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ABSTRACT
Motivation

Critical infrastructures are large, complex engineered systems that must be operated robustly under
abnormal conditions resulting from natural hazards or intentional acts. For example, electric power
systems must be robust to line faults, water utilities must rapidly mitigate contamination incidents,
and computing networks must adapt to adversarial intrusions to protect critical information.

Problem

It is difficult for decision-makers within resiliency analysis in critical infrastructure to optimize
designs and develop effective response strategies that can account for uncertainties. Facing
incomplete information and the sheer scope that a natural hazard or attack vector may incorporate,
response can be ineffective without reliable, scalable decision support tools. These problems are
intrinsically nonlinear and involve discrete decisions, and unfortunately, existing off-the-shelf
mathematical programming methods cannot support optimization-based decision-making of these
nonlinear at scale.

Method/Approach and Results

This project emphasized development of fundamental optimization strategies that supported real-
time mitigation and response for critical infrastructures. In particular, the project developed multi-
tree approaches based on piecewise outer-approximations for solution of mixed-integer nonlinear
programming (MINLP) problems. These techniques alternate between an MILP or MISOCP
relaxation to obtain a lower bound and candidate discrete solutions and an NLP subproblem to
obtain upper bounds. Using tailored relaxations based on problem structure, these methods were
used to solve several key applications in resilience and response of critical infrastructure. This work
resulted in two open-source, copyrighted software packages:

• CORAMIN (https://github.com/Coramin/Coramin) — an object-oriented mathematical
programming framework that supports tailored multi-tree algorithms for solution of large-
scale mixed-integer nonlinear programming; and

• EGRET (Electrical Grid Research and Engineering Toolkit) (https://github.com/grid-
parity-exchange/Egret) — a declarative mathematical programming framework built upon
CORAMIN and Pyomo for formulation and solution of resilience and operations problems
in power grid systems.

Furthermore, these tools resulted in several important published results, including the following:

• The first known global optimization approach that could solve the unit-commitment
problem with nonlinear power flow constraints on medium-sized test problems.

• Improved parallel optimization-based bounds tightening and strengthening of relaxations of
AC power flow constraints.

• Optimization-based approaches for improved grid resilience and use of demand response to
improve grid resilience with reduction in capital requirements.
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Result Implications

This project developed first-of-a-kind algorithms for decision-making in critical infrastructure
resilience operations and planning, as well as a next-generation toolkit for MINLP researchers.
These approaches leveraged high-performance computing architectures to solve some of the largest,
most challenging nonlinear discrete optimization problems to global optimality, and these successes
were captured in open-source software to enable optimization-based decision-making, and efficient
solution of MINLP formulations for electric power transmission grids.
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ACRONYMS AND DEFINITIONS

Abbreviation Definition

ACOPF alternating current optimal power flow

AIChE American Institute of Chemical Engineers

EGRET Electrical Grid Research and Engineering Toolkit

IEEE Institute of Electrical and Electronics Engineers

MILP mixed-integer linear programming

MINLP mixed-integer nonlinear programming

SOCP second order cone program
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1. PUBLICATIONS RESULTING FROM RESEARCH

The following six articles were written by project members and published during the projeces three-
year research period:

1. Bynum, M., Castillo, A., Watson, J. P., & Laird, C. D. (2019). Evaluating demand response
opportunities for power systems resilience using MILP and MINLP Formulations. AIChE
Journal.

2. Bynum, M., Castillo, A., Watson, J. P., & Laird, C. D. (2018). Strengthened SOCP
relaxations for ACOPF with McCormick envelopes and bounds tightening. Computer Aided
Chemical Engineering, Vol. 44, pp. 1555-1560.

3. Bynum, M., Castillo, A., Watson, J. P., & Laird, C. D. (2018). Tightening McCormick
relaxations toward global solution of the ACOPF problem. IEEE Transactions on Power
Systems, 34(1), 814-817.

4. Liu, J., Bynum, M., Castillo, A., Watson, J. P., & Laird, C. D. (2018). A multitree approach
for global solution of ACOPF problems using piecewise outer approximations. Computers
& Chemical Engineering, 114, 145-157.

5. Liu, J., & Laird, C. D. (2018). A global stochastic programming approach for the optimal
placement of gas detectors with nonuniform unavailabilities. Journal of Loss Prevention in
the Process Industries, 51, 29-35.

6. Liu, J., Laird, C. D., Scott, J. K., Watson, J. P., & Castillo, A. (2018). Global Solution
Strategies for the Network-Constrained Unit Commitment Problem with AC Transmission
Constraints. IEEE Transactions on Power Systems, 34(2), 1139-1150.

The papers resulting from this research project are included in the following sections.
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1.1. Evaluating demand response opportunities for power systems resilience
using MILP and MINLP Formulations
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Evaluating Demand Response Opportunities for Power

Systems Resilience Using MILP and MINLP

Formulations

Michael Bynum ;

Anya Castillo t, Jean-Paul Watson 1 and Carl D. Laird

Abstract

While peak shaving is commonly used to reduce power costs, chemical process

facilities that can reduce power consumption on demand during emergencies (e.g., ex-

treme weather events) bring additional value through improved resilience. For process

facilities to effectively negotiate demand response (DR) contracts and make invest-

ment decisions regarding flexibility, they need to quantify their additional value to the

grid. We present a grid-centric mixed-integer stochastic programming framework to

determine the value of DR for improving grid resilience in place of capital investments

that can be cost prohibitive for system operators. We formulate problems using both

a linear approximation and a nonlinear alternating current power flow model. Our

numerical results with both models demonstrate that DR can be used to reduce the

*M. Bynum is with the Davidson School of Chemical Engineering, Purdue University, West Lafayette,
IN, 47907 USA e-mail: bynumm@purdue.edu and with Sandia National Laboratories, Albuquerque, NM,
87185 USA email: mlbynum@sandia.gov

tA. Castillo is with Sandia National Laboratories, Albuquerque, NM, 87185 USA email: ar-
castiasandia.gov

IJ.P. Watson is with Sandia National Laboratories, Albuquerque, NM, 87185 USA e-mail: jwat-
sonasandia.gov.

§ C. Laird with the Davidson School of Chemical Engineering, Purdue University, West Lafayette,
IN, 47907 USA and with Sandia National Laboratories, Albuquerque, NM, 87185 USA e-mail: cd-
lairdAsandia.gov.
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capital investment necessary for resilience, increasing the value that chemical process

facilities bring through DR. However, the linearized model often underestimates the

amount of DR needed in our case studies.

Introduction

Despite ongoing investments in grid modernization, the U.S. electric grid remains vulnerable

to a range of events.' More recently, disruptions to the U.S. electric grid have resulted in an

estimated annual cost of $18-70 billion in security, health and safety, and economic conse-

quences.' Natural disasters, although infrequent, can have major impacts on the electric grid

through direct damage of infrastructure, or indirectly through interdependent infrastructures

such as gas and water. Also, the increasing reliance on renewable generation contributes to

the increasing uncertainty on the "threats to, vulnerabilities of, and potential consequences

from all hazards on critical infrastructures" .3 Depending on the geographical location, such

natural disasters include tornadoes, wildfires, hurricanes, and earthquakes, and can result in

significant infrastructure damage. The impact of such disasters has demonstrated the need

for resiliency, which is the ability to harden the system against — and quickly recover from —

low-frequency, high-consequence events.

Resilience integrates risk management requirements before, during, and after an event.4

Several papers have investigated various investment and recovery strategies for improving

electric grid resilience.5-1° However, these actions alone may be insufficient or prohibitively

expensive. More recently, utilities have leveraged demand response (DR) resources to address

many electric grid needs including improved system reliability, economic dispatch, wholesale

price mitigation, and ancillary services.' Therefore, DR can be utilized to defer or offset

the need for generation, transmission, and distribution infrastructure investments to improve

resilience. In emergency events, system operators can offer pricing benefits to industrial-scale

customers if they can absorb loss or reduction of power. Such interruptible load management

can improve the reliability of the electric grid by not treating load at each bus as a fixed
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quantity but a decision variable in the system operator's optimization routine.

Chemical process facilities, as large industrial electricity consumers, have an opportunity

to serve as active participants to improve system resilience through DR. This can reduce

the likelihood of system blackout (which could significantly impact the process facility).

Furthermore, DR can bring additional value since it may allow the grid operator to forgo

significant capital investment in the grid to meet resilience targets. This presents an economic

opportunity for process facilities if they can overcome the operational challenges associated

with increased flexibility. The additional value they bring needs to be understood and

quantified by the process facility operator so they can effectively negotiate DR constracts and

make investment decisions regarding potential retrofit and operational changes to support

the required flexibility.

Numerous studies have investigated the opportunity for interruptible load during peak

operations and for congestion management.12,13 Aalami et al." focus on economic incen-

tives for interruptible and curtailable DR programs that incorporate penalty mechanisms for

non-compliant participants. Other studies' have formulated detailed industrial customer

facility models without the electric grid physics. These studies generally apply either model-

based1° or data-driven2° approaches to define the feasible region for each operating mode

as a union of convex subregions in the facility's production space. For example, Zhang et

al. 21 propose a mode-based plant model formulation for the scheduling of continuous indus-

trial processes to provide interruptible load as operating reserve and solve the problem as a

mixed-integer linear program (MILP). Vujanic et al. 22 use robust optimization to operate

a batch plant as a DR resource, assuming a fixed capacity of interruptible load. It is clear

that there can be financial benefits in operating process facilities to reduce electricity con-

sumption during peak usage periods. However, DR programs also present an opportunity to

simultaneously improve grid resilience and provide economic benefit to process facilities that

have (or can be retrofitted to provide) the ability to rapidly change electricity consumption

in response to requests from power system operators.
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In this work we extend the stochastic programming approach proposed by Bynum et al.'

Specifically we consider the tradeoff of DR versus transmission line hardening investments.

We apply a linear approximation of the alternating current power flow (ACPF) model (the

linear approximation is typically referred to as DCPF) to demonstrate the opportunity for

DR in emergency response. We demonstrate this framework on several test cases. Our

numerical results indicate, for these test cases, that a modest amount of DR can significantly

reduce the capital investment required to make the electric grid resilient. This suggests

that there may be opportunities for flexible process systems and system operators — i.e.,

Independent System Operators (ISOs) and Regional Transmission Operators (RTOs)  or

electric utilities to work together toward both improving electric grid resilience and mutual

financial benefit.

In order to evaluate the solution obtained with the DC approximation on the alternating

current (AC) power system, we formulate the same DR problem with the nonlinear ACPF

equations. This results in a stochastic, nonconvex mixed-integer nonlinear program (MINLP)

which can be challenging to solve. Deterministic global optimization of nonconvex MINLPs

is typically addressed with Branch and Bound techniques.24,25 However, multi-tree methods,

traditionally used to solve convex MINLPs, have recently been extended and successfully

applied to nonconvex problems.26-29

In this paper, we use a tailored multi-tree approach involving the solution of a sequence

of mixed-integer second order cone programming (MISOCP) relaxations and nonlinear pro-

grams (NLPs). Although our algorithm is not guaranteed to find the globally optimal so-

lution, we found that 83 of the 87 problems solved with pglib_opf_case14_ieee' were indeed

provably solved to global optimality. Our results on both the AC and DC models show sim-

ilar trends regarding the impact of DR on resilience and the locational value, i.e., at which

buses DR should be considered. However, we demonstrate that the DC approximation often

underestimates the amount of DR needed.

The rest of this paper is organized as follows. First, we present our stochastic MILP
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and MINLP programming formulations for evaluating the tradeoff of line hardening and

demand response. We then present a MISOCP relaxation of the MINLP and describe the

tools and algorithms used to solve our demand response formulations. Finally, we illustrate

the effectiveness of the framework on several standard test cases, followed by a summary

and conclusions.

Problem Formulation and Solution Approach

Previous work has focused on operational changes in process facilities to provide peak shaving

or interruptible load for the the purposes of cost reduction.' However, to assess the value

of interruptable load for resilience (and hence reasonable investment targets for required

process facility design and retrofit), there is a need to integrate these analyses with grid

models.

In this section, we present a framework to quantify the value of DR for improving system

resilience due to weather-related events. Specifically, we formulate two stochastic program-

ming problems to investigate the tradeoff between infrastructure investment (i.e., hardening

a line to prevent damage in a weather-related event) and mitigation benefits provided by

DR. In these stochastic programming formulations, weather events are modeled using a

set of discrete scenarios with random transmission line outages. The formulations include

parameters for the number of allowed demand response buses (selected from a subset of the

overall network buses) and the maximum percentage of load reduction. The goal of the

optimization problems is to determine the minimum number and selection of hardened lines

along with the selection of demand response nodes required to ensure system feasibility over

the line-outage scenarios.

Since the system constraints for ACPF in the transmission network are nonconvex and

nonlinear, the resulting MINLP would be too large for efficient solution of realistic grid

networks with current off-the-shelf tools. Fortunately, a linearized form, also known as the
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DCPF-based model, enables representation of the problem as an MILP and solutions on large

networks with this approximation are tractable. We perform the tradeoff analysis on larger

cases using the MILP formulation, and compare results from the MILP formulation and the

full MINLP formulation on two smaller test cases to assess the impact of the approximation

on the conclusions of the analysis. In the next three subsections, we provide background

on modeling power systems and describe the DCPF-based and the ACPF-based resilience

demand response formulations.

A Review of Power Systems Modeling

An electric grid may be modeled as a graph of nodes and edges where the nodes repre-

sent buses (e.g., generating stations, substations) and edges represent transmission elements

(e.g., lines, transformers). Generators, which may be found at one or more buses, induce

sinusoidal voltage waveforms in the network (i.e., the voltage is not constant). The voltages

induced by generators produce current waveforms so that power may be transmissted by

transmission lines from the generators to energy consumers. At steady state, these wave-

forms become phasors (i.e., the amplitude and frequency are constant). Thus, the voltage,

current, and power phasors may be modeled with complex numbers with either real and

imaginary components or magnitudes and angles.

Power flow through a grid is governed by Ohm's Law for AC circuits, Joule's First

Law, and Kirchhoff's circuit laws. Kirchhoff's Current Law (KCL) states that the total

current entering a bus must equal the total current leaving the bus. Kirchhoff's Voltage

Law (KVL) states that the voltage differences around any cycle in the network must sum

to zero. Joule's First Law relates the power flow on a transmission line to the current and

voltage. The extension of Ohm's Law to AC systems relates the current on a transmission

line to the voltage difference along the line and the admittance of the line. The admittance

of a transmission line is a complex physical property of the line with real and imaginary
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components, referred to as the conductance and susceptance, respectively. The conductance

represents the ease at which electric current passes and is determined as:

GI = R11 (V + X?) (1)

where R1 is the line resistance and X1 is the line reactance. The susceptance represents the

ease at which electric current changes and is determined as:

B1 = —X11(.1=0 + X?). (2)

The physical properties of the line may also be expressed in terms of the impedance, which

is the inverse of the admittance. Impedance has real and imaginary components resistance

and reactance.

With these definitions, the ACPF equations describing power flows on transmission line

l from bus b toward bus n are given by,

Pl,b,n — C— 1 a' b,n Vb C1  + I3b n,VbV 'P COSA — On) + C7i,mvbv,,,sin(Ob — On), n

—ql,b,n — aC   + Ci 3 'qn,, n1bnVb 1 b VbV COS(Bb — On) + Cii,qnyb'unsin(Ob — On)

(3)

(4)

where the coefficients C are given in the Appendix in terms of transmission line properties

resistance and reactance, p is the real component of power flow, q is the imaginary (or re-

active) component of power flow, v is the voltage magnitude, and 9 is the voltage angle.

Note that these equations could also be written in terms of the real and imaginary compo-

nents of the voltages. More detailed reviews of power flow formulations may be found in the

literature. 32'33
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The DCPF-based Formulation

To form the linearized DC model from the ACPF equations, the following assumptions are

made:

• the resistance of transmission lines is much less than the reactance, i.e., R < X , and

• for the voltage phasor: (1) the voltage magnitude is assumed to be nominal, i.e., v 1

per-unit, for every bus in the system and

• (2) the voltage phase angle differences between interconnected buses is assumed to be

small, i.e., sin(eb — On) Ob — en.

This results in a representation that includes real power flow only and a linear relationship

between power flow on the transmission lines and voltage angles at the buses.

The stochastic programming formulation based on the linearized DCPF model is shown

below in disjunctive form.

min I Yltrue
s.t.

E ,,,,,, — E ps,/,,,., = Ps,b 1- Ltb,L , rr,Sh

gEgb {(1,i,j)Eic 1 i=b}

Xilr 

(il,b,n

Ps,l,b,n — vb, S — On, S + ClTbn)

X

[ 

—egr < es,b — es,. < Ibnrai x

Xn,b,n is true

XDs,b
[ (1 — Ab)Pt' < P sL b <

X.,D,b is false,

Zb <=> X fb

1Z1true Nz

DG,min G DG,max
g P s,g g

1

v

(5.1)

V b E B, Vs ES (5.2)

XHs,l,b,n
Ps,l,b,n = 0 V (l,b,n) E K,V s E S (5.3)

y D—1y18,1)
pL
b

{(l, b,n)c/C1/0.C,D},VseS
(5.4)

{(/,b,n) E IC 1/ E Gs/3},V s E S
(5.5)

VbEB,VsES (5.6)

V {b E Bl BDR} (5.7)

V b E BD' ,V s E S (5.8)

(5.9)

V g E g,V,S ES (5.10)
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— •S'inax < Ps,1,b,n < Sinax
Os,ref = 0

X,11,b,n E {true, false}

Xsp,b E {true, false}

Zb E {true, false}

Y E {true, false}

V (l,b,n) EK,VS ES

VSES

V (l,b,n) E K,V s E S

VbEB,VsES

V b E BÐR

VlEG

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

The coefficients in the constraints are available from the network data for the particular case

,study being considered, or computed from equations in the Appendix. The sets B, BDR 

g , gb, ,C, Lb, and S are the sets of buses, buses that are candidates for demand response,

generators, generators at bus b, branches, branches connected to bus b, and scenarios, re-

spectively. The set K is a set of 3-tuples. For each branch, there are two 3-tuples in the

set: (branch index, "from" bus index, "to" bus index) and (branch index, "to" bus index,

"from" bus index).

Here, Y is true if line l is selected for hardening. The objective function (5.1) seeks

to minimize the number of lines selected for hardening, represented by I 1,- which is

Ydefined as the count of the number of variables that are true (i.e., Ille 

,Y,,,,,e,

LlYY is truelp.

Equation (5.2) is the power balance at the bus nodes, including any connected generators or

transmission lines, as well as demand loads and bus shunts.

The set L. is the set of lines that are damaged in scenario s. Unless these lines are

selected for hardening, these lines will be removed for scenario s in the model. Following

this, the equations in (5.3) represent the disjunctions to account for line hardening. The

boolean variable X H,b,n is true if line l either was not damaged in scenario s as indicateds,l 

in (5.4), or was damaged in scenario s but selected for hardening, as enforced in (5.5). If

the line is present in scenario s, then the power flow ps,l,b,n is computed and the phase angle

constraints are enforced across the line. Otherwise if the line is not present, then the power

flow in the line is forced to be zero (i.e., ps,l,b,n = O) and there is no restriction on phase

angle difference bounds between the (unconnected) buses.

The disjunction (5.6) along with equations (5.7) and (5.8) encapsulate the selection of
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nodes where DR is allowed. Here, Zb is false (no DR) if bus b is not a candidate for DR

or not selected for DR, and true if bus b is a candidate for DR that is then selected as

an interruptible load. The set BDR C B is the set of candidate buses that can be selected

for DR. If the node is selected for DR, then Xisjb is true for the corresponding bus and all

scenarios (by equation (5.8)), and the system operator is allowed (by disjunction (5.6)) to

request a load reduction up to a value of Ab_Ft with 0 < Ab < 1. Otherwise, the requested

load, P6L, must be satisfied. Equation (5.9) limits the number of DR nodes selected to be no

more than Arz using the same definition for the count as that used in the objective function.

Then equations (5.10) and (5.11) represent the generator limits and line thermal limits

respectively. The line thermal limits can be included for all branches since the power flow

is forced to be zero if a line is damaged (and not selected for hardening). Equation (5.12)

fixes the angle of the reference bus to be zero; the selection of reference bus is arbitrary, but

necessary to ensure uniqueness of voltage angles.

This optimization problem is converted from disjunctive form to a large-scale MILP using

the big-M method for the disjunctions.34 It can then be used to compute the minimum num-

ber of hardened lines required to ensure feasible operation across all weather-event scenarios.

By adjusting the values for Ab, the allowable fractional reduction in load, and Arz, the allow-

able number of demand response nodes selected, we can determine the reduction in required

hardened lines as a function of these parameters. This enables a tradeoff assessment of the

impact of different demand response contracts on the infrastructure investment required to

maintain reliability under the scenario set.

The ACPF-based Formulation

The above problem formulation in (5) utilizes the extensively used linear DC approximation

of the ACPF equations, resulting in a large-scale MILP problem. The formulation below

includes the full nonlinear form of the ACPF equations, resulting in a stochastic MINLP. In

this formulation, both real and reactive power are represented, power losses are accounted for,
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and the voltage magnitude is not assumed to be uniform across the network. The following

variable transformation35 facilitates both the MINLP formulation and its relaxation.

as,b vs2,b

13 s,b,n = V s,b1) sm COS(es — s,n)

s,b,n = V s,b1) s,n sin(O — s,n)•

(6.1)

(6.2)

(6.3)

With this variable transformation, an MINLP representation of the resilience DR formulation

is,

min lYltrue
s.t.

E PsG,9 E L ryS h
Ps ,1 ,i,j = P s ,b b a s,b

gEgb {(4i,j)E1Cli=b}

E G,g — L joSh
qs = qs,b as,b

gEgb {(l,i,j)E1CIi=b}

X11,1,b,n

Ps,l,b,n = C171,P0,,,CE8,6 C i,Pn03,b,n CiY;n7.3 ,b,n
p

= Cl; + %.-nas,b 1,b,nt-'5,b,n airj,q,n7s,b,n

— tan(ebmax) ,b,n < 7s ,b,n < tall(eM) ,b,n

X::1,1,b,n is true

Y1

03,6,n = 3,n,6

=

p2
Ps,b,n s ,b,n = as,bas,n

Os ,b 9 = arctan(ry 
,b,n

,9,n 6

P s

s,re f = 0

P28,1 ,b,n qs2 ,l,b,n < (Srax?
(vbmin•)2 < as,b < (Vbniax

)2

pG,min ,„G < pG,max
g Fs,g-
QG,min < 9 < W,max

-Xspb
(1— Ab)Pt < Psi' b < 11"[
(1 — Ab)Qt, < qsb < Qfr J

X1Z, is false,

- Xs,6
,L pL

b
,L (-)L

_ vs,b

1 V -
—I-K.114,6,n

P s ,l An = 0

qs,l,b,n = 0

(7.1)

VbE B,Vs ES (7.2)

VbEB,VsES (7.3)

V (l,b,n) E K,V s E S (7.4)

V {(l,b,n)E/Cll GP},V s ES
(7.5)

V{(/,b,n)E /Cl/ E.C8D},Vs ES
(7.6)

V(b,n)EA,VsES (7.7)

V (b,n)E A,Vs ES (7.8)

V(b,n)EA,VsES (7.9)

V (b,n) E A,V s ES (7.10)

VsES (7.11)

V (l,b,n)E1C,V s E S (7.12)

VbE13,VsES (7.13)

V g Eg,v8 E S (7.14)

V g Eg,VSES (7.15)

VbEB,VsES (7.16)

V{bE BlbV/3DR} (7.17)
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Zb <=> Xspb

1Z1true < Nz

E {true, false}Ks1-1,1,b,n

Xspj, E {true, false}

Zb E {true, false}

Y E {true, false}

V b E BI)R",V s E S

V (l,b,n) E 1C,V s E S

VbEB,VsES

V b E BDR

VleG

(7.18)

(7.19)

(7.20)

(7.21)

(7.22)

(7.23)

Again the objective function (7.1) seeks to minimize the number of lines selected for hard-

ening. Constraints (7.2) and (7.3) are the real and reactive power balances. If a branch

is out of service and not hardened, the real and reactive power flows are forced to zero on

the branch by constraints in disjunction (7.4). If the branch is hardened or not damaged,

then constraint (7.4) relates the real and reactive power flows to the new variables a,,,b,

,3,,,b,n, and 7,,,b,n and enforces the angle difference limits through these variables. Equations

(7.5) and (7.6) ensure that the boolean variables X--1/,b,Th are true for all branches without

an outage, true for all hardened branches, and false otherwise. The definitions in (6) could

be substituted directly into the power flow equations to obtain the standard polar form.

However, equations (7.7) - (7.10) provide an alternate form in the transformed variables.36

The set A is a set of 2-tuples containing all adjacent (connected) buses. Constraints (7.12) -

(7.15) enforce thermal, voltage, and generator limits, respectively. The disjunction in (7.16)

is identical to that used in the DC formulation except that it applies to the reactive power

load as well. Constraints (7.17) - (7.23) are also identical to those used in the DCPF-based

formulation.

The following section presents an MISOCP relaxation of the MINLP formulation (7)

which can be used to obtain a valid lower bound on the problem and candidate integer

solutions.

