an iterative manner by updating the
reservoir model parameters until a desired match between the simulated onset
time map and the observed seismic onset time map is achieved.

2.2.4 Field Application

The Brugge field model was designed for a benchmark project to test the combined
use of history matching and waterflooding optimization workflow (Peters et al.,
2010). The structure of Brugge field shown in Figure 12. There are 20 producers
located at the top of the dome within the oil-rich region. 10 peripheral water
injectors provide pressure support in addition to the bottom aquifer. The injection
rate is 10,000 bbl/day and the producers are constrained with a liquid production
rate of 5,000 bbl/day.
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Figure 12. Initial water saturation of Brugge model with blue color showing

the bottom aquifer and red color showing the oil on the top of the dome

The reference model is used to generate the observed seismic data every year
since the beginning of the waterflooding process. The observed acoustic
impedance maps are shown in Figure 13. Using a threshold value of an increase
of 0.8% of the initial acoustic impedance, the interpolated onset time map is
obtained as shown in Figure 14.
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Figure 14. Observed onset time map (layer 7)
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We compare the inversion performance of onset time method based on a single
onset time map with the amplitude method based on 5 acoustic impedance change
maps. The 5 sets of acoustic impedance change maps are the differences between
consecutive acoustic impedance maps. The quality of model update, convergence
performance, and CPU time are compared. Additionally, the nonlinearity
associated with these two methods are quantitatively investigated.

The permeability updates for the selected layer 7 are shown in Figure 15. The
updates in the model via onset time inversion and amplitude inversion are found
to be similar. Both updated models give better water cut matches than the initial
model. Among the 20 producers, all the wells with water breaking through show
improved water cut predication than the initial model. Two wells, producer 3 and
16 are shown for illustration in Figure 16. However, the onset time approach is
more efficient and converges faster than the amplitude inversion method. Figure
2Figure 17 shows the comparison of the reduction of normalized data misfit and
the CPU time. The onset time inversion method converges much faster than the
amplitude inversion method, obtaining 2 times more error reduction after 15
iterations. Additionally, the onset time method costs one sixth computational time
of the amplitude inversion method.
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Figure 15. Comparison of permeability change (layer 7) with black circles
indicating areas with similar permeability updates, (a) change required
(reference - initial), (b) onset time updates obtained (onset time updated -

initial), (c) amplitude updates obtained (amplitude updated - initial)
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The superior convergence performance of onset time method results from its
advantage of being more linear than the amplitude inversion method. The
maximum nonlinearity values for each iteration are compared in Figure 18. Clearly,
it can be seen that the nonlinearity of onset time method is not only much sparser
in space but also much smaller in magnitude.

LE+15
1LE+14 |
& LEFD
= 1EH2 | !
£ 1E
T LE0
7~ + L H
y, LEW9 6~7 orders of magnitude
S 1LE+08 |
=
LE+T E
LE+06
1 2 3 4 5 6 7 & 9 10 11 12 13 14 15
Number of Iterations
-~ Onset Time Max —o-Amplitude 1st Max
—— Amplitude 2nd Max —+—Amplitude 3rd Max

—=— Amplitude 4th Max
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2.3 Data Assimilation: Using Pressure,
Temperature and Production Data for Plume
Imaging

2.3.1 Introduction

Injecting CO2 into the subsurface poses certain risks, including CO2 leakage
through wells or non-sealing faults into groundwater or to the earth’s surface
(Ennis-King and Patterson 2002; Tsang et al. 2002; Hesse and Woods 2010).
Monitoring and risk assessment of the subsurface CO2 movement during injection
and post-injection periods are necessary in these projects. Many CO2 monitoring
studies based on different types of data are found in the literature, such as time-
lapse seismic (Li, G. 2003; Rey, A. et al. 2010), gravity measurements (Nooner et
al. 2007), well logging (Yamaguchi et al. 2006), surface deformation via satellite
imaging (Mathieson et al. 2007), distributed temperature and pressure data
(Mawalkar, S. et al. 2019).

Distributed Temperature Sensoring (DTS) provides high resolution time-lapse
temperature measurements along a fiber-optic line. Nunez-Lopez et al. 2014
performed a study at an onshore COz2 injection site in the U.S. Gulf Coast that
identified the arrival of CO2 plume at monitoring wells using DTS data. Miller et al.
2016 demonstrated the ability of DTS technology for downhole temperature
monitoring purposes during CO:2 storage process at Petroleum Technology
Research Council’'s Aquistore storage site. Mawalkar et al. 2019 demonstrated a
warmback analysis using DTS data for monitoring injection of COz2 into a depleted
oil reservoir. However, the inferences drawn from the warmback analysis were
qualitative. This study will introduce the streamline method (Datta-Gupta and King
2007; Datta-Gupta, Xie, et al. 2011; Chen et al. 2021) to quantitatively apportion
volume of COzq injection into various formations.

To quantitatively analyze CO2 injection and plume evolution, we first developed
the streamline-based history matching method to account for the thermal process
and DTS data and validated this algorithm using a 2D synthetic case. Then, the
proposed method is combined with Genetic Algorithm (GA), establishing a
hierarchical workflow that assimilates Distributed Temperature Sensoring (DTS)
data, bottom-hole pressure (BHP) data and behind-casing pressure sensor data
collected from the Department of Engergy Midwestern carbon sequestration
project in Northern Niagaran Pinnacle Reef reservoir in Michigan. The history
matched model is then used for plume evolution visualized by streamline.
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2.3.2 Thermal Front Propagation

The transit of a neutral tracer under the influence of a velocity field can be
characterized by the Time of Flight (TOF) (Datta-Gupta and King, 2007). The
calculation of TOF, 1, along an arbitrary flow path or streamline @ can be
mathematically expressed as:

o [0 M

u(r)

where ¢(r) is the porosity, u(r) is the Darcy velocity, and dr is the distance
element along the streamline.

Similarly, assuming that the heat transport during a CO: injection process in the
subsurface is dominated by advection (Lake, 1989), the propagation of a thermal
tracer can be characterized by the thermal tracer TOF, whose calculation can be
obtained by modifying the above equation with a thermal retardation factor (R)
(Somogyvari and Bayer, 2017):

(2)

. :J- #(r)dr
© L R(MNu(r)

where 7, is the travel time of the thermal tracer and R is the thermal retardation

factor that describes the lag in the travel time of heat relative to a neutral tracer. R
depends on the porosity and the heat capacities of the fluid (Cs) and the rock (Cy)

(R=C//(¢C)).

In this work, we incorporated the concept of thermal tracer TOF in the existing
streamline-based inversion workflow, enabling the streamline method for the DTS
data history matching.

2.3.3 Inverse Problem Formulation

The mathematical formulation behind the streamline-related inverse problems has
been discussed in detail (Vasco and Datta-Gupta, 1999; He et al. 2002), where a
penalized misfit function is defined as below:

l6d =SSR +4, || 6R[+4, || L6R|| 3)

where 0d is the data misfit, S is the sensitivity matrix with respect to gird properties
and JOR corresponds to the change in the reservoir properties, which is grid
permeability in this study. The second component, called the norm constraint,
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penalizes deviations from the prior model, keeping the changes small to preserve
the geology. The third component is the roughness constraint, which is calculated
by the Laplacian matrix L and used to avoid unrealistic sharp changes applied to
the geologic model. B1 and B: are tuning weights applied to the penalty terms and
there are guidelines in the literature for selecting them (Parker 1994). The
penalized misfit function is minimized by an iterative workflow as shown in Figure
19. The inversion is conducted in an iterative manner by updating the reservoir
model parameters until a desired match between the simulated DTS and the
observed DTS is achieved.
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Figure 19. Diagram of streamline history matching workflow

2.3.4 Field Application

We applied our proposed DTS integration algorithm, combined with Genetic
Algorithm (GA), to CO: injection project located at the Northern Niagaran Pinnacle
Reef Trend (NNPRT) in Michigan, which is part of the DOE’s Midwest Regional
Carbon Sequestration Partnership (MRCSP).

The Midwest Regional Carbon Sequestration Partnership (MRCSP) was
established in 2003 to assess the technical potential, economic viability and public
acceptability of carbon capture, utilization and storage (Gupta et al. 2014). This
COz2 injection project is part of the MRCSP and more than 1 million metric tons of
CO:2 has been injected into Niagaran pinnacle reefs. Figure 20 shows a map-view
and three-dimensional view of the Chester 16 reef with one CO:2 injection well
(Chester #6-16) and one monitoring well (Chester#8-16). The Chester 16 reef
includes two distinct reef cores close to one another.
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Figure 20. (a) Map-view of Chester 16 reef; (b) 3D view of the model

This study utilized a combination of pressure and temperature measurements,

including bottom-hole pressure of

injection well, distributed pressure

measurements from four behind-casing sensors in monitoring well and DTS data
of both injection well and monitoring well (Figure 21).
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Figure 21. Observed dataset: (a) Bottom-hole pressure of injector; (b)

Distributed pressure measurements from four behind-casing sensors in

monitoring well; (c) DTS data at injector; (d) DTS data at monitoring well

A hierarchical history matching workflow by combining Genetic Algorithm (GA) and
the proposed streamline-based inversion algorithm was applied to assimilate the
above observed dataset, where distributed pressure measurements and bottom-
hole pressure of injector were matched using GA by tuning several reservoir
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parameters selected from a sensitivity analysis and then, DTS data was integrated
by the streamline-based inversion algorithm by changing grid permeability.

Pressure matching results are shown in Figure 22, where black dots denote the
observed data and lines show the simulation results where the blue line is the
results for the initial model, grey lines are for the best 7 realizations and the best
model is highlighted by the red line. All the selected models reasonably replicate
the observed well performance. The best-calibrated model will then be passed to
the local calibration process to incorporate DTS data into the calibration process
by changing grid permeability using streamline-based inversion approach.
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Figure 22. Pressure history matching results after GA

The DTS data inversion result is shown in Figure 23, where a significant decrease
of the misfit could be observed during the inversion iterations (Figure 23 (a)),
around 70% reduction after 10 iterations. The thermal tracer onset time is also
calculated along the wellbore before and after model update (Figure 23 (b)). The
black circle denotes the onset time calculated from the observed DTS data, dashed
line is the initial simulation results, the black line is the updated simulation results
and we could observe a good match between the updated simulated results and
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the observed data. Figure 24 shows the comparison of permeability distribution
after DTS inversion.
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Figure 23. DTS inversion results in terms of thermal tracer onset time
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Figure 24. Permeability distribution of (a) initial model; (b) updated model

Streamlines representing the CO2 plume are traced at the end of the simulation for
both the best-matched model after pressure matching and the final updated model
after streamline-based DTS inversion and the results are compared in Figure 25.
The streamline time of flight maps (Figure 25 (a)-(b)) and streamline temperature
maps (Figure 25 (c)-(d)) show a faster CO2 propagation and thermal tracer
propagation after the history matching. Another observation is that the flow path
before and after local calibration are similar, since the streamline-based inversion
is designed to preserve the prior geologic model.
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Figure 25. 3D Streamline flow path and COz2 front visualization at the end of

simulation: (a) time of flight of best-matched model from GA; (b) time of
flight of updated model after DTS inversion; (c) temperature along
streamline of best-matched model from GA; (d) temperature along

streamline of updated model after DTS inversion

2.4 Field Application: Identifying Well
Connectivities

2.4.1 Introduction

Conventional methods for assessing well connectivity include tracer tests (Zhang
et al. 2016, Suarsana and Badril 2011) and numerical simulation-based techniques
such as streamlines (Datta-Gupta and King 2007). Extensive literature has shown
the capacity of streamlines over a variety of grid systems, including Cartesian grids
(Pollock 1988), corner point grids (Cordes and Kinzelbach 1992; Jimenez et al.
2010), unstructured grids (Prevost et al. 2002; Rasmussen 2010; Zhang et al.
2011; Zuo et al. 2021), embedded discrete fracture models (Chen, Onishi, et al.
2020), dual porosity single permeability models (Chen, Yang, et al. 2020) and dual
porosity dual permeability models (Chen, Yao, et al. 2020).

Major limitation of the above-mentioned works is the tremendous time cost to
model general non-linearity in production trends arising from factors such as
varying GOR and frequent shut-ins. A potential way to redress this shortcoming is
by using a universal approximator like neural networks that can theoretically model
any measurable function to an arbitrary degree of accuracy (Hornik et al. 1989).
An extension of the neural network to sequential data, called the recurrent neural
network (RNN), was first introduced by Hopfield (1982) and later by Rumelhart et
al. (1986). From thereon, RNNs have been applied to various applications ranging
from handwriting and speech recognition (Graves et al. 2008, Dutta and Sarma
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2012) to regression applications such as trade forecasting (Dunis and Huang
2002) and hydrological forecasting (Coulibaly and Baldwin 2005). In the past,
RNNs have been applied successfully to oil and gas problems such as formation
top detection (Sen, Ong, et al. 2020), well-control optimization (Kim and Durlofsky
2021) and production prediction (Tian and Horne 2017 and 2019, Bao et al. 2020).
However, connectivity detection based on RNN models is not yet demonstrated.

The statistical recurrent unit (SRU) was introduced by Oliva et al. (2017) as an un-
gated alternative to more complex RNN architectures such as LSTMs (Hochreiter
and Schmidhuber 1997) and GRUs (Chung et al. 2015). The SRU was shown to
capture long term dependencies at least as much as the latter models, simply by
using moving averages of temporal information at different scales. Therefore, the
SRU architecture is simpler and more interpretable compared to LSTMs and
GRUSs, enabling easier training and incorporation of additional constraints such as
well locations.

Variable importance is an assessment of the contribution of each input on the
output (Breiman 2001). It can be a promising method of inferring well connectivity
from a data-driven model. That is, the variable importance computed from an
explainable data-driven model, should ideally correspond to the actual influence
that an input signal (such as those from an injector) has on the output (production
at producer). In this way, an explainable and predictive data-driven model may be
used to derive insights on the actual reservoir connectivity in a quick and efficient
way, without the need to run computationally costly reservoir simulations.

With the above in mind, we propose a SRU based framework for inferring inter-
well connectivities. The proposed method contains two key components: SRU
model specifically framed to the CO2 WAG problem and the inter-well connectivity
assessment based on the SRU model and variable importance calculation.

2.4.2 Connectivity Inference Workflow

The general workflow for connectivity inference is shown in Figure 26. The first
step (Figure 26 (a)) is to fit a machine learning model to the data. In our application,
we train an SRU model for each producer that predicts its gas production rate given
the producing pressure and injector-wise injection rates. The next step (Figure 26
(b)) is to ensure the reliability of the proxy model by testing its performance on a
dataset that has not been seen during training (test set). A model with good
predictive power on the test set is an indication that the connections that it learned
during training are representative of the true connections that exist in the field.
Once we have a reliable model, we can quantify the influence of any injector on
the producer by computing the permutation variable importance (Breiman 2001)
which quantifies the contribution of injector’s rates in the accuracy of prediction of
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producer’s gas production. In this way, a variable importance map can be plotted
showing the major connections in the field (Figure 26 (c)).
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Figure 26. Connectivity inference workflow using machine learning

2.4.3 Penalty Function Accounting for Well
Location Information in Deep Learning

We introduce a penalty function for training the SRU in such a way that long
injector-producer connections whose distance are calculated from well location
information are automatically penalized during training. This way, the importance
of each injector on the predicted producer is decided by the data and training
process. This is realized by minimizing a loss function, given in Eq. 4, which has
an extra regularization term along with the usual MSE loss.

T i (Nwi 4)
1 2
Loss = TZ((yabs@ ~Vorea®) Y. {leiil} d

i=1 \j=1

The absolute value of these weights (w;;, w;,, ..., wyy, ) are multiplied with the

distance from the producer to the i injector and summed together. This sum is
multiplied by a penalty coefficient ¢ and added to the MSE to obtain the loss
function that is minimized during training. This way, long connections are
automatically penalized more and the strength of the regularization is set by the
penalty coefficient, c in this expression.

2.4.4 Field Application

The proposed methodology was applied to a model cut out from a real field case
(Petra Nova) introduced by Olalotiti-Lawal, Onishi, Kim, et al. (2019), which
focused on a CCUS project wherein a mature oil field under CO2 was subjected to
water-alternating gas injection.
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Figure 27. Field-scale case model description showing well configuration
and heterogeneity (areal and vertical).
The injectors are operated under the rate constrained mode with realistic injection
rate schedules, producers operated under stable BHP conditions, and both having

intermittent periods of shut-in. A flowchart showing the application of the penalty-
based SRU to infer well connectivity for the field-scale case is given in Figure 28.

Step 1: Step 2: Step 3:
Selection of penalty SRU Training (85%) and Testing Connectivity Map using
coefficient (15%) Variable Importance
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Figure 28. The application of the penalty-function based SRU workflow to
the field-scale case. First, a number of SRU models with different penalty
coefficients are trained and the best value of penalty coefficient is chosen
to be 0. 0003.Secondly, the SRU with the chosen penalty coefficient is
trained on 85% of the data and tested on the rest 15% to verify prediction.
Finally, we compute the permutation variable importance and generate the
connectivity map.

The resulting regression performance is shown in Figure 29. Since we have 14
producers, we only show the wells corresponding to P10, P50 and P90 relative
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errors in Figure 29 (b). For example, out of all the wells for which we make
predictions, producer P-9 exhibits one of the best testing performances, whereas
P-4 represents the median prediction performance. Likewise, producer P-2, whose
relative test error corresponds to P90 in the error distribution indicates one of the
worst regression performances of the SRU in this case.
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Figure 29. (a) The distribution of the relative test error for all 14 producers,
computed as shown in Eq. 8. (b) A selected number of regression fits
(corresponding to P90, P50 and P10 errors) are shown. The left panel

shows the regression fit for the training and test regions. The middle panel

shows the test region zoomed in for better clarity. The right panel shows
the cumulative gas production as per observed data and the SRU
predictions.

Subsequently, the permutation variable importance was computed for each
injector-producer pair. We validate the connectivity map based on SRU variable
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importance by comparing with the streamline-based connectivity maps (Figure 30).
The top panel Figure 30 (a, b) shows all the connections inferred by both methods.
The strong fluxes were filtered by setting a threshold on the normalized
connectivities and plotted in the bottom panel Figure 30 (c, d). It is seen that the
strong connection inferred by the SRU is in almost perfect agreement with those
based on streamlines. However, we see that the inferences of weaker fluxes are
highly unreliable and indicates the need for a better model, which may be achieved
with more data.
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Figure 30. Connectivity maps generated from the proposed methodology

compared with average streamline fluxes. The proposed method picks up
all strong fluxes even though the inference of weak fluxes is highly

uncertain

2.5 Battelle’s Contribution
Texas A&M University, the lead organization in the project, was primarily

responsible for the development of tomographic approaches for CO2 plume
mapping in conjunction with distributed pressure, temperature and seismic onset
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time data. Battelle, as a subcontractor, was primarily responsible for the
development of analytical and empirical methods for analyzing transient injection
rate and pressure data from point/line sources such as injection and monitoring
wells. An additional area of emphasis for Battelle was the use of machine learning
for such tasks as inferring reservoir connectivity information from injection-
production data, and identifying variable importance for machine learning-based
proxy models developed from full-physics simulations. The two organizations also
collaborated on the application of the tomographic inversion methodology for a
field data set. The contributions of Battelle as part of this project are documented
in Appendix-B.

3.0 Summary and Conclusions

The following are the major conclusion for CO2 Plume Tracking Using Pressure
and Production Data (section 2.1):

e A two-stage model calibration involving a global update followed by local
update is applied to a CO2 EOR pilot. The global update is directed towards
matching field wide reservoir energy and gross fluid movement while the
streamline-based local update is used to match the well-wise oil rate, gas
rate, water cut and COz2 production. Historical boundary fluxes from a history
matched full field model is imposed at the pilot boundaries to rigorously
account for the fluid movement in the field.

e Our model calibration method resulted in an updated model with good
predictive capability. The calibrated model was validated by comparing with
two sets of independent observation data: the CO2 recovery and saturation
logs at two observation wells. The updated model shows good agreement
with the observed data in terms of CO2 recovery and captures major trends
in the reservoir saturation log.

e We further analyzed the implication of the model calibration results using
flow diagnostics, particularly the Lorenz curves and tracer sweep
efficiencies. The results revealed that hydraulic connectivity is
underestimated in the initial model, and are consistent with flow responses
at the producers and the CO2 plume migration.

The following are the major conclusion for Seismic Time-Lapse ‘Onset’ Times for
Imaging Front Propagation (section 2.2):

e The sensitivity analysis of the impact of seismic survey frequency shows
that a useful onset time map can still be extracted from the infrequent
seismic data through interpolation between successive surveys.

e The onset time approach is not effective if there is a change in the dominant
underlying physics that is not captured by the seismic surveys, such as
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changing from saturation dominated case to pressure and temperature
dominated case. The change in the dominant physics will result in the
change of seismic response and the interpolation may not give an accurate
approximation to the true seismic response.

The inversion performance of the onset time inversion method was
compared with traditional seismic amplitude inversion method. The Brugge
benchmark case shows that onset time inversion method obtains
comparable model update while being more efficient because of the
significant data reduction obtained from converting multiple sets of seismic
data into a single onset time map.

The nonlinearity associated with the onset time inversion and amplitude
inversion method was quantitatively investigated. It is found that the
nonlinearity in onset time inversion is not only spatially sparser, but also is
smaller than the amplitude nonlinearity by several orders of magnitude. The
smaller nonlinearity contributes to the superior convergence performance
and more robust inversion result of the onset time inversion method.

The following are the major conclusion for Data Assimilation: Using Pressure,
Temperature and Production Data for Plume Imaging (section 2.3):

The thermal tracer TOF and the GTT misfit derived from the DTS data are
incorporated into the streamline-based history matching workflow for the
first time.

A hierarchical history matching workflow incorporating GA and the
proposed streamline-based DTS data inversion method is applied to a field
CO2 Sequestration project in Michigan. The misfits of the distributed
pressure measurements and DTS data at both injection well and monitoring
well are significantly reduced. The thermal tracer onset time profile and
individual temperature curves show great improvements.

The CO2 plume is imaged by streamlines generated from the history
matched model. The visualization shows that the vertical movement of CO2
is restricted, and CO2 stays in the targeted injection zone, which is
consistent with an independent warmback analysis of the temperature data.

The following are the major conclusion for Field Application: Identifying Well
Connectivities (section 2.4):

The inputs, outputs and loss function of the SRU model are customized to
the CO2 WAG problem. We perform input feature selection to capture
underlying patterns with limited data. A penalty function is introduced to
include well location information for regularizing the neural net weights.
Streamlines are used for quantifying physics-based inter-well connectivity
for comparison with the SRU model.
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e Synthetic and field-scale tests show that the dominant connections
identified by the data-driven SRU method and streamline method are in
close agreement. Moreover, time-cost for the data-driven method is trivial.
This makes the proposed method highly efficient and advantageous for
practical field applications.
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Paper 1

Feyi Olalotiti-Lawal, Tsubasa Onishi, Akhil Datta-Gupta, Yusuke Fujita, Daiki
Watanabe, Kenji Hagiwara, Model calibration and optimization of a post-
combustion CO2 WAG pilot in a mature oil field, Fuel, Volume 255, 2019, 115810,
ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2019.115810.

Carbon Dioxide Enhanced Oil Recovery (CO2 EOR) technology is a proven and
mature technology that has been profitably adopted in rejuvenating and sustaining
mature fields for almost half a century (Wallace and Kuuskraa, 2014). CO: is
injected into an oil-bearing formation during which it contacts, mixes with and
mobilizes in situ residual oil. Beginning from early 1972 when the CO2 EOR
technology was first commercially deployed in the SACROC unit in the Scurry
county of Texas (Crameik and Plassey, 1972), the oil and gas industry has
witnessed a widespread adoption of the technology for enhancing the value of
mature assets, especially in North America. In 2012, an average of 282,000 bbl/D
of oil was produced by CO2 EOR in the United States and the number is projected
to rise over 600,000 bbb/D by the year 2020 (Wallace and Kuuskraa, 2014).
Although most applications have been in depleted oil reservoirs in the onshore
environment including sandstone, carbonate (Wilson and Monea, 2004) and
recently in unconventional tight formations (Ghaderi et al., 2012; Han and Gu,
2014), offshore application of the technology has also started drawing attention
(Pham and Halland, 2017). Recently, chemically enhanced water alternating
gas/CO2 method has received attention from the oil and gas industry and the
studies are well summarized in Kumar and Mandal, (2017). In addition, Residual
Oil Zones (ROZs) are beginning to generate interests due to its potentially
substantial value creation through CO2 EOR (Melzer, 2006).

