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Abstract 
Energy consumption is one of the top challenges for achieving the next generation of supercomputing. Co-
design of hardware and software is critical for improving energy efficiency for future large-scale systems. 
Many architectural power saving techniques have been developed, and most hardware components are 
approaching physical limits. Accordingly, parallel computing software, including both applications and 
systems, should exploit power saving hardware innovations and manage efficient energy use. In addition, 
new power-aware parallel computing methods are essential to decrease energy usage further. This article 
surveys software-based methods that aim to improve energy efficiency for parallel computing. It reviews 
the methods that exploit the characteristics of parallel scientific applications, including load-imbalance 
and mixed-precision of floating-point calculations, to improve energy efficiency. In addition, this paper 
summarizes widely used methods to improve power usage at different granularities, such as the whole 
system and per application. In particular, it describes the most important techniques to measure and to 
achieve energy efficient usage of various parallel computing facilities, including processors, memories, and 
networks. Overall, this article reviews the state-of-the-art of energy efficient methods for parallel 
computing to motivate researchers to achieve optimal parallel computing under a power budget constraint. 
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Introduction 
Energy efficiency has become a primary concern for the design of modern computing 
systems, from large-scale supercomputers to multi-core laptops. In the context of 
high performance computing (HPC), power consumption has become a critical 
concern due to several factors. First, power consumption is a limiting factor that 
constrains processor frequency and the number of active cores. Second, high power 
consumption increases the total cost of ownership (TCO) of running a large-scale 
system, including expensive energy bills and costly cooling systems to keep 
temperature low. Third, the heat generated by high power consumption compromises 
the reliability of computing. Finally, high power consumption requires an excessive 
power supply that is expensive to build and to operate. The exascale supercomputer 
roadmap, which has identified energy efficiency as one of the top challenges, aims to 
achieve 1018 floating-point operations per second with a 20 MegaWatt power budget 
[Kogge et al. 2008]. Although many architectural power-saving techniques have been 
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developed [Kaxiras and Martonosi 2008], including low frequency processors and 
accelerators, the power budget remains a critical challenge to exascale 
supercomputing [Amarasinghe et al. 2009; ASCAC 2014; Bates et al. 2013; 
Vaidyanathan et al. 2013]. Accordingly, parallel computing software, including 
system software and applications, must exploit hardware power saving advances and 
efficiently manage energy utilization [Dongarra et al. 2011]. In addition, new power-
aware methods of parallel computing are essential to decrease energy consumption 
further. Consequently, understanding state-of-the-art software techniques to save 
energy for parallel computing is critical for researchers to propose more effective 
solutions to address the power challenge and to improve energy efficiency. 

In this paper, we present a survey of research work that analyzes the relationship 
between power and performance for parallel computing and that improves the energy 
efficiency of parallel applications using software methods. However, a review of all 
research ideas proposed in the related literature is infeasible. We focus on those 
studies that analyze the overall system utilization and energy efficiency aspects of 
parallel applications, including power-aware algorithms and tools to optimize energy 
efficiency. This survey does not cover studies that only improve parallel computing 
performance although the performance improvement is likely to reduce energy usage. 

Presently, hardware innovations provide a rich set of power-saving techniques 
that software can exploit. For example, heterogeneous systems offer the opportunity 
to exploit extremely high concurrency with modest energy consumption using 
accelerators such as GPUs (Graphic Processing Units), and coprocessors, such as the 
Intel Xeon Phi (also known as the MIC or Many Integrated Core architecture). 
Supercomputers are already equipped with these sorts of processors and the 
associated deep memory hierarchy. This paper reviews software methods that utilize 
several important hardware power-saving techniques, including DVFS (dynamic 
voltage and frequency scaling), NTV (near threshold voltage), low frequency 
processors like ARM, accelerators such as GPUs, coprocessors such as the Xeon Phi, 
and power-aware networks. 

The energy consumption of a parallel application is closely correlated to its 
performance. However, improving performance and efficiently managing power may 
conflict with each other because faster speeds frequently come from using more 
resources less efficiently, which may excessively increase power consumption. In 
addition, the complexity of this relationship is exacerbated by the increasingly large 
number of CPU cores and new heterogeneous computing facilities, such as GPUs and 
Xeon Phi coprocessors. Therefore, this paper discusses energy and performance 
models to analyze parallel application energy efficiency. Most importantly, this paper 
presents software methods to save energy for the whole system and different 
applications, such as MPI [MPI Forum 2012], OpenMP [OpenMP ARB 2013], and 
hybrid programs. In addition, it surveys optimization techniques to tune the energy 
consumption of scientific applications, including auto-tuning frameworks and 
approximation-based methods to save energy by improving performance while 
maintaining the desired accuracy. 

The rest of this paper is organized as follows. Section power consumption and 
management discusses the power dissipation of compute components and state-of-
the-art hardware power-saving techniques for an HPC system. Section power and 
energy measurement presents the methods of measuring power and energy for 
parallel computing. Section energy and performance models of parallel 
computing reviews energy models for analyzing the power consumption of parallel 
computing and metrics to evaluate energy efficiency. Section taxonomy of energy 
efficient methods for parallel computing categorizes the most important 
software methods to improve energy efficiency for parallel computing. Section saving 



A survey on software methods to improve the energy efficiency of parallel computing              0:3  
                                                                                                                                         

 
 

energy with power-aware resource management presents techniques to 
improve the power usage for the whole system. Section parallelism-specific 
methods of energy efficient parallel computing presents power-saving 
techniques applied to a single application at different parallelism granularities, such 
as processes, threads, and hybridization. Section communication-oriented power 
saving summarizes energy efficient methods applied to the communication layer. 
Section saving energy with automatic tuning describes automatic energy tuning 
that improves the energy efficiency of parallel applications. Section saving energy 
with approximation methods presents approximate methods to improve the 
energy efficiency of parallel computing. We provide concluding remarks and future 
research trends in the conclusions section. 

Power consumption and management  
This section reviews the most important hardware components and corresponding 
power-saving techniques that can be orchestrated by parallel software to improve 
energy efficiency. There are two main technical trends coupled with compute 
component power dissipation: power-bound and expensive data movement. 

During the past decade, power constraints have transformed processor 
performance improvements from frequency increases to increases in the number of 
cores per chip. However, the future of multi-core CPUs is limited by the dark silicon 
phenomena [Esmaeilzadeh et al. 2011; Esmaeilzadeh et al. 2012], in which power 
constraints will eventually prevent the chip from using all of its cores simultaneously. 
In other words, even if more cores could be added on a chip, the number of inactive 
cores that must be powered down due to the lack of enough energy increases every 
process generation. To address this challenge, many different processor architectures 
have been developed to support extremely high concurrency with modest energy 
consumption, including NTV processors [Dreslinski et al. 2010; Karpuzcu 2013], 
ARM big.LITTLE processors [Greenhalgh 2011], GPUs, and the Intel Xeon Phi. 
Although which processor architecture will dominate in the future is unclear, future 
supercomputers will contain heterogeneous processors and a deep memory hierarchy. 

The power bound affects the compute nodes of future supercomputers as well. 
Although future supercomputers will have more compute nodes, they potentially may 
not all be able to run simultaneously with peak performance due to the power 
limitation, which is imposed by either financial or physical reasons. Hardware 
overprovisioning [Patki et al. 2013] is also proposed for future supercomputers to 
fully utilize the procured power. 

In addition, the computing model is gradually transforming from computationally 
expensive to data movement expensive [Patterson et al. 2013a]. In particular, moving 
a word of data, either across a node interconnection or through a deep memory 
hierarchy, can require orders of magnitude more time and energy than an arithmetic 
operation [Patterson et al. 2013a].  

Power consumption of compute components 

The energy consumption of large-scale HPC facilities, such as supercomputers or 
data centers, mainly consists of two parts: powering cooling systems and running 
computers. The metric Power Usage Effectiveness (PUE) [Avelar et al. 2014] has 
been used to measure and to drive the energy efficiency of HPC facilities. PUE is 
defined as the ratio between the total energy of running an IT facility and the energy 
specifically used to power its IT equipment, as illustrated in Equation (1). By 
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definition, PUE is at least 1. Many recently built computing centers with advanced 
energy saving techniques possess a PUE close to 1 [Bates and Patterson 2013]. 

  𝑃𝑈𝐸 = !"#$% !"#$%$&' !"#$%&
!" !"#$%&'() !"#$%&

= !"!!""#$%&!!"#$% !"#$%"&'$"()!!"#!!"#$!!"#$
!" !"#$%&'() !"#$%&

                      (1) 

In order to measure the HPC equipment’s “inside” energy efficiency, ITUE (IT-
power usage effectiveness) and TUE (total-power usage effectiveness) were proposed 
to highlight the ratio of entire energy used to power the compute components 
[Patterson et al. 2013b]. ITUE and TUE are defined as Equation (2), in which 
compute components include processors, memory, interconnection, and storage. ITUE 
mainly measures the energy overhead applied to IT equipment, such as the extra 
energy consumed by its internal fans, power supplies, and voltage regulators, while 
TUE is the total energy into the HPC facility divided by the energy used by the 
compute components inside the equipment. Patterson et al. [Patterson et al. 2013b] 
analyze the energy efficiency of the Jaguar system, which is a Cray XT5 
supercomputer. The result shows that Jaguar’s ITUE is 1.49 and its TUE is 1.86. 
According to current technological trends [Shalf et al. 2010; ASCAC 2014], the 
processors, memories, and interconnections of future supercomputers are the most 
significant energy consumption compute components. Therefore, parallel software 
should attempt to improve the energy efficient use of these compute components. 

 ITUE = !"#$% !"#$%& !"#$ !"# !" !"#$%&'()
!"#$% !"#$%& !"#$ !"# !"#$%&' !"#$"%&%'(

 ;  TUE =  ITUE × PUE (2) 

The power dissipation of CMOS components and DVFS 

The power consumption of CMOS (Complementary metal–oxide–semiconductor) 
circuits mainly consists of dynamic power and leakage power, denoted as Equation (3) 
[Kaxiras and Martonosi 2008]. Leakage power dissipation, also called static power, 
occurs regardless of switching activity, and is denoted as 𝐼!𝑉 in Equation (3), where 𝐼! 
is the leakage current and V is the supply voltage.  

            𝑃!"#$ = 𝐼!𝑉 +  𝐶𝑉!𝐴𝑓                       (3) 

Dynamic power is denoted as 𝐶𝑉!𝐴𝑓  in Equation (3), where C is the load 
capacitance, V is the supply voltage, A is the activity factor, and f is the operating 
frequency. The aggregated load capacitance (C) largely depends on the wire lengths 
of on-chip structures. Architectural design influences this metric in several ways. For 
example, smaller processor cores on-chip and independent banks of cache can reduce 
wire lengths. The activity factor (A) is a fraction between 0 and 1 that refers to how 
often a wire actually transitions from 0 to 1 or 1 to 0. The clock frequency (f) not only 
directly influences power dissipation, but also affects supply voltage (V). Normally, a 
higher clock frequency is supported using a higher supply voltage. Therefore, supply 
voltage has a cubic impact on power dissipation through the 𝑉!𝑓 portion of the 
dynamic power factor in Equation (3). 

Typically, static power represents approximately 20% of overall power dissipation 
[Kaxiras and Martonosi 2008], while dynamic power dominates the power 
consumption of CMOS components. Using LULESH, a hydrodynamics application, 
Leon et al. [Leon et al. 2015] investigate the dynamic and static power consumption 
of several architectures, including IBM Blue Gene/Q, Intel Ivy Bridge, and AMD 
Piledriver. The dynamic power consumption for Ivy Bridge and Piledriver is 80% and 
87% respectively. However, the static power consumption of Blue Gene/P, which is 
well known for its low power architecture, is more than 70%. 
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The dynamic power part of Equation (3) clearly illustrates the opportunity for 
saving power by adjusting voltage and frequency, also called dynamic voltage and 
frequency scaling (DVFS). In particular, scaling the supply voltage down offers the 
potential for a cubic reduction in power dissipation. However, it also linearly 
degrades performance. Therefore, scaling frequency down to save power using DVFS 
must recognize periods when lower processor performance is acceptable (e.g., in 
memory-bound or latency-tolerant regions of code). With OSPM (Operating System-
directed configuration and Power Management) compatible operating systems, the 
performance of CPUs, including Intel and AMD processors, can be adjusted by 
controlling the performance state (P-State). 

Hardware-enforced power bound 

Many processor architectures support power capping to save power. For instance, 
IBM Power 6 and 7 architectures support “soft” power capping that runs the system 
at a lower power/performance point to save energy. AMD Bulldozer allows the user to 
specify a thermal design power limit for the processor. In contrast, the Intel Sandy 
Bridge processors allow a user to specify a time window and an associated maximum 
average power using the RAPL (Running Average Power Limit) interface [Intel 2011]. 
The processor guarantees that it will not exceed this average power during the time 
window. Rountree et al. [Rountree et al. 2012] investigate the variations of processor 
frequency under different power settings and analyze the potential power saving 
effect of applying this technique to parallel applications. 