MISOCP Relaxation

The resilience formulation proposed in the previous section is a large-scale stochastic MINLP

which is very difficult to solve. We will discuss the algorithm used to solve it in detail in the
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following section. However, a key component is a convex relaxation of (7). There have been

a number of relaxations applied to the alternating current optimal power flow (ACOPF)

problem, including the second-order cone (SOC) relaxation,35,36 the quadratic convex (QC)

relaxation,37 and McCormick relaxations of the rectangular form.38,39 These relaxations have

been used in algorithms for global solution of ACOPF49-42 and problems including discrete

decisions like optimal transmission switching43 and unit commitment.29 The algorithm we

use to solve this problem is based on the SOC relaxation, which may be obtained from (7)

by dropping (7.10) - (7.1 1), relaxing (7.9) with a convex SOC inequality, and converting the

disjunctions to Big-M constraints.34 The resulting MISOCP relaxation is,

min E yi
lEL

s.t.

LE  Sh
= Ps,b L-Tb a 5,b

gEgb {(1,i,j)E1C I i=b}

qGs,9 — q8Lb BShas,b

gEgb {(1,i,j)E1C I i=b}

= CiL(s,Lb Cf CA T,Os,l,b,n

qs,Lb,n, = C7,1):n(s,l,b + 3enns,Lb,n, Cib n0Ob,7-1,

Ps,Lbm = Cli3i)n0s,b,n CAPO's,b,n

= CicrnaO C en05,b,n CA n'Ys,b,n

as,byl (s,Lb aOY1

ao(Yl — 1) (ko < Cs,Lb as,b(Y1 — 1) + as,b

13s,b,nYl 118,Lbm, Os,b,nYl

13s,b,n(Yl — 1) + 13s,b,n < 13s,b,n(Yl — 1) + 13s,b,n

7s ,b,nYl s,l,b,n 7s,b,nYl

s,b,n(Yl — 1) + s,b,n Os,Lb,n, s,b,n(Yl — 1) + s,b,n

118,1,b,n =

Vbc.B,VsES

Vbc13,VsES

V {(l,b, n)EICl/Ers-D},V 8 E

V {(1,b,n)EICIle.C,D},V sE

VW, b, n) E JC • s E

VW, b, n) E l • s E

✓ E LbnG,D,VbEB,VsES

✓ E LbnG,D,VbeB,VsES

V {(l,b, E 1C E GP}, (b,n)

V {(l,b, n) E l E LP}, (b,n)

V {(/, b, E IC L's9},(b,n)

V {(/, b,n) E E (b,n)

V {(/, b, n) E 1C E LP}, (b,n)

(8.1)

(8.2)

(8.3)

S (8.4)

S (8.5)

S (8.6)

S (8.7)

(8.8)

(8.9)

E A,V s E S

(8.10)

E A, VsES

(8.11)

E A,V s E S

(8.12)

E A, V s E

(8.13)

E A, Vs ES

(8.14)
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s ,l,b,n = s ,n,b V {(l, b, n) E lEG,D}, (b, n) E A,V s E S
(8.15)

ns
2 
,l,b,n m 

,A2 
,l,n,b V {(l,b,n) E E £12}, (b, n) E A,V s c S

(8.16)

s ,b,n = s ,n,b V {(l, b, n) E l¢ L-12},(b,n) E A, V s E S
(8.17)

N,b,n = V {(/, b, n) E l L12}, (b, n) E A, V s E S
(8.18)

V {(/, b,n) E l LP},(b,n) E A, VsES082 ,b,n + "Y82,b,n CEs,bas,n

(8.19)

Ps2,/,b,n < (Srax)2 V (l,b,n) E 1C,V s E S (8.20)

< as b <
(Kmin•) 2 (Kmax)2 VbEB,VsES (8.21)
pG,min p,max
g Pg g

G 
 V g E G,V s E S (8.22)

QG,min < g < QG,max V g E g,V E S (8.23)

— tan(6111,7)715,1,b,n s ,b,n V {(l,b,n) c Ls13},(b,n) E A,V s E S

(8.24)

s ,l,b,n < tan(Mx)r s,l,b,n V {(l,b,n) E IC .C.1;j},(b,n) A,V s C S

(8.25)

— tan(erb7)08,b,n < ys,b,n V{(l,b,n)EICl/OLn(b,n)EA,VsES

(8.26)

"Ts,b,n < tan(erb7raix)0s,b,n V {(l, b, n) LP}, (b,n) E A,V s E S
(8.27)

(1 — Ab)/fzb + Pit"(1 zb) <psb <Pb Vbe/3,VsES (8.28)

(1 — Ab)C2tzb + C2f;(1 — zb) < q.5,b < VbeB,V s S (8.29)

EZb < Nz (8.30)
bEB

Zb E 10,11 Vbc/3 (8.31)

ylE{0,1} V/EL (8.32)

Rather than applying a Big-M transformation directly to the constraints in (7.4), we use a

similar approach to that proposed by Kocuk et al. 43 Because we typically have tight bounds

on a, /3, and 7, we introduce the new variables (, 97, and 0 and relate them to a, /3, and ry

through constraints (8.8) - (8.13). These constraints ensure that 71, and 0 are all equal

to zero for branches that are out of service but not hardened. Thus, the power flows on

transmission lines that are out of service but not hardened are also zero by constraints (8.4)

and (8.5). For transmission lines that are hardened, constraints (8.8) - (8.13) ensure that (,

22



n, and 0 equal a, 0, and 7, respectively. Note that this formulation could be written without

n or 0. However, including these variables allows extensions which include other relaxations

(e.g., the QC relaxation of (6)). The next section describes how this MISOCP relaxation is

used to solve the original MINLP.

Software Tools and Solution Approach

All problem formulations and solution strategies were implemented using Pyomo, a Python-

based algebraic modeling language.44 The DC formulation (5) is an MILP following big-M

transformation of the disjunctions, and the extensive form is solved directly using Gurobi

7.5.2. The AC formulation (7) is an MINLP (again, following a big-M transformation) that is

significantly more challenging to solve. Here, we use a tailored multi-tree solution approach

similar to those presented by Liu et al.29 and Kocuk et al.43 The algorithm involves three

main steps. First, the MISOCP (8) relaxation is solved with Gurobi 7.5.2 to obtain a lower

bound and a candidate integer solution. Second the integer variables are fixed in the MINLP,

and an NLP is solved with Ipopt45 (using the HSL linear solver MA2746) to obtain an upper

bound on the objective if the problem is feasible. Third, if the gap between the upper and

lower bounds is not small enough, a "no-good" cut47 is added to the MISOCP in order to

remove already visited integer solutions from the feasible region . Given a candidate integer

solution Xk = fx11, = {1, 2, ..., = E = 11, Zo ={i E = 0},

the "no-goo& cut

E xi - E xi - 1 (9)
iEZi iElo

ensures that the same integer solution (Xk) is not obtained in subsequent iterations. The

three steps are then repeated. In the worst case, the "no-good" cuts guarantee enumeration

of all possible integer solutions. As described by both Liu et al. 29 and Kocuk et al.43, if the

NLP subproblems are solved to global optimality, then the algorithm will converge to global
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optimality for the original MINLP. In this work, we do not solve the NLP subproblems to

global optimality, so the algorithm is a heuristic with regards to optimality of the discrete

decisions. Additionally, when the integer variables are fixed in the AC DR formulation, the

objective is fixed. Therefore, the NLP subproblem reduces to a feasibility check. Note that

proving infeasibility of the NLP subproblem still requires global optimization techniques.

Proving infeasibility of the NLP subproblems is out of the scope of this paper but will be

considered in future work. Rather, we terminate the algorithm when Ipopt finds a feasible

solution to one of the NLP subproblems. However, in many cases, the algorithm converges

in one iteration without any integer cuts, and the globally optimal solution is obtained.

Additionally, when the algorithm does not converge on the first iteration, we can still compute

an optimality gap using the upper bound from the best feasible solution and the lower bound

obtained before any integer cuts are added. In the case study, pglib_opf_case14_ieee,3° 83 of

the 87 problems were provably solved to global optimality. For further algorithm details, see

the above references. The following section presents results for both the AC and DC DR

formulations and compares the results.

Numerical Results

In this section, we evaluate the tradeoff between increased DR capabilities and capital invest-

ment in infrastructure for improving resilience to weather-related events. Both the DCPF-

and the ACPF-based problem formulations are stochastic programming problems that seek

to find solutions that provide feasible operation across all of the scenarios. Numerous stud-

ies have focused on electric grid resilience to the worst case scenario,' but this approach

is not representative of naturally occurring, severe weather events. Different types of nat-

ural disasters have different impact regions, predictability, geographical span, and impact

duration.51-53 Therefore a range of forecasting models have been proposed in the literature

to model grid component damage and outage duration, as well as a range of simulation
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and optimization models to address service restoration, corrective actions, and prepared-

ness planning. When historical data is available, it can be used to generate representative

scenarios regarding transmission element failure due to weather-related events.

In the absence of system-specific data, we consider failure of transmission lines only, and

characterize scenarios according to the set of transmission lines that are damaged; in other

words, no power transfer occurs across the line — it is essentially removed from the network

model. We formulate scenarios by randomly selecting a set of transmission lines to be out

of service for each weather-event scenario. Note that both formulations could be adapted to

consider failure of other transmission elements, including generators and substations.

We first use the DCPF-based stochastic programming formulation to compute the min-

imum number of hardened transmission lines that are required to ensure feasible operation

across all the scenarios. In this analysis, we vary the number of nodes to consider for demand

response contracts, as well as the maximum reduction in load required should that bus be

selected for demand response (written as a fraction, Ab, of the expected load at each bus).

This provides us with a set of tradeoff curves that provide the minimum required capital

investment (in terms of the number of required hardened lines) as a function of the number

of demand response contracts and the load reduction fraction. This analysis is performed

on a set of case studies that are described in more detail in the following section.

Following this analysis, we compare results of the DCPF- and the ACPF-based formu-

lations. Because of the challenge associated with solution of large-scale MINLP problems,

we perform this comparison on a set of smaller grid models from a standard test suite. In

particular, we compare the solutions from the AC and DC problems in terms of the required

reduction in number of hardened lines and the location of selected demand response nodes.

We also estimate the impact of using the DC approximation by taking solutions from the

DCPF-based MILP formulation and testing these for feasibility in the AC model. This allows

comparison of the larger test cases and provides an indication of the degree of applicability

of the DCPF-based model.
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The Value of Demand Response

In this section, we evaluate the tradeoff between increased DR and required capital invest-

ment in terms of the number of hardened lines. The maximum required fractional load

reduction for DR nodes, A b is varied from 0 to 1, and the number of optimally selected

DR node locations N, is varied from 0 to 10. Three test cases are considered from version

17.08 of the Power Grid Lib — Optimal Power Flow repository:3° pglib_opf_casel 18_ieee,

pglib_opf_case162_ieee_dtc, and pglib_opf_case300_ieee. For each problem, we considered 100

scenarios with 10 randomly selected branch outages per scenario. Note that branches with

only one path between the corresponding pair of buses were excluded since such a branch

would likely always need to be hardened. The results of this tradeoff analysis are presented

in Figure 1. The y-axis shows the minimum number of branches that need to be hardened

in order to maintain feasibility. Each group of columns represents a specific value of Ab.

Within each group of columns, /V, varies from 0 to 10 by 2. The particular value of /V,

associated with each column can be seen both in the legend and above the column. The

problems were typically solved in under 5 minutes, although most problems took less than

1 minute.

As expected, the minimum number of hardened branches needed to maintain feasibility

decreases both as /V, increases and as Ab increases. All three test cases show similar trends,

indicating that demand response can have a significant impact on resilience. With Ab=0.25,

only two DR contracts are required to reduce the objective by 11%, 25%, and 21% for cases

pglib_opf_case118_ieee, pglib_opf_case162_ieee_dtc, and pglib_opf_case300_ieee, respectively.

Increasing Ab to 0.5 results in reductions of 21%, 31%, and 25%, respectively. Even more

dramatic cost reductions are possible in other cases. For example, with a 50% maximum load

reduction, 10 DR contracts can reduce the required number of hardened lines from 32 to 17

(pglib_opf_case162_ieee_dtc). If fully interruptable load is a possibility, even more reduction

can be realized across these test cases.

The extreme weather events in question typically only occur once every 5-10 years. If
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chemical, petroleum, and manufacturing plants have the ability to operate flexibly in these

rare times, the capital investment needed to make the grid more resilient can be reduced

dramatically. As a result, the plants with demand response contracts could gain significant

financial benefits in terms of electricity cost reduction with only very rare interruptions in

operations. Of course, DR and transmission line hardening are not the only ways of making

the electric grid more resilient, and real systems should consider other options along with

system specific models and parameters in a more detailed decision making process.

The results we have shown so far only consider the DC model, which is a linear approxima-

tion of the true system and does not consider reactive power at all. In the following section,

we further validate the value of demand response by both comparing solutions obtained with

the DC and AC models and evaluating the DC solutions on an AC model.

A Comparison of DCPF- and ACPF-based Solutions

We used two approaches to evaluate the accuracy and effectiveness of the DC model on the

AC system. First, we solved the demand response problem with both models and compared

the solutions. For this, we used pglib_opf_case14_ieee and pglib_opf_case30_as, both with

30 scenarios. Figures 2 and 3 show the minimum number of hardened branches for both

the AC and DC models as functions of N, and Ab. In both cases, the DC model tends

to underestimate the number of branches that need to be hardened to maintain feasibility,

but the overall trends are quite similar. We also compared the integer solutions of the two

models for pglib_opf_casel4_ieee. The detailed results are presented in the Appendix. Table

1 summarizes these results. First, we define two sets. The set DR,*Dc, is the union of the sets

of buses selected for DR by the DC model across all values of Ab and Nz. The set D'R,A* c is

the union of the sets of buses selected for DR by the AC model across all values of Ab and

Nz. Table 1 the shows the intersection of these two sets, the buses unique to DR,D* c, and

the buses unique to DTZA*c. As the tables show, there is strong agreement between the AC

and DC solutions. In fact, all of the buses selected by the DC model were also selected by
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the AC model. There was only one bus selected by the AC model and not the DC model.

Second, for each integer solution obtained with the DC model, we evaluated the frac-

tion of AC-feasible scenarios (that is, fraction of scenarios that were feasible when eval-

uated using the AC model). Table 2 summarizes the results. The table shows the frac-

tion of AC-feasible scenarios averaged over all values of Ab and Nz. Note that we did

not include pglib_opf_case300_ieee because there were several scenarios for which Ipopt nei-

ther converged to an optimal solution nor converged to a point of local infeasibility. Case

pglib_opf_case162_ieee_dtc also had a few scenarios for which Ipopt obtained neither of these

two convergence criteria, but it was less than 0.3% of the scenarios. Therefore, we simply

discarded these scenarios when computing the fraction of AC-feasible scenarios. Again, a

problem may be feasible even if Ipopt converges to a point of local infeasibility. However, for

simplicity, we are using this criterion as an approximation. Future work will use global opti-

mization techniques to prove infeasibility. The average fraction of feasible scenarios was over

85% for all test cases except pglib_opf_case162_ieee_dtc. These are quite high and indicate

high quality solutions even for the true AC system.

Finally, Figure 4 plots the fraction of AC-feasible scenarios and the minimum number of

hardened branches as a function of AT, for the four test cases with Ab=0.2. The results for

pglib_opf_casel 18_ieee behave as expected. The fraction of AC-feasible scenarios generally

increases as AT, increases. However, there are cases where the fraction of AC-feasible scenarios

can decrease with an increase in N. The reason for this relates back to Figures 2 and 3. The

DC model often underestimates the amount of DR needed and/or the number of branches

that need hardened. In some cases, the DC formulation results in a lower number of hardened

branches and smaller fraction of DR than what is actually required to ensure AC-feasibility.

An implementation of such a solution in the AC system may decrease capital investment, but

it may also not provide the expected resilience. Because of this, it is important to continue

development of MINLP strategies that can address AC power flow problems at scale.
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Conclusions

This paper presents a stochastic programming framework for estimating the value of demand

response capabilities in ensuring electric grid resilience. It includes two formulations that

seek to determine the minimum number of hardened transmission lines required to ensure

feasible operation across a set of weather-related failure scenarios.

The first formulation (an MILP) shows similar results with all three test cases considered.

On the largest test case, the addition of only two demand response contracts (each requiring

only a 25% drop in consumed load) is sufficient ensure feasible operation across all scenarios

while reducing the required number of hardened lines (e.g., the required capital investment)

by 21%. This indicates that demand response can have a significant impact on system

resilience.

These results were obtained with an MILP formulation based on the linear DC approxi-

mation for the AC power flow equations. While this approximation is widely used in power

systems analysis, it can underestimate the impact of thermal limits and other system con-

straints. In particular, for unit commitment problems, the DC approximation can lead to

solutions that are suboptimal or not even feasible for the actual AC system. Therefore,

we also included results with the actual nonlinear AC power flow equations to determine

consistency.

Because the second formulation (an MINLP) cannot be efficiently solved for large-scale

problems, we compare the results from the DC and AC formulations on a set of smaller test

cases. We use a tailored multi-tree approach that solves a sequence of MISOCP relaxations

of the MINLP to find candidate integer solutions and NLP subproblems to check feasibility.

Using this approach, results with the smaller test cases show that both the DC approximation

and the nonlinear AC formulation have similar trends, indicating that there is value in

the use of demand response for improved resilience. Furthermore, they also find similar

optimal locations for demand response contracts. For case pglib_opf_casel4ieee, every bus

selected for demand response by the DC model was also selected for demand response by
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the AC model (cumulative across all values of A b and Nz). Only one bus was selected

for demand response by the AC model and not the DC model. However, the linear model

often underestimates the amount of demand response or hardened lines necessary to ensure

resilience of the AC system. This result shows a need for future work in improved scalability

of MINLPs based on AC power flow equations.

Ultimately, our results show that there is significant value in the introduction of new

demand response capabilities. The formulations presented here can help process facilities

quantify their potential impact on electric grid resilience, facilitating informed negotiations

between process facilites and electric utilities when developing DR contracts. Of course,

the cost of increasing operational flexibility at individual process facilities must also be

evaluated. The formulations presented here could be extended to include process facility

models. However, this is left for future work.
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Notation

Scts

BDR

Bb

gb

Set of all buses

Set of buses that are candidates for demand response

Set of buses connected to bus b by a branch

Set of all generators

Set of generators at bus b

Set of all branches

A Set of 2-tuples containing adjacent buses

Lb

8.1)

Set of branches connected to bus b

Set of branches damaged in scenario s

7-1 Candidate set of hardened branches

K Set of 3-tuples describing bi-directional connectivity;

for each branch there are two 3-tuples in this set:

1) (Branch index, "from" bus index, "to" bus index)

2) (Branch index, "to" bus index, "from" bus index)

S Set of all line failure scenarios

Parameters

Pb Real power load at bus b

Qf; Reactive power load at bus b

Gr Shunt conductance at bus b

Br,h Shunt susceptance at bus b

DG ,min Minimum real power output at generator gg
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r--)G,max

Smax

erax

G1

Bl

Rl

Xl

Tr
Tia

13T

17bmin

17bmax

Ob

Nz

Continuous Variables

G
Fs,g

G
Vs&

Fs,b

Vs,b

qs,l,b,n

V ,s,b

Maximum real power output at generator g

Minimum reactive power output at generator g

Maximum reactive power output at generator g

Maximum power magnitude on branch l

Maximum voltage angle difference for branch l

Conductance of branch l

Susceptance of branch l

Resistance of branch l

Reactance of branch l

Transformer tap ratio for branch l

Transformer phase shift for branch l

Charging susceptance of branch l

Minimum voltage magnitude at bus b

Maximum voltage magnitude at bus b

Fraction load decrease allowed by demand response contract at bus b

Maximum number of demand response contracts

Real power output at generator g

Reactive power output at generator g

Real power delivered to bus b

Reactive power delivered to bus b

Real power flow on branch l from bus b to bus n

Reactive power flow on branch l from bus b to bus n

Voltage magnitude at bus b
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9s,b Voltage angle at bus b

Logic Variables

li true if branch l is selected for hardening, and false otherwise

Zb true if bus b is selected for demand response, and false otherwise

X II,b,n true if branch l is present for scenario s (i.e. either branch8,1 

l is not in the damage set LP or it is in the set,

but selected for hardening) and false otherwise

XD true if bus b is selected for demand response and false otherwise.81,

(Same indicator as Zb, but allows for clear representation of

disjunctions across scenarios.)

Binary Variables

Yi

zb

binary variable representation of Y

binary variable representation of Zb
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Table 1: Comparison of DR locations selected by DC and AC models for pglib_opf_case14_ieee
across all values of Ab and N.

Model DR Buses

DR,*Dc n DR,':4c, 2, 3, 9, 13, 14, 12

DR*Dc \DR*Ac
DIVAc\DRIc 6
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Figure 1: The value of DR on resilience as a function of the number of demand response
contracts (Nz) and the allowable fraction of DR (Ab) with 100 scenarios.
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Table 2: Average fraction of AC-feasible scenarios when implementing DC solution

Test Case Average fraction of AC-feasible scenarios

pglib_opf_casel4_ieee
pglib_opf_case30_as
pglib_opf_case118_ieee
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Figure 2: Comparison of DC and AC results for pglib_opf_case14_ieee. Each figure shows the
minimum number of hardened transmission lines as a function of Ab and Nz.
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Power Flow Coefficients

This section provides definitions for the power flow coefficients'.

Ca'P —l,b,n

C6P =l,b,n 

CAPn

Cl,a4q,n

C'en

l,b,n

where

if there is a transformer on branch l by bus b

Gl otherwise

B1T1m sin(T1a) — G1T1m cos(Tia)
(7)2

—B17 sin(Tr) — G1T1m cos(Tr)
(7)2

—G1

—B1T71 cos(7) — G1T1m sin(7)
(7)2

—B17 cos(7) + G1T1m sin(7)
(7)2

if there is a transformer on branch l by bus b

if there is a transformer on branch l by bus n (1.2)

otherwise

if there is a transformer on branch l by bus b

if there is a transformer on branch l by bus n

—B1 otherwise

—B1 — 0.5Bf
if there is a transformer on branch l by bus b(7)2

—B1 — 0.5/3f otherwise

BiTim cos(7) + GiTim sin(7)
(7)2

BITim cos(Tia) — GiTim sin(Tia)
(7)2

Bl

BiTim sin(7) — GiTim cos(7) 
(7)2

sin(7) — GiTim cos(7)
(7)2

if there is a transformer on branch l by bus b

if there is a transformer on branch l by bus n

otherwise

if there is a transformer on branch l by bus b

if there is a transformer on branch l by bus n

otherwise

Bl =  It7,2 
,/ + A/
2

(1.3)

(1.4)

(1.5)

(1.6)

(2)

44



and

R1 
Gl = 

R2 + X2

for resistance R1 and reactance X1 on branch l E L.

(3)

-Tft if there is a transformer on branch l by bus b
(4)

otherwise

Integer Solutions for pglib_opf_casel4_ieee

Table 1: Integer Solutions DC - pglib_opf_casel4ieee

Ab Nz Branches Hardened Demand Response Buses

0 0 1, 6, 18, 19
0.05 1-10 1, 6, 18, 19
0.1 1-10 1, 6, 18, 19
0.15 1-4 1, 6, 18, 19
0.15 5-10 3, 18, 19 2, 3, 9, 13, 14
0.2 1 1, 6, 18, 19
0.2 2-10 6, 18, 19 3,9
0.25 1 1, 6, 18, 19
0.25 2-10 6, 18, 19 3,9
0.5 1-10 6, 18, 19 3
0.75 1-10 6, 18, 19 3
1 1-3 18, 19 3
1 4-10 18 3, 12, 13, 14
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Table 2: Integer Solutions AC - pglib_opf_casel4ieee

Ab Nz Branches Hardened Demand Response Buses

0 0 1, 6, 11, 17, 19 -
0.05 1-10 1, 6, 11, 17, 19
0.1 1-10 1, 6, 11, 17, 19
0.15 1-10 1, 6, 11, 17, 19
0.2 1-5 1, 6, 11, 17, 19
0.2 6-10 6, 11, 17, 19 2, 3, 6, 9, 13, 14
0.25 1-2 1, 6, 11, 17, 19
0.25 3-10 6, 17, 18, 19 2, 3, 9
0.5 1-2 3, 11, 17, 19 3
0.5 3-10 3, 11, 19 3, 13, 14
0.75 1-2 3, 11, 13, 19 3
0.75 3-10 3, 11, 19 9, 13, 14
1 1 13, 18, 19 3
1 2-3 13, 18 3, 12
1 4-10 18 3, 12, 13, 14
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Abstract

The solution of the Optimal Power Flow (OPF) and Unit Commitment (UC) problems
(i.e., determining generator schedules and set points that satisfy demands) is critical for
efficient and reliable operation of the electricity grid. For computational efficiency, the
alternating current OPF (ACOPF) problem is usually formulated with a linearized
transmission model, often referred to as the DCOPF problem. However, these linear
approximations do not guarantee global optimality or even feasibility for the true
nonlinear alternating current (AC) system. Nonlinear AC power flow models can and
should be used to improve model fidelity, but successful global solution of problems with
these models requires the availability of strong relaxations of the AC optimal power flow
constraints. In this paper, we use McCormick envelopes to strengthen the well-known
second-order cone (SOC) relaxation of the ACOPF problem. With this improved
relaxation, we can further include tight bounds on the voltages at the reference bus, and
this paper demonstrates the effectiveness of this for improved bounds tightening. We
present results on the optimality gap of both the base SOC relaxation and our
Strengthened SOC (SSOC) relaxation for the National Information and Communications
Technology Australia (NICTA) Energy System Test Case Archive (NESTA). For the
cases where the SOC relaxation yields an optimality gap more than 0.1 %, the SSOC
relaxation with bounds tightening further reduces the optimality gap by an average of 67
% and ultimately reduces the optimality gap to less than 0.1 % for 58 % of all the NESTA
cases considered. Stronger relaxations enable more efficient global solution of the
ACOPF problem and can improve computational efficiency of MINLP problems with
AC power flow constraints, e.g., unit commitment.

