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Executive Summary 

We develop and demonstrate rapid and cost-effective methodologies for spatio-

temporal tracking of CO2 plumes during geologic sequestration using joint 

inversion of seismic data and distributed pressure and temperature 

measurements.  Key elements of our methodology are: (a) a computationally 

efficient approach to pressure and temperature propagation, (b) analysis of time 

lapse seismic data using a novel ‘seismic onset time’ approach to detect fluid front 

propagation, and (c) data assimilation and uncertainty assessment  via joint 

inversion of pressure, temperature and time lapse seismic data, and (d) validating 

the numerical tomographic inversion using a CO2 injection demonstration projects, 

specifically data collected from the from the Petra Nova Parish Holdings CCUS 

project in the West Ranch Field, Texas and the  Chester-16 reef CO2 injection site 

in Northern Michigan which is part of the DOE Midwestern Carbon Sequestration 

Project. The research team is led by Texas A&M University and includes Battelle 

as a subcontractor with support from Shell, Anadarko, Chevron and JX Nippon.  

A carbon dioxide (CO2) water-alternating-gas (WAG) pilot was conducted to gain 

insights into tertiary oil recovery potential via CO2 flood in the West Ranch Field 

as part of the Petra Nova project, the world’s largest post-combustion CO2 capture 

and utilization initiative. With a fluvial formation geology and large contrasts in 

permeability, this is a challenging and novel application of CO2 enhanced oil 

recovery (EOR). We build a predictive dynamic model of the subsurface that 

incorporates the multiphase and compositional data acquired during the pilot 

operation. The calibrated model is used for the carbon dioxide plume imaging. The 

study began with an initialization of the pilot sector model extracted from a 

calibrated full-field model. The pilot model calibration follows a two-step 

hierarchical workflow. First, we performed a large-scale update of the permeability 

distribution by integrating available bottomhole pressure and multiphase 

production data. In the second step, local permeability field is fine-tuned using a 

streamline-based method to match CO2 breakthrough times at the producers. The 

predictive capability of the calibrated model was verified through two blind 

validation tests: (1) the model showed good agreement with saturation logs 

acquired at two observation wells; and (2) the model reproduced the CO2 recovery 

as a fraction of the injected CO2.  

The use of seismic onset times has shown great promise for integrating near-

continuous seismic surveys for updating geologic models. In this study, we analyze 

the impact of seismic survey frequency on the onset time approach aiming to 

extend the application of onset time to infrequent seismic surveys. In addition, we 

quantitatively examine the nonlinearity of the onset time method and compare it to 

the commonly used amplitude inversion method. We carry out a sensitivity analysis 

of seismic survey frequency based on the complete seismic survey data (over 175 
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surveys) of steam injection in a heavy oil reservoir (Peace River Unit) in Canada. 

Our results show that an adequate onset time map can be obtained from the 

infrequent seismic surveys by interpolation between seismic surveys as long as 

there is no change in the dominant underlying physics between the successive 

surveys. The study also shows that nonlinearity of the onset time method can be -

smaller than that of the amplitude inversion method by several orders of 

magnitude. Application to the Brugge benchmark case shows that the onset time 

method obtains comparable permeability update as the traditional seismic 

amplitude inversion method with faster computation and improved convergence 

characteristics.   

We extend the streamline-based data integration approach to incorporate 

distributed temperature sensor (DTS) data using the concept of thermal tracer 

travel time. Then, a hierarchical workflow composed of evolutionary and streamline 

methods is employed to jointly history match the DTS and pressure data. Finally, 

CO2 saturation and streamline maps are used to visualize the CO2 plume 

movement during the sequestration process. The hierarchical workflow is applied 

to a carbon sequestration project in a carbonate reef reservoir within the Northern 

Niagaran Pinnacle Reef Trend in Michigan, USA. The monitoring data set consists 

of distributed temperature sensing (DTS) data acquired at the injection well and a 

monitoring well, flowing bottom-hole pressure data at the injection well, and time-

lapse pressure measurements at several locations along the monitoring well. The 

history matching results indicate that the CO2 movement is mostly restricted to the 

intended zones of injection which is consistent with an independent warm-back 

analysis of the temperature data.  

In addition to employing simulation models and inverse methods for CO2 plume 

imaging, we also initialized a data-driven technology for detecting inter-well 

connectivity based on production and pressure data. Our machine-learning 

framework is built on the statistical recurrent unit (SRU) model and interprets well-

based injection/production data into inter-well connectivity without relying on a 

geologic model. We test it on synthetic and field-scale CO2 EOR projects utilizing 

the water-alternating-gas (WAG) process. The validation of the proposed data-

driven inter-well connectivity assessment is performed using synthetic data from 

simulation models where inter-well connectivity can be easily measured using the 

streamline-based flux allocation. The SRU model is shown to offer excellent 

prediction performance on the synthetic case. Despite significant measurement 

noise and frequent well shut-ins imposed in the field-scale case, the SRU model 

offers good prediction accuracy, the overall relative error of the phase production 

rates at most producers ranges from 10% to 30%. It is shown that the dominant 

connections identified by the data-driven method and streamline method are in 

close agreement.  
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Texas A&M University, the lead organization in the project, was primarily 

responsible for the development of tomographic approaches for CO2 plume 

mapping in conjunction with distributed pressure, temperature and seismic onset 

time data.  Battelle, as a subcontractor, was primarily responsible for the 

development of analytical and empirical methods for analyzing transient injection 

rate and pressure data from point/line sources such as injection and monitoring 

wells.  An additional area of emphasis for Battelle was the use of machine learning 

for such tasks as inferring reservoir connectivity information from injection-

production data, and identifying variable importance for machine learning-based 

proxy models developed from full-physics simulations.  The two organizations also 

collaborated on the application of the tomographic inversion methodology for a 

field data set. The contributions of Battelle as part of this project are documented 

in Appendix-B. 

1.0 Introduction  

The US Department of Energy (DOE)’s ongoing research program on “Safe and 

Permanent Geologic Storage of CO2” has resulted in significant advances in our 

understanding of site characterization, modeling and monitoring technologies for 

CO2 sequestration in deep saline aquifers and depleted oil and gas fields.  One 

key area of focus within this R&D program has been the development of robust 

and cost-efficient monitoring technologies and protocols for tracking CO2 plume 

migration in the subsurface.  Under this funding opportunity announcement (DE-

FOA-0001725), DOE is seeking the development of technologies for delineating 

CO2 plumes through monitoring tools and techniques, uncertainty quantification in 

plume boundary detection and field validation of the proposed methods.  To that 

end, this project seeks to develop and demonstrate a robust methodology for 

spatio-temporal tracking of CO2 plumes during geologic sequestration 

based on the principle of joint tomographic inversion of seismic, pressure 

and temperature data. Our motivation stems from the challenges with 

conventional approaches to CO2 plume mapping using geophysical monitoring and 

modeling based workflows.  The former is expensive, and best suited for relatively 

low resolution and mostly qualitative estimates of CO2 saturation distributions, 

whereas the latter suffers from non-uniqueness and data sufficiency issues.   

Our project addresses these shortcomings by means of a novel data integration 

workflow that hinges upon joint inversion of data from multiple monitoring sources. 

Our approach utilizes interpreted seismic onset time data at periodic intervals), as 

well as more frequently monitored downhole pressure and temperature 

measurements, to produce a quantitative assessment of the CO2-saturation 

distribution at a higher resolution and with lower uncertainty than with seismic data 

alone. Our workflow also employs novel forward and inverse modelling strategies 

based on the concept of pressure and temperature “arrival times” which result in 
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significant computational-efficiency gains.  The methodology will be designed to 

handle both CO2-oil-brine systems (i.e., depleted oil fields) and CO2-brine systems 

(i.e., saline aquifers), and will be validated using field data from ongoing CO2 

injection projects.  Figure 1 provides an overview of how the proposed streamlined 

workflow from our research compares to the conventional workflow based on 

geophysical and pressure monitoring.  

 
Figure 1.  Overview of current and proposed workflows for CO2 plume 

monitoring.  

1.1 Background  

Class VI Underground Injection Control (UIC) regulations require both direct and 

indirect site monitoring to ensure the integrity of CO2 storage and protection of 

drinking water sources. As per Environmental Protection Agency (EPA) 

requirements under the UIC Program for CO2 Geologic Sequestration Wells, 

operators must perform both direct pressure monitoring at injection and monitoring 

wells, and indirect monitoring and modeling of the CO2 plume. Indirect monitoring 

methods targeted at tracking CO2 plume movement include “seismic, electrical, 

gravity, or electromagnetic surveys and/or down-hole CO2 detection tools” (EPA 

40 CFR Part 146.90). Information from direct pressure monitoring is used to 

calibrate reservoir models, from which the spatial extent of the plume can be 

inferred. An overview of these two broad classes of approaches, i.e., (a) 

geophysical imaging based CO2 plume delineation, and (b) reservoir modeling 

based CO2 plume delineation, is described next, along with recent work on 

combining pressure and temperature monitoring with tomographic inversion, which 
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has the potential to overcome the challenges of the first approach while leveraging 

the second approach.  

(a) Geophysical imaging based CO2 plume delineation 
One successful and well established technique for monitoring and verification in 

CO2 storage reservoirs is the use of seismic imaging. 3D surveys repeated in time 

(i.e., “4-D”) cover the largest spatial scale and its robustness and imaging strength 

has been demonstrated at field sites.  Advanced seismic processing techniques 

are required to image the migration of the CO2 within the storage complex. Time-

lapse (4-D) seismic surveys have been successfully applied to image CO2 plumes 

in several CCS field projects including Sleipner (Chadwick et al., 2010), Ketzin 

(Ivandic et al., 2015), and Cranfield (Zhang et al., 2013).   

As CO2 replaces saline water in saturated sandstone reservoirs, a P-wave velocity 

reduction may occur in the inter-well region. This velocity change can potentially 

be used to monitor CO2 in sandstone aquifers using seismic tomography based on 

inversion of travel times or waveforms in order to infer CO2-induced velocity 

changes in the observation plane between the wells.  Cross-well seismic and VSP  

(Vertical  Seismic  Profiling)  surveys have been carried out in the Frio project 

(Daley et al., 2008), Michigan Basin project (Gerst et al., 2013), and Ketzin project 

(Bergman et al., 2014), among others. 

Geo-electrical methods are suited for monitoring CO2 injected into deep saline 

aquifers because the electrical bulk resistivity of the medium is highly sensitive to 

compositional changes of the pore-filling fluids (Ramirez et al., 2003). As an 

example, monitoring of CO2 plume at the Ketzin site in Germany was carried out 

using crosshole and surface-downhole ERT with a permanently installed vertical 

electrical resistivity array (Schmidt-Hattenberger et al., 2012). In addition, the 

inverted resistivity data were used to derive CO2 saturation estimates, using 

petrophysical data from laboratory experiments. In addition, fiber optic Distributed 

Acoustic Sensing (DAS) is a relatively recent technology that uses an optical fiber 

cable as a sensor for acoustic signals. A series of field tests have been recently 

conducted, including: (1) CO2 storage monitoring pilots within an oil field in 

Citronelle, Alabama, (2) Otway sequestration pilot project near Warrnambool, 

Victoria, Australia, and (3) Ketzin CO2 pilot storage site.  

Geophysical monitoring methods provide an indirect means of mapping the CO2 

plume based on a surrogate measure (e.g., sonic velocity, gravity, resistivity) and 

its projected response to fluid saturation changes based on some theoretical rock 

physics model which can have considerable uncertainty.  In addition, the methods 

have varying degrees of spatial resolution, as well as cost of implementation.  

Additional constraints on such methods include technical and economic 

challenges if: (a) the CO2 footprint is spatially extensive, (b) CO2 is preferentially 

retained in thin high-permeability zones, or (c) CO2 is moving in zones with 
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insufficient sonic velocity contrast. Under such conditions there is no reliable 

technique currently available for imaging CO2 plumes.  

(b) Modeling-based CO2 plume delineation 

Modeling of CO2-brine flow for geologic sequestration is commonly performed 

using research simulators, e.g., TOUGH2 (Pruess et al., 2011) and STOMP- CO2 

(White et al., 2012) or commercial reservoir simulators from the oil industry, e.g., 

CMG-GEM and ECLIPSE.  The outcomes of a “forward model”, given a geologic 

description of the subsurface, are fluid pressure and phase saturation at each grid 

block in the model domain.  In the “inverse modeling” step, the goal is to adjust the 

geologic description in order to match observed values of time-dependent dynamic 

variables such as pressure, fluid saturation, time-lapse seismic and surface 

deformation data. Often, fluid saturation data are directly not measured.  

Therefore, calibration of the model to pressure and seismic data (if available) 

becomes an indirect means of inferring the extent of the CO2 plume migration 

based on the simulator output values of fluid saturations.   

One of the key challenges with a modeling-based approach to plume tracking is that the 

pressure response is influenced by diffusivity (i.e., ratio of permeability to compressibility), 

where the saturation prediction is influenced by advective characteristics (e.g., intrinsic 

and relative permeability).  There is considerable uncertainty in defining field-scale relative 

permeability curves, which are typically measured only at the lab scale.  Mishra et al. 

(2014) showed that non-unique combinations of intrinsic and relative permeability 

coefficients can produce similar pressure match, but different estimates of plume migration 

(as depicted in Figure 2).  In practice, only a few inverse modeling studies can be expected 

to be performed during the course of a project because of data and computation 

needs. Manual history matching can be time consuming, cumbersome and difficult 

to assess. Traditional inverse methods have relied on numerical perturbation or 

adjoined-based sensitivity calculations which can be computationally intensive and 

difficult to implement because of the complexity of the algorithms and the 

requirements of access to the source code.  Thus, only a limited number of 

snapshots of the spatial extent of the CO2 plume can be realistically obtained from 

the periodic inversion of pressure data. The confidence with modeling-based 

plume tracking is also likely to be impacted by issues of non-uniqueness (i.e., same 

pressure match leads to different plume images) and resolution (i.e., good 

pressure match does not automatically imply a good saturation match) as noted 

above. Therefore, some of the potential areas of improvement with the modeling-

based approach can be identified as: (a) better resolution and lower uncertainty in 

plume delineation, (b) increased frequency, i.e., (near) real-time, in conversion of 

pressure data to spatial plume extent, and (c) computational efficiency for routine 

field-scale applications.   
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(c) Pressure and temperature tomography based plume delineation 

Pressure tomography refers to the use of arrival time of a pressure signal from the 

injection to the observation well to infer characteristics of the subsurface (e.g., 

hydraulic diffusivity. Over the last two decades, using concepts similar to seismic 

inversion, hydraulic (pressure) tomography has developed as an attractive 

alternative for characterizing spatially distributed groundwater aquifer properties 

(e.g., Butler et al., 1999; Brauchler et al., 2007; Vasco and Datta-Gupta, 2016).  

Here,).  One efficient approach for solving the corresponding inverse problem is 

based on the approximation of the transient groundwater flow equation by an 

Eikonal equation (e.g., Vasco et al., 2000; Datta-Gupta et al., 2001; Brauchler et 

al., 2011).  This inversion produces tomograms of hydraulic diffusivity (i.e., ratio of 

transmissivity to storativity). 

Recently, Hu et al. (2015) have suggested that this pressure tomography approach 

can be used to map the spatial extent of the CO2 plume. The premise is that CO2 

injection creates a transient heterogeneity in the hydraulic properties of the system, 

which can then be translated into maps of aquifer diffusivity (mirroring the CO2 

plume migration) via tomographic inversion.  However, they point out that 

quantitative estimates of the spatial distribution of CO2 saturation are only possible 

by calibration with an appropriate multi-phase simulator. To make the approach 

computationally feasible, Hu et al (2015) used a single phase emulator to 

approximate the multiphase flow of CO2 and brine.  Our proposed approach 

expands on this idea by advancing the technology in several different areas, as 

will be pointed out in the next section.   

Distributed temperature surveys are becoming increasingly common to 

understand downhole flow conditions, especially in CO2 injection projects involving 

complex well/reservoir domains. The correlated movement of pressure and 

thermal pulses in response to CO2 injection is well known (e.g., Pruess et al., 

2001).  In the past, the analysis of temperature data in CO2 projects have been 

mostly limited to flow diagnostics based on semi-analytical approach (e.g., 

LaForce et al., 2013). For oil and gas applications, several studies have looked at 

the joint inversion of pressure and temperature data for inferring reservoir 

properties, and indirectly, the saturation distribution (e.g., Duru et al., 2010; Li et 

al., 2011; Ribiero and Horne, 2013).  However, the use of an arrival time concept 

of the thermal pulse has only been explored recently, and that too in the context of 

forward models for two-phase flow in shale gas wells (Cui et al., 2016).  We will 

build on this experience in the analysis of distributed temperature response to 

develop an efficient formalism for modeling temperature ‘front’ propagation and 

inversion of distributed temperature measurements along with pressure data, 

specifically for the problem of CO2 plume migration. 
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(d) Joint tomographic inversion based plume delineation and uncertainty 

assessments 

In addition to the unresolved issues in seismic and fluid flow modeling, challenges 

remain in the area of integrated inversions and uncertainty assessments. 

Uncertainty is inherent in dynamic reservoir modeling because of several factors, 

the primary ones being the uncertainty in geologic models, errors in forward 

modeling and data noise. The uncertainty in reservoir parameters is translated into 

uncertainty in reservoir performance for CO2 sequestration that will impact the 

economic and operational risk analysis. In the context of the Bayesian inversion, 

the solution to the inverse problem is the posterior probability distribution itself. 

Therefore, the problem of uncertainty quantification is closely tied to the correct 

sampling from the posterior distribution (Efendiev et al., 2008; Ma et al., 2008; 

Mondal et al., 2010). Such sampling is nontrivial because the posterior distribution 

is defined on a high dimensional space and is not known in a closed form. 

Furthermore, the posterior distribution can be both non-Gaussian and multimodal. 

This makes rigorous sampling from the posterior distribution extremely 

computationally demanding.  

Another challenge is the diverse forms of fluid flow and seismic data that can be 

potentially conflicting, particularly because of the interpretative nature of the 

seismic data. We plan to explore the use of multi-objective algorithms for 

probabilistic integration of diverse data types. Use of fast flow simulation for rapid 

likelihood computation and faster convergence will be critical to the practical 

feasibility of our approach. 

1.2 Objectives of the Project  

The goal of this project is to develop and demonstrate a rapid and cost-effective 

methodology for spatio-temporal tracking of CO2 plumes during geologic 

sequestration using joint tomographic inversion of seismic data and distributed 

pressure and temperature measurements.  Key elements of our methodology are: 

(a) a computationally efficient approach to pressure and temperature propagation 

calculations using the Fast Marching Method (FMM), (b) analysis of time lapse 

seismic data using a novel ‘seismic onset time’ approach to detect fluid front 

propagation , (c) data assimilation and uncertainty assessment  via joint Bayesian 

inversion of pressure, temperature and time lapse seismic data, and (d) field 

validation of the methodology using data collected from ongoing field projects 

involving CO2 utilization for enhanced oil recovery and frequent time lapse seismic 

monitoring. The project team is led by Texas A&M University and includes Battelle 

as a subcontractor with support from Shell, Anadarko, Chevron and JX Nippon.  

The project will develop a robust and cost-effective methodology for indirect 

imaging of CO2 plume using interpreted seismic onset time data at periodic 
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intervals, as well as more frequently monitored distributed pressure and 

temperature measurements, in conjunction with forward and inverse modeling 

strategies that are both novel and computationally efficient. An Eikonal formulation 

for pressure and temperature propagation during CO2 injection will be developed 

and solved using the Streamlines and Fast Marching Method, making it well-suited 

for field-scale applications.  Using the propagation time, ‘the time of flight’, as a 

spatial coordinate, the 3-D compositional flow equations will be reduced to 1-D 

equation leading to orders of magnitude faster flow simulation and CO2 saturation 

calculations. A robust and efficient tomographic inversion scheme will be 

developed for determining the spatial distribution of two-phase hydraulic diffusivity 

from arrival time of pressure and temperature at observation wells.  This will lead 

to time-lapse delineation of migrating CO2 plume using the diffusivity discontinuity 

concept. The seismic data integration will be carried out based on ‘onset times’ – 

the calendar time at which a specified seismic attribute deviates from its 

background value. The approach is particularly well suited when we have frequent 

seismic surveys as multiple surveys are reduced to a single spatial map of onset 

times. This will speed up the inversion significantly. For data integration from 

multiple sources and uncertainty quantification in detecting plume boundaries, we 

will adopt a Bayesian framework using multiobjective algorithms to define a  Pareto 

front representing the trade-off between multiple data sets during history matching.  

The methodology will be designed to handle both CO2-oil-brine systems (i.e., 

depleted oil fields) and CO2-brine systems (i.e., saline aquifers), and will be 

validated using field data from ongoing CO2 injection projects. The outcome of the 

proposal will advance CO2 plume mapping protocols using novel forward and 

inverse modeling techniques to: (a) reduce cost and uncertainty, (b) satisfy 

regulatory requirements, (c) provide continuous monitoring and long-term 

durability, and (d) cover a large area with improved accuracy.   

The fundamental impact of this research would be to provide a practical and cost-

effective methodology for CO2 plume delineation using routine pressure and 

temperature measurements together with seismic data. This will facilitate (near) 

real-time monitoring of CO2 plumes in field projects needed to meet current 

regulatory requirements which stipulate both direct pressure monitoring at injection 

and monitoring wells, and indirect (geophysical) monitoring and modeling of the 

CO2 plume. The methodology proposed here considers streamlining the fulfillment 

of these two requirements by using rapid tomographic inversion for CO2 plume 

monitoring. 

1.3 Purpose of this Document  

The purpose of this document is to provide an overview of the research completed 

under this project. A detailed report for each of the technical tasks has been 

prepared and uploaded to the DOE’s reporting website and are available to the 
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reader who is interested in more details about the methods and results of the 

various tasks. The remainder of this final report provides short descriptions of each 

of the major technical task efforts and accomplishments. 

2.0 Summary of Technical Tasks 

2.1 CO2 Plume Tracking Using Pressure and 

Production Data  

2.1.1 Introduction 

The CO2 EOR technology has been applied in different forms, based on specific 

nature and conditions of the oil-bearing formations for optimal oil recovery. These 

include continuous CO2 injection, Water-Alternating-Gas (WAG) Injection, gravity 

drainage, huff-and-puff, and so on. Regardless of the process employed for CO2 

EOR, proper reservoir management plays a key role in maximizing the value of the 

asset using this technology (Wallace and Kuuskraa, 2014). This includes reservoir 

characterization to understand the subsurface flow mechanisms, followed by 

generation of optimal strategies for improved conformance. Measures to combat 

flow conformance problems become particularly vital for gas injection processes 

like CO2 WAG. This is because of both viscous fingering and gravity override 

effects, due to differences in multiphase fluid properties including viscosity and 

density (Orr, 2007).  

This study showcases an example of CO2 plume tracking using pressure and 

production data. First, we provide a background and description of the field and 

we also discuss the initialization of the pilot model. Second, we report the details 

of the pilot model calibration, starting from the model parameterization and the 

optimization strategy adopted to reduce data misfits in the global step of the 

hierarchical workflow. Next, we describe the local model update algorithm which 

utilizes streamline-derived arrival time sensitivities to integrate CO2 breakthrough 

times into the pilot model. A discussion of the results and validation of the 

calibrated model using auxiliary observed data is presented next.  

2.1.2 Field Description and Model Calibration 

A pilot CO2 WAG operation was conducted in a mature oil field of fluvial sandstone 

geology. In our previous work, multi-year field-wide production data and high-

resolution downhole pressure measurements were successfully integrated into the 

full-field model to calibrate the reservoir energy and large-scale spatial variations 
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of hydraulic conductivity (Olalotiti-Lawal et al., 2019). High-resolution permeability 

field calibration in the second stage of the hierarchical history matching workflow 

aided an improved reproduction of the field-wide multiphase production data by 

the model. Details of the field description, production history and full-field model 

calibration are provided in (Olalotiti-Lawal et al., 2019).  

 

(a) 

               

        (b)              (c) 

Figure 2. (a) Pilot model (right) initialization from the full-field high-

resolution geologic model (left). (b) Top view of pilot model (c) Fluid phase 

envelopes comparison at virgin reservoir condition and current state.  

For this work, the full-field model was converted to a compositional model. A sector 

model subsuming the pilot location was generated from the calibrated full-field 

model as shown in Figure 2 (a). The pilot CO2 WAG operation was conducted with 

an inverted 5-spot pattern flooding. Two observation wells O1 and O2, shown in 

Figure 2 (b), were used to acquire reservoir saturation logs to monitor CO2 plume 

movement during the pilot period. To ensure physical consistency, phase and 

component fluxes at the pilot boundaries throughout the pilot test period were 

mapped from the full-field onto the pilot model, as shown in Figure 2 (a) and (b). 

Pressure field, phase saturations and component mole fractions were initialized 
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directly from the full-field profiles obtained from the compositional simulation of the 

multi-year history of the reservoir. As expected, due to variation in fluid 

compositions through the long production history of the field, moderate changes in 

fluid phase behavior can be noticed between reservoir fluids at virgin conditions 

and at the current state. This is shown in comparison of the phase envelopes 

(pressure-temperature diagrams) in Figure 2 (c).  

The CO2 WAG pilot entails 19 days of CO2 injection followed by 1 year of water 

injection. The time series data sets acquired during this operation include 

multiphase production data, CO2 mole fraction at the producers and wellhead 

pressure data. For all producers and injector, the bottomhole pressure data was 

estimated from the wellhead pressure data using a multiphase vertical lift model.  

We follow a two-step hierarchical approach for the calibration of the pilot model 

(Yin et al., 2011) as described in the general workflow schematic in Figure 3. In 

the first step, we focus on a global update of spatial distribution of the model 

permeability field and the relative permeability functions. We apply the Grid 

Connectivity Transform (GCT) which enables spatial updates of the permeability 

field using a small set of basis functions (Bhark et al., 2011; Olalotiti-Lawal and 

Datta-Gupta, 2019). In the second step, we fine-tune the pilot model permeability 

field by matching CO2 arrival times at the producers using the streamline-based 

Generalized Travel Time Inversion (GTTI) algorithm (Cheng et al., 2005; Cheng et 

al., 2004; He et al., 2002).    

 

 
Figure 3. Hierarchical pilot model calibration workflow 

2.1.3 Model Calibration Results and Validation 

A plot of the data misfit reduction obtained from GA in the global model calibration 

step is shown in Figure 4 (a). Although, the ‘best’ model is selected as the one with 

the least data misfit at the end of the 20 generations, we also provide a boxplot of 
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the normalized distribution of the parameters in the 80 members of the population 

in the last generation in Figure 4 (b).  

              . 

(a)         (b) 

Figure 4. Global update results showing (a) data misfit reduction with 

generation and (b) normalized distribution of updated parameters 

Production matches obtained from the pilot model calibration are summarized in 

Figure 5. The initial model response, the model response after the global update 

and after the local update are compared with the observed data. The results show 

improved matches for all 4 wells in terms of gas production rate.  
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Figure 5. Comparison of Gas production Rates (GPR) at each stage of the 

model calibration (plot-scale suppressed per operator request). 

 

It is expected that a significant portion of injected CO2 is trapped in the subsurface 

and the proportion recovered provides an indication of the quality of sweep in the 

subsurface (Melzer, 2012). A field-wide comparison of CO2 recovery between the 

initial and updated models is shown in Figure 6. An early CO2 breakthrough is 

obtained from the initial model response and hence, CO2 recovery is 

overestimated. This behavior can be attributed to the preferential flow path of CO2 

toward PRD4, as shown in the production responses in Figure 5, resulting in early 

breakthrough of CO2 and overall poor CO2 sweep in the subsurface. The CO2 

recovery was brought within the range of the observed data in the field in the 

calibrated pilot model. The updated model response also showed good agreement 

with the observed data in terms of CO2 breakthrough time. 
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Figure 6. CO2 recovery fraction comparison between observed data and 

initial and calibrated model responses.  

       
 

Figure 7. Reservoir saturation logs (sigma responses) comparison between 

observed data, initial model response and calibrated model response at 

observations well O1 

Next, we compared the model response with gas saturation logs at an observation 

well O1. The locations of the observation well O1 relative to the other wells in the 

pilot pattern are shown in Figure 7. The observed data is compared with the gas 

saturation profiles at the wells. The wireline measurements serve as proxy for 

reservoir saturation logs (sigma responses) so that time variations in the 

measurements at specific zones down the observation well indicate gas invasion 

through that zone. CO2 is expected to flow into Zone 2 of the reservoir at the 

location of O1 according to the observed data. While this could not be reproduced 

by the initial model, the profile is correctly captured in the updated model. 

2.1.4 CO2 Plume Propagation 

In Figure 8, visual comparisons of the CO2 plume between the initial and updated 

models at the end of CO2 injection are provided. In all the plots presented, the 

plume shape was obtained at a threshold value of 0.3 CO2 model fraction. As 

shown in Figure 8, CO2 never flowed towards PRD3 due to the poor hydraulic 

connectivity with INJ in the initial model. This was corrected in the updated model 

and the simulation response showed CO2 breakthrough at PRD3 as in the 
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observed data. Overall, while CO2 sweep appears to be improved in the updated 

model compared to the initial one, both models show preferential CO2 flow within 

Zones 1, 2 and 4 and practically no flow in Zone 3. 

 

 

Figure 8. Visual comparison of CO2 plume migration between initial and 

calibrated models.  

2.2 Seismic Time-Lapse ‘Onset’ Times for Imaging 

Front Propagation  

2.2.1 Introduction 

With the development of seismic monitoring technology, the use of time-lapse (4D) 

seismic data for characterization of subsurface flow has become increasingly 

popular. A number of successful field applications of reservoir management based 

on 4D seismic data have demonstrated its power and efficacy (Behrens et al., 

2002; Fahimuddin et al., 2010; Landrø et al., 2001; Landrø et al., 1999; Watanabe 

et al., 2017; Hetz et al., 2017). The integration of 4D seismic data into high-

resolution geologic models usually involves least-squares-based minimization to 

match the simulated seismic response and the observed seismic signals 

(Dadashpour, Mohsen et al., 2010; Dadashpour et al., 2009; Falcone et al., 2004; 

Gosselin et al., 2003; Gosselin et al., 2001; Rey et al., 2009; Rey et al., 2012; 

Rwechungura, R.W. et al., 2012; Vasco, 2004; Watanabe et al., 2017; Tang et al., 
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2018). The objective function for the minimization has mostly focused on matching 

the seismic amplitude, travel-time, waveform, etc. Such inverse problems are 

usually highly nonlinear and ill-posed and can easily cause the solution to 

converge to a local minimum, leading to an inadequate history match (Cheng et 

al., 2005). More recently, the seismic inversion method based on the seismic onset 

times has shown great potential for integrating 4D seismic data into high-resolution 

geologic models (Hetz et al., 2017; Vasco et al., 2015; Vasco et al., 2014). Vasco 

et al. (2014) introduced the seismic onset time as the calendar time at which a 

measured quantity, such as seismic travel time or reflection amplitude, begins to 

deviate from its background value. Using the concept of seismic onset time, 

multiple sets of 4D seismic data can be converted into a single onset time map, 

which can be used for dynamic model updating (Hetz et al., 2017).  