Accelerators and coprocessors 

Accelerators, such as GPUs, and coprocessors, such as the Intel Xeon Phi, are 
currently the most power-efficient parallel computing architectures [Li et al. 2014]. 
Accordingly, heterogeneous systems equipped with NVIDIA or AMD GPUs or Intel 
Xeon Phi coprocessors offer the opportunity to exploit extremely high concurrency 
with modest energy consumption. Presently, hybrid machines equipped with GPUs 
dominate the Green500 list in 2015 [The Green 500]. According to the top 500 
supercomputers announced in 2015 [Top 500], more than 20% of top 100 
supercomputers, including 4 of the top 10 systems, are heterogeneous systems. 

Embedded processors 

Low power microprocessors that are used in smart phones and tablets, such as ARM 
processors, dominate the commodity market. The recently released ARMv8 
Instruction Set Architecture (ISA) supports double-precision floating-point (FP-64) 
and SIMD instructions, which facilitate scientific computing. The cost and power 
advantage of these mobile processors have attracted the attention of the HPC 
community [Rajovic et al. 2013] and they have been adopted by data centers to 
process data-intensive applications [Li et al. 2011b]. The European Mont-Blanc 
project [Rajovic et al. 2013] seeks to build an energy-efficient supercomputer using 
ARM processors and GPU accelerators. 

Near-threshold Voltage (NTV) Computing 

ASIC (Application Specific Integrated Circuit) process scaling allows more transistors 
to be included on a chip. However, cooling limitations do not expand accordingly. As a 
result, although more cores can be added to a chip in the future, heat dissipation 
considerations may lead to some of them being inactive at any given time 
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[Esmaeilzadeh et al. 2012]. In addition, the gap between what can be integrated onto 
a chip and what can be operated keeps increasing every process generation. 

A promising way to activate more cores is to reduce the supply voltage (VDD). 
Lowering the supply voltage to slightly above the threshold voltage (Vth) can reduce 
power consumption by more than an order of magnitude. This unconventional 
operation regime, called near-threshold voltage computing (NTC), enables more cores 
to operate simultaneously under a given power budget at the cost of performance 
degradation [Dreslinski et al. 2010]. Moreover, NTC decreases the reliability of the 
system [Karpuzcu et al. 2013]. 

However, the increased parallelism of large-scale systems can compensate for the 
degraded performance of NTC. While the increase in computing errors must be 
tolerated, NTC is a promising way to reduce the power consumption of parallel 
computing. Recently, based on NTC, approximate computing, also called significance-
based computing, has attracted attention in the HPC research community 
[Gschwandtner et al. 2014; ASCAC 2014]. 

Memory  

Heterogeneous architectures enable more parallelism, which demands more data 
movement between the logic and the cores. Moreover, the performance gap between 
moving a word and applying an arithmetic operation to it will grow exponentially 
according to current technological trends [Patterson et al. 2013a]. Accordingly, data 
movement will account for most of the energy consumption of parallel computations. 
In particular, the energy to move data increases proportionally to bandwidth and 
transport distance (energy = bitrate × distance2 / cross-section area of interconnect 
wiring [Miller and Ozaktas 1997]). Although moving a word of data across a node 
interconnect consumes more energy than through a deep memory hierarchy, 
accessing data from memory is more frequent. Actually, even with advanced memory 
techniques, the amount of energy consumed by the main memory subsystem could be 
comparable to that of the processors [Shalf et al. 2010]. To decrease the energy 
consumed by memory in the software layer, applications must increase data locality 
to avoid unnecessary data movement. 

Network 

At exascale, the network can consume 10~20% of the total system power [Groves and 
Grant 2015]. Some experts even estimate that in the future the network may account 
for 30% of the total power budget of a supercomputer [Dickov et al. 2014]. In order to 
improve the energy efficiency of the interconnection network, many innovative 
technologies have been developed, including on-die interconnect fabric, inter-chip 
network integration, energy proportional network, and power-aware network [Alonso 
et al. 2006; Nedevschi et al. 2008; Saravanan et al. 2013; Saravanan et al. 2014; 
Groves and Grant 2015; Miwa et al. 2014; Miwa and Nakamura 2015]. Power-aware 
networks can save power consumed by the network fabric using techniques such as 
dynamic link width and frequency, and on/off links. Many experts estimate that 
power-aware networks will save significant energy for HPC applications [Miwa et al. 
2014; Saravanan et al. 2013; Saravanan et al. 2014]. In particular, Energy Efficient 
Ethernet (EEE) [IEEE 802.3az. 2010] has attracted attention in the HPC community. 
Although these innovations can decrease energy consumed at the network layer, 
moving a word of data across a node interconnection can require orders of magnitude 
more time and energy than an arithmetic operation [Patterson et al. 2013a]. In the 
application layer, one of the best ways to save network energy consumption is to 
avoid or to reduce communication [Grigori et al. 2011; Demmel et al. 2013]. 



A survey on software methods to improve the energy efficiency of parallel computing              0:7  
                                                                                                                                         

 
 

Power and energy measurement  
Accurate power and energy measurements are critical for the efficient management 
of parallel application energy use. In particular, fine-grained measurement of power 
consumption, such as per application, per hardware or software component, or even 
per instruction, and high sampling frequency are required to provide insights for 
energy usage optimization. The existing power measurement methods mainly consist 
of two groups: direct measurement, and model-based. Several projects [Intel 2011; 
David et al. 2010; Hart et al. 2014; Ge et al. 2009; Venkatesh et al. 2013; Yoshii et al. 
2012] have explored APIs that make fine-grained power and energy consumption 
measurement for various granularities accessible at the application level so that 
programs can automatically make software engineering decisions to manage their 
power usage at runtime. Most direct power measurements use on-board sensors or 
external instruments [Feng et al. 2005; Ge et al. 2009; Laros et al. 2013]. The 
measurement granularity of these techniques is commonly too large to measure the 
energy consumed by instructions or basic computing functions. Model based methods, 
such as RAPL [Intel 2011, David et al. 2010], provide a viable alternative to physical 
measurements. Some methods, such as ALEA [Mukhanov et al. 2015], refine 
measurement granularities by improving direct power measurement with 
probabilistic models. 

Power measurement of the whole system 

Feng et al. [Feng et al. 2005; Ge et al. 2009] created PowerPack, a software tool that 
automatically profiles the power consumption of scientific applications running on 
high-performance distributed systems. PowerPack can measure the power 
consumption of the major computing components, including CPU, memory, disk, and 
NIC (Network Interface Controller), on a cluster’s computing nodes. In particular, a 
group of 0.1 Ohm sensor resistors are connected to the node using ATX extension 
cables. Each of ten digital meters per node collects four samples per second. Using 
RS232 ports, a data collection computer logs the power samples, which are 
subsequently analyzed using PowerPack. PowerInsight [Laros et al. 2013] is a 
similar project to measure power at the component level for a cluster by 
instrumenting hardware. 

Power monitoring capabilities are available on IBM Blue Gene/P and Blue Gene/Q 
(BG/Q) systems [Yoshii et al. 2012; Hennecke et al. 2012]. Blue Gene systems have 
several sensors that monitor the voltage and current of service cards, node boards, 
bulk power modules, and cooling system boards. The sensor data are collected every 5 
minutes and stored in a database. The power consumption of FPU (Floating-point 
Unit) and memory copy activity can be profiled using Environmental Monitoring 
(EMON) APIs on BG/Q. 

The Cray Power Management Database tool [Hart et al. 2014] is available on 
Cray XC systems, which supports two ways to access power measurements: the 
Power Measurement Data Base (PMDB) and power management counters 
(pm_counters). The database contains comprehensive power readings at a 1 Hz 
frequency for each node, GPU, blower and network chip, which can be queried per job 
and per component and which support easy derivation of per job power and energy 
consumption. In contrast, pm_counters are provided as Sysfs files on Linux for power, 
accumulated energy, and power_cap of both the CPUs and GPUs. The register files 
for the pm_counters are updated at a frequency of 10 Hz. 
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IPMI (Intelligent Platform Management Interface) [Intel 2013] defines a set of 
low-level interfaces for remotely managing and monitoring the status of computer 
systems, including power consumption of different components. IPMI is supported in 
most Intel architectures, and many open source software libraries are available to 
collect IPMI sensor data. Hackenberg et al. [Hackenberg et al. 2013] find that the 
power samples collected using IPMI are accurate enough, but its estimation of energy 
consumption needs improvement for short period jobs. 

In order to characterize HPC architectural trends for power consumption, several 
HPC benchmarks, such as the Top500, the Green500 and the Graph500, accept 
power metrics for running HPC workloads. The Energy Efficient HPC Working 
Group (EE HPC WG) conducted a survey on the power consumption listed for 
supercomputers on the Top500 and the Green500 in 2011. They find that the quality 
of power measurement varies widely. A three-level power measurement methodology 
is proposed [Scogland et al. 2014]. Among the proposed three levels, level 3 is the 
most rigorous measurement and is able to identify energy “hot spots” accurately and 
precisely. It requires continuous energy measurement of the whole system and each 
participating sub-system. 

CPU power measurement 

The Intel Sandy Bridge family of processors is equipped with onboard power meters. 
RAPL (Running Average Power Limit), a platform-specific power management 
interface [Intel 2011, David et al. 2010], is provided to allow users to measure energy 
consumption of processor, DRAM, and uncore devices in a non-intrusive manner. 
Users are allowed to measure and to control processor power usage using model-
specific registers (MSRs). On Linux the msr kernel module supports reading and 
writing any MSR on the node using a file interface at /dev/cpu/N/msr. The precision 
of the power and energy measurements is architecture-specific and is provided by 
reading the MSR_RAPL_POWER_UNIT register. One limitation of RAPL is MSRs 
are 64-bit wide and are updated every millisec. Typically, the power values wrap-
around every 60 seconds. Venkatesh et al. [Venkatesh et al. 2013] addressed this 
limitation by extending RAPL and applied the extension to measure energy 
consumption for MPI operations. 

Fine-granularity power measurement 

ALEA (Abstract-Level Energy Accounting) [Mukhanov et al. 2015] uses a 
probabilistic approach to provide fine-grained energy profiling for basic computing 
blocks in order to overcome the coarse granularity of sampling period of direct power 
measurement. In particular, ALEA combines the sampling of physical power 
measurements and a probabilistic model to estimate the energy consumed by basic 
blocks at any granularity. ALEA assumes that basic blocks execute repeatedly during 
a program’s execution. It samples the program’s execution at a predefined rate and 
then extracts the basic block sampled each time. The latency of each basic block is 
varied at each iteration, which allows ALEA to build a probabilistic model to 
estimate the execution time and energy consumption for each block. Evaluated using 
both sequential and parallel benchmarks, the mean error rates of ALEA are between 
1.4% and 3.5%, while the sampling overhead is around 1%.  

Energy and performance models of parallel computing 
Improving energy efficiency for parallel computing requires pursuing optimal 
performance with moderate power usage. In the parallel computing domain, 
optimizing performance and energy consumption may conflict. The simple rule that 
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Energy = Power × Time, suggests two general ways to save energy: 1) faster speed, 
given a constant power; and 2) lower power without increasing run time. Given an 
ideal embarrassingly parallel application, running it on n cores at frequency 2f 
requires the same execution time as running it on 2n cores at frequency f. However, 
the latter option consumes less than half of the CPU energy. Unlike this simple 
example, most parallel applications’ execution time and power and energy 
consumption are interdependent, which complicates the relationship. In particular, 
interactions between memory, communication, parallelism, and processor frequency 
affect execution time and energy consumption. Additionally, the characteristics of a 
parallel application, such as its parallelism portion and its bottlenecks (i.e., either 
compute-bound or memory-bound), impact its optimal execution time and minimal 
energy consumption. Generally, increasing the amount of computational resources 
lowers system utilization and decreases energy efficiency because extra energy is 
wasted as the number of nodes or CPUs per node increases. Several power models 
[Bingham and Greenstreet 2008; Woo and Lee 2008; Cho and Melhem 2010; Song et 
al. 2011; Choi et al. 2013] are proposed to analyze the relationship between power, 
energy, performance, and parallelism for parallel applications. Most of these power 
models are extensions of previous performance models, such as Amdahl’s Law, iso-
efficiency, and the Roofline model. These models focus on providing insights to 
optimize algorithms or to detect an appropriate system configuration to improve 
energy efficiency by changing several adjustable parameters, such as processor 
frequency, parallelism level, and the parallelism portion. Accordingly, various 
metrics [Weiser et al. 1994; Ge et al. 2005; Bingham and Greenstreet 2008] are 
proposed to evaluate energy efficiency. 