Keywords: ACOPF, Second-order cone programming, McCormick, Bounds tightening.

1. Introduction

Reliable and economic operation of the electricity grid is vital for the economy, public
safety, and health. Key practical problems relating to the operation of the grid include the
Optimal Power Flow (OPF) and the Unit-Commitment (UC) problems. The OPF, also
referred to as the ACOPF problem, seeks to find generator operating conditions for a
single time period that minimize the total operating cost while satisfying physical power
flow laws and other operational constraints, such as generator and transmission limits.
The UC problem solves for a generator on/off schedule across multiple time periods,
introducing discrete variables for these scheduling decisions. Both problems require a
model for the AC power flow (ACPF), giving rise to a large number of nonlinear, non-
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convex constraints. To remove these nonlinearities, the ACOPF problem is typically
simplified to a linear approximation known as the DCOPF problem. This approximation
is more computationally efficient; however, it does not guarantee global optimality or
even feasibility for the system under consideration. For this reason, there has recently
been extensive research in convex relaxations for the ACOPF model to support global
optimization of ACOPF and UC with ACOPF constraints.

Lavaei and Low (2012) present a semidefinite programming (SDP) formulation for the
dual of the ACOPF problem and provide a rank-one sufficient condition under which the
duality gap is guaranteed to be zero. Coffrin et al. (2017) propose a quadratic relaxation
on the polar form of the ACOPF problem. Jabr (2006) introduced a convex second-order
Cone (SOC) programming relaxation of the ACOPF problem. Kocuk et al. (2016)
proposed extensions to the SOC relaxation including (1) relaxations on the arctangent
constraints relating the SOC variables to voltage angles differences and (2) linear cutting
planes to incorporate information from the SDP relaxation. Liu et al. (2017) propose a
piecewise outer approximation based global optimization algorithm for solving the
ACOPF problem.

In this paper, we propose a strengthened SOC (SSOC) relaxation that relates the auxiliary
variables in the SOC relaxation to the real and imaginary components of the voltages in
the rectangular form through McCormick envelopes. The ACOPF problem has an infinite
number of solutions unless the voltage angle is specified at an arbitrary bus, typically
referred to as the reference bus. By relating the SOC auxiliary variables to the rectangular
voltages, this reference bus specification may now be included in the proposed relaxation,
providing tighter bounds on the voltage variables at the reference bus. Results for several
widely studied ACOPF test cases demonstrate that this approach improves the
effectiveness of optimality-based bounds tightening (OBBT) and strengthens the SOC
relaxation significantly. In the next section, we present a review of the SOC relaxation;
our SSOC relaxation is described in Section 3. Computational results comparing the
optimality gap of the SOC and SSOC relaxations are presented along with results showing
the impact of the reference bus on bounds tightening.

2. ACOPF Second-Order Cone Relaxation

A power system is modeled with a set of buses cormected by transmission lines and/or
transformers. Each bus may have one or more generators and loads. The rectangular form
of the ACOPF includes real and imaginary components of the voltage, vr and vi
respectively, at each bus. With the following definitions,

C„,b.(K)2 +(4)2 ,vg, cb,k_vr,,,,k- +4,4, sb,kvr,v4-4,-v.1 (1)
the SOC relaxation of the ACOPF problem can be written as follows:

min Er e 2
9 

AglpgG
1-""‘1'9

9Eg

s.t.
E Pb,k E + Gghcb,b+pe — pgG = 0

(b,k)EGibn (b,k) Ecgut gEgl,

VbEB
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Strengthening Second-Order Cone Relaxations for ACOPF with McCormick Envelopes
and Bounds Tightening

E qt,k E qb,k psh r-).1J E qyG =
Cb,b -r

(b,k)ecri(b,k)err gEgb
73f Gbf f c Gft c Bft sbk = k bk b,k 19,k

a Bff Dft
.b,k = b,k -c b — '19,1gCb,k T b,ksb,k

cyt , 
L. T 
f t

Fb,k = Tb,
t 

1- k‘4,k bAck,b 
f 
b k,b

tt t f 
— 
/-ft

b 
f

qb,k = Bb kCk,bBb,kCk,k

(Pb,02 ,k)2 < (sb7)2, (74,02 + (402 < (SITT)2

(vmin
)
-2 
< Cb,b < (Vbmax )2

.<pG,min < pG,max nG,min < < G,max
— g g tceg cV9

Cb,k = Ck,b, Sb,k = S k,b

„
bk
2 5

bk
2

L- Cb,bCk,k

VbEB

V (b,k) E L

V (b,k) E

V (b,k) E L

V (b,k) E G (2)

V (b, k) E

VbEB

Vgeg

V (b, k) E

V (b,k) E L

Here, capitalized symbols represent parameters and lower-case symbols represent
variables. Real power is denoted by p, reactive power by q, and the relaxation variables
by s and c. The superscripts G and D denote generation and demand, andfand t denote
the "from" and "te ends of transmission lines. Subscripts denote indices of the sets of
buses B, generators g, and transmission lines L. The optimization objective is to
minimize the aggregate operating cost of all the generators. The constraints enforce real
power balances at all the buses and reactive power balances at all of the buses, model real
and reactive power flow on transmission lines at the "from" and "te ends of the
transmission lines, and enforce thermal limits on the transmission lines, voltage limits at
the buses, and generator limits on real and reactive power. The last two constraints are
derived from the defmitions of s and c, while the final constraint is relaxed to be an
inequality, forming the SOC relaxation. Eq.(2) is a convex optimization problem that may
be solved efficiently with off-the-shelf solvers, e.g., Ipopt.

Note that bounds tightening does not improve the relaxation as written since none of the
relaxations depend on variable bounds, as is the case when using McCormick envelopes.
Further, the voltage variables have been removed from the model, so there is no direct
way to incorporate a specification of the voltage angle at the reference bus. In the
following section, we present our SSOC relaxation that incorporates McCormick
envelopes for Eq.(1) into the SOC relaxation, allowing specification of the reference bus
angle and providing a mechanism to effectively tighten the relaxation with OBBT.

3. McCormick Envelopes for Strengthening the SOC Relaxation

First, let x-sy be an auxiliary variable for the bilinear term xy. We represent the set of
McCormick envelopes for the bilinear term as isy E MCC (x,y). With this notation,
Eq.(1) may be relaxed with McCormick Envelopes, as follows:
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Cb,b = V b + V b Cb,k = 47.1Tc VbV k, Sb,k = — 2/7.17k-

(vro2 (vbr,max „,r
ub

1.7r,maxur,min
v b v b

(4)2 < vb  < 0/(1,max +vi,min 
1 'b b 

vi,maxvi,min

4V7k. E MCC(vE,vir,), vbiL E MCC(4,4e)

vr,vik E MCC(v7, v4), ;Trek' E MCC(4,24)

(3)

The initial bounds on the real and imaginary voltage components are determined by the
voltage magnitude limits provided in the problem specification. However, at the reference
bus, the imaginary component is fixed to zero (i.e., the voltage angle is fixed to zero), and
the bounds on the real component of the voltage at the reference bus can be tightened as
with Eq.(4). The SSOC relaxation is then given by Eqs.(2-4).

Vbmax < 4 , 4 < Vbmax

Vrme.ifn vrref vrmer, vref = 0
(4)

To Further tighten the SSOC relaxation, OBBT is performed on the voltage variables at
each bus. The relaxations in Eq.(3) are then updated, the SSOC relaxation is solved, and
the process is repeated until either the optimality gap is less than 0.1 % or 20 iterations
are performed with a cumulative reduction in the optimality gap of less than 0.1 %.

4. Results

4.1. Performance of the SSOC Relaxation

Table 1 compares the optimality gap for the SOC and SSOC relaxations for several of the
NESTA test cases (Coffrin et al., 2014). The relaxations were modelled in Python 3.5.2
with Pyomo (Hart, 2011) and solved with Ipopt 3.12.5 (Wächter, 2006). The results show
that the SSOC relaxation tightens the SOC relaxation significantly. Of the cases for which
the optimality gap with the SOC relaxation is greater than 0.1 %, the SSOC relaxation
with bounds tightening further reduces the optimality gap by an average of 67 % and
overall reduces the optimality gap to less than 0.1 % for 58 % of the NESTA cases.

4.2. The Impact of the Reference Bus on Bounds Tightening

Figure 1 shows the importance of the reference bus and the corresponding bounds in
Eq.(4). The figure shows the variable bound ranges for the real and imaginary components
of the voltages averaged over all buses of the same shortest path in terms of the number
of transmission lines from the reference bus. The iteration count for OBBT is shown on
the x-axis. The figure shows the first four iterations of bounds tightening for
nesta_case24 jeee_rts api. As shown in the figure, before any bounds tightening is
performed, the reference bus is the only bus with good bounds on the voltage. After one
iteration of bounds tightening, the bounds on the voltages at buses connected directly to
the reference bus are tightened dramatically. On the second iteration of bounds tightening,
the bounds on the voltages at buses a distance of 2 from the reference bus
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Table 1: Comparison of optimality gap of SOC and SSOC with OBBT.

Nesta Case Optimality Gap (%)
Active Power Small Angle

Increase Difference
SOC SSOC SOC SSOC SOC SSOC

Standard

case3_lmbd

case4_gs
case5_pjm

case6_ww

case6_c

case9_wscc

case14_ieee

case24_ieee_rts
case29_edin

case30_as
case30_fsr

case30_ieee
case39_epri

case57_ieee

case73_ieee_rts

case89_pegase

casell8 ieee

1.32 0.40 3.30 0.07 4.28 0.05

0.00 0.00 0.65 0.07 4.90 0.01
14.54 4.94 0.28 0.06 3.61 0.03

0.63 0.09 0.80 0.05

0.30 0.10 0.35 0.05 1.36 0.01

0.00 0.00 0.00 0.00 1.50 0.01

0.11 0.06 1.34 0.17 0.06 0.06

0.01 0.01 20.75 1.98 11.42 0.06
0.14 0.11 0.44 0.43 34.47 2.02

0.06 0.06 4.76 0.21 9.16 0.18

0.39 0.29 45.97 41.53 0.62 0.14

15.88 0.08 1.01 0.08 5.84 0.08

0.05 0.05 2.99 0.21 0.11 0.05

0.06 0.06 0.21 0.09 0.11 0.09

0.03 0.03 14.39 14.36 8.37 2.51

0.17 0.10 20.43 20.11 0.28 0.17

2.07 1.75 44.15 29.89 12.89 5.16

are tightened more than the bounds on variables at other buses. The trend continues
through all four iterations of bounds tightening shown. In this figure, it is clear that the
effectiveness of bounds tightening at a given iteration is directly related to the distance of
the corresponding bus from the reference bus. Additionally, although not shown in Table

1, the SSOC relaxation
was solved with the
bounds tightening
procedure described in
Section 3 but without
the tight bounds on the
reference bus voltages.
The optimality gap did
not improve at all
beyond the gap
obtained with the SOC
relaxation for any of the
test cases. This further
indicates the necessity
of the tight voltage
bounds at the reference
bus for effective bounds
tightening.

■
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Figure 1: Impact of the reference bus on bounds tightening for
nesta_case24_ieee_rts api. The abscissa shows the iteration
count, and the ordinate shows the average range between the upper
and lower variable.
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5. Conclusions

We describe the use of McCormick envelopes and OBBT to strengthen the well-known

second-order cone (SOC) relaxation of the ACOPF problem. With the proposed

relaxation, tight bounds on the voltages at the reference bus can be specified, and we

demonstrate the necessity of this specification for bounds tightening to be effective. In

Section 4.1, we showed that, of the NESTA test cases for which the optimality gap with

the SOC relaxation is greater than 0.1 %, the SSOC relaxation with bounds tightening

further reduces the optimality gap by an average of 67 % and ultimately reduces the

optimality gap to less than 0.1 % for 58 % of all the cases considered. In Section 4.2, we
demonstrated that the effectiveness of OBBT at a given iteration is directly related to the

distance of the corresponding bus from the reference bus. In future work, this relationship

may be exploited to develop more efficient strategies for bounds tightening.
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Tightening McCormick Relaxations Toward Global Solution
of the ACOPF Problem

Michael Bynum, Student Member IEEE, Anya Castillo, Member IEEE, Jean-Paul Watson, Member IEEE,

and Carl D. Laird, Member IEEE

Abstract—We show that a strong upper bound on the objective
of the alternating current optimal power flow (ACOPF) problem can
significantly improve the effectiveness of optimization-based bounds
tightening (OBBT) on a number of relaxations. We additionally compare
the performance of relaxations of the ACOPF problem, including the
rectangular form without reference bus constraints, the rectangular
form with reference bus constraints, and the polar form. We find
that relaxations of the rectangular form significantly strengthen existing
relaxations if reference bus constraints are included. Overall, relaxations
of the polar form perform the best. However, neither the rectangular
nor the polar form dominates the other. Ultimately, with these strategies,
we are able to reduce the optimality gap to less than 0.1% on all but 5
NESTA test cases with up to 300 buses by performing OBBT alone.

Index Terms—ACOPF, bounds tightening, convex relaxation

I. INTRODUCTION

THE alternating current optimal power flow (ACOPF), also
referred to as the OPF, is a fundamental problem for reli-

able and efficient operation of the electric grid and is the basis
of more complex operations problems such as unit commitment.
Global optimization of the OPF guarantees revenue adequacy of the
locational marginal prices (LMPs) by closing the duality gap. More-
over, OPF problems with discrete decision variables, including unit
commitment, are modeled as mixed integer nonlinear programming
(MINLP) problems, where global solution of the nonlinear ACOPF
is a required subproblem for many algorithms. Therefore, efficient
global optimization of the ACOPF problem is a critical step towards
incorporating higher fidelity models into practical grid operations.
Kocuk et al. [1] proved that the second order cone (SOC) relaxation

is tighter than a linear McCormick relaxation of the rectangular OPF
(RM) under certain assumptions on variable bounds. As a result, they
initially strengthen the SOC relaxation with arctangent constraints,
cycle constraints, and semidefinite programming (SDP) cuts, and later
with matrix minor reformulations [2]. However, we demonstrate that
a quadratic form of the RM relaxation, in combination with explicit
reference bus constraints and optimization-based bounds tightening
(OBBT) [3], can also be quite effective in practice for improving the
performance of the existing SOC [4] and quadratic convex (QC) [5]
OPF relaxations since this produces tighter bounds on the variables
than those assumed in Theorem 3.1 of [1]. Specifically, we extend
our findings in [6] and demonstrate that neither the RM nor the QC
(with McCormick envelopes, reference bus constraints, and OBBT)
relaxation dominates the other, and, between the two approaches, we
close 91% of the NESTA archive [7] test cases up to 300 buses. This
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result requires no branching or piecewise refinement, and therefore
is a promising foundation for future work. The remainder of this
paper first reviews these relaxations, and then presents significant
improvements to the numerical results reported in [1] and [8].

II. ACOPF RELAXATIONS

We use lower case symbols to represent variables, upper case symbols
to represent parameters, and upper case script symbols to represent
index sets. The sets g, gb, and B represent the sets of all generators,
generators connected to bus b, and buses, respectively. The set ..4
contains all connected bus pairs. The set IC is a set of three-
tuples containing both (transmission line index, "from" bus, "to"
bus) and (transmission line index, "to" bus, "from" bus) 3-tuples
for each transmission line. Finally, 1Cb = {(/, j) E /C i=b}. The
superscripts G, D, and Sh represent generation, demand, and shunt,
respectively. The parameters CM, Cfbpn, Cfen, and
Clj,q,„ are functions of branch characteristics [9].
We explore three relaxations with the following base formulation

in (1) for co-optimizing real and reactive power, p and q, respectively.

min [A2ghG)2 AglpgG Ag]

'dgEg

EPgG — E pl,i,j = pb + Gbshab
gEgb (1,i,j)E1Cb

E E = qbL a b

gEgb (l,i,j)Ekb

Pl,b,n = + CU:n0b,n CAPn7b,n

ql,b,n = Cr,O,rnab Cil3,00106,n + bqn7b,n

P
2 2 (spax)2
l,b,n

(v-bmin)2 ab < (vbmax)2

p9G,min < G < pgG,max

QgG,min < qgG < 9G,max

< 'yb,n < tall(erbn,anx)0b,,tall(enblinn )13b,n

0b,n On,b 76,n — —7n,b

(la)

Vb E B (lb)

Vb E B (lc)

V(l,b,n) E

V(/, b, E

V(l,b,n) E

Vb E B

Vg E g

Vg E g
V0,70 E

V(b, n) E A

The rectangular OPF (i.e., where vr and v represent the real and
imaginary components of the nodal voltages, respectively) is defined
with the following substitutions for a, 0, and -y:

ab (vD2 + (4)2 VbEB (2a)

06,n —> Vr,Vn 744, (b, n) E A (2b)

'Tb,n tigynr VT,21,7r, V (b, n) E A (2c)

with vr , v3 E [—vm", vm"]. The polar OPF (i.e., v and
represent nodal voltage magnitude and angle, respectively) is defined
with the following substitutions into (1):

ab vb
2

VbEB

V (b, n) E A

V (b,n) E A.

06,n VbVn COS(Bb — on)

7b,n VbVn sin(Ob — On)

(3a)

(3b)

(3c)
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Constraints (lb) and (lc) enforce power balances, (1d)-(1e) compute
power flows, (10 enforces thermal limits, (lg) enforces voltage
magnitude bounds, (lh) and (li) enforce generator limits, and (lj)
limits the voltage angle difference for interconnected buses.
The solution to both forms of the OPF problem is non-unique

without fixing a reference voltage angle at one of the buses, ref E 13.
In the polar form, this reference bus constraint is

°ref = O. (4)

In rectangular form, there is a domain reduction for ?).,.r,f :

vTe f = 0 (5a)

Vrner < f < I/77r . (5b)

The choice of reference bus does not impact the optimal solution of
the ACOPF problem, but it may impact the quality of the relaxation
[6], [10]. For comparison purposes, we used the reference bus
location specified in the test cases.

There is a SOC equality relationship amongst a, 0, and y that may
be relaxed to the following convex inequality:

02 
iub,n "Tb,n Œban V (b, E A.

The S OC problem [4] is given by (1) and (6).
McCormick envelopes can be applied to (2), yielding

ab = = vicvnr 4vni , -yb,n = vb vn — vr,vni
(v02 < < ▪ vbr,Trtin)v7i; vbr,maz Kr,men

(Iv < < (vbj,max ▪ vlijonin)vb q,maxq,min

24;2),nr E MCC(vr„ vThr), E MCC(4,vjn)

rvbj vn E MCC(4„ vnr), VT;Vin E MCC(2)",vnj

(6)

(7a)

(7b)

(7c)

(7d)

(7e)

where iD E MCC (x, y) denotes the McCormick envelopes for the
bilinear term xy. The RM problem is given by (1) and (5)-(7).
The QC formulation [5] is a quadratic convex relaxation of the

polar form in (3):

4 < < (Vbmax Vbmin)Vb — Vbmax Vbmin (8a)

fibm E MCC(vqjn,coseb,n), 71,,n E MCC(irbii;„sineb n)(8b)

VbV,, E MCC(Vb, Vn) (8c)

cosOb,n E CR(Ob,m), sinOb,n E SR(Ob,n) (8d)

Obo, = Ob — Bn (8e)

eTt < eb n< eZ1,1',` Vbmin < (8f)

Here, g.isx E CR(x) and sinx E SR(x) denote relaxations of
the cosine and sine functions, respectively [5]. Additionally, when

emb,Thin > 0 (67b7,7 < 0), the sine function is concave (convex) and
requires two linear over (under) estimators; this is the linear variant
of S-CONV in [8]. The QC problem is given by (1), (4), (6), and (8).

III. NUMERICAL RESULTS

To analyze the strength of the different relaxations, we iteratively
solve the specified relaxation and perform OBBT to compute valid
bounds for the specified convex relaxation R of the ACOPF feasible
region by minimizing (for the lower bound) and maximizing (for the
upper bound) each variable, i.e.,

min / max{xilx E R., f (x) < U B} . (9)

Here, f(x) denotes the objective function in (la) and UB denotes
the objective value of the best-known solution to the NLP. Note that
any of the relaxations may define R. A more efficient approach to
OBBT is to optimize only over a subset of the constraints in R. (e.g.,56

corresponding to a subset of the network [1]). However, this can
lead to weaker bounds. Our bounds tightening procedure is similar
to the minimal continuous constraint relaxation network algorithm
presented in [8] but includes the UB constraint.
To evaluate the impact of the UB constraint, we implement OBBT

with and without the UB constraint, denoted as OBBT (UB) and
OBBT, respectively. All problems were modeled with Pyomo [11] and
solved with IPOPT [12] using the linear solver MA27 [13]. OBBT
was performed in parallel on a cluster with 24 64-GB-RAM nodes
and 16 2.6 GHz Intel Sandy Bridge cores per node. We used 12
processes per node. The relaxations compared and summary results
are as follows:

Relaxation Description Cases Closeda

SOC

RM°

RMr

RM"

QCr

QCrO

Eqs (1), (6)
Eqs (1), (6)-(7) & OBBT (UB)
Eqs (1), (5)-(7) & OBBT
Eqs (1), (5)-(7) & OBBT (UB )
Eqs (1), (4), (6), (8) & OBBT
Eqs (1), (4), (6), (8) & OBBT (UB)

16%
16%
52%
67%
67%
90%

We note that because the reference bus selection does not result in
further domain reduction for polar OPF, QC° was omitted.

Detailed results are reported in Table I for the NESTA archive [7],
including the optimality gap, wallclock time, and total iterations. We
define a single iteration as performing OBBT once on all appropriate
variables. Our stopping criteria are as follows: (1) optimality gap less
than 0.1%, (2) wallclock time exceeds one hour, or (3) optimality gap
improved less than 0.1% in 20 iterations of OBBT. For (3), the gap
and wallclock time reported were obtained by the last iteration prior
to stalling.
Out major findings are that the OBBT (UB) significantly improves

performance across relaxations, and neither the RMr° nor the QCr°
dominates the other. Overall, the QC' formulation performs best.
However, the RP4r° formulation can significantly tighten the SOC
relaxation and may be improved by adjusting the location of the
reference bus [10]. This is left for future work. Across all relaxations
tested, only 5 cases did not solve to less than a 0.1% optimality gap.
This is a significant improvement to the results reported in [1] and
[8]. Note that this advancement requires no branching or piecewise
refinement, which is a promising foundation for future work on the
global optimization of the OPF. We recognize that the full OBBT
approach considered here will not scale well to larger cases, and
integration of these techniques (and those described in [1] and [8])
within a scalable global optimization framework will be the subject
of future work.
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aPercentage of 58 NESTA cases with less than 0.1% optimality gap.
bInitializing the NLP from the updated solution to the relaxation and

recomputing the UB between iterations of OBBT results in an optimality
gap reduction from 0.5% to less than 0.1% for both RMr° and QCrO.
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TABLE I
NUMERICAL RESULTS FOR RELAXATIONS OF NESTA ARCHIVE CASES UP TO 300 BUSES (58 CASES TOTAL). HIGHLIGHTING INDICATES CASES NOT

CLOSED TO LESS THAN 0.1% GAP. NINE CASES ARE NOT LISTED DUE TO THE S OC RELAXATION ALONE REDUCING THE GAP BELOW 0.1%.