In the previous research, the onset time approach has shown its efficacy and 

robustness for integrating frequent seismic surveys where the propagation of 

saturation front could be captured in detail with the short time span between 

seismic surveys. However, due to the high cost associated with conducting seismic 

surveys, frequent seismic surveys are usually not commonly available. For most 

field situations, seismic surveys are usually conducted more infrequently, typically 

in months or years. To overcome the lower time resolution in infrequent seismic 

data, we examined the use of various interpolation methods to calculate the onset 

time map. We also demonstrate the advantage of onset time approach for seismic 

data integration by comparing the onset time inversion method with the traditional 

seismic amplitude inversion method using the Brugge benchmark case. Moreover, 

the nonlinearity associated with these two methods has been quantitatively 

investigated. 

2.2.2 Onset Time as Seismic Observation for 

Infrequent Seismic Data  

The onset times (Vasco et al., 2015) are defined as the calendar times at which 

the measured time-lapse attributes begin to deviate from their initial or background 

values above a pre-defined threshold value. Using the onset time approach, 

multiple sets of time-lapse seismic data can be converted into a single onset time 

map, which represents the propagation of the change (change in the fluid 

saturation, pressure, temperature, etc.) within the reservoir. 

To illustrate the onset time approach, a 2D synthetic case with five-spot 

waterflooding pattern is shown below (Figure 9). Consider that 5 sets of time-lapse 

seismic surveys were conducted over a perid of 2200 days. Every two consecutive 

seismic surveys are either 400 or 600 days apart, rather sparse in time. The 
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observed acoustic impedance maps and the methodology to calculate the onset 

time map for these infrequent seismic surveys are shown in Figure 10.  

 

Figure 9. 2D (50x50) waterflooding case 

 

Figure 10. Onset time calculation for infrequent seismic surveys  
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2.2.3 Onset Time Inversion Workflow 

 

Figure 11. Onset time inversion workflow 

The onset time map is a valuable representation of the propagation of change in 

the reservoir, which can be used for dynamic modeling and model calibration 

through a history matching process. The onset time inversion workflow for 

integrating time-lapse seismic data is shown in Figure 11. The objective of seismic 

inversion is to update the prior model parameter based on the observed seismic 

data. The seismic inversion is conducted in an iterative manner by updating the 

reservoir model parameters until a desired match between the simulated onset 

time map and the observed seismic onset time map is achieved. 

2.2.4 Field Application 

The Brugge field model was designed for a benchmark project to test the combined 

use of history matching and waterflooding optimization workflow (Peters et al., 

2010). The structure of Brugge field shown in Figure 12. There are 20 producers 

located at the top of the dome within the oil-rich region. 10 peripheral water 

injectors provide pressure support in addition to the bottom aquifer. The injection 

rate is 10,000 bbl/day and the producers are constrained with a liquid production 

rate of 5,000 bbl/day. 
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Figure 12. Initial water saturation of Brugge model with blue color showing 

the bottom aquifer and red color showing the oil on the top of the dome 

The reference model is used to generate the observed seismic data every year 

since the beginning of the waterflooding process. The observed acoustic 

impedance maps are shown in Figure 13. Using a threshold value of an increase 

of 0.8% of the initial acoustic impedance, the interpolated onset time map is 

obtained as shown in Figure 14. 

 

Figure 13. Observed acoustic impedance (layer 7) maps generated with 

reference model for 6-year waterflooding process  

 

Figure 14. Observed onset time map (layer 7)  
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We compare the inversion performance of onset time method based on a single 

onset time map with the amplitude method based on 5 acoustic impedance change 

maps. The 5 sets of acoustic impedance change maps are the differences between 

consecutive acoustic impedance maps. The quality of model update, convergence 

performance, and CPU time are compared. Additionally, the nonlinearity 

associated with these two methods are quantitatively investigated. 

The permeability updates for the selected layer 7 are shown in Figure 15. The 

updates in the model via onset time inversion and amplitude inversion are found 

to be similar. Both updated models give better water cut matches than the initial 

model. Among the 20 producers, all the wells with water breaking through show 

improved water cut predication than the initial model. Two wells, producer 3 and 

16 are shown for illustration in Figure 16. However, the onset time approach is 

more efficient and converges faster than the amplitude inversion method. Figure 

2Figure 17 shows the comparison of the reduction of normalized data misfit and 

the CPU time. The onset time inversion method converges much faster than the 

amplitude inversion method, obtaining 2 times more error reduction after 15 

iterations. Additionally, the onset time method costs one sixth computational time 

of the amplitude inversion method. 

 

Figure 15. Comparison of permeability change (layer 7) with black circles 

indicating areas with similar permeability updates, (a) change required 

(reference - initial), (b) onset time updates obtained (onset time updated - 

initial), (c) amplitude updates obtained (amplitude updated - initial) 



26 
 

 

Figure 16. Comparison of water cut predication for producer 3 and 16 

 

Figure 17. Comparison of the inversion performance, (a) reduction of 

normalized data misfit, (b) CPU time 

The superior convergence performance of onset time method results from its 

advantage of being more linear than the amplitude inversion method. The 

maximum nonlinearity values for each iteration are compared in Figure 18. Clearly, 

it can be seen that the nonlinearity of onset time method is not only much sparser 

in space but also much smaller in magnitude.  

 

Figure 18. Comparison of maximum nonlinearity of each iteration 



27 
 

2.3 Data Assimilation: Using Pressure, 

Temperature and Production Data for Plume 

Imaging 

2.3.1 Introduction  

Injecting CO2 into the subsurface poses certain risks, including CO2 leakage 

through wells or non-sealing faults into groundwater or to the earth’s surface 

(Ennis-King and Patterson 2002; Tsang et al. 2002; Hesse and Woods 2010). 

Monitoring and risk assessment of the subsurface CO2 movement during injection 

and post-injection periods are necessary in these projects. Many CO2 monitoring 

studies based on different types of data are found in the literature, such as time-

lapse seismic (Li, G. 2003; Rey, A. et al. 2010), gravity measurements (Nooner et 

al. 2007), well logging (Yamaguchi et al. 2006), surface deformation via satellite 

imaging (Mathieson et al. 2007), distributed temperature and pressure data 

(Mawalkar, S. et al. 2019).  

Distributed Temperature Sensoring (DTS) provides high resolution time-lapse 

temperature measurements along a fiber-optic line. Nunez-Lopez et al. 2014 

performed a study at an onshore CO2 injection site in the U.S. Gulf Coast that 

identified the arrival of CO2 plume at monitoring wells using DTS data. Miller et al. 

2016 demonstrated the ability of DTS technology for downhole temperature 

monitoring purposes during CO2 storage process at Petroleum Technology 

Research Council’s Aquistore storage site. Mawalkar et al. 2019 demonstrated a 

warmback analysis using DTS data for monitoring injection of CO2 into a depleted 

oil reservoir. However, the inferences drawn from the warmback analysis were 

qualitative. This study will introduce the streamline method (Datta-Gupta and King 

2007; Datta-Gupta, Xie, et al. 2011; Chen et al. 2021) to quantitatively apportion 

volume of CO2 injection into various formations. 

To quantitatively analyze CO2 injection and plume evolution, we first developed 

the streamline-based history matching method to account for the thermal process 

and DTS data and validated this algorithm using a 2D synthetic case. Then, the 

proposed method is combined with Genetic Algorithm (GA), establishing a 

hierarchical workflow that assimilates Distributed Temperature Sensoring (DTS) 

data, bottom-hole pressure (BHP) data and behind-casing pressure sensor data 

collected from the Department of Engergy Midwestern carbon sequestration 

project in Northern Niagaran Pinnacle Reef reservoir in Michigan. The history 

matched model is then used for plume evolution visualized by streamline. 
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2.3.2 Thermal Front Propagation 

The transit of a neutral tracer under the influence of a velocity field can be 

characterized by the Time of Flight (TOF) (Datta-Gupta and King, 2007). The 

calculation of TOF, τ, along an arbitrary flow path or streamline ψ can be 

mathematically expressed as: 

( )

( )

r dr

u r



 =                                                                                                                                               (1) 

where ( )r  is the porosity, ( )u r  is the Darcy velocity, and dr is the distance 

element along the streamline. 

Similarly, assuming that the heat transport during a CO2 injection process in the 

subsurface is dominated by advection (Lake, 1989), the propagation of a thermal 

tracer can be characterized by the thermal tracer TOF, whose calculation can be 

obtained by modifying the above equation with a thermal retardation factor (R) 

(Somogyvari and Bayer, 2017): 

( )

( ) ( )
tt

r dr

R r u r



 =                                                                                                                                         (2) 

where tt is the travel time of the thermal tracer and R is the thermal retardation 

factor that describes the lag in the travel time of heat relative to a neutral tracer. R 

depends on the porosity and the heat capacities of the fluid (Cf) and the rock (Cr) 

(R=Cr/(Cf)). 

In this work, we incorporated the concept of thermal tracer TOF in the existing 

streamline-based inversion workflow, enabling the streamline method for the DTS 

data history matching.  

2.3.3 Inverse Problem Formulation 

The mathematical formulation behind the streamline-related inverse problems has 

been discussed in detail (Vasco and Datta-Gupta, 1999; He et al. 2002), where a 

penalized misfit function is defined as below: 

1 2|| || || || || ||d S R R L R     − + +                                                                                                 (3) 

where d is the data misfit, S is the sensitivity matrix with respect to gird properties 

and R corresponds to the change in the reservoir properties, which is grid 

permeability in this study. The second component, called the norm constraint, 
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penalizes deviations from the prior model, keeping the changes small to preserve 

the geology. The third component is the roughness constraint, which is calculated 

by the Laplacian matrix L and used to avoid unrealistic sharp changes applied to 

the geologic model. β1 and β1 are tuning weights applied to the penalty terms and 

there are guidelines in the literature for selecting them (Parker 1994). The 

penalized misfit function is minimized by an iterative workflow as shown in Figure 

19. The inversion is conducted in an iterative manner by updating the reservoir 

model parameters until a desired match between the simulated DTS and the 

observed DTS is achieved. 

 

Figure 19. Diagram of streamline history matching workflow 

2.3.4 Field Application 

We applied our proposed DTS integration algorithm, combined with Genetic 

Algorithm (GA), to CO2 injection project located at the Northern Niagaran Pinnacle 

Reef Trend (NNPRT) in Michigan, which is part of the DOE’s Midwest Regional 

Carbon Sequestration Partnership (MRCSP). 

The Midwest Regional Carbon Sequestration Partnership (MRCSP) was 

established in 2003 to assess the technical potential, economic viability and public 

acceptability of carbon capture, utilization and storage (Gupta et al. 2014). This 

CO2 injection project is part of the MRCSP and more than 1 million metric tons of 

CO2 has been injected into Niagaran pinnacle reefs. Figure 20 shows a map-view 

and three-dimensional view of the Chester 16 reef with one CO2 injection well 

(Chester #6-16) and one monitoring well (Chester#8-16). The Chester 16 reef 

includes two distinct reef cores close to one another.  
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Figure 20. (a) Map-view of Chester 16 reef; (b) 3D view of the model  

This study utilized a combination of pressure and temperature measurements, 

including bottom-hole pressure of injection well, distributed pressure 

measurements from four behind-casing sensors in monitoring well and DTS data 

of both injection well and monitoring well (Figure 21). 

 

 

(a) (b) 

 

 

(c) (d) 

Figure 21. Observed dataset: (a) Bottom-hole pressure of injector; (b) 

Distributed pressure measurements from four behind-casing sensors in 

monitoring well; (c) DTS data at injector; (d) DTS data at monitoring well 

A hierarchical history matching workflow by combining Genetic Algorithm (GA) and 

the proposed streamline-based inversion algorithm was applied to assimilate the 

above observed dataset, where distributed pressure measurements and bottom-

hole pressure of injector were matched using GA by tuning several reservoir 
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parameters selected from a sensitivity analysis and then, DTS data was integrated 

by the streamline-based inversion algorithm by changing grid permeability. 

Pressure matching results are shown in Figure 22, where black dots denote the 

observed data and lines show the simulation results where the blue line is the 

results for the initial model, grey lines are for the best 7 realizations and the best 

model is highlighted by the red line. All the selected models reasonably replicate 

the observed well performance. The best-calibrated model will then be passed to 

the local calibration process to incorporate DTS data into the calibration process 

by changing grid permeability using streamline-based inversion approach. 

  

  

  

Figure 22. Pressure history matching results after GA 

The DTS data inversion result is shown in Figure 23, where a significant decrease 

of the misfit could be observed during the inversion iterations (Figure 23 (a)), 

around 70% reduction after 10 iterations. The thermal tracer onset time is also 

calculated along the wellbore before and after model update (Figure 23 (b)). The 

black circle denotes the onset time calculated from the observed DTS data, dashed 

line is the initial simulation results, the black line is the updated simulation results 

and we could observe a good match between the updated simulated results and 



32 
 

the observed data. Figure 24 shows the comparison of permeability distribution 

after DTS inversion. 

 

 

(a) (b) 

Figure 23. DTS inversion results in terms of thermal tracer onset time 

  

(a) (b) 

Figure 24. Permeability distribution of (a) initial model; (b) updated model 

Streamlines representing the CO2 plume are traced at the end of the simulation for 

both the best-matched model after pressure matching and the final updated model 

after streamline-based DTS inversion and the results are compared in Figure 25. 

The streamline time of flight maps (Figure 25 (a)-(b)) and streamline temperature 

maps (Figure 25 (c)-(d)) show a faster CO2 propagation and thermal tracer 

propagation after the history matching. Another observation is that the flow path 

before and after local calibration are similar, since the streamline-based inversion 

is designed to preserve the prior geologic model. 
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(a) (b) 

 

   
(c) (d) 

Figure 25. 3D Streamline flow path and CO2 front visualization at the end of 

simulation: (a) time of flight of best-matched model from GA; (b) time of 

flight of updated model after DTS inversion; (c) temperature along 

streamline of best-matched model from GA; (d) temperature along 

streamline of updated model after DTS inversion 

2.4 Field Application: Identifying Well 

Connectivities 

2.4.1 Introduction 
 
Conventional methods for assessing well connectivity include tracer tests (Zhang 

et al. 2016, Suarsana and Badril 2011) and numerical simulation-based techniques 

such as streamlines (Datta-Gupta and King 2007). Extensive literature has shown 

the capacity of streamlines over a variety of grid systems, including Cartesian grids 

(Pollock 1988), corner point grids (Cordes and Kinzelbach 1992; Jimenez et al. 

2010), unstructured grids (Prevost et al. 2002; Rasmussen 2010; Zhang et al. 

2011; Zuo et al. 2021), embedded discrete fracture models (Chen, Onishi, et al. 

2020), dual porosity single permeability models (Chen, Yang, et al. 2020) and dual 

porosity dual permeability models (Chen, Yao, et al. 2020).  

Major limitation of the above-mentioned works is the tremendous time cost to 

model general non-linearity in production trends arising from factors such as 

varying GOR and frequent shut-ins. A potential way to redress this shortcoming is 

by using a universal approximator like neural networks that can theoretically model 

any measurable function to an arbitrary degree of accuracy (Hornik et al. 1989). 

An extension of the neural network to sequential data, called the recurrent neural 

network (RNN), was first introduced by Hopfield (1982) and later by Rumelhart et 

al. (1986). From thereon, RNNs have been applied to various applications ranging 

from handwriting and speech recognition (Graves et al. 2008, Dutta and Sarma 
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2012) to regression applications such as trade forecasting (Dunis and Huang 

2002) and hydrological forecasting (Coulibaly and Baldwin 2005). In the past, 

RNNs have been applied successfully to oil and gas problems such as formation 

top detection (Sen, Ong, et al. 2020), well-control optimization (Kim and Durlofsky 

2021) and production prediction (Tian and Horne 2017 and 2019, Bao et al. 2020). 

However, connectivity detection based on RNN models is not yet demonstrated. 

The statistical recurrent unit (SRU) was introduced by Oliva et al. (2017) as an un-

gated alternative to more complex RNN architectures such as LSTMs (Hochreiter 

and Schmidhuber 1997) and GRUs (Chung et al. 2015). The SRU was shown to 

capture long term dependencies at least as much as the latter models, simply by 

using moving averages of temporal information at different scales. Therefore, the 

SRU architecture is simpler and more interpretable compared to LSTMs and 

GRUs, enabling easier training and incorporation of additional constraints such as 

well locations. 

Variable importance is an assessment of the contribution of each input on the 

output (Breiman 2001). It can be a promising method of inferring well connectivity 

from a data-driven model. That is, the variable importance computed from an 

explainable data-driven model, should ideally correspond to the actual influence 

that an input signal (such as those from an injector) has on the output (production 

at producer). In this way, an explainable and predictive data-driven model may be 

used to derive insights on the actual reservoir connectivity in a quick and efficient 

way, without the need to run computationally costly reservoir simulations. 

With the above in mind, we propose a SRU based framework for inferring inter-

well connectivities. The proposed method contains two key components: SRU 

model specifically framed to the CO2 WAG problem and the inter-well connectivity 

assessment based on the SRU model and variable importance calculation.  

2.4.2 Connectivity Inference Workflow 

The general workflow for connectivity inference is shown in Figure 26. The first 
step (Figure 26 (a)) is to fit a machine learning model to the data. In our application, 
we train an SRU model for each producer that predicts its gas production rate given 
the producing pressure and injector-wise injection rates. The next step (Figure 26 
(b)) is to ensure the reliability of the proxy model by testing its performance on a 
dataset that has not been seen during training (test set). A model with good 
predictive power on the test set is an indication that the connections that it learned 
during training are representative of the true connections that exist in the field. 
Once we have a reliable model, we can quantify the influence of any injector on 
the producer by computing the permutation variable importance (Breiman 2001) 
which quantifies the contribution of injector’s rates in the accuracy of prediction of 
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producer’s gas production. In this way, a variable importance map can be plotted 
showing the major connections in the field (Figure 26 (c)).  

 

Figure 26. Connectivity inference workflow using machine learning 

2.4.3 Penalty Function Accounting for Well 
Location Information in Deep Learning 

 

We introduce a penalty function for training the SRU in such a way that long 
injector-producer connections whose distance are calculated from well location 
information are automatically penalized during training. This way, the importance 
of each injector on the predicted producer is decided by the data and training 
process. This is realized by minimizing a loss function, given in Eq. 4, which has 
an extra regularization term along with the usual MSE loss.  

𝐿𝑜𝑠𝑠 =
1

𝑇
∑((𝑦𝑜𝑏𝑠(𝑡) − 𝑦𝑝𝑟𝑒𝑑(𝑡))

2
𝑇

𝑡=1

+ 𝑐 ∑ {∑|𝑤𝑖𝑗|

𝑁𝑤𝑖

𝑗=1

} 𝑑𝑖

𝑁𝑖

𝑖=1

 
(4) 

The absolute value of these weights (𝑤𝑖1, 𝑤𝑖2, … , 𝑤𝑖𝑁𝑤𝑖
) are multiplied with the 

distance from the producer to the 𝑖𝑡ℎ injector and summed together. This sum is 

multiplied by a penalty coefficient 𝑐  and added to the MSE to obtain the loss 
function that is minimized during training. This way, long connections are 
automatically penalized more and the strength of the regularization is set by the 
penalty coefficient, 𝑐 in this expression.  

2.4.4 Field Application  

The proposed methodology was applied to a model cut out from a real field case 

(Petra Nova) introduced by Olalotiti-Lawal, Onishi, Kim, et al. (2019), which 

focused on a CCUS project wherein a mature oil field under CO2 was subjected to 

water-alternating gas injection. 
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Figure 27. Field-scale case model description showing well configuration 

and heterogeneity (areal and vertical). 

The injectors are operated under the rate constrained mode with realistic injection 

rate schedules, producers operated under stable BHP conditions, and both having 

intermittent periods of shut-in. A flowchart showing the application of the penalty-

based SRU to infer well connectivity for the field-scale case is given in Figure 28. 

 

Figure 28. The application of the penalty-function based SRU workflow to 

the field-scale case. First, a number of SRU models with different penalty 

coefficients are trained and the best value of penalty coefficient is chosen 

to be 0. 0003.Secondly, the SRU with the chosen penalty coefficient is 

trained on 85% of the data and tested on the rest 15% to verify prediction. 

Finally, we compute the permutation variable importance and generate the 

connectivity map. 

The resulting regression performance is shown in Figure 29. Since we have 14 

producers, we only show the wells corresponding to P10, P50 and P90 relative 
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errors in Figure 29 (b). For example, out of all the wells for which we make 

predictions, producer P-9 exhibits one of the best testing performances, whereas 

P-4 represents the median prediction performance. Likewise, producer P-2, whose 

relative test error corresponds to P90 in the error distribution indicates one of the 

worst regression performances of the SRU in this case. 

 

Figure 29. (a) The distribution of the relative test error for all 14 producers, 

computed as shown in Eq. 8. (b) A selected number of regression fits 

(corresponding to P90, P50 and P10 errors) are shown. The left panel 

shows the regression fit for the training and test regions. The middle panel 

shows the test region zoomed in for better clarity. The right panel shows 

the cumulative gas production as per observed data and the SRU 

predictions. 

Subsequently, the permutation variable importance was computed for each 

injector-producer pair. We validate the connectivity map based on SRU variable 
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importance by comparing with the streamline-based connectivity maps (Figure 30). 

The top panel Figure 30 (a, b) shows all the connections inferred by both methods. 

The strong fluxes were filtered by setting a threshold on the normalized 

connectivities and plotted in the bottom panel Figure 30 (c, d). It is seen that the 

strong connection inferred by the SRU is in almost perfect agreement with those 

based on streamlines. However, we see that the inferences of weaker fluxes are 

highly unreliable and indicates the need for a better model, which may be achieved 

with more data. 

 

Figure 30. Connectivity maps generated from the proposed methodology 

compared with average streamline fluxes. The proposed method picks up 

all strong fluxes even though the inference of weak fluxes is highly 

uncertain 

2.5 Battelle’s Contribution 

Texas A&M University, the lead organization in the project, was primarily 

responsible for the development of tomographic approaches for CO2 plume 

mapping in conjunction with distributed pressure, temperature and seismic onset 
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time data.  Battelle, as a subcontractor, was primarily responsible for the 

development of analytical and empirical methods for analyzing transient injection 

rate and pressure data from point/line sources such as injection and monitoring 

wells.  An additional area of emphasis for Battelle was the use of machine learning 

for such tasks as inferring reservoir connectivity information from injection-

production data, and identifying variable importance for machine learning-based 

proxy models developed from full-physics simulations.  The two organizations also 

collaborated on the application of the tomographic inversion methodology for a 

field data set. The contributions of Battelle as part of this project are documented 

in Appendix-B. 

3.0 Summary and Conclusions  

The following are the major conclusion for CO2 Plume Tracking Using Pressure 

and Production Data (section 2.1): 

• A two-stage model calibration involving a global update followed by local 

update is applied to a CO2 EOR pilot. The global update is directed towards 

matching field wide reservoir energy and gross fluid movement while the 

streamline-based local update is used to match the well-wise oil rate, gas 

rate, water cut and CO2 production. Historical boundary fluxes from a history 

matched full field model is imposed at the pilot boundaries to rigorously 

account for the fluid movement in the field.  

• Our model calibration method resulted in an updated model with good 

predictive capability. The calibrated model was validated by comparing with 

two sets of independent observation data: the CO2 recovery and saturation 

logs at two observation wells. The updated model shows good agreement 

with the observed data in terms of CO2 recovery and captures major trends 

in the reservoir saturation log. 

• We further analyzed the implication of the model calibration results using 

flow diagnostics, particularly the Lorenz curves and tracer sweep 

efficiencies. The results revealed that hydraulic connectivity is 

underestimated in the initial model, and are consistent with flow responses 

at the producers and the CO2 plume migration. 

The following are the major conclusion for Seismic Time-Lapse ‘Onset’ Times for 

Imaging Front Propagation (section 2.2): 

• The sensitivity analysis of the impact of seismic survey frequency shows 

that a useful onset time map can still be extracted from the infrequent 

seismic data through interpolation between successive surveys.  

• The onset time approach is not effective if there is a change in the dominant 

underlying physics that is not captured by the seismic surveys, such as 
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changing from saturation dominated case to pressure and temperature 

dominated case. The change in the dominant physics will result in the 

change of seismic response and the interpolation may not give an accurate 

approximation to the true seismic response. 

• The inversion performance of the onset time inversion method was 

compared with traditional seismic amplitude inversion method. The Brugge 

benchmark case shows that onset time inversion method obtains 

comparable model update while being more efficient because of the 

significant data reduction obtained from converting multiple sets of seismic 

data into a single onset time map. 

• The nonlinearity associated with the onset time inversion and amplitude 

inversion method was quantitatively investigated. It is found that the 

nonlinearity in onset time inversion is not only spatially sparser, but also is 

smaller than the amplitude nonlinearity by several orders of magnitude. The 

smaller nonlinearity contributes to the superior convergence performance 

and more robust inversion result of the onset time inversion method. 

The following are the major conclusion for Data Assimilation: Using Pressure, 

Temperature and Production Data for Plume Imaging (section 2.3): 

• The thermal tracer TOF and the GTT misfit derived from the DTS data are 

incorporated into the streamline-based history matching workflow for the 

first time. 

• A hierarchical history matching workflow incorporating GA and the 

proposed streamline-based DTS data inversion method is applied to a field 

CO2 Sequestration project in Michigan. The misfits of the distributed 

pressure measurements and DTS data at both injection well and monitoring 

well are significantly reduced. The thermal tracer onset time profile and 

individual temperature curves show great improvements. 

• The CO2 plume is imaged by streamlines generated from the history 

matched model. The visualization shows that the vertical movement of CO2 

is restricted, and CO2 stays in the targeted injection zone, which is 

consistent with an independent warmback analysis of the temperature data. 

The following are the major conclusion for Field Application: Identifying Well 

Connectivities (section 2.4): 

• The inputs, outputs and loss function of the SRU model are customized to 

the CO2 WAG problem. We perform input feature selection to capture 

underlying patterns with limited data. A penalty function is introduced to 

include well location information for regularizing the neural net weights. 

• Streamlines are used for quantifying physics-based inter-well connectivity 

for comparison with the SRU model.  
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• Synthetic and field-scale tests show that the dominant connections 

identified by the data-driven SRU method and streamline method are in 

close agreement. Moreover, time-cost for the data-driven method is trivial. 

This makes the proposed method highly efficient and advantageous for 

practical field applications. 
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Paper 1 

Feyi Olalotiti-Lawal, Tsubasa Onishi, Akhil Datta-Gupta, Yusuke Fujita, Daiki 

Watanabe, Kenji Hagiwara, Model calibration and optimization of a post-

combustion CO2 WAG pilot in a mature oil field, Fuel, Volume 255, 2019, 115810, 

ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2019.115810. 

Carbon Dioxide Enhanced Oil Recovery (CO2 EOR) technology is a proven and 

mature technology that has been profitably adopted in rejuvenating and sustaining 

mature fields for almost half a century (Wallace and Kuuskraa, 2014). CO2 is 

injected into an oil-bearing formation during which it contacts, mixes with and 

mobilizes in situ residual oil. Beginning from early 1972 when the CO2 EOR 

technology was first commercially deployed in the SACROC unit in the Scurry 

county of Texas (Crameik and Plassey, 1972), the oil and gas industry has 

witnessed a widespread adoption of the technology for enhancing the value of 

mature assets, especially in North America. In 2012, an average of 282,000 bbl/D 

of oil was produced by CO2 EOR in the United States and the number is projected 

to rise over 600,000 bbb/D by the year 2020 (Wallace and Kuuskraa, 2014). 

Although most applications have been in depleted oil reservoirs in the onshore 

environment including sandstone, carbonate (Wilson and Monea, 2004) and 

recently in unconventional tight formations (Ghaderi et al., 2012; Han and Gu, 

2014), offshore application of the technology has also started drawing attention 

(Pham and Halland, 2017). Recently, chemically enhanced water alternating 

gas/CO2 method has received attention from the oil and gas industry and the 

studies are well summarized in Kumar and Mandal, (2017). In addition, Residual 

Oil Zones (ROZs) are beginning to generate interests due to its potentially 

substantial value creation through CO2 EOR (Melzer, 2006).  

The CO2 EOR technology has been applied in different forms, based on specific 

nature and conditions of the oil-bearing formations for optimal oil recovery. These 

include continuous CO2 injection, Water-Alternating-Gas (WAG) Injection, gravity 

drainage, huff-and-puff, and so on. Regardless of the process employed for CO2 

EOR, proper reservoir management  plays a key role in maximizing the value of 

the asset using this technology (Wallace and Kuuskraa, 2014). This includes 

reservoir characterization to understand the subsurface flow mechanisms, 

followed by generation of optimal strategies for improved conformance. Measures 

to combat flow conformance problems become particularly vital for gas injection 

processes like CO2 WAG. This is because of both viscous fingering and gravity 

override effects, due to differences in multiphase fluid properties including viscosity 

and density (Orr, 2007). Mitigating conformance issues typically starts with 

precautionary screening of potential reservoirs (Taber et al., 1997a; Taber et al., 

1997b). Development of selected reservoirs then requires effective field 

management procedures for optimal operational strategies, well placements as 
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well as fluid rates, taking into cognizance subsurface geological features and 

existing flow dynamics (Møyner et al., 2015; Onwunalu and Durlofsky, 2011; 

Passone and McRae, 2007; Sarma et al., 2005; Zhou et al., 2012). 

This paper is organized as follows: First we provide a background and description 

of the field and we also discuss the initialization of the pilot model. Second, we 

report the details of the pilot model calibration, starting from the model 

parameterization and the optimization strategy adopted to reduce data misfits in 

the global step of the hierarchical workflow. Next, we describe the local model 

update algorithm which utilizes streamline-derived arrival time sensitivities to 

integrate CO2 breakthrough times into the pilot model. A discussion of the results 

and validation of the calibrated model using auxiliary observed data is presented 

next. 

Paper 2 

Tian Liu, Hongquan Chen, Gill Hetz, Akhil Datta-Gupta, Integration of time-lapse 

seismic data using the onset time approach: The impact of seismic survey 

frequency, Journal of Petroleum Science and Engineering, Volume 189, 2020, 

106989, ISSN 0920-4105, https://doi.org/10.1016/j.petrol.2020.106989. 

The use of seismic onset times has shown great promise for integrating near-

continuous seismic surveys for updating geologic models. However, due to the 

high cost of seismic surveys, such frequent seismic surveys are not commonly 

available. In this study, we focus on analyzing the impact of seismic survey 

frequency on the onset time approach aiming to extend the application of onset 

time to infrequent seismic surveys. In addition, we quantitatively examine the 

nonlinearity of the onset time method and compare it to the commonly used 

amplitude inversion method. 

We carry out a sensitivity analysis of seismic survey frequency based on the 

complete seismic survey data (over 175 surveys) of steam injection in a heavy oil 

reservoir (Peace River Unit) in Canada. Data sets of different survey frequencies 

are generated by sampling at various time intervals from the complete data sets.  