Energy efficiency metrics 

Several energy-performance efficiency metrics have been proposed to determine the 
effect of improving energy efficiency. Weiser et al. [Weiser et al. 1994] propose to use 
millions-of-instructions-per-joule (MIPJ) to measure CPU energy performance, 
specifically MIPJ = MIPS/W (millions of instructions per second/watt). Because 
reducing clock speed causes a linear decrease in performance, but a cubic reduction 
in energy consumption, lowering frequency generates a better MIPJ. The flops/watt 
(F/W) metric is successfully used as the de facto standard in measuring the energy 
efficiency of a computing system [The Green 500]. EDP (Energy-delay product), i.e., 
et and ED2P (Energy-delay-squared product), i.e., et2, have been widely used to 
represent the energy-time tradeoff of applying DVFS to parallel applications. In 
comparison to EDP, ED2P focuses more on the performance effect. Ge et al. [Ge et al. 
2005] use ED3P to select the optimal operating point when investigating an 
appropriate granularity of applying DVFS. Bingham and Greenstreet [Bingham and 
Greenstreet 2008] propose using etα, a generic energy complexity metric, to analyze 
the lower bound of execution time constrained by an energy budget for a number of 
basic algorithms, including sort, binary addition, and binary multiplication. 

Amdahl’s law-based energy models 

Woo and Lee [Woo and Lee 2008] extend Amdahl’s Law to analyze the energy 
efficiency of multicore processors. In particular, a new variable, k, is added to 
represent the fraction of power that the processor consumes in the idle state. 
Equation (4) illustrates energy efficiency in terms of performance per watt and 
performance per joule on n processors/cores, where s+p=1, s  and p are the sequential  
and parallel portion of the application respectively. The extended power model was 
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applied to investigate the energy efficiency of both symmetric and asymmetric 
multicore architectures, and they find that an asymmetric multicore architecture, i.e., 
a heterogeneous architecture, is more energy efficient.  

  !"#$
!

=  1/(1 + 𝑛 − 1 ∗ 𝑘 ∗ 𝑠), !"#$
!
=  !

!!!!
× !
!! !!! ×!×!

 (4) 

Ge and Cameron [Ge and Cameron 2007a] propose a power-aware speedup model 
by extending Amdahls’ Law to account for the effects of parallelism and power-aware 
techniques on speedup. The model decomposes the workload into on/off-chip 
characteristics and assumes a constant frequency for the off-chip workload. The 
model can predict the optimal EDP configuration for a given parallel application. 

Similarly motivated by Amdahl’s law, Cho and Melhem [Cho and Melhem 2010] 
propose a theoretical model to analyze the relationship between parallelism, 
performance, and energy consumption based on the portion of an application that 
executes in parallel. They analyze how parallelization improves energy consumption. 
The improvement of dynamic energy for running an application on n processors is 
illustrated as Equation (5), where the dynamic power consumption of a processor 
running at frequency f is proportional to 𝑓∝.  

         𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝐸𝑛𝑒𝑟𝑔𝑦 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =  1/(s + !
!(∝!!)/∝

)∝  (5) 
Two machine models are examined using the proposed model: MA, with which 

individual processors cannot be turned off; and MB, with which individual processors 
can be turned off. For MA, an optimal number of processors exists to minimize energy 
consumption. Depending on the size of sequential portion, s, and the portion of 
dynamic energy, adding more processors initially decreases energy consumption, 
while energy consumption increases after n is larger than a threshold. In contrast, 
the optimal configuration for MB either does not exist, or its effect is much less than 
that for MA. However, this model ignores the energy consumed to move data across 
processors.   

Other energy models 

Korthikanti and Agha [Korthikanti and Agha 2010] propose the use of a linear cost 
function, α×E+T, to evaluate the energy-time tradeoff for parallel algorithms while 
varying the number of cores and their frequencies. In particular, the proposed model 
accounts for several parameters of a parallel application, including its workload, 
concurrency degree, and communication cost. The energy-time tradeoff of quick sort, 
FU factorization, and minimum spanning tree algorithms are investigated. 

Song et al. [Song et al. 2011] propose an iso-energy-efficiency model to analyze the 
power-performance tradeoffs of parallel applications by extending the concept of 
performance iso-efficiency. In particular, an energy efficiency factor(EEF) is defined 
as Equation (6), in which Es is the total energy consumed by a sequential application, 
Ep is the energy consumed by its parallel execution on p processors, E0 = Ep-ES. 
Overall, a large EEF stands for low iso-energy-efficiency, and vice versa. This model 
can predict the total energy consumption of large-scale parallel applications while 
varying the parallelism degree and processor frequency. 

Energy Efficiency Factor (EEF) = !!
!!

 ; Iso-energy-efficiency (EE) = !!
!!
= !

!!!!"
 (6) 

Choi et al. [Choi et al. 2013] propose an energy roofline model to analyze the time, 
energy, and power costs for an algorithm from the energy-balance point of view. As an 
analogue to the time-balance proposed in the original performance Roofline model, 
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energy-balance measures the ratio of flops and bytes per unit-energy, i.e., Joule. The 
model identifies the relationship between computational intensity, i.e., flops per 
memory operation, and consumed energy. As a counterpart of the time-balance, Bτ, in 
the performance Roofline model, the energy-balance, Bε, is detected using the energy 
Roofline model. Real world applications always have Bτ > Bε. This implies that race-
to-halt strategies are the first-order technology to achieve energy efficiency. With 
race-to-halt, the system runs at top speed to create long idle intervals, in which 
certain parts of hardware can be turned off to save energy. 

Performance prediction for energy analysis 

Adjusting CPU frequency to save energy depends on the accurate estimation of 
performance degradation. A small prediction error can fail to reduce energy 
consumption and cause extra power usage [Rountree et al. 2011]. Rountree et al. and 
Keramidas et al. [Rountree et al. 2011; Keramidas et al. 2010] proposed the use of a 
new performance counter, Leading Loads, to improve the accuracy of performance 
estimation under DVFS. In particular, a load is defined as a non-speculative read 
that results in a last-level cache miss and the first load is a leading load. Assume the 
performance at frequency f is observed and after adjusting frequency from f to f', the 
degraded performance can be estimated using Equations (7)~(9), in which execution 
time consists of CPU time and bus time. With the Leading Load model, the estimation 
error is limited to within 0.3%.  

Predicted Execution Time at f' = Observed Bus Time + (f'/f) × Observed CPU Time (7) 

Observed Bus Time at f = 
!"#$%&'!(#$)*+,"- !" !

!
        (8) 

Observed CPU Time at f = Observed Execution Time at f – Observed Bus Time at f (9) 

Insights of energy models 

Using the above theoretical models, the following general conclusions are achieved. 
First, the energy efficiency of parallel computing is both application and platform 
dependent. Second, energy consumption and performance are strongly correlated. 
Third, for parallel applications, adjusting processor frequency has less impact on 
energy efficiency than changing parallelism.  

Experiments that evaluate the energy-time trade-off in parallel applications 
confirm these theory-detected relationships [Freeh et al. 2007b; Minartz et al. 2011; 
Rahman et al. 2012; Laros et al. 2013; Leon et al. 2015]. Rahman et al. [Rahman et al. 
2012] study the potential power-saving effect of applying compiler optimization 
technologies, including loop and thread affinity optimizations, to multi-threaded 
applications. They demonstrate that the power-saving space for a multi-threaded 
application can be up to 28%. Leon et al. [Leon et al. 2015] analyze the effectiveness 
of code optimizations on the power and energy use of a hydrodynamics application, 
called LULESH. Several techniques of reducing data movement are investigated, 
including the loop fusion, data structure transformation, and global allocation 
optimizations. These optimizations are evaluated for IBM Blue Gene/Q, and for x86 
server-class and consumer-class architectures. They find that the effect of same 
optimization methods depends on architectures. In addition, different code regions of 
LULESH demand different optimization techniques. However, finding a globally 
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optimal solution by applying different optimization techniques to different regions is 
challenging. 

Freeh et al. [Freeh et al. 2007b] investigate the relationship between energy 
consumption and performance for the NPB Parallel Benchmarks on a power-scalable 
cluster with a variety of frequencies and a different number of processors. Given a 
number of processors, they detect an optimal configuration of processor frequency to 
minimize energy consumption. They find that energy savings depend on an 
application’s speedup. For the case of good speedup, running the application at a 
higher frequency on more nodes can save energy. In contrast, for the case of poor 
speedup, increasing node count and processor frequency may not save much energy. 
Laros et al. [Laros et al. 2012; Laros et al. 2013] investigate the potential effect of 
power saving on the Cray XT architecture using processor frequency scaling and 
network bandwidth scaling. In particular, running a series of empirical experiments 
demonstrate up to 39% energy savings with little or no negative impact on 
performance. Minartz et al. [Minartz et al. 2011] investigated the power-saving 
opportunities of applying DVFS to AMD and Intel clusters for parallel computing. 
They find 4~8% overall system energy saving with slight increases in execution time. 
All of the above theoretical analyses and empirical experiments form a foundation to 
drive a large number of software techniques to improve the energy efficiency of 
parallel computing. 
  

 
Figure 1. Taxonomy of software methods to improve the energy efficiency of parallel computing. 

Taxonomy of energy efficient methods for parallel computing  
In order to improve energy efficiency, supercomputers need to take both 
instantaneous power usage and total energy consumption into account. Power saving 
can be achieved at different granularities, such as per job, per node and the whole 
system. Software stacks should utilize various hardware power-saving techniques 
efficiently by taking advantage of application characteristics. We classify the 
methods to improve the energy efficiency of parallel computing in the software layer 
into the following categories, as illustrated in Figure 1.  
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1) Resource management: typically, an HPC system is shared by a number of users 
and it frequently executes multiple jobs simultaneously. The first category consists 
of methods exploiting energy saving opportunities at the whole system level using 
a job scheduler or resource management system. By monitoring the energy 
consumed by a HPC system and the performance achieved by each application, the 
resource management system can take appropriate actions to save power or to 
improve energy efficiency according to job specifications [Georgiou et al. 2014; 
Martin et al. 2015; Pedretti et al. 2015]. In addition, mapping a number of waiting 
jobs to available nodes should consider the energy characteristics of each 
application and the power capability of the physical resources [Elnozahy et al. 
2003; Lawson and Smirni 2005; Zhou et al. 2014; Mämmelä et al. 2010; Marathe et 
al. 2015]. As the performance provided by a supercomputer is becoming power-
constrained, hardware overprovisioning has attracted signification attention in the 
HPC community [Etinski et al. 2010; Etinski et al. 2012; Patki et al. 2013; Patki et 
al. 2015; Sarood et al. 2013; Sarood et al. 2014; Ellsworth et al. 2015].  

2) Parallelism-specific optimization: the second category consists of methods 
exploiting energy saving opportunities enabled at different levels of parallelism, 
such as processes, threads, and hybridization. Load imbalances between processes 
and threads generate significant opportunities to decrease energy consumption. 
DVFS has been applied to improve the energy efficiency of MPI programs by 
lowering the frequency of processors with light load [Ge et al. 2005; Hsu and Feng 
2005; Hsu and Kremer 2003a; Kappiah et al. 2005; Freeh et al. 2005a; Freeh et al. 
2005b; Li et al. 2010a; Rountree et al. 2007; Rountree et al. 2009; Rountree et al. 
2011]. Dynamic Concurrency Throttling (DCT) is proposed to control the number 
of active CPU cores for multi-threaded programs, including OpenMP programs, at 
runtime [Curtis-Maury et al. 2006a; Curtis-Maury et al. 2006b; Curtis-Maury et 
al. 2007; Freeh et al. 2007a; Grant and Afsahi 2006; Li and Martinez 2006; Li et 
al. 2010b; Suleman et al. 2008]. The balance between performance and energy 
consumption is also investigated for hybrid MPI/OpenMP applications [Li et al. 
2010b; Bailey et al. 2015]. Further, innovative hardware components, such as 
accelerators, FPGAs, and coprocessors, that provide vector level parallelism, 
frequently support improved energy efficiency compared to multicore CPUs [Enos 
et al. 2010; Wang and Ren 2010; Ghosh et al. 2012; Ma et al. 2012; Huang et al. 
2009; Li et al. 2011; Collange et al. 2009; Suda and Ren 2009; Li et al. 2014; Luk et 
al. 2009; Fowers et al. 2013]. Some of these methods depend on energy 
improvement of compiler techniques [Hsu and Kremer 2003b; Saputra et al. 2002; 
Keramidas et al. 2010; Leon et al. 2015]. 

3) Improving communication energy efficiency consists of three groups of methods: a) 
saving power for network fabric using power-aware networks [Conner et al. 2007; 
Alonso et al. 2006; Nedevschi et al. 2008; Saravanan et al. 2013; Saravanan et al. 
2014; Groves and Grant 2015; Miwa et al. 2014; Miwa an d Nakamura 2015]; b) 
improving communication energy efficiency using energy-aware data transfer 
algorithms [Lim et al. 2006; Kandalla et al. 2010; Venkatesh  et al. 2015; Alan et 
al. 2015]; and c) decreasing network traffic using communication-avoiding 
algorithms [Demmel et al. 2013; Grigori et al. 2011]. 