Case Optimality Gap(%) Wallclock Time(s) / # Iterations

SOC RM° RMr RMr° QCr QCrO SOC RM° RMr RMr° QCr QC"

3_lmbd 1.3 1.3 0.5 0.0 0.2 0.0 0/0 0/0 1/4 1/3 1/3 1/3
5_pjm 14.5 14.5 5.0 0.1 9.3 5.7 0/0 0/0 3/6 35/84 3/6 7/15
6_c 0.3 0.3 0.1 0.0 0.1 0.1 0/0 0/0 4/9 2/3 1/2 1/1
6_ww 0.6 0.6 0.1 0.1 0.0 0.0 0/0 0/0 1/1 1/1 1/1 1/1
14_ieee 0.1 0.1 0.1 0.1 0.0 0.0 1/0 2/0 3/1 3/1 4/1 3/1
29_edin 0.1 0.1 0.1 0.1 0.1 0.1 3/0 4/0 38/9 16/3 4/0 4/0
30_fsr 0.4 0.4 0.4 0.1 0.1 0.1 1/0 2/0 2/0 16/7 8/3 6/2
30_ieee 15.9 15.9 0.1 0.0 0.0 0.1 1/0 1/0 18/8 12/5 8/3 6/2
118_ieee 1.8 1.8 1.6 0.7 0.5 0.1 4/0 7/0 217/10 253/18 59/2 83/3
162_ieee_dtc 4.0 4.0 4.0 4.0 0.7 0.1 7/0 12/0 13/0 13/0 430/7 488/8
189_edin 0.2 0.2 0.2 0.2 0.2 0.1 5/0 9/0 9/0 9/0 10/0 46/1
300_ieee 1.2 1.2 1.2 1.2 0.2 0.0 14/0 23/0 22/0 23/0 290/2 284/2
3_lmbd_api 3.3 3.3 0.1 0.1 0.1 0.0 0/0 0/0 2/7 1/3 2/6 1/3
4_gs api 0.7 0.7 0.1 0.0 0.0 0.1 0/0 0/0 1/3 1/3 1/3 1/2
5_pjm_api 0.3 0.3 0.1 0.0 0.0 0.0 0/0 0/0 1/2 1/2 1/2 1/2
6_c api 0.3 0.3 0.1 0.0 0.1 0.0 0/0 0/0 3/5 1/2 2/3 1/2
14_ieee_api 1.3 1.3 0.2 0.0 0.3 0.1 0/0 1/0 9/8 8/7 4/3 5/4
24_ieee_rts_api 20.8 20.8 2.0 0.6 0.3 0.1 1/0 1/0 21/10 27/13 8/3 8/3
29_edin api 0.4 0.4 0.4 0.4 0.1 0.1 7/0 5/0 5/0 5/0 25/3 35/3
30_as_api 4.8 4.8 0.3 0.1 0.0 0.0 1/0 2/0 25/11 25/11 9/3 8/3
30_fsr_api 46.0 46.0 41.6 41.2 2.4 0.1 1/0 1/0 57/25 63/28 27/11 27/11
30_ieee api 1.0 1.0 0.1 0.1 0.1 0.0 1/0 1/0 27/12 18/8 11/4 11/4
39_epri_api 3.0 3.0 0.3 0.1 0.1 0.0 1/0 2/0 63/24 45/17 7/2 7/2
57_ieee_api 0.2 0.2 0.1 0.1 0.0 0.1 1/0 3/0 61/13 25/5 16/2 9/1
73_ieee_rts api 14.4 14.4 14.4 14.4 0.2 0.0 3/0 5/0 5/0 5/0 29/2 40/3
89_pegase_api 20.4 20.4 20.2 20.2 18.9 9.1 5/0 11/0 179/10 208/11 1663/24 3604/55
118_ieee_api 43.9 43.9 26.9 26.4 9.3 8.7 4/0 8/0 1102/75 1074/74 318/10 301/11
162_ieee_dtc_api 1.3 1.3 1.0 0.9 0.1 0.1 7/0 12/0 824/24 785/23 799/13 433/7
189_edin_api 5.7 5.7 5.5 2.9 0.3 0.1 5/0 9/0 276/9 746/28 83/2 85/2
300_ieee api 0.7 0.7 0.7 0.7 0.1 0.0 14/0 23/0 23/0 23/0 346/2 291/2
3_1mbd_sad 4.3 4.3 0.1 0.0 0.0 0.0 0/0 0/0 1/3 1/3 1/1 1/1
4_gs_sad 4.9 4.9 0.0 0.0 0.0 0.0 0/0 0/0 1/2 1/2 1/1 1/1
5_pjm sad 3.6 3.6 0.0 0.0 0.0 0.0 0/0 0/0 2/3 2/3 1/1 1/1
6_c_sad 1.4 1.4 0.0 0.0 0.0 0.0 0/0 0/0 2/4 2/3 1/1 1/1
6_ww_sad 0.8 0.8 0.0 0.0 0.0 0.0 0/0 0/0 1/1 1/1 1/1 1/1
9_wscc sad 1.5 1.5 0.0 0.0 0.0 0.0 0/0 0/0 3/3 2/3 2/1 1/1
24_ieee_rts_sad 11.4 11.4 0.1 0.0 0.1 0.0 1/0 2/0 17/8 15/7 8/3 6/2

29_edin_sad 34.7 34.7 2.4 0.56 1.2 0.5
b

3/0 5/0 72/14 78/14 40/4 33/4
30_as_sad 9.2 9.2 0.2 0.1 0.1 0.0 1/0 2/0 19/8 17/7 6/2 6/2
30 isr_sad 0.6 0.6 0.2 0.0 0.1 0.0 1/0 1/0 20/8 14/6 6/2 6/2
30_ieee_sad 5.8 5.8 0.1 0.1 0.0 0.0 1/0 1/0 12/5 10/4 6/2 6/2
39_epri sad 0.1 0.1 0.0 0.0 0.0 0.0 1/0 2/0 25/9 17/6 2/0 2/0
57_ieee_sad 0.1 0.1 0.1 0.1 0.1 0.1 1/0 3/0 25/5 16/3 3/0 3/0
73_ieee_rts_sad 8.4 8.4 2.6 2.0 0.1 0.0 3/0 4/0 124/16 169/21 28/2 28/2
89_pegase sad 0.3 0.3 0.3 0.1 0.1 0.1 5/0 9/0 57/3 162/10 91/2 43/1
118_ieee_sad 12.8 12.8 5.1 1.5 1.4 0.1 4/0 8/0 516/34 520/33 113/4 248/9
162_ieee_dtc_sad 7.1 7.1 7.1 7.1 0.5 0.0 7/0 13/0 13/0 13/0 674/11 563/9
189 edin sad 2.3 2.3 2.2 1.8 1.0 0.8 5/0 9/0 155/5 214/8 46/1 46/1
300_ieee_sad 1.3 1.3 1.3 1.3 0.2 0.0 14/0 23/0 23/0 23/0 162/1 281/2
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Abstract

Electricity markets rely on the rapid solution of the optimal power flow (OPF)
problem to determine generator power levels and set nodal prices. Traditionally,
the OPF problem has been formulated using linearized, approximate models,
ignoring nonlinear alternating current (AC) physics. These approaches do not
guarantee global optimality or even feasibility in the real ACOPF problem.

We introduce an outer-approximation approach to solve the ACOPF problem
to global optimality based on alternating solution of upper- and lower-bounding
problems. The lower-bounding problem is a piecewise relaxation based on strong
second-order cone relaxations of the ACOPF, and these piecewise relaxations
are selectively refined at each major iteration through increased variable domain
partitioning. Our approach is able to efficiently solve all but one of the test cases
considered to an optimality gap below 0.1%. Furthermore, this approach opens
the door for global solution of MINLP problems with AC power flow equations.
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Cb,k, 8b,k

CCb,k, C8b,k

Yb,k,i,j

Set of all buses

Set of all buses connected to bus b

Set of all branches (transmission lines)

Set of all inbound branches to bus b

Set of all outbound branches from bus b

Set of all generators

Set of all generators at bus b

Set of simple cycles

Set of branches in cycle c

Set of all possible combinations of partitions for sb,k and cb,k

Set of all possible combinations of partitions for cb,b and ck,k

Susceptance and conductance matrices for branch (b, k)

Shunt susceptance and conductance at bus b

Real (P) and reactive (Q) power demand (or load) at bus b

Minimum/maximum

Minimum/maximum

Minimum/maximum

real power output of generator g

reactive power output of generator g

voltage magnitude at bus b

Apparent power magnitude limit on branch (b, k)

Coefficients of quadratic production cost function of generator g

Real (p) and reactive (q) power output of generator g

Real (p) and reactive (q) power flow at the from end of branch (b, k)

Real (p) and reactive (q) power flow at the to end of branch (b, k)

Real and imaginary part of complex voltage at bus b

Voltage phase angle difference between ends of branch (b, k)

Auxillary variables used in relaxations

Auxillary variables used in relaxations

Binary variables used in piecewise relaxations
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1. Introduction

The field of power systems engineering deals with the generation, transmis-
sion, and distribution of electric power. A power grid is an electric system that
transfers power from generators to demand (i.e., load), and includes ancillary
devices that enable control to ensure security, stability, and reliability in oper-
ations. In Figure I, we show a "one-line" diagram of a widely used benchmark
test system that illustrates a power grid using a simplified notation, intended
for power flow analysis. Nodes in the graph correspond to buses in the trans-
mission system, each of which may have associated generators and loads that
respectively represent sources and sinks in the network. Nodes are connected
by branches that represent transmission elements in the network. For purposes
of planning analyses and operations, a circuit-based mathematical model of the
network is typically applied in order to accurately characterize power and cur-
rent flows.

The U.S. electric grid is mostly an alternating current (AC) system. In an
AC system, voltages V - energy/charges quantified in Volts (V) - and currents I
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System Description:

118 buses
186 branches
91 load sides
54 thermal units

One-line Diagram of IEEE 118-bus Test System

IIT Power Group, 2003
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Figure 1: The IEEE 118-bus benchmark system topology.
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— charge flows quantified in Amperes (A) — are assumed to be sinusoidal waves
that cycle at a constant of 60 times per second (i.e., 60 Hertz). Under the
assumption of constant frequency, the power system can be represented with
phasors, which is a complex number representing a sinusoid, and the need for
modeling short-term dynamics is removed. The result is an algebraic model of
the cyclic steady-state behavior for AC power flows.

Building on a base AC power flow model, the objective of the AC optimal
power flow (ACOPF) problem is to determine generator set points (i.e., power
output levels) that minimize total operating costs of the system while meeting
the existing loads subject to key operational limits and physical power flow laws.
First formulated over half a century ago in 1962 by Carpentier [6], the ACOPF
is the most representative mathematical program of steady-state operations in
AC power networks. Due to the complex number representations of voltage and
current phasors and alternative strategies for calculating power and/or current
flows, there are a number of different possible formulations for the ACOPF [5].
These formulations are, however, universally nonlinear and non-convex, such
that the ACOPF is currently not solved in practice due to perceived concerns
over computational efficiency, solver reliability, and the strong desire to identify
global solutions (which is known to be NP-hard [®] even for networks with tree
topologies [0]). Instead, the least-cost economic dispatch for operating actual
power grids is determined using numerous simplifications of the ACOPF con-
straint set, the most common being the linearized "DC" power flow constraints.

A broad range of solution techniques have been applied to solve the ACOPF
problem, as surveyed in P, 23, 24, 25, 35, M, 511, lit, [61]. General software
tools exist to solve the ACOPF problem [®, rad and many of these tools are
based on general platforms for algebraic modeling (e.g., AIMMS Ampl [24
GAMS [0], and Pyomo [a), n]) that interface with nonlinear optimization
solvers (e.g., CONOPT [1-7], IPOPT [1731], KNITRO [4], MINOS [62], and
SNOPT [27]). While these nonlinear solvers do not provide any guarantee of
global optimality, and do not provide any quantification of the optimality gap,
prior analyses have shown these techniques to be scalable and reliable depend-
ing upon the initialization conditions, data set parameterization, and ACOPF
problem formulation [8]. However, given the importance of these formulations
to power systems operations and electricity pricing — wholesale prices are com-
puted as the duals of power balance constraints at buses — there is a need for
optimization techniques that can both locate globally optimal solutions and
prove their global optimality, quickly and at scale.

A handful of recent approaches focus on development of relaxations of
the ACOPF problem to compute lower bounds on the global optima. These
relaxations are convex and can provide a (ideally tight) lower bound, cer-
tify problem infeasibility and, in some cases, can even be provably exact un-
der certain conditions [34, 47, 1511 related to the underlying physics and net-
work structure [M, KA. Such relaxations are based on semidefinite program-
ming (SDP) [2, 21i, EC, 47, 0, 67J-10] and second-order cone programming
(SOCP) [TT, C12, II, 42]. While these relaxations may provide effective lower
bounds on the objective function, when the relaxation is not exact, the solution
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may not be feasible or even physically meaningful. Consequently, the Lasserre
hierarchy [MI] that incorporates sum-of-square polynomials has been applied to
tighten the SDP relaxation and guarantee global optimality [Z67, rn, 57, 5)];
however, this approach presents practical difficulties for efficient implementa-
tion within a branch-and-cut algorithm and becomes numerically intractable
for large-scale networks. Kuang et al. [42, q propose LP and SOCP hier-
archies that alleviate the computational burden of solving the polynomial op-
timization problems proposed in [Z6, 37, 157, Mi]. Alternatively, local search
techniques or penalty approaches can be applied to recover ACOPF feasible
solutions, but global optimality is not guaranteed [0]. Phan [MI] proposes a
Lagrangian duality-based branch-and-bound specifically to solve the ACOPF
to global optimality, and Chen et al. [9] develop a spatial branch-and-cut ap-
proach for QCQP problems, and some of their test problems are taken from the
ACOPF literature.

Here, we focus on developing rigorous deterministic optimization algorithms
for ACOPF that provide a guarantee of optimality and that can also be feasibly
embedded into optimization algorithms for solving variants of the ACOPF with
discrete decision variables — which result in very difficult mixed-integer nonlinear
optimization models. The latter arise in numerous real-world power systems ap-
plications, including unit commitment, transmission switching, and contingency
analysis. Global solution techniques for nonconvex optimization problems can
be generally classified into approximation/relaxation techniques, cutting plane
(valid inequality) techniques, and branch-and-bound techniques where deter-
ministic algorithms may leverage more than a single strategy. Branch-and-
bound methods [13, ®] seek to solve a lower-bounding (relaxed) problem and an
upper-bounding problem, progressively partitioning the search space to improve
tightness of the lower bound and allow fathoming of the search space when the
lower bound is already larger than a known upper bound. These methods have
seen significant success with the introduction of Branch-and-Reduce [[7119, 6Ii7—
, 71] and other variants [!ig, 3D, 75].
In contrast, multitree methods [®] iteratively solve a sequence of lower-

bounding and upper-bounding problems with a variety of strategies designed
to close the gap. A promising class of multitree methods are known as outer-
approximation (OA) methods PS, Eq. While first used for convex NLPs and
mixed-integer problems with convex relaxations, these methods can also be used
for non-convex problems. Typically, mixed-integer linear programming (MILP)
relaxations are formulated for the lower-bounding problem and the responsibil-
ity of branching is pushed to an MILP solver. An important feature of multitree
approaches is that the lower-bounding problem need not be convex. Rather, the
primary requirements are that that the lower bounding problem can be solved
to global optimality and can be refined in some way to an arbitrary level of ac-
curacy. Further efficiency gains are possible with increased integration between
the global optimization approach and the MILP solver [M].

In this paper, we present an OA-based multitree approach for global solu-
tion of the ACOPF problem. The upper-bounding problem is the well-known
rectangular power-voltage (RPQV) formulation of the ACOPF problem. The
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lower-bounding problem is a piecewise outer approximation based on the SOCP
relaxation of the ACOPF problem originally introduced by Jabr [315] and later
extended by Kocuk et al. [5111. In the next section, we introduce the RPQV
formulation and the classic SOCP-based relaxation. We then introduce a new
piecewise outer approximation for the ACOPF problem based on SOCP relax-
ations that includes piecewise McCormick envelopes for the second-order cone
surface constraint, and piecewise relaxations for multivariate arctangent func-
tions. This piecewise relaxation forms the lower-bounding problem in the outer
approximation algorithm. The OA-based multitree algorithm is discussed in
Section I. In Section 4 we discuss the performance of this approach in terms of
computational time and in terms of relative gap when compared with current
state-of-the-art in convex ACOPF relaxations. Finally, we close with conclu-
sions and future work in Section 5.

2. Problem Formulation and Piecewise Relaxations

The OA multitree approach used in this paper is described in detail in Section
I. The approach relies on an upper-bounding problem that can be used to find
candidate solutions of the ACOPF problem. Here, we make use of the RPQV
formulation with IPOPT to obtain solutions to the upper-bounding problem.
The lower-bounding problem must be a relaxation of the original problem, but
it need not be convex. Rather, it must be solvable to global optimality with the
ability to refine the relaxation to arbitrary tightness. In this paper, we develop
a piecewise outer approximation based on the SOCP relaxation introduced by
Jabr [31i] and extended by Kocuk et al. [1[1]. This relaxation can be refined
by progressively adding smaller intervals in the piecewise representation as the
algorithm progresses.

Section 2.1 shows the RPQV formulation used for the upper-bounding prob-
describes the traditional (non-piecewise) SOCP relaxation.
show our piecewise relaxation of the ACOPF problem.

lem, and Section
Sections z3 and

2.2

2.4

2.1. Rectangular Power-Voltage (RPQV) Formulation

The ACOPF problem can be formulated many different ways [5]. The polar
formulation considers power flow balances at the buses, and the transmission line
equations are written in terms of power, voltage magnitudes, and voltage angles.
The RPQV formulation replaces the voltage magnitudes and angles with real
and complex voltages, removing trigonometric functions in the power balance,
but introducing additional bilinear terms in the tranmission line equations and
the voltage limits. The rectangular-current-voltage formulation [7] writes the
transmission line equations in terms of current and voltage, and has the favorable
property that there are fewer nonlinear terms, since the bilinearities appear
at each bus instead of each branch. Each of these different formulations are
discussed in detail in Castillo and O'Neill [7] and computational performance is
compared in Castillo and O'Neill M.

The RPQV model is widely used to formulate ACOPF problems and is
selected for the upper-bounding problem in this work because it also forms the
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basis for the SOCP-based relaxations used in the lower-bounding problem. The
RPQV problem formulation is given by,

min E[A9(p9)2 Agipg, _L A o] (la)
gEg

s.t.

E Ptb,k + E pb k Gghq E pgG = 0 vbEß (lb)
(6,k)eqn (b,k)EGrt gEgb

E qb,k 
E qt,k Bghq Qrb) E qgG V b E 13 (lc)

(6,k)eqn (b,k)Eq't gEgb

Pt = Gavg + ark Kek 44) —Bb — V (b,k) E C (ld)

qt,k = —BifJcyg — Bif),k(421k + 44) — Grk(yr,ti — 47.170 V (b, k) E G (le)

pt,k = qk'd, Gtbf k(VicIlb — BVk(1,k4 — vkvr,) V (b,k) E (lf)

qt,,k = —Bt,t,k4 — BVk (vicvi, +1) — Gtbfk (44, — ) V (b, k) E C (lg)

04,02 + (qt,k )2 (sr,,:x)2, (ptb,k) 2 + (4,02 < (sricix)2 
V (b, k) E G (lh)

(cin)2 < = (voz (v.1.)2 < (vbrnax )2

pgG,min < PgG < pgG,max QgG,min < qgG < QgG,max
VbEB (li)

V g e G (lj)

The objective (la) is to minimize the production cost, which is usually writ-
ten as a quadratic function of the real power generation. Here 4 Aig, and Ag°
are known coefficients associated with a specific generator g. Equations (lb, lc)
are the balance equations for both real power and reactive power at each bus
b. The power flow in the "from" and "to" ends of the transmission lines are
modeled with equations (F0-1g). Here, a branch (transmission line) is denoted
as l(b, k), where b is the index of the bus at the from end of branch l and k is
the index of the bus at the to end. Real and reactive power injections at either
end of a branch are explicitly expressed in terms of complex voltages. These
power flow constraints are based on the RPQV model, where

Gf  Gft __[B f 1BiftlGl=[ Ir_i ritt ptf ptt

are the real and imaginary parts of the admittance matrix of branch l. Pa-
rameters ugh and Be are the shunt conductance and susceptance at bus b,
respectively. A discussion of the relationship between these power flow con-
straints and the 7-transmission model is given in Appendix H. Thermal limits
on the lines are enforced in equations (lh) through bounds on the square of the
apparent power flow at both ends of branch l. Equations (1i) and ( ) provide
bounds on the voltage magnitudes and the generator real and reactive power
respectively. More details on the RPQV model can be found in Castillo and
O'Neill [7] and the MATPOWER user manual. MATPOWER is a commonly-
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used MATLAB-based power system analysis tool [051].
Any solution of the RPQV formulation given by equations (1) provides a

valid upper bound of the ACOPF problem, and this formulation is used as the
upper-bounding problem in this work. For the lower-bounding problem, we
require a relaxation of the ACOPF problem, and we base our approach on ideas
from existing SOCP relaxations, discussed next.

2.2. SOCP-based Reformulation of the ACOPF Problem

The formulation (1) is a non-convex optimization problem due to quadratic
and bilinear terms. To support development of tight convex relaxations, Jabr
[313] was the first to reformulate this problem through the introduction of a set
of new variables defined as,

Cb,b = (2102 (vb)2 = vb

Cb Kvir, + 4214 = lybliVkl COS b,k

Sb ,k = V1;Vk — 144 = 4411'141 sin b ,k

With this transformation, the quadratic and bilinear terms can be replaced by
the new variables, Cb,k and sb,k, leading to the reformulation

min Er A2 t—G \ 2 AglpgG Ag0]
Fig kP9 )

gEg

s.t.

E DD ▪ E r_fs
b
h

,k Fb,k -I- pg

(b,k)eqn (b,k)equt gEgb

E ▪ E ,f Ds
Vb,k Vb,k 

h 
Cb,b qgG = 0

(b,k)Ertn (b,k)ecrt sEgb

Pf),k G‘,fiCb,b Gif,kcb,k — B4tksb,k

qt,,k = —Bacb,b — Ntkcb,k — qtksb,k

pt,k = G t,kck,k + Gtbfkck,b — Bb fkS k,b

qt,,k = BtfkCk,k — Bbt f kck,b Gtbf ks k,b

04,k )2 + (q6c )2 < (sax)2, 04,02 + (402 < (sux)2

mmin‘
) 
2
< Cb,b < (Vmax )2

nuG,min DG,max f-)G,min qg gG G,max
1- 1- g

(2a)

(2b)

VbEB (2c)

VbEB (2d)

V (b,k) E L (2e)

✓ (b,k) E L (2f)

✓ (b, k) E L (2g)

✓ (b, k) E L (2h)

✓ (b, E L (2i)

V b E B (2j)

Vg E g (2k)

where the power balance and branch injection constraints are all linear. It is
worthwhile to point out that the reformulation (2), as written, is not mathe-
matically equivalent to the original formulation (1), and additional constraints
are required for equivalence. First, according to the definitions of Cb,k and sb,k,
we have

Cb,k = Ck,b Sb,k = — k ,b V (b, E L (3)
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and
= Cb,bck,k

,2 _L ‘,2 
V (b,k) E L'-b,k 'b,k (4)

Note that constraint (4) is non-convex since it indicates the surface of a ro-
tated second-order cone in R4, and we call this the second-order cone surface
constraint.

In addition, we need to consider the cycle constraints, which ensure that the
sum of angle differences along each cycle (or loop) equals zero.

E Ob,k = 0

(b,k)Er

Ob,k=— arctan 
( sb,k)

Cb,k

vcEC

v (b, k) E L

(5a)

(5b)

Here Le denotes a simple cycle in the network. Previous work has shown that
cycle constraints can be neglected for radial networks; however, for general
meshed networks, these constraints have to be enforced. Therefore, an equiva-
lent ACOPF problem formulation in the space of the new variables is given by
equations,

(2), (3), (4), (5) (6)

Note that the reformulation (6) is still a non-convex optimization problem due
to the second-order cone surface constraints (4) and the arctangent functions in
the cycle constraints (5).

Equations (2) formed the basis for development of strong SOCP relaxations
of the ACOPF problem. Jabr PA first proposed an SOCP relaxation, where
the non-convex constraint (4) is relaxed with the inequality,

'- < Cb,bck,k
,2 _L c.,2 

V (b,k) E rb,k "b,k (7)

Though quadratic and bilinear terms are included, constraint (7), known as the
second-order cone constraint, is convex since the corresponding feasible region
is the surface and the inner space of a rotated second-order cone (note that cb,b
and ck,k are non-negative). The classic SOCP-based convex relaxation proposed
in Jabr [26] includes equations (2) and (7) only, excluding the cycle constraints.
To further improve the tightness of this formulation, Kocuk et al. VIA proposed
three strong SOCP-based relaxations, including different relaxations of the cycle
constraints (5), and additional SDP-based cuts. Numerical results have shown
that these strong SOCP relaxations are tighter than the classic formulation [316].
Moreover, they can provide even tighter relaxations than the SDP approach in
several benchmark problems. Although the SDP-based separation cuts provide
stronger relaxations on most of their test problems, the generation of these cuts
requires solution of a number of SDP subproblems.

While these relaxations have been shown to be quite strong, they are not ap-
propriate for the OA multitree approach as written. That is, they cannot be re-
fined to produce increasingly tight relaxations. Because of the favorable tradeoff
between tightness of the relaxation and computational cost, the lower-bounding
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problem used in this paper builds from ideas in the SOCPA formulation. The
next subsections focus on the development of piecewise representations of the
second-order cone surface constraints (4) and the arctangent cycle constraints

(5)•

2.3. Piecewise Relaxation of the Second-Order Cone Surface Constraint

In a typical SOCP-based relaxation, equation (4) is directly relaxed with the
one-sided second-order cone inequality (7). For a large number of benchmark
problems, this relaxation is tight enough and the residual of Cb,bck,k — 4,k —Sg,k
is negligible. This means the optimal solution of the relaxation problem auto-
matically converges to some point very close to or even on the surface of the
second-order cone. However, there exist counter examples where this relaxation
is not tight. In these cases, the optimal solution of the relaxation problem lies
in the interior of the second-order cone and equation (7) alone is not enough to
provide tight relaxation of the ACOPF problem. The existence of these exam-
ples illustrates the need to enforce the full second-order cone surface constraint
(4) instead of (7) alone.

To ensure a tight relaxation, the equality constraints (4) needs to be consid-
ered directly. As others have done, we continue to relax the convex side of this
constraint with the second-order cone inequality (7), but also add a relaxation
for the other side of the inequality based on McCormick envelopes [155] on the
bilinear terms.