Onset time maps based on different survey frequencies are calculated. Our results 

show that an adequate onset time map can be obtained from the infrequent 

seismic surveys by interpolation between seismic surveys as long as there is no 

change in the dominant underlying physics between the successive surveys.  

In terms of robustness of the inversion methods, nonlinearity of the onset time 

method can be smaller than that of the amplitude inversion method by several 

orders of magnitude. Application to the Brugge benchmark case shows that the 

onset time method obtains comparable permeability update as the traditional 
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seismic amplitude inversion method with faster computation and improved 

convergence characteristics.   

Paper 3 

Yao, Changqing , Chen, Hongquan , Onishi, Tsubasa , Datta-Gupta, Akhil , 

Mawalkar, Sanjay , Mishra, Srikanta , and Ashwin Pasumarti. Robust CO2 Plume 

Imaging Using Joint Tomographic Inversion of Distributed Pressure and 

Temperature Measurements. Paper presented at the SPE Annual Technical 

Conference and Exhibition, Dubai, UAE, September 2021. 

doi:  https://doi.org/10.2118/206249-MS (Intl. Journal of Green House Gas 

Control, in review). 

Geologic CO2 sequestration and CO2 enhanced oil recovery (EOR) have received 

significant attention from the scientific community as a response to climate change 

from greenhouse gases. Safe and efficient management of a CO2 injection site 

requires spatio-temporal tracking of the CO2 plume in the reservoir during geologic 

sequestration. The goal of this paper is to develop robust modeling and monitoring 

technologies for imaging and visualization of the CO2 plume using routine 

pressure/temperature measurements. 

The streamline-based technology has proven to be effective and efficient for 

reconciling geologic models to various types of reservoir dynamic response. In this 

paper, we first extend the streamline-based data integration approach to 

incorporate distributed temperature sensor (DTS) data using the concept of 

thermal tracer travel time. Then, a hierarchical workflow composed of evolutionary 

and streamline methods is employed to jointly history match the DTS and pressure 

data. Finally, CO2 saturation and streamline maps are used to visualize the CO2 

plume movement during the sequestration process.     

The power and utility of our approach are demonstrated using both synthetic and 

field applications. We first validate the streamline-based DTS data inversion using 

a synthetic example. Next, the hierarchical workflow is applied to a carbon 

sequestration project in a carbonate reef reservoir within the Northern Niagaran 

Pinnacle Reef Trend in Michigan, USA. The monitoring data set consists of 

distributed temperature sensing (DTS) data acquired at the injection well and a 

monitoring well, flowing bottom-hole pressure data at the injection well, and time-

lapse pressure measurements at several locations along the monitoring well. The 

history matching results indicate that the CO2 movement is mostly restricted to the 

intended zones of injection which is consistent with an independent warmback 

analysis of the temperature data.  

https://doi.org/10.2118/206249-MS
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The novelty of this work is the streamline-based history matching method for the 

DTS data and its field application to the Department of Engergy regional carbon 

sequestration project in Michigan. 

Paper 4 

Deepthi Sen, Hongquan Chen, Akhil Datta-Gupta, Inter-well connectivity detection 

in CO2 WAG projects using statistical recurrent unit models, Fuel, Volume 311, 

2022, 122600, ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2021.122600. 

Routine well-wise injection and production measurements contain significant 

information on subsurface structure and properties. Data-driven technology that 

interprets surface data into subsurface structure or properties can assist operators 

in making informed decisions by providing a better understanding of field assets. 

Our machine-learning framework is built on the statistical recurrent unit (SRU) 

model and interprets well-based injection/production data into inter-well 

connectivity without relying on a geologic model. We test it on synthetic and field-

scale CO2 EOR projects utilizing the water-alternating-gas (WAG) process. 

SRU is a special type of recurrent neural network (RNN) that allows for better 

characterization of temporal trends, by learning various statistics of the input at 

different time scales. In our application, the complete states (injection rate, 

pressure and cumulative injection) at injectors and pressure states at producers 

are fed to SRU as the input and the phase rates at producers are treated as the 

output. Once the SRU is trained and validated, it is then used to assess the 

connectivity of each injector to any producer using permutation variable 

importance method, wherein inputs corresponding to an injector are shuffled and 

the increase in prediction error at a given producer is recorded as the importance 

(connectivity metric) of the injector to the producer. This method is tested in both 

synthetic and field-scale cases.  

The validation of the proposed data-driven inter-well connectivity assessment is 

performed using synthetic data from simulation models where inter-well 

connectivity can be easily measured using the streamline-based flux allocation. 

The SRU model is shown to offer excellent prediction performance on the synthetic 

case. Despite significant measurement noise and frequent well shut-ins imposed 

in the field-scale case, the SRU model offers good prediction accuracy, the overall 

relative error of the phase production rates at most producers ranges from 10% to 

30%. It is shown that the dominant connections identified by the data-driven 

method and streamline method are in close agreement. This significantly improves 

confidence in our data-driven procedure.   
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The novelty of this work is that it is purely data-driven method and can directly 

interpret routine surface measurements to intuitive subsurface knowledge. 

Furthermore, the streamline-based validation procedure provides physics-based 

backing to the results obtained from data analytics. The study results in a reliable 

and efficient data analytics framework that is well-suited for large field applications. 
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1.1 Background 

The project ‘Robust Carbon Dioxide Plume Imaging Using Joint Tomographic 
Inversion of Seismic Onset Time and Distributed Pressure and Temperature 
Measurements’ was selected by U.S. DOE-NETL for award under FOA 0001725. 
As per the FOA, key research objectives are “development of modeling and 
monitoring methods, tools, technologies that improve the certainty about the 
position of the CO2 plume over time.”  This is fully addressed by the objective of 
our project, which is to develop and demonstrate computational- and cost-
efficient protocols to image the subsurface CO2 plume via joint inversion of 
seismic data and distributed temperature and pressure measurements.  

Our motivation stems from the challenges associated with conventional 
approaches to CO2 plume mapping using geophysical monitoring and modeling-
based workflows.  Because of the indirect relationship between the geophysical 
attributes and transport properties and also the associated uncertainties in the rock 
physics model, the geophysical techniques are best suited for relatively low 
resolution and mostly qualitative estimates of CO2 saturation distribution in the 
subsurface.  Similarly, current modeling-based plume delineation approaches also 
suffer from non-uniqueness and data sufficiency issues.  Therefore, the focus of 
this project is to advance the theoretical foundations of the joint tomographic 
inversion-based CO2 front tracking protocol (as an alternative strategy for CO2 

plume monitoring) and demonstrate its field-scale applicability.  

Texas A&M University, the lead organization in the project, was primarily 
responsible for the development of tomographic approaches for CO2 plume 
mapping in conjunction with distributed pressure, temperature and seismic onset 
time data.  Battelle was primarily responsible for the development of analytical and 
empirical methods for analyzing transient injection rate and pressure data from 
point/line sources such as injection and monitoring wells.  An additional area of 
emphasis for Battelle was the use of machine learning for such tasks as inferring 
reservoir connectivity information from injection-production data, and identifying 
variable importance for machine learning-based proxy models developed from full-
physics simulations.  The two organizations also collaborated on the application of 
the tomographic inversion methodology for a field data set. 

This report is a compilation of the technical findings from Battelle’s activities noted 
above.  These are organized in eight different chapters as follows: 

1.2 Chapter 2 – Detection of CO2 front location using transient 
pressure and rate data 

Tracking of CO2 fronts following CO2 injection is a complicated problem.  Normally, 
it involves the use of time-lapse seismic data, which may or may not be available 
for a given CO2 injection project.  So, one potential solution is to elucidate the 
movement of the CO2 saturation front from the transient pressure response.  This 
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approach is based on the fact that: (a) pressure and saturation fronts move in 
tandem, (b) in-situ saturation data are generally not available, and (c) pressure 
data are more commonly available at more than one location.  The approach 
presented here is developed based on insights from synthetic (simulated) data 
using a full-physics model.  It involves converting pressure v/s time history at an 
observation well that has experienced CO2 breakthrough to an equivalent pressure 
v/s radial distance profile using the concept of self-similarity.  A discontinuity in the 
pressure response is shown to correspond to the one in the saturation profile at 
the CO2-brine interface, which produces an estimate of the CO2 front location at 
different times.   

The significance of this study is a practical method for front detection from the 
pressure response alone.    

1.3 Chapter 3 – Interpretation of bottomhole temperature 
data from CO2 injection projects 

Although bottom-hole temperature (BHT) data is routinely collected with bottom-
hole pressure (BHP) data during CO2 injection in geological storage projects, it is 
seldom analyzed in a quantitative manner.  However, the BHP and BHT signals 
do exhibit correlated behavior.  This study proposes a practical approach for using 
BHT data from warmback (no injection) periods, in conjunction with the amplitude 
of BHP and BHT changes during the preceding injection event, to estimate 
formation permeability.  The methodology is demonstrated using data from the 
AEP Mountaineer project in USA where CO2 injection was carried out into a saline 
aquifer.  Estimated permeability values from the proposed approach are in good 
agreement with those obtained from transient pressure analysis of BHP data from 
the falloff period. 

The significance of this study is an analytical method for independent estimation 
of permeability (from temperature data) that can be used as input for detailed 
inversion studies. 

1.4 Chapter 4 – Injectivity index – a powerful tool for 
characterizing CO2 storage reservoirs 

Injectivity index is a powerful tool that can be easily calculated from field injection 
rate and pressure data.  Theoretically, injectivity index is linked to reservoir 
properties such as permeability, reservoir thickness, and size of the reservoir.  
Consequently, injectivity index data can serve as a powerful tool to assess 
changes in reservoir quality and performance. In this article, we have looked at 
field data from notable global carbon sequestration projects in order to identify a 
correlation between injectivity index (J) and the product of reservoir permeability 
and thickness (kh).  Results suggested that there is a linear relationship between 
J and kh with field data confirming to lower and upper bounds of J = 0.03*kh and 
J = 0.23*kh respectively.  The average trend was calculated to be J = 0.08*kh. This 
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correlative approach can be extremely beneficial when there is a need to estimate 
pressure buildup corresponding to a target injection or vice-versa.  The approach 
can also be used to understand reservoir flowability and performance at a broader 
scale prior to the need for expensive or time-consuming flow and pressure 
transient testing. 

The significance of this study is a practical tool for empirical analysis of field data 
leading to an independent estimate of permeability which can be used an as input 
for detailed inversion studies. 

1.5 Chapter 5 – A screening model for predicting injection well 
pressure buildup and plume extent in CO2 geologic storage 
projects 

A new screening model is presented for predicting injection well pressure buildup 
and CO2 plume migration.  The model requires only limited information and is quite 
accurate (compared to detailed simulation results).  The screening model consists 
of two correlations: one for injectivity index in terms of the slope of the CO2 
fractional flow curve, and the second for total storage efficiency within the footprint 
of plume as a function of gravity number and slope of the CO2 fractional flow curve.  
Using these two correlations and a knowledge of some basic reservoir 
characteristics and estimates of fluid properties from correlations, the injection-well 
pressure buildup and CO2 plume extent in the formation can be readily estimated.  
The new correlations show a good match with the results of the underlying 
simulations, and also provide good agreement with independent calculations for 
two example problems.  

The significance of this study is a practical tool for quick-look analysis and design 
of what to expect from field observations following CO2 injection operations.  Such 
models can also assist project developers during project planning, and help 
regulators perform simple checks against detailed numerical models. 

1.6 Chapter 6 – Effect of injection well inclination on injectivity 
and pressure response  

This study examines the impact of injection well inclination (i.e., vertical v/s 
horizontal well) on well injectivity and monitoring well pressure response.  
Simulations are carried out to investigate the injectivity index corresponding to 
horizontal wells of different lengths and different values of reservoir permeability.  
A correlation is developed for the enhancement in injectivity (compared to the 
reference vertical well case) as a function of lateral (horizontal well) length and 
permeability.  The difference in pressure response corresponding to a bottomhole 
pressure gauge located beyond the edge of the lateral for horizontal and vertical 
well scenarios is examined. 
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The significance of this study is a practical correlation for assessment of enhanced 
injectivity index in horizontal wells that can be used for preliminary design 
purposes.  

1.7 Chapter 7 – Field data for imaging pressure and temperature 
in the subsurface using tomographic methods 

As part of this broader research project, the Texas A&M (TAMU) team is 
developing robust modeling and monitoring technologies for imaging and 
visualization of the CO2 plume using routine pressure/temperature measurements.  
In their approach, they first extend the streamline-based data integration approach 
to incorporate distributed temperature sensor (DTS) data using the concept of 
thermal tracer travel time.  Then, a hierarchical workflow composed of evolutionary 
and streamline methods is employed to jointly history match the DTS and pressure 
data.  Finally, CO2 saturation and streamline maps are used to visualize the CO2 
plume movement during the sequestration process. 

 
This chapter describes the data that was assembled by Battelle to support the 
above-mentioned objectives, viz: (a) Information about the geologic setting, (b) Oil 
production and CO2 injection history, (c) Bottomhole pressure and temperature 
data, (d) Distributed temperature sensing (DTS) data, (e) Numerical model 
developed by Battelle to integrate geologic, production and injection data, and (f) 
Additional data types used for model validation (blind testing). 

The significance of this activity is a complete field dataset for validation of the 
TAMU methodology. 

1.8 Chapter 8 – Machine-learning based analysis of time-
dependent injection-production data 

This chapter investigates several data-driven models for charactering reservoir 
connectivity and forecasting injection-production response from the viewpoints of 
time series forecasting and regression forecasting.  While time series forecasting 
provides a much better prediction accuracy, regression forecasting typically has a 
better interpretability in the connectivity between injection and production wells.  
The recommended model for time series forecasting is the ANN not only because 
ANNs in general provide the best prediction accuracy but because this ANN has a 
relatively simple structure so it is possible to open its black-box neural networks to 
understand the connectivity between injection and production wells.  For 
regression forecasting, the recommended model is the regression model with 
constraints. Even though the regression model without constraints has a slightly 
better performance in prediction accuracy, the regression model with constraints 
has a much better interpretability; specifically, its coefficients can be treated as the 
proportion contributed from each injection well to that production well. 
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The significance of this study is a workflow for extracting useful insights from data-
driven models of injection-production behavior in subsurface systems. 

1.9 Chapter 9 – Evaluating variable importance in time-
dependent black box “proxy” models: a comparison of 
strategies 

Measuring variable importance for computational models is an important task in 
many applications. It is always desirable to have a strategy that works for any 
model and could uncover the key predictors in the modeling.  In this study, we first 
review several commonly used variable importance strategies that are compatible 
with all machine learning or black box models and provide a comparative 
assessment of these strategies using an example from a subsurface geoscience 
application.  Furthermore, we present a framework for making comparisons not 
only within but also between different time points for time-dependent models. We 
propose the relative importance score (𝑅𝐼𝑆) and uncertainty importance factor 
(𝑈𝐼𝐹), which allow users to intuitively interpret how variable importance changes 
over time. 

The significance of this study is a comparative assessment of various strategies 
for determining the importance of variables in a black-box model, in addition to two 
metrics to facilitate an understanding of the time-dependent nature of the 
importance scores. 
 



Chapter 2. 

2-1 

Chapter 2. 

 

Detection of CO2 Front Location Using Transient Pressure 
and Rate Data 

 

Srikanta Mishra, Manoj Valluri, Priya Ravi Ganesh  



Chapter 2. 

2-2 

Chapter 2.  Table of Contents 

2.1 Background ............................................................................................. 2-4 

2.2 Saturation Profiles ................................................................................... 2-4 

2.3 Pressure profiles ...................................................................................... 2-6 

2.4 Reconstruction of Pressure Profiles from Pressure Time History ............ 2-8 

2.5 Locating the Saturation/Pressure Discontinuity ..................................... 2-11 

2.6 Summary ............................................................................................... 2-13 

 

  



Chapter 2. 

2-3 

Chapter 2.  List of Figures 

Figure 2-1. Saturation profiles at different times. .............................................. 2-5 

Figure 2-2. Use of Boltzman variable to collapse all saturation profiles into a 
single curve. ................................................................................... 2-6 

Figure 2-3.  Pressure profiles at different times. ............................................... 2-7 

Figure 2.4 Use of Boltzman variable to collapse all  pressure profiles into a 
single curve. ................................................................................... 2-7 

Figure 2-5.  Pressure data (y-axis) from different radial locations in light symbols 
as a function of Boltzman variable r2/t (x-axis) with overlay of 
pressure data converted from time domain at r=0.25 ft (dark 
symbols). ....................................................................................... 2-9 

Figure 2.6. Pressure data (y-axis) from different radial locations in light symbols 
as a function of Boltzman variable r2/t (x-axis) with overlay of 
pressure data converted from time domain at r=137 ft (dark 
symbols). ..................................................................................... 2-10 

Figure 2-7. Pressure data (y-axis) from different radial locations in light symbols 
as a function of Boltzman variable r2/t (x-axis) with overlay of 
pressure data converted from time domain at r=137 ft (dark 
symbols). ..................................................................................... 2-11 

Figure 2-8. Derivative analysis to determine pressure/saturation  
discontinuity. ................................................................................ 2-12 

Figure 2-9. Comparison of simulated and predicted plume location based on 
inferred r2/t|front. ............................................................................ 2-12 

  



Chapter 2. 

2-4 

2.1 Background 

Tracking of CO2 fronts following CO2 injection is a complicated problem.  Normally, 
it involves the use of time-lapse seismic data, which may or may not be available 
for at a given CO2 injection project.  So, one potential solution is to elucidate the 
movement of CO2 saturation front from transient pressure response.  This 
approach is based on the fact that: (a) pressure and saturation fronts move in 
tandem, (b) in-situ saturation data are generally not available, and (c) pressure 
data are more commonly available at more than one location.  Our approach is to 
use simulations to generate synthetic data and utilize that for process 
understanding and methodology development that could lead to an inexpensive 
plume tracking tool. 

We simulate constant-rate CO2 injection from a vertical well into a saline aquifer 
using 2-D radial geometry, a logarithmic expanding grid, and a compositional 
model.  Pressure and saturation profiles are extracted at different radial locations 
at multiple times.  Pressure response is also extracted at injection well and two 
observation points (with/without CO2 breakthrough).  The examination of these 
data is presented next. 

2.2 Saturation Profiles 

Figure 2-1 shows the saturation profiles (i.e., values at different radial location) at 
different times following injection.  Note the logarithmic scale of the x-axis (radial 
direction).  The saturation front appears to stretch in time and space in a self-similar 
manner. 
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Figure 2-1. Saturation profiles at different times. 

As is normally done in advection-dispersion problems, we can use the Boltzman 
similarity variable r2/t as a correlating parameter to collapse all curves (as shown 
in Figure 2). This variable characterizes the propagation velocity of CO2 plume.  
Also note the sharp discontinuity at r2/t = 2050 ft2/day which indicates the location 
of the CO2-brine interface. 
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Figure 2-2. Use of Boltzman variable to collapse all saturation profiles into a 
single curve. 

2.3 Pressure profiles 

Figure 2-3 shows the pressure profiles (i.e., values at different radial location) at 
different times following injection.  Note the logarithmic scale of the x-axis (radial 
direction).  The pressure front appears to stretch in time and space in a self-similar 
manner much like the saturation front, albeit significantly further into the formation. 
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Figure 2-3.  Pressure profiles at different times. 

Here also, we can use the Boltzman similarity variable r2/t as a correlating 
parameter to collapse all curves (as shown in Figure 2.4).  For consistency with 
the saturation profiles, the value of the similarity variable at the location of the 
saturation discontinuity corresponding to the CO2-brine interface is shown as a 
dashed line in this figure.   

 

Figure 2.4 Use of Boltzman variable to collapse all  
pressure profiles into a single curve. 
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Although it is not obvious that there is a discontinuity in the pressure profile at the 
same location, such a discontinuity does exist and this will be verified in the next 
section.  This suggests that if the pressure profile were available at different times, 
one could reduce them using the Boltzman variable, estimate the value of r2/t at 
the location of discontinuity and determine the plume boundary from that value. 

2.4 Reconstruction of Pressure Profiles from Pressure Time 
History 

Since pressures are typically measured at the injection well and a few monitoring 
wells, it is not possible to generate the full pressure profile within the system.  
However, given the demonstrated power of r2/t as the correlating group in the 
above-mentioned figures, we examine whether the pressure versus radial location 
(P ~ r) response can be recovered from the pressure versus time (P ~ t) response.  
This will be done using data from r = 0.25 ft (injection well) that is always inside 
the CO2 plume, r = 137 ft (monitoring well that sees CO2 breakthrough at some 
time during the injection history), and r = 5792 ft (monitoring well that is always 
outside the CO2 plume).  

Figure 2-5 shows the reconstructed pressure profile based on the pressure-time 
response at r=0.25 ft (in symbols).  This is overlain on the full pressure profile 
calculated at different times and then collapsed into a single curve using r2/t is the 
correlating group.  The reconstructed values fall on the original pressure profile 
curve, but the data points are always behind the inflection point corresponding to 
the location of the CO2-brine interface.   
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Figure 2-5.  Pressure data (y-axis) from different radial locations in light 
symbols as a function of Boltzman variable r2/t (x-axis) with overlay of pressure 

data converted from time domain at r=0.25 ft (dark symbols). 

Next, in Figure 2.6 we show the results for r=137 ft, a location which was initially 
in the brine-filled region and later became part of the invading two-phase region.  
Here, the location of the inflection point clearly falls within the spectrum of the 
reconstructed data. 
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Figure 2.6. Pressure data (y-axis) from different radial locations in light 
symbols as a function of Boltzman variable r2/t (x-axis) with overlay of pressure 

data converted from time domain at r=137 ft (dark symbols). 

Finally, we show results from r = 5792 ft, which is always within the brine filled 
region and is outside the CO2 plume at all times.  Here, the inflection point is 
outside the range of the reconstructed data. 
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Figure 2-7. Pressure data (y-axis) from different radial locations in light 
symbols as a function of Boltzman variable r2/t (x-axis) with overlay of pressure 

data converted from time domain at r=137 ft (dark symbols). 

2.5 Locating the Saturation/Pressure Discontinuity 

Thus, we have seen that the location of inflection point only falls within response 
from r=137 ft, while the first location (r=rw) is always within two-phase region, and 
the third location (r=5792 ft) always within brine-filled region.  Therefore, we need 
to pick monitoring well location that sees CO2 breakthrough after some time (e.g., 
Figure 2.6). 

In this figure, the location of the saturation discontinuity is known from simulation 
results.  In a field setting how can this be identified?  We propose using a derivative 
plot to identify this discontinuity, as shown below in Figure 2.8.  This involves 
plotting dP(r2/t) against the similarity variable and looking for a reversal in slope.  
This yields a r2/t value of 2000 ft2/s at the discontinuity, which compares very well 
with the simulator input of 2050 ft2/s.  The subscript BL in the figure denotes a 
Buckley-Leverett shock front, following the original model of frontal displacement 
for two immiscible fluids in porous media.  
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Figure 2-8. Derivative analysis to determine pressure/saturation discontinuity. 

In Figure 2-9, the predicted plume radius at different points in time using this value 
(i.e., r2/t|front = 2000 ft2/s) is shown, which agrees very well with the simulator 
results.  We are currently validating this approach with additional datasets.   

 

Figure 2-9. Comparison of simulated and predicted plume location based on 
inferred r2/t|front. 
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2.6 Summary 

We have found that pressure data from a monitoring well location that sees 
breakthrough at some point after injection can be useful for front tracking process 
using the following workflow: 

– Convert P(r,t) to P(r2/t) 

– Pick inflection point from derivative 

– This gives r2/t for BL front 

– Can estimate front location at different times 

In terms of future work, we propose an extension to variable rate cases (e.g., using 
deconvolution to generate P(t) for equivalent constant rate response from variable 
rate P(t) data), and combining this with the material balance time concept for front 
tracking. 
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3.1 Introduction and Scope 

Bottom-hole pressure (BHP) and bottom-hole temperature (BHT) data are 
routinely collected together as part of monitoring programs in geological storage 
projects involving CO2 injection into saline aquifers and depleted oil and gas fields 
[6].  Since the same gauge can measure both pressure and temperature signals 
when placed downhole, there is no additional cost in acquiring temperature data.  
When cold CO2 is injected into a warm reservoir (as is generally the case), the 
BHP and BHT signals are generally inverted, i.e., there is thermal cooling as 
opposed to pressure buildup during injection sequences, and thermal warmback 
as opposed to pressure falloff during shut-in sequences.  As an example, Figure 
3-10 shows the correlated nature of the BHP and BHT responses following 
supercritical CO2 injection in the AEP Mountaineer project’s AEP-1 well [11].  As 
reservoir properties (e.g., permeability) are known to directly influence the 
pressure signal, the strong correlation between BHP and BHT signals suggests 
the potential of inferring these reservoir characteristics from BHT data as well. 

 

Figure 3-10. Example bottom-hole pressure (BHP) in solid line (left axis) and 
bottom-hole temperature (BHT) in dashed line (right axis) from AEP Mountaineer 
project (well AEP-1) showing inverse correlation between BHP and BHT signals 

(conversion factors: 1 psi = 6.895 kPa; x oF = (x-32)*5/9 oC). 
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In CO2 geologic sequestration projects, pressure data are generally interpreted 
using analytical models [4, 27, 18]; or used as inputs to numerical reservoir models 
for history matching to determine key formation characteristics such as 
permeability [7, 5, 25, 26, 14, 19]).  However, to the best of our knowledge, there 
is very little evidence to indicate that BHT data from individual downhole gauges 
at a fixed location are actually being used in CO2 storage projects for any 
meaningful quantitative interpretive purposes.  It should be noted a few studies 
have discussed qualitative analysis of fiber-optic based distributed temperature 
sensing or DTS time series data collected along the length of the borehole.  
Mawalkar [17] studied the DTS data, in conjunction with pressure and geochemical 
data, to understand CO2 movement within the injection zone.  Nunez-Lopez [21] 
used DTS data along with pressure observations to qualitatively monitor CO2 flow 
within CO2 injection zones at the inter-well scale and to detect CO2 leakage in the[ 
overburden.  

Several recent studies in the oil and gas literature have addressed the issue of 
transient temperature analysis under non-isothermal fluid production conditions for 
quantifying reservoir properties.  Some of the relevant studies are briefly 
summarized here. 

App and Yoshioka [3] used both analytical and numerical models to investigate the 
interplay between pressure drawdown, Joule-Thomson effect, and permeability in 
determining the temperature response during fluid production from vertical wells.  
They concluded that the maximum amplitude of thermal response corresponds to 
high-permeability reservoirs and is bounded by the Joule-Thomson effect.  

Muradov and Davies [20] developed analytical equations for early-time, sandface 
temperature during fluid production in horizontal wells including a complete 
treatment of Joule-Thomson and adiabatic expansion effects as well as convection 
and conduction.  Of particular interest are the asymptotic solutions that show the 
influence of the Joule-Thomson effect in correlating temperature and pressure 
responses (in a manner similar to that predicted by App and Yoshioka [3]).  

Onur and Cinar [22] presented equations for analyzing temperature transient data 
from constant rate flow tests in infinite-acting single-phase oil reservoirs.  The 
development of these analytical solutions is based on the fact that the effects of 
temperature changes on pressure transient data can be neglected (but not vice 
versa) so that the pressure diffusivity and thermal energy balance equations can 
be decoupled.  These analytical solutions account for Joule-Thomson cooling, 
adiabatic fluid expansion, conduction and convection effects. 

Mao and Zeidouni [16] developed a similar analytical model for pressure influenced 
transient temperature response during the production of a slightly compressible 
hydrocarbon fluid from a vertical well.  Using the Laplace transformation technique, 
they proposed interpretive equations for analyzing temperature data to infer 
reservoir properties, such as permeability and damaged-zone radius (if 
appropriate). 
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Although these studies (and references cited therein) provide practical approaches 
for BHT analysis in production wells, their application for injection problems does 
not appear to be as straightforward.  The primary reason for this is the fact that 
during injection, an additional complicating factor is the surface injection 
temperature.  Together with the injection rate, it affects the temperature at which 
the supercritical CO2 reaches the sandface and thus influences the overall 
temperature change during injection.  Note that the injection rate also affects the 
BHP response via permeability.  Thus, the interrelationship between BHT, BHP, 
injection rate and permeability is the topic of interest for our investigations. 

Building on these studies, our motivation here is to demonstrate a practical 
methodology for analyzing BHT data from CO2 injection projects and show what 
information about the reservoir can be reasonably extracted from such data.  
Specific issues of interest include: 

• Does the relationship between the total temperature and pressure 

changes during injection suggest some information about reservoir 

properties? 

• How can the transient warmback data for the shut-in period after 

injection be analyzed? 

• Is it possible to infer the nature of pressure response (i.e., hence, 

permeability dependence) from the temperature signal? 
The paper is organized as follows.  First, we describe the BHP and BHT data from 
the AEP-1 well in the Mountaineer project, along with steps taken to pre-process 
the dataset for our analysis.  Next, we present a steady-state analysis of the BHP 
and BHT data across all injection sequences.  This is followed by transient 
temperature analysis using the well-established temperature Horner method, and 
transient pressure analysis also in terms of the well-known pressure Horner 
method [9].  This step is necessary to provide the ground truth for our proposed 
approach, which is presented in the following section.  The paper ends with a 
discussion of the results, its implication for routine analysis of BHT data, and 
possible improvements in the suggested approach. 

3,2 Description of AEP-1 Dataset 

The dataset of interest in the present study is from the 20 MW CO2 capture and 
storage Product Validation Facility (PVF) project at American Electric Power’s 
Mountaineer Plant in West Virginia, USA [11].  The Mountaineer CO2 injection 
system consists of two injection wells—one in the Copper Ridge dolomite 
formation and one in the Rose Run sandstone formation, and three deep 
observation wells that were operational between October 2009 and May 2011 [18].  
Here, we consider data from the AEP-1 well which is drilled into the Copper Ridge 
zone consisting of vuggy high porosity and permeability intervals at ~2500 meters 
depth.   
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Figure 3-11 shows the location of the wells and the stratigraphic column at the site.   
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Figure 3-11. Well layout and stratigraphic column at AEP Mountaineer Plant CO2  
capture and storage project. 

Approximately 27000 metric tons (MT) of CO2 was injected into the Copper Ridge 
dolomite formation in well AEP-1 with pressure and temperature monitoring 
undertaken using bottomhole gauges.  The injection rates were highly variable 
because of operational issues with the capture plant.  Therefore, as described in 
Mishra [18], the first step was to simplify the rate history by aggregating all injection 
(or shut-in) sequences less than 1000 minutes into the previous shut-in (or 
injection) sequence.  For AEP-1, this resulted in 21 injection sequences ranging 
from 2628 minutes (~1.8 days) to 41406 minutes (~29 days).  The average rate for 
each sequence was calculated to ensure that the cumulative injected volume 

AEP-2 Rose Run
Injection Well

AEP-1 Copper Ridge
Injection Well
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during each sequence was matched, which yielded the simplified rate history 
shown in Figure 3-12. 