4) Automatic tuning: this category treats a parallel application as a black box and 
improves its energy efficiency by tuning several energy and performance 
parameters [Balaprakash et al. 2013; Gschwandtner et al. 2014b; Jordan et al. 
2012; Miceli et al. 2012; Rahman et al. 2011; Tiwari et al. 2012].  
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5) Approximation: the last category is to improve energy efficiency using 

approximation, such as mixed floating-point precision [Anzt et al. 2010; Dongarra 
et al. 2012; Lam et al. 2013; Linderman et al. 2010; Rubio-Gonz´alez et al. 2013; 
Schkufza et al. 2014], significance-based computing using NTV [Dreslinski et al. 
2010; Gschwandtner et al. 2014a], and providing approximated computing results 
for applications that can tolerate inaccurate computation [Baek and Chilimbi 
2010; Sampson et al. 2011; Hoffmann et al. 2009; Hoffmann et al. 2011].  

Saving energy with power-aware resource management 
The resource and job management system, which is also called the job scheduler, 
distributes waiting jobs to available compute nodes. Traditionally, it only considers 
improving job performance and maximizing overall system utilization. Because the 
job scheduler has a global view of the system, including compute resources, running 
jobs’ termination times and waiting jobs’ performance requirements, it is the best 
candidate for monitoring and controlling the energy consumed by parallel 
applications. To achieve this target, traditional job schedulers must be improved to 
track energy usage in real time and to predict power requirements. With these two 
enhancements, the job scheduler can allocate both compute nodes and power to 
waiting jobs by treating power and energy consumption as job characteristics. 
Initially, many power-aware job schedulers [Elnozahy et al. 2003; Lawson and 
Smirni 2005; Zhou et al. 2014; Mämmelä et al. 2010; Marathe et al. 2015] focus on 
optimizing overall energy usage. Recently, investigating the impact of a power bound 
imposed on future supercomputers has attracted more attention [Etinski et al. 2010; 
Etinski et al. 2012; Patki et al. 2013; Patki et al. 2015; Sarood et al. 2013; Sarood et 
al. 2014; Ellsworth et al. 2015]. The node variability of power consumption in 
supercomputers and its impact on job scheduling are also investigated recently 
[Inadomi et al. 2015; Scogland et al. 2015].  

Power-aware job scheduling 

Compute nodes consume significant energy even when idle. For example, an idle 
Blue Gene/P rack consumes around 13kW [Zhou et al. 2014]. Turning off idle nodes 
during low system utilization is a straightforward way to save power. In addition, 
adjusting CPU frequencies on targeted compute nodes can also save significant 
energy [Etinski et al. 2010; Etinski et al. 2012; Mämmelä et al. 2010].  

SLURM (Simple Linux Utility for Resource Management)’s existing resource 
utilization collection module is extended to track energy consumption using both 
RAPL and IPMI and to support energy accounting and control [Georgiou et al. 2014]. 
With these extensions, SLURM can profile power usage for each job and 
programmers can control the CPU frequency. Aiming to be deployed on large-scale 
systems, the overhead of energy monitoring in SLURM is optimized to be lower than 
0.6% in energy consumption and less than 0.2% in execution time with less than 2% 
error rate in most cases. 

Cray Advanced Platform Monitoring and Control (CAPMC) [Martin et al. 2015] 
supports monitoring and controlling of power consumption on Cray XC systems. It 
reports energy usage both per compute node and per job. In addition, CAPMC 
supports both CLI and HTTP APIs to allow users to collect energy reports and to 
control power usage per job. It also supports node-level power capping that enables 
external software to establish a maximum or a minimum bound on the amount of 
power consumed by the system or a selected subset of the system [Pedretti et al. 
2015]. In addition, external software can modify CPU frequencies and sleep states 
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dynamically, which allows a job scheduler to reallocate power among nodes and to 
limit the system power consumption within a predefined range.  

A power-aware job scheduler designed for IBM Blue Gene/P [Zhou et al. 2014] can 
reduce energy costs by allocating resources according to variable electricity prices 
and application power profiles. In particular, this job scheduler prefers allocating 
jobs demanding high power consumption during the off-peak electricity price period 
using a 0-1 knapsack model. With the online scheduling algorithm, a number of jobs 
within the scheduling window are allocated to available resources. The scheduling 
objective is to maximize system utilization without exceeding the predefined power 
budget and to make a trade-off between performance and fairness simultaneously. 
Simulation of the proposed scheduler using both synthetic and real job traces show 
reductions of energy costs can be up to 25% with slightly lower system utilization. 

Different scheduling policies are investigated for power-aware job schedulers 
[Elnozahy et al. 2003; Lawson and Smirni 2005; Zhou et al. 2014; Etinski et al. 2010; 
Etinski et al. 2012; Mämmelä et al. 2010; Marathe et al. 2015]. Most of them extend 
the EASY (Extensible Argonne Scheduling system) backfilling policy and work in an 
online mode. In particular, the dynamic policies of turning on/off compute nodes 
according to workload fluctuation were studied [Elnozahy et al. 2003; Lawson and 
Smirni 2005]. An accurate workload prediction model is the key to the efficiency of 
these algorithms. In many cases, lowering CPU frequency using DVFS for each 
compute node based on jobs’ power characteristics can allow more jobs to run 
simultaneously, which can save power and decrease average job waiting time 
[Etinski et al. 2010; Etinski et al. 2012; Mämmelä et al. 2010]. Elnozahy et al. 
[Elnozahy et al. 2003] investigate how to adjust CPU frequencies and dynamically 
turn compute nodes on or off simultaneously. Most of these scheduling algorithms 
rely on an accurate power and energy prediction model for applications. Conductor 
[Marathe et al. 2015] is a run-time system that intelligently allocates power, nodes, 
and cores to applications. Using DVFS and dynamically changing the number of 
threads, Conductor outperforms other power-constrained schedulers that adopt static 
power capping per node by up to 30%. Etinski et al. [Etinski et al. 2010; Etinski et al. 
2012] investigate how to efficiently utilize the overall system resource given a power 
budget. The above power-aware schedulers are designed to optimize overall energy 
efficiency and to maximize system throughput, but do not consider the global power 
bound imposed on future supercomputers. 

Power-bound resource management 

The power that can be supplied to a supercomputer will reach a physical bound in the 
future. In addition, the energy cost of operating supercomputers may also be 
restricted. Some experts estimate each MW-year costs $1M. Therefore, although 
future supercomputers will have more compute nodes, they potentially may not all be 
able to run simultaneously with peak performance. Similarly, the number of active 
cores on each chip may be restricted (i.e., “dark silicon”).  

Presently, most supercomputers are designed with worst-case provisioning, in 
which the maximum power draw per node decides the total power allocated to a 
computer and is designed to make all nodes run at peak power simultaneously. 
However, many studies show that most supercomputers are under-utilized in terms 
of power consumption. For example, Vulcan, a Blue Gene/Q at LLNL (Lawrence 
Livermore National Laboratory) consumes only 60% of allocated power on average 
over a 16-month period [Sarood et al. 2013]. Further, raising power allocated to CPU 
and memory does not generate a proportional increase in application performance 
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[Patki et al. 2013; Sarood et al. 2013]. In addition, most scientific applications do not 
fully utilize the maximum power allocated to each compute node [Sarood et al. 2013; 
Patki et al. 2015]. In order to utilize the allocated power more efficiently, hardware 
overprovisioning is proposed, initially by Patki et al. [Patki et al. 2013]. By 
overprovisioning, a supercomputer consists of compute capacity that is more than can 
be fully powered under the power constraint, but not all system components can run 
simultaneously at peak power. Instead, the system must be reconfigured dynamically 
according to the workload’s power requirements and characteristics such as 
scalability and memory intensity. Patki et al. [Patki et al. 2013] show that 
overprovisioning can be leveraged to improve overall system throughput and to 
decrease average turnaround time. In particular, overprovisioning outperforms 
worst-case provisioning by up to 50%. 

Sarood et al. [Sarood et al. 2014] proposed an online scheduler for an 
overprovisioned supercomputer that can constrain the power consumption of each 
node using RAPL and optimally allocate power and nodes to queued jobs. The goal is 
to maximize the job throughput for a supercomputer given a power budget. Each 
time a new job request arrives or currently running jobs terminate, the scheduler re-
allocates resources to both running jobs and selected waiting jobs. Mapping nodes 
and power to jobs is formulated as a resource optimization problem that is solved 
using an Integer Linear Program (ILP). The scheduling scheme assumes each 
parallel job is malleable such that the job can shrink or expand across a different 
number of nodes or CPU cores at runtime. The scheduler also relies on a prediction 
model to estimate the power and performance characteristics for each job at different 
scales. The online scheduling uses the performance and power characteristics of each 
job to make resource allocation decisions that can change the resources allocated to a 
running job. Using simulation, job throughput is improved up to 5.2X in comparison 
to power-unaware SLURM. With real experiments on a small-scale cluster, 1.7X 
improvement of job throughput is obtained. 

Patki et al. [Patki et al. 2015] propose a practical and low-overhead resource 
manager for power-constrained clusters, called RMAP (Resource MAnager for Power). 
With overprovisioning, RMAP supports power-aware backfilling. It aims to provide 
faster job turnaround times with increased overall system resource utilization. 
RMAP predicts the performance and power consumption for each application 
according to its profiling. Using the estimated power and performance for each 
application on different configurations, RMAP can allocate idle power to appropriate 
waiting jobs. But it does not change the configuration of running jobs. Simulation is 
performed to compare RMAP with traditional scheduling policy by investigating real 
world scientific applications, and the results show RMAP’s new policy increases 
system power utilization with 18.5% faster average turnaround time.  

Ellsworth et al. [Ellsworth et al. 2015] propose a power scheduler (POWsched) to 
enforce a system-wide power limit. POWsched maintains a system-wide power bound, 
and implements a dynamic policy to allocate wasted power to more power-intensive 
applications. POWsched does not predict the power consumption and performance for 
each application. Instead, it assumes the power consumption of each application is 
consistent during a short time period. At each round of scheduling, POWshed 
monitors the power consumption of each application in real time, and detects surplus 
power allocated to each node. When power is abundant, the surplus power is 
reallocated to power-scarce nodes. Otherwise, a fair allocation of power across nodes 
is achieved. The dynamic scheduling policy adjusts power capped for each application 
and guarantees each node is allocated with enough power to avoid significant 
performance degradation. Simulation demonstrates that POWshed can decrease 
overall workload execution time by around 14%. 
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Parallelism-specific methods of energy efficient parallel computing 
The parallelism-specific software methods of improving energy efficiency of parallel 
computing consist of four groups. The first group applies to process-level parallelism, 
which exploits imbalanced load distributions. An imbalanced workload across 
machines or CPU cores causes inefficient resource utilization. In addition, an 
application frequently consists of memory bound or I/O bound phases during the 
computation, in which lowering CPU frequency can save power with little or no 
performance degradation. The second group works at thread-level parallelism to 
improve the multi-threaded program’s energy efficiency by controlling the number of 
active threads. The third group handles hybrid MPI and OpenMP applications by 
combining the technologies used to save power for MPI programs and for multi-
threaded applications. The last group is for hybridization that exploits an energy 
efficient hybrid-computing component.  

DVFS-based power-saving methods for MPI applications 

DVFS has been recognized as one of the most effective ways to reduce processor 
power dissipation. It has been applied to parallel computing, including MPI 
applications, to adjust the tradeoff between energy savings and performance 
dynamically. It works particularly well for applications with load imbalances, 
including load imbalances between compute nodes and between CPU, memory, and 
I/O, at a cost of negligible performance degradation.  

DVFS can be applied at different levels, such as a whole program or a function 
call. Using the Wattch CPU energy and performance simulator [Brooks 2000], Hsu 
and Kremer [Hsu and Kremer 2003a] investigate the opportunity of applying DVFS 
to save energy for highly optimized scientific codes by taking advantage of memory 
stalls. In particular, using five SPECfp95 benchmark applications, they demonstrate 
that energy consumption can be reduced up to 60% with a performance penalty of 
9.58% or less. Freeh et al. [Freeh et al. 2005b] investigated the opportunity to save 
energy for MPI programs in power scalable clusters by reducing processor frequency. 
However, the power saving depends on application characteristics, including the 
ratio of computation-to-communication and memory stalls. In the case of perfect 
speedup, both energy consumption and execution time can be saved using more nodes 
at a lower CPU frequency. Ge et al. [Ge et al. 2005] investigate the appropriate 
granularity of applying DVFS to HPC applications on power-aware clusters. They 
find applying DVFS to a whole program saves less overall energy than applying it to 
finer levels, because power saved during idle periods is offset by increased execution 
time of non-idle periods. In addition, they separate the FT application of the NPB 
Parallel Benchmarks to different regions using communication-to-computation ratio 
and apply DVFS to each region. This method can decrease up to 36% energy 
consumption without noticeable performance loss. 