Introducing two new variables,

,2 i_ 02
CSb,k — ,b,k i ,=b,k

CCb,k = Cb,bck,k,

the non-convex equality constraint (4) can be written as,

csb,k = CCb,k V (b,k) E £ (8)

Both new variables can be relaxed using standard outer approximation tech-
niques which give a set of linear over- and under-estimators. Since c?,,k + q,k is
a convex function, the linear over-estimator of csb,k is given as

CSb,k < (Ck k + Cf,k)Cb,k + (5kk + ,9)1,k),9b,k — Cf;,kCI,k — Skkk,lo (9)

providing a single linear over-estimator for the entire domain [ckk, c4] X
[sf; k , 41 k]. Note that under-estimators for csb,k are not needed because we are
directly including (7).

For variable ccb,k, the well-known McCormick envelopes [151 provide the
tightest linear envelopes. Particularly, for the domain [Ckb , CW:b] X [Ck , k , CicA] ,

we have two under-estimators

CCbk > Cb,bC4 + 47,bck,k — CF),bC4

CCbk > Cb,bCk A + Cb,bCk,k — Cb,bCk,k

(10)
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Again, note that the over-estimators are not required because we directly include

(7).
It is worthwhile to point out that the tightness of these over- and under-

estimators are strongly dependent on the upper and lower bounds of variables,
and while the OA multitree approach makes use of bounds tightening methods,
further refinement is still necessary with piecewise relaxations where the feasible
domain is split into a set of smaller regions with over- and under-estimators
constructed for each region.

In this piecewise outer approximation approach, discrete variables are re-
quired to indicate which region is active. For this reason, the resulting relax-
ations are formulated as mixed-integer programming problems. There exist a
number of different mathematical representations for piecewise over- and under-
estimators [25], 32, 51i, 72, TE]. Previous studies have indicated that the choice
of representation can strongly impact computational performance. Compre-
hensive comparisons for piecewise bilinear representations can be found in the
literature [E5, 29, 32]. Such an analysis for the ACOPF relaxation is beyond
the scope of this paper. Here, a bivariate partitioning is used [®] (i.e., both
variables in the bilinear terms are partitioned). Using [skk,i, sb k,i] to refer to

the i-th interval for Sb,k and [ckko , Co] to refer to the j-th interval of cb,k, we
can write the following piecewise over-estimators for csb,k as,

L U \
1Cb,k,j 

, 
Cb,k,j1Cb,k,i,j

+ 
, L U

(sb,k,i Sb,k,i)Sb,k,i,i

L U , L ,U \
— -r

cSb,k

(i,j)EZr,,sk

U
Sb,k,i,j

L
Sb,k,i,j

Sb,k = E Sb,k,i,j

(i,j)EZr,,sk

C161* jyb,k,i,j

L
cb,k,i,j

Cb,k = E
(i,j)ez ,sk

E Yb,k,i,j =1

(i,j)EZr,,1

Yb,k,i,j E

V (i,j) E 4sk v(b,k)Er (lla)

V (b,k) E ,C (11b)

V (i , j) E 4:sk V (b, k) E G (llc)

V (i, j) c Zrk V (b,k) c (lld)

V (b,k) E ,C (lle)

V (i, j) E Zrk V (b, k) E G (llf)

V (i, j) E Zrk V (b,k) E G (llg)

V (b,k) E ,C (llh)

V (b, k) E G (lli)

V (i,j) E Zrk V (b, k) E G (11j)

The binary variables yb,k,i,j are used to indicate which subregion [skk,i, S,k,i]

X [Cbkj, CV/cj] is active for each branch (b, k). The set Zrk is the set of all subre-
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gions [sP, SF, ki] X [Ck k,3, Crbjk,3] for each branch (b, k). The variable csb,k,,,3 is
the value of csb,k within the corresponding subregion. It is equal to 0 if the sub-
region is not active and equal to csb,k if the subregion is active. Similarly, Sb,k,i,3
and cb,k,,,3 are the values of ski, and cb,k within the corresponding subregions.

Constraint (11a) is the over-estimator for each subregion. Constraints (11c),
(lld), (11f), and (llg) force Sb,k,,,3 and Cb,k,ij to be zero if the subregion is not
active and within the bounds of the subregion if the subregion is active. Note
that if the subregion is not active, these constraints along with (lla) force
csb,k,,,3 to be less than or equal to O. Constraint (lli) ensures that only one
subregion can be active for each branch.

We used the following for the under-estimators for ccb,k.

,U~

▪ Ci(o,b,iCkb,k,ij

U — ,U x

CCb,k,i,j
,L

▪ CkAiCkb,k,i,j
L ,L s— ub,b,jukkjvb,k,i,j

CCb,k = 
E

(imEzrk

LCbb,k,i,, >
ECb,b = Cbb,k,i,j

(i,,j)EZrk

U
Ckb,k,i,j <

Ckb,k,i,j > C11;,k,j6b,k,i,j

Ck k = E Ckb,k,i,j, 

(i,,j)E26,ck

E Ob,k,i,j =1

6b,k ,j E 1}

V (i, j) E 4ck V (b,k) E G (12a)

V (i, j) E 4ck (b, k) E L (12b)

V (b,k) E G (12c)

V (i,j) E Zrk V (b, k) E G (12d)

V (i,j) E Zrk (b, k) E G (12e)

V (b, k) E G (12f)

V (i,j) E Zrk V (b, k) E G (12g)

V Zrk V (b, k) E G (12h)

V (b, k) E G (12i)

(b,k) E G (12j)

V (a,.1) E 45c V (b,k) E L. (12k)

Similar to above, the binary variables 5b,k,,,a are used to indicate which subregion
— CV,k,3] is active for each branch (b, k). The set Zfr,,ck is the

set of all subregions gb,,, cf, b,i] x [ck,k,3, Co] for each branch (b, k). The
variable ccb,k,i0 is the value of ccb,k within the corresponding subregion. It is
equal to 0 if the subregion is not active and equal to ccb,k if the subregion is
active. Similarly, cbb,k,i,j and cicb,k,,,3 are the values of Cb,b and Ck,k within the
corresponding subregions.
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Constraints (12a) and (12b) are the under-estimators foreach subregion.
and 

ckb,k,io
Constraints (12d), (12e), (12g), and (12h) force cbb,k,z,3 to be zero
if the subregion is not active and within the bounds of the subregion if the
subregion is active. Note that if the subregion is not active, these constraints
along with (12a) and (12b) force ccb,k,2,3 to be greater than or equal to O.
Constraint (12j) ensures that only one subregion can be active for each branch.

The combined constraints,

7), (8), (11), (12),
form the piecewise relaxation of the second-order cone surface constraints.

(13)

2.4. Piecewise Relaxation of the Arctangent Fnnction in the Cycle Constraints

To obtain a convex relaxation of the reformulation (6), we also need to
relax the nonlinear arctangent terms in the cycle constraints (5). Similarly,
we are interested in constructing linear over- and under-estimators for these
expressions.

Given the domain [ct k, C] X [stk, 4,k] one approach to derive piecewise
relaxations is to identify the "tightest" hyperplanes which pass through each
of the vertices and lie strictly above or below the arctangent function over the
domain. The two over-estimators and two under-estimators for each arctan term
can be parameterized,

arctan (sb'k1 > a2sb,k + ÍVcb,k + ry2 V i E {1,2}
Cb,k

arctan (sb'kl< a°,9b,k + i3f Cb,k '-rf V i E {1, 2}
Cb,k

(14)

where the values of parameters a, [3, and -y, are based on different feasible do-
mains of Sb,k and cb,k [ [. In Kocuk et al. [9U], relaxations of the arctangent
functions are computed by solving four optimization problems for each arctan-
gent function to lift the linear planes and ensure none of the feasible region is
violated. In our approach, piecewise relaxations are desired over a number of
subintervals, and we derive linear envelopes that pass through the arctangent
function at each of the four corners. The expressions for the parameters from
our approach are provided in

As before, piecewise representations are used to improve tightness as the
algorithm progresses. In particular, for each arctan term, we partition the
domains of variables cb,k and sb,k, leading to small sub-regions [sf, si()I ,rn] X
[4", cY, ,„], where m=1, • • •, M and n=1, • • •, N . Note that the binary variables
introduced for Cb,k and Sb,k can be shared with those used in the over-estimators
introduced for variable csb,k. We use the following piecewise relaxations for the

5111
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cycle constraints in (5

—

— °lc; ,k,i,j,n5b,k,i,j

0b,k = E
(i,j)EZ

V n E {1, 2} V (i, j) E 4:k V (b, k) E G (15a)

V n E {1,2} V (i,j) E 4:9k V (b, k) E G (15b)

V (b, k) E G (15c)

11c) - (11j)

Note that we only need to impose cycle constraints for a set of simple cycles,
which is called a cycle basis [M]. For instance, in a connected graph with n buses
and m branches, the cycle basis contains a number of m—n+1 simple cycles. In
larger networks, m—n+1 may still be quite large. Therefore, the relaxations of
the arctangent fucntions are initialized with only a single interval (no piecewise
components), and then selectively refined as described in Section 3

3. Global Solution Framework for ACOPF

The global solution approach developed for the ACOPF problem in this
paper is a multitree method [3] that iteratively solves a sequence of upper-
bounding and lower-bounding problems. The upper bound at each iteration is
found by solving the original nonconvex problem to local optimality. For the
ACOPF problem in this paper, the RPQV formulation in equations (1) is used
for the upper-bounding problem. The lower bound at each iteration is computed
using a piecewise outer-approximation of (1) based on the variables in the classic
SOCP relaxation. Outer-approximation [CIS, 211] is traditionally used for convex
NLP problems or MINLP problems with convex binary relaxations, however,
convexity is not required. The lower-bounding problem must represent a true
relaxation of the original problem, it must be solvable to global optimality, and
it must be possible to refine the relaxation to sufficient accuracy for the desired
optimality gap. In this paper, the lower-bounding problem is the piecewise
SOCP-based relaxation of the ACOPF problem given by,

(4 (1), (5a), (7), (§), (11), (12), (15), (PW-ACOPF-R)

where the selection of intervals for each of the constraints is managed by the
algorithm described below. If none of the variables are partitioned (initial re-
laxation), this is a convex SOCP problem and can be solved to global optimal-
ity by local solvers. However, if internal points (i.e., additional intervals) are
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added to the piecewise representation, the resulting relaxation is formulated as
a mixed-integer second-order cone programming (MISOCP) problem, which can
be solved by commonly-used mixed-integer programming solvers.

Theoretically, one can achieve arbitrary tightness by simply increasing the
number of segment points. However, the resulting relaxation, formulated as
a large-scale MISOCP problem, can be very challenging to solve or even be-
come intractable. Therefore, the overall algorithm iteratively solves a sequence
of lower- and upper-bounding problems, where the lower-bounding problem is
progressively and selectively refined as the algorithm proceeds. The goal is to
provide strong improvement in the tightness of the relaxation while ensuring
efficient solution of the lower-bounding problem by introducing fewer discrete
variables.

Note that the lower-bounding problem (PW-ACOPF-g) is a true relaxation
of the original ACOPF problem. Therefore, if the lower-bounding problem is
ever infeasible, then the original ACOPF problem is also infeasible and the
algorithm terminates. Otherwise, the solution provides a valid lower bound of
the optimal objective function value for the ACOPF problem.

In each iteration, the upper-bounding problem is reinitialized with the so-
lution obtained from the lower-bounding problem and solved with a local NLP
solver to search for a better candidate solution and upper bound. If the gap
between the upper and lower bound closes, then a provably global solution has
been found. While there is no guarantee that the upper-bounding problem will
converge to the global minimum, in practice this approach has been effective.
Furthermore, since the lower-bounding problem is progressively refined, in the
limit, the solution of the lower-bounding problem will approach the global solu-
tion of the original ACOPF problem and eventually meet the desired tolerance
criteria. The algorithm terminates when the relative optimality gap is below a
given tolerance or the computational time exceeds the desired threshold.

The performance of this global solution framework depends strongly on the
tightness of the lower-bounding problem, and it is well known that reducing
the bounds on key variables can have a significant impact. In this work,
optimization-based bounds tightening (OBBT) is used to reduce the domain
of the variables and improve the relaxation. This optimization-based strategy
solves two optimization problems for each selected variable to find the smallest
lower bound and the largest upper bound where the problem is still feasible.
Global optimality is required for the OBBT problems (so as not to improperly
cut off a valid part of the feasible region), and they are derived directly from
our lower-bounding problem by modifying the objective function and adding
the objective cut-off constraint based on the current upper bound. This OBBT
approach is described well in several sources [®, igtZ , C713]. The OBBT approach is
computationally expensive. Therefore, it is only implemented on all sb,k and cb,k
variables in the initial step of the algorithm, and applied selectively thereafter.
To further improve computational time, these problems are solved in parallel
using Pyomo [31), EU] and mpi4py rEE—E1151.

The following algorithm is used for global optimization of the ACOPF prob-
lem:
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O. Initialization: The upper bounding problem (1) is solved to local optimal-
ity. If the upper bounding problem is feasible, the corresponding objective
function value is used as the initial upper bound. Otherwise, the initial
upper bound is set to a sufficiently large value. An initial lower-bounding
problem (PW-ACOPF-A) with no partitioning (e.g., lower and upper
bounds only are used in the relaxation) is generated. Optimization-based
bound tightening (OBBT) is performed for selected variables, including
sb,k and cb,k, based on the initial upper bound and the lower-bounding
problem.

1. Solve the Lower-Bounding Problem: The lower-bounding problem
(PW-ACOPF-Rj) is solved to global optimality. If this relaxation is
infeasible, the original ACOPF problem is infeasible, and the algorithm
terminates. Otherwise, the lower bound on the problem is updated as
needed and the algorithm proceeds to Step 2.

2. Solve the Upper-Bounding Problem: The original non-convex ACOPF
problem (1) is solved to local optimality with the variables initialized from
the solution of the lower-bounding problem. If the problem is feasible and
the objective is lower than the best known feasible solution, the upper
bound is updated. If the optimality gap between the current upper and
lower bounds is below the given tolerance, the algorithm terminates with
the global solution. If the algorithm execution time is larger than the
maximum execution time, then the algorithm terminates with the best
solution found. Otherwise, proceed to Step 3.

3. Refining the Lower-Bounding Problem: In this step, additional inter-
vals are added to the piecewise representations. Given the solution of the
lower-bounding problem, the second-order cone surface constraints with
residuals greater than a specified tolerance are identified, and the corre-
sponding variable domains are further partitioned by adding new segment
points according to the solution of the lower-bounding problem. As well,
the network solution is examined, and we identify simple cycles within the
cycle basis that have the largest cycle constraint violations. Similarly, the
corresponding variable domains are further partitioned by adding new seg-
ment points based on the solution of the lower-bounding problem. Bounds
for variables associated with these modified constraints are tightened using
OBBT. Proceed to Step 1.

This algorithm is used to converge ACOPF problems to global optimality as
demonstrated on a number of test cases in the next section.

4. Numerical Results

The primary purpose of this work is to provide an algorithm to quickly iden-
tify global solutions to the ACOPF problem, which requires a rigorous approach
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to closing any remaining optimality gap and proving global optimality of candi-
date solutions. Our OA-based approach solves a sequence of upper- and lower-
bounding problems where the lower bounding problem is a piecewise relaxation
of ACOPF that allows further refinement as the algorithm progresses. Here, we
compare the performance of our approach against the current state-of-the-art
reported in the literature for convex relaxations of the ACOPF problem.

Comparisons are made with the quadratic convex (QC) relaxation proposed
by [L12] and refined in [111], the classic SOCP [3151] formulation (SOCP), and three
strong relaxations (SOCPA, S34A, and SSDP) proposed by [0]. Recall that the
SOCPA is SOCP strengthened by cycle constraints with linear cuts around the
arctangent functions, the S34A is further strengthened by imposing polynomial-
based relaxations for cycle constraints arising in 3- and 4-node cycles, and the
SSDP is SOCP strengthened by generation of SDP separation cuts.

We observe that all of these relaxations (QC, SOCP, SOCPA, S34A, and SSDP)
are single relaxations and are therefore not global optimization approaches.
Computational results in Kocuk et al. [5[1] do include up-front computations
for bounds tightening and generation of improved cuts. However, they are
still single-pass approaches and do not iteratively refine or tighten the relax-
ation. This difference makes it difficult to compare the performance of these
approaches with our global approach, which does provide iterative tightening
of the relaxation. Therefore, when presenting experimental results below, we
report solution quality and run time of our approach executed to termination
as well as the corresponding statistics for the first iteration of our OA approach,
i.e., a single pass that includes solution of the lower-bounding relaxation and
the upper-bounding problem.

We test our approach on 14 benchmark ACOPF test cases, including 6 stan-
dard IEEE instances from MATPOWER [a3] and 8 instances (under 'typical
operating conditions') from the NESTA test case archive PA. The NESTA test
cases are designed to contain more realistic operating data and can be more
computationally challenging than standard IEEE test cases. Our global solu-
tion framework is implemented in Python 2.7 with Pyomo 5.1 [31), 31]. All
experiments are executed on a 64-bit server with 48 CPUs (Intel(R) Xeon(R)
CPU E5-2697 v2 A 2.70GHz) and total memory of 264 GB. All lower-bounding
problems are solved with GUROBI 6.5.2 [63], with the thread option set to
24. The NLP problems are solved with IPOPT 3.12.6 [®] configured using the
MA27 sparse linear solver [13].

The relative optimality gap of the global algorithm is defined as
(zus zLB) /zUB x100 where ZUB and zLB are the current "best" values of the
upper and lower bounds on the objective function, respectively. The convergence
tolerance for the relative optimality gap is set to 0.1%, the total computational
time limit is 3600 seconds, and the maximum outer iteration number limit is
set to 100.

4.1. Comparison of Optimality Gap
In Table 1, we report optimality gaps resulting from both our global OA

approach (including the first iteration of our OA approach) and the single-pass
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Table 1: Percentage relative optirnality gap. The ̀-' indicates no results were reported by the authors on
this test case; the "" indicates results that are reported to the tenth decimal place only. Note that the
optimality tolerance for our Global OA Approach is set to 0.1%, and no additional refinement is done
after this gap is acheived.

Case Name
Global OA
Approach lst OA

Single-Pass Relaxations
QC SOCP SOCPA S34A SSDP

nesta_case3_1mbd 0.00 0.89 1.24 1.32 1.25 0.97 0.43
nesta_case5_pjm 0.09 14.35 14.54 14.54 14.47 14.26 6.22
case6ww 0.02 0.02 0.63 0.02 0.01 0.00
nesta_case6_ww 0.02 0.02 0.6* 0.63 0.02 0.01 0.00
casel4 0.01 0.01 0.08 0.08 0.06 0.00
nesta_casel4_ieee 0.00 0.00 0.1* 0.11 0.11 0.07 0.00
case30 0.08 0.26 0.57 0.37 0.34 0.07
nesta_case30_ieee 0.09 2.24 15.64 15.65 5.24 4.79 0.00
case39 0.00 0.00 0.02 0.01 0.01 0.01
nesta_case39_epri 0.01 0.01 0.0* 0.05 0.02 0.02 0.01
case57 0.02 0.02 0.06 0.06 0.06 0.00
nesta_case57_ieee 0.01 0.01 0.1* 0.06 0.06 0.06 0.00
casell8 0.08 0.10 0.25 0.24 0.16 0.03
nesta_case118_ieee 0.591 0.87 1.72 2.10 1.12 0.94 0.25

1 This case failed to solve to a gap of 0.1% in the allotted time (3600s). The reported
gap of 0.59% was achieved in 423 seconds.



convex relaxations reported in the literature.
As shown in the table, our global approach achieves the specified target

optimality gap (less than 0.1%) for all but one test case. Comparing with
specific single-pass convex relaxations, our global approach obtains equal or
smaller optimality gaps than the QC, SOCP, and SOCPA relaxations for all test
cases considered. Note that the optimality gap tolerance is set to 0.1%, and the
global approach does not refine further after this tolerance is met. Therefore,
it is more important to take note of the more challenging problems where the
single-pass relaxations do not achieve tight relaxation on their own. Although
our global approach is based on similar relaxations as the SOCP-based meth-
ods, our implementation further refines these relaxations with the piecewise
outer approximations and therefore improves the tightness of the lower bound-
ing problem. Finally, our proposed approach is competitive with the tightest
SOCP-based relaxation, SSDP, and yields significant improvements over SSDP on
the nesta_case3ambd and nesta_case5_pjm cases. For the nesta_case3_lmbd
and nesta_case5_pjm test cases, the first iteration of the OA approach finds a
solution that is in the interior of the second-order cone inequality, and it is likely
that this harms the quality of the other single-pass relaxations as well. How-
ever, our global approach explicitly addresses this violation through refinement
of the piecewise outer approximations and additional bounds tightening. These
results show that our OA-based multitree approach is able to effectively close
the gap and solve even the more challenging problems to global optimality.

Comparing the optimality gap from the first iteration of our OA approach
with those obtained by the other relaxations shows that the relaxations pro-
posed in this work are competitive with all the reported relaxations except for
those based on generating SDP cuts. While SSDP relaxations are tighter than
the initial OA relaxation, this comes with an increased computational cost to
solve the SDP subproblems and generate these cuts. Furthermore, these addi-
tional cuts could be included with our lower-bounding problem. However, the
improvement in the relaxation would need to be weighed against the increased
computational cost associated with generating the cuts.

4.2. Comparison of Computational Performance

One of our key objectives is to quickly generate globally optimal solutions to
the ACOPF quickly. To assess the degree to which we achieve this objective, we
report computational timing results for each of the test cases in Table g. In this
table, we report the best upper bound and lower bound identified, the relative
optimality gap (in %), the solver CPU time (in s), and the number of outer
iterations. Consistent with other reported timing in the literature, this table
shows only the cumulative time required by the solvers (on both the upper- and
lower-bounding problems), and omits the overhead associated with data pro-
cessing, model construction, and OBBT. All the benchmark test cases with the
exception of nesta_case118_ieee can be solved to under the 0.1% optimality
gap within the time allotted, and out of that set only the nesta_case30_ieee
takes longer than one minute to solve. Many of the instances were solved within
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Table 2: Computational Performance. Note that the solver CPU time does not include
overhead computational costs related to data processing, model construction, and OBBT.

Case Name
Upper
Bound

Lower
Bound

Gap

(%)

CPU Time
(s)

Iteration

nesta_case3_1mbd 5812.64 5812.64 0.00 0.25 3
nesta_case5_pjm 17551.89 17536.94 0.09 50.37 16
case6ww 3143.97 3142.55 0.02 0.07 1
nesta_case6_ww 3143.97 3143.43 0.02 0.11 1
casel4 8081.52 8081.10 0.01 0.10 1
nesta_casel4_ieee 244.05 244.04 0.00 0.07 1
case30 576.89 576.45 0.08 33.01 6
nesta_case30_ieee 204.97 204.78 0.09 250.02 8
case39 41864.12 41862.14 0.00 2.76 1
nesta_case39_epri 96505.52 96499.21 0.01 0.72 1
case57 41737.79 41731.17 0.02 0.92 1
nesta_case57_ieee 1143.27 1143.10 0.01 0.27 1
casell8 129660.69 129562.20 0.08 53.83 3
nesta_case118_ieee 3718.64 3696.81 0.59 423.131 4

1 This case failed to solve to a gap of 0.1% in the allotted time (3600s). The
reported gap of 0.59% was achieved in 423 seconds.

a single iteration, due to the tight variable bounds obtained by the initial OBBT
process and the strength of the SOCP-based relaxations used.

For one of the test cases, nesta_case118_ieee, our global approach fails to
converge to the threshold gap of 0.1% within the allotted time, and terminates
with an optimality gap of 0.59% after 4 outer iterations. The time reported
in this table is the time to obtain the listed optimality gap. In this instance,
the initial relaxation is not very strong, and the size of the lower-bounding
problem (PW-ACOPF-R1) grows dramatically as points are added to many of the
piecewise relaxations. In future work, we will explore more targeted, adaptive
refinement strategies to control this growth and increase refinement only where
necessary. With the exception of the final test case, the computational times
for these problems are short enough to allow global solution of the ACOPF
problem in a real-time context. However, the problem sizes are still below
those considered in practice, and further development of our gobal approach is
necessary to ensure reliable, efficient convergence for larger systems.

Table 1 compares the computational performance of our global approach
with the reported solution times for the single-pass convex relaxations from the
literature. The times reported for the solution of these relaxations are taken
from Kocuk et al. [Ill] directly, and were not run on the same computing hard-
ware or software platform as those reported for our approach, and are therefore
not directly comparable. However, all experiments are conducted on modern
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Table 3: Comparison of computational time between global approach and solution of single
relaxations.

Case Name
Global OA
Approach 1st OA

Single-Pass Relaxations
SOCP SOCPA S34A SSDP

nesta_caseUmbd 0.25 0.03 0.02 0.13 0.31 0.21
nesta_case5_pjm 50.37 0.05 0.02 0.13 0.15 0.21
case6ww 0.07 0.07 0.06 0.26 0.32 0.46
nesta_case6_ww 0.11 0.11 0.02 0.22 0.24 0.51
casel4 0.10 0.10 0.05 0.38 0.41 0.61
nesta_casel4_ieee 0.07 0.07 0.02 0.45 0.48 0.67
case30 33.01 0.38 0.06 0.78 0.81 1.03
nesta_case30_ieee 250.02 0.21 0.04 0.88 1.03 1.08
case39 2.76 2.76 0.09 0.91 0.99 0.82
nesta_case39_epri 0.72 0.72 0.04 0.89 0.97 0.64
case57 0.92 0.92 0.11 1.45 1.51 1.93
nesta_case57_ieee 0.27 0.27 0.08 2.04 2.09 2.17
casell8 53.83 1.21 0.30 3.64 5.12 5.04
nesta_case118_ieee 423.131 1.04 0.25 4.98 5.57 5.97

1 This case failed to solve to a gap of 0.1% in the
reported gap of 0.59% was achieved in 423 seconds.

allotted time (3600s). The

computing platforms, making the qualitative comparison instructive. We fur-
ther reinforce that these are solve times for the solution of a single relaxation and
upper-bounding problem only. Therefore, computational time between these
approaches and our global approach are not directly comparable since these
single-pass relaxations do not include progressive refinement to close the gap.
Nevertheless, the computational timing results show that the first iteration of
our OA approach (a single pass through our algorithm) is comparable to the
times reported for these SOCP-based relaxations.