 

Figure 3-12. Simplification of flow rate history into equivalent  
constant rate sequences. 

While the BHP and BHT data shown earlier in Figure 3-10 are available at a high 
degree of granularity (i.e., once every minute, re-sampled to once every hour), for 
the steady-state analysis it is useful to discretize these time series into a series of 
rectangular pulses reflecting  the corresponding quasi steady state (QSS) pressure 
and temperature changes.  Furthermore, the starting and end times associated 

with these P and T values should be consistent with the simplified rate history 
developed earlier.  Figure 3-13 shows the continuous pressure and temperature 
history traces juxtaposed with the corresponding rectangular pulse 

approximations.  Henceforth, these quantities will be referred to as PQSS and 

TQSS. 
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Figure 3-13. Approximation of observed BHP and BHT history (blue line) by 
rectangular pulses (black dashed line) based on the simplified rate history shown 

earlier (conversion factors: 1 psi = 6.895 kPa; x oF = (x-32)*5/9 oC). 
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3.3 Steady State Analysis 

App and Yoshioka [3] presented a single-well steady-state radial thermal model, 
based on conservation of energy, conservation of mass and Darcy’s law, to 
describe temperature changes following production of a single-phase fluid.  They 
concluded that the upper bound for the final temperature change is the Joule-
Thomson (JT) coefficient.  They also found that the temperature change could be 
attenuated under low-permeability conditions when conductive heat transfer 
becomes relatively more important compared to convective heat transfer.   

Table 3-1 shows the DPQSS and DTQSS values for all 21 sequences and the 
associated average injection rate.  Note the modest pressure and temperature 
changes observed due to the low rate of injection and high permeability of the 
formation.   

Table 3-1. Observed quasi-steady pressure and temperature changes for 
various injection events. (conversion factors: 1 psi = 6.895 kPa; x 
oF = (x-32)*5/9 oC; 1 oF/psi = 0.08 oC/kPa) 

 

A cross-plot of these values (Figure 3-14) indicates a strong linear relationship with 
a slope of 0.28 oF/psi (0.023 oC/kPa) and coefficient of determination R2 = 0.85 
(note—this line is constrained to pass through the origin).  As per the model of App 

Sequence Injection time (days) Injection rate Pressure change Temp change dT/dP

days MT/day psi
oF oF/psi

1 9.75 73.4 29.6 8.0 0.27

2 6.80 81.2 16.7 5.4 0.32

3 3.25 84.8 17.1 6.6 0.39

4 2.27 54.5 10.7 3.4 0.31

5 2.01 100.3 25.9 7.5 0.29

6 3.93 76.6 22.7 7.4 0.33

7 3.28 92.4 23.0 6.6 0.29

8 3.43 85.6 19.0 5.7 0.30

9 6.10 82.3 14.8 6.5 0.44

10 5.46 71.1 21.6 7.6 0.35

11 1.83 82.3 14.2 3.8 0.27

12 3.30 91.3 27.8 7.8 0.28

13 1.84 77.0 16.6 4.5 0.27

14 5.09 121.8 30.8 9.2 0.30

15 5.33 110.0 25.0 8.2 0.33

16 28.75 94.5 24.3 7.2 0.30

17 9.15 119.2 35.1 10.1 0.29

18 14.26 148.3 51.7 13.8 0.27

19 7.71 119.1 37.8 10.5 0.28

20 3.43 127.6 47.4 11.0 0.23

21 3.71 124.8 56.5 14.4 0.26
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and Yoshioka [3], this slope should be equal to the JT coefficient, JT.  However, 
at a nominal reservoir pressure of 3940 psi (27166 kPa) and reservoir temperature 

of 140 oF (60 oC), JT for CO2 is estimated to be 0.8 K/Mpa or 0.01 oF/psi (as 
extrapolated from the data given in http://www.ddbst.com/en/EED/ 
PCP/JTC_C1050.php).  Clearly, this is much lower than the value indicated by the 
data shown in Figure 3-14 — suggesting that other factors beyond simple Joule-
Thomson cooling are in play here. 

 
Figure 3-14. Cross-plot of quasi-steady pressure and temperature changes  

from all injection sequences.  
(conversion factors: 1 psi = 6.895 kPa; x oF = (x-32)*5/9 oC) 

We hypothesize that during injection, an additional complicating factor is the 
surface injection temperature.  Together with the injection rate, it affects the 
temperature at which the supercritical CO2 reaches the sandface and thus 

influences the overall temperature change (or TQSS) for each sequence.  The 

strong correlation with PQSS suggests that the fluid injection rate is a key linking 

parameter between the quasi-steady T and P values. 

A complete analysis of the injection temperature data would require a numerical 
model that takes into account all active processes, i.e., Joule-Thomson effect, 
adiabatic expansion, bulk fluid movement related heat convection, and heat 
conduction.  As noted earlier, some analytical and semi-analytical models are 
available for such problems under production only conditions [20, 22, 16].  The 
applicability of these models for injection scenarios is not clear.  However, the 
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warmback period following injection is expected to be simpler to analyze because 
there is no fluid movement and heat conduction should be the primary process that 
needs to be considered for, as discussed next.       

3.4 Transient Temperature Analysis 

As presented in Dowdle and Cobb [8], Kutasov and Eppelbaum [15], and 
Gouturbe, et. al., [10], the temperature change for a line source well during shut-
in conditions can be expressed as: 

∆𝑇 = 𝑇(Δ𝑡) − 𝑇𝑖 =
𝑞ℎ

4𝜋𝜆𝑟
{ln (1 +

𝑡𝑖𝑛𝑗

𝛥𝑡
)} =

𝑞ℎ

5.45𝜆𝑟
 {log (1 +

𝑡𝑖𝑛𝑗

𝛥𝑡
)}   (Eqn. 3-

1) 

where T is time-varying temperature, Ti is initial temperature prior to injection, t is 

shut-in time, tinj is injection time, qh is heat flux per unit length, and r is thermal 
conductivity of the in-situ fluid-filled rock (all in consistent units).  Eqn. 3-1 is 
generally referred to as the temperature Horner method based on the similarities 
between pressure and temperature transient well testing [9], and is the most widely 
used technique for correcting borehole temperature measurements [10].  Note that 
Eqn. 3-1 is equally valid for injection as for production events, assuming that the 
heat flux can be assumed to be constant during injection 

For the transient temperature analysis of warmback data in the present study, we 
pick four sequences, i.e., #1, #6, #10 and #18 (as marked in Figure 3-13), that are 
separated in time and have varying injection periods.  Temperature Horner plots 
for these sequences are shown in Figure 3-15, where the observed temperature 

is plotted against the shut-in time ratio, (1+tinj/t).  A straight-line fit to the late-time 
data suggests that the line source solution as expressed in Eqn. 3-1 is a valid 
representation of the thermal response.  The intercept in each case closely 
matches the initial temperature (i.e., end temperature corresponding to the DTQSS 
from Table 3-1).  As evident from Eqn. 1, the slope of the line is proportional to the 

ratio of unknown heat flux qh and thermal conductivity r.   
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Figure 3-15. Temperature Horner plots for selected warmback sequences.  
(conversion factor: x oF = (x-32)*5/9 oC) 

Assuming a rock thermal conductivity value of 2 W/m-K (1.156 BTU/ft-0F) as a 
representative value for the vuggy dolomite Copper Ridge formation [24], the heat 
flux qh can be calculated for each sequence from the slope of the Horner plots 
using Eqn. 3-1.  Table 3-2 shows the calculated qh values, as well as the observed 
fluid flux qf (i.e., injection rate per unit length or effective formation thickness).  
Here, the surface fluid injection rate has been converted into a downhole flux by 
assuming a CO2 formation volume factor (BCO2)  of 2.285 ft3/MCF (0.0023 m3/sm3) 
(Jarrell, et. al., [13]) and an effective formation thickness of 31 ft (10 m) (Mishra, 
et. al., [19]).  Note the strong correlation between the two variables shown in Table 
3-2.  

Table 3-2.   Correspondence between calculated heat flux and observed fluid 
flux(conversion factors: 1 BTU/ft-hr = 0.96 W; 1 ft3/ft-hr=2.6E-5 
m3/m-s) 

Seq qh qf 

 BTU/ft-hr Ft3/ft-hr 

1 8.35 4.27 

6 9.77 4.47 

10 8.66 4.14 

18 14.49 8.64 

We further explore the issue of this correspondence by noting that from 
fundamental considerations we can express the heat flux (qh) associated with fluid 
injection in terms of fluid flux (qf) as follows: 

𝑞ℎ = 𝛼𝑞𝑓(𝜌𝐶)𝑓      (Eqn. 3-2) 

where (C)f is the density-weighted specific heat capacity of the injected fluid and 

 is a proportionality constant with units of temperature (oF or R).  From 

dimensional considerations, it could be argued that =T (i.e., difference between 
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formation and injected fluid temperatures).  However, using a representative value 
of (𝜌𝐶)𝑓 = 25.3 BTU/(ft3-F), and the average values of qh and qf from Table 3-2, 

we get =0.078 which is significantly different from the temperature differences 

indicated in Table 3-1.  Therefore, we treat  as an unknown constant of 
proportionality that generally represents the efficiency of the heat transfer process.  
In fact, our workflow does not require any explicit knowledge of this parameter, as 

will be shown later.    

Combining Eqn. 3-1 and  Eqn. 3-2, we get 

𝑇(Δ𝑡)−𝑇𝑖

𝑞𝑓
=

𝛼(𝜌𝐶)𝑓

5.45𝜆𝑟
 {log (1 +

𝑡𝑖𝑛𝑗

𝛥𝑡
)}    (Eqn. 3-3) 

which can be considered as the equation for a rate-normalized (RN) temperature 
Horner analysis.  Eqn. 3-3 suggests that data from multiple sequences can be 
examined and analyzed using the same plot, since the slope is dependent only on 
thermal properties of the injected fluid and the in-situ fluid filled rock, i.e.,    

𝑚𝑅𝑁,𝑇 =
𝛼(𝜌𝐶)𝑓

5.45𝜆𝑟
         (Eqn. 3-4) 

This leads us to re-analyze the data shown earlier in Figure 3-15 using rate-
normalization, which is presented in Figure 3-16.  The late time portions of the 
warmback data from all four sequences fall on a single straight line characterized 
by a slope of 0.31 oF/(ft2/hr)/log-cycle (6.6E3 oC/(m2/s)/log-cycle).   

 

Figure 3-16. Rate-normalized temperature Horner plots for consistency check  
across selected warmback sequences  

(conversion factor: 1 oF/(ft2/hr) = 2.1E4 oC/(m2/s)). 
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The success of rate-normalization in correlating much of the warmback data 
suggests that the key thermal properties affecting BHT response (i.e., effective 
heat capacity, which relates fluid flux to heat flux, and thermal conductivity, which 
determines the rate of heat transfer from the injected fluid to the rock and in-situ 
fluid) are generally unchanging with time.  However, the dependence on reservoir 
properties such as permeability is missing from this analysis.  This will be 
attempted next by performing transient pressure analyses and seeking a linkage 
between the pressure and temperature analyses, as discussed next. 

3.5 Transient Pressure Analysis 

As noted by Mishra, et. al., [18], based on the work on injection well testing 
summarized by Abbaszadeh [1] and the composite system models of Ramey [23] 
and Ambastha [2], the late-time pressure fall-off response in the injection well can 
be expressed as:  

Δ𝑃 = 𝑃(Δ𝑡) − 𝑃𝑖 ≅ 
𝑞𝜇𝑤

4𝜋𝑘ℎ
 {ln (1 +

𝑡𝑖𝑛𝑗

Δ𝑡
)}    (Eqn. 3-5) 

Note that the viscosity of interest here is that of the brine phase, indicating that the 
pressure response is essentially being influenced by the undisturbed formation.  
Also, the q in Eqn. 3-5 is in reservoir volumes, which requires converting the mass 
injection rate at the surface into a sandface rate using the CO2 formation volume 
factor, BCO2, at the appropriate pressure and temperature conditions [13].  Using 
the definition of the fluid flux qf = q/h, we can re-write Eqn. 3-5 as:   

𝑃(Δ𝑡) − 𝑃𝑖 ≅ 
695𝑞𝑓𝜇𝑤

𝑘
 {log (1 +

𝑡𝑖𝑛𝑗

Δ𝑡
)}    (Eqn. 3-6) 

where P is in psi, qf is in ft3/ft/hr, w is in cp, and k is in mD (the constant is 1.26E8 

when P is in kPa, qf is in m3/m/s, w is in cp, and k is in m2).  Eqn. 3-6 thus 
provides a straightforward way for analyzing the falloff response via a semi-log plot 

of time-varying shut-in pressure against the shut-in time ratio, (1+tinj/t). 

As in the case of the transient temperature analysis, we pick sequences #1, #6, 
#10, and #18 for the transient pressure analysis of the falloff data.  Pressure Horner 
plots for these sequences are shown in Figure 3-17.  In general, the late-time 
portions of the data (shown here) indicate strong linear trends—notwithstanding 
the stair-stepping that possibly reflects measurements with pressure differentials 
close to the gauge resolution. The straight-line fits to the late-time data suggests 
that the expected falloff response as expressed in Eqn. 3-6 is a valid 
representation of the pressure behavior.  The intercept in each case closely 

matches the end pressure used to calculate the PQSS values in Table 3-1. The 
slope is proportional to the ratio of fluid flux times brine viscosity and reservoir 
permeability. 
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Figure 3-17.   Pressure Horner plots for selected falloff sequences  
(conversion factor: 1 psi = 6.895 kPa). 

Rearranging Eqn. 3-6 by normalizing with respect to fluid flux yields: 

𝑃(Δ𝑡)−𝑃𝑖

𝑞𝑓
≅ 

695𝜇𝑤

𝑘
 {log (1 +

𝑡𝑖𝑛𝑗

Δ𝑡
)}   (Eqn. 3-7) 

which can be considered as the equation for a rate-normalized (RN) pressure 
Horner analysis.  Eqn. 3-7 suggests that pressure data from multiple sequences 
can be examined and analyzed using the same plot, since the slope is dependent 
only on intrinsic permeability and brine viscosity, i.e.,    

𝑚𝑅𝑁,𝑃 =
695𝜇𝑤

𝑘
          (Eqn. 3-8) 

As before, a rate-normalization Horner plot is constructed per Eqn. 3-7.  This is 
presented in Figure 3-18 with a slope of 1.15 psi/(ft2-hr)/log-cycle (3e5 kPa/(m2-
s)/log-cycle), which shows a general consistency in late-time pressure response 
across all sequences. This suggests that the underlying reservoir characteristics, 
especially formation permeability, are not changing with time.   
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Figure 3-18.   Rate-normalized pressure Horner plots for consistency 
check  

across selected falloff sequences.  
(conversion factor: 1 psi/(ft2/hr) = 2.7E5 kPa/(m2/s). 

Using this slope value and Eqn. 3-8, assuming a brine viscosity of 1.2 cp 
(calculated at P = 3940 psi (27661 kPa), T=140 0F (60 0C), salinity = 300000 ppm) 
and a formation thickness of 31 ft (10 m), the permeability-thickness product is 
determined to be kh = 23293 mD-ft (7.0E-6 m3).  This compares very well with the 
value of 23940 mD-ft (7.2E-6 m3) obtained by Mishra, et. al., [18] using 
conventional pressure-derivative based transient pressure analysis methods.   

It should be pointed that the purpose of performing a transient pressure analysis 
of the falloff data here is to provide an independent assessment of the reservoir 
permeability and determine the extent to which it can be independently determined 
from the BHT signal (in conjunction with some aspects of the BHP signal).  This is 
discussed next. 
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Δ𝑇𝑄𝑆𝑆

Δ𝑃𝑄𝑆𝑆
=

𝑚𝑇

𝑚𝑃
=

𝑚𝑅𝑁,𝑇

𝑚𝑅𝑁,𝑃
        (Eqn. 3-9) 

where mT = mRN,T*qf and mP = mRN,P*qf .  Thus, knowing the ratio of quasi steady 
state pressure and temperature changes and using the analysis of warmback data 
in the form of a temperature Horner plot, the slope of the corresponding pressure 
Horner plot can be estimated via Eqn. 3-9, from which the reservoir permeability 
can be calculated using Eqn. 3-8.  Note that this does not require the direct analysis 
of the time-dependent pressure fall-off response.    

To test this hypothesis for our dataset, we start by noting that the ratio of 

TQSS/PQSS averaged across all sequences is 0.28 oF/psi or 0.023 oC/kPa (as 
indicated by Figure 3-14).  From the rate-normalized temperature Horner plot  
(Figure 3-16) we have slope mRN,T = 0.31 oF/(ft2/hr)/log-cycle or 6.6E3 
oC/(m2/s)/log-cycle, and from the rate-normalized pressure Horner plot (Figure 3-
18) we have slope mRN,P = 1.15 psi/(ft2/hr)/log-cycle or 3E5 kPa/(m2-s)/log-cycle.  
The ratio of these two values is 0.31/1.15 = 0.27 oF/psi (or 6.6E3/3E5 = 0.022 
oC/kPa), which is in excellent agreement with the value of 0.28 oF/psi or 0.023 
oC/kPa calculated using the quasi steady state rectangular pulse approximation 
approach.  This confirms the hypothesis postulated via Eqn. 3-9.   

We verify these ideas further for the four individual sequences of interest as shown 
below in Table 3-3.  The various quantities presented there are as follows: 

• qf = reservoir fluid flux (i.e., injection rate converted to sandface 

conditions and divided by formation thickness),  

• dP  PQSS = quasi steady state pressure change,  

• dT  TQSS = quasi steady state temperature change,  

• slope P  mP = slope of the pressure Horner plot,  

• slope T  mT = slope of the Temperature Horner plot, 

• slope ratio = mT/mP, 

• dT/dP = ratio of QSS temperature and pressure changes, 

• Slope error = difference between slope ratio and dT/dP value,s 

• Slope P = slope of pressure Horner plot calculated as per Eqn. 3-9, 

• Calculated kh = permeability thickness product from slope P as per 

Eqn. 3-8. 

Table 3-3. Calculation of permeability using new approach. 

 

Seq tinj qinj dP dT slope P slope T slope dT/dP slope slope P kh calc

days ft3/ft-hr psi deg F psi/~ F/~ ratio ratio error (%) calc mD-ft

1 9.75 4.27 29.6 8.0 5.5 1.325 0.24 0.27 10.7 4.91 21764

6 3.92 4.47 22.7 7.4 5.75 1.55 0.27 0.33 17.2 4.76 23465

10 5.46 4.14 21.6 7.6 5.47 1.375 0.25 0.35 28.3 3.92 26432

18 14.25 8.64 51.7 13.8 10.11 2.3 0.23 0.27 14.5 8.65 24997

all                 (using rate-normalized plots) 1.15 0.31 0.27 0.28 3.7 1.11 23293
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The relevant conversion factors have all been presented earlier.  There are two 
key observations to be gleaned based on the results of Table 3-3.  First, the 
calculated kh values are generally self-consistent with an average of 24166 mD-ft 
(7.3E-6 m3), which compares very well with the value of 23293 mD-ft (7.0E-6 m3) 
calculated from the rate-normalized pressure Horner plot (Figure 3-18).  Second, 
the errors in the slope are only ~15% on the average and appear to correlate 
inversely with the length of the injection period.  This makes intuitive sense 
because the longer the injection period, the greater the likelihood of pressure and 
temperature changes reaching (quasi) stable values. This should be in agreement 
with the slope ratios obtained from the subsequent warmback/falloff periods. 

3.7 Discussion and Concluding Remarks 

The basic idea of this paper is to develop an approach for using temperature data 
to make inferences regarding the permeability (by using some information about 
the overall pressure response trends).  We have been able to demonstrate that 

T/P ratio from quasi-stabilized injection sequence responses is related to 
thermal properties and the permeability-thickness (kh) product.  However, the 
relationship between qh and qf is not definitive (because of a normalizing constant 
that does not appear have a physical meaning).  As noted earlier, the calculated 
value of this constant does not agree with the observed temperature difference – 
so we have proposed a workflow to bypass the direct use of this quantity.  In this 

new approach, one needs the T/P ratio and at least one warmback analysis to 
estimate the slope of the pressure Horner plot and hence the kh.  At the very least, 
this would provide an independent estimate of k, especially if the transient pressure 
analysis turns out to be inconclusive. 

Some of the complicating factors in this approach include: 

• Variable surface injection temperatures – which would affect the 
temperature at which the injected CO2 enters into the formation, and 
thus influence the BHT response in a complicated and non-linear 
manner.  However, as long as sandface conditions are relatively stable 
so that phase changes do not occur during the injection period, the 
assumption that the CO2 temperature at the sandface is constant (and 
hence the heat flux associated with fluid injection) can be made.  In the 
present study, the surface injection temperature was 68.711.7 oF 
(20.46.5 oC) during the period of investigation, so it can be 
considered as reasonably stable.  

• Short warmback periods between injection – which can affect the 
span of the data available for the Horner straight-line analysis, and 
thus potentially compromise the robustness of the pressure Horner plot 
slope and permeability estimates.  In the present study the duration of 
the warmbacks of interest range from 7.4 to 33.5 days, which appears 
to be adequate as evidenced by fairly long linear segments in the 
Horner plots.  
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• Phase change of injected CO2 – if the injected CO2 undergoes phase 
changes because of varying P and T conditions (e.g., from supercritical 
to liquid and vice versa) resulting in a step change in fluid-related 
thermal properties, it would invalidate many of the assumptions in the 
simple analytical models for the transient temperature analysis.  In the 
present study, the CO2 was always at supercritical conditions at the 
sandface. 

• Reservoir permeability changing with time – should permeability 
change because of precipitation, wellbore plugging, etc., the analysis 
procedure would become more complicated and require the addition of 
a “skin zone” in the interpretive equations.  However, in the present 
study, the consistency of the rate-normalized Horner plots strongly 
suggests that permeability did not change over the sequences of 
interest.  

The new workflow for analyzing BHT data as developed and demonstrated here 
can be summarized as follows: 

1. Characterize the injection sequence response in terms of quasi-steady 
temperature and pressure changes, DTQSS and DPQSS, respectively. 

2. Analyze the following warmback response in terms of a temperature 
Horner plot.  If multiple sequences are available, these can be 
analyzed together in terms of a rate-normalized temperature Horner 
plot as per Eqn. 3-3. 

3. From the slope of this plot, and the ratio from the quasi-steady 
temperature and pressure changes as obtained from step (1), the 
slope of a corresponding Horner plot (or a rate-normalized pressure 
Horner plot) can be determined using Eqn. 3-9. 

4. Subsequently, the permeability-thickness product can be estimated 
using Eqn. 3-8.  

In conclusion, the fundamental contribution of this study is a new approach for 
analyzing BHT data that combines the amplitude of pressure and temperature 
changes from the injection period, with the temperature Horner analysis of one or 
more subsequent warmback periods, to estimate the slope of an equivalent 
pressure Horner plot, and hence, the permeability of the reservoir.  
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4.1 Motivation and Scope 

In oil and gas operations, productivity (or injectivity) index is a popular concept for 
evaluating the capability of a well to produce from (or inject fluids into) a porous 
and permeable formation [22].  In the context of CO2 injection into saline aquifers 
for geologic storage (sequestration), it is useful to focus on the injectivity index 
which is defined as the ratio of the injection rate divided by the pressure difference 
between formation pressure and bottom-hole pressure: 

𝐽 = |
𝑞

(𝑃𝑓−𝑃𝐵𝐻)
|       (Eqn. 4-1) 

where J is injectivity index, q is injection rate, Pf is reference formation pressure 
and PBH is bottom-hole pressure.  During a typical CO2 injection event, the injection 
rate, q, is maintained at a relatively constant rate, and the bottom-hole pressure 
rapidly increases to some equilibrium value, PBH, after which it changes slowly.  
The difference between this quasi-equilibrium value and some reference formation 
pressure, Pf (i.e., stable pressure prior to injection), is the denominator in  
Eqn. 4-1. 

From a theoretical standpoint, the injectivity index can be related to the 
permeability-thickness product of the formation and the size of the reservoir [22].  
From a practical standpoint, the injectivity index helps compare the relative 
potential of different formations for injection operations corresponding to a 
prescribed pressure differential.  It is also useful for determining the change in well 
performance over time.  

The first application of the injectivity index concept in the Carbon Capture and 
Storage (CCS) literature appears to be that of Mishra [14], who evaluated field 
injection pressure and rate data from the AEP Mountaineer project for two different 
formations.  A number of discrete injection events were analyzed, and a 
corresponding range of injectivity index values were calculated for each formation.  
In general, these values were found to be strongly correlated with independent 
assessments of the permeability-thickness product. 

Ravi Ganesh and Mishra [18] presented a correlating chart between injectivity 
index (expressed in MT/yr/psi) and permeability thickness (expressed in mD-ft) 
using data from two additional field projects as well as a number of numerical 
simulation runs for various parameter combinations.  They found a strong trend 
over multiple orders of magnitude and suggested the relationship J ~0.1 kh as a 
rough order-of-magnitude type approximation.  Mishra et al., [15] further confirmed 
the validity of this trend using synthetic (i.e., simulated) data for CO2 injection into 
depleted oil reservoirs.  They concluded that the trend is well described by J ~ 
0.04 kh at the lower bound and J ~ 0.14 kh at the upper bound – with J ~0.1 kh 
appearing to be adequate for scoping calculations. 

The objective of this technical note is to present field data from multiple additional 
CCS projects to corroborate the findings summarized above, and further 
demonstrate the utility of the injectivity index as a reservoir characterization tool 
via its strong correlation with the underlying permeability-thickness value.  
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4.2 Description of Field Data 

Field data was collected for nine global CCS projects listed in Table 4-4.  The 
projects used for this study spanned across various continents and injection scales 
categorized as pilot (~10,000 MT/year), demonstration (~1 million MT/year), and 
commercial (>1 million MT/year). 

Table 4-4. CCS Projects in this Study. 

Project Name (reference) Location Scale 

Ketzin  
[13, 21]) 

Brandenburg, 
Germany 

Pilot 

Illinois Basin Decatur Project (IBDP)  
[21, 12]) 

Decatur, Illinois, USA Demonstration 

Snohvit  
[4, 20, 3]  

Barents Sea, Norway Commercial 

Nagaoka  
[13, 17] 

Nagaoka, Japan Pilot 

SECARB 
[11, 13]  

Kemper County, 
Mississippi, USA 

Demonstration 

Aquistore  
[19, 23, 5, 7] 

Saskatchewan, 
Canada 

Demonstration 

Midwest Regional Carbon Sequestration 
Partnership (MRCSP)  
[1, 2] 

Otsego County, 
Michigan, USA 

Pilot 

Rabbit Hash, 
Kentucky, USA 

Pilot 

AEP Mountaineer  
[14, 10]  

New Haven, West 
Virginia, USA 

Pilot 
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Figure 4-19 is a map showing the geographic locations of the nine projects.  

 

Projects are numbers as: 1 – Aquistore, Canada, 2 – MRCSP (Michigan, USA), 3 – AEP 
Mountaineer Project (West Virginia, USA), 4 – IBDP (Illinois, USA), 5 – MRCSP (Kentucky, USA), 
6 – SECARB (Mississippi, USA), 7 – Snohvit (Norway), 8 – Ketzin (Germany), and 9 – Nagaoka 
(Japan). 

Figure 4-19. Map showing the global CCS projects used for  
data population in this study. 

Table 4-5 presents a summary of basic geologic and operational information from 
these projects, including formation type, depth of injection zone, average porosity, 
injection and monitoring well names, and average injection rate. 
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Table 4-5. Summary Information for CCS Projects in this Study.  

Project Name Injection formation 
Depth, 
m (ft) Porosity Injection well Monitoring well 

Average CO2 
injection rate, 

dm3/day 
(MMscf/day) 

Average 
CO2 

injection 
rate, 

MT/day 

Ketzin Stuttgart sandstone 
650 

(2,133) 26% Ktzi 201 Ktzi 200, Ktzi 202 27 (0.9) 50 

IBDP 
Mount Simon 

sandstone 
2,120 

(6,988) 20% CCS1 VW1, GM1 504 (17.8) 936 

Snohvit Tubåen sandstone 
2,600 

(8,530) 7-20% F-2H F-2H 874 (30.9) 1,625 

Nagaoka Haizume sandstone 
1,100 

(3,609) 22.5% IW-1 OB-2, OB-3, OB-4 19 (0.7) 35 

SECARB Tuscaloosa sandstone 
3,117 

(10,300) 20-25% 

29-10, 29-12, 25-
2, 24-2, 29-2, 48-
1, 29-7, 26-1, 27-

1, 28-1, 29-4 EGL7 1,342 (47.4) 2,495 

Aquistore 
Black Island and 

Deadwood sandstone 
2,195 

(7,200) 11-17% PRTC-Inj-5626 PRTC-Obs-5628 177 (6.2) 329 

MRCSP - 
Michigan Bass Islands dolomite 

1,049 
(3,442) 13% Charlton 4-30 Charlton 3-30A 282 (10.0) 524 

MRCSP - East 
Bend 

Mount Simon 
sandstone 

985 
(3,230) 5-15% East Bend well East Bend well 427 (15.1) 794 

AEP Mountaineer 
- Copper Ridge 

Copper Ridge 
dolomite 

2,482 
(8,144) 5-15% AEP-1 MW-2 117 (4.1) 218 

AEP Mountaineer 
- Rose Run Rose Run sandstone 

2,362 
(7,749) 5-12% AEP-2 MW-3 32 (1.1) 60 
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The data used for analyzing injectivity is presented in the Appendix in the form of 
injection rate and downhole pressure versus time charts for each of the projects.  
In these plots, the red boxes identify discrete injection events under the same 
injection activity that were isolated and analyzed separately in this study to obtain 
injectivity index estimates. The plots also show a baseline pressure which was 
used as a reference pressure to calculate the pressure buildup corresponding to 
an injection event.  

4.2.1 Reservoir Properties  

Table 4-6 shows basic reservoir properties (extracted from the citations in  
Table 4-4) for the injection zones identified in the nine CCS projects in SI units.  
Values in parentheses represent field units. CO2 formation volume factors were 
estimated at the appropriate pressure and temperature values using NIST tables 
[6].  Brine viscosity was determined using the correlations presented in McCain [9]. 

Table 4-6. Reservoir Properties for the CCS Projects in this Study. 
PR – reservoir pressure, TR – reservoir temperature, S – formation brine salinity, k – reservoir absolute 

permeability, h – injection zone thickness, BCO2 – CO2 formation volume factor, μw – formation brine 

viscosity. 