Detection of finer granularities. To apply DVFS to parallel applications at finer 
granularities, it needs to detect regions in the application with different degrees of 
idleness or load imbalances. Typically, a parallel application is split into a series of 
phases and a different CPU frequency is used for each phase. Identifying the idle and 
non-idle periods of a parallel application is typically based on the iterative nature of 
most scientific computation. Most methods that identify the idle periods of a parallel 
application are either profile-directed [Hsu and Feng 2005; Freeh et al. 2005a;] or 
trace-driven [Rountree et al. 2007]. The boundaries between different phases are 
determined using communication APIs, computing patterns, and memory access 
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patterns. The methods of applying DVFS to a parallel application consist of external 
methods and internal methods. The external methods monitor the execution of a 
parallel application to predict its behavior and accordingly adjust the CPU frequency 
of each machine [Hsu and Feng 2005; Lim et al. 2006]. In contrast, the internal 
methods allow parallel applications to adjust CPU frequency directly, which are 
typically achieved using instrumentation [Freeh et al. 2005a; Kappiah et al. 2005]. 
Finally, it is an NP-complete problem to apply appropriate CPU frequencies to 
different regions optimally. Frequently, it can be estimated using optimization 
algorithms, such as linear programming [Rountree et al. 2007] and heuristic-based 
searching algorithms [Freeh et al. 2005a]. 

Some methods that identify the different regions of an MPI application not only 
need to intercept MPI calls, but also rely on compiler support to detect memory or I/O 
bound phases. Saputra et al. [Saputra et al. 2002] propose energy-conscious 
compilation based on DVFS. In particular, they adapte many loop-oriented compiler 
optimizations such as loop permutation, tiling, and loop fusion and distribution 
[Wolfe 1996] to save energy. Hsu and Kremer [Hsu and Kremer 2003b] present a 
profile-driven compiler optimization technique to identify program regions using 
memory stalls. While executing these regions, the CPU frequency is reduced to save 
energy consumption. The target program is instrumented to detect the boundaries 
between regions based on analyzing loops and function calls. The profiling phase 
records the execution time of each region at different CPU frequencies and estimates 
the corresponding energy consumption.  

DVFS-enhanced MPI runtime systems. Many MPI runtime systems [Hsu and Feng 
2005; Freeh et al. 2005a; Kappiah et al. 2005; Rountree et al. 2007; Ge et al. 2007b; 
Rountree et al. 2009] are proposed to adjust CPU frequencies dynamically, most of 
which are online methods. Profile-driven methods detect workload characteristics for 
a program, then split the program into different regions by instrumentation and 
adjust CPU frequencies for each region at runtime. In contrast, non-profile methods 
monitor the execution of an application to detect idleness or to predict the 
performance and adjust CPU frequencies for different time intervals. Some methods 
focus on intra-node load imbalances [Hsu and Feng 2005; Freeh et al. 2005a; Ge et al. 
2007b], while other methods [Kappiah et al. 2005; Rountree et al. 2007; Rountree et 
al. 2009] analyze inter-node load imbalances using a DAG (Directed Acyclic Graph) to 
represent the dependencies between computation and communication tasks and to 
lower CPU frequencies for tasks not on the critical path. 

Hsu and Feng [Hsu and Feng 2005] propose a power-aware algorithm to schedule 
the execution of a parallel application running on a cluster by dynamically adjusting 
the CPU frequency of each compute node. In particular, each compute node 
asynchronously updates its CPU frequency periodically (every I seconds). Without 
profiling the targeted application, the preferred CPU frequency is estimated for the 
next period based on the MIPS rate observed during the current period. The proposed 
algorithm is evaluated on an AMD Athlon64-base cluster and an Opteron-based 
cluster respectively using the NAS-MPI benchmarks. On average, 12% CPU energy is 
saved with 4% performance slowdown on the AMD Athlon64-base cluster; while on 
the Opteron-based cluster, 8%~25% CPU energy is saved with 3% performance 
slowdown. 

Freeh et al. [Freeh et al. 2005a] propose a method to change CPU frequencies in 
MPI programs dynamically on a power-scalable cluster. They split an MPI program 
into a series of phases and assign a preferred frequency to each phase. The program 
is partitioned according to detected CPU stall periods, during which the CPU waits 
for memory, disk or communication. A suitable performance-energy point, called a 
gear, is selected for each phase. Phase detection applies to iterative and predictable 
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parallel applications. The boundaries between different phases are determined 
mainly according to two rules: 1) any MPI operation; and 2) an abrupt memory 
pressure change, which is measured using the metric operations per miss (OPM). The 
detected phases are ordered according to the energy-time tradeoff. The MPI program 
is profiled using the MPI profiling layer. The proposed method is evaluated on an 
AMD Athlon-64s system using the NAS Parallel Benchmarks. The results show the 
proposed method can save up to 16% energy at a cost of 1% performance loss. 

Kappiah et al. [Kappiah et al. 2005] propose a system, called Jitter, to save energy 
consumption in MPI programs by exploiting inter-node slack. Jitter applies to the 
case that the computational load is not perfectly balanced. In particular, it reduces 
the frequency on nodes that are assigned less computation. MPI processes that are 
not on the critical path can arrive at synchronization points early. Therefore, 
processes on the critical path determine overall execution time. Given an iterative 
program with stable iterations, early iterations are profiled to predict the behavior of 
subsequent iterations. Iteration boundaries are detected according to MPI calls. For 
every iteration loop, each compute node calculates its local wait time and iteration 
time. When the ratio of wait-to-iteration time exceeds a predefined threshold, the 
process identifies itself as a slack node and accordingly decreases its frequency. In 
contrast, when the ratio is small enough, the process may convert to a bottleneck 
process and increase its frequency. The predefined switching threshold is hand-tuned 
for each system. The proposed method is evaluated on an AMD Athlon-64s system for 
the ASCI Purple benchmarks and NAS Parallel Benchmarks. The results 
demonstrate that Jitter can save up to 8% energy usage for the ASCI Purple 
benchmarks at a cost of 2.6% performance loss. 

Rountree et al. [Rountree et al. 2007] develop a system that determines a bound 
on the energy savings for an MPI application given an acceptable performance loss. 
Specifically, an MPI program is split into a series of tasks according to MPI calls. 
Accordingly, a task graph is created to represent the dependency/communication 
between tasks. Subsequently, heuristic-based linear programming determines an 
appropriate CPU frequency for each task in terms of the tradeoff between 
performance and energy. The proposed method is evaluated using 3 scientific 
applications: Jacobi iteration, a particle simulation, and an unstructured mesh 
application (UMT2K), in which the particle simulation and UMT2K exhibit load 
imbalance. With a bound of zero performance loss, Jacobi has no potential energy 
reduction. In contrast, an energy reduction of up to 15% is available with the particle 
simulation and the potential reduction for UMT2K is only 3%. 

CPU Miser [Ge et al. 2007b] is an online method of applying DVFS to parallel 
applications on a power-aware cluster. It optimizes the energy consumption for a 
parallel application according to a given power budget and a user specified 
performance loss. In particular, CPU Miser splits the runtime into a series of time 
intervals. It monitors a parallel application’s performance in the current time 
interval and predicts its performance for the next interval using the RELAX 
algorithm [Ge et al. 2007b]. Evaluation is conducted using the NAS Parallel 
Benchmarks and showed that CPU Miser can reduce energy consumption up to 20% 
and constrain performance loss to within 5%. 

Rountree et al. [Rountree et al. 2009] develop Adagio to apply DVFS to an MPI 
program dynamically at runtime. Using MPI calls, Adagio splits an MPI application 
into a group of tasks that are represented using a DAG (Directed Acyclic Graph). 
Critical path analysis identifies non-critical tasks for which performance can be 
degraded to save power. Adagio does not profile the target application prior to its 
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execution. On the contrary, it deploys an online policy to monitor the execution of 
each task. For a real-world scientific application, Adagio assumes each task’s 
behavior is identical at every invocation. The highest frequency is applied to a task 
for its first invocation and the lowest frequency is applied to its second invocation. 
The execution time of both invocations is recorded to estimate the task’s performance 
degradation when applying different frequencies. An appropriate, reduced frequency 
is applied to the task’s subsequent invocations if it is not on the critical path. The 
performance of Adagio is evaluated using two real-world applications, UMT2K, an 
unstructured mesh application assembled by LLNL, and ParaDis, a dislocation 
dynamics simulation. Adagio decrease total energy consumption by 8% and 20% for 
UMT2K and ParaDis respectively at a cost of less than 1% increase in execution time. 

Power-saving for multi-threaded applications 

Systems with multiple cores per node can use shared memory to parallelize threaded 
applications. In general, increasing the number of threads up to at least the number 
of cores on the node obtains the maximal performance. However, the optimal number 
of threads for an application depends on the maximum degree of its built-in 
parallelism and hardware characteristics, such as off-chip bandwidth. Dynamic 
concurrency throttling (DCT) [Curtis-Maury et al. 2006a; Curtis-Maury et al. 2006b; 
Curtis-Maury et al. 2007; Suleman et al. 2008; Li et al. 2010b] controls the active 
number of threads and switches off inactive cores to save energy for multi-threaded 
applications, including OpenMP programs. Grant and Afsahi [Grant and Afsahi 2006] 
investigate using AMP (asymmetric multiprocessors), the processors of which are not 
operating at the same frequency, to save energy for multi-threaded programs. After 
examining the NAS Parallel and SPEC benchmarks on a 4-way SMP server, they 
find that using an appropriate thread scheduler to apply an optimal frequency to 
each processor reduces energy consumption by an average 15.6% at a cost of 6.1% 
performance loss when hyper-threading (HT) is disabled. In contrast for a HT 
enabled case, 7.1% energy saving is achieved with a 4.8% performance loss. 

Curtis-Maury et al. [Curtis-Maury et al. 2006a; Curtis-Maury et al. 2006b; Curtis-
Maury et al. 2007] propose a dynamic phase-aware performance prediction (DPAPP) 
model to provide concurrency throttling for multi-threaded programs. DPAPP can 
predict application performance under different concurrency levels and thread 
placement strategies on NUMA nodes. In particular, a multivariate process is 
required to train the DPAPP model to select hardware events that reflect the 
scalability of each program phase across different hardware configurations. The 
proposed method is designed for the iterative execution of scientific applications and 
can support any application with repetitive behavior as long as the execution 
properties of each phase between executions remain relatively stable and the 
concurrency is modifiable. The DPAPP model is trained during early iterations. For 
subsequent iterations, the trained model steers concurrency throttling at runtime to 
identify phases in which energy can be saved without sacrificing performance. 

The optimal thread count for an application depends on the input set and machine 
configuration. Suleman et al. [Suleman et al. 2008] investigate the optimal number of 
threads limited by data-synchronization and off-chip bandwidth. Specifically, when 
the number of threads exceeds a threshold determined by the contention for shared 
data or bus bandwidth, additional threads do not improve performance and waste 
chip power. In particular, Suleman et al. propose feedback-driven threading (FDT) to 
control the number of threads dynamically for applications with iterative loops. In 
terms of implementation, the first few loops (at most 1% of the total loops) are 
sampled to estimate the application behavior to adjust the thread count for 
subsequent loops. 
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Li and Martinez [Li and Martinez 2006] investigate the application of both DVFS 
and DCT to optimize the power consumption of a parallel application executing on a 
many-core CMP. They explore a two-dimensional optimization space for the run-time 
power-performance tradeoffs: 1) the possible number of active processors; and 2) the 
different voltage-frequency levels available. In particular, they study how to 
maximize power saving while delivering a specified level of performance. A heuristic-
based search algorithm, a combination of binary search and hill-climbing 
optimization, is applied to each axis of the search space to converge quickly toward 
the global optimum. Freeh et al. [Freeh et al. 2007a] investigate the same problem, 
but they find that DVFS should be used first and then DCT should be considered. In 
addition, Freeh et al. observe the effectiveness of DCT is application-dependent and 
the improvement to parallel workloads ranges from small to negligible. 

Power-saving for hybrid MPI and OpenMP applications 

To handle hybrid MPI and OpenMP applications, the techniques used to save energy 
for MPI programs and for multi-threaded applications are typically combined 
together. Li et al. [Li et al. 2010b] propose a power-aware performance prediction 
model for hybrid MPI/OpenMP applications to support a power-efficient execution 
algorithm using a combined DCT/DVFS system. Each MPI task is partitioned into a 
number of OpenMP phases according to the boundaries delineated by MPI operations. 
DCT is applied to each MPI task with a coordination scheme. In addition, the slack 
period of non-critical MPI tasks is identified in order to apply DVFS. The 
effectiveness of the proposed method relies on the prediction of the energy 
consumption of each OpenMP phase. Using the NAS Parallel Benchmark Multizone 
suite, they find power saving opportunities increase with MPI task count under weak 
scaling but diminish under strong scaling. The method reduces energy consumption 
by 4.2% on average with negligible performance loss or even performance 
improvement up to 7.2%. 