Of course, for challenging problems where the initial relaxation was not
sufficiently tight and further iterations of the OA approach are required, the
computational time of the global approach is larger than the single-pass re-
laxations. This shows the additional computational cost required to refine the
initial relaxation and provide global solutions within the desired optimality gap.

5. Summary and Conclusions

The optimal power flow problem is a critical component in modern electricity
markets where it is used to determine generator operating points and nodal
electricity prices. Although linear approximations of the OPF (e.g., the so-called
"DCOPF") provide improved computational performance and solver reliability
over the nonlinear ACOPF formulations, these approximate formulations do
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not yield globally optimal solutions to the nonlinear AC power flow system, and
are not even guaranteed to be AC feasible. Similarily, linear approximations
of the ACOPF seem attractive when addressing power systems operations and
planning optimization problems with discrete decision variables, e.g., the unit
commitment and transmission switching problems. However, such mixed-integer
linear programming approximations suffer the same problems as above, yielding
soluitons that may not even be AC feasible, yet alone optimal. Given the huge
potential cost savings and the use of these models in market pricing, there is
significant industrial and academic interest in developing fast, global solution
algorithms for the ACOPF.

Current research in this area has focused mainly on the development of tight
convex relaxations for the ACOPF problem. While semidefinite programming
relaxations have received significant interest, exact relaxations of the ACOPF
can only be guaranteed for certain network structures [0]. Furthermore the
computational cost of these approaches can be quite high, and they present
practical difficulties for efficient implementation within a branch-and-cut al-
gorithm framework. In contrast, approaches based on quadratic envelopes or
second-order cone relaxations[111, 12, Elli, glA are significantly more computation-
ally efficient, even on large-scale test problems. While these approaches yield
strong relaxations on many of the standard test problems, there are several stan-
dard test cases where significant optimality gaps remain, and there is a need to
further refine these relaxations in the context of branch-and-bound or piecewise
outer-approximation strategies.

We seek an optimization approach that can provide can provide rapid solu-
tion of NLP ACOPF problems to global optimality (i.e., close the optimality
gap), while employing a strategy that is appropriate for extension to MINLP
problems with many discrete variables. In this work we introduce a multitree
global optimization algorithm based on piecewise outer approximation for global
solution of the ACOPF problem. As an OA method, this approach alternates
between solving an upper-bounding problem (the original non-convex ACOPF)
and a lower-bounding problem to reduce the optimality gap.

This approach provides several important contributions. While most ex-
isting work in the area has focused on the development of tighter "single-pass"
relaxations, our multitree approach for ACOPF makes use of piecewise outer ap-
proximations that can be further tightened to reduce the optimality gap beyond
the initial relaxation. While tightening these relaxations introduced additional
binary variables to the the problem, the iterative OA approach allows for tar-
getted refinement to reduce the optimality gap while controlling the growth in
problem size. At each iteration, we refine the domain partitioning of problem
variables selectively, and perform parallel OBBT on the associated variables.
The piecewise relaxations used in the lower-bounding problem are based on the
successful family of second-order cone relaxationsPli, A . In this paper, we de-
rive piecewise outer approximations of the SOCP-based relaxations, including
new expressions for piecewise outer approximations of the multivariate arct-
angent constraint that do not require the solution of additional optimization
problems for computation of the necessary parameters.
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The OA-based multitree approach developed in this paper is able to close the
optimality gap to under 1% on all test problems considered and to 0.1% on all
but one of the test problems within the allotted time. As shown in the numerical
results, the approach is able to close the gap effectively, and even outperforms
the SSDP relaxations on traditionally challenging test problems where significant
optimality gaps remain for the single-pass relaxations. The computational time
of a single iteration of our OA approach is comparable to the solution times
for the single-pass relaxations, and the overall time required to solve to global
optimality is under one minute for all but two of the test cases considered.

As an OA method, the approach developed in this paper does not per-
form spatial branching and does not need to manage a branch-and-bound tree.
Rather, the responsibility of branching is pushed to the MILP solver used for the
lower-bounding problem. While one must manage the growth of the problem
size as further piecewise refinements are made, this approach makes use of the
highly efficient, commercial MILP solvers as the primary workhorse. Because
of this, the approach is directly applicable for extension from NLP problems to
MINLP problems with many discrete variables like those arising in unit com-
mitment or transmission switching with AC power flow constraints.

Future work will focus on strategies for improving the performance of our
approach on larger test cases. Examples of possible strategies include heuristics
for effective partitioning of variable domains (e.g., non-uniformly spaced par-
titions and relocating partitions) and improved bounds tightening procedures.
For example, more computationally efficient feasibility-based bounds tightening
techniques could be used in combination with OBBT. We will also explore alter-
native formulations for the piecewise relaxations and other relaxation strength-
ening ideas. For example, the power loss constraints used to strengthen the QC
relaxation in Coffrin et al. [12] could be utilized in our approach.

Future work will also include integration of our outer approximation ap-
proach with other NLP problems involving AC power flow (e.g., contingency
analysis and voltage stability) and other MINLP problems involving AC power
flow (e.g., unit commitment and transmission switching).
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Appendix A. Parameters for Actan Over- and Under-Estimators

If stk>0, we have
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If sb k<O, we have
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If sb k>0 and stk<0, we have
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soL=min(st, k, x*) and x* is the solution of
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Appendix B. AC Network Characteristics

Assuming balanced three-phase, steady-state conditions, we can model each
branch of the AC network with the generalized 7-model as shown in Figure
13.2I. The series admittance yj = gl + jbl is equivalent to the inverse of the
branch impedance z1 where the series conductance 9,1 and series susceptance bl
are determined as:

= rj/ (r? + x?) , (B.1)

1)1 = _xi/ (4 + (B.2)

for all transmission branches l E G. Actual transmission lines that are medium
and long distance overhead lines or underground cables can have significant
charging currents due to the separation of the conductive material by an insulat-
ing medium; as a result there is an effective capacitance between the conductors
and potentially a conductance, which is the result of leakage over the surface
of the insulating medium. These line characteristics are accounted for with a
shunt component yr = gr + jbt to represent the shunt susceptance bi (i.e., the
reactive capacitance) and the shunt conductance gr. This line shunt is incor-
porated into the generalized 7-model as two equal shunt elements yr b and yr k
distributed at each end of line l, assuming homogeneous line parameters along
the length of l. Typically the shunt conductance is negligible, which leads to the
assumption that only the shunt susceptance is nonnegative, i.e., gr b = gr = 0
and br,b, brk > O.

The 7-model can be generalized to incorporate an in-phase or phase-shifting
transformer at either the bus b-side or the k-side of branch l; therefore the
generalized 7-model is defined for each branch l E G interconnecting buses b
and k where k E 13b and b c Bk. A practical transformer that is located on
the bus b-side of l can be modeled as an ideal transformer with turns ratio Ti,b
in series with admittance yj, in order to characterize the resistive losses and
leakage flux (i.e., self-resistance). Depending on if Tl,b is real or complex, the
transformer is in-phase or phase-shifting. If in-phase on the bus b-side of l, then

1

Bus bo
1-2

jxl

Figure B.2: The generalized 7-model diagram for branch 1.

Bus k
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Tl,b = T1,b; otherwise for a phase-shift of 01,b radians, then h,b = Tl,beich'b =

Tl,b COS cbl,b + jTl,b sin Ol,b (by Euler's formula). Therefore the generalized branch
(primitive) admittance matrix [I] for a 7-model for a line or transformer is
defined as

yf f yif t 712,b (yi + Kb)

—fi,b*T-1,01

Y1 = [171 tf lilt := 
(B.3)

—h,bftkYi 
2

1 i 71,k (Y1+ yr,k)

for all l E £ where Yi = G1 + j131. Note that for modeling a transmission
line, TI,b = T1,k = 1 and 01,1) = cbl,k = 0; for an in-phase transformer on the
b-side of l, then yis,b = Yis,k = CI, Tl,k = 1, and Ol,b = cbi,k = 0; and for a
phase-shifting transformer on the b-side of l, then Kb = Kk = 0, Tl,k = 1,

and 01,k = O. Furthermore, the above representation models a two-winding
transformer; generally for a P-winding (P > 1) transformer at branch l, the Y
matrix would be of size P x P.
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1.5. A global stochastic programming approach for the optimal placement of
gas detectors with nonuniform unavailabilities
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A Global Stochastic Programming Approach for the Optimal Placement of Gas
Detectors with Nonuniform Unavailabilities

Jianfeng Liu1, Carl D. Laird2

Abstract

Optimal design of a gas detection systems is challenging because of the numerous
sources of uncertainty, including weather and environmental conditions, leak location
and characteristics, and process conditions. Rigorous CFD simulations of dispersion
scenarios combined with stochastic programming techniques have been successfully
applied to the problem of optimal gas detector placement; however, rigorous treatment
of sensor failure and nonuniform unavailability has received less attention. To improve
reliability of the design, this paper proposes a problem formulation that explicitly
considers nonuniform unavailabilities and all backup detection levels. The resulting
sensor placement problem is a large-scale mixed-integer nonlinear programming
(MINLP) problem that requires a tailored solution approach for efficient solution. We
have developed a multitree method which depends on iteratively solving a sequence of
upper-bounding master problems and lower-bounding subproblems. The tailored global
solution strategy is tested on a real data problem and the encouraging numerical results
indicate that our solution framework is promising in solving sensor placement problems.
This paper was selected for the special issue in JLPPI from the 2016 International
Symposium of the MKO Process Safety Center.

1 Introduction

To rapidly detect release events and minimize the corresponding damages, efficient detection and
mitigation depends on appropriate design of the gas detector system, including type, number, and
placement of sensors. However, the optimal design of these systems is very challenging because
significant uncertainty must be taken into account, including weather and environmental
conditions, leak location and characteristics, and process conditions. Prescriptive or semi-
quantitative approaches have been widely used in detector system design [15,17,22]; however,
these heuristic techniques do not make full use of the information from dispersion simulations and
fail to provide a rigorous proof of the solution quality.

A number of stochastic programming (SP) approaches have been proposed and implemented to
solve various real-world sensor placement problems [1,5,6,19,20]. Most of these previously
proposed SP formulations have assumed perfect sensors. In reality, however, detectors are
imperfect and subject to unpredictable failures caused by, for example, poor maintenance,
erroneous calibration, or power outage. In many practical cases, these imperfections can
significantly impact the performance of the entire detector system. To improve the reliability of
the optimal design, therefore, it is important and necessary to explicitly consider sensor
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imperfection, which is measured in terms of unavailability, i.e., the probability of a false-negative
detection. Berry et al. [5] first proposed an SP-based imperfect-sensor model for the contamination
warning system design in water networks. Inspired by this research, Benavides-Serrano et al. [1,3]
presented SP formulations for flammable gas detection and mitigation systems considering sensor
unavailabilities. However, the resulting sensor placement problems, formulated as large-scale
mixed-integer nonlinear programming (MINLP) problems, are very challenging to solve due to
the presence of nonlinearities and discrete variables. To solve these problems efficiently,
Benavides-Serrano et al. [3] approximated the MINLP as a mixed-integer quadratic programming
problem (MIQP) by considering only one or two levels of redundancy. In this paper, we provide a
rigorous problem formulation and solution approach for optimal sensor placement that does not
require this approximation.

Sensor placement problems considering nonuniform unavailabilities are formulated as MINLP
problems. Two major categories of solution techniques have been used to solve MINLP problems.
Stochastic approaches, such as random search, simulated annealing, and genetic algorithms, can
be easily implemented, however, none of these algorithms can provide a guarantee of the solution
optimality. Deterministic methods, in contrast, are able to provide a rigorous mathematical
guarantee of global optimality. The single-tree deterministic algorithms, such as the well-known
branch-and-bound (BB) methods [7,18], have been well-studied and intensively extended to a
variety of global optimization algorithms, such as Branch-and-Reduce [25], Reduced Space
Branch-and-Bound [9], Branch-and-Contract [30], Branch-and-Cut [14] and Branch-and-
Sandwich [16]. In general, these techniques are suitable for non-convex MINLP problems of small
or medium size. Alternatively, multitree methods are based on iteratively solving a sequence of
master problems and slave problems (or subproblems) [8,29]. To handle 'non-convex' MINLP
problems with certain special features, e.g., bilinear, posynomial, linear fractional, and concave
separable, extensions of these well-studied multitree methods can be found in literature [23,24].

The proposed global optimization algorithm is regarded as a multitree method, since it is an
iterative algorithm relying on solutions of a sequence of mixed-integer master problems and
nonlinear subproblems. The master problem, which formulated as a mixed-integer linear
programming (MILP) problem, is a strict relaxation of the MINLP problem formulation. To obtain
a relatively tight and computationally efficient master problem, we introduce linear outer
approximations and tight, problem specific, upper bounding constraints. The upper bounding
subproblem is obtained by fixing all binary variables, which, in this case, results in a subproblem
that can be directly computed with a single forward simulation. In this way, iterations cycle
between the solution of the master problem and the subproblem, generating a sequence of lower
and upper bounds. The global algorithm terminates when the relative optimality gap is below a
given tolerance.

The rest of this paper is organized as follows. In Section 2, we briefly review mathematical models
for sensor placement problems. Section 3 presents our new problem formulation based on the log-
transformation of the original problem formulation from [5]. Section 4 outlines our tailored global
solution framework and master problems formulated as mixed-integer linear programming
problems. Sections 5 shows numerical results on a real data test problem and Section 6 provides
summary and conclusions.
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2 Background

In this section, we provide a brief review of the literature on optimal sensor placement. The sensor
placement problem can be regarded as a special case of the p-median problem (PMP). In a PMP,
we want to locate p facilities to minimize the weighted average distance between the demand
nodes and the nearest of the selected facilities [12]. The optimal sensor placement problem
assuming perfect sensors is equivalent to a classic PMP, and well-known solution strategies
designed for PMPs can be directly implemented, including heuristic and greedy algorithms.
However, most of these strategies may fail to guarantee high solution quality. The stochastic
programming (SP) approach, on the other hand, provides an alternative way to solve for a PMP.
Particularly, the first SP formulation for sensor placement problem in water network systems was
proposed by Berry et al. [6]. With the assumption of perfect sensors, the resulting optimization
problem is formulated as an MILP problem, which can be solved by general mixed-integer solvers.

Detectors are, however, imperfect and subject to unpredictable failures. In many cases, these
imperfections can significantly impact the performance of the entire detector system. To improve
the reliability of the entire detection system, therefore, it is necessary to explicitly consider sensor
unavailability, i.e., the probability of a false-negative detection. A number of extensions to the
original PMPs have been proposed to handle facility unavailabilities. For instance, Snyder and
Daskin [26] presented the reliability PMP (RPMP) based on the assumption of uniform
unavailabilites. In this approach, the probability products are modeled via the binomial
distribution, which leads to an MILP problem. The median problem with unreliable facilities
(MPUF) is proposed by Berman et al. [4], where the unvailabilities are assumed to be uniform and
the detection levels are limited to a given number. For a comprehensive review of the unavailability
considerations into the PMPs please refer to Benavides-Serrano et al [1] and Snyder et al. [27].

In the context of stochastic programming approaches, the first imperfect-sensor model is presented
by Berry et al. [5]. This model, though originally proposed to design the contaminant warning
systems in water networks, is general and well-suited for any sensor placement problem
considering unavailabilities. However, the resulting MINLP problem is very difficult to solve due
to strong nonlinearities. To partially address this challenge, previous work has assumed uniform
unavailability across all sensors in the network [1]. However, this assumption is not always
reasonable since the probability of sensor failure usually depends on the detector type,
maintenance condition, and environment. An alternative approach was recently proposed by
Benavides-Serrano et al. [3] based on reducing the number of detection levels while maintaining
nonuniform unavailabilities. Sensitivity analysis has shown that for small-to-moderate
unavailabilities we only need to consider a small number of detection levels. While effective under
these assumptions, it is worthwhile to point out that these SP formulations are approximations of
the original sensor placement problem. As a result, none of these approaches can provide a rigorous
guarantee of solution quality to the original MINLP problem. Moreover, to the best of our
knowledge, there exists no solution framework that is designed to solve a general sensor placement
problem with nonuniform unavailabilites to global optimality. In this paper, we extend previous
problem formulations and present a multitree solution strategy based on tailored relaxations of the
MINLP problem.
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3 Stochastic Programming Formulations and Solution Approach

The imperfect-sensor SP model, labeled impSP, was originally proposed by Berry et al. [5] to
design contaminate warning systems for water networks.

min

s.t.

da,ixaj.
aEA iELa

~xai=1
iELa

"ca,i = (1 — cji)si (i -JEL,i
si p

iELVD}
0 < "ca,i < 1
si E {OM

Va c A

Va E A, i E La\{D}

Va E A, i E La
Vi E L

(impSP)

The complete list of symbols for this problem formulation are described in Table 1. Here, A
represents the set of hazardous scenarios, and L represents the set of all candidate detector
locations. The goal is to select a sensor placement that minimizes the expected value of the damage
across all the scenarios. The parameter aa is the probability (or weight) of scenario a, which is
obtained from the scenario distribution based on the historical data or computer-aided simulations.
Parameter da,i is the damage coefficient, which, for these studies, is the detection time of scenario
a at location i. Typically, and in this study, these damage coefficients are estimated from
computational fluid dynamics (CFD) simulations. Further description of this problem formulation
can be found in Benavides-Serrano et al [3] and Berry et al. [5].

Table 1: Notation

Sets
A Set of hazardous scenarios
L Set of candidate detector locations
La Set of locations that can detect scenario a

La,i Set of locations that witness scenario a better (in terms of damage) than i
Parameters

aa Probability of scenario a
da,i Damage coefficient for scenario a if detected by location i
4i Time-averaged unavailability for detector placed at location i
p Maximum number of detectors allowed

V , • , 1 •
Xa,i Probability that a detector at location i is the first to detect scenario a

I a,i , l'a,i Intermediate variables in our alternate formulation i
si Binary variable equal to 1 if a detector is placed at location i, and zero otherwise
• •zij Aggregated variable equal to sisi for i ~ j
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The continuous variable "ca,i is the probability that the detector placed at location i will be the first
to detect hazardous scenario a. The binary variable si is an indicator for a detector placed at
location i. If a detector is installed at location i then si = 1, and otherwise si = O. Subset La g L
is the set of candidate locations that can provide detection of hazardous scenario a. For a particular
scenario, however, it is possible that no candidate location can provide detection, therefore, a
dummy location D is also included with a sufficiently large damage coefficient, to account for the
impact of an undetected scenario. Subset La i is the set of candidate locations that can witness
scenario a better (in terms of detection time or another damage metric) than location i. In other
words, for Vj E La,i we have da < da,i.

The first constraint in (impSP) guarantees that the summation of the probabilities equals 1 for each
scenario (recall that a dummy detector is included). For each non-dummy location, the second
constraint provides the expression for the probability x„,j, where ch is the given time-averaged
unavailability of a detector placed at location i. This probability constraint is strongly nonlinear
due to the product of the binary variables. Note that, due to the first constraint, the probability of
detection by the dummy location, xa,D, also provides the probability that all detectors fail to report
a hazardous scenario. The third constraint provides an upper bound of the total number of detectors
that can be allocated in the system (not including the dummy detector).

3.1 Alternative MINLP Formulation
The original formulation (impSP) is strongly nonlinear due to the multiplication of binary variables
in the relationship for probability ;0. We propose an alternative formulation, which is
mathematically equivalent to the original formulation, based on the log-transformation of the
probability equation.

First, we define a new binary variable zi,j as,

z1- ,/ • E s•s• Vi,j E L,i j

Note that zu indicates if gas detectors are placed at both location i and location j. That is zii = 1
if and only if both si = 1 and sj = 1. This logic relationship can be expressed in terms of a set of
linear inequalities

si + sj — 1 < zid

zE- • ~ .9-3 
z1- • < s-3 ~

Vi,j E L,i j
Vi,j E L,i j
Vi,j E L,i j

(1)

Fortunately, given the fact that si is a binary variable, imposing these constraints guarantees that
zu solves to a binary value, and it can be relaxed as a continuous variable within the range of 0 to
1.

The nonlinear probability constraint in the original formulation (impSP) can be rewritten as
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Xa,i = — qi)si _ —

jELai

= (1— cio 
1

si q.' + si — 1
jELa,i

Here we introduce a new variable defined as

ia,, = (1 — cost fl 1

and the log-transformation of variable ia,i is a linear equality constraint

= Si ln(1 — h_i+ jELco, zi jln(c/i) Va E A, i E La\{D) (2)• 

Therefore, the original nonlinear probability constraints can be replaced by a set of new constraints
and variables

xa = exp Va E A,i E La
+ Si — 1 Va E A,i E La (3)

A mathematically equivalent reformulation of the original formulation (impSP) is then given as

min aa da,ixa,i

aEA IELa

s.t. = 1
iELa

za = si ln(1 — + zi,j1
jELaj

= exp

Xaoi = -I- Si — 1

si sj — 1 zid

si

zioi

p

iELvD)

0 < < 1

si E (OM

0 1

(gi)

Va E A

Va E A, i E La\{D)

Va E A, t. E La
Va E A, i E La
Vi,j E L,i j
Vi,j E L,i j
Vi,j E L,i j

Va E A, E La
Vi E L
Vi,j E L,i j

(impSP-L7)

We label this (impSP-LI) to indicate that it is an exact log-transformation of the original
formulation (impSP). This alternative formulation, nevertheless, is still an MINLP problem due to
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binary variables and exponential terms. Compared with the original formulation, however, the
reformulation is mathematically preferable since its nonlinearity only arises from convex
univariate functions. This property facilitates straightforward development of our global solution
strategy.

3.2 MINLP Solution Algorithm

Regarded as a multitree method, our global solution framework is an iterative algorithm relying
on solving a sequence of lower bounding master problems and upper bounding subproblems. The
master problem, formulated as an MILP problem, is a relaxation of the sensor placement problem
formulated in (impSP-LT). If the master problem is infeasible, the corresponding sensor placement
problem is also infeasible and the algorithm terminates. Otherwise, the master problem provides a
valid lower bound and a candidate set of values for the discrete decisions (the sensor placement,
si). The mixed-integer master problem can be refined by several techniques discussed later. A
corresponding upper-bounding subproblem is obtained by fixing all binary variables present in the
formulation to the values from the solution of the master problem. In this particular formulation,
when all binary variables are specified, the resulting upper-bounding subproblem is square and
can be computed directly. This subproblem provides a valid upper bound of the sensor placement
problem. The algorithm proceeds through a series of major iterations, cycling between the solution
of a mixed-integer master problem (for the lower bound) and a forward simulation of the upper-
bounding subproblem, yielding a sequence of lower and upper bounds. Finally, the algorithm
terminates when the relative optimality gap is below a given tolerance.

This solution approach requires an effective relaxation of (impSP-L7) that can be refined to
produce tighter and tighter lower bounds. Notice in the alternative formulation (impSP-LT), the
nonlinearity only arises from the univariate convex function exp (5ea,i), which could be relaxed
using piecewise outer approximation strategies. In particular, the linear under-estimators of the
exponential function are given as

exp — 5"ca* i m + 1) m E Ma,i

where segment points ia*,i,m are pre-specified over the feasible domain of za,i and Maj denotes the

set of indices m. Note the for various 5e„,i, the number and location of the segment points can be
different.

It is possible to construct piecewise over-estimators of the function exp ("4,i), however, this
requires additional binary variables (or SOS2 constraints) to indicate which segment is currently
active. Furthermore, the number of binary variables increases as we increase the number of
segments during refinement. As a result, the relaxation could become very challenging to solve or
even intractable.

3.2.1 MILP Relaxation with Tight Upper Bounding Constraints
To avoid using the piecewise linear over-estimators, we propose instead a tailored approach and
introduce a different convex relaxation without these piecewise linear functions. Given the
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objective function and positive damage coefficients da,i the optimization problem tends to push
all ,ca,i to the lowest possible value so that the object function value is minimized. However, the
first constraint in formulation (impSP-LT) requires that the probabilities for each scenario sum to
1, therefore locations with larger damage coefficients will still be pushed down to their lower
bounds, while the locations with small damage coefficients will be pushed to their upper bound.
Therefore, the upper bounds of xa,i, especially those of the locations with relatively low damage
coefficients can have a strong impact on the tightness of the convex relaxation.