Project Name PR, kPa (psi) 
TR, oC 
(oF) S, ppm 

kh, m3 
(mD-ft) 

CO2 
formation 
volume 

factor, res. 
ft3/ft3 

μw, Pa.s 
(cP) 

Ketzin 6,205 (900) 
33  

(91) 
250,000 

5.52E-13 
(1,835) 

0.0106 
0.0015 
(1.45) 

IBDP 
23,001 
(3,336) 

63  
(146) 

110,000 
3.79E-12 
(12,600) 

0.0025 
0.0006 
(0.64) 

Snohvit 
28,503 
(4,134) 

95 
(203) 

100,000 
7.77E-12 
(25,840) 

0.0028 
0.0005 
(0.47) 

Nagaoka 
11,997 
(1,740) 

47 
(117) 

7,113 
8.42E-14 

(280) 
0.0030 

0.0007 
(0.68) 

SECARB 
11,721 
(1,700) 

43 
(110) 

200,000 
1.77E-11 
(59,000) 

0.0028 
0.0006 
(0.64) 

Aquistore 
34,143 
(4,952) 

104 
(220) 

250,000 
3.69E-13 
(1,227) 

0.0027 
0.0007 
(0.65) 

MRCSP - 
Michigan 

10,687 
(1,550) 

28 
(83) 

350,000 
1.10E-12 
(3,650) 

0.0023 
0.0016 
(1.57) 

MRCSP - East 
Bend 

11,032 
(1,600) 

27 
(80) 

203,000 
2.47E-12 
(8,200) 

0.0023 
0.0014 
(1.44) 

AEP 
Mountaineer - 
Copper Ridge 

27,110 
(3,932) 

63 
(145) 

300,000 
6.92E-12 
(23,000) 

0.0023 
0.0012 
(1.21) 

AEP 
Mountaineer - 
Rose Run 

25,262 
(3,664) 

54 
(129) 

300,000 
8.43E-14 

(280) 
0.0023 

0.0012 
(1.19) 
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4.3 Calculation Approach 

Injectivity index, J, was calculated for all the nine CCS projects discussed above. 
Injection rate and/or cumulative injection data was first examined to divide the data 
into discrete injection events. Each of these events, i, consisted of a finite amount 
of CO2, Qi injected at one specific rate or a stepwise series of rates over a period 
Δti. This led to a corresponding downhole pressure increase, ΔPi – calculated as 
the difference between the maximum pressure attained during an injection event, 
PBH, and a baseline (reference) pressure, Pf. Consequently, the event specific J 
value, Ji was calculated as: 

𝐽𝑖 = 
𝑄𝑖

𝛥𝑃𝑖∗𝛥𝑡𝑖
    𝑜𝑟  𝐽

𝑖
=  

𝑞𝑖

𝛥𝑃𝑖
            (Eqn. 4-2) 

where qi is the average CO2 injection rate,  

J is typically expressed in the units of MT/yr-kPa or MT/yr-psi. 

4.3.1 Calculated Injectivity Index Values and Updated Correlation 

Table 4-7 lists the calculated injectivity index values in SI units. Values in braces 
denote injectivity index values in field units.  Calculations over multiple events are 
presented as average, minimum, and maximum values. 

Table 4-7. Injectivity Indices for the CCS Projects in this Study. 

Project Name 

J, MT/yr-kPa (MT/yr-psi) Events 

Average Min Max No. 

Ketzin 23 (157) 16 (110) 223 4 

IBDP 144 (990) 97 (671) 1,176 6 

Snohvit 111 (766) 58 (403) 1,007 7 

Nagaoka 8 (54) 6 (40) 62 4 

SECARB 780 (5,379) 167 (1,153) 11,526 4 

Aquistore 25 (169) 13 (87) 327 4 

MRCSP - Michigan 54 (373) 32 (219) 438 4 

MRCSP - East Bend 163 (1,123) 106 (730) 1,327 3 

AEP Mountaineer - Copper Ridge 251 (1,731) 131 (900) 341 (2,349) 19 

AEP Mountaineer - Rose Run 5 (37) 2 (11) 10 (68) 25 

Figure 4-20 is a log-log plot of event-based average injectivity index (Javg) versus 
kh for all the nine CCS projects discussed in this study.  The yellow circles 
represent the value of J calculated for each individual injection event for these 
projects.  The blue diamond represents the average J value. As noted earlier, 
Mishra et al., [15] reported a strong correlation between injectivity index and kh 
and noted that the field data examined lied between two lines represented by  
J = 0.04 kh and J = 0.14 kh where J is given in [MT/yr-psi] and kh is given in [mD-
ft].  These two bounds are shown as dotted lines in Figure 4-20. The new bounds 
obtained after incorporating data from the additional global CCS projects 
considered in this study are plotted as dashed lines in the same figure.  These 
lines bracket the range of average J values obtained for various projects.  They 
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correspond to J = 0.03 kh (lower bound) and J = 0.23 kh (upper bound) and should 
be considered as the updated bounds to J v/s kh relationship.  Finally, the median 
trend expressed by the relationship J = 0.08 kh can be used for single-point 
estimates.  These results corroborate our earlier findings on the correlation 
between J and kh, while refining the nature of the correlation and its robustness by 
using data from prominent CCS projects across the globe.  

 

Figure 4-20. Estimated injectivity index values vs. permeability thickness (kh) 
product from current study, superposed on earlier results from 

Mishra et al. [15] 

4.4 Discussion 

In the context of CO2 geological storage projects, we believe the utility of the 
injectivity index concept is twofold.  First, it allows a rapid estimation of pressure 
buildup corresponding to a target injection rate.  For example, if the target injection 
rate q for the IBDP project is 1 million MT/yr, and its injectivity index J is ~1000 

MT/yr/psi, then the expected pressure buildup will be P = q/J = 1 million /1000 = 
1000 psi.  This calculation can be readily inverted to yield the expected injection 
rate if there is a target pressure buildup (so as not to exceed fracture pressure 
related permit constraints).  For example, if the maximum allowable pressure 
buildup is 800 psi, then the maximum rate should be 1000*800 = 800,000 MT/yr.  
In the planning stages of a project, the correlation in Figure 4-20 can be used to 
assist such calculations by pointing to analog projects and also by providing an 
uncertainty range. 
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The second benefit is in rapidly estimating the permeability-thickness product 
without undertaking any detailed injection-falloff analysis using standard transient 
pressure analysis techniques.  Returning to the IBDP example, for an average 
injectivity index J = 1000 MT/yr/psi, the median kh value = 1000/0.08 = 12500 md-
ft, which agrees quite well with the reported value of 12600 md-ft (Table 4-6).  This 
shows the power of the correlation presented in Figure 4-20, which can also be 
used to assign uncertainty bounds to these calculations. 

Another benefit of this concept is in assessments of field data where the injection 
rate has significant fluctuations over time (as can be seen in the plots in the 
Appendix for almost all of the projects investigated).  In such conditions, the 
injectivity index concept allows the operator to track injection performance over 
time, and determine if there is any actual and systematic change in injectivity 
(either increase or decrease from physical effects), rather than pressure changes 
simply associated with rate variations. 

In summary, we have presented field data from multiple CCS projects to 
corroborate earlier simulation studies regarding the strong correlation between 
injectivity index and the underlying permeability-thickness value.  We hope that 
this concept will become a powerful tool for characterizing CO2 storage reservoirs 
via: (a) ready calculation of expected pressure buildup given a target injection rate 
(and vice versa), and (b) providing independent permeability-thickness estimates. 
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Appendix A. – Injection Pressure and Rate History 
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Ketzin CCS Project, Germany 

 

Figure A-1.  Ketzin injection data; blue line represents cumulative CO2 injected and the 
green line represents downhole pressure measurements at a depth of 

1,805 feet (Striebel et al., [21]). 
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Illinois Basin Decatur Project (IBDP), United States 

 

Figure A-2.  IBDP injection data; red line represents cumulative CO2 injected and the 
black line represents downhole pressure estimation at the injector 

 (Striebel et al., [21). 
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Snøhvit CCS Project, Norway 

 

Figure A-3.  Snøhvit CCS project operational data; Top – F-2H injector bottomhole 
pressure; Bottom – CO2 hourly injection rate (Grude et al., [3]). 
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Nagaoka CCS Project, Japan 

 

Figure A-4.  Nagaoka CCS project operational data; Top – IW-1 and OB-4 bottomhole 
pressures; Bottom – CO2 daily injection rate (Mito et al., [16]). 
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Southeast Regional Carbon Sequestration Partnership (SECARB), United 
States 

 

Figure A-5.  SECARB Cranfield project operational data; A daily and cumulative 
injection data, B – Pressure response in injection zone and overlying 
monitoring zone, C – rate of pressure change in the injection zone,  

D – individual injection rates for injectors on the same side of the fault as 
the observation well, E – individual injection rates for injectors on the 

opposite side of the fault as the injector well, 
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Aquistore, Canada 

  

Figure A-6.  Aquistore injection data (Jiang et al., [7]) 
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Midwest Regional Carbon Sequestration Partnership (MRCSP), United 
States 

Otsego County, Michigan 

 

Figure A-7.  Injection rate data from the Charlton 4-30 well (green lines) [1]. 

 

Figure A-8.  Downhole pressure data from the Charlton 4-30 well (blue line)  
(Battelle [1]).  



Chapter 4. 

4-24 

Boone County, Kentucky 

 

Figure A-9.  Injection rate data for the East Bend site (Battelle [2]). 

 

Figure A-10.  Bottomhole pressure data for the East Bend site (Battelle [2]). 
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American Electric Power (AEP) Mountaineer CCS Project 

 

Figure A-11.  Injection rate data for the Copper Ridge at the AEP Mountaineer site  
(Mishra et al., [14]); green line – AEP-1 BHP, pink line – MW-1 BHP, blue 

line – AEP-1 injection rate. 

 

Figure A-12.  Injection rate data for the Rose Run at the AEP Mountaineer site  
(Mishra et al., [14]);  green line – AEP-2 BHP, pink line – MW-2 BHP, blue 

line – AEP-2 injection rate.
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5.1 Introduction and Scope 

Carbon Capture Utilization and Storage (CCUS) is the process of capturing CO2 
before it is emitted into the atmosphere, compressing and transporting the CO2 to 
a geologic storage site, and injecting it into the site for storage [4].  The geologic 
storage site could be a deep saline formation, a depleted oil field, or an active oil 
field conducting CO2 enhanced oil recovery (EOR).  CCUS is based on practices 
and technologies developed in oil and gas exploration and production and natural 
gas storage, and is considered to be a potentially effective technology for the 
reduction of CO2 emissions from stationary sources.  

The 2018 increase in value of tax credits for CCUS in section 45Q of the US tax 
code provides a mechanism for CO2 sources to monetize their emissions through 
tax credits [5].  A comprehensive evaluation of the feasibility of CO2 storage 
projects for the purposes of securing 45Q tax credits requires detailed site 
characterization, geologic understanding, reservoir modeling, and monitoring 
design. However, during the early stages of planning, the information needed for 
in-depth project assessment may simply not be available to potential project 
developers, or the confidence in the available data may be low and/or the 
information may be broad or unrefined.  Also, regulators faced with the review of 
detailed project technical reports may prefer simpler tools to bound the projected 
probabilistic performance of the reference design.  Thus, there is a need for reliable 
(i.e., reasonably accurate) screening models to predict such performance metrics 
as pressure buildup and the spatial extent of CO2 plume – while requiring only a 
limited amount of information that can be readily obtained from the literature and/or 
analog sites. 

Motivated by these goals, a number of screening models have been presented in 
the literature for rapid performance assessment of CO2 geologic sequestration 
projects.  One set of studies builds upon Buckley-Leverett type frontal advance 
theory-based models of injection well pressure buildup and CO2 plume 
displacement in simplified geometries [19, 3, 6, 16].  Another set of studies is based 
on vertical equilibrium type models [14, 9, 20].  A third approach is based on using 
full-physics based models to develop reduced-order models with physically 
relevant coefficients and/or dimensionless groups  Each of these studies requires 
different levels of inputs about the system under consideration, and also exhibits 
varying levels of accuracy when compared to detailed simulation model results.   

The objective of this study is to re-visit our earlier work [17, 16]. and provide an 
updated set of correlations that require even less information than the earlier 
screening models (and representative of the level of knowledge typical of project 
planning phases).  The key idea is to use outputs from physics-based models to 
develop a simplified model of acceptable accuracy.  First, we present a description 
of the reference model and inputs therein used to generate the synthetic data. 
Next, we present a brief overview of the key concepts used to develop the previous 
set of correlations.  Then, the development and validation of the correlations for 
our screening model is described, along with its application to two example cases.  
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The paper ends with some concluding remarks regarding the applicability of the 
new screening model and its limitations. 

5.2 Dataset Used for Analysis 

In this study, the synthetic (simulation-generated) data used for developing the 
screening model are taken from an earlier work focusing on the development of 
simplified physics-based, statistical learning-based and reduced-order method 
based modeling approaches [12].  Specifically, this dataset has been used to 
develop correlations for pressure buildup [17] and spatial extent of CO2 plume 
migration [18].  These correlations will be used as starting points for the present 
analysis. 

The system being studied represents a single-well injecting supercritical CO2 into 
a bounded 2-D radial-cylindrical formation initially filled with brine.  The model 
domain consists of a porous and permeable heterogeneous reservoir, overlain by 
a low-permeability cap rock.  The top of the cap rock, the bottom of the reservoir 
and the lateral boundary are all assumed to be no-flow boundaries.  The 
simulations are executed in the numerical simulator Generalized Equation of state 
Model GEM® developed by the Computer Modeling Group.  GEM is a robust, 
multidimensional and fully compositional reservoir simulator that is widely used to 
model the flow of multiphase and multicomponent fluids in the oil and gas industry, 
as well as equivalent problems in the context of geologic carbon storage.  

The simulations were based on an experimental design that included a reference 
case, and multiple one-off sensitivity analyses carried out to perturb the most 
relevant parameters over a range. The selected discrete states for various 
parameters of interest are described below in Table 5-8. Note that the last 
parameter, which is the slope of the fractional flow curve corresponding to the CO2-
brine relative permeability relationship (i.e., a characterization of two-phase flow 
properties), is explained in further detail in the next section. 
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Table 5-8. MG-GEM Inputs for Experimental Design 

Parameter 

Experimental Design Values 

Description Reference Case A Case B 

h 150 50 250 Reservoir thickness (m) 

hCR 150 100 200 Caprock thickness (m) 

k 46 12 220 Avg reservoir permeability (mD) 

σlnk 3.56 2.45 4.67 Standard deviation of reservoir ln(k) 

VDP 0.55 0.35 0.75 Dykstra-Parsons coefficient 

kavg,CR 0.02 0.002 0.2 Average caprock permeability (mD) 

kV/kavg 0.1 0.01 1 Anisotropy ratio 

q 0.83 0.33 1.33 {Injection rate (million MT/yr) 

L 10 5 7 System size (km) 

ϕ 0.12 0.08 0.18 Reservoir porosity (fraction) 

ϕCR 0.07 0.05 0.1 Caprock porosity (fraction) 

Ik Random 
Increase 
from top 

Decrease 
from top 

Nature of permeability layering in the 
vertical direction 

dfg/dSg 1.74 4.74 6.24 
Slope of CO2 fractional flow curve  

(see explanation below) 
 

5.3 Basic Concepts and Previous Work 

5.3.1 Fractional Flow Curves 

The concept of fractional flow is related to the relative permeability relationships 
between the gas (CO2) and water (brine) phases during two-phase displacement 
processes, and is defined as follows: 

𝑓𝑔 = 

𝑘𝑟𝑔

𝜇𝑔
𝑘𝑟𝑔

𝜇𝑔
+ 
𝑘𝑟𝑤
𝜇𝑤

       (Eqn. 1) 

where krj is the relative permeability of phase j, and µj its viscosity [8].   
Figure 5-21 shows a typical set of gas-water relative permeability curves, and the 
corresponding CO2 (gas) fractional flow curve.  Also shown therein is the tangent 
drawn to the CO2 fractional flow curve.  The slope of this line at the point of 
tangency dfg/dSg gives the velocity of the Buckley-Leverett front (i.e., saturation-
boundary between the injected CO2 and in-situ brine), and its reciprocal is related 
to the average CO2 saturation in the two-phase region [8].   
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Figure 5-21. . Example relative permeability relationships (left) and fractional 
flow curve (right). 

 

The slope of the CO2 fractional flow curve is one of the hardest inputs to obtain for 
any given reservoir due to the inherent uncertainty in the relative permeability 
models.  This parameter is generally approximated using laboratory experiments 
with core data.  In the absence of core data to test with, literature-based dfg/dSg 
values can be useful assumptions to bound the associated uncertainty.  For 
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example, Bachu [1] and Bennion and Bachu [2] report relative permeability data 
using laboratory core experiments of samples from various formations in Canada 
that are candidates for CO2 sequestration projects.  They also developed useful 
generalizations for sandstone and carbonate formations respectively. In the 
absence of site-specific data, these databases can be used to construct the gas-
water relative permeability curves, calculate the fractional flow curve, and obtain 
its slope.  The use of data from analog sites/reservoirs is also another option for 
generating this information. 

5.3.2 Injectivity Index 

Injectivity index is a commonly used concept in petroleum reservoir engineering 
(similar to productivity index) for evaluating an injection well’s capability for 
injecting fluids into a permeable formation. It is defined as the ratio of the injection 
rate q divided by the pressure difference between a reference formation pressure 
Pi and stabilized bottom-hole pressure Pf [21], i.e., 

𝐽 =
𝑞

(𝑃𝑓−𝑃𝑖)
       (Eqn. 2) 

The utility of knowing the value of the injectivity index is that the stabilized pressure 
buildup corresponding to any target rate (or equivalently, the rate corresponding 
to a target pressure buildup) can be easily calculated without doing any detailed 
analytical or numerical modeling.  

In the case of CO2 injection into deep saline formations with open boundaries [11], 
or during CO2 injection into depleted oil fields before the onset of boundary effects 
[13], it has been shown that a plot of the nominal injectivity index against time 
generally reaches a stabilized value that is proportional to the permeability-
thickness product of the formation.   

Ravi Ganesh and Mishra [17] used the concept of a dimensionless pressure group 
to describe this “pressure jump”, i.e. the stabilized pressure increase 
corresponding to a constant rate of injection, 

PD =
2πkh

𝜇𝑤

(𝑃𝑓−𝑃𝑖)

𝑞
=

2πkh

𝜇𝑤

1

𝐽
     (Eqn. 3) 

where kh is the reservoir permeability-thickness product, and w is viscosity of the 
native brine (displaced fluid).  From PD, injectivity index J can be readily calculated 

knowing permeability-thickness product kh and brine viscosity w.  Ravi Ganesh 
and Mishra [17] showed that PD could be expressed as a quadratic model for a 
wide-range of formation properties as well as two-phase relative permeability 
relationships.   

𝑃𝐷 = 10.3 + 0.59
𝑑𝑓𝑔

𝑑𝑆𝑔
+ 3.41𝑉𝐷𝑃 + 1.23

𝑑𝑓𝑔

𝑑𝑆𝑔
𝑉𝐷𝑃 − 0.342 (

𝑑𝑓𝑔

𝑑𝑆𝑔
)
2

− 8.89(𝑉𝐷𝑃)
2       (Eqn. 4) 
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Here, dfg/dSg is the slope of the CO2 fractional flow curve discussed earlier, and 
VDP is the Dykastra-Parsons coefficient commonly used in the oil industry for 
characterizing log-normal permeability distributions [8]: 

VDP =
 (k50− k84.1) 

k50 
        (Eqn. 5) 

where k50 is the median permeability, and k84.1 is the permeability value that is one 
standard deviation away from the median.  Values of VDP range between from 0 
(perfectly homogenous) to 1 (completely heterogeneous).  VDP can also be shown 

to be equal to (1-exp(-lnk)), where lnk is the standard deviation of the natural log 
of permeability values [13] as noted earlier in Table 5-8.  Note that at a project 
screening level, the information needed to calculate VDP (e.g., using values of 
individual permeability samples fitted to a log-normal distribution) may not always 
be available.    

5.3.3 Total Storage Efficiency 

As noted by several researchers [8, 14] for the case of displacement of a dense, 
viscous fluid (e.g., brine) by a less dense and less viscous fluid (e.g., CO2), the 
migration of the injected fluid is controlled by mainly the effects of buoyancy 
(gravity), mobility/viscosity contrast between the fluids, and reservoir 
heterogeneity.  Based on the schematic in Figure 5-22 taken from Ravi Ganesh 
and Mishra [18], we note that within the footprint of the CO2 plume only a fraction 
of the total pore volume in the reservoir is contacted by CO2.  The ratio of the 
volume swept (contacted) by CO2 to the total volume within the footprint of the CO2 
plume is defined as the volumetric sweep efficiency (Ev). Within this swept volume, 
the efficiency of displacement of the native brine by the CO2 is given by the 
displacement efficiency. As the initial gas saturation in the reservoir is zero, the 
average CO2 saturation behind the front, Sg,av, gives this displacement efficiency.  
The total storage efficiency, defined as the product of Ev and Sg,av, thus signifies 
the efficiency of CO2-brine displacement process or the ability to effectively 
sequester CO2 in that reservoir (Es).  The lower the value of total storage efficiency, 
the greater is the extent of the plume from the injection well. 
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Figure 5-22. System schematic showing graphical definitions of plume extent, 
volumetric sweep and displacement efficiency for CO2- brine displacement [18]. 

 

The total storage efficiency is related to the maximum radial extent of the CO2 
plume at the end of injection, RCO2, as given in Eqn. 6 below: 

𝑅𝐶𝑂2
2 =

𝑄

𝜋𝜙ℎ𝑆𝑔,𝑎𝑣𝐸𝑣
=

𝑄

𝜋𝜙ℎ𝐸𝑠
                                                                 (Eqn. 6) 

where Q = qtBg(1-xf) is the cumulative reservoir volumes of CO2 injected with q 
being the surface mass injection rate for time t, Bg the CO2 formation volume factor 
(i.e., ratio of reservoir volumes to surface volumes), and xf is the mass fraction of 
CO2 dissolved in brine.  Using simulated data for a broad range of conditions, Ravi 
Ganesh and Mishra [18] developed a quadratic model for the total storage 
efficiency, Es, as follows: 

𝐸𝑆 = 30.7 + 0.435
𝑑𝑓𝑔

𝑑𝑆𝑔
+ 29.24𝐿𝐶 − 22.02𝑉𝐷𝑃 − 11.2𝑁𝑔 + 4.59

𝑑𝑓𝑔

𝑑𝑆𝑔
𝑉𝐷𝑃 − 25.21𝐿𝐶𝑉𝐷𝑃 −

0.692 (
𝑑𝑓𝑔

𝑑𝑆𝑔
)
2

+ 6.11𝑁𝑔
2                 (Eqn. 7) 

As noted earlier, dfg/dSg is the slope of the CO2 fractional flow curve, and VDP is 
the Dykastra-Parsons coefficient.  The other two dimensionless parameters, 
gravity number Ng, and Lorenz coefficient, Lc, are described below. 

The gravity number Ng signifies when gravity effects are more pronounced 
compared to viscous flow effects and vice-versa [8]. This quantity plays an 

Average Gas Saturation in Swept Volume

CO2- Brine

Brine

Injector

Sg,av

R
CO2

Swept Volume

Unswept Volume

Reservoir
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important role to characterize different stages of geologic sequestration due to the 
density difference between the more buoyant supercritical CO2 and the heavier 
native brine [14].  Although the definition for gravity number in surveyed literature 
varies from source to source [15], Ravi Ganesh and Mishra [18] used the following 
definition of the gravity number while accounting for reservoir permeability 
anisotropy in developing their correlation: 

 𝑁𝑔 =
 (∆𝜌𝑔ℎ)𝑘ℎ(

ℎ

𝐿
) 

𝑞𝜇𝑔 (
𝑘𝑉
𝑘
) 

 (Eqn. 8) 

where  = (w-g) is the difference in brine and CO2 densities, g is acceleration 

due to gravity, g is the CO2 viscosity, (kv/k) is the vertical to horizontal permeability 
anisotropy ratio, L is system dimension, and other terms are as defined earlier.  
Note that the gravity number can readily computed if fluid properties can be 
estimated from the corresponding pressure and temperature values, and typical 
reservoir properties are known. 

The Lorenz coefficient LC yields another dimensionless characterization of the 
reservoir heterogeneity. It is defined as [8]: 

 LC = 2 {∫ FndCn − 
1

0

1

2
} (Eqn. 9) 

where Fn is the cumulative flow capacity (i.e., fraction of the total permeability-
thickness product up to a given layer), Cn is the cumulative storage capacity (i.e., 
fraction of the total porosity-thickness product upto a given layer), and Lc is a 
common measure of heterogeneity that is given by the area between the F-C curve 
and a 450 line (homogeneous F-C curve) and normalized by 0.5.  As in the case 
of VDP, LC ranges from 0 to 1 with a value of zero indicating homogeneous 
reservoirs and values closer to one indicating extremely heterogeneous ones.  It 
should also be noted that at a project screening level, the information needed to 
calculate Lc (i.e., detailed permeability and porosity values on a layer by layer 
basis) may not always be available.    

5.3.4 New Correlations 

As mentioned in the Introduction, the primary motivation for developing new 
correlations for J and ES is to eliminate the dependence on parameter groups such 
as VDP and Lc which require a detailed knowledge of reservoir porosity and 
permeability distributions.  The development and validation of these new 
correlations is presented below. 

5.3.5 Injectivity Index 

As described previously, Ravi Ganesh and Mishra [17] have shown that the 
dimensionless pressure buildup following CO2 injection can be correlated as a 
function of the slope of the CO2 fractional flow curve dfg/dSg, and the Dykstra-
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Parsons coefficient, VDP.  In Figure 5-23 the same data is presented in a 
dimensional form with the injectivity index J (in MT/yr/psi) plotted against the 
permeability-thickness product kh (in mD-ft). The figure suggests that the trend in 
the data can be captured via a simple linear relationship of the form: 

J =  (kh)        (Eqn. 10) 

where the constant of proportionality  is primarily dependent on the relative 
permeability relationship used for the simulations, with a secondary dependence 
on permeability heterogeneity.   

 

Figure 5-23. Simulated values of injectivity index correlated to permeability-
thickness product for different relative permeability curves [17]. 

We postulate that the slope of the fractional flow curve dfg/dSg is an appropriate 
parameterization of the complex relative permeability relationship.  As a first-order 
approximation, using the data from Figure 5-23 above, the constant of 
proportionality in Eqn. 10 can be expressed as:   

 = 0.033 * exp(0.2*dfg/dSg)    (Eqn. 11) 

where dfg/dSg is used as a single parameter to capture the essence of the two-
phase relative permeability curves, and the influences of other potential factors 
such as permeability heterogeneity are ignored.  Thus, the new correlation for 
injectivity index can be stated as: 
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J = 0.033 * exp(0.2*dfg/dSg) * kh    (Eqn. 12) 

To validate this simple correlation, it has been used to predict the injectivity index 
for all cases in the dataset described by Ravi Ganesh and Mishra [17].  A cross-
plot of the simulated and predicted J values, shown in Figure 5-24, indicates 
excellent agreement with a coefficient of determination R2=0.98. 

 

Figure 5-24. Comparison between simulated and predicted injectivity index 
values, showing excellent agreement, where the colors refer to the three sets of 

relative permeability relationships. 

In summary, we have developed a simple, but accurate, correlation for injectivity 
index J in terms of permeability-thickness product kh and slope of the CO2 
fractional-flow curve dfg/dSg.  Knowing J, the injection well pressure buildup for a 
given injection rate (or vice versa) can be readily calculated using Eqn. 2.  Note 
that this correlation was developed over the range kh (mD-ft) = [5800, 110000], 
and dfg/dSg = [1.7, 6.3].  Caution should be exercised when extrapolating the 
results beyond these ranges.  

5.3.6 Total Storage Efficiency 

As noted earlier, Ravi Ganesh and Mishra [18] have shown that the total storage 
efficiency can be correlated as a function of the slope of the CO2 fractional flow 
curve dfg/dSg, the Dykstra-Parsons coefficient VDP, the Lorenz coefficient Lc, and 
the gravity number NG.  In Figure 25 the same data is presented with the total 
storage efficiency Es plotted against gravity number NG, which suggests a general 
linear trend of the form   
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Es =  +  (ln(NG))      (Eqn. 13) 

for each distinct relative permeability relationship, albeit with some degree of 
scatter related to other variables that characterize reservoir heterogeneity.   

 

Figure 25-5. Simulated values of total storage efficiency correlated to gravity 
number for different relative permeability curves [18]. 

We hypothesize that as a first-order approximation, the trend lines drawn in 
Figure 25 can be captured using a single parameter dfg/dSg while subsuming the 
influence of parameter groups such as VDP and LC.  Using the data from  

Figure 25, the two constants in Eqn. 13 above,  and , can be expressed as simple 

functions of dfg/dSg as follows 

 

 = 1.56E-1 – 3.90E-4 (dfg/dSg)3    (Eqn. 14) 

 = -1.93E-2 – 8.07E-6 (dfg/dSg)4    (Eqn. 15) 

To validate the correlations presented in Eqn. 13 through Eqn. 15, they have been 
used to predict the total storage efficiency for all cases in the dataset described 
earlier.  A cross-plot of the simulated and predicted Es values, shown in  
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Figure 5-26, indicates very good agreement with a coefficient of determination 
R2=0.95. 

 

Figure 5-26. Comparison between simulated and predicted total storage 
efficiency values, showing excellent agreement. 

In summary, we have developed a simple, but accurate, correlation for total 
storage efficiency Es in terms of a modified gravity number Ng and the slope of the 
CO2 fractional-flow curve dfg/dSg.  Knowing Es, the CO2 plume radius can be 
readily calculated using Eqn. 6. Note that this correlation was developed over the 
range NG = [0.002, 2], and dfg/dSg = [1.7, 6.3].  Caution should be exercised when 
extrapolating the results beyond these ranges.  
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5.4 Example Applications 

The application of the new correlations involves two steps: (a) calculate injectivity 
index J, from Eqn. 12, to determine the pressure buildup and final quasi-stable 
pressure, and (b) calculate gravity number Ng, from Eqn. 8, and total storage 
efficiency Es, from Eqn. 13 through Eqn. 15, to determine radius of CO2 plume 
RCO2.  This requires calculating a number of fluid properties for brine and CO2 from 

correlations.  For example, density of CO2 g; viscosity of CO2 g; and formation 
volume factor of CO2 Bg can be estimated from NIST tables [7].  Mass fraction of 
CO2 in brine xf, can be assumed to vary between 0.05 and 0.08 (based on 

simulations and literature values). Density of formation brine w, and viscosity of 

formation brine w, can be estimated from the correlations presented in 
McCain [10]. 

This workflow has been used to calculate Pf and RCO2 for two example cases 
described below.  The first (Example #1) is a STOMP simulation for the “warm-
shallow” case described in Oruganti and Mishra [16].  The second (Example #2) is 
a CMG-GEM simulation used as the blind validation #2 case in Ravi Ganesh and 
Mishra [18].  The relevant parameters for the two cases are shown below in Table 
5-9.  For instance, the calculated intermediate parameters used for Example #2 

are g = 845.9 kg/m3; g= 0.085 cP; Bg = 0.3909 bbl/Mcf; xf = 0.08; and w = 972.9 
kg/m3. 

Table 5-9. Input values for the two example cases. 