The CO2 EOR technology has been applied in different forms, based on specific
nature and conditions of the oil-bearing formations for optimal oil recovery. These
include continuous CO: injection, Water-Alternating-Gas (WAG) Injection, gravity
drainage, huff-and-puff, and so on. Regardless of the process employed for CO2
EOR, proper reservoir management plays a key role in maximizing the value of
the asset using this technology (Wallace and Kuuskraa, 2014). This includes
reservoir characterization to understand the subsurface flow mechanisms,
followed by generation of optimal strategies for improved conformance. Measures
to combat flow conformance problems become particularly vital for gas injection
processes like CO2 WAG. This is because of both viscous fingering and gravity
override effects, due to differences in multiphase fluid properties including viscosity
and density (Orr, 2007). Mitigating conformance issues typically starts with
precautionary screening of potential reservoirs (Taber et al., 1997a; Taber et al.,
1997b). Development of selected reservoirs then requires effective field
management procedures for optimal operational strategies, well placements as
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well as fluid rates, taking into cognizance subsurface geological features and
existing flow dynamics (Mgyner et al., 2015; Onwunalu and Durlofsky, 2011,
Passone and McRae, 2007; Sarma et al., 2005; Zhou et al., 2012).

This paper is organized as follows: First we provide a background and description
of the field and we also discuss the initialization of the pilot model. Second, we
report the details of the pilot model calibration, starting from the model
parameterization and the optimization strategy adopted to reduce data misfits in
the global step of the hierarchical workflow. Next, we describe the local model
update algorithm which utilizes streamline-derived arrival time sensitivities to
integrate CO2 breakthrough times into the pilot model. A discussion of the results
and validation of the calibrated model using auxiliary observed data is presented
next.

Paper 2

Tian Liu, Hongquan Chen, Gill Hetz, Akhil Datta-Gupta, Integration of time-lapse
seismic data using the onset time approach: The impact of seismic survey
frequency, Journal of Petroleum Science and Engineering, Volume 189, 2020,
106989, ISSN 0920-4105, https://doi.org/10.1016/j.petrol.2020.106989.

The use of seismic onset times has shown great promise for integrating near-
continuous seismic surveys for updating geologic models. However, due to the
high cost of seismic surveys, such frequent seismic surveys are not commonly
available. In this study, we focus on analyzing the impact of seismic survey
frequency on the onset time approach aiming to extend the application of onset
time to infrequent seismic surveys. In addition, we quantitatively examine the
nonlinearity of the onset time method and compare it to the commonly used
amplitude inversion method.

We carry out a sensitivity analysis of seismic survey frequency based on the
complete seismic survey data (over 175 surveys) of steam injection in a heavy oil
reservoir (Peace River Unit) in Canada. Data sets of different survey frequencies
are generated by sampling at various time intervals from the complete data sets.
Onset time maps based on different survey frequencies are calculated. Our results
show that an adequate onset time map can be obtained from the infrequent
seismic surveys by interpolation between seismic surveys as long as there is no
change in the dominant underlying physics between the successive surveys.

In terms of robustness of the inversion methods, nonlinearity of the onset time
method can be smaller than that of the amplitude inversion method by several
orders of magnitude. Application to the Brugge benchmark case shows that the
onset time method obtains comparable permeability update as the traditional
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seismic amplitude inversion method with faster computation and improved
convergence characteristics.

Paper 3

Yao, Changqing , Chen, Hongquan , Onishi, Tsubasa , Datta-Gupta, Akhil ,
Mawalkar, Sanjay , Mishra, Srikanta , and Ashwin Pasumarti. Robust CO2 Plume
Imaging Using Joint Tomographic Inversion of Distributed Pressure and
Temperature Measurements. Paper presented at the SPE Annual Technical
Conference and Exhibition, Dubai, UAE, September 2021.
doi: _https://doi.org/10.2118/206249-MS (Intl. Journal of Green House Gas
Control, in review).

Geologic CO2 sequestration and CO2 enhanced oil recovery (EOR) have received
significant attention from the scientific community as a response to climate change
from greenhouse gases. Safe and efficient management of a CO2 injection site
requires spatio-temporal tracking of the CO2 plume in the reservoir during geologic
sequestration. The goal of this paper is to develop robust modeling and monitoring
technologies for imaging and visualization of the CO2 plume using routine
pressure/temperature measurements.

The streamline-based technology has proven to be effective and efficient for
reconciling geologic models to various types of reservoir dynamic response. In this
paper, we first extend the streamline-based data integration approach to
incorporate distributed temperature sensor (DTS) data using the concept of
thermal tracer travel time. Then, a hierarchical workflow composed of evolutionary
and streamline methods is employed to jointly history match the DTS and pressure
data. Finally, CO2 saturation and streamline maps are used to visualize the CO2
plume movement during the sequestration process.

The power and utility of our approach are demonstrated using both synthetic and
field applications. We first validate the streamline-based DTS data inversion using
a synthetic example. Next, the hierarchical workflow is applied to a carbon
sequestration project in a carbonate reef reservoir within the Northern Niagaran
Pinnacle Reef Trend in Michigan, USA. The monitoring data set consists of
distributed temperature sensing (DTS) data acquired at the injection well and a
monitoring well, flowing bottom-hole pressure data at the injection well, and time-
lapse pressure measurements at several locations along the monitoring well. The
history matching results indicate that the CO2 movement is mostly restricted to the
intended zones of injection which is consistent with an independent warmback
analysis of the temperature data.
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The novelty of this work is the streamline-based history matching method for the
DTS data and its field application to the Department of Engergy regional carbon
sequestration project in Michigan.

Paper 4

Deepthi Sen, Hongquan Chen, Akhil Datta-Gupta, Inter-well connectivity detection
in CO2 WAG projects using statistical recurrent unit models, Fuel, Volume 311,
2022, 122600, ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2021.122600.

Routine well-wise injection and production measurements contain significant
information on subsurface structure and properties. Data-driven technology that
interprets surface data into subsurface structure or properties can assist operators
in making informed decisions by providing a better understanding of field assets.
Our machine-learning framework is built on the statistical recurrent unit (SRU)
model and interprets well-based injection/production data into inter-well
connectivity without relying on a geologic model. We test it on synthetic and field-
scale CO2 EOR projects utilizing the water-alternating-gas (WAG) process.

SRU is a special type of recurrent neural network (RNN) that allows for better
characterization of temporal trends, by learning various statistics of the input at
different time scales. In our application, the complete states (injection rate,
pressure and cumulative injection) at injectors and pressure states at producers
are fed to SRU as the input and the phase rates at producers are treated as the
output. Once the SRU is trained and validated, it is then used to assess the
connectivity of each injector to any producer using permutation variable
importance method, wherein inputs corresponding to an injector are shuffled and
the increase in prediction error at a given producer is recorded as the importance
(connectivity metric) of the injector to the producer. This method is tested in both
synthetic and field-scale cases.

The validation of the proposed data-driven inter-well connectivity assessment is
performed using synthetic data from simulation models where inter-well
connectivity can be easily measured using the streamline-based flux allocation.
The SRU model is shown to offer excellent prediction performance on the synthetic
case. Despite significant measurement noise and frequent well shut-ins imposed
in the field-scale case, the SRU model offers good prediction accuracy, the overall
relative error of the phase production rates at most producers ranges from 10% to
30%. It is shown that the dominant connections identified by the data-driven
method and streamline method are in close agreement. This significantly improves
confidence in our data-driven procedure.
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The novelty of this work is that it is purely data-driven method and can directly
interpret routine surface measurements to intuitive subsurface knowledge.
Furthermore, the streamline-based validation procedure provides physics-based
backing to the results obtained from data analytics. The study results in a reliable
and efficient data analytics framework that is well-suited for large field applications.
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Chapter 1

1.1 Background

The project ‘Robust Carbon Dioxide Plume Imaging Using Joint Tomographic
Inversion of Seismic Onset Time and Distributed Pressure and Temperature
Measurements’ was selected by U.S. DOE-NETL for award under FOA 0001725.
As per the FOA, key research objectives are “development of modeling and
monitoring methods, tools, technologies that improve the certainty about the
position of the COz plume over time.” This is fully addressed by the objective of
our project, which is to develop and demonstrate computational- and cost-
efficient protocols to image the subsurface CO:zplume via joint inversion of
seismic data and distributed temperature and pressure measurements.

Our motivation stems from the challenges associated with conventional
approaches to CO: plume mapping using geophysical monitoring and modeling-
based workflows. Because of the indirect relationship between the geophysical
attributes and transport properties and also the associated uncertainties in the rock
physics model, the geophysical techniques are best suited for relatively low
resolution and mostly qualitative estimates of CO: saturation distribution in the
subsurface. Similarly, current modeling-based plume delineation approaches also
suffer from non-uniqueness and data sufficiency issues. Therefore, the focus of
this project is to advance the theoretical foundations of the joint tomographic
inversion-based CO: front tracking protocol (as an alternative strategy for CO:
plume monitoring) and demonstrate its field-scale applicability.

Texas A&M University, the lead organization in the project, was primarily
responsible for the development of tomographic approaches for CO2 plume
mapping in conjunction with distributed pressure, temperature and seismic onset
time data. Battelle was primarily responsible for the development of analytical and
empirical methods for analyzing transient injection rate and pressure data from
point/line sources such as injection and monitoring wells. An additional area of
emphasis for Battelle was the use of machine learning for such tasks as inferring
reservoir connectivity information from injection-production data, and identifying
variable importance for machine learning-based proxy models developed from full-
physics simulations. The two organizations also collaborated on the application of
the tomographic inversion methodology for a field data set.

This report is a compilation of the technical findings from Battelle’s activities noted
above. These are organized in eight different chapters as follows:

1.2 Chapter 2 — Detection of COz front location using transient
pressure and rate data

Tracking of CO: fronts following CO: injection is a complicated problem. Normally,
it involves the use of time-lapse seismic data, which may or may not be available
for a given CO:2 injection project. So, one potential solution is to elucidate the
movement of the CO2 saturation front from the transient pressure response. This
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approach is based on the fact that: (a) pressure and saturation fronts move in
tandem, (b) in-situ saturation data are generally not available, and (c) pressure
data are more commonly available at more than one location. The approach
presented here is developed based on insights from synthetic (simulated) data
using a full-physics model. It involves converting pressure v/s time history at an
observation well that has experienced CO:2 breakthrough to an equivalent pressure
v/s radial distance profile using the concept of self-similarity. A discontinuity in the
pressure response is shown to correspond to the one in the saturation profile at
the COz-brine interface, which produces an estimate of the COz2 front location at
different times.

The significance of this study is a practical method for front detection from the
pressure response alone.

1.3 Chapter 3 — Interpretation of bottomhole temperature
data from COz injection projects

Although bottom-hole temperature (BHT) data is routinely collected with bottom-
hole pressure (BHP) data during CO: injection in geological storage projects, it is
seldom analyzed in a quantitative manner. However, the BHP and BHT signals
do exhibit correlated behavior. This study proposes a practical approach for using
BHT data from warmback (no injection) periods, in conjunction with the amplitude
of BHP and BHT changes during the preceding injection event, to estimate
formation permeability. The methodology is demonstrated using data from the
AEP Mountaineer project in USA where CO: injection was carried out into a saline
aquifer. Estimated permeability values from the proposed approach are in good
agreement with those obtained from transient pressure analysis of BHP data from
the falloff period.

The significance of this study is an analytical method for independent estimation
of permeability (from temperature data) that can be used as input for detailed
inversion studies.

1.4 Chapter 4 - Injectivity index - a powerful tool for
characterizing CO: storage reservoirs

Injectivity index is a powerful tool that can be easily calculated from field injection
rate and pressure data. Theoretically, injectivity index is linked to reservoir
properties such as permeability, reservoir thickness, and size of the reservoir.
Consequently, injectivity index data can serve as a powerful tool to assess
changes in reservoir quality and performance. In this article, we have looked at
field data from notable global carbon sequestration projects in order to identify a
correlation between injectivity index (J) and the product of reservoir permeability
and thickness (kh). Results suggested that there is a linear relationship between
J and kh with field data confirming to lower and upper bounds of J = 0.03*kh and
J = 0.23*kh respectively. The average trend was calculated to be J = 0.08*kh. This
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correlative approach can be extremely beneficial when there is a need to estimate
pressure buildup corresponding to a target injection or vice-versa. The approach
can also be used to understand reservoir flowability and performance at a broader
scale prior to the need for expensive or time-consuming flow and pressure
transient testing.

The significance of this study is a practical tool for empirical analysis of field data
leading to an independent estimate of permeability which can be used an as input
for detailed inversion studies.

1.5 Chapter 5 - A screening model for predicting injection well
pressure buildup and plume extent in CO2 geologic storage
projects

A new screening model is presented for predicting injection well pressure buildup
and COz2 plume migration. The model requires only limited information and is quite
accurate (compared to detailed simulation results). The screening model consists
of two correlations: one for injectivity index in terms of the slope of the CO2
fractional flow curve, and the second for total storage efficiency within the footprint
of plume as a function of gravity number and slope of the COz fractional flow curve.
Using these two correlations and a knowledge of some basic reservoir
characteristics and estimates of fluid properties from correlations, the injection-well
pressure buildup and CO2 plume extent in the formation can be readily estimated.
The new correlations show a good match with the results of the underlying
simulations, and also provide good agreement with independent calculations for
two example problems.

The significance of this study is a practical tool for quick-look analysis and design
of what to expect from field observations following CO: injection operations. Such
models can also assist project developers during project planning, and help
regulators perform simple checks against detailed numerical models.

1.6 Chapter 6 — Effect of injection well inclination on injectivity
and pressure response

This study examines the impact of injection well inclination (i.e., vertical v/s
horizontal well) on well injectivity and monitoring well pressure response.
Simulations are carried out to investigate the injectivity index corresponding to
horizontal wells of different lengths and different values of reservoir permeability.
A correlation is developed for the enhancement in injectivity (compared to the
reference vertical well case) as a function of lateral (horizontal well) length and
permeability. The difference in pressure response corresponding to a bottomhole
pressure gauge located beyond the edge of the lateral for horizontal and vertical
well scenarios is examined.
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The significance of this study is a practical correlation for assessment of enhanced
injectivity index in horizontal wells that can be used for preliminary design
purposes.

1.7 Chapter 7 -Field datafor imaging pressure and temperature
in the subsurface using tomographic methods

As part of this broader research project, the Texas A&M (TAMU) team is
developing robust modeling and monitoring technologies for imaging and
visualization of the CO2 plume using routine pressure/temperature measurements.
In their approach, they first extend the streamline-based data integration approach
to incorporate distributed temperature sensor (DTS) data using the concept of
thermal tracer travel time. Then, a hierarchical workflow composed of evolutionary
and streamline methods is employed to jointly history match the DTS and pressure
data. Finally, CO2 saturation and streamline maps are used to visualize the COz2
plume movement during the sequestration process.

This chapter describes the data that was assembled by Battelle to support the
above-mentioned objectives, viz: (a) Information about the geologic setting, (b) Oil
production and CO2 injection history, (c) Bottomhole pressure and temperature
data, (d) Distributed temperature sensing (DTS) data, (e) Numerical model
developed by Battelle to integrate geologic, production and injection data, and (f)
Additional data types used for model validation (blind testing).

The significance of this activity is a complete field dataset for validation of the
TAMU methodology.

1.8 Chapter 8 — Machine-learning based analysis of time-
dependent injection-production data

This chapter investigates several data-driven models for charactering reservoir
connectivity and forecasting injection-production response from the viewpoints of
time series forecasting and regression forecasting. While time series forecasting
provides a much better prediction accuracy, regression forecasting typically has a
better interpretability in the connectivity between injection and production wells.
The recommended model for time series forecasting is the ANN not only because
ANNSs in general provide the best prediction accuracy but because this ANN has a
relatively simple structure so it is possible to open its black-box neural networks to
understand the connectivity between injection and production wells. For
regression forecasting, the recommended model is the regression model with
constraints. Even though the regression model without constraints has a slightly
better performance in prediction accuracy, the regression model with constraints
has a much better interpretability; specifically, its coefficients can be treated as the
proportion contributed from each injection well to that production well.
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The significance of this study is a workflow for extracting useful insights from data-
driven models of injection-production behavior in subsurface systems.

1.9 Chapter 9 - Evaluating variable importance in time-
dependent black box “proxy” models: a comparison of
strategies

Measuring variable importance for computational models is an important task in
many applications. It is always desirable to have a strategy that works for any
model and could uncover the key predictors in the modeling. In this study, we first
review several commonly used variable importance strategies that are compatible
with all machine learning or black box models and provide a comparative
assessment of these strategies using an example from a subsurface geoscience
application. Furthermore, we present a framework for making comparisons not
only within but also between different time points for time-dependent models. We
propose the relative importance score (RIS) and uncertainty importance factor
(UIF), which allow users to intuitively interpret how variable importance changes
over time.

The significance of this study is a comparative assessment of various strategies
for determining the importance of variables in a black-box model, in addition to two
metrics to facilitate an understanding of the time-dependent nature of the
importance scores.
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2.1 Background

Tracking of CO:z2 fronts following CO: injection is a complicated problem. Normally,
it involves the use of time-lapse seismic data, which may or may not be available
for at a given COz injection project. So, one potential solution is to elucidate the
movement of CO: saturation front from transient pressure response. This
approach is based on the fact that: (a) pressure and saturation fronts move in
tandem, (b) in-situ saturation data are generally not available, and (c) pressure
data are more commonly available at more than one location. Our approach is to
use simulations to generate synthetic data and utilize that for process
understanding and methodology development that could lead to an inexpensive
plume tracking tool.

We simulate constant-rate COz2 injection from a vertical well into a saline aquifer
using 2-D radial geometry, a logarithmic expanding grid, and a compositional
model. Pressure and saturation profiles are extracted at different radial locations
at multiple times. Pressure response is also extracted at injection well and two
observation points (with/without CO2 breakthrough). The examination of these
data is presented next.

2.2 Saturation Profiles

Figure 2-1 shows the saturation profiles (i.e., values at different radial location) at
different times following injection. Note the logarithmic scale of the x-axis (radial
direction). The saturation front appears to stretch in time and space in a self-similar
manner.
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Figure 2-1. Saturation profiles at different times.

As is normally done in advection-dispersion problems, we can use the Boltzman
similarity variable r?/t as a correlating parameter to collapse all curves (as shown
in Figure 2). This variable characterizes the propagation velocity of CO2 plume.
Also note the sharp discontinuity at r?/t = 2050 ft2/day which indicates the location
of the CO2-brine interface.
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Figure 2-2. Use of Boltzman variable to collapse all saturation profiles into a
single curve.

2.3 Pressure profiles

Figure 2-3 shows the pressure profiles (i.e., values at different radial location) at
different times following injection. Note the logarithmic scale of the x-axis (radial
direction). The pressure front appears to stretch in time and space in a self-similar
manner much like the saturation front, albeit significantly further into the formation.
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Figure 2-3. Pressure profiles at different times.

also, we can use the Boltzman similarity variable r?/t as a correlating

parameter to collapse all curves (as shown in Figure 2.4). For consistency with
the saturation profiles, the value of the similarity variable at the location of the
saturation discontinuity corresponding to the CO2-brine interface is shown as a
dashed line in this figure.
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Figure 2.4  Use of Boltzman variable to collapse all
pressure profiles into a single curve.
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Although it is not obvious that there is a discontinuity in the pressure profile at the
same location, such a discontinuity does exist and this will be verified in the next
section. This suggests that if the pressure profile were available at different times,
one could reduce them using the Boltzman variable, estimate the value of r?/t at
the location of discontinuity and determine the plume boundary from that value.

2.4 Reconstruction of Pressure Profiles from Pressure Time
History

Since pressures are typically measured at the injection well and a few monitoring
wells, it is not possible to generate the full pressure profile within the system.
However, given the demonstrated power of r?/t as the correlating group in the
above-mentioned figures, we examine whether the pressure versus radial location
(P ~r) response can be recovered from the pressure versus time (P ~ t) response.
This will be done using data from r = 0.25 ft (injection well) that is always inside
the CO2 plume, r = 137 ft (monitoring well that sees CO:2 breakthrough at some
time during the injection history), and r = 5792 ft (monitoring well that is always
outside the COz2 plume).

Figure 2-5 shows the reconstructed pressure profile based on the pressure-time
response at r=0.25 ft (in symbols). This is overlain on the full pressure profile
calculated at different times and then collapsed into a single curve using r?/t is the
correlating group. The reconstructed values fall on the original pressure profile
curve, but the data points are always behind the inflection point corresponding to
the location of the CO2-brine interface.
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Figure 2-5. Pressure data (y-axis) from different radial locations in light
symbols as a function of Boltzman variable r?/t (x-axis) with overlay of pressure
data converted from time domain at r=0.25 ft (dark symbols).

Next, in Figure 2.6 we show the results for r=137 ft, a location which was initially
in the brine-filled region and later became part of the invading two-phase region.
Here, the location of the inflection point clearly falls within the spectrum of the
reconstructed data.
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Figure 2.6. Pressure data (y-axis) from different radial locations in light
symbols as a function of Boltzman variable r?/t (x-axis) with overlay of pressure
data converted from time domain at r=137 ft (dark symbols).

Finally, we show results from r = 5792 ft, which is always within the brine filled
region and is outside the CO2 plume at all times. Here, the inflection point is
outside the range of the reconstructed data.
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Figure 2-7. Pressure data (y-axis) from different radial locations in light
symbols as a function of Boltzman variable r?/t (x-axis) with overlay of pressure
data converted from time domain at r=137 ft (dark symbols).

2.5 Locating the Saturation/Pressure Discontinuity

Thus, we have seen that the location of inflection point only falls within response
from r=137 ft, while the first location (r=rw) is always within two-phase region, and
the third location (r=5792 ft) always within brine-filled region. Therefore, we need
to pick monitoring well location that sees COz2 breakthrough after some time (e.g.,
Figure 2.6).

In this figure, the location of the saturation discontinuity is known from simulation
results. In a field setting how can this be identified? We propose using a derivative
plot to identify this discontinuity, as shown below in Figure 2.8. This involves
plotting dP(r?/t) against the similarity variable and looking for a reversal in slope.
This yields a r?/t value of 2000 ft?/s at the discontinuity, which compares very well
with the simulator input of 2050 ft?/s. The subscript BL in the figure denotes a
Buckley-Leverett shock front, following the original model of frontal displacement
for two immiscible fluids in porous media.
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Figure 2-8. Derivative analysis to determine pressure/saturation discontinuity.

In Figure 2-9, the predicted plume radius at different points in time using this value
(i.e., rPltfont = 2000 ft?/s) is shown, which agrees very well with the simulator
results. We are currently validating this approach with additional datasets.
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Figure 2-9. Comparison of simulated and predicted plume location based on
inferred r?/t|ront.
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2.6 Summary

We have found that pressure data from a monitoring well location that sees
breakthrough at some point after injection can be useful for front tracking process
using the following workflow:

Convert P(r,t) to P(r?/t)

Pick inflection point from derivative

This gives r?/t for BL front

Can estimate front location at different times

In terms of future work, we propose an extension to variable rate cases (e.g., using
deconvolution to generate P(t) for equivalent constant rate response from variable
rate P(t) data), and combining this with the material balance time concept for front

tracking.
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3.1 Introduction and Scope

Bottom-hole pressure (BHP) and bottom-hole temperature (BHT) data are
routinely collected together as part of monitoring programs in geological storage
projects involving CO:z injection into saline aquifers and depleted oil and gas fields
[6]. Since the same gauge can measure both pressure and temperature signals
when placed downhole, there is no additional cost in acquiring temperature data.
When cold CO: is injected into a warm reservoir (as is generally the case), the
BHP and BHT signals are generally inverted, i.e., there is thermal cooling as
opposed to pressure buildup during injection sequences, and thermal warmback
as opposed to pressure falloff during shut-in sequences. As an example, Figure
3-10 shows the correlated nature of the BHP and BHT responses following
supercritical COz injection in the AEP Mountaineer project's AEP-1 well [11]. As
reservoir properties (e.g., permeability) are known to directly influence the
pressure signal, the strong correlation between BHP and BHT signals suggests
the potential of inferring these reservoir characteristics from BHT data as well.
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Figure 3-10. Example bottom-hole pressure (BHP) in solid line (left axis) and
bottom-hole temperature (BHT) in dashed line (right axis) from AEP Mountaineer
project (well AEP-1) showing inverse correlation between BHP and BHT signals

(conversion factors: 1 psi = 6.895 kPa; x °F = (x-32)*5/9 °C).
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In CO2 geologic sequestration projects, pressure data are generally interpreted
using analytical models [4, 27, 18]; or used as inputs to numerical reservoir models
for history matching to determine key formation characteristics such as
permeability [7, 5, 25, 26, 14, 19]). However, to the best of our knowledge, there
is very little evidence to indicate that BHT data from individual downhole gauges
at a fixed location are actually being used in CO2 storage projects for any
meaningful quantitative interpretive purposes. It should be noted a few studies
have discussed qualitative analysis of fiber-optic based distributed temperature
sensing or DTS time series data collected along the length of the borehole.
Mawalkar [17] studied the DTS data, in conjunction with pressure and geochemical
data, to understand CO2 movement within the injection zone. Nunez-Lopez [21]
used DTS data along with pressure observations to qualitatively monitor CO2 flow
within COz injection zones at the inter-well scale and to detect CO2 leakage in the[
overburden.