Here, we use the concept of detection levels proposed by Benavides-Serrano et al [3]. In particular,
if a sensor is at detection level N for a scenario, then for this detector to be the first to detect the
scenario, all N — 1 detectors at better locations (with smaller damage coefficients) must of failed
to operate correctly. For instance, if a detector is placed at a location with the smallest damage
coefficients compared with the others, then it is at the first detection level, and the value of xa,i =
1 — qi. For the second detection level, the probability is given by xa,i = q;(1 — cii), where j and
i are the locations with the smallest and the second smallest damage coefficients for scenario a,
respectively. With this knowledge, we can write the upper bound of xa,i up to two detection levels
as,

(1 — qi)(si + (qj — 1)zi,j) Va E A, i E La,j E La,i (4)

Note if there is no detector installed at location i, i.e., si = 0, then xa,i is forced to be O. If si = 1
and location i happens to be at the first detection level for scenario a then we have xa,i 1 — gi.
Recall the fact that at the optimal solution for xa,i corresponding to the smallest damage coefficient
will be lifted up to its upper bound and we have that xa,i = 1 — gi. In other words, this upper
bound is active and thus the tightest. Similar arguments hold true for higher detection levels, and
the upper bounding constraints shown above are the tightest for the first two detection levels and
provide valid upper bounds at higher detection levels.

Alternatively, the upper bound proposed above can be derived directly from the nonlinear
probability constraints

Xa,i = (1 — c7i)s, fl (1 — (1 — qi)s;) Va E A, i E La
jELa

If we only consider one location j in set Laj, the equality becomes inequality

(1 — ch)(si + (q; — 1)sis;) Va E A, i E La, j E La,i

Replacing sisi with zij gives the upper bounding constraint (4). Similarly, we can generate upper

bounding constraints for higher detection levels. For instance, if we consider two locations j and
k from set La,i, and assume location k is also in La the we have inequality constraints

"ca,i (1 — qi )si (1 — (1 — qi)sj)(1 — (1 — Ch3sk) V a E A, i E La, j E La,i, k E Laj

which leads to tight upper bounding constraint up to 3 detection levels
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(1 — qi) (si — (1 — q;)zi,k — (1— cik)(zi,k — (1— Uzij,k)) Va E A, i E La, j E La i, k E Laj.

where we introduce continuous variable

Zi,j,k E SiSjSk

and the corresponding logic constraints are

si + Sj + Sk — 2

Zi,j,k ~ Si

Zi,j,k ~ Sj

Zi,j,k ~ Sk

Vi E La, j E La i, k E La j

Vi E La, j E k E La,/

Vi E La, j E LQ i, k E Laj

E La, j E LQi,k E La,/

Vi E La, j E Laj, k E Laj

Now we impose the upper bounding constraints leading to the relaxation,

min

s. t.

aa

iELa

za = si ln(1 — qi) + zjiln(q1)

jELa,i

(1 — qi)(si + (qj — 1)zi,j)

exp (Ku.„)(5ea,i — xa i m + 1)

= + Si — 1

Si Sj — 1

Si

Sj

Si

iEL\{D}
0 < "ca,i < 1
si E {0,1}
0 1

Va E A

ba E A, i E LaVD}

Va E A, i E La, j E

b'aEA,iELa,mEMa,i
Va E A, i E La

Vti,j E L, i j

E L,i j

Vi,j E L,i j

Va E A, i E La

Vi E L

E L,i j

(impSP-R)

For the sake of simplicity, we only impose the upper bounding constraint up to 2 detection levels
in formulation (impSP-R). There are two ways to further improve the tightness of the relaxation
(impSP-R). First, we can increase the number of segment points to refine the linear under-
estimators. Second, we can impose similar upper bounding constraints for higher detection levels.
Note that no additional binary variables are required in generating tighter upper bounding
constraints. Theoretically, we can impose these upper bounding constraints to arbitrary detection
levels. However, the number of these constraints may increase dramatically and the resulting
relaxation problem can soon become prohibitively large. Moreover, the tightness may not be
significantly improved since the probability at higher detection level may be negligible. Therefore,

103



in our tailored global algorithm the upper bounding constraints for higher detection levels are only
added for subset of all candidate locations, which are selected based on the current solution of the
master problem. The under-estimators are also further refined by adding more segment points
based on the solution of the master problem. By doing that, we want to efficiently improve the
tightness of the master problem and control the size of the resulting MILP formulation.

4 Numerical Results
In this section, we test our MINLP formulation and global solution approach on a gas detector
placement problem with nonuniform unavailabilities. First, we provide a brief introduction on the
simulation data used in this paper. Then we present the computational performance of our tailored
algorithm in solving the gas detector placement problem.

4.1 Data Set
The data set used here is previously employed by Benavides-Serrano et al. [1,3] and Legg et al.
[19,20]. It is based on a real, medium-scale, proprietary offshore facility geometry capturing the
full process features, such as equipment, piping, and support structures. Gas dispersion scenario
simulations were provided by GexCon, computed with FLACS, a validated tool for gas dispersion
and explosion modeling in the technical safety context. Particularly, this data set consists of 270
hazard scenarios and 994 potential gas detector locations. The damage coefficient is the time
between the initiation of a hazardous scenario a and its detection by a gas sensor placed at location
i. To capture undetected scenarios, the damage coefficient of the dummy location is set to a value
larger than the other damage coefficients. For a complete discussion regarding the data set, the
data generation, and the data collection procedure please refer to previous work [2].

4.2 Sensor Placement Results
The convex relaxation (impSP-R2) is used as the master problem in our global solution framework.
The resulting lower bounding master problem is formulated as a mixed-integer linear
programming (MILP) problem. Our tailor global solution framework is implemented in Pyomo, a
Python-based optimization modeling language [13]. The MILP master problem is solved to an
optimality gap below 0.001%. The relative optimality gap of the global algorithm is set to be
0.01%. The total computational time limit is 36,000 seconds and the outer iteration number limit
is 30. The mixed-integer master problems are solved with Gurobi [21] and the forward simulations
are directly computed. The computational performance of the optimization approach is shown in
Table 2 for different values of the maximum number of sensors p.

Table 2: Computational Performance Results

p Best Solution Lower Bound Gap (%) CPU Time Iteration

1 8622.88 8622.88 0 69
5 5954.81 5981.49 0 1003 2
10 4354.6 4357.52 0 2306 2
15 3302.06 3303.6 0 2484 2
20 2553.53 2554.22 0 1911 2
25 1894.25 1894.76 0 4128 3
30 1426.55 1426.57 0 4213 3
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35 1068.67 1068.12 0.0005 9032 7
40 779.09 778.43 0.0008 7929 4
45 581.14 579.87 0.0022 46636* 2

As the number of detector increases (from 1 to 45), the object function value improves (from 8623
to 581) since more scenarios can be detected faster. As observed in other work, increasing the
number of gas detectors has more impact when the number of sensors are relatively small, since
more of the scenarios are detected, and the algorithm is focusing on achieving maximum coverage
(to avoid the penalty of the dummy location). However, as the number of sensors increases, full
coverage is achieved, and the focus is shifted to reducing the expected time to detection alone with
additional detectors. Therefore, trade-offs must be made between the number of detectors and the
expected detection time across all scenarios.

From a mathematical point of view, our proposed global solution framework is able to solve this
sensor placement problem to global optimality. Particularly, when the number of detectors is
relatively small (1 to 30), the resulting sensor placement problems are globally solved in under 2
hours. Even for larger problems, however, the solutions times are still many orders of magnitude
less than the time required to compute the dispersion scenarios. We also attempted to solve the
MINLP problems using BARON (version 16.12.7), a commercial global optimization package [25],
and both the original model (impSP) and the reformulated model (impSP-LT) failed to converge to
an optimality gap under 0.1% within 10 hours. Note, however, that we only considered the default
options of BARON, and tuning solver options may improve the performance of BARON.

5 Summary and Conclusions
Gas detection and mitigation systems play very important roles in modern process safety since
they can protect lives and reduce the potential damage caused by combustible and toxic gas leaks.
However, the optimal design of a gas detection system is very challenging because of the inherent
uncertainty such as gas compositions, leak locations, process conditions, and weather. To address
this uncertainty, prescriptive or semi-quantitative approaches have been widely used for decades,
however, none of these techniques can provide rigorous proof of the solution quality. To deal with
this issue, there is a need to develop rigorous quantitative strategies for gas detector system design.
Stochastic programming (SP) provides an appropriate mechanism for solution of these sensor
placement problems.

The SP formulations proposed in this paper consider nonuniform failure probabilities. Whereas
previous work considered only two backup levels (valid when unavailability values are low),
arriving at a mixed-integer quadratic programming (MIQP) problem, in our formulation, all
backup detection levels are explicitly taken into account. The resulting sensor placement problem
is formulated as a large-scale mixed-integer nonlinear programming (MINLP) problem. To solve
this challenging MINLP problem to global optimality, we propose a multitree method which
depends on iteratively solving a sequence of lower-bounding master problems and upper-bounding
subproblems. The upper-bounding subproblems can be directly computed (they become square
once the binaries are fixed). The master problem, however, is a mixed-integer problem that must
be formulated as a convex relaxation of the original MINLP problem. To obtain a relatively tight
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and computationally efficient master problem, we first propose an equivalent log-transformation
of the original MINLP formulation. Though new variables and constraints are introduced, this
alternative formulation is mathematically preferable since all its nonlinearity comes from convex
univariate terms. Based on this reformulation, we present a strictly convex relaxation by
introducing linear outer approximations and tight upper bounding constraints. The resulting
relaxation formulated as a mixed-integer linear programming (MILP) problem is used as the lower-
bounding master problem. The proposed global solution strategy is tested on a number of real data
problems and the encouraging numerical results indicate that this solution framework is
computationally feasible for large datasets.
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Global Solution Strategies for the
Network-Constrained Unit Commitment

Problem with AC Transmission Constraints
Jianfeng Liu, Carl D. Laird, Member, IEEE, Joseph K. Scott, Member, IEEE,

Jean-Paul Watson, Member, IEEE and Anya Castillo, Member, IEEE

Abstract—We propose a novel global solution algorithm
for the network-constrained unit commitment problem that
incorporates a nonlinear alternating current (AC) model of
the transmission network, which is a nonconvex mixed-
integer nonlinear programming (MINLP) problem. Our
algorithm is based on the multi-tree global optimization
methodology, which iterates between a mixed-integer lower-
bounding problem and a nonlinear upper-bounding prob-
lem. We exploit the mathematical structure of the unit com-
mitment problem with AC power flow constraints (UC-AC)
and leverage second-order cone relaxations, piecewise outer
approximations, and optimization-based bounds tightening
to guarantee a globally optimal solution at convergence.
Numerical results on four benchmark problems illustrate
the effectiveness of our algorithm, both in terms of conver-
gence rate and solution quality.

A. Notation

Sets

Li

Bb

gb

Lc
Gin

b
rgut

sg

SC

Set of all buses 11, ..., 131

Set of all buses that are connected to bus b

Set of all cycles in a cycle basis for the network

Set of all generators {1, ..., G}

Set of all generators at bus b
Set of all branches (transmission lines)
Set of branches in cycle c

Set of all inbound branches to bus b

Set of all outbound branches from bus b

Set of startup segments of generator g {1, ..., Sg}

Set of all synchronous condensers {1, ..., SC}
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SCb Set of all synchronous condensers at bus b

T Set of time periods {1, ..., T}

Parameters

Amn

Bsh
b

B1

agh
Gl
Ksug,T
Tz-sd
119
Pi1,3t

PtR
G,min
9
DpG,max

QP,t

f-IG▪ ,max

QS▪ C,min
sc

QSC,maxsc

RDg

RUg

srax

SDg

SUg
Tsu

l'u

7'd
vbrnin

Vrax

Variables

( 5 g ,T,t

014

Coefficients (n = 0, 1, 2) of quadratic

production cost function of generator g

Shunt susceptance at bus b

Imag. part of branch l admittance matrix

Shunt conductance at bus b

Real part of branch l admittance matrix

Startup cost of generator g

Shutdown cost of generator g

Real power demand at bus b, time t

System reserve requirement at time t

Min. real power output of generator g

Max. real power output of generator g

Reactive power demand at bus b, time t

Min. reactive power output of generator g

Max. reactive power output of generator g

Min. output of synchronous condenser sc

Max. output of synchronous condenser sc

Ramp-down limit of generator g

Ramp-up limit of generator g

Apparent power limit on branch l

Shutdown capability of generator g

Startup capability of generator g

Startup cost function time segment for

generator g

Min. uptime of generator g

Min. downtime of generator g

Min. voltage magnitude at bus b
Max. voltage magnitude at bus b

Startup cost segment indicator

Voltage phase angle difference between ends

(bus b and bus k) of branch l at time t, Ob,k,t
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cb,k,
4,t
fPfsd
fsu
G

Pg,t

pit

Pl,t
G

qg ,t

qit

vsc,t

g
a
' ,t

Sb,k,t

ttg,t

Vb,t

Vib,t

tIT;,t

tvg,t

Yg,t

Second-order cone variable
Production cost for generator g at time t

Total production cost

Total shutdown cost

Total startup cost

Real power output of generator g at time t

Real power flow from branch l, at time t

Real power flow to branch l, at time t

Reactive power output of generator g at time t

Reactive power flow from branch l, at time t

Reactive power flow to branch l, at time t

Reactive power output of synchronous

condenser sc at time t

Real power reserve provided by generator g

at time t

Second-order cone variable

Startup status, equal to 1 if generator

g starts up at time t, 0 otherwise

Voltage magnitude at bus b at time t,

'
„,2 r )2 _L )2
b,t lVb ,t) l'b,t)

Imag. part of voltage phasor at bus b, time t

Real part of voltage phasor at bus b, time t

Shutdown status, equal to 1 if generator

g shuts down at time t, 0 otherwise

Unit on/off status, equal to 1 if generator
g is on-line at time t, 0 otherwise

I. INTRODUCTION

RECENTLY the Federal Energy Regulatory Com-
mission (FERC) reported that uplift — out-of-

market payments that result when out-of-merit gener-
ation costs are incurred to relieve a constraint — can
arise due to the inability of independent system op-
erators (ISOs) to fully model the steady-state physics
on an alternating current (AC) network [1]. According
to a recent National Academies report [2], solving this
problem "could significantly improve the modeling and
efficient dispatch of resources during the commitment,
dispatching, and pricing processes." Recent work on the
day-ahead unit commitment problem, which was led by
MISO technical staff in [3], attests to the importance
and non-trivial complexity of incorporating AC network
constraints due to the performance challenges introduced
by denser matrices and additional nonlinearities.

Because of these modeling difficulties, current practice
is to perform unit commitment using DC approximations
(or copper plate) to represent the transmission network.
These approximations do not allow rigorous treatment of
AC power flow constraints. As a result, certain resources
are consistently committed outside of the market to

address unforeseen reliability issues; this results in con-
centrated uplift payments [1]. Such resources are often
required for reactive power compensation in order to pro-
vide system voltage control that enables more efficient
delivery and utilization of real power [4]. Because such
reliability requirements are largely unmodeled in day-
ahead unit commitment, more cost effective resources
are displaced for these out-of-merit commitments. Al-
ternatively, in the real-time market, operators may have
to manually commit and dispatch reliability units while
also manually re-dispatching or de-committing other
resources, e.g., exceptional dispatches in CAISO [5],
out-of-merit generation in NYISO [6], and balancing
operating reserves in PJM [7].
To address these concerns, this paper focuses on

solution of the unit commitment problem with AC power
flow constraints (UC-AC). Solving real-world operations
and market settlement with alternating current optimal
power flow (ACOPF) is not trivial. Due to the scale
of real-world power systems, network-constrained unit
commitment problems can be extremely large and com-
putationally challenging to solve. Coupling this with
nonconvex AC power flow constraints leads to a mixed-
integer nonlinear programming (MINLP) problem that
is NP-hard [8-10]. If the continuous relaxation of the
MINLP is a convex optimization problem, we refer to it
as a convex MINLR Otherwise, the problem is referred
to as a nonconvex MINLP. With this definition, the UC-
AC is a nonconvex MINLP. Algorithms exist to address
both convex and nonconvex MINLP problems. However,
tailored solution strategies are often required to achieve
desired computational performance. In this paper, we
present the first known global optimization approach that
can successfully solve the UC-AC on a set of small- to
medium-sized test problems.

Deterministic MINLP algorithms can be classified into
single-tree and multi-tree methods. Single-tree deter-
ministic algorithms, i.e., the well-known Branch-and-
Bound (BB) methods [11, 12], seek a global optimum by
searching a single tree using a systematic enumeration
strategy consisting of three primary steps: branching,
bounding, and selection. BB-based global optimiza-
tion strategies have been well-studied and specialized,
yielding strategies such as Branch-and-Reduce [13],
Reduced Space Branch-and-Bound [14], Branch-and-
Contract [15], Branch-and-Cut [16], and Branch-and-
Sandwich [17]. These approaches are suitable for gen-
eral, nonconvex MINLP problems of small or medium
size, but become computationally intractable with in-
creasing numbers of discrete variables, e.g., such as those
arising in UC-AC.

In contrast, multi-tree methods [18] iteratively solve
a sequence of related lower-bounding (master problem)
and upper-bounding (subproblem) problems. For con-
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vex MINLP problems, many multi-tree solution strate-
gies — including Generalized Benders Decomposition
(GBD) [19], Outer Approximation (OA) [20, 21], and
Exact Cutting Plane (ECP) methods [22] — are effective,
and have been applied to a broad range of MINLPs in
various application domains Extensions exist for non-
convex MINLPs. While many are heuristic, e.g., see [23,
24], Li et al. [25] propose a rigorous, nonconvex GBD
(NGBD) method with piecewise convex relaxations that
yields a sequence of nondecreasing lower bounds and
nonincreasing upper bounds where monotonic conver-
gence of the bounds is guaranteed. Bonami, ling and
Linderoth noted that recent advancements in respective
mixed-integer linear programming (MILP) and nonlinear
programming (NLP) problem classes have unfortunately
resulted in "far more modest" improvements in general
algorithms for even convex MINLPs [26], illustrating the
need for specialized approaches.

The classic OA approach, a multi-tree technique, was
originally developed to solve convex MINLPs. This
approach solves a sequence of MILP master and convex
NLP subproblems and yields a globally optimal solution
for a convex MINLP in a finite number of iterations
for a given e-tolerance on the optimality gap [20, 21].
The MILP master problem is a relaxation of the original
MINLP that provides a provable lower bound on the
MINLP along with a candidate integer solution. Fixing
the integers in the MINLP yields a convex NLP subprob-
lem that provides a valid upper bound and a candidate
solution (for both continuous and integer variables) to
the overall MINLP. In this classic approach, the master
problem is further refined (i.e., relaxation strengthened)
though the addition of linear outer approximations of
convex constraints in the MINLP. The algorithm iterates
between the master problem and the NLP subproblem,
and terminates when the gap between the lower and
upper bounds is sufficiently small. Constraints can also
be added to the master problem to remove previously
visited integer solutions (using so-called integer cuts).
These methods have been extended to nonconvex prob-
lems where global convergence of the MINLP can be
achieved as long as global solutions of the NLP sub-
problems are ensured [27]. Kesavan et al. [28] develop
decomposition algorithms for nonconvex MINLP that
finds the global solution on finite termination by solving
convex underestimators in the BB search. Similar multi-
tree solution strategies for nonconvex MINLPs have also
been successfully used in various applications [29-31].

Here, we extend our efforts in [32] and propose a
multi-tree method based on OA for the UC-AC problem.
The master problem is a mixed-integer second-order
cone program (MISOCP) constructed using second-order
cone (SOC) relaxations of the nonconvex AC trans-
mission constraints [33]. As the algorithm iterates, the

master problem is further refined with piecewise outer
approximations to strengthen the tightness of the relax-
ation and the lower-bound computation. The algorithm
from [32] is used to find a global solution of the
nonconvex NLP subproblem in the upper-bound compu-
tation. Furthermore, we incorporate optimization-based
bounds tightening (OBBT) techniques that are valid in
both master and subproblem iterations and, because our
proposed approach provides global solution of the NLP
subproblem, we are able to include integer cuts in the
master problem that remove previously visited solutions
from the feasible space as the algorithm iterates. To the
best of our knowledge, this is the first global solution
algorithm successfully applied to the UC-AC problem,
identifying solutions with quality certificates (optimality
gaps) in time-limited environments.
The remainder of this paper is organized as follows.

We begin in Section II by discussing relevant work to
solving the UC-AC problem. In Section III we introduce
the unit commitment formulation with AC transmission
constraints (UC-AC). In Section IV we outline the nec-
essary problem relaxations and the global optimization
algorithm. In Section V we report numerical results
on the range of currently available test systems. We
then conclude in Section VI with a summary of our
contributions and directions for future work.

II. RELATED WORK

There is a growing body of literature on algo-
rithms [34-47] for the solution of the UC-AC problem.
A recent study by Aghaei et al. noted that the UC-AC
problem is presently intractable for commercial MINLP
solvers, including BARON, SBB, and DICOPT [42]. In
this section we review the most relevant works in further
detail.
Amjady et al. [46] leverage a Signomial convexifi-

cation technique with second order approximations of
the trignometric functions in the ACOPF constraint set.
Without refinement, branching, or additional cuts, relax-
ations on their own do not provide a guarantee of global
optimality to the original MINLP. Other comparable
convexification approaches include the formulations by
Bai and Wei [39] and Madani et al. [47], where these
studies use semidefinite programming (SDP) to relax the
ACOPF constraint set and the 0/1 variables. For these
studies, when a solution is non-integral in the unit com-
mitment variables, a rounding procedure is applied to
determine a feasible, near-optimal solution. Such round-
ing heuristics are useful but not sufficient to guarantee
a global solution. The other aforementioned methods
solve the ACOPF subproblem — or network and voltage
security subproblems — with local solution methods, and
in some cases apply linearization techniques [44, 45, 48].
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Approaches that make use of local solutions of the NLP
subproblem (e.g., recent GBD examples include [42-
45]) are not guaranteed to find global solutions in a
finite number of steps. This is because, as indicated in
[49], when applying GBD to nonconvex problems, global
solution of the NLP subproblem is required to ensure
valid cuts.
On the contrary, Sifuentes et al. [38] argued that

such suboptimal outcomes due to nonconvexities can
be reduced with constraint specifications (e.g., small
angle difference constraints). However, more recent work
by Wu et al. [50] indicates that such assumptions do
not preclude the occurrence of multiple, local optima.
As such, Frank et al. [51] develop a nonconvex GBD
approach to solve AC-DC distribution system design
problems where a global solver is leveraged for the
nonconvex subproblems.

In contrast to GBD methods that have been applied to
the UC-AC problem to-date, our lower-bounding prob-
lem incorporates a relaxation and outer-approximation
of the full ACOPF constraint set. This master problem
can be arbitrarily refined to provide improved integer
solutions (although this was not necessary in our test
cases). Furthermore, we apply our approach from [32]
to determine a global solution of the upper-bounding
problem, ensuring that the global solution is identified
if the gap closes. Moreover, we are guaranteed finite
termination by enumeration in the worst case.

III. UC-AC PROBLEM FORMULATION

We now introduce our UC-AC problem formulation.
We first present the core UC model in Section III-A,
which is based on the compact three-binary (3BIN)
formulation introduced in [52]. We then present the
rectangular power-voltage (RPQV) model [53] in Section
III-B to represent the steady-state operations of the
nonlinear AC transmission network. We integrate these
constraint sets to represent the UC-AC problem, resulting
in a nonconvex MINLP. A tailored solution technique for
this model is proposed in the following section.

A. Unit Commitment Model

We use the term UC skeleton when referring to a unit
commitment model consisting only of a cost function,
operating constraints, and any associated continuous
and binary variables with no network representation.
We summarize several key components of the 3BIN
formulation here; refer to [52] for further details.
1) Cost Function: The total cost in UC is the sum

of three major components — production costs, startup
costs, and shutdown costs — as follows:

fP + ru fsd.

We assume that the production cost fP is a quadratic
monotonically non-decreasing function of real power
generation; in practice, this is often replaced with a
piecewise approximation. Computation of fP in the
quadratic case is accomplished by imposing the con-
straints

Ag,2U3.0)
2
 +

A 
ii.g,ipgG,t Ag,oyg,tG \ g, t (1)

fP =
gEg EtET g'-

CP # (2)

where Ag,2, i19,1, and i19,0 are known cost coefficients
in ($/MW2h), ($/MWh) and ($/h) associated with a
specific generator g.
To formulate the total startup cost, f", we first

introduce a new binary variable (59,,,t, which indicates
the startup type T of generator g at time period t. In
particular, (5g,r,t takes the value of 1 if the generator g
starts up at time t and has been previously offline within
nur,m+1) hours. The logical constraints between
tvg,t, ug,t, and Sg,,,t are given as

5g,r.t 

<Et+l—TV=t—T97_±,

Wg,t'
p,

= E mrtrEs, ,

where Sg is the number of startup types for generator
g, and ug,t and tvg,t indicate startup and shutdown
of generator g in time t, respectively. Note that tvg,t
with positive time index t are variables, otherwise tvg,t
are treated as constants to demonstrate previous system
status.
For a thermal unit, the startup cost is assumed to be

a monotonically increasing step function with respect to
the generator's previous off-line time. The total startup
cost is given by

'V 9, t, T E [1, Sg) (3)

g, t (4)

fsu _ E K"
gEg EtET ETES, ,_(5 a t (5)

where Kr, is the cost of startup type T for generator
g. Given logical constraints (3) and (4), and the mono-
tonically non-decreasing startup cost function, it can be
shown that Sg,,,t will always solve to a binary value.
In other words, instead of explicitly defining i5g,,,t as a
binary, it can be relaxed as a continuous variable within
range [0, 1].
The shutdown cost of generator g is assumed to be

independent of its previous on-line states, and the total
shutdown cost is:

fsd 

•I L—d 

Ksdw

gEg tET g g't.