Bailey et al. [Bailey et al. 2015] investigate application performance limitations 
for power-constrained hybrid MPI and OpenMP applications. The dependencies 
between the communication and computation tasks of an application are represented 
using a DAG. A linear programming (LP) formulation is used to optimize the 
configuration for each task of a DAG. In particular, scheduling sets appropriate 
DVFS states and OpenMP thread counts for computational tasks between 
consecutive MPI calls. The proposed solution is evaluated using four fluid and 
molecular dynamics applications (CoMD, LULESH, and NAS-MZ SP and BT). The 
conclusion is that algorithms such as LP demonstrate significant opportunities to 
improve power-constrained performance of current runtime systems, by up to 41.1%. 

Hybridization-specific energy saving 

Hybrid computers that are equipped with heterogeneous computing components, 
such as GPUs, FPGAs, and Intel Phi coprocessors, support highly parallel execution 
for modest energy consumption. Many projects have demonstrated the superior 
power efficiency of these heterogeneous components. Several research projects 
[Williams et al. 2010; Fowers et al. 2013] compare GPUs and FPGAs in terms of both 
performance and energy consumption. Williams et al. [Williams et al. 2010] perform 
a device characterization analysis in which they find that FPGAs provide better 
performance for bit operations and 16-bit and 32-bit integer operations, while GPUs’ 
performance is superior in single-precision and double-precision operations. In 
contrast, FPGAs are more energy efficient than GPUs. Using convolution as a 
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benchmark, Fowers et al. [Fowers et al. 2013] find FPGAs are superior to GPUs in 
both performance and energy consumption.  

Presently, while many hybrid supercomputers have NVIDIA GPUs, Intel’s Xeon 
Phi architecture is emerging as an energy efficient alternative. Li et al. [Li et al. 2014] 
compare the Intel Xeon Phi 5110P with an old GPU model, an NVIDIA c2050, in 
terms of both performance and energy consumption using two SHOC kernels. The 
memory bound Reduction kernel is a little more energy efficient with the Xeon Phi 
than the GPU. Similarly, when the compute bound GEMM application is evaluated, 
the Xeon Phi is slightly more efficient for large problem sizes.Initial investigation. Huang 
et al. [Huang et al. 2009] examine the energy efficiency of GPUs for scientific 
computing. They compare the multi-threaded version of GEM, a bio-molecular 
program that calculates electrostatic properties of molecules, with its CUDA 
implementation. An experiment on a compute server equipped with an Intel Core 2 
Duo CPU and a NVIDIA GT200 GPU demonstrate that the GPU is several hundred 
times more energy efficient as measured by energy-delay product. 

Enos et al. [Enos et al. 2010] quantify the impact of GPUs on the performance and 
energy efficiency of parallel computing by executing four HPC applications on an 
NCSA cluster that is equipped with Opteron dual core processors and NVIDIA Telsa 
C1060 GPUs. They use performance-per-watt to compare the energy efficiency of 
CPU-only and GPU accelerated versions. In particular, NAMD, a parallel molecular 
dynamics simulation package, show only 2.78X more energy efficiency with its GPU 
implementations. The energy efficiency of MILC, a Quantum Chromodynamics 
application, is improved 8.1X with the GPU. VMD, a molecular visualization and 
analysis tool, achieve 10.48X more energy efficiency with its GPU accelerated version. 
QMCPCK, a set of Quantum Monte Carlo methods to solve the many-body problem of 
interacting quantum particles, exhibite 22X improvement of energy efficiency with 
the GPU. 

Although GPUs provide an order of magnitude improvement in energy efficiency 
for parallel computing, each of these devices consumes significant energy. For 
example, an NVIDIA GTX 280 video card is rated at 236 watts and an NVIDIA Tesla 
C2050 consumes up to 225 watts [Enos et al. 2010], while the power supply of a 
typical compute node supports around 500 watts [Huang et al. 2009]. Overall, GPUs 
in a hybrid system may consume up to 75% of the total energy usage [Enos et al. 
2010].  

Ghosh et al. [Ghosh et al. 2012] investigate the energy consumption of several 
parallel scientific kernels on multiple GPUs. Specifically, they examine Matrix-
Matrix Multiplication, Fast Fourier Transform, Pseudo-Random Number Generator, 
and 3D Finite Difference Stencils. Although these applications possess different 
communication and computation patterns, some common parameters, such as the 
number of global memory accesses and power consumption to operations per unit 
time, determine the energy consumption of GPU devices. Collange et al. [Collange et 
al. 2009] find that memory access patterns and bandwidth have a significant impact 
on the performance and energy consumption of GPUs. Suda and Ren [Suda and Ren 
2009] suggest a way of improving the energy efficiency of GPU devices by maximizing 
the number of active threads on the accelerator. 

Power saving of DVFS. Applying DVFS to accelerators, such as GPU devices, is 
investigated [Jiao et al. 2010; Abe et al. 2012; Ge et al. 2013; Mei et al. 2013]. Jiao et 
al. [Jiao et al. 2010] find that the energy efficiency of GPUs is mainly determined by 
two factors: the rate of issuing instructions and the ratio of global memory 
transactions to computation instructions. Abe et al. [Abe et al. 2012] investigate the 
effect of scaling down memory frequency with NVIDIA GeForce GTX 480. Specifically, 
they find 28% of system energy can be saved for matrix multiplication. Ge et al. [Ge 
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et al. 2013] compare the effect of frequency scaling on both CPU and GPU using 
three typical parallel applications. They find that scaling GPU frequency higher do 
not consume more energy. Mei et al. [Mei et al. 2013] investigate the effect of using 
DVFS to improve the energy efficiency of GPUs over a wide range of benchmark 
applications. Overall, 19.28% energy reduction on average is saved by scaling down 
the GPU core voltage and frequency, with up to 4% of performance loss, in 
comparison to the default configuration. However, the exact effect of energy saving 
depends on application characteristics, and it is challenging to find the optimal 
setting of GPU DVFS. Price et al. [Price et al. 2015] investigate how temperature, 
core clock frequency and voltage affect the energy efficiency of GPUs using a radio 
astronomy application. They find that the power efficiency of an NVIDIA K20 GPU is 
improved up to 37–48% over default settings by lowering GPU supply voltage and 
increasing clock frequency while maintaining a low die temperature. 

Workload distribution. A common hybridization method offloads a compute region to 
the accelerator. For example, OpenMP supports offloading a compute region to GPU 
devices. However, offloading often actively uses only one device at any time, with the 
other devices idle during that period. Workload distribution and consolidation are 
proposed to improve the energy efficiency of hybrid computing. 

Instead of offloading a compute region manually, several research projects 
propose automated mechanisms to distribute workload across heterogeneous 
multiprocessors to improve the utilization of a hybrid machine. Qilin [Luk et al. 2009] 
supports an automatic technique to adaptively map computations to heterogeneous 
processing elements on a hybrid machine equipped with CPUs and GPUs. Qilin 
supports APIs to allow programmers to edit data parallelism and task parallelism. 
Each Qilin program is compiled into a number of small tasks that are represented 
using a DAG. An empirical approach that dynamically determines how to map each 
task to heterogeneous processing elements consists of two phases: training run and 
reference run. The first time that an application is executed is its training run in 
which the CPU and GPU execution time of each task is recorded. During the 
application’s subsequent execution, the reference run, each task’s partition ratio 
between CPU and GPU is dynamically determined according to the information 
recorded during its training run. Compared to static mappings, Qilin reduces energy 
consumption by 20% and improves performance by 25% on average for a set of 
important computations. 

Wang and Ren [Wang and Ren 2010] propose a power-efficient work distribution 
algorithm to change the ratio of workload distribution and scale processor frequency 
dynamically to maximize overall system energy efficiency. They adopt a source-to-
source compiler and extend the OpenMP language to support workload distribution. 
A number of important computations are evaluated on an Intel Core I7 CPU and an 
AMD 4870 GPU using the extended OpenMP language. The results show the 
proposed algorithm reduce 14% energy consumption on average over static mappings. 

Ma et al. [Ma et al. 2012] develop GreenGPU, a holistic energy management 
framework for GPU-CPU heterogeneous systems. GreenGPU maximizes the overall 
system energy efficiency with a two-tier method. The first tier distributes the 
workload across the GPU and CPU dynamically to ensure both finish approximately 
at the same time, while the second tier applies DVFS to adjust the frequencies of 
CPU and GPU cores and memories at runtime to improve overall energy efficiency. 
The proposed method assumes the amount of operations in each loop is similar. The 
statistics collected during execution of early iterations are used to predict that of 
subsequent ones. A heuristic method adjusts the percentage of workload assigned to 
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the GPU dynamically. GreenGPU is evaluated on NVIDIA GeForce GPUs and AMD 
Phenom II CPUs using CUDA benchmarks. The results show that GreenGPU 
reduces energy consumption on average by 24% with negligible performance loss. 

Workload consolidation. Different from workload distribution to improve energy 
efficiency of a single application, workload consolidation aims to increase the overall 
system power utilization by placing multiple applications on the same set of hybrid 
machines. For example, on Cray XC systems, ALPS supports the MPMD mode to 
launch multiple different binaries simultaneously on the same nodes [Hart et al. 
2014]. Li et al. [Li et al. 2011a] develop an energy-aware consolidation framework to 
consolidate multiple hybrid applications on a machine equipped with an Intel Xeon 
E5520 quadcore CPU and an NVIDIA Tesla C1060 GPU. They implement a power 
and performance prediction model to investigate the consolidation’s impact on saving 
energy and improving performance using applications, such as encryption, sorting, 
and searching. They find during consolidation that any single application’s 
performance and energy consumption can be negatively impacted. However, the 
overall execution time and energy efficiency of multiple consolidated applications can 
be improved significantly, between 2 to 20 times on average. 

Communication-oriented power saving 
High speed and low latency communication is essential for performance critical 
parallel applications. Besides custom interconnects, InfiniBand [InfiniBand 2002] 
and Ethernet are the most common commodity networks used to build 
supercomputers, according to the list of the Top500 released in Nov 2015. InfiniBand 
provides extremely low latency and high bandwidth communication and supports 
programmable NICs (Network Interface Cards) that offload protocol processing from 
the host processor. In contrast, Ethernet provides a cost-effective alternative for HPC 
interconnection. Recently Benito et al. [Benito et al. 2015] investigate the scalability 
of Ethernet for building an exascale supercomputer. However, the power 
consumption of the high performance network dominates a significant fraction of the 
total system power usage [Groves and Grant 2015]. Actually, the power consumed by 
the network is mainly used to maintain active links. Given an example of an IBM 8-
port InfiniBand 12X switch, the links consume 64% of the total switch power [Dickov 
et al. 2014].  

Most HPC applications are programmed using the model of bulk synchronous 
parallel (BSP). With the BSP model, all parallel processes are synchronized, and they 
perform computation or communication together almost at the same time. In addition, 
most scientific applications perform a large number of iteration, each of which 
repeats nearly the same pattern of computation and communication. The HPC 
network requirement commonly demands high bandwidth and low latency, because 
the communication phases of an HPC application are frequently optimized. As a 
result, the averaged utilization of the network is low, and may consist of many idle 
periods that provide a significant opportunity to save energy. To take advantage of 
this characteristic of network usage, power-aware networks, such as Energy Efficient 
Ethernet [IEEE 802.3az. 2010], are proposed to save network power using dynamic 
width, frequency, and on/off links. However, the latency caused by state switching of 
a power-aware network, such as the time of adjusting network link width and 
frequency and the delay of disabling and enabling links, must be manipulated to 
avoid unacceptable performance degradation. Energy Efficient Ethernet is evaluated 
for its effect on HPC power saving and performance degradation [Saravanan et al. 
2013; Saravanan et al. 2014; Miwa et al. 2014]. Overall, the effect of using EEE is 
promising for future HPC systems. 
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Besides hardware, the communication stack is also critical for HPC applications. 
Liu et al. [Liu et al. 2009] evaluate and compare the energy consumption of TCP/IP 
and RDMA (remote direct memory access) over InfiniBand. They report that using 
high-speed RDMA adapters consumes a significant amount of power during 
communication, which may be up to 30% of system idle power. However, RDMA has 
better energy efficiency in comparison to TCP/IP, especially for communication 
intensive phases due to much fewer CPU cycles for processing protocols and due to 
lower traffic across memory and bus.  

In the applications layer, there are also significant opportunities to save the 
energy consumed by data transfer. Typically, there are two main policies: 1) 
optimizing and reducing data transfer can improve the energy efficiency of network 
communication, and 2) energy-aware data transfer algorithms are proposed to 
decrease power consumption.  

Power-aware networks  
Saving power for parallel computing by shutting down data links has been 
investigated substantially. The opportunity to save energy for networks is normally 
due to two factors: 1) the average network utilization is low, and 2) the power 
consumption is high even when the network is idle. For example, Conner et al. 
[Conner et al. 2007] examine the opportunities of shutting down links between nodes 
during collective communications. They use simulation to investigate MPI all-to-all 
and all-to-one communications on a 3D Torus network, which is similar to the one 
used in IBM Blue Gene/L. They find approximately 50% of links are unutilized for 
all-to-all scatter and all-to-one reduce operations. Accordingly, almost 99% of the 
total network link time can be set to a shutoff state on a 64-node toroidal network. 
This reduce around 15~28% overall system energy by simulation. Alonso el al. 
[Alonso et al. 2006] investigate using on/off links to save energy for fat-tree networks 
by taking advantage of redundant paths between each source/destination pair and 
inactivity period.  Nedevschi et al. [Nedevschi et al. 2008] investigate how to reduce 
network energy consumption using sleeping and rate-adaptation without adversely 
affecting performance. They find the effect of energy saving using sleeping and rate-
adaptation mainly depends on the power profile of network equipment and the 
utilization of the network. 