Several recent studies in the oil and gas literature have addressed the issue of
transient temperature analysis under non-isothermal fluid production conditions for
guantifying reservoir properties. Some of the relevant studies are briefly
summarized here.

App and Yoshioka [3] used both analytical and numerical models to investigate the
interplay between pressure drawdown, Joule-Thomson effect, and permeability in
determining the temperature response during fluid production from vertical wells.
They concluded that the maximum amplitude of thermal response corresponds to
high-permeability reservoirs and is bounded by the Joule-Thomson effect.

Muradov and Davies [20] developed analytical equations for early-time, sandface
temperature during fluid production in horizontal wells including a complete
treatment of Joule-Thomson and adiabatic expansion effects as well as convection
and conduction. Of particular interest are the asymptotic solutions that show the
influence of the Joule-Thomson effect in correlating temperature and pressure
responses (in a manner similar to that predicted by App and Yoshioka [3]).

Onur and Cinar [22] presented equations for analyzing temperature transient data
from constant rate flow tests in infinite-acting single-phase oil reservoirs. The
development of these analytical solutions is based on the fact that the effects of
temperature changes on pressure transient data can be neglected (but not vice
versa) so that the pressure diffusivity and thermal energy balance equations can
be decoupled. These analytical solutions account for Joule-Thomson cooling,
adiabatic fluid expansion, conduction and convection effects.

Mao and Zeidouni [16] developed a similar analytical model for pressure influenced
transient temperature response during the production of a slightly compressible
hydrocarbon fluid from a vertical well. Using the Laplace transformation technique,
they proposed interpretive equations for analyzing temperature data to infer
reservoir properties, such as permeability and damaged-zone radius (if
appropriate).
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Although these studies (and references cited therein) provide practical approaches
for BHT analysis in production wells, their application for injection problems does
not appear to be as straightforward. The primary reason for this is the fact that
during injection, an additional complicating factor is the surface injection
temperature. Together with the injection rate, it affects the temperature at which
the supercritical CO2 reaches the sandface and thus influences the overall
temperature change during injection. Note that the injection rate also affects the
BHP response via permeability. Thus, the interrelationship between BHT, BHP,
injection rate and permeability is the topic of interest for our investigations.

Building on these studies, our motivation here is to demonstrate a practical
methodology for analyzing BHT data from CO:2 injection projects and show what
information about the reservoir can be reasonably extracted from such data.
Specific issues of interest include:

® Does the relationship between the total temperature and pressure
changes during injection suggest some information about reservoir
properties?

® How can the transient warmback data for the shut-in period after
injection be analyzed?

® |s it possible to infer the nature of pressure response (i.e., hence,
permeability dependence) from the temperature signal?

The paper is organized as follows. First, we describe the BHP and BHT data from
the AEP-1 well in the Mountaineer project, along with steps taken to pre-process
the dataset for our analysis. Next, we present a steady-state analysis of the BHP
and BHT data across all injection sequences. This is followed by transient
temperature analysis using the well-established temperature Horner method, and
transient pressure analysis also in terms of the well-known pressure Horner
method [9]. This step is necessary to provide the ground truth for our proposed
approach, which is presented in the following section. The paper ends with a
discussion of the results, its implication for routine analysis of BHT data, and
possible improvements in the suggested approach.

3,2 Description of AEP-1 Dataset

The dataset of interest in the present study is from the 20 MW CO: capture and
storage Product Validation Facility (PVF) project at American Electric Power’s
Mountaineer Plant in West Virginia, USA [11]. The Mountaineer CO:2 injection
system consists of two injection wells—one in the Copper Ridge dolomite
formation and one in the Rose Run sandstone formation, and three deep
observation wells that were operational between October 2009 and May 2011 [18].
Here, we consider data from the AEP-1 well which is drilled into the Copper Ridge
zone consisting of vuggy high porosity and permeability intervals at ~2500 meters
depth.
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Figure 3-11 shows the location of the wells and the stratigraphic column at the site.
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Figure 3-11. Well layout and stratigraphic column at AEP Mountaineer Plant CO2
capture and storage project.

Approximately 27000 metric tons (MT) of CO2 was injected into the Copper Ridge
dolomite formation in well AEP-1 with pressure and temperature monitoring
undertaken using bottomhole gauges. The injection rates were highly variable
because of operational issues with the capture plant. Therefore, as described in
Mishra [18], the first step was to simplify the rate history by aggregating all injection
(or shut-in) sequences less than 1000 minutes into the previous shut-in (or
injection) sequence. For AEP-1, this resulted in 21 injection sequences ranging
from 2628 minutes (~1.8 days) to 41406 minutes (~29 days). The average rate for
each sequence was calculated to ensure that the cumulative injected volume
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during each sequence was matched, which yielded the simplified rate history
shown in Figure 3-12.

——Complete AEP1 History =~ —Simplified AEP1 History = —Flow Rate
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Figure 3-12. Simplification of flow rate history into equivalent
constant rate sequences.

While the BHP and BHT data shown earlier in Figure 3-10 are available at a high
degree of granularity (i.e., once every minute, re-sampled to once every hour), for
the steady-state analysis it is useful to discretize these time series into a series of
rectangular pulses reflecting the corresponding quasi steady state (QSS) pressure
and temperature changes. Furthermore, the starting and end times associated
with these AP and AT values should be consistent with the simplified rate history
developed earlier. Figure 3-13 shows the continuous pressure and temperature
history traces juxtaposed with the corresponding rectangular pulse
approximations. Henceforth, these quantities will be referred to as APgss and
ATgss.
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Figure 3-13. Approximation of observed BHP and BHT history (blue line) by
rectangular pulses (black dashed line) based on the simplified rate history shown
earlier (conversion factors: 1 psi = 6.895 kPa; x °F = (x-32)*5/9 °C).
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3.3 Steady State Analysis

App and Yoshioka [3] presented a single-well steady-state radial thermal model,
based on conservation of energy, conservation of mass and Darcy’s law, to
describe temperature changes following production of a single-phase fluid. They
concluded that the upper bound for the final temperature change is the Joule-
Thomson (JT) coefficient. They also found that the temperature change could be
attenuated under low-permeability conditions when conductive heat transfer
becomes relatively more important compared to convective heat transfer.

Table 3-1 shows the DPQSS and DTQSS values for all 21 sequences and the
associated average injection rate. Note the modest pressure and temperature
changes observed due to the low rate of injection and high permeability of the
formation.

Table 3-1. Observed quasi-steady pressure and temperature changes for
various injection events. (conversion factors: 1 psi = 6.895 kPa; x
°F = (x-32)*5/9 °C; 1 °F/psi = 0.08 °C/kPa)

Sequence | Injection time (days) | Injection rate | Pressure change| Temp change | dT/dP
days MT/day psi °F °F/psi
1 9.75 73.4 29.6 8.0 0.27
2 6.80 81.2 16.7 5.4 0.32
3 3.25 84.8 17.1 6.6 0.39
4 2.27 54.5 10.7 3.4 0.31
5 2.01 100.3 25.9 7.5 0.29
6 3.93 76.6 22.7 7.4 0.33
7 3.28 92.4 23.0 6.6 0.29
8 3.43 85.6 19.0 5.7 0.30
9 6.10 82.3 14.8 6.5 0.44
10 5.46 71.1 21.6 7.6 0.35
11 1.83 82.3 14.2 3.8 0.27
12 3.30 91.3 27.8 7.8 0.28
13 1.84 77.0 16.6 4.5 0.27
14 5.09 121.8 30.8 9.2 0.30
15 5.33 110.0 25.0 8.2 0.33
16 28.75 94.5 24.3 7.2 0.30
17 9.15 119.2 35.1 10.1 0.29
18 14.26 148.3 51.7 13.8 0.27
19 7.71 119.1 37.8 10.5 0.28
20 3.43 127.6 47.4 11.0 0.23
21 3.71 124.8 56.5 14.4 0.26

A cross-plot of these values (Figure 3-14) indicates a strong linear relationship with
a slope of 0.28 °F/psi (0.023 °C/kPa) and coefficient of determination R? = 0.85
(note—this line is constrained to pass through the origin). As per the model of App
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and Yoshioka [3], this slope should be equal to the JT coefficient, wsr. However,
at a nominal reservoir pressure of 3940 psi (27166 kPa) and reservoir temperature
of 140 °F (60 °C), it for CO2 is estimated to be 0.8 K/Mpa or 0.01 °F/psi (as
extrapolated from the data given in http://www.ddbst.com/en/EED/
PCP/JTC_C1050.php). Clearly, this is much lower than the value indicated by the
data shown in Figure 3-14 — suggesting that other factors beyond simple Joule-
Thomson cooling are in play here.

18
16

14 e

Delta T (°F)

0 10 20 30 40 50 60
Delta P (psi)

Figure 3-14. Cross-plot of quasi-steady pressure and temperature changes
from all injection sequences.
(conversion factors: 1 psi = 6.895 kPa; x °F = (x-32)*5/9 °C)

We hypothesize that during injection, an additional complicating factor is the
surface injection temperature. Together with the injection rate, it affects the
temperature at which the supercritical CO2 reaches the sandface and thus
influences the overall temperature change (or AToss) for each sequence. The
strong correlation with APqgss suggests that the fluid injection rate is a key linking
parameter between the quasi-steady AT and AP values.

A complete analysis of the injection temperature data would require a numerical
model that takes into account all active processes, i.e., Joule-Thomson effect,
adiabatic expansion, bulk fluid movement related heat convection, and heat
conduction. As noted earlier, some analytical and semi-analytical models are
available for such problems under production only conditions [20, 22, 16]. The
applicability of these models for injection scenarios is not clear. However, the
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warmback period following injection is expected to be simpler to analyze because
there is no fluid movement and heat conduction should be the primary process that
needs to be considered for, as discussed next.

3.4 Transient Temperature Analysis

As presented in Dowdle and Cobb [8], Kutasov and Eppelbaum [15], and
Gouturbe, et. al., [10], the temperature change for a line source well during shut-
in conditions can be expressed as:

AT = T(8D) = T; = ;2 {In {In (1 + t””)} . {log (1 + ””)} Eqn. 3

1

where T is time-varying temperature, Ti is initial temperature prior to injection, At is
shut-in time, tinj IS injection time, gn is heat flux per unit length, and Ar is thermal
conductivity of the in-situ fluid-filled rock (all in consistent units). Eqgn. 3-1 is
generally referred to as the temperature Horner method based on the similarities
between pressure and temperature transient well testing [9], and is the most widely
used technique for correcting borehole temperature measurements [10]. Note that
Egn. 3-1 is equally valid for injection as for production events, assuming that the
heat flux can be assumed to be constant during injection

For the transient temperature analysis of warmback data in the present study, we
pick four sequences, i.e., #1, #6, #10 and #18 (as marked in Figure 3-13), that are
separated in time and have varying injection periods. Temperature Horner plots
for these sequences are shown in Figure 3-15, where the observed temperature
is plotted against the shut-in time ratio, (1+tinj/At). A straight-line fit to the late-time
data suggests that the line source solution as expressed in Eqgn. 3-1 is a valid
representation of the thermal response. The intercept in each case closely
matches the initial temperature (i.e., end temperature corresponding to the DTgss
from Table 3-1). As evident from Eqn. 1, the slope of the line is proportional to the
ratio of unknown heat flux gn and thermal conductivity Ar.
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Sequence #18, Temperature Horner Plot
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Figure 3-15. Temperature Horner plots for selected warmback sequences.
(conversion factor: x °F = (x-32)*5/9 °C)

Assuming a rock thermal conductivity value of 2 W/m-K (1.156 BTU/ft-°F) as a
representative value for the vuggy dolomite Copper Ridge formation [24], the heat
flux gn can be calculated for each sequence from the slope of the Horner plots
using Eqn. 3-1. Table 3-2 shows the calculated gn values, as well as the observed
fluid flux gr (i.e., injection rate per unit length or effective formation thickness).
Here, the surface fluid injection rate has been converted into a downhole flux by
assuming a CO2 formation volume factor (Bco2) of 2.285 ft3/MCF (0.0023 m3/sm?)
(Jarrell, et. al., [13]) and an effective formation thickness of 31 ft (10 m) (Mishra,

et. al., [19]). Note the strong correlation between the two variables shown in Table
3-2.

Table 3-2. Correspondence between calculated heat flux and observed fluid
flux(conversion factors: 1 BTU/ft-hr = 0.96 W; 1 ft3/ft-hr=2.6E-5

m3/m-s)
Seq gh qr
BTU/ft-hr Ft3/ft-hr
1 8.35 4.27
6 9.77 4.47
10 8.66 4.14
18 14.49 8.64

We further explore the issue of this correspondence by noting that from
fundamental considerations we can express the heat flux (gn) associated with fluid
injection in terms of fluid flux (qr) as follows:

qn = aqr(pC)y (Egn. 3-2)

where (pC)t is the density-weighted specific heat capacity of the injected fluid and
o is a proportionality constant with units of temperature (°F or R). From
dimensional considerations, it could be argued that a=AT (i.e., difference between
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formation and injected fluid temperatures). However, using a representative value
of (pC); = 25.3 BTU/(ft3-F), and the average values of gn and g from Table 3-2,
we get a=0.078, which is significantly different from the temperature differences
indicated in Table 3-1. Therefore, we treat a as an unknown constant of
proportionality that generally represents the efficiency of the heat transfer process.

In fact, our workflow does not require any explicit knowledge of this parameter, as
will be shown later.

Combining Eqgn. 3-1 and Eqgn. 3-2, we get
T(AD-T; _ a(pO)r { ( tinj)}
o sash log(1+ " (Eqn. 3-3)

which can be considered as the equation for a rate-normalized (RN) temperature
Horner analysis. Eqn. 3-3 suggests that data from multiple sequences can be
examined and analyzed using the same plot, since the slope is dependent only on
thermal properties of the injected fluid and the in-situ fluid filled rock, i.e.,

a(pC)y
= Eqn. 3-4
MRNT = 5452, (Ean. 3-4)

This leads us to re-analyze the data shown earlier in Figure 3-15 using rate-
normalization, which is presented in Figure 3-16. The late time portions of the
warmback data from all four sequences fall on a single straight line characterized
by a slope of 0.31 °F/(ft?/hr)/log-cycle (6.6E3 °C/(m?/s)/log-cycle).
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Figure 3-16. Rate-normalized temperature Horner plots for consistency check
across selected warmback sequences
(conversion factor: 1 °F/(ft?/hr) = 2.1E4 °C/(m?/s)).
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The success of rate-normalization in correlating much of the warmback data
suggests that the key thermal properties affecting BHT response (i.e., effective
heat capacity, which relates fluid flux to heat flux, and thermal conductivity, which
determines the rate of heat transfer from the injected fluid to the rock and in-situ
fluid) are generally unchanging with time. However, the dependence on reservoir
properties such as permeability is missing from this analysis. This will be
attempted next by performing transient pressure analyses and seeking a linkage
between the pressure and temperature analyses, as discussed next.

3.5 Transient Pressure Analysis

As noted by Mishra, et. al., [18], based on the work on injection well testing
summarized by Abbaszadeh [1] and the composite system models of Ramey [23]
and Ambastha [2], the late-time pressure fall-off response in the injection well can
be expressed as:

AP = P(At) — P = 28 {1n (1 + tA—”tJ)} (Eqn. 3-5)
Note that the viscosity of interest here is that of the brine phase, indicating that the
pressure response is essentially being influenced by the undisturbed formation.
Also, the q in Egn. 3-5 is in reservoir volumes, which requires converting the mass
injection rate at the surface into a sandface rate using the CO2 formation volume
factor, Bcoz, at the appropriate pressure and temperature conditions [13]. Using
the definition of the fluid flux gr = g/h, we can re-write Eqn. 3-5 as:

P(At) — P, = 22U f1og (14 220)] (Eqn. 3-6)

where AP is in psi, gt is in ft¥/ft/hr, uw is in cp, and k is in mD (the constant is 1.26E8
when AP is in kPa, gt is in m3/m/s, uw is in cp, and k is in m?). Egn. 3-6 thus
provides a straightforward way for analyzing the falloff response via a semi-log plot
of time-varying shut-in pressure against the shut-in time ratio, (1+tinj/At).

As in the case of the transient temperature analysis, we pick sequences #1, #6,
#10, and #18 for the transient pressure analysis of the falloff data. Pressure Horner
plots for these sequences are shown in Figure 3-17. In general, the late-time
portions of the data (shown here) indicate strong linear trends—notwithstanding
the stair-stepping that possibly reflects measurements with pressure differentials
close to the gauge resolution. The straight-line fits to the late-time data suggests
that the expected falloff response as expressed in Egn. 3-6 is a valid
representation of the pressure behavior. The intercept in each case closely
matches the end pressure used to calculate the APgss values in Table 3-1. The
slope is proportional to the ratio of fluid flux times brine viscosity and reservoir
permeability.

3-17



Chapter 3.

Pressure, psi

3937.0

3936.0

3935.0

3934.0

3933.0

3932.0

3931.0

3930.0

Sequence #1, Pressure Horner Plot

10
Shut-in Time Ratio

100

Pressure, psi

3939.0

3938.0

3937.0

3936.0

3935.0

3934.0

3933.0

3932.0

Sequence #6, Pressure Horner Plot

10
Shut-in Time Ratio

100

Pressure, psi

3939.0
39385
3938.0
3937.5
3937.0
3936.5
3936.0
39355
3935.0
39345
3934.0

Sequence #10, Pressure Horner Plot

10
Shut-in Time Ratio

100

3-18



Chapter 3.
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Figure 3-17. Pressure Horner plots for selected falloff sequences

(conversion factor: 1 psi = 6.895 kPa).

Rearranging Eqn. 3-6 by normalizing with respect to fluid flux yields:

P(A(Z—Pi ~ 69iﬂw {log (1 n fg_ntl)} (Ean. 3-7)

which can be considered as the equation for a rate-normalized (RN) pressure
Horner analysis. Eqn. 3-7 suggests that pressure data from multiple sequences
can be examined and analyzed using the same plot, since the slope is dependent
only on intrinsic permeability and brine viscosity, i.e.,

695U
MpNp = = (Egn. 3-8)

As before, a rate-normalization Horner plot is constructed per Eqn. 3-7. This is
presented in Figure 3-18 with a slope of 1.15 psi/(ft>-hr)/log-cycle (3e5 kPa/(m?-
s)/log-cycle), which shows a general consistency in late-time pressure response
across all sequences. This suggests that the underlying reservoir characteristics,
especially formation permeability, are not changing with time.
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Figure 3-18. Rate-normalized pressure Horner plots for consistency
check
across selected falloff sequences.
(conversion factor: 1 psi/(ft?/nr) = 2.7E5 kPa/(m?/s).

Using this slope value and Eqn. 3-8, assuming a brine viscosity of 1.2 cp
(calculated at P = 3940 psi (27661 kPa), T=140 °F (60 °C), salinity = 300000 ppm)
and a formation thickness of 31 ft (10 m), the permeability-thickness product is
determined to be kh = 23293 mD-ft (7.0E-6 m3). This compares very well with the
value of 23940 mD-ft (7.2E-6 m?®) obtained by Mishra, et. al., [18] using
conventional pressure-derivative based transient pressure analysis methods.

It should be pointed that the purpose of performing a transient pressure analysis
of the falloff data here is to provide an independent assessment of the reservoir
permeability and determine the extent to which it can be independently determined
from the BHT signal (in conjunction with some aspects of the BHP signal). This is
discussed next.

3.6 New Approach for BHT Analysis

Our basic hypothesis is that the ratio of quasi-steady state temperature and
pressure changes are the same as the ratio from the temperature and pressure
Horner plots, as both are essentially reflecting the underlying factors influencing
temperature and pressure response. This can be stated as:
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ATgss _ mr _ MrNT (Eqn. 3-9)
APgss mp  mgnp '

where mrt = mrn, 7% and mp = mrn,p*Qgr . Thus, knowing the ratio of quasi steady
state pressure and temperature changes and using the analysis of warmback data
in the form of a temperature Horner plot, the slope of the corresponding pressure
Horner plot can be estimated via Eqn. 3-9, from which the reservoir permeability
can be calculated using Eqgn. 3-8. Note that this does not require the direct analysis
of the time-dependent pressure fall-off response.

To test this hypothesis for our dataset, we start by noting that the ratio of
ATqgss/IAPqss averaged across all sequences is 0.28 °F/psi or 0.023 °C/kPa (as
indicated by Figure 3-14). From the rate-normalized temperature Horner plot
(Figure 3-16) we have slope mrnt = 0.31 °F/(ft?/hr)/log-cycle or 6.6E3
°C/(m?/s)/log-cycle, and from the rate-normalized pressure Horner plot (Figure 3-
18) we have slope mrn,p = 1.15 psi/(ft?/hr)/log-cycle or 3E5 kPa/(m?-s)/log-cycle.
The ratio of these two values is 0.31/1.15 = 0.27 °F/psi (or 6.6E3/3E5 = 0.022
°C/kPa), which is in excellent agreement with the value of 0.28 °F/psi or 0.023
°C/kPa calculated using the quasi steady state rectangular pulse approximation
approach. This confirms the hypothesis postulated via Eqn. 3-9.

We verify these ideas further for the four individual sequences of interest as shown
below in Table 3-3. The various quantities presented there are as follows:

e (f = reservoir fluid flux (i.e., injection rate converted to sandface
conditions and divided by formation thickness),

e dP = APgss = quasi steady state pressure change,

e dT = ATgss = quasi steady state temperature change,

e slope P = mp = slope of the pressure Horner plot,

e slope T = mr = slope of the Temperature Horner plot,

e slope ratio = mt/mp,

e dT/dP =ratio of QSS temperature and pressure changes,

e Slope error = difference between slope ratio and dT/dP value,s

e Slope P = slope of pressure Horner plot calculated as per Eqn. 3-9,

e Calculated kh = permeability thickness product from slope P as per
Eqgn. 3-8.

Table 3-3. Calculation of permeability using new approach.

Seq tin; Qinj dpP dT slope P slope T slope dT/dP slope slope P kh calc
days ft®/ft-hr psi degF psi/~ F/~ ratio ratio error (%) calc mD-ft
1 9.75 4.27 29.6 8.0 5.5 1.325 0.24 0.27 10.7 491 21764
6 3.92 4.47 22.7 7.4 5.75 1.55 0.27 0.33 17.2 4.76 23465
10 5.46 4.14 21.6 7.6 5.47 1.375 0.25 0.35 28.3 3.92 26432
18 14.25 8.64 51.7 13.8 10.11 2.3 0.23 0.27 14.5 8.65 24997
all (using rate-normalized plots) 1.15 0.31 0.27 0.28 3.7 1.11 23293
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The relevant conversion factors have all been presented earlier. There are two
key observations to be gleaned based on the results of Table 3-3. First, the
calculated kh values are generally self-consistent with an average of 24166 mD-ft
(7.3E-6 m3), which compares very well with the value of 23293 mD-ft (7.0E-6 m?)
calculated from the rate-normalized pressure Horner plot (Figure 3-18). Second,
the errors in the slope are only ~15% on the average and appear to correlate
inversely with the length of the injection period. This makes intuitive sense
because the longer the injection period, the greater the likelihood of pressure and
temperature changes reaching (quasi) stable values. This should be in agreement
with the slope ratios obtained from the subsequent warmback/falloff periods.

3.7 Discussion and Concluding Remarks

The basic idea of this paper is to develop an approach for using temperature data
to make inferences regarding the permeability (by using some information about
the overall pressure response trends). We have been able to demonstrate that
ATIAP ratio from quasi-stabilized injection sequence responses is related to
thermal properties and the permeability-thickness (kh) product. However, the
relationship between gn and gy is not definitive (because of a normalizing constant
that does not appear have a physical meaning). As noted earlier, the calculated
value of this constant does not agree with the observed temperature difference —
so we have proposed a workflow to bypass the direct use of this quantity. In this
new approach, one needs the AT/AP ratio and at least one warmback analysis to
estimate the slope of the pressure Horner plot and hence the kh. At the very least,
this would provide an independent estimate of k, especially if the transient pressure
analysis turns out to be inconclusive.

Some of the complicating factors in this approach include:

e Variable surface injection temperatures — which would affect the
temperature at which the injected CO:2 enters into the formation, and
thus influence the BHT response in a complicated and non-linear
manner. However, as long as sandface conditions are relatively stable
so that phase changes do not occur during the injection period, the
assumption that the CO2 temperature at the sandface is constant (and
hence the heat flux associated with fluid injection) can be made. In the
present study, the surface injection temperature was 68.7+11.7 oF
(20.4+6.5 oC) during the period of investigation, so it can be
considered as reasonably stable.

e Short warmback periods between injection — which can affect the
span of the data available for the Horner straight-line analysis, and
thus potentially compromise the robustness of the pressure Horner plot
slope and permeability estimates. In the present study the duration of
the warmbacks of interest range from 7.4 to 33.5 days, which appears
to be adequate as evidenced by fairly long linear segments in the
Horner plots.
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Phase change of injected CO2 - if the injected CO2 undergoes phase
changes because of varying P and T conditions (e.g., from supercritical
to liquid and vice versa) resulting in a step change in fluid-related
thermal properties, it would invalidate many of the assumptions in the
simple analytical models for the transient temperature analysis. In the
present study, the CO2 was always at supercritical conditions at the
sandface.