Parameter Description Units Example #1 Example #2 

Pi Initial pressure psi 1615 1839 

Ti Initial temperature deg F 153 101 

Sal Brine salinity molal .15 .15 

L Reservoir lateral extent m 57950 7500 

h Reservoir thickness m 100 148.8 

 Reservoir average porosity -- .1 .1451 

k Reservoir average horizontal 

permeability 

mD 100 58.25 

kv/k Reservoir anisotropy ratio -- 1 .2482 

dfg/dSg Slope of CO2 fractional flow curve -- 3.49 1.74 

q CO2 mass injection rate MT/yr 1.5e6 1.33e6 

t Injection time yr 5 30 

 

  



Chapter 5. 

5-18 

 

The final results for these two cases, along with the corresponding simulated 
values, are presented below in Table 5-10, indicating excellent agreement.  This 
demonstrates the practical utility of the new correlations for screening-level 
calculations with only limited information about the reservoir. 

Table 5-10. Results for the two example cases. 

 Example #1 Example #2 

Simulated RCO2 from numerical model, m 1250 1699 

Calculated RCO2 from Eq. 13-15, and Eq. 6 (this 
study), m 

1287 (error 3.0%) 1743 (error 2.6%) 

Simulated Pf from numerical model, psi 2420 2881 

Calculated Pf from Eq. 12 and Eq. 2 (this study), psi 2298 (error 5.0%) 2830 (error 1.8%) 

5.5 Concluding Remarks 

The objective of this short paper is to revisit the correlations presented in Ravi 
Ganesh and Mishra [17] for injection-well pressure buildup and Ganesh and 
Mishra [18] for CO2 plume migration to develop a new screening model.  To this 
end, we have developed a new correlation for injectivty index J in terms of the 
slope of the CO2 fractional flow cure, dfg/dSg. A second new correlation has been 
developed for total storage efficiency within the footprint of plume Es as a function 
of gravity number Ng and dfg/dSg. Using these two correlations, as well as a 
knowledge of some basic reservoir characteristics (e.g., Table 5-9) and estimates 
of fluid properties from standard correlations, the injection-well pressure buildup 
and CO2 plume extent in the formation can be readily estimated. The new 
correlations reproduce the results of the underlying simulations quite well, and also 
provide good agreement with independent calculations for the two example 
problems.  

The primary limitations of this screening model are essentially those of the 
simulation model which created the original data [12], i.e.: (a) areal homogeneity, 
(2) radial geometry, and (3) single well configuration. Also, the pressure buildup is 
captured only at the injection well, and its radial extent (i.e., pressure plume) is not 
quantified.  There are also several conditions in the original data (i.e., vertical 
heterogeneity, caprock-reservoir system) which are ignored in the present model. 
However, as shown in Figure 5-24 and Figure 5-26, these simplifications do not 
appear to materially affect the accuracy or robustness of the new correlations.  

In conclusion, the primary contribution of this work is a new screening model for 
predicting injection-well pressure buildup and CO2 plume migration of CO2 
geologic sequestration projects.  The model requires only limited information and 
is quite accurate (when compared to detailed simulation results). We believe the 
model can be a potentially useful tool for project developers during the early days 
of project planning (e.g., for 45Q related projects), and also for regulators looking 
for a simple check against detailed numerical models. 
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6.1 Introduction 

Vertical wells are the conventional injection well configuration employed for CO2 
injection in Carbon Capture Utilization and Sequestration (CCUS) projects.  The 
primary objective of this study is to evaluate the performance of horizontal well 
configurations as a potential alternative in suitable systems.  The system of interest 
is a synthetic numerical model representing a typical depleted reservoir in which 
CO2 injection for geologic storage is simulated after primary recovery.  Injectivity-
index analysis approaches are applied to determine the rapid performance 
assessment of injection well configurations in reservoirs of varying permeabilities.   

The report summarizes the model setup and the scenarios considered for the 
numerical analyses.  This is followed by a discussion on the pressure response 
evaluation at potential monitoring well locations of interest and injectivity analyses 
using the simulated data.  

6.2 Model Description 

6.2.1 Geometry 

The numerical model was based on 2-D radial geometry representing a typical 
closed oil reservoir that is ~400 m wide and ~91 m thick with a well at the center.  
This well acted as the producer during the primary production period and was 
converted into an injector during the CO2 injection period.  The medium 
permeability reservoir zone occupies the middle ~40 m of the model domain, 
overlain by 24 m of very low-permeability cap rock and underlain by a 31 m low-
permeability water column.  Figure 6-27 shows the model geometry and cross-
sectional view of the porosity and permeability distributions in the different zones. 
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Figure 6-27.  Cross-sectional view of the synthetic radial model showing the 
porosity (left) and permeability (right) distributions  

in the different zones.  Grids are logarithmically increasing in size  
as we move away from the producing/ injecting well at  

the center of the model. 

6.2.2 Rock and Fluid Properties 

Table 6-11 summarizes the key petrophysical properties of the caprock, reservoir 
and underlying water column zones.  The porosity of the 40 m reservoir zone was 
7%. The porosities of the overlying caprock and underlying water column were 
0.1% and 6% respectively, while their permeabilities were defined to be 1E-4 mD 
and 2 mD, respectively. Three reservoir permeability scenarios were evaluated at 
8, 16 and 23 mD respectively. 

Table 6-11.  Petrophysical properties of the different zones in the modeled 
system of interest. 

Petrophysical 
Property 

Overlying Caprock 
zone 

Middle Reservoir 
zone 

Underlying water 
column zone 

Thickness, m 24 40 31 

Porosity, % 0.1 7 6 

Permeability, mD 1E-4 8; 16; 23 2 

 

  

Kx= Ky = 
0.1Kz 

Caprock 

Reservoir 

Water column 

Caprock 

Reservoir 

Water column 
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The various hydrocarbon components were grouped into six pseudo-components: 
F1, F3, F4, F5, F6, and F7, along with one pseudo-component F2 for pure CO2.  
Fluid property characterization was performed using these pseudo-components in 
CMG Winprop® to match the laboratory PVT data of a sample field chosen from 
Battelle’s projects [1].  Table 6-12 lists the composition and molecular weights of 
the pseudocomponents in the in-situ hydrocarbon fluid phase modeled. 

Table 6-12.  Molecular weights of the pseudocomponents in the fluid modeled. 

Component Mol. Weight Initial Mole Fraction 

F1 16.116 0.409 

F2 (CO2) 44.010 0.001 

F3 44.207 0.202 

F4 95.459 0.174 

F5 179.68 0.147 

F6 297.181 0.028 

F7 530.093 0.039 

 

6.2.3 Simulation Scenarios and Metrics 

The model was initialized at a pressure of ~20,000 kPa (~2900 psi) at a reference 
depth of ~1341 m (~4400 ft) with no initial gas cap present.  Primary recovery 
period of 10 years was simulated during which 0.25 million standard cubic metres 
(1.6 MMSTB) or approximately 50% of the original oil in place was produced.  
Thereafter, CO2 was injected at a constant rate of 500 metric tons per day using a 
gradual ramp-up schedule, i.e., (1) one month injection and two week shut-in, (2) 
two month injection and three week shut in, (3) three month injection and four week 
shut in, and (4)-(5) two additional periods of six month injection and four week shut 
in.   
 
For each of the reservoir permeability scenarios, the performance of different 
injection well configurations were evaluated. The reference injection well 
configuration was a vertical well perforated through the reservoir zone with 
horizontal well configurations of different lateral lengths (reported in terms of half-
lengths) tested for injectivity performance comparison.  Table 6-13 shows the 
injection well configurations considered for each of the three reservoir permeability 
scenarios that results in 12 modeled scenarios of interest: 
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Table 6-13.  Injection well configurations modeled for each of the three reservoir 
permeability scenarios in the synthetic aquifer model 

Injection well configuration Configuration description 

Vertical well default reference Vertical well perforated through 

Horizontal well 1 
240 ft half-length horizontal well through 
middle of reservoir zone 

Horizontal well 2 
400 ft half-length horizontal well through 
middle of reservoir zone 

Horizontal well 3 
670 ft half-length horizontal well through 
middle of reservoir zone 

Figure 6-28 shows the injected CO2 rate, the injection well bottomhole pressure 
and average pressure responses in the different reservoir permeability models with 
the reference vertical injection well configuration. The average reservoir pressure 
at the end of depletion and prior to start of the CO2 injection phase is 5447 kPa 
(790 psi) which is seen to increase because of CO2 injection into the closed 
system.  These primary variables are used to evaluate the CO2 injectivity index for 
the horizontal well performance assessment as explained in the subsequent 
section.  

 

Figure 6-28. Injected CO2 rate (red), the injection well bottomhole pressure 
(dashed curves) and average pressure responses (solid curves) in the different 

reservoir permeability models with the reference vertical injection well 
configuration 

6.3 Results Analyses 

6.3.1 Injectivity Analysis 

Injectivity index is a simple and commonly used concept in petroleum reservoir 
engineering to evaluate the capability of a well to inject fluids into a porous and 
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permeable formation [2]. It is defined as the ratio of the injection rate divided by 
the pressure difference between formation pressure and bottom-hole pressure: 

 

𝐽 =  
𝑞

(𝑃𝑓−𝑃𝐵𝐻)
                 (Eqn. 1) 

where J is injectivity index, q is injection rate, Pf is reference average formation 
pressure and PBH is bottom-hole pressure.  For the pseudo-steady-state period 
during CO2 injection following the initial transient period, the injectivity index can 
be calculated using the equation 2 as Pf is unknown.   

 

              (Eqn. 2) 

 

where Q is the cumulative CO2 injected, Vp is the pore volume and ct is the total 
fluid compressibility.  

This suggests that when injection well pressure build-up normalized by the 
injection rate is plotted against the ratio of cumulative injection to injection rate (i.e., 
material balance time), it should yield a straight line with slope inversely 
proportional to the pore volume times compressibility, and intercept equal to the 
reciprocal of the stable injectivity index.  This is also referred to as a flowing 
material balance plot [3].  Figure 6-29 shows example calculations of the injectivity 
index from the flowing material balance plot for the injection period 3 in the 240 ft 
and 400 ft half-length horizontal well cases, where the injectivity index is calculated 
from the intercepts as 387 MT/yr/psi and 548 MT/yr/psi respectively. 

 

Figure 6-29. Calculation of injectivity index, J using flowing material balance plot. 

  

𝑃𝑖 − 𝑃𝑤𝑓
𝑞𝑆𝐶

=  
𝑃𝑖 − 𝑃̅

𝑞𝑆𝐶
+
𝑃̅ − 𝑃𝑤𝑓
𝑞𝑆𝐶

= (
𝑄

𝑞𝑆𝐶
) (

1

𝑉𝑝𝑐𝑡
) +

1

𝐽
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Figure 6-30 presents the calculated average injectivity indices for the 12 modeled 
scenarios of interest. 

 

Figure 6-30. Calculated average injectivity index ratio, J for the modeled 
scenarios of interest. 

The injectivity index for the reference vertical well configuration is the intercept 
value with the improved performance from horizontal wells demonstrated by the 
better injectivity values in the Figure 6-30.  The injectivity index for the horizontal 
wells is observed to be directly proportional to the half-length of the lateral.  Figure 
6-31 normalizes the injectivity indices by representing a ratio of the horizontal well 
injectivity with respect to the reference vertical well at the corresponding reservoir 
permeability. 
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Figure 6-31. Calculated average injectivity index ratio, Jratio for the modeled 
scenarios of interest. 

The injectivity index ratio for a particular horizontal well is a function of the half-
length of the lateral being considered and is given by a simple empirical correlation 
as: 

 

𝐽𝑟𝑎𝑡𝑖𝑜 ,

𝑀𝑇

𝑦𝑟

𝑝𝑠𝑖
= 

𝐽ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙

𝐽𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙
= 1 +  0.005. (𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑒𝑙𝑙 ℎ𝑎𝑙𝑓𝑙𝑒𝑛𝑔𝑡ℎ, 𝑓𝑡)            

(Eqn, 3) 

 

The variation in data (for the 23 mD reservoir permeability scenarios) around the 
correlation in Figure 6-31 reflects the uncertainty in the injectivity index due to the 
averaging process that was implemented.  However, this simple correlation 
provides an extremely useful first pass estimate of horizontal well performance in 
a given reservoir that can be used for an evaluation of suitable well configurations 
preceding detailed numerical and design implementation in a geologic CO2 
sequestration project. 
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6.3.2 Pressure Response at Potential Monitoring Well Locations 

While the pressure buildup per unit CO2 injected is lower for horizontal wells as reflected 
by the higher injectivity indices, pressure response at other locations in the system is also 
important to monitor the impact of injecting in a horizontal configuration in comparison to 
conventional vertical wells.  The pressure response observed at two potential monitoring 
well locations of interest is shown in Figure 32.  The two monitoring away from the end of 
the lateral. 

 

Figure 32-6. Bottomhole pressure responses at injection well and two  
potential monitoring well locations of interest just outside the end of and 400 ft 
from the lateral injection well. The pressure responses are compared between 

the corresponding reference vertical injection well configuration (blue curves) for 
the three reservoir permeability scenarios.  

It is apparent from Figure 32 that the pressure response in horizontal well is 
equivalent to vertical wells at any location away from the injector.  The deviation 
seen for the 8 mD reservoir permeability (left column of panels) between the 
horizontal and vertical wells during the last 2 injection periods can be attributed to 
boundary effects. 

6.4 Summary 

This report utilized a 2-D radial model to generate synthetic pressure responses 
following CO2 injection into a depleted oil reservoir to evaluate the performance of 
horizontal well configurations for CCUS projects. The study successfully 
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demonstrates the improved performance obtained by employing horizontal well 
configurations. A simple empirical correlation is obtained to estimate horizontal 
well performance in a given reservoir as a function of the half-length of the lateral. 
It is noteworthy that horizontal wells result in higher injectivities while resulting in 
equivalent pressure response to conventional vertical wells at any location away 
from the injector. 
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7.1 Introduction 

Geologic CO2 sequestration and CO2 enhanced oil recovery (EOR) have received 
significant attention from the scientific community as a response to climate change 
from greenhouse gases.  Safe and efficient management of a CO2 injection site 
requires spatio-temporal tracking of the CO2 plume in the reservoir during geologic 
sequestration.  To that end, as part of this research project, the Texas A&M team 
is developing robust modeling and monitoring technologies for imaging and 
visualization of the CO2 plume using routine pressure/temperature measurements.  
Their approach is based on streamline-based technology which has proven to be 
effective and efficient for reconciling geologic models to various types of reservoir 
dynamic response.  Specifically, they first extend the streamline-based data 
integration approach to incorporate distributed temperature sensor (DTS) data 
using the concept of thermal tracer travel time.  Then, a hierarchical workflow 
composed of evolutionary and streamline methods is employed to jointly history 
match the DTS and pressure data.  Finally, CO2 saturation and streamline maps 
are used to visualize the CO2 plume movement during the sequestration process. 

This chapter describes the data that was assembled by Battelle to support the 
above-mentioned objectives.  Various types of data that are of interest are listed 
below: 

• Information about the geologic setting 

• Oil production and CO2 injection history 

• Bottomhole pressure and temperature data 

• Distributed temperature sensing (DTS) data 

• Numerical model developed by Battelle to integrate geologic, production 
and injection data 

• Additional data types used for model validation (blind testing) 

7.2 Project Overview and Data Sources 

The Midwest Regional Carbon Sequestration Partnership (MRCSP) was 
established in 2003 to assess the technical potential, economic viability and public 
acceptability of carbon capture, utilization and storage [1].  This CO2 injection 
project is part of the MRCSP and more than 1 million metric tons of CO2 has been 
injected into Niagaran pinnacle reefs.  The data of interest for this study are taken 
from the Chester 16 reef which is part of the Northern Niagaran Pinnacle Reef 
Trend.  Chester 16 field was drilled and completed in the early 1970s and produced 
through the 1980s and 1990s.  The reef has undergone primary recovery and 
some waterflooding.  Currently, one injection well is used for reservoir fill-up with 
CO2 prior to EOR operations, with one monitoring well which will be converted to 
a production well during the oil recovery period.  

Figure 7-33 shows a map-view and three-dimensional view of the Chester 16 reef 
with one CO2 injection well (Chester #6-16) and one monitoring well (Chester#8-
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16).  The Chester 16 reef includes two distinct reef cores close to one another.  
The reservoir in this reef is composed of two formations: A1 Carbonate and the 
Brown Niagaran formations.  The CO2 injection well #6-16 penetrates the reef 
complex at a high flank position in the southern reef core area and the monitoring 
well #8-16 penetrates the reef complex at a crestal position in the northern reef 
core area.  The primary reservoir is the overlying A1 Carbonate (highly dolomitized 
high porosity zone along the crest of the reef).  The A1 Carbonate is tight along 
the flanks of the reef, as is often the case and bounds the reservoir on all sides.  
The Brown Niagaran is a lower porosity reservoir with occasional fractures and/or 
dolomitic zones.  A number of facies have been identified for the reservoir zones, 
as shown in the figure below.  Also shown therein are the locations of the 
perforations and the multi-zone pressure and temperature sensors in the 
monitoring well   

  

The left panel shows a contour map depth-surface of the Chester 16. The right panel shows a 
cross-section with reservoir facies, perforations and monitoring sensor locations in the two wells. 

Figure 7-33. Map of the Chester 16 reef field showing well locations and 
structure of the Brown Niagaran. 

The reservoir in Chester 16 reef was discovered and put into primary depletion in 
the 1960s for twenty years, after which waterflood was used for secondary 
production for another ten years and then the field was abandoned till 2017.  CO2 
EOR was adopted in 2017 in this field for tertiary production.  The field 
development history is summarized in Figure 7-34. 
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Figure 7-34. Chester 16 field development history. 

As mentioned above, the CO2 injection started in 2017 and as of the end of 2018, 
~101,000 MT of CO2 has been injected in the Chester 16 reef.  Table 7-14 shows 
the CO2 injection periods and the intended injection formation(s).  

Table 7-14.  CO2 injection history of Chester 16 reef [2] 

 

In terms of observed data, this study utilizes a combination of pressure and 
temperature measurements, including bottom-hole pressure of injection well, 
distributed pressure measurements from four behind-casing sensors in monitoring 
well and DTS data of both injection well and monitoring well (Figure 7-35). 
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(a) Bottom-hole pressure of injection well; (b) Distributed pressure measurements from four behind-casing sensors in monitoring well;  
(c) DTS data at injection well; (d) DTS data at monitoring well 

Figure 7-35. Observed dataset [2] 
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Both the wells in Chester-16 reef are also instrumented with a fibre-optic 
Distributed Temperature Sensing (DTS) system.  The DTS data provides a rich 
source of time varying temperature data before, during and after CO2 injection.  
The data are collected vertically at 1-meter intervals, and temporally every hour.  
A waterfall plot of the temperature response at the injection well is shown below in 
Figure 7-36.  Also shown is the bottom-hole pressure response at the injection 
well, and the injection rate history.   

 

Figure 7-36. Master waterfall plot showing time-varying DTS response,  
along with bottomhole pressure data and CO2 injection rate history at the 

injection well (Chester 6-16).. 

For this project, Core Energy provided Battelle with operational data from the 
Chester 16 reef, comprising primarily of the Chester 6-16 injection well and the 
Chester 8-16 monitoring well.  Both these wells are instrumented with a fiber-optic 
cable behind the production casing.  This allows measurements of DTS 
temperature at every 1-m interval.  The Chester 6-16 well is instrumented with 
memory gauges which can monitor bottomhole pressure and temperature in the 
A1 Carbonate or in the Brown Niagaran formation depending on the formation that 
is targeted for CO2 injection.  Chester 8-16 well has behind-casing gauges 
installed at five depths which provide real time pressure and temperature data in 
the A2 Carbonate, A1 Carbonate and Brown Niagaran formations.  

Mass flow rate measurements are available with a Coriolis flow meter attached to 
the Chester 6-16 injection well. Meanwhile, Chester 8-16 well underwent multiple 
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transformations, starting out as a monitoring well until September 2019 when the 
well was perforated for CO2 injection in the A1 Carbonate formation.  Later in May 
2020, the Chester 8-16 well was perforated near the top of the Brown Niagaran 
formation for production purposes.  As such, depending on the phase in which 
Chester 8-16 well operated, the data available includes bottomhole pressures and 
temperatures, flow rate of injected CO2, or the flow rate of produced gas, oil, and 
brine mixture during production phases. In November 2020, a new production well 
Chester 9-16HD1 was drilled to completion for producing oil from top of the Brown 
Niagaran formation.  Table 7-15 below summarizes various data available from the 
Chester 16 reef. 

Table 7-15. Data Available from Chester 16 Reef 

Well Data Type From Date To Date 

6-16 Injection Well Bottomhole Pressures 
(BHP) and 
Temperatures (BHT) 

Jan 2017 Jan 2020 

6-16 Injection Well DTS data to 6400’ MD Feb 2017 Nov 2020 

6-16 Injection Well Injection Flow Rates 
(daily) 

Jan 2017 Oct 2021 

8-16 Well Behind-Casing 
Sensors Pressures 
and Temperatures at 
5 depths (includes 
monitoring, injection, 
and production 
phases of the well) 

Feb 2017 Oct 2021 

8-16 Well DTS data (includes 
injection and 
monitoring phases to 
6400’ MD, and 
production phase 
6150’ MD) 

Feb 2017 
 

Jul 2020 

8-16 Injection Phase Injection Flow Rates 
(daily) 

Sep 2019 Oct 2021 

8-16 Production 
Phase 

Produced Gas Flow 
Rates (daily) 

Apr 2020 Nov 2020 

9-16 HD1 Production Produced Gas Flow 
Rates (daily) 

Nov 2020 Oct 2021 

7.3 Model Description 

In this section, we will demonstrate the base case simulation model, including the 
model description, initialization, and simulation of production phases before the 
CO2 EOR process.  Additional details for the model can be found in Mishra [3]. 

A detailed geologic model was built for Chester-16 as part of the MRCSP modeling 
efforts.  This static earth model (SEM) has been modified for use in this project.  
Figure 7-37 shows some of the model features as represented in the PETREL 
earth modeling software.   
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Figure 7-37.  Chester-16 SEM features in the PETREL model. 

Figure 7-38 (a)-(b) shows the permeability and porosity distribution of the base 
case model, with permeability ranging from 1e-10 md to 129 md and porosity 
ranging from 0 to 0.275.  The 79-layer geologic model is discretized into 0.1 million 
grid cells, of which about 60,000 cells are active.  Figure 7-38 (c) shows a side 
view of the model with two red arrows pointing to the two target formations of CO2 
injection: A1 Carbonate and Brown Niagaran, which are also the main formations 
of the reservoir. 
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(a) (b) 

 

(c) 

Figure 7-38. Base case model: (a) permeability distribution; (b) porosity 
distribution; (c) side-view denoting two target formation of CO2 injection. 

The fluid saturation of the base case model is initialized using seismic inversion 
results [3] and the pressure distribution follows the hydrostatic equilibrium.  As 
shown in Figure 7-39, the average initial water saturation in the reservoir is about 
0.2 and there is no gas cap in the reservoir. 
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(a) (b) 

Figure 7-39. Base case model initialization: (a) Initial water saturation; (b) Initial 
pressure distribution. 

In order to obtain the reservoir condition at the beginning of the CO2 EOR process, 
simulation of previous production phases including primary depletion, water 
flooding and abandonment, was conducted. During this process, observed data 
such as cumulative oil production, cumulative gas production and average field 
pressure were matched, as shown in Figure 7-40. 
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(a) (b) 

 

(c) 

Figure 7-40. History matching results for previous phases simulation: (a) 
Cumulative oil production; (b) Cumulative gas production; (c) Average field 

pressure 

The simulation model verified by the observed data before the CO2 EOR process 
is then used for the history matching of DTS and pressure data collected in the 
CO2 EOR stage starting on January 1st 2017.  The reservoir condition right before 
the CO2 injection is shown in Figure 7-41.  After 30 years of production and more 
than twenty years of abandonment, the average water saturation in the reservoir 
was reduced by around 0.05, and a large amount of gas exists at the top of A1 
carbonate and Brown Niagaran formation.  Since the reservoir is a closed system, 
the reservoir pressure was significantly depleted prior to the CO2 injection. 
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(a) (b) 

 

(c) 

Figure 7-41. (a) Water saturation; (b) Gas saturation;  
(c) Pressure distribution on 1/1/2017. 
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8.1 Introduction  

The goal of this project is to characterize reservoir connectivity and optimize 
performance in injection-production systems using data-driven models.  Several 
statistical, machine learning, and deep learning models were investigated for 
capturing the impact of time-dependent injection rates on the corresponding 
production rates.  This report focuses on the comparison and summarization of the 
performance of those data-driven models.  Two types of analyses were performed: 

1. Time series forecasting – use of a model to predict future production rates 
based on previously observed production and injection rates,  

2. Regression forecasting – use of a model to predict future production rates 
based on injection rates alone. 

The key difference between the two analyses is whether the historical production 
rates are used or not as predictors.  Section 8.2 shows the exploratory data 
analysis results, and Section 8.3 and Section 8.4 introduce data-driven models for 
time series forecasting and regression forecasting, respectively.  The summary 
tables of results from different models can be found in Section 8.5, and Section 8.6 
provides a discussion of the results. 

8.2 Exploratory Data Analysis 

8.2.1 Data Description 

In this synthetic dataset, water was injected into 5 injection wells every other day, 
and the corresponding oil and water from 4 production wells were measured.  For 
each production or injection well, there are 365 time steps (data points) after 
removing the first one, where all values are 0.  Instead of modeling production oil 
and water rates, this report uses the total production rate (oil plus water) and the 
water ratio rate (water divided by total production), which provide the same 
information.  Figure 8-42 shows the distributions of injection, total production, and 
water ratio rates, where T1~T4 represent total production rates at production wells 
1 to 4, WR1~WR4 are water ratio rates at production wells 1 to 4, and I1~I5 are 
injection rates at injection wells 1 to 5.  

From Figure 8-42, we observe that daily injection rates seem to have a constant 
mean with noise.  Furthermore, production wells seem to have two natural 
groupings: wells 1 and 4 are in one group, in which the total production rates are 
higher and fluctuating due to the changes of the injection water, while wells 2 and 
3 are in another group, where the total production rates are much lower but steady.  
The steady total production rates from production wells 2 and 3 have raised some 
concerns, because production from these two wells seem to be totally independent 
of the volume of injected water.  We also saw an increasing trend in production 
wells that may indicate there were some cumulative effects because the amount 
of the water injected overtime was relatively constant.  
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In this report, the first 275 data points were treated as the training data and the 
remaining data points were treated as testing data.  Figure 8-43 shows the 
boxplots for the rates of training and testing sets on each well (after converting oil 
and water rates to total production rate and water ratio rate).  There are some 
potential outliers in the training data, all of which came from the first couple of 
dates.  The analyses in the remaining sections did not remove those potential 
outliers, because more information is needed to determine whether they are true 
outliers.  Another potential issue is that at most wells the testing data have higher 
rates than training data.  Several data-driven models require scaling data to a 0-1 
range because this helps in numerical calculation.  But when there is a significant 
difference between training and testing data, these data will not be scaled 
separately. 

 

Figure 8-42. Comparison of injection, total production, and water ratio rates. 

 



Chapter 8. 

8-8 

 

Figure 8-43.  Boxplots for training and testing sets on each well 

8.2.2 Cross-Correlation Analysis 

Based on fluid-flow mechanics, there would be a time lag between injection and 
production as effects of the injection ripple through the reservoir to impact other 
wells.  In order to visually evaluate the correlations between injection rate at each 
of the five injection wells and oil production at each of the four production wells, 
we created the cross-correlation plots shown in Figure 8-44.  To produce these 
plots, we calculated the correlation between oil production on day t and injection 
rate on day (t – Lag), where Lag goes from 0 to 100.  If there existed a strong 
correlation between injection and production rates, these plots would peak 
at/toward the beginning of the time series, and decay with increased lag time.  
Unfortunately, we see no such patterns in the cross-correlation plots, as most of 
the cross-correlations are relatively constant over lag time.  In addition, we note 
that this relatively constant correlation is small, reaching a maximum of about 0.35 
at best.  We conclude that there is no significant correlation between injection rate 
and oil production at any time lag of any of the wells, and that most of the change 
in oil production over time cannot be attributed to daily changes in injection rate.  
There may still exist some relationship between oil production and injection rate, 
but the relation would be more complicated than a simple daily effect. 
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Figure 8-44.   Cross-correlation between current oil production (one plot for 
each of the four wells) and water injection on previous days (injection wells are 

indicated by the color of the lines). 

We see similar results in the analogous cross-correlation plots of injection rate at 
each of the five injection wells, and water ratio at each of the four production wells.  
Thus we also conclude that most of the change in water ratio over time cannot be 
attributed to daily changes in injection. 

8.3 Time Series Forecasting 

In this section we focus on time series forecasting (with Section 8.4 focusing on 
regression forecasting).  We begin with brief introduction of models that were 
investigated.  Next, we cover how to identify the optimal modeling approach in 
terms of prediction accuracy and model explainability, and then highlight potential 
issues of those models. 

Models in this section used both production and injection rates at previous time 
points as predictors for future production rates.  The window size in models 
determines how many production and injection rates of previous time points were 
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used in prediction. For example, if the window size is 1, then today’s injection rate 
and yesterday’s production rate were used to predict today’s production rate.  
Some models in this section may have slightly different numbers of training/testing 
data because of the different sizes of window applied (in which multiple recent time 
points were used to make a prediction for the next time point).  This does not have 
any impact on the measurement of prediction accuracy, because root of mean 
square error (RMSE) (i.e., the average error across all points) is used in the 
evaluation of the performance across all models. 

For time series forecasting, we investigated the following four models:  

1)  long short-term memory networks (LSTM) [1],  

2)  Gaussian process (GP) [2],  

3)  artificial neural networks (ANN), and  

4)  linear regression models.  

We also compared fitting an independent model for each output or a model with 
multiple outputs and applying different window sizes.  Note that since these are 
time series data, technically the future production rate should be predicted 
sequentially that only one time point will be predicted, and the predicted value will 
be used to as an input to predict the next time point.  However, since it is 
challenging and time-consuming to add this feature to all the models that were 
compared, only the results using the observed value as predictor will be shown in 
this report.  

8.3.1 Long Short-Term Memory Networks 

LSTMs are a special kind of recurrent neural network (RNN) that work 
tremendously well on a large variety of problems and are now widely used.  One 
popular application of LSTMs is in time series forecasting because its RNN 
structure with a short-term memory has the natural capability to make predictions 
based on historical data with lags of unknown duration between important events 
in a time series.  In a LSTM network, three gates are present as shown in Figure 
8-4 [3]: 

 

1. Input gate – discover which value from 
input should be used to modify the 
memory. 

2. Forget gate – discover what details to be 
discarded from the block. 

3. Output gate – the input and the memory 
of the block is used to decide the output.  

Figure 8-45.  LSTM 
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Several LSTM models with different structures were investigated.  For example, 
we started from the “independent models” for each single output (e.g., total 
production rate at well 1) at a time without considering other outputs’ impact (e.g., 
total production at well 2, 3, and 4).  Then, we expanded the LSTM model to handle 
“multiple outputs”, i.e., all 4 total production rates were used to train a LSTM model.  
We also tested the impact of different window sizes. 