Traditionally, the physical layer devices (PHYs) of Ethernet dominate the power 
usage of network. Links are always powered on even when no data is transferred, 
because dummy data needs to be transferred to guarantee each link is active. In 
order to save the power consumed by the idle period, Energy Efficient Ethernet 
supports power saving mechanisms by shutting down idle links. In particular, a EEE 
PHY can switch to a low power mode, called Low Power Idle (LPI), with which up to 
70% power can be saved for Ethernet [Saravanan et al. 2013]. However, the delay 
incurred by switching power state must be tolerated in order to guarantee the 
performance requirement for HPC applications. For example, a 10Gbps EEE link 
takes 3 μs to sleep and 4 μs to wake [Saravanan et al. 2014]. Using simulation, Miwa 
et al. [Miwa et al. 2014] find that EEE significantly decreases the system 
performance and the worst case of performance degradation can be 25%. Saravanan 
et al. [Saravanan et al. 2014] propose identifying the communication pattern of HPC 
applications and accordingly detecting the idle period of network usage to save more 
than 60% energy consumed by network links with 1% performance degradation. 
Miwa and Nakamura [Miwa and Nakamura 2015] investigate power allocation 
policies for a supercomputer with EEE. In particular, a power shifting policy can re-
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allocate the power saved by EEE to other devices. The power shifting is evaluated 
using NAS Parallel Benchmarks, and the results show no performance degradation. 

Similar to EEE, InfiniBand introduces power-saving features. For example, 
Mellanox Host Channel Adapters support Speed Reduction Power Saving (SRPS) and 
Width Reduction Power Saving (WRPS), with which the bandwidth of each port and 
the number of active lanes can be adjusted. Manipulating InfiniBand links to save 
power by taking advantage of the idle period of the HPC network are also 
investigated [Dickov et al. 2014; Dickov et al. 2015]. After analyzing the trace of 
typical HPC applications, such as WRF, and NAS Parallel Benchmarks, Dickov et al. 
[Dickov et al. 2014; Dickov et al. 2015] detect 90% of the total network idle time is 
inside idle internals typically longer than 200 μs. They propose to use prediction 
algorithms to detect these large idle periods and accordingly to shut links off during 
these periods. Using simulation that assumes switching link mode between on and 
off takes around 10 μs, they show around 20%~30% energy can be saved with the 
averaged performance loss less than 1%. One drawback of similar methods is that 
they cannot efficiently handle sudden changes in the network traffic. 

Groves and Grant [Groves and Grant 2015] investigate the existing InfiniBand 
products in terms of power saving. As reported, there is potential for modest power 
saving with InfiniBand’s WRPS. But the present real systems still need to improve in 
order to leverage these savings fully. In particular, the latency of adjusting link 
frequency and width of a Qlogic QDR InfiniBand network is around 4s. Disabling the 
link is as fast as 0.045s, because it has no interaction with the InfiniBand Subnet 
Manager, while enabling the link can take around 4s. With disabling links, a 
Mellanox 36 port switch of 4X width saves 46 watts power, which implies a potential 
for larger power saving on greater widths.  

Energy-aware data transfer 

Many power saving methods [Lim et al. 2006; Kandalla et al. 2010; Venkatesh  et al. 
2015] are applied to the communication phase at the application layer.  Lim et al. 
[Lim et al. 2006] develop an MPI runtime system that supports an adaptive method 
to adjust the CPU frequency transparently during communication phases in MPI 
programs. Specifically, each MPI call in an application is intercepted using the MPI 
profiling layer. An adaptive training phase identifies program regions with a high 
concentration of MPI calls. An appropriate CPU frequency is determined for each 
detected region based on its CPU load, which is measured using the rate micro-
operations/microsecond (or OPS) to achieve the overall energy budget. The proposed 
method is evaluated on a 10-node AMD Athlon-64 cluster using the NAS Parallel 
Benchmarks to show an average energy reduction of 12% at a cost of 2.1% longer 
average execution time. 

Kandalla et al. [Kandalla et al. 2010] propose a power-aware collective 
communication algorithm for multi-core clusters equipped with InfiniBand using 
DVFS and DCT. A typical multi-core aware collective algorithm consists of 3 phases: 
the intra-node phase, the network phase, and the inter-node phase. Power-saving 
techniques are applied to the latter two phases. With the proposed algorithm, during 
the inter-node phase in which data are transferred across the network, the frequency 
of each CPU core is reduced down to its minimal level. In addition, the processes on 
the same CPU socket are grouped and only one group is allowed to process messages 
actively. Accordingly, the CPU frequencies of processes in the groups that are not 
actively processing messages are decreased. During the network phase, the CPU 
frequencies of non-leader processes are decreased. Using the NAS Parallel 
Benchmarks, the proposed algorithm is evaluated on a 64-core Intel Nehalem cluster 
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connected with InfiniBand. The results show an 8% overall energy reduction with 
little performance degradation. 

Venkatesh et al. [Venkatesh  et al. 2015] propose Energy Aware MPI (EAM) that 
supports an application-oblivious MPI runtime to optimize energy consumed during 
communication. EAM aims to optimize the energy consumed at a slack period, i.e., 
the time spent in a single MPI call. Therefore, EAM does not need to profile the 
targeted application. It predicts the communication time for common MPI primitives, 
such as point-to-point, collective, progress, and blocking/non-blocking. When EAM 
detects a slack period is long enough, it applies appropriate power levers, including 
DVFS and core-idling, at the start of an MPI call to decrease energy consumption. It 
works effectively when communication times are increased by workload congestion or 
system noise. In particular, when the predicted communication time exceeds a lever’s 
overhead, the lever is applied. EAM is implemented using MVAPICH2. EAM 
performance is evaluated against the default MPI performance optimization for ten 
applications using up to 4,096 processes and  energy consumption is reduced by 5-41% 
with less than 4% performance loss. 

Alan et al. [Alan et al. 2015] introduce data transfer algorithms that consider 
energy efficiency at the end systems. The algorithms model and estimate the energy 
consumption during data transfers and tune application-layer parameter levels for 
the required optimization. The parameters tuned include pipelining of the transfer of 
a large number of small files, parallelism of the number of streams used to transfer a 
file, and concurrency of the transfer of multiple files over different channels. 
Benchmarking is performed against various non-energy aware algorithms using a 
custom GridFTP client on both wide area and local area network test beds. The 
evaluation find that energy-aware data transfer algorithms can achieve up to 30% 
overall energy savings with no or minimal degradation in throughput. 

Communication-avoidance 

Minimizing communication in numerical linear algebra is extensively studied 
[Ballard et al. 2011; Baboulina et al. 2012]. Ballard et al. [Ballard et al. 2011] 
investigate the communication lower bound for the computation problem the 
structure of which resembles three nested loops, such as matrix multiplication, LU 
factorization, n-body problem, and Fast Fourier transform (FFT). Typically, the lower 
bound is achieved by compensating memory space, i.e. using extra memory to reduce 
communication. In terms of matrix (n by n) multiplication, using the 2.5D algorithm 
[Solomonik and Demmel 2011], the required extra memory space for each node can 

be up to (𝑛
!

𝑝!/! −
𝑛! 𝑝), where p is the number of nodes. With the extra memory 

space, the performance gain can be up to 3X in comparison to the case without extra 
memory [Solomonik and Demmel 2011]. 

Demmel et al. [Demmel et al. 2013] analyze the energy saving effect of 
communication-avoiding algorithms. In particular, they find a region of perfect 
strong scaling exists for communication-avoiding algorithms, in which the execution 
time decreases as the number of processors increases while no extra energy is 

consumed. However, the perfect strong scaling region only exists when 𝑝 ≦ 𝑛!
𝑀!/! , 

where M is the used memory. 
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Saving energy with automatic tuning 
Automatic performance tuning, or auto-tuning [Demmel et al. 2009; Benkner et al. 
2014], is used to minimize the execution time of parallel programs, and optimal 
performance can be obtained with minimal programmer involvement. In the parallel 
computing domain, traditionally automatic tuning is expressed as a single-objective 
problem to improve performance only. Specifically, auto-tuning evaluates a set of 
alternative implementations, searching for the best combination of code 
transformations and parameter settings that delivers optimal performance on the 
targeted architecture. Auto-tuning can provide portable optimized performance 
across different platforms for a domain-specific computing library or a general 
application. 

The general approach of auto-tuning is also suited to optimizing the energy 
consumption of parallel computing [Tiwari et al. 2012]. Represented as a multiple-
objective optimization problem [Balaprakash et al. 2013; Gschwandtner et al. 2014b], 
auto-tuning can be applied to parallel applications to make an optimal tradeoff 
between reducing energy consumption and improving execution time. 

Auto-tuning tools typically search for the right compiler configurations on the 
targeted platform within an extremely large space. The exhaustive search of the 
whole space is too excessively time-consuming to be practical. Therefore, heuristic, 
non-linear optimization, and machine learning are frequently used to prune the 
search space at a risk of possibly losing the best combination. 

Tiwari et al. [Tiwari et al. 2012] utilize Active Harmony [Tapus et al. 2002], which 
is a performance auto-tuning system for distributed applications, to tune the energy 
usage and performance for stencil computation. The auto-tuning is achieved by 
adjusting software level performance-related tunable parameters, including tiling 
factors and loop unrolling factors, and processor clock frequency. An offline search 
method is applied to find the optimal parameter combination with respect to 
performance, energy, energy-delay product, and energy-delay-squared product 
respectively. With the proposed method, energy consumption can be reduced 5.4% 
with only 4% performance loss. 

Rahman et al. [Rahman et al. 2011] develop an automated empirical tuning 
method for scientific applications to balance energy consumption and performance on 
a Chip Multi-Processor machine. They utilize POET [Rahman et al. 2011], an 
interpreted program transformation language for parameterizing compiler 
optimizations, to generate a performance-optimized implementation for an annotated 
source code. A transformation-aware search engine explores the optimization space 
to determine an appropriate value for each optimization parameter specified in a 
POET script. Power consumption statistics collected in real time during the execution 
of the optimized binary provide feedback to tune performance and energy 
consumption collectively. Using matrix computation kernels as benchmarks, the 
proposed method is evaluated on two machines equipped with quad-core AMD 
Opteron processors and quad-core Intel processors respectively. The results show 
energy consumption is decreased without sacrificing performance. 

Balaprakash et al. [Balaprakash et al. 2013] formulate the relation between 
performance, power, and energy for HPC kernels using multi-objective optimization. 
In particular, they use a Pareto front to represent the optimal tradeoff between 
different optimization criteria: time, power, and energy. They investigate common 
HPC kernels, including sparse matrix multiplication, quick sort, and TORCH, for 
making multiple-objective decisions. Additionally, they formulate the conditions in 
which the multi-objective formulation can benefit real problems and the situations in 
which the number of objectives can be reduced. The proposed framework is evaluated 
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on an Intel Xeon Phi coprocessor, an Intel Xeon E5530, and an IBM Blue Gene/Q. In 
the case where optimization objectives are correlated, a single “ideal” decision exists. 
In contrast, significant tradeoffs are required to address orthogonal multiple 
objectives. 

INSIEME [Jordan et al. 2012] supports finding the optimal Pareto set using an 
evolutionary algorithm to prune the search space that consists of various 
combinations of computing environment settings, including both performance and 
power counters. Gschwandtner et al. [Gschwandtner et al. 2014b] utilize the 
INSIEME compiler to generate optimized code for scientific computing and to 
analyze the trade-off between time, energy, and resource usage. In particular, they 
propose a multi-objective search-based method, called RS_GDE3, to optimize for 
three conflicting criteria: execution time, energy consumption, and resource usage. 
The proposed auto-runner is evaluated for applications, including matrix 
multiplication, an n-body problem, 2D Jacobi, and a 3D stencil computation. In 
comparison to a hierarchical and a random search, RS_GDE3 offers superior quality 
at a fraction of required time (5%) or energy (8%). 

Miceli et al. [Miceli et al. 2012] propose AutoTune to support a plugin-driven 
approach for tuning parallel applications in an automated manner. Each plugin is for 
a specific tuning objective, such as MPI runtime and energy consumption 
optimization via adjusting CPU frequency. AutoTune develop a Periscope Tuning 
Framework (PTF) that takes source code as input and performs static analysis. The 
analysis outcome steers the tuning process of selecting a tuning plugin and 
conducting its actions. All plugins work with PTF to achieve a multi-aspect 
application tuning. Specifically, each plugin specifies a number of tuning parameters 
and each code region may be tuned by several plugins. The whole tuning process can 
repeat several times to generate a tuning report that is used to assist application or 
production deployment. 