Reservoir permeability changing with time — should permeability
change because of precipitation, wellbore plugging, etc., the analysis
procedure would become more complicated and require the addition of
a “skin zone” in the interpretive equations. However, in the present
study, the consistency of the rate-normalized Horner plots strongly
suggests that permeability did not change over the sequences of
interest.

The new workflow for analyzing BHT data as developed and demonstrated here
can be summarized as follows:

1.

2.

4.

Characterize the injection sequence response in terms of quasi-steady
temperature and pressure changes, DTQSS and DPQSS, respectively.
Analyze the following warmback response in terms of a temperature
Horner plot. If multiple sequences are available, these can be
analyzed together in terms of a rate-normalized temperature Horner
plot as per Egn. 3-3.

From the slope of this plot, and the ratio from the quasi-steady
temperature and pressure changes as obtained from step (1), the
slope of a corresponding Horner plot (or a rate-normalized pressure
Horner plot) can be determined using Eqn. 3-9.

Subsequently, the permeability-thickness product can be estimated
using Eqn. 3-8.

In conclusion, the fundamental contribution of this study is a new approach for
analyzing BHT data that combines the amplitude of pressure and temperature
changes from the injection period, with the temperature Horner analysis of one or
more subsequent warmback periods, to estimate the slope of an equivalent
pressure Horner plot, and hence, the permeability of the reservoir.
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4.1 Motivation and Scope

In oil and gas operations, productivity (or injectivity) index is a popular concept for
evaluating the capability of a well to produce from (or inject fluids into) a porous
and permeable formation [22]. In the context of COz2 injection into saline aquifers
for geologic storage (sequestration), it is useful to focus on the injectivity index
which is defined as the ratio of the injection rate divided by the pressure difference
between formation pressure and bottom-hole pressure:
q
] = | (Pf—PBH) I (Eqn- 4'1)
where J is injectivity index, q is injection rate, Ps is reference formation pressure
and PgH is bottom-hole pressure. During a typical COz injection event, the injection
rate, g, is maintained at a relatively constant rate, and the bottom-hole pressure
rapidly increases to some equilibrium value, Pgn, after which it changes slowly.
The difference between this quasi-equilibrium value and some reference formation
pressure, Ps (i.e., stable pressure prior to injection), is the denominator in
Eqgn. 4-1.

From a theoretical standpoint, the injectivity index can be related to the
permeability-thickness product of the formation and the size of the reservoir [22].
From a practical standpoint, the injectivity index helps compare the relative
potential of different formations for injection operations corresponding to a
prescribed pressure differential. It is also useful for determining the change in well
performance over time.

The first application of the injectivity index concept in the Carbon Capture and
Storage (CCS) literature appears to be that of Mishra [14], who evaluated field
injection pressure and rate data from the AEP Mountaineer project for two different
formations. A number of discrete injection events were analyzed, and a
corresponding range of injectivity index values were calculated for each formation.
In general, these values were found to be strongly correlated with independent
assessments of the permeability-thickness product.

Ravi Ganesh and Mishra [18] presented a correlating chart between injectivity
index (expressed in MT/yr/psi) and permeability thickness (expressed in mD-ft)
using data from two additional field projects as well as a number of numerical
simulation runs for various parameter combinations. They found a strong trend
over multiple orders of magnitude and suggested the relationship J ~0.1 kh as a
rough order-of-magnitude type approximation. Mishra et al., [15] further confirmed
the validity of this trend using synthetic (i.e., simulated) data for CO: injection into
depleted oil reservoirs. They concluded that the trend is well described by J ~
0.04 kh at the lower bound and J ~ 0.14 kh at the upper bound — with J ~0.1 kh
appearing to be adequate for scoping calculations.

The objective of this technical note is to present field data from multiple additional
CCS projects to corroborate the findings summarized above, and further
demonstrate the utility of the injectivity index as a reservoir characterization tool
via its strong correlation with the underlying permeability-thickness value.
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4.2 Description of Field Data

Field data was collected for nine global CCS projects listed in Table 4-4. The
projects used for this study spanned across various continents and injection scales
categorized as pilot (~10,000 MT/year), demonstration (~1 million MT/year), and
commercial (>1 million MT/year).

Table 4-4. CCS Projects in this Study.

Ketzin Brandenburg, Pilot
[13, 21]) Germany
lllinois Basin Decatur Project (IBDP) Decatur, lllinois, USA | Demonstration
[21,12])
Snohvit .
[4, 20, 3] Barents Sea, Norway Commercial
Nagaoka .
113, 17] Nagaoka, Japan Pilot
SECARB Kemper County, Demonstration
[11, 13] Mississippi, USA
Aquistore Saskatchewan, Demonstration
[19, 23,5, 7] Canada
Midwest Regional Carbon Sequestration Ot;ego County, Pilot
) Michigan, USA

Partnership (MRCSP) .
[1, 2] Rabbit Hash, Pilot

' Kentucky, USA
AEP Mountaineer New Haven, West Pilot
[14,10] Virginia, USA
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Figure 4-19 is a map showing the geographic locations of the nine projects.
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Projects are numbers as: 1 — Aquistore, Canada, 2 — MRCSP (Michigan, USA), 3 — AEP
Mountaineer Project (West Virginia, USA), 4 — IBDP (lllinois, USA), 5 — MRCSP (Kentucky, USA),
6 — SECARB (Mississippi, USA), 7 — Snohvit (Norway), 8 — Ketzin (Germany), and 9 — Nagaoka
(Japan).

Figure 4-19. Map showing the global CCS projects used for
data population in this study.

Table 4-5 presents a summary of basic geologic and operational information from
these projects, including formation type, depth of injection zone, average porosity,
injection and monitoring well names, and average injection rate.
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Table 4-5. Summary Information for CCS Projects in this Study.
650
Ketzin Stuttgart sandstone (2,133) 26% Ktzi 201 Ktzi 200, Ktzi 202 27 (0.9) 50
Mount Simon 2,120
IBDP sandstone (6,988) 20% CCs1 VW1, GM1 504 (17.8) 936
2,600
Snohvit Tub&en sandstone (8,530) 7-20% F-2H F-2H 874 (30.9) 1,625
1,100
Nagaoka Haizume sandstone (3,609) 22.5% IW-1 OB-2, OB-3, OB-4 19 (0.7) 35
29-10, 29-12, 25-
2,24-2,29-2, 48-
3,117 1, 29-7, 26-1, 27-
SECARB Tuscaloosa sandstone | (10,300) | 20-25% 1,28-1, 294 EGL7Y 1,342 (47.4) 2,495
Black Island and 2,195
Aquistore Deadwood sandstone | (7,200) 11-17% PRTC-Inj-5626 PRTC-Obs-5628 177 (6.2) 329
MRCSP - 1,049
Michigan Bass Islands dolomite | (3,442) 13% Charlton 4-30 Charlton 3-30A 282 (10.0) 524
MRCSP - East Mount Simon 985
Bend sandstone (3,230) 5-15% East Bend well East Bend well 427 (15.1) 794
AEP Mountaineer Copper Ridge 2,482
- Copper Ridge dolomite (8,144) 5-15% AEP-1 MW-2 117 (4.1) 218
AEP Mountaineer 2,362
- Rose Run Rose Run sandstone (7,749) 5-12% AEP-2 MW-3 32(1.1) 60
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The data used for analyzing injectivity is presented in the Appendix in the form of
injection rate and downhole pressure versus time charts for each of the projects.
In these plots, the red boxes identify discrete injection events under the same
injection activity that were isolated and analyzed separately in this study to obtain
injectivity index estimates. The plots also show a baseline pressure which was
used as a reference pressure to calculate the pressure buildup corresponding to
an injection event.

4.2.1 Reservoir Properties

Table 4-6 shows basic reservoir properties (extracted from the citations in
Table 4-4) for the injection zones identified in the nine CCS projects in Sl units.
Values in parentheses represent field units. CO2 formation volume factors were
estimated at the appropriate pressure and temperature values using NIST tables
[6]. Brine viscosity was determined using the correlations presented in McCain [9].

Table 4-6. Reservoir Properties for the CCS Projects in this Study.

Pr — reservoir pressure, Tr — reservoir temperature, S — formation brine salinity, k — reservoir absolute
permeability, h — injection zone thickness, Bcoz — CO; formation volume factor, wy — formation brine
viscosity.

CO2
formation
volume
Tr, °C kh, m?3 factor, res. | uw, Pa.s
Project Name | Pr, kPa (psi) (°F) S, ppm (mD-ft) ft3/ft3 (cP)

. 33 5.52E-13 0.0015
Ketzin 6,205 (900) ©1) 250,000 | °'gag) 0.0106 (1.45)
IBDP (233:'303061) (&36) 110,000 3('172?6'563)2 0.0025 %922;’

. 28,503 95 7.77E-12 0.0005
Snohvit (4.134) (203) 100,000 (25,840) 0.0028 (0.47)
11,997 47 8.42E-14 0.0007

Nagaoka (1,740) (117) 7,113 (280) 0.0030 (0.68)
11,721 43 1.77E-11 0.0006

SECARB (1.700) (10) | 200,000 | “5g 0009 0.0028 (0.64)

. 34,143 104 3.69E-13 0.0007
Aquistore (4,952) (220) 250,000 (1,227) 0.0027 (0.65)
MRCSP - 10,687 28 1.10E-12 0.0016
Michigan (1,550) 83 | 399000 | "3 650 0.0023 (157)
MRCSP - East 11,032 27 2.47E-12 0.0014
Bend (1,600) go) | 203000 | "5 500 0.0023 (1.44)
AEP

. 27,110 63 6.92E-12 0.0012
Mountaineer - : 300,000 0.0023
Copper Ridge (3,932) (145) (23,000) (1.21)
AEP

. 25,262 54 8.43E-14 0.0012
Mountaineer - (3.664) (129) 300,000 (280) 0.0023 (1.19)
Rose Run
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4.3 Calculation Approach

Injectivity index, J, was calculated for all the nine CCS projects discussed above.
Injection rate and/or cumulative injection data was first examined to divide the data
into discrete injection events. Each of these events, i, consisted of a finite amount
of COz2, Qi injected at one specific rate or a stepwise series of rates over a period
Ati. This led to a corresponding downhole pressure increase, AP; — calculated as
the difference between the maximum pressure attained during an injection event,
PsH, and a baseline (reference) pressure, Pi. Consequently, the event specific J
value, Ji was calculated as:

i

Qi
Ji Ji= =

APat, (Egn. 4-2)

where i is the average CO2 injection rate,

J is typically expressed in the units of MT/yr-kPa or MT/yr-psi.

4.3.1 Calculated Injectivity Index Values and Updated Correlation

Table 4-7 lists the calculated injectivity index values in Sl units. Values in braces
denote injectivity index values in field units. Calculations over multiple events are
presented as average, minimum, and maximum values.

Table 4-7. Injectivity Indices for the CCS Projects in this Study.
J, MT/yr-kPa (MT/yr-psi) Events

Project Name Average Min Max No.
Ketzin 23 (157) 16 (110) 223 4
IBDP 144 (990) 97 (671) 1,176 6
Snohvit 111 (766) 58 (403) 1,007 7
Nagaoka 8 (54) 6 (40) 62 4
SECARB 780 (5,379) 167 (1,153) 11,526 4
Aquistore 25 (169) 13 (87) 327 4
MRCSP - Michigan 54 (373) 32 (219) 438 4
MRCSP - East Bend 163 (1,123) 106 (730) 1,327 3
AEP Mountaineer - Copper Ridge | 251 (1,731) 131 (900) 341 (2,349) 19
AEP Mountaineer - Rose Run 5 (37) 2 (11) 10 (68) 25

Figure 4-20 is a log-log plot of event-based average injectivity index (Javg) versus
kh for all the nine CCS projects discussed in this study. The yellow circles
represent the value of J calculated for each individual injection event for these
projects. The blue diamond represents the average J value. As noted earlier,
Mishra et al., [15] reported a strong correlation between injectivity index and kh
and noted that the field data examined lied between two lines represented by
J =0.04 kh and J = 0.14 kh where J is given in [MT/yr-psi] and kh is given in [mD-
ft]. These two bounds are shown as dotted lines in Figure 4-20. The new bounds
obtained after incorporating data from the additional global CCS projects
considered in this study are plotted as dashed lines in the same figure. These
lines bracket the range of average J values obtained for various projects. They
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correspond to J = 0.03 kh (lower bound) and J = 0.23 kh (upper bound) and should
be considered as the updated bounds to J v/s kh relationship. Finally, the median
trend expressed by the relationship J = 0.08 kh can be used for single-point
estimates. These results corroborate our earlier findings on the correlation
between J and kh, while refining the nature of the correlation and its robustness by
using data from prominent CCS projects across the globe.

100,000
10,000 LT
(77 _ - - "r’
(Il - e -
= - 1 —’« - %7 -
< 1,000 BEERD, O i~
\2_/ _ - - , —————— = -~
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E 100 - - T e —"” - -
8 - - - - " ’’’’’ - - - -
E ————— o B — -
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Event data
¢ Average
Lower bound (Mishra et al., 2017)
Upper bound (Mishra et al., 2017)

Figure 4-20. Estimated injectivity index values vs. permeability thickness (kh)
product from current study, superposed on earlier results from
Mishra et al. [15]

4.4 Discussion

In the context of CO2 geological storage projects, we believe the utility of the
injectivity index concept is twofold. First, it allows a rapid estimation of pressure
buildup corresponding to a target injection rate. For example, if the target injection
rate q for the IBDP project is 1 million MT/yr, and its injectivity index J is ~1000
MT/yr/psi, then the expected pressure buildup will be AP = g/J = 1 million /1000 =
1000 psi. This calculation can be readily inverted to yield the expected injection
rate if there is a target pressure buildup (so as not to exceed fracture pressure
related permit constraints). For example, if the maximum allowable pressure
buildup is 800 psi, then the maximum rate should be 1000*800 = 800,000 MT/yr.
In the planning stages of a project, the correlation in Figure 4-20 can be used to
assist such calculations by pointing to analog projects and also by providing an
uncertainty range.
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The second benefit is in rapidly estimating the permeability-thickness product
without undertaking any detailed injection-falloff analysis using standard transient
pressure analysis techniques. Returning to the IBDP example, for an average
injectivity index J = 1000 MT/yr/psi, the median kh value = 1000/0.08 = 12500 md-
ft, which agrees quite well with the reported value of 12600 md-ft (Table 4-6). This
shows the power of the correlation presented in Figure 4-20, which can also be
used to assign uncertainty bounds to these calculations.

Another benefit of this concept is in assessments of field data where the injection
rate has significant fluctuations over time (as can be seen in the plots in the
Appendix for almost all of the projects investigated). In such conditions, the
injectivity index concept allows the operator to track injection performance over
time, and determine if there is any actual and systematic change in injectivity
(either increase or decrease from physical effects), rather than pressure changes
simply associated with rate variations.

In summary, we have presented field data from multiple CCS projects to
corroborate earlier simulation studies regarding the strong correlation between
injectivity index and the underlying permeability-thickness value. We hope that
this concept will become a powerful tool for characterizing COz2 storage reservoirs
via: (a) ready calculation of expected pressure buildup given a target injection rate
(and vice versa), and (b) providing independent permeability-thickness estimates.
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Appendix A. — Injection Pressure and Rate History
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Ketzin CCS Project, Germany
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Figure A-1. Ketzin injection data; blue line represents cumulative CO2 injected and the

green line represents downhole pressure measurements at a depth of

1,805 feet (Striebel et al., [21]).
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Figure A-2.

IBDP injection data; red line represents cumulative CO2 injected and the
black line represents downhole pressure estimation at the injector
(Striebel et al., [21).
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Snghvit CCS Project, Norway
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Figure A-3.  Snghvit CCS project operational data; Top — F-2H injector bottomhole
pressure; Bottom — CO2 hourly injection rate (Grude et al., [3]).
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Nagaoka CCS Project, Japan
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Figure A-4. Nagaoka CCS project operational data; Top — IW-1 and OB-4 bottomhole

pressures; Bottom — CO2 daily injection rate (Mito et al., [16]).
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Southeast Regional Carbon Sequestration Partnership (SECARB), United

States
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Figure A-5. SECARB Cranfield project operational data; A daily and cumulative
injection data, B — Pressure response in injection zone and overlying
monitoring zone, C — rate of pressure change in the injection zone,
— individual injection rates for injectors on the same side of the fault as
the observation well, E — individual injection rates for injectors on the

opposite side of the fault as the injector well,
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Aquistore, Canada

45,000 "“ - Wwoo
AR * Pres_inj : 900
4300013 i § & * Pres_obs
R + Inj_Rate 800
. + Inj_Temp
41,000 §:
© = >0
o 8
- sm -
< 39,000( »g
o g
< | 50 c®
2 s S
© 37,000) 466 6 g
D- e
o Sge
35,000 ’-—- " : 300
CEET JO AR . I RN e :
- f 5 e 200
33,0001 * = Baseline Pressure :
y &gl . : : i | 100
SRR R y : : : [
31,000 b S !....!-’ “ % Sasasans H Aakapasas H 0
04-16 0518 06-15 07-15 08-14 09[1)3 1013 11-12 12412 01-11  02-10
ate

Figure A-6.  Aquistore injection data (Jiang et al., [7])
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Midwest Regional Carbon Sequestration Partnership (MRCSP), United
States
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Figure A-7.

Injection rate data from the Charlton 4-30 well (green lines) [1].
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Figure A-8.

Downhole pressure data from the Charlton 4-30 well (blue line)
(Battelle [1]).
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Boone County, Kentucky
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American Electric Power (AEP) Mountaineer CCS Project
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(Mishra et al., [14]); green line — AEP-1 BHP, pink line — MW-1 BHP, blue

line — AEP-1 injection rate.
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5.1 Introduction and Scope

Carbon Capture Utilization and Storage (CCUS) is the process of capturing CO:2
before it is emitted into the atmosphere, compressing and transporting the CO:2 to
a geologic storage site, and injecting it into the site for storage [4]. The geologic
storage site could be a deep saline formation, a depleted oil field, or an active oil
field conducting CO2 enhanced oil recovery (EOR). CCUS is based on practices
and technologies developed in oil and gas exploration and production and natural
gas storage, and is considered to be a potentially effective technology for the
reduction of CO2 emissions from stationary sources.

The 2018 increase in value of tax credits for CCUS in section 45Q of the US tax
code provides a mechanism for CO2 sources to monetize their emissions through
tax credits [5]. A comprehensive evaluation of the feasibility of CO2 storage
projects for the purposes of securing 45Q tax credits requires detailed site
characterization, geologic understanding, reservoir modeling, and monitoring
design. However, during the early stages of planning, the information needed for
in-depth project assessment may simply not be available to potential project
developers, or the confidence in the available data may be low and/or the
information may be broad or unrefined. Also, regulators faced with the review of
detailed project technical reports may prefer simpler tools to bound the projected
probabilistic performance of the reference design. Thus, there is a need for reliable
(i.e., reasonably accurate) screening models to predict such performance metrics
as pressure buildup and the spatial extent of CO2 plume — while requiring only a
limited amount of information that can be readily obtained from the literature and/or
analog sites.

Motivated by these goals, a number of screening models have been presented in
the literature for rapid performance assessment of CO2 geologic sequestration
projects. One set of studies builds upon Buckley-Leverett type frontal advance
theory-based models of injection well pressure buildup and CO2 plume
displacement in simplified geometries [19, 3, 6, 16]. Another set of studies is based
on vertical equilibrium type models [14, 9, 20]. A third approach is based on using
full-physics based models to develop reduced-order models with physically
relevant coefficients and/or dimensionless groups Each of these studies requires
different levels of inputs about the system under consideration, and also exhibits
varying levels of accuracy when compared to detailed simulation model results.

The objective of this study is to re-visit our earlier work [17, 16]. and provide an
updated set of correlations that require even less information than the earlier
screening models (and representative of the level of knowledge typical of project
planning phases). The key idea is to use outputs from physics-based models to
develop a simplified model of acceptable accuracy. First, we present a description
of the reference model and inputs therein used to generate the synthetic data.
Next, we present a brief overview of the key concepts used to develop the previous
set of correlations. Then, the development and validation of the correlations for
our screening model is described, along with its application to two example cases.
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The paper ends with some concluding remarks regarding the applicability of the
new screening model and its limitations.

5.2 Dataset Used for Analysis

In this study, the synthetic (simulation-generated) data used for developing the
screening model are taken from an earlier work focusing on the development of
simplified physics-based, statistical learning-based and reduced-order method
based modeling approaches [12]. Specifically, this dataset has been used to
develop correlations for pressure buildup [17] and spatial extent of CO2 plume
migration [18]. These correlations will be used as starting points for the present
analysis.

The system being studied represents a single-well injecting supercritical CO2 into
a bounded 2-D radial-cylindrical formation initially filled with brine. The model
domain consists of a porous and permeable heterogeneous reservoir, overlain by
a low-permeability cap rock. The top of the cap rock, the bottom of the reservoir
and the lateral boundary are all assumed to be no-flow boundaries. The
simulations are executed in the numerical simulator Generalized Equation of state
Model GEM® developed by the Computer Modeling Group. GEM is a robust,
multidimensional and fully compositional reservoir simulator that is widely used to
model the flow of multiphase and multicomponent fluids in the oil and gas industry,
as well as equivalent problems in the context of geologic carbon storage.

The simulations were based on an experimental design that included a reference
case, and multiple one-off sensitivity analyses carried out to perturb the most
relevant parameters over a range. The selected discrete states for various
parameters of interest are described below in Table 5-8. Note that the last
parameter, which is the slope of the fractional flow curve corresponding to the CO2-
brine relative permeability relationship (i.e., a characterization of two-phase flow
properties), is explained in further detail in the next section.
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Table 5-8. MG-GEM Inputs for Experimental Design

Experimental Design Values
Parameter | Reference Case A Case B Description
h 150 50 250 Reservoir thickness (m)
hcr 150 100 200 Caprock thickness (m)
Kk 46 12 220 Avg reservoir permeability (mD)
Oink 3.56 2.45 4.67 Standard deviation of reservoir In(k)
Vop 0.55 0.35 0.75 Dykstra-Parsons coefficient
Kavg,cr 0.02 0.002 0.2 Average caprock permeability (mD)
kv/Kavg 0.1 0.01 1 Anisotropy ratio
q 0.83 0.33 1.33 {Injection rate (million MT/yr)
L 10 5 7 System size (km)
¢ 0.12 0.08 0.18 Reservoir porosity (fraction)
¢cr 0.07 0.05 0.1 Caprock porosity (fraction)
| Increase Decrease Nature of permeability layering in the
k Random . L
from top from top vertical direction
df/dS, 1.74 474 6.24 Slope of CO2 fractipnal flow curve
(see explanation below)
5.3 Basic Concepts and Previous Work
5.3.1 Fractional Flow Curves

The concept of fractional flow is related to the relative permeability relationships
between the gas (CO2) and water (brine) phases during two-phase displacement
processes, and is defined as follows:

krg

— Hg
fo = Tog, b (Ean. 1)

Hg Hw

where k; is the relative permeability of phase j, and | its viscosity [8].
Figure 5-21 shows a typical set of gas-water relative permeability curves, and the
corresponding CO2 (gas) fractional flow curve. Also shown therein is the tangent
drawn to the CO: fractional flow curve. The slope of this line at the point of
tangency dfy/dSq gives the velocity of the Buckley-Leverett front (i.e., saturation-
boundary between the injected COz and in-situ brine), and its reciprocal is related
to the average COz2 saturation in the two-phase region [8].
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Figure 5-21. . Example relative permeability relationships (left) and fractional
flow curve (right).

The slope of the CO: fractional flow curve is one of the hardest inputs to obtain for
any given reservoir due to the inherent uncertainty in the relative permeability
models. This parameter is generally approximated using laboratory experiments
with core data. In the absence of core data to test with, literature-based dfg/dSg
values can be useful assumptions to bound the associated uncertainty. For
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example, Bachu [1] and Bennion and Bachu [2] report relative permeability data
using laboratory core experiments of samples from various formations in Canada
that are candidates for CO2 sequestration projects. They also developed useful
generalizations for sandstone and carbonate formations respectively. In the
absence of site-specific data, these databases can be used to construct the gas-
water relative permeability curves, calculate the fractional flow curve, and obtain
its slope. The use of data from analog sites/reservoirs is also another option for
generating this information.