 

 

Figure 8-46.  Predictions from the LSTM model with window size 3 and multiple 
outputs for total production. 

The results from a LSTM model with multiple outputs and window size 3 are shown 
in Figure 8-46, because in general it produces the minimal RMSE scores across 
most of outputs.  Results from other trained LSTM models can be found at  
Table 8-19 in Section 8.5. Generally, LSTM models can capture the fluctuating 
trend well if previous production rates were used in prediction, except for the first 
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few time points in the training data (as mentioned in Section 8.2, those points would 
be the potential outliers) and the smoothness of the predicted values in time for 
wells 2 and 3.  The large variation in predictions may imply that the LSTM models 
are too complex for this set of data.  However, even though the prediction 
performance of LSTM models is reasonable, it is relatively difficult to characterize 
the connectivity between injection and production wells based on LSTM models 
because of their complicated structure.  

8.3.2 Gaussian Process Models 

GP models have a wide range of applications but have characteristics that make 
them especially useful for computer experiments.  For example, GP models have 
the flexibility to mimic complex simulators because of their semi-parametric 
properties; that is, a GP model allows the user to specify the overall mean structure 
to fit the global trend, while at the same time, the model is capable of capturing 
local variation using a covariance (correlation) function. In addition, the empirical 
best linear unbiased predictors (BLUPs) of GP models interpolate the data at 
observed input settings, which is an important property for modeling deterministic 
computer simulators.  GP models are also popular in time and spatial data 
analyses due to the fact that GP models have an assumption that two 
(geographically) close points will have similar output behavior.  For more technical 
details of GP models, refer to [4]. 

Even though some approaches for training GP models with multiple outputs have 
been developed (see [5] as an example), most approaches are still immature, and 
no well-written package in software has been developed for the implementation of 
those models.  Thus, only GP models with a single output were considered in the 
report, and the MATLAB MPErK [6] package was used to predict production rates 
and calculate sensitivity indices.  

Since window size = 3 provided the optimal results for LSTMs as shown in 
Subsection 8.3.1, the GP models were also trained with window size = 3 to predict 
future production rates, facilitating easier comparison between the models . Figure 
8-47 shows that GP models also provide a decent result in terms of prediction 
accuracy for production wells 1 and 2.  For production wells 2 and 3, GP models 
seem to have the capability to capture the overall smooth trend in the data but for 
production well 3 for a range of data the predictions from GP model diverged 
substantially from the observed values.  For production well 4, the GP model 
captured the fluctuations in the response, but did not predict as well as the LSTM 
models. 

Even though the prediction accuracy from GP models may not be as good as 
LSTM models, one advantage of GP models is the closed-form expression that 
allows the calculation of several diagnostic measures to help understand the 
quality of the model fit.  For example, sensitivity analysis for GP model is an 
approach to determine how input variables affect the outputs. The most popular 
sensitivity analysis is based on an ANOVA-type decomposition [7].  Sensitivity 



Chapter 8. 

8-13 

indices are values between 0 and 1, in which an input variable with a large value 
indicates that it has a strong impact on the output.  The differences between main 
and total effects in sensitivity indices can be interpreted as the sum of interaction 
effects for that input variable.  Another well-known sensitivity analysis method is 
based on the partial derivatives of the outputs of the model with respect to each 
input, see [8] for example. 

For demonstration purposes, consider the GP models with a window size = 1, 
which have fewer variables than the window size = 3 models described above. The 
sensitivity indices for these models are shown in Table 8-16. 

 

 

Figure 8-47.   Predictions from the GP models with window size 3  
for total production rates. 
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Sensitivity analyses indicates that the total production rate on all wells heavily 
depend on the previous total production rate, P(t-1).  For T1 and T4, injection rates 
at wells 1 and 3 also play an important role, respectively.  However, total production 
at wells 2 and 3 seems to only depend on previous total production rates but 
statistically unrelated to the injection rates, as observed in Section 8.2. 

In addition, main effect plots can provide a general idea about how input variables 
impact the output when the effects from all other variables were integrated out.  
For example, Figure 8-48 shows the main effect plot for the total production rate 
at well 1, in which variables x1~x6 are corresponding to P(t-1), I1, …, I6 in Table 
8-16 and we can see the previous production and injection well 1 have a positively 
correlated linear impact on the total production at well 1. Other GP model results 
can be found in Section 8.5. 

Table 8-16.   Sensitivity indices for GP model with window size = 1. P(t-1) denotes 
the production rate at previous time point, I1~I5 represent injection 
wells 1 to 5, T1~T4 represent total production rate at wells 1 to 4. 

Prod. Effect P(t-1) I1 I2 I3 I4 I5 

T1 
Main 0.50 0.28 0.05 <0.01 <0.01 <0.01 

Total 0.64 0.35 0.21 <0.01 0.01 0.01 

T2 
Main 0.99 <0.01 <0.01 <0.01 <0.01 <0.01 

Total 0.99 <0.01 <0.01 <0.01 <0.01 <0.01 

T3 
Main 0.99 <0.01 <0.01 <0.01 <0.01 <0.01 

Total 0.99 <0.01 <0.01 <0.01 <0.01 <0.01 

T4 
Main 0.73 <0.01 <0.01 0.21 <0.01 <0.01 

Total 0.78 0.01 <0.01 0.26 0.01 <0.01 

 

 

Figure 8-48.   Main Effect Plot of a GP model. 



Chapter 8. 

8-15 

8.3.2.1 Main Effect Plot of a GP model 

Another model we investigated for this study is the artificial neural network (ANN), 
which is one of the main tools used in machine learning.  As the “neural” part of 
their name suggests, they are brain-inspired systems which are intended to 
replicate the way that humans learn. Neural networks consist of input and output 
layers, as well as a hidden layer consisting of units that transform the input into 
something that the output layer can use. Figure 8-49 provides an example of ANN 
with 5 inputs, 4 outputs, and one hidden layer with 15 neurons.  ANNs have been 
successfully used for variety of tasks and fields including waterflooded reservoirs; 
see [9] for an example where the authors built an ANN model to estimate the 
interwell connectivity between injection and production wells, and [10] for a case 
study and [11] for analyzing cyber-physical petroleum systems. 

 

Figure 8-49.   An example of an ANN structure with 5 inputs, 4 outputs, 
and a hidden layer with 15 neurons. 

A multivariate outputs (4 outputs) ANN model with a hidden layer of 15 neurons 
was trained to predict production rates.  As with the other approaches, the first 275 
data points were used to train the model to predict the remaining data points.  
Moreover, a window size of 3 was used for consistency with LSTM and GP model 
results.  Predictions from the ANN model are shown in Figure 8-50.  Generally 
speaking, the performance of ANN and LSTM models are equally matched, with 
both of them providing a decent prediction result. 

In addition to prediction accuracy, understanding the importance of variables from 
the trained models is one of the main goals in this project.  To aid in the 
interpretation of neural networds, the R package NeuralNetTools [14] was used to 
visually interpret the trained ANN models. In Subsection 8.4.1 and Subsection 
8.4.2, a visualization method and three variables importance algorithm are 
introduced for charactering reservoir connectivity.  In Subsection 8.3.2 (sensitivity 
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analysis based on GP models), a simplified model using only one previous time 
point production rate as a predictor was considered, following the same training 
process for the ANNs.  Four independent ANN models were trained, all of which 
have 6 inputs (5 injection rates plus previous 1 time point production rate) and one 
hidden layer with 15 neurons and one output.  
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Figure 8-50.   Predictions from the ANN model with window size 3 and 
multiple outputs for total production. 

8.3.3 Neural Interpretation Diagram 

A neural interpretation diagram (NID) is a modification of the standard conceptual 
illustration of the ANNs that changes the thickness and color of the weight 
connections based on magnitude and sign, respectively.  Positive between layers 
are shown as black lines, while negative weights are shown as gray lines.  Line 
thickness is proportional to the absolute magnitude of each weight.  Figure 8-51 
shows the neural network architecture and the variation in connections between 
the layers for the total production at well 1, where the largest positive weight is the 
connection between injection well 1 and the hidden node 11.  However, it is difficult 
to interpret given the amount of weighted connections in this network. 

 

Figure 8-51.   The NID plot for total production at well 1. 
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8.3.3.1 Variables Importance Analysis  

As mentioned in Subsection 8.3.2.1, the connectivity between all input-output pairs 
of neural networks can be used to quantify the importance of variables.  Three 
algorithms for evaluating variable importance are applied:  Garson’s algorithm for 
relative importance [14], Olden’s connection weights algorithm [12], and 
Connectivity map approach [9]. 

8.3.3.1.1 Garson’s Algorithm 

Garson’s algorithm calculates the summed products of all absolute weights 
specific to each input variable, and then those values are scaled relative to all other 
inputs.  A value for each input variable indicates relative importance as the 
absolute magnitude from zero to one.  However, this method is limited in that the 
direction of the response cannot be determined and only neural networks with one 
hidden layer and one output node can be evaluated.  Thus, only single output ANN 
models were considered in this subsection for a fair comparison.  Four 
independent ANN models were trained, all of which have 6 inputs (5 injection rates 
and total production rate at previous one time point) and one hidden layer with 15 
neurons and one output.  The relative importance of variables from the trained four 
independent ANN models using Garson’s algorithm is shown in Figure 8-52. 

8.3.3.1.2 Olden’s Connection Weights Algorithm 

The Olden’s connection weights algorithm is a more flexible approach which 
calculates importance as the summed product of the raw input-hidden and hidden-
output connection weights between each input and output node.  Its advantage is 
the relative contributions of each connection weight are maintained in both 
magnitude and sign.  There is a strong assumption behind this method – negative 
contributions are low connectivity in the reservoir, which may not be true for 
different applications.  The importance of variables from the trained four 
independent ANN models using Olden’s algorithm is shown in Figure 8-53.  Note 
that the 4 faceted plots in Figure 8-53 have different scales on the y-axis (some 
inputs will dominate the importance measure, making it difficult to read if the same 
scale across all four outputs was used). 

8.3.3.1.3 Connectivity Map 

The first step in the construction of a connectivity map is to calculate the 
contribution of each input using Olden’s connection weights algorithm.  Then, a 
connectivity map can be constructed by normalizing those contributions between 
0 and 1 (0: lowest connectivity, 1: highest connectivity).  The constructed 
connectivity map is shown in Figure 8-54.  Note that both Olden’s connectivity 
weights and connectivity map can be applied to ANN models with multiple outputs, 
while Garson’s algorithm can be used in ANN models with single output.  To do a 
fair comparison, four independent ANN models for each production well are trained 
for demonstration the results of different variables importance algorithms.  Note 
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that the connectivity map construction is using a function that we wrote in R based 
on the formula and the example in [9, 12].  The R package NeuralNetTools does 
not provide this function. 

 

Figure 8-52.   Variable importance of the 4 independent ANNs with 
previous production rate as a predictor using Garson's algorithm. 

 

Figure 8-53.  Variable importance of the 4 independent ANNs with 
previous production rate as a predictor using Olden's connection weights 

algorithm. 
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Figure 8-54.   Variable importance of the 4 independent ANNs with 
previous production rate as a predictor using the connectivity map. 

The relative importance of variables from the trained four independent ANN 
models using the three algorithms are shown in Figure 8-52 through Figure 8-54, 
respectively, where T1_1,…T4_1 denote the previous total production rate for T1 
to T4.  All three algorithms show that the production rate from the previous time 
step played an important role, even though the calculation from Garson’s algorithm 
did not represent the dominance of previous production rates as other algorithms 
or the results from sensitivity analysis of GP models.  The negative contribution 
from Olden’s connectivity weights algorithm (Figure 8-53) does not intuitively fit 
the physics-based insights for reservoir connectivity.  Thus, we recommended to 
use the connectivity map to measure the contribution of each input variable 
(injection rate) for charactering reservoir connectivity as suggested in [9, 12].  

Though the variable importance analyses (Figure 8-52 through Figure 8-54) 
provide insights about the waterflooding dynamics in the reservoir and help 
understand the overall reservoir connectivity.  However, it would be still a 
challenging task to interpret ANN models due to the fact that 1.) the most 
contributed input from ANN models is not necessary the inputs (injection rates) 
that we can adjust and optimize the production rates because they may not have 
a linear relationship, and 2.) the main contribution is the previous production rate, 
which does not provide much help in characterizing reservoir connectivity for 
understanding how injection rates affect the production rate in order to optimize 
the reservoir system.  Using previous production rates as predictors improves the 
prediction accuracy, but it does not provide much insight into how injection and 
production wells are connected. 
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8.3.4 Linear Regression Models 

In this subsection, a simple model, linear regression, is investigated for time series 
forecasting.  The focus is on regression models with window size = 1 (only the 
production rate from the previous time step is treated as a predictor) because we 
do not expect that regression models can have better prediction accuracy than 
LSTMs or ANNs. Instead, the focus is to see whether linear regression models 
could provide more insight into reservoir connectivity without impacting prediction 
accuracy.  Four independent linear regression models were fit for the total 
production rates at the four wells, all of which have 6 inputs (5 injection rates plus 
previous 1 time point production rate).  Figure 8-55 shows the prediction results 
for the four production wells and the corresponding RMSEs, see  
Table 8-19 in Section 8.5 for more results of regression models.  

The prediction accuracy from the above regression models are surprisingly almost 
as good as ANN and LSTM models.  For example, for production well 1, the RMSE 
of the regression model is 37, while the RMSE of the ANN model with window size 
= 1 is 33, and for production well 4, the RMSEs of the regression model and ANN 
models are 88 and 67, respectively. In fact, for production wells 2 and 3, regression 
models outperform ANN and LSTM models, but this effect would be explained as 
occurring because the injection rates on the 5 injection wells almost have no 
impact on production rates. 

 

Figure 8-55.   Predictions from the regression models with window size = 1 for 
total production rates. 

 

P-values of coefficients of the regression models can be used to determine if the 
coefficient is significantly different from 0.  However, p-values cannot be used to 
measure which variable is the most important one among those significant 
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variables. Instead, Pearson’s correlation coefficient is used, which is a measure of 
linear association between the two variables.  In simple linear regression models, 
the square of Pearson’s correlation, usually denoted as R^2, is the proportion of 
the total variable of output that can be explained by the input variable.  Table 8-17 
shows the square of Pearson correlation coefficients from simple linear regression 
models.  The result in Table 8-17 is consistent as the sensitivity analysis result 
based on GP models (see Table 8-16), both of which show that previous total 
production rate, P(t-1), is the most important variable for all production wells and 
injection rates at wells 1 and 3 are important for production wells 1 and 4, 
respectively. 

Table 8-17.   Square of Pearson correlation coefficients from simple linear 
regression models. 

Production P(t-1) I1 I2 I3 I4 I5 

Well 1 0.87 0.52 0.01 0.03 0.05 0.01 

Well 2 0.99 0.06 <0.01 0.06 <0.01 0.03 

Well 3 0.99 0.03 0.03 <0.01 <0.01 0.07 

Well 4 0.87 <0.01 <0.01 0.50 0.01 <0.01 

In this section, four different predictive models were evaluated in terms of 
prediction accuracy.  All models provide decent prediction results when previous 
production rates were used as predictors.  Unfortunately, one of the main goals in 
characterizing reservoir connectivity is to understand how injection rates affect the 
production rate in order to optimize the reservoir system.  Even though using 
previous production rates as predictors improves the prediction accuracy, it does 
not help much in learning how injection and production wells are connected. 

8.4 Regression Forecasting 

Previous results showed that production rates from earlier time points were useful 
for predicting production in upcoming time points but including them in the model 
makes it difficult to understand the dynamics between injection and production 
wells.  This section considers models that do not use past production data; even 
though it is expected that prediction accuracy will suffer, the hope is that simpler 
models may allow for better interpretation of those well dynamics.  

8.4.1 Artificial Neural Networks 

The previous section shows that ANNs seem to be a good choice for modeling 
reservoir connectivity, which is also consistent with the suggestion provided in [9 
through 11, 13].  The trained ANN in this case has 5 inputs (5 injection rates), 4 
outputs (4 production rates), and with one hidden layer with 15 neurons.  The fitted 
results shown in Figure 8-56 are reasonable for production wells 1 and 4 but quite 
poor for production wells 2 and 3. 

As stated in Subsection 8.3.2.1 understanding the importance of variables from 
the trained models is one of the main goals in this project.  Garson’s algorithm, 
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Olden’s connection weights algorithm, and connectivity maps (see Subsection 
8.3.3.1) for the introduction of variables importance analysis) were used to analyze 
the importance of variables in the trained ANN models. 

 

 

Figure 8-56.   Predictions from an ANN model without using previous 
production rates as predictors. 
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Figure 8-57.   Variable importance of the 4 independent ANNs using 
Garson's. 

 

Figure 8-58.   Variable importance of the 4 independent ANNs using 
Olden's algorithm. 
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Figure 8-59.   Variable importance of the 4 independent ANNs  
using connectivity map. 

The main conclusion from Figure 8-57 through Figure 8-59 is that different 
importance analyses approaches did not provide a consistent result.  One potential 
issue could be that ANN models are not suited for this data set when previous 
production rates are not used as predictors.  One thing we observed is that when 
we re-trained ANN models, the importance analysis results would change 
dramatically.  This may indicate that the trained ANN models had not converged.  
On the other hand, the importance analysis results in Subsection 8.3.2.1 for ANN 
models with previous production rates as predictors provide a similar result, 
especially for connection maps, to other methods such as the sensitivity analysis 
in Subsection 8.3.2 and Pearson’s correlation coefficients in Subsection 8.3.4.  
Among the three importance analysis approaches, the connectivity map is 
recommended, because it provides a more consistent result than the other 
methods, it considers the impact of negative weights, and it is not strongly affected 
by extreme values as is Olden’s connection weights algorithm. 

8.4.2 Gaussian Processing Models 

We also tried fitting GP models without using production rates at previous dates 
as predictors.  The result (Figure 8-60) is slightly poorer than the ANN (Figure 8-
56), especially for production well 1.  Even though the predicted values have a 
relatively large prediction error, the GP model seems to be able to capture some 
effects from the injected water as we can see a similar up and down trend from the 
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observed data and predicted values. However, for production wells 2 and 3, the 
fitted models are not accurate at all. 

 

 

Figure 8-60.   Predictions from a GP model without using total production 
rates as previous dates as predictors. 

8.4.3 Linear Regression with Constraints 

One way to improve the explainability of fitted models is to train a model that 
incorporate rules that govern reservoir physics.  One idea is to assume that for all 
production wells the percentage of the sum of water received from each injection 
well should be equal to 1.  For example, if 1 bbl water was injected into injection 
well 1, then a case that fits this assumption is if 0.7 bbl went to production well 1, 
and 0.1 bbl went to production wells 2~4, respectively.  Table 8-18 presents the 
coefficients of the fitted linear model with this constraint incorporated. Intercepts 
were also added into the model to help align the prediction results for overall mean 
production rates.  The prediction accuracy of this model is illustrated in Figure 8-
61. 
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Table 8-18.   Coefficients of the fitted linear model with constraints. 

Production/Injection Intercept Well 1 Well 2 Well 3 Well 4 Well 5 

Well 1 497.10 0.92 0.44 0.05 0.21 0.41 

Well 2 -891.17 0 0.03 0 0.18 0.09 

Well 3 -815.83 0 0.07 0 0.23 0.12 

Well 4 667.54 0.08 0.47 0.95 0.38 0.38 

From Table 8-18, 92% of water injected into injection well 1 goes to production 
well 1 and 95% of water injected into injection well 3 goes to production well 4.  
Water in injection wells 2 and 5 equally goes to production well 1 and 4, while water 
in injection well 4 goes to all four production wells.  The above findings are 
consistent with what was observed in the sensitivity analysis in Subsection 8.3.2.  
For example, if we removed the previous production rate, P(t-1), in Table 8-16, the 
most impactful input for production well 1 is the injection well 1.  Similarly, the most 
impactful input for production well 4 is the injection from well 3.  

As shown in Figure 8-61, prediction accuracy of the linear regression model with 
constraints is reasonable for production wells 1 and 4. I t is better than the ANN 
and has a similar prediction accuracy to the GP models. However, there are still a 
couple of issues in the prediction.  For example, the fitted linear model has poor 
fitted values in the early time points, although that is expected because they are 
potential outliers (see Section 8.2).  Furthermore, the regression model with 
constraints cannot accurately predict production in wells 2 and 3, which is largely 
expected as both of those wells seem to be independent to the injected water. 

We investigated three types of regression models: regression models without 
constraints, regression models with constraints but without intercepts, and 
regression models with constraints and with intercepts. We found that the intercept 
of the regression plays an important role to capture the overall mean of 
productions. RMSEs from those models can be found in Table 8-20 at Subsection 
8.4. 

  



Chapter 8. 

8-28 

 

 

Figure 8-61.  Predictions from a linear regression model with constraints 
without using total production rates as previous dates as predictors. 

8.5 Results 

Section 8.3 and Section 8.4 provided a brief introduction of several data-driven 
models.  The goal of this section is to compare and summarize the prediction 
performance of all those data-driven models. 

As mentioned in Section 8.3, the first 275 data points were treated as the training 
data and the remaining data points were treated as testing data for a fair 
comparison.  We further used the same setting of those hyper-parameters in 
models trying to reduce the effect of parameters in different models.  For example, 
we set the # of epochs = 1,000, batch size = 1 (for single output model) or batch 
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size = 4 (for multiple outputs model) across all trained ANN models.  Since there 
is some randomness in model training, we trained each model 10 times and took 
the mean values of the RMSE. 

8.5.1 Time Series Forecasting 

Table 8-19 shows the RMSE values from the models introduced in Section 8.3 
with different window size (WS) options.  Note that “-” denotes missing results, 
either because the analysis was not performed or cannot be performed (e.g., GP 
models interpolate data so it always provides perfect predictions on training 
dataset). 

The RMSE shown in Table 8-19 may not be the optimal results for all models, 
because there are several tuning parameters (e.g., number of epochs, batch size, 
loss function, optimizer, etc.) that in theory could be adjusted, but were fixed across 
all models for this study. In general, the multi-output ANN model with window size 
3 seems to be the optimal choice, even though it does not provide the best 
prediction accuracy across all outputs.  Particularly, the model has the best 
performance in predicting total production rates at wells 1 and 4, which may 
indicate that the ANN did capture the effect from previous total production rates 
and injection rates. 

Table 8-19.  RMSEs for testing and training sets of several data-driven time series 
forecasting models. 

RMSE  Testing Set Training Set 

Models WS T1 T2 T3 T4 WR1 WR2 WR3 WR4 T1 T2 T3 T4 WR1 WR2 WR3 WR4 

Uni.LSTM 1 34 2.5 2.6 67 .10 .01 .006 .01 72 5.3 3.4 64 .012 .02 .017 .02 

Uni.LSTM 3 32 5.7 2.8 81 .17 .01 .01 .015 45 3.6 2.6 72 .018 .05 .04 .03 

Mul.LSTM 1 65 1.7 2.5 80 .02 .03 .02 .05 46 3.0 1.9 30 .01 .01 .004 .01 

Mul.LSTM 3 56 3.4 1.9 59 .1 .01 .006 .02 45 3.6 2.6 30 .03 .05 .05 .02 

Mul.ANN 1 33 1.8 2.1 63 .08 .009 .003 .009 83 2.3 1.8 39 .013 .01 .005 .02 

Mul.ANN 3 15.5 2.7 1.2 16 .1 .01 .008 .01 29 3 2 28 .016 .01 .007 .02 

Regression 1 37 0.9 0.9 88 .01 .01 .004 .005 60 2.6 2.2 34 .01 .001 .0004 .01 

GP 1 73 2.1 14 166 - - - - - - - - - - - - 

GP 3 21 25 235 131 - - - - - - - - - - - - 

8.5.2 Regression Forecasting 

Table 8-20 shows the RMSE values of the data-driven models introduced in 
Section 8.4.  Note that to estimate the coefficients of the regression with 
constraints we used an optimization algorithm using the least-squares method.  
However, the optimization algorithm did not work well for water ratios.  For 
example, all of the estimated coefficients were 0.25 which are the initial values in 
the optimization algorithm; this indicates that the optimization algorithm failed to 
produce a reasonable result.  Thus, in Table 8-20 only results for total production 
rates are shown.  
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Table 8-20.   RMSEs for testing and training sets of several data-driven regression 
forecasting models. 

RMSE Testing Set Training Set 

Models T1 T2 T3 T4 T1 T2 T3 T4 

Regression without constraints 82 25 23 219 294 40 62 198 

Regression with constraints without 
intercepts 

210 169 206 144 354 153 151 281 

Regression with constraints 88 102 123 207 310 103 98 220 

GP 211 26 61 246 - - - - 

ANN 89 38 72 211 516 73 44 348 

8.6 Discussion 

This report investigated several data-driven models for charactering reservoir 
connectivity and forecasting waterflood production from the viewpoints of time 
series forecasting and regression forecasting.  While time series forecasting 
provides a much better prediction accuracy, regression forecasting typically has a 
better interpretability in the connectivity between injection and production.  The 
recommended model for time series forecasting is the ANN not only because 
ANNs in general provide the best prediction accuracy but because this ANN has a 
relatively simple structure so it is possible to open its black-box neural networks to 
understand the connectivity between injection and production wells.  For 
regression forecasting, the recommended model is the regression model with 
constraints.  Even though the regression model without constraints has a slightly 
better performance in prediction accuracy, the regression model with constraints 
has a much better interpretability; specifically, its coefficients can be treated as the 
proportion contributed from each injection well to that production well. 

The prediction performance of those trained models in this report seem to be not 
competitive compared to the results shown in other literature sources that used 
data-driven model analyzing the interwell connectivity.  There are two potential 
reasons.  First, the size of data in this experiment is relatively small (e.g., this 
experiment only has 365 observations, while [9] has 3,000 and [11] had around 
4,500 observations, respectively).  Thus, the lack of data would cause a poor 
model fitting especially for those complex deep learning models.  Second, the goal 
of this experiment is to use historical data for building models to predict the future 
data, while most papers focused on the history-matching results.  For example, 
[11] randomly selected 80% of the historical production and injection data as 
training set and the other 20% of the history data were used as testing set, which 
is an interpolation task.  However, this report used the observations at the first 275 
time points as training data to predict the remaining observations, which is a more 
difficult extrapolation task. 
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9.0 ABSTRACT 

Measuring variable importance for computational models is an important task in 
many applications.  It is always desirable to have a strategy that works for any 
model and could uncover the key predictors in the modeling. In this paper, we first 
review several commonly used variable importance strategies that are compatible 
with all machine learning or black box models and provide a comparative 
assessment of these strategies using an example from a subsurface geoscience 
application. Furthermore, we present a framework for making comparisons not 
only within but also between different time points for time-dependent models.  We 
propose the relative importance score (RIS) and uncertainty importance factor 
(UIF), which allow users to intuitively interpret how variable importance changes 
over time. 
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9.1 Introduction 

Developing statistical learning based “proxy” models using results from physics-
based simulators for repetitive tasks such as uncertainty quantification or history 
matching is becoming commonplace in the petroleum geosciences [16].  These 
proxy models are typically developed for modeling univariate summary outputs or 
outputs at selected points in time using a combination of experimental design and 
response surface analyse [2, 6, 10, 18, 27]).  In recent years, the attention has 
turned to the use of sampling-based designs coupled with more flexible data-driven 
modeling techniques such as neural networks, kriging (gaussian process) models, 
etc., to obtain better granularity in the results [1, 13, 12, 19, 21, 22, 23].  In many 
of these studies, the identification of key variables is typically done before building 
the proxy model with the use of screening techniques such as a 2-level Plackett-
Burman design [28].  Thus, the issue of variable importance on the proxy model 
itself is generally not discussed.  Furthermore, with time-dependent responses, it 
is demanding to gain insight into the dynamic characteristics of the system in 
addition to obtaining a computationally efficient and accurate proxy model.  For 
example, the phenomena governing the system may change over time as critical 
conditions are met, and stakeholders might be interested in knowing whether and 
how the roles of different variables in the system change over the course of the 
simulation.  It can be challenging to identify which variables are important at 
different time points and evaluate how those variables drive the model response 
over time.  

Measuring variable importance for computational models is an important task in 
many applications.  With a predictive model, it is also desirable to extract 
information about the relationships uncovered by the model. Researchers are often 
interested in knowing which predictors, if any, are important by assigning some 
type of importance scores to each variable, and this has resulted in variable 
importance techniques being developed independently in many disciplines [14, 
25].  Some variable importance strategies are specific to a model’s 
parameterization or are linked to assumptions made by the models.  However, 
researchers are more frequently encountering diverse sets of models, or 
ensembles of models, and because of this it is desirable to have a strategy that is 
more agnostic.  That is, it will work for any model that can be characterized as a 
“black box” that converts a set of predictor values into one or more responses. 

The objective of this paper is to describe several of the commonly used 
variable/feature importance strategies that are compatible with black box models 
and provide a comparative assessment of those strategies for an example 
subsurface geoscience application.  A motivating factor in this regard is the 
development of ensemble modeling approaches that result in multiple acceptable 
models Schuetter, et al., [24] thus requiring a set of model agnostic variable 
importance tools that can be compared across models.  A second goal is to present 
a framework for making comparisons not only within but also between simulation 
time points for time-dependent models, allowing for a comprehensive 
understanding of how variable importance changes over time.   
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9.2 Methods 

9.2.1 Variable Importance Strategies 

Fundamentally, the idea of “importance” for a variable in a model is easy to 
understand.  In the context of linear or linearized regression models, this is 
generally related to the fractional contribution to variance [17].  However, the 
concept is nebulous enough for black-box models that one can conceive of a 
variety of methods for quantifying it in a such models.  As a result, there have been 
a number of different strategies developed for measuring variable importance, 
each of which is internally consistent with a set of assumptions, but amongst which 
there is a large degree of overlap [14].  There are also strategies that only apply to 
specific models, for example, the Gini-based importance for random forest models 
[4].  This section contains a description of some commonly used variable 
importance methods that are applicable to all machine learning or black box 
models, as well as an overview of the reasoning behind them.  This is followed by 
an illustrative example to help the readers better understand each of the methods. 

9.2.2 R2 Loss 

The first set of strategies considers variable importance from the perspective of 
model prediction performance.  That is, an important variable is one that 
significantly impacts a model’s performance (i.e., explains much of the variability 
in the sampled data).  In classical experiment design, the coefficients, their 
associated standard error, and the significance of each variable in an Analysis of 
Variance (ANOVA) model are often used to rank the predictor variables.  While 
this approach assumes a linear model and is not directly extensible to black box 
models, one could generalize it by defining a measure for the quality of a model fit. 
One such example is the pseudo-R2, given by 

𝑃𝑠𝑒𝑢𝑑𝑜-𝑅2 ≡ 𝑅2 = 1 −
𝑆𝑆𝑚𝑜𝑑𝑒𝑙
𝑆𝑆𝑒𝑟𝑟𝑜𝑟

= 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)
2𝑛

𝑖=1

, (Eqn. 9-1) 

where 𝑦𝑖 and 𝑦𝑖̂ are the true and black box predicted responses for the 𝑖𝑡ℎ 
observation, respectively, and 𝑦̅ is the average response across the dataset.  
Conceptually, this pseudo-R2 score measures how much better the model 
predictions are compared to a prediction of the mean response, with the maximum 
score being 1 and the minimum being, in theory, −∞ although negative scores 
tend to be rare unless the models are quite poor. 