Saving energy with approximation methods  
Approximation-based methods to save energy are motivated by both software and 
hardware factors. At the hardware layer, NTC has been taken as an effective way of 
saving processor power. In order to mitigate the degraded reliability of NTV 
processors, significance-based computing [Sampson et al. 2011; Karpuzcu et al. 2013; 
Dreslinski et al. 2010; Gschwandtner et al. 2014a] is proposed, which typically 
partitions a given program into significant and insignificant parts. The insignificant 
part of a program is processed on NTV processors to achieve better power-saving and 
lower energy usage with acceptable accuracy loss. At the software layer, many 
computations, including web search engines, image processing, video encoding, 
machine learning, and data mining, exhibit a trade-off between the accuracy of the 
produced result and the time and energy required to produce the result. 
Approximation-based energy efficient computing [Hoffmann et al. 2009; Baek and 
Chilimbi 2010; Sampson et al. 2011] exploits the opportunity of sacrificing 
computation accuracy to improve performance and to decrease energy usage.  

Scientific simulations often use over-provisioned data types, like double-precision 
floating-points. Using single-precision or mixing floating-point precisions are 
practical methods to generate code with better performance and energy efficiency 
[Anzt et al. 2010; Dongarra et al. 2012; Lam et al. 2013; Linderman et al. 2010; 
Rubio-Gonz´alez et al. 2013; Schkufza et al. 2014]. Moreover, most scientific 
simulations exploit iterations to converge the results gradually. Sometimes, a large 
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number of extra iterations are performed to pursue a tiny accuracy improvement, the 
loss of which may be tolerable in many scenarios. 

NTV-based Significance-driven Computing 

Gschwandtner et al. [Gschwandtner et al. 2014a] propose significance-driven 
computing for energy-aware parallel computing utilizing NTV processors. They 
present a significance-driven execution paradigm that selectively uses NTV and 
algorithmic error tolerance to reduce energy consumption. In particular, they analyze 
codes in terms of their significance and then apply an adaptive execution scheme to 
an example of Jacobi with iterative loops, which switch between unreliable execution 
over NTV cores and reliable execution on a normal core. Iterative solvers, like Jacobi, 
repeatedly update the solution of a system of equations until the result converges. 
Iterations executed on NTV processors face the errors caused by unreliable hardware. 
These errors can be mitigated using an increased number of iterations. The 
evaluation shows that up to 65% energy saving is achieved for a parallel version of 
Jacobi without compromising performance and accuracy. However, the energy saving 
and performance improvement is sensitive to the bit position of errors. Typically, bit 
errors at lower positions require fewer iterations to recover, which results in overall 
energy efficient execution. In contrast, bit errors at higher positions require a 
significant number of extra iterative operations to recover and the corresponding 
energy saving is lower. 

Approximate Data Types 

In regard to the energy-accuracy tradeoff, a key challenge is how to isolate the parts 
of the program that must be precise from those that can be approximated. In order to 
address this challenge, Sampson et al. [Sampson et al. 2011] propose a model for 
approximate programming, which is a type system that isolates the precise portion of 
the program from the approximate portion. In particular, the proposed model allows 
the programmer to use type qualifiers to declare data that may be subject to 
approximate computation. In addition, they develop a language, called EnerJ, for 
principled approximate computing, which extends Java by adding approximate data 
types. Using these approximate date types, the system can map the approximate 
data values to low-power storage, use low-power operations, and apply more energy-
efficient algorithms. EnerJ supports endorsements, programmer-specified points at 
which approximate-to-precise data flow may occur. To demonstrate the effectiveness 
of EnerJ, Sampson et al. port a number of applications, including FFT, LU, and a 
Monte Carlo simulation. For these applications, nearly all of the floating-point 
operations are approximated, while no, or very little approximate integer operations 
are exhibited. With EnerJ’s annotated approximate type qualifiers, they achieve 
10%~15% energy saving with little accuracy loss. 

A significant number of scientific applications rely on floating-point operations. 
Frequently, programmers choose the maximum practical precision for the variables 
(typically double-precision with most languages). However, for many scenarios, 
double-precision is overkill, using more precise representation than it is necessary. In 
comparison to single-precision, using double-precision floating-point data requires 
twice the memory space to store and twice the bandwidth to transfer. Dongarra et al. 
[Dongarra et al. 2012] evaluate the performance and energy consumption of LAPACK 
and PLASMA LU Factorization using single-precision, double-precision, and mixed-
precision respectively on Intel Xeon system. The results show that mixing floating-
point precisions or selecting an appropriate floating-point precision dynamically at 
runtime can improve performance and correspondingly save energy. In particular, 
LU Factorization executed with single-precision saves more than 50% time and 50% 
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energy in comparison to double-precision. Using mixed-precision, the execution time 
and energy can be reduced around 25% to 30%. However, with mixed- or single-
precision, the accuracy must be guaranteed using a careful design of algorithms. 

Anzt et al. [Anzt et al. 2010] investigate the energy saving effect of applying 
mixed floating-point precision to a linear solver, such as those used in computational 
fluid dynamics. The idea is to use single-precision in the inner solvers of an iterative 
refinement method, while updating the solution using double-precision. The mixed-
precision linear solver is evaluated on several HPC clusters equipped with Intel Xeon 
processors with a varied number of machines. On average, energy consumption is 
reduced more than 50% with the mixed-precision linear solver. 

Rather than allowing programmers to control the precision of computation 
manually, several research projects support automatic methods to adjust precision 
dynamically. Using compile-time program-driven static analysis, Linderman et al. 
[Linderman et al. 2010] propose an automated method to analyze numerical precision 
and to conduct program optimization. In particular, they develope Gappa++ to assist 
automatic analysis of numerical errors in floating-point, linear and non-linear 
computation using a combination of range arithmetic and algebraic rewriting. The 
programmer or compiler can use the proposed method to optimize a program’s 
precision. Gappa++ is verified using applications such as Bayesian network, neural 
prosthetics and Black-Scholes stock option pricing. 

Lam et al. [Lam et al. 2013] develop a tool that uses binary instrumentation to 
adapt a double-precision program to a mixed-precision version without modifying the 
source code. An automatic breadth-first search algorithm is applied to find all 
possible operations in which double-precision can be replaced with single-precision. 
The tool is evaluated using the NAS Parallel Benchmarks. They find 20% of all 
floating-point operations in these benchmarks can be replaced with single-precision 
equivalence. In addition, the entire AMG (Algebraic MultiGrid) microkernel can be 
replaced with single-precision floating-point operands and accordingly achieve a 2X 
performance improvement. 

Rubio-Gonz´alez et al. [Rubio-Gonz´alez et al. 2013] develop a tool, called 
Precimonius, to tune a program’s floating-point precision in an automated way. The 
programmer can specify an acceptable accuracy criteria for a program and 
Precimonius searches all floating-point variables to detect an appropriate type 
configuration using the delta-debugging approach, the average complexity of which is 
O(nlogn). The generated type configuration maps each floating-point variable to its 
appropriate precision. The effect of Precimonius is evaluated using the GNU 
Scientific Library to show 25% performance improvement. 

Schkufza et al. [Schkufza et al. 2014] propose to use stochastic search to address 
floating-point optimization. The proposed method is supported in a program 
optimization tool, the implementation of which takes advantage of a JIT assembler. 
Using a technique, called validating optimization, they provide evidence of 
correctness rather than proving the correctness of the proposed method. Significant 
performance improvement, up to 6 times, is found when applying the proposed 
method to the Intel C numerical library and real-world applications, such as S3D. 
The above tools that optimize floating-point precision can also decrease the power 
consumption of scientific computing due to the strong correlation between 
performance and energy efficiency. 
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Approximate Iterations and Functions 

Hoffmann et al. [Hoffmann et al. 2009] develop a technique, called code perforation, 
for automatically augmenting an application to trade off accuracy in return for 
improved performance and reduced energy consumption. The applied scope of 
applications include video, audio and image processing, machine learning and 
information retrieval applications, Monte Carlo simulations, and scientific 
computations for which an output is produced within an acceptable precision range. 
The proposed technique is based on SpeedPress, an LLVM-based compiler that 
exploits code perforation to trade accuracy for performance and energy saving, and 
SpeedGuard, a runtime system that dynamically monitors the accuracy degradation 
and accordingly enables code perforation. In particular, programmers are allowed to 
specify a distortion bound and SpeedPress automatically identifies loop iterations of 
the computation that can be discarded without violating this bound. Specifically, the 
compiler uses profiling to detect the tradeoff space of accuracy and 
performance/energy saving. Overall, the detected tradeoff space can be explored to 
maximize the performance target given a distortion constraint or to minimize the 
distortion target given a performance constraint. The proposed system is evaluated 
using the PARSEC benchmark suite [Bienia et al. 2008]. The results show that the 
transformed applications run 2~3 times faster with 10% distortion.  

Baek and Chilimbi [Baek and Chilimbi 2010] propose a system called Green to 
support an energy-conscious programming framework using loop and function 
approximation. Specifically, the programmers specify a maximal Quality of Service 
(QoS) loss, while Green provides statistical guarantees that the application will meet 
the targeted QoS. In particular, to support function approximation, programmers 
must provide a series of versions with different approximate levels for the same 
function. Green measures the QoS loss by comparing the values returned by both the 
approximate version and the precise version of the same function. With the loop 
approximation, fewer loop iterations are conducted and a programmer must provide a 
function to enable Green to calculate the QoS loss generated from early loop 
termination. Given an application, using the approximation input specified by 
programmers, Green constructs a “calibration” program. At runtime, Green observes 
the QoS loss and determines which approximate version of the program is executed 
dynamically. The proposed Green system is evaluated using web search, graphic 
computation, machine learning, signal processing, and financial applications. In 
particular, with 0.27% QoS degradation, the performance and energy consumption of 
Bing Search, a commercial web search engine, are improved by 27% and 14% 
respectively. 

Hoffmann et al. [Hoffmann et al. 2011] implement a system, called PowerDial, 
that adapts the behavior of an application to execute in the presence of load and 
power fluctuations. Specifically, PowerDial can translate static configuration 
parameters into dynamic knobs that are manipulated by the PowerDial control 
system to trade the accuracy of the computation dynamically for reductions in 
computational resources, which improves performance and reduces energy 
consumption. The proposed system is evaluated using 4 benchmark applications, 
including the swaptions financial analysis application and the swish++ search engine, 
in environments with fluctuating load and power characteristics. PowerDial enables 
applications to adapt effectively as a power cap changes. Specifically, PowerDial can 
dynamically move the applications between Pareto-optimal points with different 
computational demands. In addition, PowerDial can dynamically change the number 
of machines required to service time-varying workloads while guaranteeing a pre-
defined QoS level.  
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Conclusions 
Optimizing the performance of parallel applications is already a challenging task. 
The future of parallel computing must account for energy efficiency, which further 
increases the complexity of parallel programming. This paper describes the state-of-
the-art of power-saving methods adopted in the software layer of parallel computing 
and provides programmers insights in how to balance energy consumption and 
optimal performance without increasing programming complexity. 

 Recent hardware innovations support a rich set of techniques that software can 
exploit to manipulate power usage and to make appropriate engineering decisions to 
decrease energy consumption at runtime. This paper surveys the methods to measure 
power consumption and to analyze energy efficiency for parallel computing on 
different architectures. In addition, our survey presents a taxonomy for software 
methods to improve the energy efficiency of parallel applications. Overall, 
programmers must consider energy efficiency when they design algorithms and when 
they deploy an application. Mixed floating-point precision and communication-
avoiding algorithms are effective methods that can be adopted at the phase of 
designing an algorithm. Additionally, approximation-based methods achieve 
improved energy efficiency by refining data types and the number of iterations to 
avoid wasting memory and computing resources. In contrast, when a parallel 
application is deployed on a specific platform, several tunable power parameters can 
be controlled to save energy for different levels of parallelism. DVFS and DCT are 
suitable for decreasing energy consumption with imbalanced loads. Hybridizing a 
program exploits energy efficient GPU accelerators and Intel Phi coprocessors. 
Slowing or shutting down network components can also improve overall system 
energy efficiency. Significance-driven computing allows parallel applications to 
exploit the superior energy efficiency of NTC. The overall system energy utilization 
can be managed efficiently by power-aware job schedulers. 

Although many research projects explore techniques to decrease the energy 
consumption of parallel applications, several open problems remain. It is still unclear 
how to simplify the programming complexity of balancing performance and power 
consumption in the application layer. What models are appropriate to provide a 
transparent power-aware programming interface? Energy auto-tuning improves 
energy efficiency across platforms in an automated manner. However, making it 
practical for handling large-scale parallel applications is still challenging. The state-
of-the-art methods surveyed in this article identify a wide range of opportunities to 
improve energy efficiency and motivate researchers to create breakthrough 
approaches to address the above questions for future parallel computing systems.  
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