5.3.2 Injectivity Index

Injectivity index is a commonly used concept in petroleum reservoir engineering
(similar to productivity index) for evaluating an injection well's capability for
injecting fluids into a permeable formation. It is defined as the ratio of the injection
rate q divided by the pressure difference between a reference formation pressure
Pi and stabilized bottom-hole pressure Ps [21], i.e.,

q
] = 7D (Eqn. 2)

The utility of knowing the value of the injectivity index is that the stabilized pressure
buildup corresponding to any target rate (or equivalently, the rate corresponding
to a target pressure buildup) can be easily calculated without doing any detailed
analytical or numerical modeling.

In the case of COz2 injection into deep saline formations with open boundaries [11],
or during COz injection into depleted oil fields before the onset of boundary effects
[13], it has been shown that a plot of the nominal injectivity index against time
generally reaches a stabilized value that is proportional to the permeability-
thickness product of the formation.

Ravi Ganesh and Mishra [17] used the concept of a dimensionless pressure group
to describe this “pressure jump”, i.e. the stabilized pressure increase
corresponding to a constant rate of injection,

__ 2mkh (Pf—Pi) __2mkh1

P
D Uw q “w J

(Eqn. 3)

where kh is the reservoir permeability-thickness product, and s is viscosity of the
native brine (displaced fluid). From Pp, injectivity index J can be readily calculated
knowing permeability-thickness product kh and brine viscosity w#w. Ravi Ganesh
and Mishra [17] showed that Pp could be expressed as a quadratic model for a
wide-range of formation properties as well as two-phase relative permeability
relationships.

afy afy afy)? 2
PD = 10.3 + 0.59? + 3'41VDP + 1.23 EVDP - 0.342 <_) - 8'89(VDP) (Eqn. 4)
g

g dSg
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Here, dfy/dSy is the slope of the CO:2 fractional flow curve discussed earlier, and
Vop is the Dykastra-Parsons coefficient commonly used in the oil industry for
characterizing log-normal permeability distributions [8]:

Vpp = % (Eqn. 5)
where kso is the median permeability, and kss.1 is the permeability value that is one
standard deviation away from the median. Values of Vpp range between from O
(perfectly homogenous) to 1 (completely heterogeneous). Vop can also be shown
to be equal to (1-exp(-oink)), where oink is the standard deviation of the natural log
of permeability values [13] as noted earlier in Table 5-8. Note that at a project
screening level, the information needed to calculate Vop (e.g., using values of
individual permeability samples fitted to a log-normal distribution) may not always
be available.

5.3.3 Total Storage Efficiency

As noted by several researchers [8, 14] for the case of displacement of a dense,
viscous fluid (e.g., brine) by a less dense and less viscous fluid (e.g., CO2), the
migration of the injected fluid is controlled by mainly the effects of buoyancy
(gravity), mobility/viscosity contrast between the fluids, and reservoir
heterogeneity. Based on the schematic in Figure 5-22 taken from Ravi Ganesh
and Mishra [18], we note that within the footprint of the CO2 plume only a fraction
of the total pore volume in the reservoir is contacted by CO2. The ratio of the
volume swept (contacted) by COz2to the total volume within the footprint of the CO2
plume is defined as the volumetric sweep efficiency (Ev). Within this swept volume,
the efficiency of displacement of the native brine by the CO:2 is given by the
displacement efficiency. As the initial gas saturation in the reservoir is zero, the
average COz saturation behind the front, Sgav, gives this displacement efficiency.
The total storage efficiency, defined as the product of Ev and Sgav, thus signifies
the efficiency of COz-brine displacement process or the ability to effectively
sequester COz in that reservoir (Es). The lower the value of total storage efficiency,
the greater is the extent of the plume from the injection well.
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Sg.av = Average Gas Saturation in Swept Volume

Injector

Swept Volun

Reservoir
Unswept Volu

Swept Volume

Ey,

- Swept Volume + Unswept Volume

Figure 5-22. System schematic showing graphical definitions of plume extent,
volumetric sweep and displacement efficiency for CO2- brine displacement [18].

The total storage efficiency is related to the maximum radial extent of the CO2
plume at the end of injection, Rcoz, as given in Eqn. 6 below:

Q _Q
nhSg avEy TTPhEg

Rg‘oz = (Egn. 6)

where Q = gtBg(1-x1) is the cumulative reservoir volumes of COz2 injected with g
being the surface mass injection rate for time t, Bg the CO2 formation volume factor
(i.e., ratio of reservoir volumes to surface volumes), and x is the mass fraction of
COz2 dissolved in brine. Using simulated data for a broad range of conditions, Ravi
Ganesh and Mishra [18] developed a quadratic model for the total storage
efficiency, Es, as follows:

Yy

ng VDP - 25.21LCVDP -

Eg =30.7 + 04352 + 29.24L; — 22.02Vpp — 112N, + 459
g
0.692 <ﬁ>2+6111v 2 (Eqn. 7)
) @, 11N, qn.

As noted earlier, dfg/dSq is the slope of the CO:2 fractional flow curve, and Vpr is
the Dykastra-Parsons coefficient. The other two dimensionless parameters,
gravity number Ng, and Lorenz coefficient, Lc, are described below.

The gravity number Ng signifies when gravity effects are more pronounced
compared to viscous flow effects and vice-versa [8]. This quantity plays an
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important role to characterize different stages of geologic sequestration due to the
density difference between the more buoyant supercritical CO2 and the heavier
native brine [14]. Although the definition for gravity number in surveyed literature
varies from source to source [15], Ravi Ganesh and Mishra [18] used the following
definition of the gravity number while accounting for reservoir permeability
anisotropy in developing their correlation:

_ (pgh)kh(@)

N, = Eqgn. 8
g qug(%v) ( qn )

where Ap = (ow-py) is the difference in brine and CO:2 densities, g is acceleration
due to gravity, g is the COz2 viscosity, (kv/K) is the vertical to horizontal permeability
anisotropy ratio, L is system dimension, and other terms are as defined earlier.
Note that the gravity number can readily computed if fluid properties can be
estimated from the corresponding pressure and temperature values, and typical
reservoir properties are known.

The Lorenz coefficient Lc yields another dimensionless characterization of the
reservoir heterogeneity. It is defined as [8]:

Lc = 2{f; FadC, — 3} (Eqn. 9)

where F, is the cumulative flow capacity (i.e., fraction of the total permeability-
thickness product up to a given layer), C; is the cumulative storage capacity (i.e.,
fraction of the total porosity-thickness product upto a given layer), and L¢ is a
common measure of heterogeneity that is given by the area between the F-C curve
and a 45° line (homogeneous F-C curve) and normalized by 0.5. As in the case
of Vpp, Lc ranges from O to 1 with a value of zero indicating homogeneous
reservoirs and values closer to one indicating extremely heterogeneous ones. It
should also be noted that at a project screening level, the information needed to
calculate Lc (i.e., detailed permeability and porosity values on a layer by layer
basis) may not always be available.

5.3.4 New Correlations

As mentioned in the Introduction, the primary motivation for developing new
correlations for J and Es is to eliminate the dependence on parameter groups such
as Vop and Lc which require a detailed knowledge of reservoir porosity and
permeability distributions. The development and validation of these new
correlations is presented below.

5.3.5 Injectivity Index

As described previously, Ravi Ganesh and Mishra [17] have shown that the
dimensionless pressure buildup following CO:2 injection can be correlated as a
function of the slope of the CO:2 fractional flow curve dfy/dSg, and the Dykstra-
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Parsons coefficient, Vor. In Figure 5-23 the same data is presented in a
dimensional form with the injectivity index J (in MT/yr/psi) plotted against the
permeability-thickness product kh (in mD-ft). The figure suggests that the trend in
the data can be captured via a simple linear relationship of the form:

J =a (kh) (Egn. 10)
where the constant of proportionality o is primarily dependent on the relative

permeability relationship used for the simulations, with a secondary dependence
on permeability heterogeneity.

100000
A Reference_rel perm A Case A_rel perm A Case B_rel perm
10000 4
A
2
E A A
= ¢
S A,
1000 A A %
A A
A
A
100 ‘ ‘ ‘
1000 10000 100000 1000000
(kh), mD-ft

Figure 5-23. Simulated values of injectivity index correlated to permeability-
thickness product for different relative permeability curves [17].

We postulate that the slope of the fractional flow curve dfg/dSq is an appropriate
parameterization of the complex relative permeability relationship. As a first-order
approximation, using the data from Figure 5-23 above, the constant of
proportionality in Eqn. 10_can be expressed as:

o = 0.033 * exp(0.2*dfg/dSg) (Eqn. 11)

where dfg/dSq is used as a single parameter to capture the essence of the two-
phase relative permeability curves, and the influences of other potential factors
such as permeability heterogeneity are ignored. Thus, the new correlation for
injectivity index can be stated as:

5-13



Chapter 5.

J = 0.033 * exp(0.2*dfg/dSg) * kh (Eqn. 12)

To validate this simple correlation, it has been used to predict the injectivity index
for all cases in the dataset described by Ravi Ganesh and Mishra [17]. A cross-
plot of the simulated and predicted J values, shown in Figure 5-24, indicates
excellent agreement with a coefficient of determination R?=0.98.
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Figure 5-24. Comparison between simulated and predicted injectivity index
values, showing excellent agreement, where the colors refer to the three sets of
relative permeability relationships.

In summary, we have developed a simple, but accurate, correlation for injectivity
index J in terms of permeability-thickness product kh and slope of the CO:
fractional-flow curve dfg/dSg. Knowing J, the injection well pressure buildup for a
given injection rate (or vice versa) can be readily calculated using Eqn. 2. Note
that this correlation was developed over the range kh (mD-ft) = [5800, 110000],
and dfg/dSg = [1.7, 6.3]. Caution should be exercised when extrapolating the
results beyond these ranges.

5.3.6 Total Storage Efficiency

As noted earlier, Ravi Ganesh and Mishra [18] have shown that the total storage
efficiency can be correlated as a function of the slope of the CO: fractional flow
curve dfg/dSq, the Dykstra-Parsons coefficient Vop, the Lorenz coefficient Lc, and
the gravity number Ng. In Figure 25 the same data is presented with the total
storage efficiency Es plotted against gravity number N, which suggests a general
linear trend of the form
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Es =B + v (In(Ng)) (Eqn. 13)

for each distinct relative permeability relationship, albeit with some degree of
scatter related to other variables that characterize reservoir heterogeneity.
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Figure 25-5. Simulated values of total storage efficiency correlated to gravity
number for different relative permeability curves [18].

We hypothesize that as a first-order approximation, the trend lines drawn in
Figure 25 can be captured using a single parameter dfg/dSg while subsuming the
influence of parameter groups such as Vpp and Lc. Using the data from
Figure 25, the two constants in Eqn. 13 above, § and y, can be expressed as simple
functions of dfg/dSq as follows:

B = 1.56E-1 — 3.90E-4 (dfy/dSg)? (Eqn. 14)

y = -1.93E-2 — 8.07E-6 (dfg/dSg)* (Eqgn. 15)

To validate the correlations presented in Egn. 13 through Eqgn. 15, they have been
used to predict the total storage efficiency for all cases in the dataset described
earlier. A cross-plot of the simulated and predicted Es values, shown in
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Figure 5-26, indicates very good agreement with a coefficient of determination
R?=0.95.
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Figure 5-26. Comparison between simulated and predicted total storage
efficiency values, showing excellent agreement.

In summary, we have developed a simple, but accurate, correlation for total
storage efficiency Es in terms of a modified gravity number Ng and the slope of the
CO:2 fractional-flow curve dfg/dSy. Knowing Es, the CO2 plume radius can be
readily calculated using Egn. 6. Note that this correlation was developed over the
range Ne =[0.002, 2], and dfg/dSg = [1.7, 6.3]. Caution should be exercised when
extrapolating the results beyond these ranges.

5-16



Chapter 5.

5.4 Example Applications

The application of the new correlations involves two steps: (a) calculate injectivity
index J, from Eqgn. 12, to determine the pressure buildup and final quasi-stable
pressure, and (b) calculate gravity number Ng, from Egn. 8, and total storage
efficiency Es, from Eqn. 13 through Eqgn. 15, to determine radius of CO2 plume
Rco2. This requires calculating a number of fluid properties for brine and CO2 from
correlations. For example, density of CO2 pg; viscosity of CO2 ug; and formation
volume factor of CO2 By can be estimated from NIST tables [7]. Mass fraction of
CO2 in brine x5, can be assumed to vary between 0.05 and 0.08 (based on
simulations and literature values). Density of formation brine pw, and viscosity of
formation brine pw, can be estimated from the correlations presented in
McCain [10].

This workflow has been used to calculate Pr and Rcoz for two example cases
described below. The first (Example #1) is a STOMP simulation for the “warm-
shallow” case described in Oruganti and Mishra [16]. The second (Example #2) is
a CMG-GEM simulation used as the blind validation #2 case in Ravi Ganesh and
Mishra [18]. The relevant parameters for the two cases are shown below in Table
5-9. For instance, the calculated intermediate parameters used for Example #2
are pg= 845.9 kg/m3; ug= 0.085 cP; By = 0.3909 bbl/Mcf; x; = 0.08; and pw= 972.9
kg/ms3.

Table 5-9. Input values for the two example cases.

Parameter Description Units Example #1 | Example #2
Pi Initial pressure psi 1615 1839
Ti Initial temperature deg F 153 101
Sal Brine salinity molal .15 .15
L Reservoir lateral extent m 57950 7500
h Reservoir thickness m 100 148.8
) Reservoir average porosity -- A .1451
k Reservoir average horizontal mD 100 58.25
permeability
kv/k Reservoir anisotropy ratio -- 1 .2482
dfg/dSq Slope of COz fractional flow curve -- 3.49 1.74
q CO2 mass injection rate MT/yr 1.5e6 1.33e6
t Injection time yr 5 30
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The final results for these two cases, along with the corresponding simulated
values, are presented below in Table 5-10, indicating excellent agreement. This
demonstrates the practical utility of the new correlations for screening-level
calculations with only limited information about the reservoir.

Table 5-10. Results for the two example cases.

Example #1 Example #2
Simulated Rcoz from numerical model, m 1250 1699
Calculated Rcoz from Eq. 13-15, and Eqg. 6 (this 1287 (error 3.0%) | 1743 (error 2.6%)
study), m
Simulated Psfrom numerical model, psi 2420 2881
Calculated Ps from Eq. 12 and Eq. 2 (this study), psi | 2298 (error 5.0%) | 2830 (error 1.8%)

5.5 Concluding Remarks

The objective of this short paper is to revisit the correlations presented in Ravi
Ganesh and Mishra [17] for injection-well pressure buildup and Ganesh and
Mishra [18] for CO2 plume migration to develop a new screening model. To this
end, we have developed a new correlation for injectivty index J in terms of the
slope of the COz2 fractional flow cure, dfg/dSy. A second new correlation has been
developed for total storage efficiency within the footprint of plume Es as a function
of gravity number Ng and dfy/dSy. Using these two correlations, as well as a
knowledge of some basic reservoir characteristics (e.g., Table 5-9) and estimates
of fluid properties from standard correlations, the injection-well pressure buildup
and CO2 plume extent in the formation can be readily estimated. The new
correlations reproduce the results of the underlying simulations quite well, and also
provide good agreement with independent calculations for the two example
problems.

The primary limitations of this screening model are essentially those of the
simulation model which created the original data [12], i.e.: (a) areal homogeneity,
(2) radial geometry, and (3) single well configuration. Also, the pressure buildup is
captured only at the injection well, and its radial extent (i.e., pressure plume) is not
quantified. There are also several conditions in the original data (i.e., vertical
heterogeneity, caprock-reservoir system) which are ignored in the present model.
However, as shown in Figure 5-24 and Figure 5-26, these simplifications do not
appear to materially affect the accuracy or robustness of the new correlations.

In conclusion, the primary contribution of this work is a new screening model for
predicting injection-well pressure buildup and CO:2 plume migration of CO:2
geologic sequestration projects. The model requires only limited information and
is quite accurate (when compared to detailed simulation results). We believe the
model can be a potentially useful tool for project developers during the early days
of project planning (e.g., for 45Q related projects), and also for regulators looking
for a simple check against detailed numerical models.
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6.1 Introduction

Vertical wells are the conventional injection well configuration employed for CO2
injection in Carbon Capture Utilization and Sequestration (CCUS) projects. The
primary objective of this study is to evaluate the performance of horizontal well
configurations as a potential alternative in suitable systems. The system of interest
is a synthetic numerical model representing a typical depleted reservoir in which
CO:z injection for geologic storage is simulated after primary recovery. Injectivity-
index analysis approaches are applied to determine the rapid performance
assessment of injection well configurations in reservoirs of varying permeabilities.

The report summarizes the model setup and the scenarios considered for the
numerical analyses. This is followed by a discussion on the pressure response
evaluation at potential monitoring well locations of interest and injectivity analyses
using the simulated data.

6.2 Model Description

6.2.1 Geometry

The numerical model was based on 2-D radial geometry representing a typical
closed oil reservoir that is ~400 m wide and ~91 m thick with a well at the center.
This well acted as the producer during the primary production period and was
converted into an injector during the CO:2 injection period. The medium
permeability reservoir zone occupies the middle ~40 m of the model domain,
overlain by 24 m of very low-permeability cap rock and underlain by a 31 m low-
permeability water column. Figure 6-27 shows the model geometry and cross-
sectional view of the porosity and permeability distributions in the different zones.

6-5



Chapter 6.

1 o 0.068 ]
Caprock g1 Caprock g 1
3 0.061 =
] 0.055 ]
Reservoir g 3 —o.048 Reservoir EE-Egm
+ 7 a7
1 =—0.041 1
_ 3 FH0.034 1H
D; g-_:
Watercolumin:-JEsaelc Ien T H
4 =0.021 1
G [0.014 2
= ] _ _ ]
0.00 32000  640.00 feet 0.008 Kx= Ky = 000 320.00  640.00 feet
000 100.00 200 00 meter ' 0.00 100.00 200.00 meter
0 1,000 0.001 0 1,000 i
""l'll\\\lll.|\||| |\||\|‘\|\||\||\|\\\\\
fering 2000 grid blocks, 2000 view blocks, 2000 exterior faces, Rendering 2000 grid blocks, 2000 view blocks, 2000 exterior faces.

Figure 6-27. Cross-sectional view of the synthetic radial model showing the
porosity (left) and permeability (right) distributions
in the different zones. Grids are logarithmically increasing in size
as we move away from the producing/ injecting well at
the center of the model.

6.2.2 Rock and Fluid Properties

Table 6-11 summarizes the key petrophysical properties of the caprock, reservoir
and underlying water column zones. The porosity of the 40 m reservoir zone was
7%. The porosities of the overlying caprock and underlying water column were
0.1% and 6% respectively, while their permeabilities were defined to be 1E-4 mD
and 2 mD, respectively. Three reservoir permeability scenarios were evaluated at
8, 16 and 23 mD respectively.

Table 6-11. Petrophysical properties of the different zones in the modeled
system of interest.

Petrophysical Overlying Caprock Middle Reservoir Underlying water
Property zone zone column zone
Thickness, m 24 40 31
Porosity, % 0.1 7 6
Permeability, mD 1E-4 8; 16; 23 2
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The various hydrocarbon components were grouped into six pseudo-components:
F1, F3, F4, F5, F6, and F7, along with one pseudo-component F2 for pure COs..
Fluid property characterization was performed using these pseudo-components in
CMG Winprop® to match the laboratory PVT data of a sample field chosen from
Battelle’s projects [1]. Table 6-12 lists the composition and molecular weights of
the pseudocomponents in the in-situ hydrocarbon fluid phase modeled.

Table 6-12. Molecular weights of the pseudocomponents in the fluid modeled.

Component Mol. Weight Initial Mole Fraction
F1 16.116 0.409
F2 (CO2) 44.010 0.001
F3 44.207 0.202
F4 95.459 0.174
F5 179.68 0.147
F6 297.181 0.028
F7 530.093 0.039

6.2.3 Simulation Scenarios and Metrics

The model was initialized at a pressure of ~20,000 kPa (~2900 psi) at a reference
depth of ~1341 m (~4400 ft) with no initial gas cap present. Primary recovery
period of 10 years was simulated during which 0.25 million standard cubic metres
(1.6 MMSTB) or approximately 50% of the original oil in place was produced.
Thereafter, CO2 was injected at a constant rate of 500 metric tons per day using a
gradual ramp-up schedule, i.e., (1) one month injection and two week shut-in, (2)
two month injection and three week shut in, (3) three month injection and four week
shut in, and (4)-(5) two additional periods of six month injection and four week shut
in.

For each of the reservoir permeability scenarios, the performance of different
injection well configurations were evaluated. The reference injection well
configuration was a vertical well perforated through the reservoir zone with
horizontal well configurations of different lateral lengths (reported in terms of half-
lengths) tested for injectivity performance comparison. Table 6-13 shows the
injection well configurations considered for each of the three reservoir permeability
scenarios that results in 12 modeled scenarios of interest:
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Table 6-13. Injection well configurations modeled for each of the three reservoir
permeability scenarios in the synthetic aquifer model

Injection well configuration Configuration description

Vertical well default reference Vertical well perforated through

240 ft half-length horizontal well through
middle of reservoir zone

400 ft half-length horizontal well through
middle of reservoir zone

670 ft half-length horizontal well through
middle of reservoir zone

Horizontal well 1

Horizontal well 2

Horizontal well 3

Figure 6-28 shows the injected CO: rate, the injection well bottomhole pressure
and average pressure responses in the different reservoir permeability models with
the reference vertical injection well configuration. The average reservoir pressure
at the end of depletion and prior to start of the COz2 injection phase is 5447 kPa
(790 psi) which is seen to increase because of CO: injection into the closed
system. These primary variables are used to evaluate the CO: injectivity index for
the horizontal well performance assessment as explained in the subsequent
section.
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Figure 6-28. Injected CO:2 rate (red), the injection well bottomhole pressure
(dashed curves) and average pressure responses (solid curves) in the different
reservoir permeability models with the reference vertical injection well
configuration

6.3 Results Analyses

6.3.1 Injectivity Analysis

Injectivity index is a simple and commonly used concept in petroleum reservoir
engineering to evaluate the capability of a well to inject fluids into a porous and
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permeable formation [2]. It is defined as the ratio of the injection rate divided by
the pressure difference between formation pressure and bottom-hole pressure:

_ q
] - (Pf—PBH) (Eqn- 1)

where J is injectivity index, q is injection rate, Ps is reference average formation
pressure and Pgy is bottom-hole pressure. For the pseudo-steady-state period
during CO: injection following the initial transient period, the injectivity index can
be calculated using the equation 2 as Ps is unknown.

Pi—Py,s P,—P P—Py Q 1 1
= + =\ )\ve )T Ean.2)
4sc 4sc dsc Asc/ \VpCe ] an.

where Q is the cumulative COz2 injected, V; is the pore volume and c; is the total
fluid compressibility.

This suggests that when injection well pressure build-up normalized by the
injection rate is plotted against the ratio of cumulative injection to injection rate (i.e.,
material balance time), it should yield a straight line with slope inversely
proportional to the pore volume times compressibility, and intercept equal to the
reciprocal of the stable injectivity index. This is also referred to as a flowing
material balance plot [3]. Figure 6-29 shows example calculations of the injectivity
index from the flowing material balance plot for the injection period 3 in the 240 ft
and 400 ft half-length horizontal well cases, where the injectivity index is calculated
from the intercepts as 387 MT/yr/psi and 548 MT/yr/psi respectively.

Flowing material balance plot Flowing material balance plot
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Figure 6-29. Calculation of injectivity index, J using flowing material balance plot.
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Figure 6-30 presents the calculated average injectivity indices for the 12 modeled
scenarios of interest.

® 8mD 16mD 23mD

800 y=0.8272x + 154.5
R?=0.9995
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y =0.5387x + 85.975
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B
o
o

300 y = 0.2165x + 39.342
2
500 R?=0.9937
100 o ®
®
0
0 100 200 300 400 500 600 700 800

Injection Well X-Length, ft

Figure 6-30. Calculated average injectivity index ratio, J for the modeled
scenarios of interest.

The injectivity index for the reference vertical well configuration is the intercept
value with the improved performance from horizontal wells demonstrated by the
better injectivity values in the Figure 6-30. The injectivity index for the horizontal
wells is observed to be directly proportional to the half-length of the lateral. Figure
6-31 normalizes the injectivity indices by representing a ratio of the horizontal well
injectivity with respect to the reference vertical well at the corresponding reservoir
permeability.
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Figure 6-31. Calculated average injectivity index ratio, Jraiio for the modeled
scenarios of interest.