To measure the impact of a predictor on the model, one can intentionally negate 
the relationship between the predictor and the response and see how that affects 
the pseudo-R2.  That is, one can compare the loss in the R2, or “R2 loss” from the 
original model that occurs when the predictor’s impact is negated.  

To do this, there are two straightforward strategies.  The first strategy, denoted as 
Remove, involves removing the predictor from the model, such that the original 
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model uses the full set of predictors and the altered model uses all predictors 
except the one of interest.  This is the same idea used in approaches like backward 
stepwise linear regression, where predictors are removed one at a time from the 
model to see if they explain a significant portion of the natural variation observed 
in the data. 

The second strategy, denoted as Permute, involves permuting the values of the 
predictor across the observations in the dataset.  In this case, the original model 
is the same as before, but the altered model now uses the randomized permuted 
predictor of interest in place of the original one.  The random forest variable 
importance measure uses similar reasoning by permuting predictor values in out-
of-bag samples and looking at changes in the mean squared error or Gini index. 

In both strategies, the R2 loss can be described as 𝑅𝐿𝑜𝑠𝑠
2 = 𝑅𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙

2 − 𝑅𝐴𝑙𝑡𝑒𝑟𝑒𝑑
2 , 

where 𝑅𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙
2  is the R2 obtained from the original black box model and 𝑅𝐴𝑙𝑡𝑒𝑟𝑒𝑑

2  is 

the R2 calculated from a model trained with the predictor of interest either left out 
of the dataset (for the first strategy) or permuted across the observations (for the 
second strategy). 

9.2.3 Partial Dependence (PDP) and Accumulated Local Effects (ALE) 
Plots 

Partial Dependence Plots (denoted as PDP), [11, 9] were introduced with purpose 
of interpreting complex machine learning algorithms.  Interpreting results from a 
linear regression model is straightforward because of the clear mapping between 
coefficients and the variables.  However, interpreting machine learning and black 
box models (e.g., random forests, gradient boosting machines, and recently 
popular neural network models) is more difficult due to their complexity.  PDPs use 
black-box model predictions to show the marginal effect of each variable on the 
predicted outcome, whether its effect is linear, monotonic, or more complex. The 
partial dependence function is estimated by calculating averages in the training 
data per the following expression: 

𝑓𝑋𝑆
̂(𝑥𝑆) =

1

𝑛
∑𝑓

𝑛

𝑖=1

(𝑥𝑆 , 𝑥𝐶
(𝑖)), (Eqn. 9-2) 

where 𝑋𝑆 are the variables (usually one or two) for which the partial dependence 

function should be plotted, 𝑋𝐶 are the other variables in the model 𝑓, 𝑥𝑆 are the 

values of the variables of interest,  𝑥𝐶
(𝑖)

 are the actual values of the rest of the 

variables in the dataset, and 𝑛 is the number of instances in the dataset.  
Essentially, the model is holding the variables of interest fixed at each value they 
take in the dataset and averaging over the empirical distributions of the other 
variables. For large data sets, the grid size might be reduced by taking specific 
quantiles for each variable instead of using all unique values .  We might expect 
that PDPs are “flat” for less important variables since less important variables tend 
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to have little influence on the outcomes, while the variables whose PDPs vary over 
a wider range of the response are more likely to be important.   

Similarly, plots of Accumulated Local Effects (denoted as ALE) [1] describe how 
variables influence the prediction of a machine learning model on average.  If 
variables of a machine learning model are highly correlated, the PDPs are not 
reliable and cannot be trusted.  For example, the computation of a PDP for a 
variable that is highly correlated with other variables might involve predictions of 
unlikely instances.  As suggested by its name, ALE plots try to understand the local 
behavior of the response within small windows of each variable’s support. ALE 
plots are faster and unbiased alternative to partial dependence plots.  ALE plots 
average the changes in the predictions within grid cells evenly spaced over the 
range of the variable of interest.  The value of the ALE can be interpreted as the 
main effect of the variable at a certain value compared to the average prediction 
of the data.  For example, an ALE estimate of -2 at 𝑥 = 3 means that when the 
variable has value 3, then the prediction is 2 less than the average prediction.  

The variable importance score based on PDPs and ALE can be any measure of 
“flatness” of the partial dependence function and ALE plot function.  An effective 
measure to use is the sample standard deviation for continuous variables and the 
range statistic divided by four for categorical variables [11])  The range divided by 
four provides an estimate of the standard deviation for small to moderate sample 
sizes.  

9.2.4 Local Interpretable Model-Agnostic Explanations (LIME) 

The Local Interpretable Model-Agnostic Explanations strategy, denoted as LIME, 
[19] uses surrogate interpretable models to explain individual predictions of 
machine learning or black box models.  Although such models are now ubiquitous, 
it is nearly impossible to understand their inner workings, which raises the question 
of how much faith one should put in these models and their predictions.  Thus, 
interpretable surrogate models are trained to approximate the predictions of 
underlying machine learning or black box models.  Instead of training a global 
surrogate model, LIME aims to train local surrogate models to explain individual 
predictions.  LIME attempts to understand the model by perturbing the values of a 
variable across the dataset and interpreting how the predictions change.  Variable 
weights can then be extracted from a simple local model on the permuted dataset 
to explain local behavior.  The procedures for training local surrogate models are: 

• Select an observation of interest in the dataset.  

• Perturb the dataset and generate the black box predictions for these new 
points. 

• Weight the new samples according to their proximity to the observation 
of interest. 

• Explain the prediction by interpreting the local model. 
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For example, a linear regression or LASSO model could be chosen as an 
interpretable surrogate model to help interpret the local predictions.  The global 
variable importance score is then estimated by averaging the weights of the 
variable in the explanations across all instances.  

The R package lime is used for local surrogate model interpretations Riberio, et 
al., [20]), where instances are sampled around 𝑥′ by drawing nonzero elements of 
𝑥′ uniformly at random and the number of such draws is also uniformly sampled.  

Sparse linear models are used as explanations where 𝐾 features are selected with 
LASSO and weights were learned via least squares.  The results below use this 
package. 

9.2.5 Shapley Additive Explanations (SHAP) 

Shapley Additive Explanations [15] (denoted as SHAP) is a method to explain 
individual predictions based on the game-theoretically optimal Shapley values.  
The intuition of SHAP is similar with LIME, i.e. aiming to interpret and explain 
individual predictions.  The goal of SHAP is to explain the prediction of an 
observation x by computing the contribution of each variable to the prediction. The 
SHAP explanation method is motivated by coalitional game theory, where the 
variable values of a data instance act as players in a coalition.  Shapley values 
indicate how to fairly distribute the “payout” (i.e. the prediction) among the 
variables. The global importance score is then estimated by averaging the absolute 
Shapley values for each variable across all instances. 

In game theory, the Shapley value is defined via a value function 𝑣𝑎𝑙 of players in 
S.  The Shapley value of a feature (i.e. variable) value is its contribution to the 
payout, weighted and summed over all possible feature value combinations:  

𝜙𝑗(𝑣𝑎𝑙) = ∑
|𝑆|! (𝑝 − |𝑆| − 1)!

𝑝!
(𝑣𝑎𝑙(𝑆 ∪ {𝑥𝑗}) − 𝑣𝑎𝑙(𝑆))

𝑆⊆{𝑥1,⋯,𝑥𝑝}\{𝑥𝑗}

, (Eqn. 9-3) 

where 𝑆 is a subset of the features used in the model, 𝑥 is the vector of feature 
values of the instance to be explained, and 𝑝 is the number of features. Finally, 

𝑣𝑎𝑙𝑥(𝑆) is the prediction for feature values in set 𝑆 that are marginalized over 
features that are not included in set 𝑆: 

𝑣𝑎𝑙𝑥(𝑆) = ∫𝑓(𝑥1, ⋯ , 𝑥𝑝) 𝑑ℙ𝑥∉𝑆 − 𝐸𝑋(𝑓(𝑋)) (Eqn. 9-4) 

The reasoning behind this approach is similar to the ideas behind R2 loss and 
PDPs.  Rather than using Monte Carlo sampling over the variables’ domains, as 
with PDPs, the SHAP method instead looks at all possible subsets of variables 
that either include or do not include the variable of interest 𝑥𝑗.  The quantity 

𝑣𝑎𝑙(𝑆 ∪ {𝑥𝑗}) − 𝑣𝑎𝑙(𝑆) then captures an R2 loss type of quantity averaged over the 

variables that are not in the subset. 
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9.3 Illustrative Example 

In this section, a simple artificial example is presented to illustrate the concept of 
variable importance and help with the interpretation of different variable importance 
measures. 

Suppose that the response variable 𝑦 is based on three variables spanning the 

domain [0,1], i.e. 𝑦 = 5𝑓1(𝑥1) + 3𝑓2(𝑥2) + 𝑓3(𝑥3), where 𝑓1, 𝑓2, and 𝑓3 are defined 
as below: 

𝑓1(𝑥) = 2|x − 0.5| (Eqn. 9-5) 

𝑓2(𝑥) =
exp(𝑥 + 1) − exp (1)

exp(2) − exp (1)
 (Eqn. 9-6) 

𝑓3(𝑥)~N(0,
1

3
), scaled to [0,1] over the 𝑛 random draws. (Eqn. 9-7) 

We randomly sample 𝑛 = 100 values from [0,1] to represent  𝑥1, 𝑥2, and 𝑥3, then 

apply the equations above to generate the response 𝑦, pretending that is the 
observed dataset. The functions and observed dataset are presented in  
Figure 9-62.  Based on the coefficients for different functions in definition of 𝑦, a 

reasonable guess might be that 𝑥1 is the most important variable in prediction of 𝑦 
since function 𝑓1 carries the greatest coefficient; and the next important variable 

would be 𝑥2.  Ideally, the variable importance measures will share this result. 

We use an 80/20 Train/Test split and gradient boosting model (GBM; 100 trees) 
as the black-box model for illustration.  In Figure 9-62, the blue and red dots 
represent the train and test data, respectively. R2 loss for the three variables based 
on Remove and Permute strategies are presented in Table 9-21.  For both 
strategies, 𝑥1 and 𝑥2 have a significantly large R2 loss indicating both are important 
variables, while 𝑥3 has a slight increase in R2 (i.e., a negative R2 loss), which shows 

that 𝑥3 might play a noise role in the prediction and demonstrates the motivation 
in function design for 𝑓3.  

Figure 9-63 and Figure 9-64 show the calculated PDP and ALE for different 
variables using the illustrative example, respectively.  These plots show the 
marginal effect of the three variables 𝑥1, 𝑥2, and 𝑥3 on the prediction of y.  The 
hash marks at the bottom show where the actual data fall.  The standard deviation 
of PDP for 𝑥1, 𝑥2, and 𝑥3 (as shown in Table 9-21) are 1.175, 0.697, and 0.053, 

respectively, which again supports the fact that 𝑥1 and 𝑥2 are the most and second 
most important variables, while 𝑥3 is not important as a predictor.  Similar patterns 
as PDPs are observed and produce the same conclusion. 

Figure 9-65 and Figure 9-66 provide results of LIME and SHAP for the illustrative 
example. In Figure 9-65, data are presented using a heatmap, where blue 
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indicates feature condition met while red indicates otherwise.  The average weights 
from LIME and the average absolute Shapley value from SHAP are plotted.  The 
average weights for 𝑥1, 𝑥2, and 𝑥3 are 1.140, 0.652, and 0.076, respectively, while 
the average absolute Shapley values for 𝑥1, 𝑥2, and 𝑥3 are 1.014, 0.646, and 0.063, 
respectively.  

A summary of various variable importance measures is provided in Table 9-21.  As 
shown in Table 9-21, the conclusions on variable importance are consistent for all 
the six strategies, i.e. 𝑥1 is the most important variable, while 𝑥3 is the least 
important variable. 

Table 9-21. Summary of various variable importance measures for illustrative 
example. 

Variable 
R2 Loss 

(Remove) 
R2 Loss 

(Permute) PDP ALE LIME SHAP 

𝑥1 0.580 0.665 1.175 1.183 1.140 1.014 

𝑥2 0.365 0.499 0.697 0.756 0.652 0.646 

𝑥3 -0.008 -0.006 0.053 0.070 0.076 0.063 

9.4 Measuring Variable Importance Across Model Types and 
Time Points 

Another important goal of this paper is to investigate the dynamic characteristics 
of time-dependent systems with data from multiple time points.  To identify different 
“driver” variables at different time points, we propose a unified framework that is 
applicable to all machine learning or black box models.  

To measure variable importance across different time points, we first fit machine 
learning or black box models at each single time point.  Next, in comparing the 
importance of different variables across time and for different strategies, the 
following concepts are proposed.  
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 Raw score: 

For a given strategy, let 𝑅(𝑡, 𝑝) be the raw score for predictor 𝑝 at time 𝑡.  
Specifically, for R2 loss strategies Permute and Remove, 

𝑅(𝑡, 𝑝) = 𝑅𝑡
2(𝐹𝑢𝑙𝑙) − 𝑅𝑝,𝑡

2 (𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑), (Eqn. 9-8) 

where 𝑅𝑡
2(𝐹𝑢𝑙𝑙) is the pseudo-R2 for the full model at time 𝑡 and 𝑅𝑝,𝑡

2 (𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑) is 

the pseudo-R2 for the modified model at time 𝑡, where predictor 𝑝 was either 
removed from the model or permuted across the dataset. 

For strategies PDP and ALE, 

𝑅(𝑡, 𝑝)

=

{
 
 

 
 

∑(𝑔𝑝,𝑡(𝑖) − 𝑔̅𝑝,𝑡)
2

𝑛

𝑖=1

𝑛 − 1⁄ if predictor 𝑝 is continuous

[ max
𝑖=1,…,𝑛

𝑔𝑝,𝑡(𝑖) − min
𝑖=1,…,𝑛

𝑔𝑝,𝑡(𝑖)] 4⁄ if predictor 𝑝 is categorical

 
(Eqn. 9-9) 

where 𝑔𝑝,𝑡(𝑖) is the PDP or ALE response at time 𝑡 for predictor 𝑝 at the value 

given by the 𝑖th observation. 

For strategies LIME and SHAP,  

𝑅(𝑡, 𝑝) =
1

𝑛
∑𝑤𝑡,𝑝(𝑖)

𝑛

𝑖=1

, (Eqn. 9-10) 

where 𝑤𝑡,𝑝(𝑖) is the weight given to predictor 𝑝 for the 𝑖th observation using the 

LIME or SHAP methods, respectively. 

 Normalized score: 

The normalized score is defined as 

𝑁(𝑡, 𝑝) =
𝑅(𝑡, 𝑝)

𝐶(𝑡)
, (Eqn. 9-11) 

where 𝐶(𝑡) is a strategy-specific normalization constant at time 𝑡.  Note that for 

strategies Permute and Remove, 𝐶(𝑡) = 𝑅𝑡
2(𝐹𝑢𝑙𝑙). For strategies PDP, ALE, LIME, 

and SHAP, 𝐶(𝑡) = 𝑦̅𝑡 , the average response at time 𝑡. 

 Relative Importance Score: 

To compare the importance of variables within a time point, the relative 
importance score (𝑹𝑰𝑺) may be used.  It is defined as follows, where N(t,p) is the 
normalized score defined earlier. 
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𝑅𝐼𝑆(𝑡, 𝑝) =
𝑁(𝑡, 𝑝)

max
𝑝
𝑁(𝑡, 𝑝)

 (Eqn. 9-12) 

 Uncertainty Importance Factor: 

To compare the importance of variables across all time points, the uncertainty 
importance factor (𝑼𝑰𝑭) may be used (Mishra, Deeds, & Ruskauff, 2009).  It is 
given by 

𝑈𝐼𝐹(𝑡, 𝑝) =
𝑁(𝑡, 𝑝)

max
𝑡,𝑝

𝑁(𝑡, 𝑝)
. (Eqn. 9-13) 

By normalizing 𝑁(𝑡, 𝑝) across time and predictors, 𝑈𝐼𝐹 provides a globally relative 
score with respect to both time points and predictors by bounding the normalized 
scores 𝑁(𝑡, 𝑝) at 1.  Alternatively, by normalizing 𝑁(𝑡, 𝑝) across predictors at each 
time point, 𝑅𝐼𝑆 provides a comparison of relative scores across predictors at each 

single time point by scaling the normalized scores 𝑁(𝑡, 𝑝) within that time point.  
The 𝑅𝐼𝑆 could be interpreted as the relative dominance for the predictors at a 

certain time point – with 𝑅𝐼𝑆 = 1 for the most important variable at that time point. 
In contrast, the magnitude of the 𝑈𝐼𝐹 represents the relative effect size of the 

importance across predictors and time points. The magnitude of the 𝑈𝐼𝐹 is 
comparable across different time points, while this is not the case for the 𝑅𝐼𝑆. 

When considering only a single time point, the ranks of the predictors by 𝑈𝐼𝐹 are 
mathematically equivalent to their ranks by 𝑅𝐼𝑆. Also, for a given time point the 

ratios of 𝑈𝐼𝐹 for two different predictors 𝑝1 and 𝑝2 are equivalent to the ratios of 
the 𝑅𝐼𝑆, i.e., 

𝑈𝐼𝐹(𝑡, 𝑝1)

𝑈𝐼𝐹(𝑡, 𝑝2)
=
𝑅𝐼𝑆(𝑡, 𝑝1)

𝑅𝐼𝑆(𝑡, 𝑝2)
. (Eqn. 9-14) 

Thus, while different, the 𝑈𝐼𝐹 and 𝑅𝐼𝑆 are closely related. For example, it is 
possible that the 𝑈𝐼𝐹 for a predictor 𝑝 could be greater at time 𝑡1 than at time 𝑡2 
(i.e., 𝑈𝐼𝐹(𝑝, 𝑡1) > 𝑈𝐼𝐹(𝑝, 𝑡2)), but the 𝑅𝐼𝑆 at those times could show the reverse 
(i.e., 𝑅𝐼𝑆(𝑝, 𝑡1) < 𝑅𝐼𝑆(𝑝, 𝑡2)).  In this case, although the effect size of 𝑝 on predicted 

outcome is greater at time 𝑡1 than 𝑡2,  its dominance is greater at 𝑡2 than 𝑡1; the 
effect sizes of other predictors might be even smaller which still makes 𝑝 the most 
important. 

9.5 An Example Application 

9.5.1 Problem Description 

The variable importance strategies discussed above are applied to black-box 
surrogate models developed from full-physics time-dependent simulations of CO2 
injection into a deep saline formation as described in detail elsewhere [23].  The 
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system being studied represents a single-well injecting supercritical CO2 into a 
bounded 2-D radial-cylindrical formation (storage reservoir) initially filled with brine.  
The model domain consists of a porous and permeable heterogeneous reservoir, 
overlain by a low-permeability cap rock.  The top of the cap rock, the bottom of the 
reservoir and the lateral boundary are all assumed to be no-flow boundaries 
(Figure 9-67).  The simulations are executed in the numerical simulator 
Generalized Equation of state Model GEM® developed by the Computer Modeling 
Group (CMG) (Computer Modelling Group LTD. 2014).  GEM is a robust, 
multidimensional and fully compositional reservoir simulator that is widely used as 
one of the standard simulators to model the flow of three-phase, multicomponent 
fluids in the oil and gas industry, as well as for other subsurface energy resource 
applications.  

Running a simulation requires the specification of the nine input parameters listed 
in Table 9-22 and results in a number of responses over a 30-year simulation 
period.  Of these responses, the average reservoir pressure within the model 
domain was chosen as the metric of interest for the present analysis.  In the original 
study, a number of classical experimental design techniques were used such as 
Box-Behnken (BB), augmented pairs (AP), and Plackett-Burman (PB) designs 
using a framework that involves a low (-1), reference (0), and high (+1) value.  The 
present study uses maximin Latin hypercube sampling (MM) and maximum 
entropy (ME) designs in a sampling framework, where the values of the inputs for 
each run are sampled over the 9-dimensional unit hypercube [0, 1]9 and then 
converted back to the original predictor scale using the distributions shown in the 
rightmost column of Table 9-22.  The distributions include triangular, log-triangular, 
and equally likely discrete distributions over the range of the experimental design 
values.  For triangular distributions, denoted T(𝑎, 𝑏, 𝑐), and log-triangular 
distributions, denoted lnT(𝑎, 𝑏, 𝑐), the parameters 𝑎, 𝑏, and 𝑐 represent lower limit, 
upper limit, and mode, respectively.  Since the BB design for 9 input parameters 
has 97 unique runs, all of the designs were set at a size of 97 runs for the 
comparison.  Thus, the training dataset was a combination of two space-filling 
designs, i.e. 97-run maximin Latin hypercube sample and 97-run maximum extropy 
design (194 runs total).  In addition, performance of modeling was measured over 
an independent validation dataset, i.e. Latin hypercube sampling (LHS) simulation 
data.  Each run had average reservoir pressure measured for a unique 
combination of the nine input parameters at 19 time points arranged in 
approximately logarithmic fashion from initialization through 30 years.  Details on 
the various design options can be found in (Schuetter and Mishra [23]).  
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Table 9-22. CMG-GEM Inputs for Sampling Designs (MM, ME). 

 Parameter 

Experimental Design Values 

Sampling Design Distributions Ref. Low High 

1 hR 150 50 250 T(50, 250, 150) 

2 hCR 150 100 200 T(100, 200, 150) 

3 kavg,R 46 12 220 --- 

4 kavg,CR 0.02 0.002 0.2 lnT(0.002, 0.2, 0.02) 

5 kV/kH 0.1 0.01 1 lnT(0.01, 1, 0.1) 

6 q 0.83 0.33 1.33 
{0.33, 0.83, 1.33} 

Discrete with equal probability 

7 ϕR 0.12 0.08 0.18 T(0.08, 0.18, 0.12) 

8 ϕCR 0.07 0.05 0.1 T(0.05, 0.10, 0.07) 

9 Ik Random 
Increase 

from top 

Decrease 

from top 

{“Random”, ”Inc”, ”Dec”} 

Discrete with equal probability 

9.5.2 Model Fitting Approaches 

In order to evaluate variable importance using the strategies outlined above, a 
specific machine learning or black box model needs to be specified.  To illustrate 
and compare how these variable importance strategies work with different machine 
learning or black box models, the selection of models in Table 9-23 are used as 
surrogate models to implement the variable importance strategies discussed 
earlier.   

Table 9-23. Model Fitting Approaches 

Model Notation Description 

Quadratic Model  Quadratic 

Fit a quadratic polynomial model to the response.  The 
quadratic polynomial model includes all linear, quadratic, 
and pair-wise cross-product terms between predictor 
variables. 

Quadratic Model 
with LASSO 
Variable 
Selection 

Quad 
LASSO 

LASSO (Least Absolute Shrinkage and Selection Operator) 
regression is a technique to perform variable selection.  It is 
done by adding a penalty term to the least squares term in 
the objective function for linear regression. 

Kriging Model 
Ord Kriging 
Univ Kriging 

Kriging, or Gaussian Process Regression, is a method of 
interpolation for which the interpolated values are modeled 
by a Gaussian process that combines a trend term (typically 
a linear model) and a covariance structure for points that are 
close in space.  Ordinary kriging (Krig) assumes a scalar 
trend, whereas universal kriging uses a parametric trend 
term. In this study, quadratic terms are included in the trend 
term for universal kriging (Krig2). 

Multivariate 
Adaptive 
Regression 
Splines 

MARS 
MARS models (Friedman [8]) approximate the response 
surface using a collection of simple step and hinge functions. 

Additivity and 
Variance 
Stabilization 

AVAS 

The AVAS model (Tibshirani [25] and Breiman and Friedman 
[5]) uses a non-parametric, iterative procedure to find some 
transformation of the responses that can be represented as 
a sum of transformed predictors. 
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Model Notation Description 

Random Forest RF 

A random forest {Breiman [4]) is an ensemble learning 
method for classification, regression and other tasks that 
operates by constructing a multitude of decision trees.  This 
method works by averaging multiple decision trees, trained 
on different parts of the same training set, with the goal of 
reducing the variance when using a single tree while 
simultaneously improving accuracy. 

Gradient Boosting 
Model 

GBM 

Gradient boosting models (Friedman [9] and Elith, et al. [7]) 
are similar in structure to random forests, but decision trees 
in the ensemble are trained sequentially.  Each new tree 
focuses on improving predictions for observations that are 
not already being predicted well by the other trees trained in 
previous steps. 

9.6 Results 

These eight modeling approaches from Table 9-23 were fit at each of the 19 time 
points of interest.  Figure 9-68 presents the pseudo-R2 for each model approach 
along time points.  Some model approaches worked well at early time points, but 
not at later time points, while some model approaches generally behaved worse 
than some others.  The illustration of variable importance results was then based 
on “Krig2”.  As for this example dataset, Universal Kriging (“Krig2”) consistently 
had high pseudo-R2 along all 19 time points and was considered the optimal 
modeling approach for this specific dataset.  

Variable importance results were then computed for the surrogate models fitted at 
each of the time points using the six different strategies, Remove, Permute, PDP, 
ALE, LIME and SHAP.  For the average pressure response, it was found that 
importance scores and rankings change across time points, indicating different 
variables driving the average reservoir pressure throughout the course of the 
simulation . To illustrate this, Figure 9-69 and Figure 9-70 present the Relative 
Importance Scores for average pressure at time points 2 and 19, respectively. 
From these plots, one can observe that at early time points, reservoir thickness 
and cap rock thickness are the only two variables that are important.  One 
exception is the AVAS model for the Remove strategy, which identified reservoir 
porosity as the only important variable.  The lack of consistency in this case might 
due to the poor fit of AVAS model at early time points (see Figure 9-68).  We 
generally recommend selecting modeling approaches that generally had good 
performance along all time points.  When time passes, however, injection rate 
starts to play a more important role and later becomes the most important variable 
driving the response.  Error! Reference source not found. through Figure 9-76 
present the 𝑈𝐼𝐹 and 𝑅𝐼𝑆 values for “Krig2” for each of the nine input predictors 
across time. “Krig2” is selected because of it generally fits the data well across 
different time points.  For both 𝑈𝐼𝐹 and 𝑅𝐼𝑆 curves, there is a clear decreasing 
trend for reservoir thickness and cap rock thickness and an increasing trend for 
injection rate over time.  When looking for the dominating or important predictors 
at different time points, 𝑅𝐼𝑆 might provide a more straightforward view by assigning 
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a score of one for the most important predictor at each time point.  However, the 
magnitude of the 𝑅𝐼𝑆 can only be interpreted and compared within each time point. 
Alternatively, 𝑈𝐼𝐹 allows for a comparison of the magnitude of the scores across 
different time points to evaluate the overall importance of these predictors.   For 
example, the SHAP approach in Figure 9-75 assigns much more importance to the 
injection rate in late time points than to the reservoir and cap rock thickness in early 
time points; this is evident in the 𝑈𝐼𝐹, but not the 𝑅𝐼𝑆. 

9.7 Concluding Remarks 

This study provides a comprehensive evaluation of different variable importance 
strategies using a common model-agnostic framework.  Variable importance 
scores were found to vary depending on the modeling methods and importance 
measurement strategies used, but the top variables are usually consistently 
identified as being important.  Among the modeling methods under consideration 
in this study, most were fast to train except the Kriging model.  Among the variable 
importance strategies, Permute, PDP, and ALE were the fastest to compute.  The 
Remove method was time-consuming, since it required continuously refitting 
models when a variable was removed.  The computation times of LIME and SHAP 
varied with the size of the dataset.  Appropriate modeling methods should be 
selected depending on the specific prediction problem being considered.  Based 
on the analysis described here, Permute is a good recommendation because of its 
efficiency and consistency.  Furthermore, it is beneficial to select a model approach 
which generally fits the data well across different time points. 

Guidance on using 𝑈𝐼𝐹 or 𝑅𝐼𝑆 as the single variable importance metric of choice 
depends on the ultimate goal of the variable importance comparison.  If one is 
interested in evaluating which variables are important at a specific time point, the 
𝑅𝐼𝑆 is a more straightforward way to identify dominant variables.  Alternatively, if 
one is interested in comparing the magnitude/effect size of the variable importance 
across different time points, 𝑈𝐼𝐹 is the more appropriate measure. 

Finally, we note that in this work, statistical models were utilized as a surrogate 
model, and variable importance scores were evaluated separately across different 
time points for comparison.  A natural extension would be to develop a unified 
approach which integrates data from all time points for modeling and variable 
importance investigation.  A more systematic and accurate fit is expected by 
integrating the time variable in the modeling.  Meanwhile, we expect to develop 
corresponding unified time-based feature importance strategy. 

The primary contributions of this paper can be summarized as follows: 

• Evaluation of a set of popular model agnostic variable importance 
techniques for a common problem representative of subsurface 
geoscience  
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• Two new metrics (𝑈𝐼𝐹 and 𝑅𝐼𝑆) introduced to handle variable 
importance rankings across different points in time 
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Figure 9-62.  True functions and observed dataset for illustrative example. 

 

 

Figure 9-63.  Partial Dependence Plots (PDPs) for illustrative example. 

 

 

Figure 9-64.  Accumulated Local Effects (ALE) for illustrative example. 
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Figure 9-65.  Local Interpretable Model-Agnostic Explanations (LIME) for 
illustrative example. 

 

 

Figure 9-66.  Shapley Additive exPlanations for illustrative example. 
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Inputs 

 

Thickness of reservoir (hR) 
Thickness of caprock (hCR) 
Average horizontal permeability of reservoir (kavg,R) 
Average horizontal permeability of caprock (kavg,CR) 
Anisotropy ratio (kV/kH) 
CO2 Injection rate (Q) 

Porosity of reservoir (R) 

Porosity of caprock (CR) 
Capillary pressure model of caprock (PC,CR) 
Relative permeability model of reservoir (kr,R) 
Indicator for permeability layering (Ik) 
 

Responses 
Total Storage Efficiency 
Maximum Plume Radius 
Average Pressure 

Inputs in gray were fixed, while the ones in blue were varied in the space-filling design.  The 
response of interest is in blue, as well. 

Figure 9-67.  Model geometry and variables of interest. 

 

 

Figure 9-68. Pseudo-R2 scores for different models across time. 
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Figure 9-69.  Relative Importance Scores for Average Pressure at Time Point 2.  
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Figure 9-70.  Relative Importance Scores for Average Pressure at Time Point 19.  
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Figure 9-71.   UIF vs. RIS for Remove. 
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Figure 9-72.   UIF vs. RIS for Permute. 
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Figure 9-73.   UIF vs. RIS for PDP. 
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Figure 9-74.   UIF vs. RIS for ALE. 
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Figure 9-75.   UIF vs. RIS for LIME. 
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Figure 9-76.   UIF vs. RIS for SHAP.
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