The injectivity index ratio for a particular horizontal well is a function of the half-
length of the lateral being considered and is given by a simple empirical correlation
as:

MT

Jratio) 2 = Lnorizontal 4 4 0 005, (Horizontal Injection well halflength, ft)

pst Jvertical

(Egn, 3)

The variation in data (for the 23 mD reservoir permeability scenarios) around the
correlation in Figure 6-31 reflects the uncertainty in the injectivity index due to the
averaging process that was implemented. However, this simple correlation
provides an extremely useful first pass estimate of horizontal well performance in
a given reservoir that can be used for an evaluation of suitable well configurations
preceding detailed numerical and design implementation in a geologic CO:2
sequestration project.
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6.3.2 Pressure Response at Potential Monitoring Well Locations

While the pressure buildup per unit CO2 injected is lower for horizontal wells as reflected
by the higher injectivity indices, pressure response at other locations in the system is also
important to monitor the impact of injecting in a horizontal configuration in comparison to
conventional vertical wells. The pressure response observed at two potential monitoring
well locations of interest is shown in Figure 32. The two monitoring away from the end of
the lateral.
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Figure 32-6. Bottomhole pressure responses at injection well and two
potential monitoring well locations of interest just outside the end of and 400 ft
from the lateral injection well. The pressure responses are compared between

the corresponding reference vertical injection well configuration (blue curves) for
the three reservoir permeability scenarios.

It is apparent from Figure 32 that the pressure response in horizontal well is
equivalent to vertical wells at any location away from the injector. The deviation
seen for the 8 mD reservoir permeability (left column of panels) between the
horizontal and vertical wells during the last 2 injection periods can be attributed to
boundary effects.

6.4 Summary

This report utilized a 2-D radial model to generate synthetic pressure responses
following COz2 injection into a depleted oil reservoir to evaluate the performance of
horizontal well configurations for CCUS projects. The study successfully
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demonstrates the improved performance obtained by employing horizontal well
configurations. A simple empirical correlation is obtained to estimate horizontal
well performance in a given reservoir as a function of the half-length of the lateral.
It is noteworthy that horizontal wells result in higher injectivities while resulting in
equivalent pressure response to conventional vertical wells at any location away
from the injector.
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7.1 Introduction

Geologic CO2 sequestration and CO2 enhanced oil recovery (EOR) have received
significant attention from the scientific community as a response to climate change
from greenhouse gases. Safe and efficient management of a CO:2 injection site
requires spatio-temporal tracking of the CO2 plume in the reservoir during geologic
sequestration. To that end, as part of this research project, the Texas A&M team
is developing robust modeling and monitoring technologies for imaging and
visualization of the CO2 plume using routine pressure/temperature measurements.
Their approach is based on streamline-based technology which has proven to be
effective and efficient for reconciling geologic models to various types of reservoir
dynamic response. Specifically, they first extend the streamline-based data
integration approach to incorporate distributed temperature sensor (DTS) data
using the concept of thermal tracer travel time. Then, a hierarchical workflow
composed of evolutionary and streamline methods is employed to jointly history
match the DTS and pressure data. Finally, CO2 saturation and streamline maps
are used to visualize the CO2 plume movement during the sequestration process.

This chapter describes the data that was assembled by Battelle to support the
above-mentioned objectives. Various types of data that are of interest are listed
below:

Information about the geologic setting

Oil production and CO2 injection history

Bottomhole pressure and temperature data

Distributed temperature sensing (DTS) data

Numerical model developed by Battelle to integrate geologic, production
and injection data

e Additional data types used for model validation (blind testing)

7.2 Project Overview and Data Sources

The Midwest Regional Carbon Sequestration Partnership (MRCSP) was
established in 2003 to assess the technical potential, economic viability and public
acceptability of carbon capture, utilization and storage [1]. This CO:2 injection
project is part of the MRCSP and more than 1 million metric tons of CO2 has been
injected into Niagaran pinnacle reefs. The data of interest for this study are taken
from the Chester 16 reef which is part of the Northern Niagaran Pinnacle Reef
Trend. Chester 16 field was drilled and completed in the early 1970s and produced
through the 1980s and 1990s. The reef has undergone primary recovery and
some waterflooding. Currently, one injection well is used for reservoir fill-up with
CO2 prior to EOR operations, with one monitoring well which will be converted to
a production well during the oil recovery period.

Figure 7-33 shows a map-view and three-dimensional view of the Chester 16 reef
with one CO:2 injection well (Chester #6-16) and one monitoring well (Chester#8-
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16). The Chester 16 reef includes two distinct reef cores close to one another.
The reservoir in this reef is composed of two formations: A1 Carbonate and the
Brown Niagaran formations. The CO:2 injection well #6-16 penetrates the reef
complex at a high flank position in the southern reef core area and the monitoring
well #8-16 penetrates the reef complex at a crestal position in the northern reef
core area. The primary reservoir is the overlying A1 Carbonate (highly dolomitized
high porosity zone along the crest of the reef). The Al Carbonate is tight along
the flanks of the reef, as is often the case and bounds the reservoir on all sides.
The Brown Niagaran is a lower porosity reservoir with occasional fractures and/or
dolomitic zones. A number of facies have been identified for the reservoir zones,
as shown in the figure below. Also shown therein are the locations of the
perforations and the multi-zone pressure and temperature sensors in the
monitoring well

Y

1600
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[ A1 Carb Flank

-4400

[ Gray Niagaran
[ A1 Carb Saddie

-4600

-4800

Elevation Depth [msl] (feet)
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31 i . o ——
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0005~

The left panel shows a contour map depth-surface of the Chester 16. The right panel shows a
cross-section with reservoir facies, perforations and monitoring sensor locations in the two wells.

Figure 7-33. Map of the Chester 16 reef field showing well locations and
structure of the Brown Niagaran.

The reservoir in Chester 16 reef was discovered and put into primary depletion in
the 1960s for twenty years, after which waterflood was used for secondary
production for another ten years and then the field was abandoned till 2017. CO:2
EOR was adopted in 2017 in this field for tertiary production. The field
development history is summarized in Figure 7-34.
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_______________________________________________________________________
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Figure 7-34. Chester 16 field development history.

As mentioned above, the COz injection started in 2017 and as of the end of 2018,
~101,000 MT of CO:2 has been injected in the Chester 16 reef. Table 7-14 shows
the COz injection periods and the intended injection formation(s).

Table 7-14. CO:z injection history of Chester 16 reef [2]

11]151:;::311 Date Range ln?;ciid Target Formation

1 01/11/2017 - 01/14/2017 4 Al Carbonate

2 02/22/2017 - 04/06/2017 44 Al Carbonate

3 04/22/2017 - 07/24/2017 94 Al Carbonate

4 09/29/2017 - 11/27/2017 60 Brown Niagaran

5 12/16/2017 - 1/16/2018 32 Al Carbonate

6 02/05/2018 - 03/21/2018 45 Al Carbonate and Brown Niagaran
7 05/26/2018 - 08/14/2018 81 A1 Carbonate and Brown Niagaran
8 10/20/2018 — 12/31/2018 73 A1 Carbonate and Brown Niagaran

In terms of observed data, this study utilizes a combination of pressure and
temperature measurements, including bottom-hole pressure of injection well,
distributed pressure measurements from four behind-casing sensors in monitoring
well and DTS data of both injection well and monitoring well (Figure 7-35).
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Figure 7-35. Observed dataset [2]
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Both the wells in Chester-16 reef are also instrumented with a fibre-optic
Distributed Temperature Sensing (DTS) system. The DTS data provides a rich
source of time varying temperature data before, during and after CO2 injection.
The data are collected vertically at 1-meter intervals, and temporally every hour.
A waterfall plot of the temperature response at the injection well is shown below in
Figure 7-36. Also shown is the bottom-hole pressure response at the injection
well, and the injection rate history.
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Figure 7-36. Master waterfall plot showing time-varying DTS response,
along with bottomhole pressure data and CO:z injection rate history at the
injection well (Chester 6-16)..

For this project, Core Energy provided Battelle with operational data from the
Chester 16 reef, comprising primarily of the Chester 6-16 injection well and the
Chester 8-16 monitoring well. Both these wells are instrumented with a fiber-optic
cable behind the production casing. This allows measurements of DTS
temperature at every 1-m interval. The Chester 6-16 well is instrumented with
memory gauges which can monitor bottomhole pressure and temperature in the
Al Carbonate or in the Brown Niagaran formation depending on the formation that
is targeted for CO2 injection. Chester 8-16 well has behind-casing gauges
installed at five depths which provide real time pressure and temperature data in
the A2 Carbonate, A1 Carbonate and Brown Niagaran formations.

Mass flow rate measurements are available with a Coriolis flow meter attached to
the Chester 6-16 injection well. Meanwhile, Chester 8-16 well underwent multiple
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transformations, starting out as a monitoring well until September 2019 when the
well was perforated for CO2 injection in the A1 Carbonate formation. Later in May
2020, the Chester 8-16 well was perforated near the top of the Brown Niagaran
formation for production purposes. As such, depending on the phase in which
Chester 8-16 well operated, the data available includes bottomhole pressures and
temperatures, flow rate of injected CO2, or the flow rate of produced gas, oil, and
brine mixture during production phases. In November 2020, a new production well
Chester 9-16HD1 was drilled to completion for producing oil from top of the Brown
Niagaran formation. Table 7-15 below summarizes various data available from the
Chester 16 reef.

Table 7-15. Data Available from Chester 16 Reef

Well Data Type From Date To Date

6-16 Injection Well Bottomhole Pressures Jan 2017 Jan 2020
(BHP) and
Temperatures (BHT)

6-16 Injection Well DTS data to 6400° MD Feb 2017 Nov 2020

6-16 Injection Well Injection Flow Rates Jan 2017 Oct 2021
(daily)

8-16 Well Behind-Casing Feb 2017 Oct 2021

Sensors Pressures
and Temperatures at
5 depths (includes
monitoring, injection,
and production
phases of the well)

8-16 Well DTS data (includes Feb 2017 Jul 2020
injection and
monitoring phases to
6400’ MD, and
production phase
6150’ MD)
8-16 Injection Phase | Injection Flow Rates Sep 2019 Oct 2021
(daily)
8-16 Production | Produced Gas Flow Apr 2020 Nov 2020
Phase Rates (daily)
9-16 HD1 Production | Produced Gas Flow Nov 2020 Oct 2021

Rates (daily)

7.3 Model Description

In this section, we will demonstrate the base case simulation model, including the
model description, initialization, and simulation of production phases before the
CO2 EOR process. Additional details for the model can be found in Mishra [3].

A detailed geologic model was built for Chester-16 as part of the MRCSP modeling
efforts. This static earth model (SEM) has been modified for use in this project.
Figure 7-37 shows some of the model features as represented in the PETREL
earth modeling software.
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Figure 7-37. Chester-16 SEM features in the PETREL model.
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Figure 7-38 (a)-(b) shows the permeability and porosity distribution of the base
case model, with permeability ranging from 1e-10 md to 129 md and porosity
ranging from 0 to 0.275. The 79-layer geologic model is discretized into 0.1 million
grid cells, of which about 60,000 cells are active. Figure 7-38 (c) shows a side
view of the model with two red arrows pointing to the two target formations of CO2
injection: A1 Carbonate and Brown Niagaran, which are also the main formations
of the reservoir.
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Figure 7-38. Base case model: (a) permeability distribution; (b) porosity
distribution; (c) side-view denoting two target formation of CO2 injection.

The fluid saturation of the base case model is initialized using seismic inversion
results [3] and the pressure distribution follows the hydrostatic equilibrium. As
shown in Figure 7-39, the average initial water saturation in the reservoir is about

0.2 and there is no gas cap in the reservoir.
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Figure 7-39. Base case model initialization: (a) Initial water saturation; (b) Initial
pressure distribution.

In order to obtain the reservoir condition at the beginning of the CO2 EOR process,
simulation of previous production phases including primary depletion, water
flooding and abandonment, was conducted. During this process, observed data
such as cumulative oil production, cumulative gas production and average field
pressure were matched, as shown in Figure 7-40.
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Figure 7-40. History matching results for previous phases simulation: (a)
Cumulative oil production; (b) Cumulative gas production; (c) Average field
pressure

The simulation model verified by the observed data before the CO2 EOR process
is then used for the history matching of DTS and pressure data collected in the
CO:2 EOR stage starting on January 1%t 2017. The reservoir condition right before
the COz2 injection is shown in Figure 7-41. After 30 years of production and more
than twenty years of abandonment, the average water saturation in the reservoir
was reduced by around 0.05, and a large amount of gas exists at the top of Al
carbonate and Brown Niagaran formation. Since the reservoir is a closed system,
the reservoir pressure was significantly depleted prior to the CO: injection.
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Figure 7-41. (a) Water saturation; (b) Gas saturation;
(c) Pressure distribution on 1/1/2017.
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8.1 Introduction

The goal of this project is to characterize reservoir connectivity and optimize
performance in injection-production systems using data-driven models. Several
statistical, machine learning, and deep learning models were investigated for
capturing the impact of time-dependent injection rates on the corresponding
production rates. This report focuses on the comparison and summarization of the
performance of those data-driven models. Two types of analyses were performed:

1. Time series forecasting — use of a model to predict future production rates
based on previously observed production and injection rates,
2. Regression forecasting — use of a model to predict future production rates
based on injection rates alone.
The key difference between the two analyses is whether the historical production
rates are used or not as predictors. Section 8.2 shows the exploratory data
analysis results, and Section 8.3 and Section 8.4 introduce data-driven models for
time series forecasting and regression forecasting, respectively. The summary
tables of results from different models can be found in Section 8.5, and Section 8.6
provides a discussion of the results.

8.2 Exploratory Data Analysis

8.2.1 Data Description

In this synthetic dataset, water was injected into 5 injection wells every other day,
and the corresponding oil and water from 4 production wells were measured. For
each production or injection well, there are 365 time steps (data points) after
removing the first one, where all values are 0. Instead of modeling production oil
and water rates, this report uses the total production rate (oil plus water) and the
water ratio rate (water divided by total production), which provide the same
information. Figure 8-42 shows the distributions of injection, total production, and
water ratio rates, where T1~T4 represent total production rates at production wells
1 to 4, WR1~WR4 are water ratio rates at production wells 1 to 4, and 11~I5 are
injection rates at injection wells 1 to 5.

From Figure 8-42, we observe that daily injection rates seem to have a constant
mean with noise. Furthermore, production wells seem to have two natural
groupings: wells 1 and 4 are in one group, in which the total production rates are
higher and fluctuating due to the changes of the injection water, while wells 2 and
3 are in another group, where the total production rates are much lower but steady.
The steady total production rates from production wells 2 and 3 have raised some
concerns, because production from these two wells seem to be totally independent
of the volume of injected water. We also saw an increasing trend in production
wells that may indicate there were some cumulative effects because the amount
of the water injected overtime was relatively constant.
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In this report, the first 275 data points were treated as the training data and the
remaining data points were treated as testing data. Figure 8-43 shows the
boxplots for the rates of training and testing sets on each well (after converting oil
and water rates to total production rate and water ratio rate). There are some
potential outliers in the training data, all of which came from the first couple of
dates. The analyses in the remaining sections did not remove those potential
outliers, because more information is needed to determine whether they are true
outliers. Another potential issue is that at most wells the testing data have higher
rates than training data. Several data-driven models require scaling data to a 0-1
range because this helps in numerical calculation. But when there is a significant
difference between training and testing data, these data will not be scaled
separately.

Injection Total Production Water Ratio
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M | o
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Rate
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Figure 8-42. Comparison of injection, total production, and water ratio rates.
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Figure 8-43. Boxplots for training and testing sets on each well

8.2.2 Cross-Correlation Analysis

Based on fluid-flow mechanics, there would be a time lag between injection and
production as effects of the injection ripple through the reservoir to impact other
wells. In order to visually evaluate the correlations between injection rate at each
of the five injection wells and oil production at each of the four production wells,
we created the cross-correlation plots shown in Figure 8-44. To produce these
plots, we calculated the correlation between oil production on day t and injection
rate on day (t — Lag), where Lag goes from 0 to 100. If there existed a strong
correlation between injection and production rates, these plots would peak
at/toward the beginning of the time series, and decay with increased lag time.
Unfortunately, we see no such patterns in the cross-correlation plots, as most of
the cross-correlations are relatively constant over lag time. In addition, we note
that this relatively constant correlation is small, reaching a maximum of about 0.35
at best. We conclude that there is no significant correlation between injection rate
and oil production at any time lag of any of the wells, and that most of the change
in oil production over time cannot be attributed to daily changes in injection rate.
There may still exist some relationship between oil production and injection rate,
but the relation would be more complicated than a simple daily effect.
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Figure 8-44. Cross-correlation between current oil production (one plot for
each of the four wells) and water injection on previous days (injection wells are
indicated by the color of the lines).

We see similar results in the analogous cross-correlation plots of injection rate at
each of the five injection wells, and water ratio at each of the four production wells.
Thus we also conclude that most of the change in water ratio over time cannot be
attributed to daily changes in injection.

8.3 Time Series Forecasting

In this section we focus on time series forecasting (with Section 8.4 focusing on
regression forecasting). We begin with brief introduction of models that were
investigated. Next, we cover how to identify the optimal modeling approach in
terms of prediction accuracy and model explainability, and then highlight potential
issues of those models.

Models in this section used both production and injection rates at previous time
points as predictors for future production rates. The window size in models
determines how many production and injection rates of previous time points were

8-9



Chapter 8.

used in prediction. For example, if the window size is 1, then today’s injection rate
and yesterday’s production rate were used to predict today’s production rate.
Some models in this section may have slightly different numbers of training/testing
data because of the different sizes of window applied (in which multiple recent time
points were used to make a prediction for the next time point). This does not have
any impact on the measurement of prediction accuracy, because root of mean
square error (RMSE) (i.e., the average error across all points) is used in the
evaluation of the performance across all models.

For time series forecasting, we investigated the following four models:
1) long short-term memory networks (LSTM) [1],
2) Gaussian process (GP) [2],
3) artificial neural networks (ANN), and
4) linear regression models.

We also compared fitting an independent model for each output or a model with
multiple outputs and applying different window sizes. Note that since these are
time series data, technically the future production rate should be predicted
sequentially that only one time point will be predicted, and the predicted value will
be used to as an input to predict the next time point. However, since it is
challenging and time-consuming to add this feature to all the models that were
compared, only the results using the observed value as predictor will be shown in
this report.

8.3.1 Long Short-Term Memory Networks

LSTMs are a special kind of recurrent neural network (RNN) that work
tremendously well on a large variety of problems and are now widely used. One
popular application of LSTMs is in time series forecasting because its RNN
structure with a short-term memory has the natural capability to make predictions
based on historical data with lags of unknown duration between important events
in a time series. In a LSTM network, three gates are present as shown in Figure
8-4 [3]:

Forget Gate

1. Input gate — discover which value from
input should be used to modify the A A
memory. |

2. Forget gate — discover what details to be ®
discarded from the block. oatiile: ki

3. Output gate — the input and the memory Figure 8-45. LSTM

of the block is used to decide the output.

8-10



Chapter 8.

Several LSTM models with different structures were investigated. For example,
we started from the “independent models” for each single output (e.g., total
production rate at well 1) at a time without considering other outputs’ impact (e.g.,
total production at well 2, 3, and 4). Then, we expanded the LSTM model to handle
“‘multiple outputs”, i.e., all 4 total production rates were used to train a LSTM model.
We also tested the impact of different window sizes.

Total Production T1, RMSE = 54.0955 Total Production T2, RMSE = 1.8544
3750
—— True data 400 —— Original data
6 Training data Training data
—— Testing data —— Testing data

3250 350
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420 Training data 20
; iy —— Testing data
400

380
2800

360

2600
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Figure 8-46. Predictions from the LSTM model with window size 3 and multiple
outputs for total production.

The results from a LSTM model with multiple outputs and window size 3 are shown
in Figure 8-46, because in general it produces the minimal RMSE scores across
most of outputs. Results from other trained LSTM models can be found at
Table 8-19 in Section 8.5. Generally, LSTM models can capture the fluctuating
trend well if previous production rates were used in prediction, except for the first
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few time points in the training data (as mentioned in Section 8.2, those points would
be the potential outliers) and the smoothness of the predicted values in time for
wells 2 and 3. The large variation in predictions may imply that the LSTM models
are too complex for this set of data. However, even though the prediction
performance of LSTM models is reasonable, it is relatively difficult to characterize
the connectivity between injection and production wells based on LSTM models
because of their complicated structure.

8.3.2 Gaussian Process Models

GP models have a wide range of applications but have characteristics that make
them especially useful for computer experiments. For example, GP models have
the flexibility to mimic complex simulators because of their semi-parametric
properties; that is, a GP model allows the user to specify the overall mean structure
to fit the global trend, while at the same time, the model is capable of capturing
local variation using a covariance (correlation) function. In addition, the empirical
best linear unbiased predictors (BLUPs) of GP models interpolate the data at
observed input settings, which is an important property for modeling deterministic
computer simulators. GP models are also popular in time and spatial data
analyses due to the fact that GP models have an assumption that two
(geographically) close points will have similar output behavior. For more technical
details of GP models, refer to [4].

Even though some approaches for training GP models with multiple outputs have
been developed (see [5] as an example), most approaches are still immature, and
no well-written package in software has been developed for the implementation of
those models. Thus, only GP models with a single output were considered in the
report, and the MATLAB MPETrK [6] package was used to predict production rates
and calculate sensitivity indices.

Since window size = 3 provided the optimal results for LSTMs as shown in
Subsection 8.3.1, the GP models were also trained with window size = 3 to predict
future production rates, facilitating easier comparison between the models . Figure
8-47 shows that GP models also provide a decent result in terms of prediction
accuracy for production wells 1 and 2. For production wells 2 and 3, GP models
seem to have the capability to capture the overall smooth trend in the data but for
production well 3 for a range of data the predictions from GP model diverged
substantially from the observed values. For production well 4, the GP model
captured the fluctuations in the response, but did not predict as well as the LSTM
models.

Even though the prediction accuracy from GP models may not be as good as
LSTM models, one advantage of GP models is the closed-form expression that
allows the calculation of several diagnostic measures to help understand the
quality of the model fit. For example, sensitivity analysis for GP model is an
approach to determine how input variables affect the outputs. The most popular
sensitivity analysis is based on an ANOVA-type decomposition [7]. Sensitivity
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indices are values between 0 and 1, in which an input variable with a large value
indicates that it has a strong impact on the output. The differences between main
and total effects in sensitivity indices can be interpreted as the sum of interaction
effects for that input variable. Another well-known sensitivity analysis method is
based on the partial derivatives of the outputs of the model with respect to each
input, see [8] for example.

For demonstration purposes, consider the GP models with a window size = 1,
which have fewer variables than the window size = 3 models described above. The
sensitivity indices for these models are shown in Table 8-16.
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Figure 8-47. Predictions from the GP models with window size 3

for total production rates.
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Sensitivity analyses indicates that the total production rate on all wells heavily
depend on the previous total production rate, P(t-1). For T1 and T4, injection rates
atwells 1 and 3 also play an important role, respectively. However, total production
at wells 2 and 3 seems to only depend on previous total production rates but
statistically unrelated to the injection rates, as observed in Section 8.2.

In addition, main effect plots can provide a general idea about how input variables
impact the output when the effects from all other variables were integrated out.
For example, Figure 8-48 shows the main effect plot for the total production rate
at well 1, in which variables x1~x6 are corresponding to P(t-1), I1, ..., 16 in Table
8-16 and we can see the previous production and injection well 1 have a positively
correlated linear impact on the total production at well 1. Other GP model results
can be found in Section 8.5.

Table 8-16. Sensitivity indices for GP model with window size = 1. P(t-1) denotes
the production rate at previous time point, I1~I5 represent injection
wells 1 to 5, T1~T4 represent total production rate at wells 1 to 4.

Prod. Effect P(t-1) 11 12 13 14 15
T1 Main 0.50 0.28 0.05 <0.01 <0.01 <0.01
Total 0.64 0.35 0.21 <0.01 0.01 0.01
T2 Main 0.99 <0.01 <0.01 <0.01 <0.01 <0.01
Total 0.99 <0.01 <0.01 <0.01 <0.01 <0.01
T3 Main 0.99 <0.01 <0.01 <0.01 <0.01 <0.01
Total 0.99 <0.01 <0.01 <0.01 <0.01 <0.01
T4 Main 0.73 <0.01 <0.01 0.21 <0.01 <0.01
Total 0.78 0.01 <0.01 0.26 0.01 <0.01
Plot of Estimated Main Effects
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Figure 8-48. Main Effect Plot of a GP model.
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8.3.21 Main Effect Plot of a GP model

Another model we investigated for this study is the artificial neural network (ANN),
which is one of the main tools used in machine learning. As the “neural” part of
their name suggests, they are brain-inspired systems which are intended to
replicate the way that humans learn. Neural networks consist of input and output
layers, as well as a hidden layer consisting of units that transform the input into
something that the output layer can use. Figure 8-49 provides an example of ANN
with 5 inputs, 4 outputs, and one hidden layer with 15 neurons. ANNs have been
successfully used for variety of tasks and fields including waterflooded reservoirs;
see [9] for an example where the authors built an ANN model to estimate the
interwell connectivity between injection and production wells, and [10] for a case
study and [11] for analyzing cyber-physical petroleum systems.

! . U Output_01
_
Input_I2 12

Output_02
Input_13 713 ¢

Output_03

Input_14 14 O 04
utput_

Input_15 5 &=

Figure 8-49. An example of an ANN structure with 5 inputs, 4 outputs,
and a hidden layer with 15 neurons.

A multivariate outputs (4 outputs) ANN model with a hidden layer of 15 neurons
was trained to predict production rates. As with the other approaches, the first 275
data points were used to train the model to predict the remaining data points.
Moreover, a window size of 3 was used for consistency with LSTM and GP model
results. Predictions from the ANN model are shown in Figure 8-50. Generally
speaking, the performance of ANN and LSTM models are equally matched, with
both of them providing a decent prediction result.

In addition to prediction accuracy, understanding the importance of variables from
the trained models is one of the main goals in this project. To aid in the
interpretation of neural networds, the R package NeuralNetTools [14] was used to
visually interpret the trained ANN models. In Subsection 8.4.1 and Subsection
8.4.2, a visualization method and three variables importance algorithm are
introduced for charactering reservoir connectivity. In Subsection 8.3.2 (sensitivity
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analysis based on GP models), a simplified model using only one previous time
point production rate as a predictor was considered, following the same training
process for the ANNs. Four independent ANN models were trained, all of which
have 6 inputs (5 injection rates plus previous 1 time point production rate) and one
hidden layer with 15 neurons and one output.
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8.3.3 Neural Interpretation Diagram
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Predictions from the ANN model with window size 3 and

A neural interpretation diagram (NID) is a modification of the standard conceptual
illustration of the ANNs that changes the thickness and color of the weight
connections based on magnitude and sign, respectively. Positive between layers
are shown as black lines, while negative weights are shown as gray lines. Line
thickness is proportional to the absolute magnitude of each weight. Figure 8-51
shows the neural network architecture and the variation in connections between
the layers for the total production at well 1, where the largest positive weight is the
connection between injection well 1 and the hidden node 11. However, it is difficult
to interpret given the amount of weighted connections in this network.
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Figure 8-51.
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The NID plot for total production at well 1.
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8.3.3.1 Variables Importance Analysis

As mentioned in Subsection 8.3.2.1, the connectivity between all input-output pairs
of neural networks can be used to quantify the importance of variables. Three
algorithms for evaluating variable importance are applied: Garson’s algorithm for
relative importance [14], Olden’s connection weights algorithm [12], and
Connectivity map approach [9].

8.3.3.1.1 Garson’s Algorithm

Garson’s algorithm calculates the summed products of all absolute weights
specific to each input variable, and then those values are scaled relative to all other
inputs. A value for each input variable indicates relative importance as the
absolute magnitude from zero to one. However, this method is limited in that the
direction of the response cannot be determined and only neural networks with one
hidden layer and one output node can be evaluated. Thus, only single output ANN
models were considered in this subsection for a fair comparison. Four
independent ANN models were trained, all of which have 6 inputs (5 injection rates
and total production rate at previous one time point) and one hidden layer with 15
neurons and one output. The relative importance of variables from the trained four
independent ANN models using Garson’s algorithm is shown in Figure 8-52.

8.3.3.1.2 Olden’s Connection Weights Algorithm

The Olden’s connection weights algorithm is a more flexible approach which
calculates importance as the summed product of the raw input-hidden and hidden-
output connection weights between each input and output node. Its advantage is
the relative contributions of each connection weight are maintained in both
magnitude and sign. There is a strong assumption behind this method — negative
contributions are low connectivity in the reservoir, which may not be true for
different applications. The importance of variables from the trained four
independent ANN models using Olden’s algorithm is shown in Figure 8-53. Note
that the 4 faceted plots in Figure 8-53 have different scales on the y-axis (some
inputs will dominate the importance measure, making it difficult to read if the same
scale across all four outputs was used).

8.3.3.1.3 Connectivity Map

The first step in the construction of a connectivity map is to calculate the
contribution of each input using Olden’s connection weights algorithm. Then, a
connectivity map can be constructed by normalizing those contributions between
0 and 1 (0: lowest connectivity, 1: highest connectivity). The constructed
connectivity map is shown in Figure 8-54. Note that both Olden’s connectivity
weights and connectivity map can be applied to ANN models with multiple outputs,
while Garson’s algorithm can be used in ANN models with single output. To do a
fair comparison, four independent ANN models for each production well are trained
for demonstration the results of different variables importance algorithms. Note
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that the connectivity map construction is using a function that we wrote in R based
on the formula and the example in [9, 12]. The R package NeuralNetTools does
not provide this function.
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Figure 8-52. Variable importance of the 4 independent ANNs with
previous production rate as a predictor using Garson's algorithm.
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Figure 8-53. Variable importance of the 4 independent ANNs with
previous production rate as a predictor using Olden's connection weights
algorithm.

8-19



Chapter 8.

m™ T2
1.00- 1.00-

o
=
=)
=

=)

=

ra
b

e
=)
=

0.00- I

T3 T4
100-

Importance

=
=

0.00-

—- i | |
0.00
‘ 5 2 3 ‘

Inputs

Figure 8-54. Variable importance of the 4 independent ANNs with
previous production rate as a predictor using the connectivity map.

The relative importance of variables from the trained four independent ANN
models using the three algorithms are shown in Figure 8-52 through Figure 8-54,
respectively, where T1_1,...T4_1 denote the previous total production rate for T1
to T4. All three algorithms show that the production rate from the previous time
step played an important role, even though the calculation from Garson’s algorithm
did not represent the dominance of previous production rates as other algorithms
or the results from sensitivity analysis of GP models. The negative contribution
from Olden’s connectivity weights algorithm (Figure 8-53) does not intuitively fit
the physics-based insights for reservoir connectivity. Thus, we recommended to
use the connectivity map to measure the contribution of each input variable
(injection rate) for charactering reservoir connectivity as suggested in [9, 12].

Though the variable importance analyses (Figure 8-52 through Figure 8-54)
provide insights about the waterflooding dynamics in the reservoir and help
understand the overall reservoir connectivity. However, it would be still a
challenging task to interpret ANN models due to the fact that 1.) the most
contributed input from ANN models is not necessary the inputs (injection rates)
that we can adjust and optimize the production rates because they may not have
a linear relationship, and 2.) the main contribution is the previous production rate,
which does not provide much help in characterizing reservoir connectivity for
understanding how injection rates affect the production rate in order to optimize
the reservoir system. Using previous production rates as predictors improves the
prediction accuracy, but it does not provide much insight into how injection and
production wells are connected.
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8.3.4 Linear Regression Models

In this subsection, a simple model, linear regression, is investigated for time series
forecasting. The focus is on regression models with window size = 1 (only the
production rate from the previous time step is treated as a predictor) because we
do not expect that regression models can have better prediction accuracy than
LSTMs or ANNSs. Instead, the focus is to see whether linear regression models
could provide more insight into reservoir connectivity without impacting prediction
accuracy. Four independent linear regression models were fit for the total
production rates at the four wells, all of which have 6 inputs (5 injection rates plus
previous 1 time point production rate). Figure 8-55 shows the prediction results
for the four production wells and the corresponding RMSEs, see
Table 8-19 in Section 8.5 for more results of regression models.

The prediction accuracy from the above regression models are surprisingly almost
as good as ANN and LSTM models. For example, for production well 1, the RMSE
of the regression model is 37, while the RMSE of the ANN model with window size
= 1is 33, and for production well 4, the RMSESs of the regression model and ANN
models are 88 and 67, respectively. In fact, for production wells 2 and 3, regression
models outperform ANN and LSTM models, but this effect would be explained as
occurring because the injection rates on the 5 injection wells almost have no
impact on production rates.

Total Production T3, RMSE = 0.9377 Total Production T4, RMSE = 88.3104
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Figure 8-55. Predictions from the regression models with window size = 1 for
total production rates.

P-values of coefficients of the regression models can be used to determine if the
coefficient is significantly different from 0. However, p-values cannot be used to
measure which variable is the most important one among those significant
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variables. Instead, Pearson’s correlation coefficient is used, which is a measure of
linear association between the two variables. In simple linear regression models,
the square of Pearson’s correlation, usually denoted as R, is the proportion of
the total variable of output that can be explained by the input variable. Table 8-17
shows the square of Pearson correlation coefficients from simple linear regression
models. The result in Table 8-17 is consistent as the sensitivity analysis result
based on GP models (see Table 8-16), both of which show that previous total
production rate, P(t-1), is the most important variable for all production wells and
injection rates at wells 1 and 3 are important for production wells 1 and 4,
respectively.

Table 8-17. Square of Pearson correlation coefficients from simple linear
regression models.

Production P(t-1) 11 12 13 14 15
Well 1 0.87 0.52 0.01 0.03 0.05 0.01
Well 2 0.99 0.06 <0.01 0.06 <0.01 0.03
Well 3 0.99 0.03 0.03 <0.01 <0.01 0.07
Well 4 0.87 <0.01 <0.01 0.50 0.01 <0.01

In this section, four different predictive models were evaluated in terms of
prediction accuracy. All models provide decent prediction results when previous
production rates were used as predictors. Unfortunately, one of the main goals in
characterizing reservoir connectivity is to understand how injection rates affect the
production rate in order to optimize the reservoir system. Even though using
previous production rates as predictors improves the prediction accuracy, it does
not help much in learning how injection and production wells are connected.

8.4 Regression Forecasting

Previous results showed that production rates from earlier time points were useful
for predicting production in upcoming time points but including them in the model
makes it difficult to understand the dynamics between injection and production
wells. This section considers models that do not use past production data; even
though it is expected that prediction accuracy will suffer, the hope is that simpler
models may allow for better interpretation of those well dynamics.

8.4.1 Artificial Neural Networks

The previous section shows that ANNs seem to be a good choice for modeling
reservoir connectivity, which is also consistent with the suggestion provided in [9
through 11, 13]. The trained ANN in this case has 5 inputs (5 injection rates), 4
outputs (4 production rates), and with one hidden layer with 15 neurons. The fitted
results shown in Figure 8-56 are reasonable for production wells 1 and 4 but quite
poor for production wells 2 and 3.

As stated in Subsection 8.3.2.1 understanding the importance of variables from
the trained models is one of the main goals in this project. Garson’s algorithm,
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Olden’s connection weights algorithm, and connectivity maps (see Subsection
8.3.3.1) for the introduction of variables importance analysis) were used to analyze
the importance of variables in the trained ANN models.
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Figure 8-56. Predictions from an ANN model without using previous

production rates as predictors.
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The main conclusion from Figure 8-57 through Figure 8-59 is that different
importance analyses approaches did not provide a consistent result. One potential
issue could be that ANN models are not suited for this data set when previous
production rates are not used as predictors. One thing we observed is that when
we re-trained ANN models, the importance analysis results would change
dramatically. This may indicate that the trained ANN models had not converged.
On the other hand, the importance analysis results in Subsection 8.3.2.1 for ANN
models with previous production rates as predictors provide a similar result,
especially for connection maps, to other methods such as the sensitivity analysis
in Subsection 8.3.2 and Pearson’s correlation coefficients in Subsection 8.3.4.
Among the three importance analysis approaches, the connectivity map is
recommended, because it provides a more consistent result than the other
methods, it considers the impact of negative weights, and it is not strongly affected
by extreme values as is Olden’s connection weights algorithm.

8.4.2 Gaussian Processing Models

We also tried fitting GP models without using production rates at previous dates
as predictors. The result (Figure 8-60) is slightly poorer than the ANN (Figure 8-
56), especially for production well 1. Even though the predicted values have a
relatively large prediction error, the GP model seems to be able to capture some
effects from the injected water as we can see a similar up and down trend from the
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observed data and predicted values. However, for production wells 2 and 3, the
fitted models are not accurate at all.

Total Production T1, RMSE = 189.95 Total Production T2, RMSE = 25.61

6000 500

Original data Original data
Testing data | Testing data
: 450 | "

5000 1
‘ 400

5500

4500
4000 | ‘ 3501\

3500 300}

—

3000 |

2500

2000

1500 150
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

Total Production T3, RMSE = 61.33 Total Production T4, RMSE = 245,66

500 5500

Original dala. Original dal;.
480 Testing data | | Testing data
! 5000 '
460
440 | 4 4500
420 "".‘ 4000
a0 |\ )
380 L \ o~ 7 N\ | 3500
v o\ |
360 7 ‘ 3000 1 A,
340 ™ e PPN S AN
10 \ yan soo M\ I‘\.__ o
~_ "
300 2000
0 50 10 150 200 250 300 350 0 50 10 150 200 250 300 350
Figure 8-60. Predictions from a GP model without using total production

rates as previous dates as predictors.

8.4.3 Linear Regression with Constraints

One way to improve the explainability of fitted models is to train a model that
incorporate rules that govern reservoir physics. One idea is to assume that for all
production wells the percentage of the sum of water received from each injection
well should be equal to 1. For example, if 1 bbl water was injected into injection
well 1, then a case that fits this assumption is if 0.7 bbl went to production well 1,
and 0.1 bbl went to production wells 2~4, respectively. Table 8-18 presents the
coefficients of the fitted linear model with this constraint incorporated. Intercepts
were also added into the model to help align the prediction results for overall mean
production rates. The prediction accuracy of this model is illustrated in Figure 8-
61.
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Table 8-18. Coefficients of the fitted linear model with constraints.

Production/Injection Intercept Well 1 Well 2 Well 3 Well 4 Well 5
Well 1 497.10 0.92 0.44 0.05 0.21 0.41
Well 2 -891.17 0 0.03 0 0.18 0.09
Well 3 -815.83 0 0.07 0 0.23 0.12
Well 4 667.54 0.08 0.47 0.95 0.38 0.38

From Table 8-18, 92% of water injected into injection well 1 goes to production
well 1 and 95% of water injected into injection well 3 goes to production well 4.
Water in injection wells 2 and 5 equally goes to production well 1 and 4, while water
in injection well 4 goes to all four production wells. The above findings are
consistent with what was observed in the sensitivity analysis in Subsection 8.3.2.
For example, if we removed the previous production rate, P(t-1), in Table 8-16, the
most impactful input for production well 1 is the injection well 1. Similarly, the most
impactful input for production well 4 is the injection from well 3.

As shown in Figure 8-61, prediction accuracy of the linear regression model with
constraints is reasonable for production wells 1 and 4. | t is better than the ANN
and has a similar prediction accuracy to the GP models. However, there are still a
couple of issues in the prediction. For example, the fitted linear model has poor
fitted values in the early time points, although that is expected because they are
potential outliers (see Section 8.2). Furthermore, the regression model with
constraints cannot accurately predict production in wells 2 and 3, which is largely
expected as both of those wells seem to be independent to the injected water.

We investigated three types of regression models: regression models without
constraints, regression models with constraints but without intercepts, and
regression models with constraints and with intercepts. We found that the intercept
of the regression plays an important role to capture the overall mean of
productions. RMSEs from those models can be found in Table 8-20 at Subsection
8.4.
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Figure 8-61. Predictions from a linear regression model with constraints
without using total production rates as previous dates as predictors.

Section 8.3 and Section 8.4 provided a brief introduction of several data-driven
models. The goal of this section is to compare and summarize the prediction
performance of all those data-driven models.

As mentioned in Section 8.3, the first 275 data points were treated as the training
data and the remaining data points were treated as testing data for a fair
comparison. We further used the same setting of those hyper-parameters in
models trying to reduce the effect of parameters in different models. For example,
we set the # of epochs = 1,000, batch size = 1 (for single output model) or batch
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size = 4 (for multiple outputs model) across all trained ANN models. Since there
is some randomness in model training, we trained each model 10 times and took
the mean values of the RMSE.

8.5.1 Time Series Forecasting

Table 8-19 shows the RMSE values from the models introduced in Section 8.3
with different window size (WS) options. Note that “-” denotes missing results,
either because the analysis was not performed or cannot be performed (e.g., GP
models interpolate data so it always provides perfect predictions on training
dataset).

The RMSE shown in Table 8-19 may not be the optimal results for all models,
because there are several tuning parameters (e.g., number of epochs, batch size,
loss function, optimizer, etc.) that in theory could be adjusted, but were fixed across
all models for this study. In general, the multi-output ANN model with window size
3 seems to be the optimal choice, even though it does not provide the best
prediction accuracy across all outputs. Particularly, the model has the best
performance in predicting total production rates at wells 1 and 4, which may
indicate that the ANN did capture the effect from previous total production rates
and injection rates.

Table 8-19. RMSEs for testing and training sets of several data-driven time series
forecasting models.

RMSE Testing Set Training Set
Models WS T1 T2 T3 T4 WR1 | WR2 | WR3 | WR4 | T1 | T2 | T3 | T4 | WR1 | WR2 WR3 WR4
Uni.LSTM 1 34 25 | 2.6 67 .10 .01 .006 .01 72 | 53 | 34 | 64 .012 .02 .017 .02
Uni.LSTM 3 32 57 | 2.8 81 A7 .01 .01 .015 | 45 | 36 | 26 | 72 .018 .05 .04 .03
Mul.LSTM 1 65 1.7 | 25 80 .02 .03 .02 .05 46 | 3.0 | 1.9 | 30 .01 .01 .004 .01
Mul.LSTM 3 56 34 | 1.9 59 A .01 .006 .02 45 | 3.6 | 26 | 30 .03 .05 .05 .02
Mul.ANN 1 33 1.8 2.1 63 .08 .009 .003 .009 83 2.3 1.8 39 .013 .01 .005 .02
Mul.ANN 3 15.5 2.7 1.2 16 1 .01 .008 .01 29 3 2 28 .016 .01 .007 .02
Regression 1 37 0.9 0.9 88 .01 .01 .004 .005 60 2.6 2.2 34 .01 .001 .0004 .01
GP 1 73 2.1 14 166
GP 3 21 25 235 131

8.5.2 Regression Forecasting

Table 8-20 shows the RMSE values of the data-driven models introduced in
Section 8.4. Note that to estimate the coefficients of the regression with
constraints we used an optimization algorithm using the least-squares method.
However, the optimization algorithm did not work well for water ratios. For
example, all of the estimated coefficients were 0.25 which are the initial values in
the optimization algorithm; this indicates that the optimization algorithm failed to
produce a reasonable result. Thus, in Table 8-20 only results for total production
rates are shown.

8-29




Chapter 8.

Table 8-20. RMSEs for testing and training sets of several data-driven regression
forecasting models.

RMSE Testing Set Training Set
Models T1 T2 T3 T4 T1 T2 T3 T4
Regression without constraints 82 | 25 | 23 [ 219|294 | 40 | 62 | 198
Regression Wlth constraints without 210 | 169 | 206 | 144 | 354 | 153 | 151 | 281
intercepts
Regression with constraints 88 | 102 | 123 | 207 | 310 | 103 | 98 | 220
GP 211 | 26 | 61 | 246 | - - - -
ANN 89 | 38 | 72 | 211 | 516 | 73 | 44 | 348

8.6 Discussion

This report investigated several data-driven models for charactering reservoir
connectivity and forecasting waterflood production from the viewpoints of time
series forecasting and regression forecasting. While time series forecasting
provides a much better prediction accuracy, regression forecasting typically has a
better interpretability in the connectivity between injection and production. The
recommended model for time series forecasting is the ANN not only because
ANNSs in general provide the best prediction accuracy but because this ANN has a
relatively simple structure so it is possible to open its black-box neural networks to
understand the connectivity between injection and production wells. For
regression forecasting, the recommended model is the regression model with
constraints. Even though the regression model without constraints has a slightly
better performance in prediction accuracy, the regression model with constraints
has a much better interpretability; specifically, its coefficients can be treated as the
proportion contributed from each injection well to that production well.

The prediction performance of those trained models in this report seem to be not
competitive compared to the results shown in other literature sources that used
data-driven model analyzing the interwell connectivity. There are two potential
reasons. First, the size of data in this experiment is relatively small (e.g., this
experiment only has 365 observations, while [9] has 3,000 and [11] had around
4,500 observations, respectively). Thus, the lack of data would cause a poor
model fitting especially for those complex deep learning models. Second, the goal
of this experiment is to use historical data for building models to predict the future
data, while most papers focused on the history-matching results. For example,
[11] randomly selected 80% of the historical production and injection data as
training set and the other 20% of the history data were used as testing set, which
is an interpolation task. However, this report used the observations at the first 275
time points as training data to predict the remaining observations, which is a more
difficult extrapolation task.
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9.0 ABSTRACT

Measuring variable importance for computational models is an important task in
many applications. It is always desirable to have a strategy that works for any
model and could uncover the key predictors in the modeling. In this paper, we first
review several commonly used variable importance strategies that are compatible
with all machine learning or black box models and provide a comparative
assessment of these strategies using an example from a subsurface geoscience
application. Furthermore, we present a framework for making comparisons not
only within but also between different time points for time-dependent models. We
propose the relative importance score (RIS) and uncertainty importance factor
(UIF), which allow users to intuitively interpret how variable importance changes
over time.
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9.1 Introduction

Developing statistical learning based “proxy” models using results from physics-
based simulators for repetitive tasks such as uncertainty quantification or history
matching is becoming commonplace in the petroleum geosciences [16]. These
proxy models are typically developed for modeling univariate summary outputs or
outputs at selected points in time using a combination of experimental design and
response surface analyse [2, 6, 10, 18, 27]). In recent years, the attention has
turned to the use of sampling-based designs coupled with more flexible data-driven
modeling techniques such as neural networks, kriging (gaussian process) models,
etc., to obtain better granularity in the results [1, 13, 12, 19, 21, 22, 23]. In many
of these studies, the identification of key variables is typically done before building
the proxy model with the use of screening techniques such as a 2-level Plackett-
Burman design [28]. Thus, the issue of variable importance on the proxy model
itself is generally not discussed. Furthermore, with time-dependent responses, it
is demanding to gain insight into the dynamic characteristics of the system in
addition to obtaining a computationally efficient and accurate proxy model. For
example, the phenomena governing the system may change over time as critical
conditions are met, and stakeholders might be interested in knowing whether and
how the roles of different variables in the system change over the course of the
simulation. It can be challenging to identify which variables are important at
different time points and evaluate how those variables drive the model response
over time.

Measuring variable importance for computational models is an important task in
many applications. With a predictive model, it is also desirable to extract
information about the relationships uncovered by the model. Researchers are often
interested in knowing which predictors, if any, are important by assigning some
type of importance scores to each variable, and this has resulted in variable
importance techniques being developed independently in many disciplines [14,
25]. Some variable importance strategies are specific to a model's
parameterization or are linked to assumptions made by the models. However,
researchers are more frequently encountering diverse sets of models, or
ensembles of models, and because of this it is desirable to have a strategy that is
more agnostic. That is, it will work for any model that can be characterized as a
“black box” that converts a set of predictor values into one or more responses.

The objective of this paper is to describe several of the commonly used
variable/feature importance strategies that are compatible with black box models
and provide a comparative assessment of those strategies for an example
subsurface geoscience application. A motivating factor in this regard is the
development of ensemble modeling approaches that result in multiple acceptable
models Schuetter, et al., [24] thus requiring a set of model agnostic variable
importance tools that can be compared across models. A second goal is to present
a framework for making comparisons not only within but also between simulation
time points for time-dependent models, allowing for a comprehensive
understanding of how variable importance changes over time.
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9.2 Methods
9.2.1 Variable Importance Strategies

Fundamentally, the idea of “importance” for a variable in a model is easy to
understand. In the context of linear or linearized regression models, this is
generally related to the fractional contribution to variance [17]. However, the
concept is nebulous enough for black-box models that one can conceive of a
variety of methods for quantifying it in a such models. As a result, there have been
a number of different strategies developed for measuring variable importance,
each of which is internally consistent with a set of assumptions, but amongst which
there is a large degree of overlap [14]. There are also strategies that only apply to
specific models, for example, the Gini-based importance for random forest models
[4]. This section contains a description of some commonly used variable
importance methods that are applicable to all machine learning or black box
models, as well as an overview of the reasoning behind them. This is followed by
an illustrative example to help the readers better understand each of the methods.

9.2.2 R2 Loss

The first set of strategies considers variable importance from the perspective of
model prediction performance. That is, an important variable is one that
significantly impacts a model’s performance (i.e., explains much of the variability
in the sampled data). In classical experiment design, the coefficients, their
associated standard error, and the significance of each variable in an Analysis of
Variance (ANOVA) model are often used to rank the predictor variables. While
this approach assumes a linear model and is not directly extensible to black box
models, one could generalize it by defining a measure for the quality of a model fit.
One such example is the pseudo-R?, given by

SSmodel -1— w (Eqn. 9-1)

SSerror ?:1(yi _3_’)2’

Pseudo-R2=R%* =1 —

where y; and 3, are the true and black box predicted responses for the it"
observation, respectively, and y is the average response across the dataset.
Conceptually, this pseudo-R? score measures how much better the model
predictions are compared to a prediction of the mean response, with the maximum
score being 1 and the minimum being, in theory, —oo although negative scores
tend to be rare unless the models are quite poor.

To measure the impact of a predictor on the model, one can intentionally negate
the relationship between the predictor and the response and see how that affects
the pseudo-R?. That is, one can compare the loss in the R?, or “R? loss” from the
original model that occurs when the predictor’s impact is negated.

To do this, there are two straightforward strategies. The first strategy, denoted as
Remove, involves removing the predictor from the model, such that the original
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model uses the full set of predictors and the altered model uses all predictors
except the one of interest. This is the same idea used in approaches like backward
stepwise linear regression, where predictors are removed one at a time from the
model to see if they explain a significant portion of the natural variation observed
in the data.

The second strategy, denoted as Permute, involves permuting the values of the
predictor across the observations in the dataset. In this case, the original model
is the same as before, but the altered model now uses the randomized permuted
predictor of interest in place of the original one. The random forest variable
importance measure uses similar reasoning by permuting predictor values in out-
of-bag samples and looking at changes in the mean squared error or Gini index.

In both strategies, the R? loss can be described as Rf,ss = R, iginai — Rarerear
where R(%riginal is the R? obtained from the original black box model and R%,,., .4 is
the R? calculated from a model trained with the predictor of interest either left out

of the dataset (for the first strategy) or permuted across the observations (for the
second strategy).

9.2.3 Partial Dependence (PDP) and Accumulated Local Effects (ALE)
Plots

Partial Dependence Plots (denoted as PDP), [11, 9] were introduced with purpose
of interpreting complex machine learning algorithms. Interpreting results from a
linear regression model is straightforward because of the clear mapping between
coefficients and the variables. However, interpreting machine learning and black
box models (e.g., random forests, gradient boosting machines, and recently
popular neural network models) is more difficult due to their complexity. PDPs use
black-box model predictions to show the marginal effect of each variable on the
predicted outcome, whether its effect is linear, monotonic, or more complex. The
partial dependence function is estimated by calculating averages in the training
data per the following expression:

E(\S(xs) = %z f (xs: Xéi))’ (Egn. 9-2)

where X are the variables (usually one or two) for which the partial dependence
function should be plotted, X are the other variables in the model f, xg are the
values of the variables of interest, xé‘) are the actual values of the rest of the
variables in the dataset, and n is the number of instances in the dataset.
Essentially, the model is holding the variables of interest fixed at each value they
take in the dataset and averaging over the empirical distributions of the other
variables. For large data sets, the grid size might be reduced by taking specific
guantiles for each variable instead of using all unique values . We might expect
that PDPs are “flat” for less important variables since less important variables tend
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to have little influence on the outcomes, while the variables whose PDPs vary over
a wider range of the response are more likely to be important.

Similarly, plots of Accumulated Local Effects (denoted as ALE) [1] describe how
variables influence the prediction of a machine learning model on average. If
variables of a machine learning model are highly correlated, the PDPs are not
reliable and cannot be trusted. For example, the computation of a PDP for a
variable that is highly correlated with other variables might involve predictions of
unlikely instances. As suggested by its name, ALE plots try to understand the local
behavior of the response within small windows of each variable’s support. ALE
plots are faster and unbiased alternative to partial dependence plots. ALE plots
average the changes in the predictions within grid cells evenly spaced over the
range of the variable of interest. The value of the ALE can be interpreted as the
main effect of the variable at a certain value compared to the average prediction
of the data. For example, an ALE estimate of -2 at x = 3 means that when the
variable has value 3, then the prediction is 2 less than the average prediction.

The variable importance score based on PDPs and ALE can be any measure of
“flatness” of the partial dependence function and ALE plot function. An effective
measure to use is the sample standard deviation for continuous variables and the
range statistic divided by four for categorical variables [11]) The range divided by
four provides an estimate of the standard deviation for small to moderate sample
sizes.

9.2.4 Local Interpretable Model-Agnostic Explanations (LIME)

The Local Interpretable Model-Agnostic Explanations strategy, denoted as LIME,
[19] uses surrogate interpretable models to explain individual predictions of
machine learning or black box models. Although such models are now ubiquitous,
it is nearly impossible to understand their inner workings, which raises the question
of how much faith one should put in these models and their predictions. Thus,
interpretable surrogate models are trained to approximate the predictions of
underlying machine learning or black box models. Instead of training a global
surrogate model, LIME aims to train local surrogate models to explain individual
predictions. LIME attempts to understand the model by perturbing the values of a
variable across the dataset and interpreting how the predictions change. Variable
weights can then be extracted from a simple local model on the permuted dataset
to explain local behavior. The procedures for training local surrogate models are:

e Select an observation of interest in the dataset.

e Perturb the dataset and generate the black box predictions for these new
points.

e Weight the new samples according to their proximity to the observation
of interest.

¢ Explain the prediction by interpreting the local model.
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For example, a linear regression or LASSO model could be chosen as an
interpretable surrogate model to help interpret the local predictions. The global
variable importance score is then estimated by averaging the weights of the
variable in the explanations across all instances.

The R package lime is used for local surrogate model interpretations Riberio, et
al., [20]), where instances are sampled around x’ by drawing nonzero elements of
x" uniformly at random and the number of such draws is also uniformly sampled.
Sparse linear models are used as explanations where K features are selected with
LASSO and weights were learned via least squares. The results below use this
package.

9.2.5 Shapley Additive Explanations (SHAP)

Shapley Additive Explanations [15] (denoted as SHAP) is a method to explain
individual predictions based on the game-theoretically optimal Shapley values.
The intuition of SHAP is similar with LIME, i.e. aiming to interpret and explain
individual predictions. The goal of SHAP is to explain the prediction of an
observation x by computing the contribution of each variable to the prediction. The
SHAP explanation method is motivated by coalitional game theory, where the
variable values of a data instance act as players in a coalition. Shapley values
indicate how to fairly distribute the “payout” (i.e. the prediction) among the
variables. The global importance score is then estimated by averaging the absolute
Shapley values for each variable across all instances.

In game theory, the Shapley value is defined via a value function val of players in

S. The Shapley value of a feature (i.e. variable) value is its contribution to the

payout, weighted and summed over all possible feature value combinations:

S|t (p — IS| — 1)!
p!

¢;(val) = (val(S u{x}) - val(S)), (Eqn. 9-3)

SSley ap\ )

where S is a subset of the features used in the model, x is the vector of feature
values of the instance to be explained, and p is the number of features. Finally,
val,(S) is the prediction for feature values in set S that are marginalized over
features that are not included in set S:

valy($) = | FGru %) dPyes = Ex (FC0) (Ean. 9-4

The reasoning behind this approach is similar to the ideas behind R? loss and
PDPs. Rather than using Monte Carlo sampling over the variables’ domains, as
with PDPs, the SHAP method instead looks at all possible subsets of variables
that either include or do not include the variable of interest x;. The quantity
val(S U {x;}) — val(S) then captures an R? loss type of quantity averaged over the
variables that are not in the subset.
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9.3 lllustrative Example

In this section, a simple artificial example is presented to illustrate the concept of
variable importance and help with the interpretation of different variable importance
measures.

Suppose that the response variable y is based on three variables spanning the
domain [0,1], i.e. y = 5f;(xy) + 3f,(x,) + f5(x3), where f;, f,, and f; are defined
as below:

fi(x) = 2|x — 0.5] (Eqn. 9-5)
_exp(x+1) —exp (1)

f2(x) = exp(2) — exp (1) (Egn. 9-6)

fz(x)~N (0&) scaled to [0,1] over the n random draws. (Eqgn. 9-7)

We randomly sample n = 100 values from [0,1] to represent x,, x,, and x5, then
apply the equations above to generate the response y, pretending that is the
observed dataset. The functions and observed dataset are presented in
Figure 9-62. Based on the coefficients for different functions in definition of y, a
reasonable guess might be that x, is the most important variable in prediction of y
since function f; carries the greatest coefficient; and the next important variable
would be x,. Ideally, the variable importance measures will share this result.

We use an 80/20 Train/Test split and gradient boosting model (GBM; 100 trees)
as the black-box model for illustration. In Figure 9-62, the blue and red dots
represent the train and test data, respectively. R? loss for the three variables based
on Remove and Permute strategies are presented in Table 9-21. For both
strategies, x, and x, have a significantly large R? loss indicating both are important
variables, while x5 has a slight increase in R?(i.e., a negative R? loss), which shows
that x; might play a noise role in the prediction and demonstrates the motivation
in function design for f;.

Figure 9-63 and Figure 9-64 show the calculated PDP and ALE for different
variables using the illustrative example, respectively. These plots show the
marginal effect of the three variables x;, x,, and x; on the prediction of y. The
hash marks at the bottom show where the actual data fall. The standard deviation
of PDP for x,, x,, and x5 (as shown in Table 9-21) are 1.175, 0.697, and 0.053,
respectively, which again supports the fact that x; and x, are the most and second
most important variables, while x5 is not important as a predictor. Similar patterns
as PDPs are observed and produce the same conclusion.

Figure 9-65 and Figure 9-66 provide results of LIME and SHAP for the illustrative
example. In Figure 9-65, data are presented using a heatmap, where blue
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indicates feature condition met while red indicates otherwise. The average weights
from LIME and the average absolute Shapley value from SHAP are plotted. The
average weights for x;, x,, and x5 are 1.140, 0.652, and 0.076, respectively, while
the average absolute Shapley values for x,, x,, and x; are 1.014, 0.646, and 0.063,
respectively.

A summary of various variable importance measures is provided in Table 9-21. As
shown in Table 9-21, the conclusions on variable importance are consistent for all
the six strategies, i.e. x; is the most important variable, while x; is the least
important variable.

Table 9-21. Summary of various variable importance measures for illustrative

example.
R?Loss R?Loss
Variable (Remove) (Permute) PDP ALE LIME SHAP
X1 0.580 0.665 1.175 1.183 1.140 1.014
Xy 0.365 0.499 0.697 0.756 0.652 0.646
X3 -0.008 -0.006 0.053 0.070 0.076 0.063

9.4 Measuring Variable Importance Across Model Types and
Time Points

Another important goal of this paper is to investigate the dynamic characteristics
of time-dependent systems with data from multiple time points. To identify different
“driver” variables at different time points, we propose a unified framework that is
applicable to all machine learning or black box models.

To measure variable importance across different time points, we first fit machine
learning or black box models at each single time point. Next, in comparing the
importance of different variables across time and for different strategies, the
following concepts are proposed.



Chapter 9.

Raw score:

For a given strategy, let R(t,p) be the raw score for predictor p at time t.
Specifically, for R? loss strategies Permute and Remove,

R(t,p) = RE(Full) — Rzz,,t(Modified), (Eqn. 9-8)

where RZ(Full) is the pseudo-R? for the full model at time t and R} (Modified) is
the pseudo-R? for the modified model at time t, where predictor p was either
removed from the model or permuted across the dataset.

For strategies PDP and ALE,

R(t,p)

n

Z(‘g”'t(i) - g‘p‘t)z/n -1 if predictor p is continuous (Eqn. 9-9)

= =1

[,max Ip,: () — min gpt(i)]/4 if predictor p is categorical
i=1,..n "’ i=1,..n !

where g,.(i) is the PDP or ALE response at time t for predictor p at the value
given by the i" observation.

For strategies LIME and SHAP,

n
1
R(t,p) = ;lz Wep (D), (Eqn. 9-10)
i=1
where w;,,(i) is the weight given to predictor p for the i observation using the
LIME or SHAP methods, respectively.
Normalized score:

The normalized score is defined as

R(t,
N(t,p)=%,

(Egn. 9-11)
where C(t) is a strategy-specific normalization constant at time ¢t. Note that for
strategies Permute and Remove, C(t) = R?(Full). For strategies PDP, ALE, LIME,
and SHAP, C(t) = y,, the average response at time t.

Relative Importance Score:

To compare the importance of variables within a time point, the relative
importance score (RIS) may be used. Itis defined as follows, where N(t,p) is the
normalized score defined earlier.
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N(t,p)

RIS@D) = =N
p

(Egn. 9-12)

Uncertainty Importance Factor:

To compare the importance of variables across all time points, the uncertainty
importance factor (UIF) may be used (Mishra, Deeds, & Ruskauff, 2009). It is
given by

N(t,p)

UIF(t,p) = ———.
& p) max N(t,p)
D

(Eqn. 9-13)

By normalizing N (t, p) across time and predictors, UIF provides a globally relative
score with respect to both time points and predictors by bounding the normalized
scores N(t,p) at 1. Alternatively, by normalizing N(¢t,p) across predictors at each
time point, RIS provides a comparison of relative scores across predictors at each
single time point by scaling the normalized scores N(t,p) within that time point.
The RIS could be interpreted as the relative dominance for the predictors at a
certain time point — with RIS = 1 for the most important variable at that time point.
In contrast, the magnitude of the UIF represents the relative effect size of the
importance across predictors and time points. The magnitude of the UIF is
comparable across different time points, while this is not the case for the RIS.

When considering only a single time point, the ranks of the predictors by UIF are
mathematically equivalent to their ranks by RIS. Also, for a given time point the
ratios of UIF for two different predictors p, and p, are equivalent to the ratios of
the RIS, i.e.,

UIF(t,p,) _ RIS(t,p1)
UIF(t,p;) RIS(t,py)

(Egqn. 9-14)

Thus, while different, the UIF and RIS are closely related. For example, it is
possible that the UIF for a predictor p could be greater at time t; than at time t,
(i.e., UIF(p,t;) > UIF(p,t;)), but the RIS at those times could show the reverse
(i.e., RIS(p, t;) < RIS(p, ty)). Inthis case, although the effect size of p on predicted
outcome is greater at time t, than t,, its dominance is greater at t, than t,; the
effect sizes of other predictors might be even smaller which still makes p the most
important.

9.5 An Example Application
9.5.1 Problem Description

The variable importance strategies discussed above are applied to black-box
surrogate models developed from full-physics time-dependent simulations of CO2
injection into a deep saline formation as described in detail elsewhere [23]. The
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system being studied represents a single-well injecting supercritical CO2 into a
bounded 2-D radial-cylindrical formation (storage reservoir) initially filled with brine.
The model domain consists of a porous and permeable heterogeneous reservoir,
overlain by a low-permeability cap rock. The top of the cap rock, the bottom of the
reservoir and the lateral boundary are all assumed to be no-flow boundaries
(Figure 9-67). The simulations are executed in the numerical simulator
Generalized Equation of state Model GEM® developed by the Computer Modeling
Group (CMG) (Computer Modelling Group LTD. 2014). GEM is a robust,
multidimensional and fully compositional reservoir simulator that is widely used as
one of the standard simulators to model the flow of three-phase, multicomponent
fluids in the oil and gas industry, as well as for other subsurface energy resource
applications.

Running a simulation requires the specification of the nine input parameters listed
in Table 9-22 and results in a number of responses over a 30-year simulation
period. Of these responses, the average reservoir pressure within the model
domain was chosen as the metric of interest for the present analysis. In the original
study, a number of classical experimental design techniques were used such as
Box-Behnken (BB), augmented pairs (AP), and Plackett-Burman (PB) designs
using a framework that involves a low (-1), reference (0), and high (+1) value. The
present study uses maximin Latin hypercube sampling (MM) and maximum
entropy (ME) designs in a sampling framework, where the values of the inputs for
each run are sampled over the 9-dimensional unit hypercube [0, 1]° and then
converted back to the original predictor scale using the distributions shown in the
rightmost column of Table 9-22. The distributions include triangular, log-triangular,
and equally likely discrete distributions over the range of the experimental design
values.  For triangular distributions, denoted T(a,b,c), and log-triangular
distributions, denoted InT(a, b, ¢), the parameters a, b, and ¢ represent lower limit,
upper limit, and mode, respectively. Since the BB design for 9 input parameters
has 97 unique runs, all of the designs were set at a size of 97 runs for the
comparison. Thus, the training dataset was a combination of two space-filling
designs, i.e. 97-run maximin Latin hypercube sample and 97-run maximum extropy
design (194 runs total). In addition, performance of modeling was measured over
an independent validation dataset, i.e. Latin hypercube sampling (LHS) simulation
data. Each run had average reservoir pressure measured for a unique
combination of the nine input parameters at 19 time points arranged in
approximately logarithmic fashion from initialization through 30 years. Details on
the various design options can be found in (Schuetter and Mishra [23]).
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Table 9-22. CMG-GEM Inputs for Sampling Designs (MM, ME).

Experimental Design Values
Parameter Ref. Low High Sampling Design Distributions
1 hr 150 50 250 T(50, 250, 150)
2 hcr 150 100 200 T(100, 200, 150)
3 kavg,R 46 12 220 -
4 Kavg,cr 0.02 0.002 0.2 InT(0.002, 0.2, 0.02)
5 kv/kn 0.1 0.01 1 InT(0.01, 1, 0.1)
{0.33, 0.83, 1.33}

6 a 0.83 0.33 1.33 Discrete with equal probability
7 or 0.12 0.08 0.18 T(0.08, 0.18, 0.12)
8 Pcr 0.07 0.05 0.1 T(0.05, 0.10, 0.07)
9 e Random Increase Decrease . {“Randqm”, "Inc”, ”Dec’}_

from top from top Discrete with equal probability

9.5.2 Model Fitting Approaches

In order to evaluate variable importance using the strategies outlined above, a
specific machine learning or black box model needs to be specified. To illustrate
and compare how these variable importance strategies work with different machine
learning or black box models, the selection of models in Table 9-23 are used as
surrogate models to implement the variable importance strategies discussed

earlier.

Table 9-23. Model Fitting Approaches

Model Notation Description
Fit a quadratic polynomial model to the response. The
Quadratic Model | Quadratic quadratw_: p(_)lynomlal model includes all linear, quadr_atlc,
and pair-wise cross-product terms between predictor
variables.
Quadratic Model LASSO (Least Absolute Shrinkage and Selection Operator)
with LASSO Quad regression is a technique to perform variable selection. It is
Variable LASSO done by adding a penalty term to the least squares term in
Selection the objective function for linear regression.
Kriging, or Gaussian Process Regression, is a method of
interpolation for which the interpolated values are modeled
by a Gaussian process that combines a trend term (typically
- Ord Kriging | alinear model) and a covariance structure for points that are
Kriging Model : - . . o .

Univ Kriging | close in space. Ordinary kriging (Krig) assumes a scalar
trend, whereas universal kriging uses a parametric trend
term. In this study, quadratic terms are included in the trend
term for universal kriging (Krig2).

Multivariate
Adaptive MARS models (Friedman [8]) approximate the response
. MARS ! : : . .

Regression surface using a collection of simple step and hinge functions.
Splines

o The AVAS model (Tibshirani [25] and Breiman and Friedman
Additivity and o . .

. [5]) uses a non-parametric, iterative procedure to find some
Variance AVAS .

e transformation of the responses that can be represented as
Stabilization X

a sum of transformed predictors.
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Model Notation Description

A random forest {Breiman [4]) is an ensemble learning
method for classification, regression and other tasks that
operates by constructing a multitude of decision trees. This
Random Forest RF method works by averaging multiple decision trees, trained
on different parts of the same training set, with the goal of
reducing the variance when using a single tree while
simultaneously improving accuracy.

Gradient boosting models (Friedman [9] and Elith, et al. [7])
are similar in structure to random forests, but decision trees
Gradient Boosting in the ensemble are trained sequentially. Each new tree

GBM . X . .

Model focuses on improving predictions for observations that are
not already being predicted well by the other trees trained in
previous steps.

9.6 Results

These eight modeling approaches from Table 9-23 were fit at each of the 19 time
points of interest. Figure 9-68 presents the pseudo-R? for each model approach
along time points. Some model approaches worked well at early time points, but
not at later time points, while some model approaches generally behaved worse
than some others. The illustration of variable importance results was then based
on “Krig2”. As for this example dataset, Universal Kriging (“Krig2”) consistently
had high pseudo-R? along all 19 time points and was considered the optimal
modeling approach for this specific dataset.

Variable importance results were then computed for the surrogate models fitted at
each of the time points using the six different strategies, Remove, Permute, PDP,
ALE, LIME and SHAP. For the average pressure response, it was found that
importance scores and rankings change across time points, indicating different
variables driving the average reservoir pressure throughout the course of the
simulation . To illustrate this, Figure 9-69 and Figure 9-70 present the Relative
Importance Scores for average pressure at time points 2 and 19, respectively.
From these plots, one can observe that at early time points, reservoir thickness
and cap rock thickness are the only two variables that are important. One
exception is the AVAS model for the Remove strategy, which identified reservoir
porosity as the only important variable. The lack of consistency in this case might
due to the poor fit of AVAS model at early time points (see Figure 9-68). We
generally recommend selecting modeling approaches that generally had good
performance along all time points. When time passes, however, injection rate
starts to play a more important role and later becomes the most important variable
driving the response. Error! Reference source not found. through Figure 9-76
present the UIF and RIS values for “Krig2” for each of the nine input predictors
across time. “Krig2” is selected because of it generally fits the data well across
different time points. For both UIF and RIS curves, there is a clear decreasing
trend for reservoir thickness and cap rock thickness and an increasing trend for
injection rate over time. When looking for the dominating or important predictors
at different time points, RIS might provide a more straightforward view by assigning
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a score of one for the most important predictor at each time point. However, the
magnitude of the RIS can only be interpreted and compared within each time point.
Alternatively, UIF allows for a comparison of the magnitude of the scores across
different time points to evaluate the overall importance of these predictors. For
example, the SHAP approach in Figure 9-75 assigns much more importance to the
injection rate in late time points than to the reservoir and cap rock thickness in early
time points; this is evident in the UIF, but not the RIS.

9.7 Concluding Remarks

This study provides a comprehensive evaluation of different variable importance
strategies using a common model-agnostic framework. Variable importance
scores were found to vary depending on the modeling methods and importance
measurement strategies used, but the top variables are usually consistently
identified as being important. Among the modeling methods under consideration
in this study, most were fast to train except the Kriging model. Among the variable
importance strategies, Permute, PDP, and ALE were the fastest to compute. The
Remove method was time-consuming, since it required continuously refitting
models when a variable was removed. The computation times of LIME and SHAP
varied with the size of the dataset. Appropriate modeling methods should be
selected depending on the specific prediction problem being considered. Based
on the analysis described here, Permute is a good recommendation because of its
efficiency and consistency. Furthermore, itis beneficial to select a model approach
which generally fits the data well across different time points.

Guidance on using UIF or RIS as the single variable importance metric of choice
depends on the ultimate goal of the variable importance comparison. If one is
interested in evaluating which variables are important at a specific time point, the
RIS is a more straightforward way to identify dominant variables. Alternatively, if
one is interested in comparing the magnitude/effect size of the variable importance
across different time points, UIF is the more appropriate measure.

Finally, we note that in this work, statistical models were utilized as a surrogate
model, and variable importance scores were evaluated separately across different
time points for comparison. A natural extension would be to develop a unified
approach which integrates data from all time points for modeling and variable
importance investigation. A more systematic and accurate fit is expected by
integrating the time variable in the modeling. Meanwhile, we expect to develop
corresponding unified time-based feature importance strategy.

The primary contributions of this paper can be summarized as follows:

e Evaluation of a set of popular model agnostic variable importance
techniques for a common problem representative of subsurface
geoscience
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9.8

10.

11.

12.

e Two new metrics (UIF and RIS) introduced to handle variable
importance rankings across different points in time
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Figure 9-62. True functions and observed dataset for illustrative example.
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Figure 9-63. Partial Dependence Plots (PDPs) for illustrative example.
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Figure 9-64. Accumulated Local Effects (ALE) for illustrative example.
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Figure 9-65. Local Interpretable Model-Agnostic Explanations (LIME) for
illustrative example.
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Figure 9-66. Shapley Additive exPlanations for illustrative example.
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Figure 9-67. Model geometry and variables of interest.
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Figure 9-69. Relative Importance Scores for Average Pressure at Time Point 2.
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Figure 9-71. UIF vs. RIS for Remove.
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Figure 9-72. UIF vs. RIS for Permute.
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Figure 9-73. UIF vs. RIS for PDP.
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Figure 9-74. UIF vs. RIS for ALE.
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Figure 9-75. UIF vs. RIS for LIME.

Time Paint




Chapter 9.

Reservoir_Thickness

Cap_Rock_Thickness

krig2 krig2
i m UF i
@ RIS
(=] L.}
o 7 o 7
o N <4 T o
3 8 4 3
B R n
o (=1
c 7 o 7
T T T T T T T T T T T 1T T 1T T T 11 L[ S I S O D O O B |
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18
Time Point Time Point
Mean_Reservoir_Permeability Cap_Rock_Permeability
krig2 krig2
(e} (-]
c 7 c 7
e A g - 2
8 o 8 3
@ F A o 2 A 4]
(=] o
rrr1rrrr1rrrrr1r1rr1r 171717 17 17T 17T 1T | N A N O A A A A D D A A A R B A |
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18
Time Point Time Point
Cap_Rock_Porosity Injection_Rate
krig2 krig2
o L]
c 7 o 7
o . @ - @
3 o g o 3
w S w5 5]
o | o |
o o
T T T T T T T T T T T T T T T T 11T T T T T T T 1T T T T T T T T T T 11
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18

Time Point

Time Point

Figure 9-76. UIF vs. RIS for SHAP.
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