2) Operating Constraints: According to operating
restrictions, a thermal unit must stay in one state (either
on-line or off-line) for a certain period of time before
its state can be changed again. Such time periods vary
between different generator types. To enforce this re-

(6)
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quirement, we have to introduce minimum uptime and

< Yg t V g, t (7)
t,=t-7T-ki 

downtime constraints
Et

L-It'=t-TLI+1 WThe 1 — YTht
V g, t (8)

where ug,t and tvg,t with positive time index t are un-
known variables, otherwise they are treated as constants
to indicate previous system status. Additional constraints
are required to denote the logical correlation between
ug,t, tvg,t, and yg,t in

Yg,t Yg,t-1 = Ug,t Wg,t V g, t. (9)

Note that these constraints ensure that a generator cannot
start up and shut down within the same time period.
Given the fact that yg,t is a binary variable, imposing
constraints (7), (8) and (9) together guarantees that ug,t
and tvg,t take binary values only. Consequently, ug,t,

Wg,t, and (5g,,,,t, though initially defined as binaries, can
be relaxed as continuous within [0,1], leaving the yg,t as
the only binary variables in our UC skeleton formulation.
The spinning reserve constraint is defined as

ljtR < E r g,t V t (10)
gEg

and determines the extra generating capacity available by
generators included in the commitment solution at time
t; typically, the spinning reserve is defined as a fraction
of the current total power demand. The upper- and lower-
bounds of generator output is dependent on its operating
state; the real power productions are constrained by
[pgG,min pgG,max] the startup and shutdown capabilities
SDg and SU9, and state indicators yg,t, ug,t,
where both real power generation pg,t and
reserve r9, t are accounted for in

Pg,t rg,t < 
(pg 

)
G,max DG,min\„,

.Yg,t

ki
DG,max 

SUOUTht V g, t (11)

Pg, t rg,t < 
(pgG,max pg \G,min„,

1,Yg,t

— DG ,max 
0 
n

g -1--'9)(vg,t+1 V g, t (12)

when 7' = 1, and

r9,t < (pgG,max pgG,min)yo (pgG,max

— SUg)ttg,t 
(pgG,max SI)g)tvg,t+i V g, t (13)

when 79 2. The real power production is also
constrained by ramp-up and ramp-down limits, which
are given as

Pg,t rg,t Pg,t—i < RUg V g, t (14)

and tvg,t
spinning

Pg,t Pg,t-1 < RD9 V 9, t. (15)

Then, the reactive power productions are only con-
strained by [QG,min, QG,max] and yg,t in

y g < tigGt < gG,max„, V g, t. (16)`°9 g,t

Synchronous condensers are not modeled with
startup/shutdown costs and their reactive power
output is constrained b y [Q,r,mtn, Qr,max]

s,Sr,min < (.18Sc't ,Sc < sC,max 
V SC t. (17)

B. AC Transmission Network Model

In electric power system analysis, the RPQV model is
widely-used to represent an AC transmission network;
this approach explicitly models real and reactive power
flows in terms of complex voltages in the rectangular
form. A transmission line is denoted as l(b, k), where
b is the index of the bus at the from end and k is the
index of the bus at the to end of branch l. For integration
into our UC skeleton, the RPQV model is given by

EleCr 't + EleCrt pi t + Ggh Vg,t

P61:!t ipt 0

•IgEgb 9'
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(vbmin)2 < vg,t < (vb...)2

(Ptit)2 (gl,t)2 < (Snax)2
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vktvbt)

= 0 V b, t (19)

V l, t (20)

V l, t (21)

V /, t (22)

V 1, t (23)

V b, t (24)

V l, t (25)

V 1, t (26)

where vg,t (vr,,t)2 (Vg t )2 ; see [32] for details on
computing GI and Bz branch admittance submatrices.
Note that the RPQV problem is nonconvex due to
bilinear terms and nonconvex quadratics.

C. UC-AC Problem Formulation

The UC-AC is a nonconvex MINLP formulations that
combines the UC skeleton with the nonlinear ACOPF
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constraints, giving:

min fp + f Su + fsd

s.t.
(1) — (26)

Yg,t, ttg ,t 1 W g ,t E {0,1} V g, t

In the next section we exploit the special mathematical
structure of this problem to solve the problem globally.

(27)

IV. UC-AC GLOBAL SOLUTION FRAMEWORK

The UC-AC is a nonconvex MINLP, and our proposed
algorithm is a nested multi-tree method where both the
outer and inner algorithm are based on a nonconvex
OA approach that solves a sequence of lower-bounding
master problems and upper-bounding subproblems. In
this section, we first provide a high-level explanation of
the nested multi-tree approach used to solve the UC-
AC MINLP problem, followed by a detailed description
of the master and NLP subproblems and the algorithm
definition. Here, we denote d= [y , u, w] to represent the
discrete decisions (i.e., generator commitment variables),
and x to represent the continuous variables in the UC-AC
problem.

A. Overview

Figure 1 shows the multi-tree approach for the UC-
AC problem. The algorithm iterates between a master
problem and an NLP subproblem, and each pair of such
solves comprise a major iteration q for candidate solution
denoted as [dq, xq]. The high-level description of the

master (M)
Relaxed UC-AC
(MISOCP)

dq I

xq

r NLP subproblem (SPG)
Multiperiod ACOPF (NLP)

(global)

Fig. 1: High-level description of the multi-tree approach for
global solution of the UC-AC MINLP problem.

Outer Algorithm is as follows:
The master problem (M) is a relaxation of the UC-

AC problem where the AC power flow constraints are
relaxed using the SOC representation from [33]. The
initial solution of (NA) provides a lower bound on the
UC-AC problem and a candidate solution for the binary

variables (the generator commitments) given by dq for
iteration q. Fixing these variables in the UC-AC MINLP
problem yields a nonconvex NLP that represents a multi-
period ACOPF problem given by (SP G). This NLP
subproblem, if feasible, provides an upper bound, z1i,
and a candidate solution to the UC-AC, [dq,xq]. If the
gap between the upper and lower bound is sufficiently
small, then the solution has been found, i.e., z*=zt for
[d* , x*] =[dq,xq].
To further accelerate exploration of the generator

commitments, it is also desirable to add cuts to (M) that
remove previously visited solutions dq from the feasible
space. With these integer cuts (see Section IV-D1), the
solution 4 of (M) is not a true lower bound to the
original MINLP, and to ensure convergence with this
approach, it is required that we find a globally optimal
solution to the NLP subproblem (SPG) for each candi-
date binary solution dq. Note that, in the limit, this will
result in full enumeration, ensuring convergence of the
discrete decision space in a finite number of iterations.
However, for the applications and test cases presented in
this work, only a few outer iterations were required to
close the gap.

master (Mf) --1
Relaxed Multiperiod
ACOPF (MISOCP)

NLP subproblem (SP)
Multiperiod ACOPF (NLP)

(local)

Fig. 2: High-level description of the multi-tree approach for
global solution of the NLP subproblem (SPG).

For global solution of the multi-period ACOPF in
(S PG) we apply the approach of [32], and for com-
pleteness, Figure 2 shows this algorithm. This strategy
is also a multi-tree approach, and hence we refer to
the overall algorithm as a nested multi-tree approach.
Recall that the candidate generator commitments dq are
fixed for this problem. Similar to the Outer Algorithm
in Figure 1, this approach iterates between the master
and the NLP subproblem, and each pair of such solves
constitutes a minor iteration r on iteration q. The high-
level description of the Inner Algorithm is as follows:
The master problem (Mf) is a MISOCP relaxation

of the problem (SPG) (dq fixed). Therefore, in (Mf)
the only binary variables are those corresponding to
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piecewise outer approximations. The master problem
(Mf) is solved to find a lower bound for (SPG), and
the solution x" from (Mf) is used to initialize the
NLP subproblem (SP). This NLP subproblem, if feasible
provides an upper bound, Zdq, and a candidate solution
xr,q. Note that the NLP subproblem (SP) in Figure 2
is the same formulation as (SPG) in Figure 1, however,
in this case we only seek a local solution of the NLP
subproblem (SP).

Since we do not add integer cuts to the master problem
(Mf), it is a true relaxation of (SPG), and closure of the
gap between the upper and lower bounds is sufficient
to indicate convergence. At each iteration r, the master
problem is progressively refined by the addition and/or
tightening of piecewise outer approximations, as well
as optimization-based bounds tightening (OBBT), as
discussed later in Sections IV-D.

Note that for both Outer and Inner Algorithms, the
respective master problems (M) and (Mf) can be further
refined with any selection of piecewise outer approxima-
tions (see Sections IV-D2 and IV-D3) and with domain
reduction techniques, e.g., OBBT (see Section IV-D4).

B. Problem Formulations

This section provides a description of the problem
formulations (M), (S PG), (SP), and (Mf) used in the
global algorithm. The master problem (M) for the UC-
AC problem is based on the SOC relaxation of the power
flow equations from [33]. We replace the quadratic and
bilinear terms in (27) for all l(b, k) and t with

Cb,b,t := (vr,,t)2 +

Cb,k,t 4,071C,t tqct

Sb,k,t := Vrb.t1it VTc414t

and introduce a second-order cone relaxation of the
condition

Cb,k,t
2
 ''b k t — Cb,b,tCk,k,t

as

-k_pb,E!t — E pnGt = 0 V b, t (M.3)
gEgb

qt,t lEqut qi,t cb,b,t + Cet
et SCt = 0 V b, t

dgEgb z—,SCEscb

= f Cb,b,t GftCb,k,t — Bft sb,k,t bl, t

= ff Cb,b,t — Bit Cb,k,t Gft sb,k,t

(M.4)

(M.5)

/, t
(M.6)

= G f Ck,b,t — Bit f sk,b,t V 1, t
(M.7)

tt Dtf r-rtf
= Ck,k,t -1-11 Ck,b,t sk,b,t V l, t

(vbrnin 
) 
2 -- 

Cb,b,t < (Vbmax)2 V b, t

Cb,k,t = Ck,b,t V l, t

Sb,k,t = —Sk,b,t V l, t

,2 ,2
°b,k,t G Cb,b,tCk,k,t V 1, t

Yg,t,tig,t,tvo E {OM v g, t

(M.8)

(M.9)

(M .10)

(M.11)

(M .12)

(M .13)

2) NLP Subproblems (SPG) and (SP): The same
NLP subproblem is used in both the outer and the
inner multi-tree algorithms, however, for (S PG), a global
solution is required. The NLP subproblem is formed
by fixing the binary variables d=[y, u, w] (generator
commitments) in the original MINLP formulations for
the UC-AC. This produces a multi-period ACOPF
formulation. For any iteration j, problem for fixed
di)=[y(i), u(i), Iv(i)] is given as:

zu min fp + fsu fsd

(28) s.t.

2 , 
Sb k t
2

Cb k t < Cb,b,tck,k,t• (29)

1) Master Problem (M): With the definitions above,
the problem formulation for (M) is given as follows:

min fp + fsu fsd

s.t.

(1) — (17), (25), (26)

f r2sE1ELL. pi,t + EIELr ,t + "-"b
h

(M.1)

(M.2)

(1) — (26) (SP)

where

Yg,t •'= yg(i,t) Ug,t •.= Ug(i ?t, W g,t := W g(i,t) V g, t

3) Master Problem (Mf): Problem (Mf) is the mas-
ter problem used in the inner multi-tree approach for
obtaining globally optimal solutions to the NLP sub-
problem (SPG) from the outer problem. It is based
on the same SOC relaxation that is used for problem
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Algorithm 1 Outer Algorithm for UC-AC

1: Initialization.
Iteration q=0,

—oo. +oo. (d* ,x*) 0.
2: Solve the Master Problem (M).

Solve problem (M) to compute its objective value
4 and binary solution dq.
(a) If (M) is infeasible, then (d* , x*) is the optimal
solution (unless (d* , x*) 0, then the UC-AC
problem is infeasible). Terminate.
(b) If 4 > zL, then .

3: Solve for the Upper-Bound.
Solve the NLP subproblem (SPG) (with fixed dq)
to global optimality using Algorithm 2. Let zU and
(dq, xq) be the optimal objective value and solution.
(a) If feasible and zt < zt, then update the candi-
date solution: zt zt and (d* , x*) (dq, xq).

4: Convergence Check
(a) If gap (zt — 4)/4 < co, the optimal solution
(d* , x*) has been identified. Terminate.
(b) Otherwise add integer cut (IC) for dq to (M).
Further refinements possible as in 4(b) of Alg. 2.

5: Iterate q q + 1. Go to Step 2.

(M), however, the generator commitments d=[y, u, w]
are fixed. Problem (Mf) for any iteration j with fixed
d(i)=[y(j) ,u(J) , w())] is given by:

ZL f.ed := min fP f5U+ fsd

s.t.

(M.2) — (M.12) (Mf)

where

. (i) . (i) . (i)
yg,t .= yg,t ug,t ug,t, Wg,t Wg,t V g, t

C. Global Solution Algorithm

In this section, we formally present the nested multi-
tree algorithm. Algorithm 1 presents the Outer Algorithm
for the solution of the UC-AC problem, and Algorithm
2 presents the Inner Algorithm for global solution of
the NLP subproblem from the Outer Algorithm. For im-
plementation details on the integer cuts (IC), piecewise
outer relaxations (UE), (OE), and (CC), and OBBT
referred to in the presented algorithms, please see the
following section.

D. Algorithm Details

Algorithm 2 Inner Algorithm for (SPG)

1: Initialization.
For outer iteration q and fixed binary dq:
Inner iteration r = O.

f 
ixed 

—00. +00. xg,r <— 0.
2: Solve for the Lower-Bound.

Solve problem (Mf) (with fixed dq) to find lower
bound eif .xed solution xq'r.
(a) If (Mf) is infeasible then the subproblem (SPG)
is infeasible. Return to Step 3 in Algorithm 1.
(b) If ZIfixed > ZEfixed, then eifixed ZEfixed.

3: Solve for the Upper-Bound.
Solve problem (SP) (initialized from xq,r) to com-
pute its objective value gffixed andfis:eldution xqfLed.
If zt < *fixed, then zt 

,, 
and xq ‹—

q,r
f ixed.

4: Convergence Check.
(a) If — 

Z — fixed 
z'Lfi.ed)/ < ci (optimality•

tolerance), then xq is optimal. Return zt and xq
to Step 3 in Algorithm 1.
(b) Else perform OBBT on selected variables and
add or refine partitions for piecewise outer relax-
ations (UE), (OE), and (CC).

5: Iterate r r +1. Go to Step 2.

1) Integer Cuts: At each iteration q of the Outer
Algorithm we add integer cuts that remove previously
visited solutions dq. These cuts are given by,

E Yg,t < — 1 (IQE Yg,t —
(g,t)E13(9) (g,t)EAr(s)

for q = 1. Q — 1 where B(q) = {g, tlyg(q = 1}

and N(q) = fg, tlyg(q) = 01 This enhancement ensures
that distinct solutions are obtained during each major
iteration q of our global solution algorithm. As a result,
since the solutions to problem (M) are enumerated with
these integer cuts, the below refinements (in Sections
IV-D2 and IV-D3) can be ignored in Step 4(b) of the
Outer Algorithm.

2) "Reverse Cone": For any solution of (M) or (Mf),
we may have that equation (28) is violated, i.e.,

Cb,b,tck,k,t (CLt 4,k,t) > E

for any l and t due to the second-order cone relaxation
of (28). Therefore, we introduce piecewise relaxations
of

,2 (33)Cb,b,tCk,k,t,

as necessary in each iteration of the Inner Algorithm. To
describe these relaxations, we define new variables

CSb,k,t := C?),k,t Sg ,k,t
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CCb,k,t := Cb,b,tCk,k,t

where we construct piecewise over-estimators for C12,,k,t+

sg,k,t and piecewise under-estimators for Cb,b,tCk,k,t to
obtain an adjustable approximation of (33).

Specifically, as first introduced in [32], we extend
the bivariate partitioning scheme in [54]. We denote
our partitioning variables as csib'3k,t, and ccib'3k,t, where

[fib, k,t, eb,k,t] refers to the i-th interval for Cb,k,t E
kb,k,t/Zb,k,t1 and [4,k,t,:sib,k,t] refers to the j-th interval

for Sb,k,t E [Ab,k,t13b,k,d•

The piecewise over-estimators for csb,k,t are

< (Ci ( ei
Sb,k,t — ' k='b,k,t

\,1,3 _L
s6,k,tsb,k,t)-b,k,t

 =E(i,j)Eng t v l, t
< ij < ij
— Cb,k,t 

rrb,k,t

Cb,k,t = j)E,„ Cb,k,t V l, t

V (i, j), l, t

V (i, j), /, t

Ajb,k,takik,t V (i,j), l, t (OE)

Sb,k,t = E(imE„.„ l, t
ij — v t0-19,k,t

Crb,k,t C {011} V (i, j), l, t

where (i,j) E S48,k,t := kb,k,t)49,k,t1 X [4,k,t, 36,k,t]•
Then, the piecewise under-estimators for ccb,k,t are

CCb,k,t 
<
—

7i v • •t,3), t

CCij < CCij + CC CCb,k,t — —k,k,t b,b,t —b,b,t k,k,t

i,j i,j i,j V (i, j), l, t

ccb,k,t= E(i,j)Efirkt cCbi,k,t V l, t

rai (Oi'j < Ci3,t Z6,b,t(Pi3,t•=b,b,t7-b,k,t — V (i, j), l, t

V l, tCb,b,t = (imE„,ck,t Cid,t

4,k,t(PiOt,t V j), t

Ck,k,t = Ck"t d l, t

(U E)

iil(i,j)Enr,,t (P,jk,t = V l, t

coab':70 E {0,1} V (i,j), l, t

where (i,j) E Qrklt := [ 4,b,t] X kik,k,t4k,t1•
Note that unique ebl,t and 43kt variables must be
introduced for every line l where the under-estimators
are constructed.

3) Cycle Constraints: In the second order cone relax-
ations used in (M) and (Mf), Kirchhoff's voltage law
(KVL) is no longer guaranteed to be satisfied, but can

be enforced through the cycle constraints,

(b,k)EGc 19b,k,t = 0
for all t and

19b,k,t = — arctan/vsb,k,t/cb,k,t)

(36)

(37)

for all l and t. As the Inner Algorithm iterates, these
constraints are gradually enforced as needed in sub-
problem (Mf) by addition and refinement of piece-
wise outer approximations. We construct the respective

piecewise under- and over-estimators for each Ob,k,t
— arctan(sb,k,t/Cb,k,t) term, where

,t 
ai;jsib,:jk,t tiplUE Cif). >,3k. 7nUE

143 

i,j e ,,i,j (q0E
60" bb kk tt 'bk,t ""b,k,t ' In

Oij(i,j)Eng7k b,k,t

(b,k)ELe b,k,t9 =
where n E 2} and the parameters a, )3, and 7 are

based on the planes constructed in [55]; please see [32]
for implementation details.

Vn, (i, j), l, t

Vn, (i, j), l, t

(CC)

4) Optimization-Based Bounds Tightening: The
optimization-based bounds tightening (OBBT) is only
computed for the second-order cone variables cb,k,t
and sb,k,t to perform domain reduction on the initial
lower-bounding subproblem (Mf). This approach results

in two optimization routines per variable, i.e.,

minfCb,k,t1C(Mf),<— max (cb,k,t, z zU})

max{cb,k,tic(MO, < zn)Z13,k,t <— min (4,k,t,

max (sb,k,t, min{ sb,kt IC(Mf), zib < ztr})

Sb,k,t ÷— min (36,k,t, maxfsb,k,tic(Mf), zU < 471)

for all l and t where c(Mf) denotes the constraint set of
(Mf). This procedure is computed selectively for cb,k,t
and Sb,k,t corresponding to large violations in second-
order cone constraints (28).
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V. NUMERICAL RESULTS

We now test our global UC-AC solution algorithm on
four benchmark problems: a 6-bus test system (6—bus)
with 3 generators [37], two 24-bus test systems —
RT S —79 [56] and RT S —96 — each with 33 genera-
tors [57], and a modified IEEE 118-bus test system
(IEEE-118mod) with 54 generators [37]. The schedul-
ing horizon solution for all test cases is 24 hours at
hourly time resolution, but we solve for 48 hours (by
stacking the same 24-hour demand profile) to address
end of time horizon impacts. Our global solution algo-
rithm is implemented in Pyomo, a Python-based open-
source optimization modeling language [58]. All com-
putational experiments are conducted on a 64-bit server
with 24 CPUs (Intel(R) Xeon(R) CPU E5-2697 v2 @
2.70GHz) and 256 GB of RAM. All SOCP and MISOCP
subproblems are solved using Gurobi 6.5.2 [59] limited
to 24 threads. All NLP subproblems are solved with
Ipopt 3.12.6 [60] using HSL's MA27 linear solver [61].

While having a tight and compact formulation is
one path toward obtaining improved performance in
global solution frameworks, convergence speed is also
a function of other characteristics of the underlying
numerical problem that impact computational difficulty,
including formulation size and degeneracy / symmetry in
the solution space. Typically, there is a large subset of
solutions that are within an &tolerance of an optimal-
cost schedule. To balance computational burden and
solution quality, we initially set the Gurobi MILP gap
to 0.1%. Then, if the optimality gap of our global
solution algorithm does not show improvement within
N iterations, we tighten the MILP gap by a factor of
10.

In all of our computational experiments, we set N=5
with a total wall clock time limit of 14400s and a
major iteration limit q=30. The optimality tolerance for
both our global solution algorithm and its nested multi-
tree algorithm are set to 0.1%. Note that in contrast to
research on global solution of MILP models, in which
accepted optimality tolerances are typically 1 • 10-4,
standards for global solution of MINLP models are
typically within 1% — due to the relative increase in
computational difficulty.

A. Computational Performance

Computational results for our global UC-AC solution
algorithm on the 4 benchmark problems are reported in
Table I. The second column reports the best obtained
upper bound, which corresponds to the best known solu-
tion to the UC-AC problem. The third column reports
the best obtained lower bound, which corresponds to
the solution of the problem defined in (M). The relative
optimality gap is shown in the fourth column, followed

by the total wall clock time and the number of major
iterations. All problems are solved to within a 0.5%
global optimality gap under the wall clock time limit. For
IEEE-118mod, we obtained a 0.34% optimality gap
after the first iteration (in approximately 8400s), which
remains unchanged before the time limit is reached in
major iteration k=2 with a 0.11% MIP gap for the lower-
bounding problem.

Table II additionally reports IEEE-118mod results
for our global UC-AC algorithm compared to results ob-
tained with version 16.12.7 of the commercially available
general MINLP solver BARON [62, 63], and heuristic
UC-AC methods as reported in [48] and in [36]. BARON
was unable to solve any of the UC-AC problems within
a time limit of 10 hours using the default solver pa-
rameters, CLP/CBC for the LP/MILP subproblems, and
IPOPT and FILTERSD for the NLP subproblems. It is
possible that better performance could be obtained with
BARON by leveraging commercial subproblem solvers
and additional tuning.
Our global UC-AC upper bound solution is 0.92% less

costly than the heuristic OA [48] solution and 1.84% less
costly than the heuristic GBD [36] solution. We expect
for the improvement attained by solving the UC-AC
problem globally to increase with the size of the network
and generator set. Even a percentage improvement in
operating efficiency leads to a monetary savings of
billions annually [53].

B. Globally Optimal Unit Commitment Schedules

In addition to the differences in optimal objective
value, we also want to compare the commitment sched-
ules obtained with global and local algorithms. The
globally optimal generator commitment schedules for
our test cases are reported in Table III, IV, and V.
Due to symmetry (e.g., co-location of identical gen-
erating units at a given bus), there can be multiple
global solutions with the same objective value (here,
we have not included alternate solutions). Comparing
these commitment schedules with those from the local
results in [48], we observe that they are the same for the
6—Bus case, but differ for RT S —79 (where a slightly
improved solution is found) and IEEE-118mod (where
a significantly improved solution is found).

VI. CONCLUSIONS

Solving the UC-AC problem is fundamental to ob-
taining real-world operations and market settlements
that fully incorporate the impact of alternating current
network physics. We have introduced, to the best of our
knowledge, the first globally optimal approach to solv-
ing this practically critical and computationally difficult
problem
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TABLE I: Numerical results for our global UC-AC solution algorithm

Case Upper Bound ($) Lower Bound ($) Optimality Gap (%) Wall Clock Time (s) Iteration (k)

6-bus 101,763 101,740 0.02% 8.5 2
RTS-79 895,040 894,392 0.07% 1394 6
RTS-96 886,362 885,707 0.07% 321.0 1

IEEE-118mod 835,926 833,057 0.34% 14400t 2

t MIP gap of 0.11% for the master problem at the time limit.

TABLE II: Comparative results with alternative UC-AC approaches

Case
Upper Bound ($)

Our Global UC-AC BARON UC-AC Castillo et al. UC-AC [48] Fu et al. UC-AC [36]

IEEE-118mod 835,926 n/a 843,591 851,274

TABLE III: Commitments for the 6-Bus System

Bus Gen Commitment (h) TABLE V: Commitments for the IEEE-118mod System

B1 G1
B2 G2
B6 G3

1-24
1, 12-21
10-22

Gen Commitment (h) Gen Commitment (h)

G1
G2
G3
G4
G5
G6

0
0
0

1-10, 24
1-24

0

G28
G29
G30
G31
G32
G33

1-24
1-24
1-24

0
0
0TABLE IV: Commitments for the 24-Bus Systems

G7 11-22 G34 7-24
Bus Gen Commitment (h) G8 0 G35 1-24

RTS-79 RTS-96 G9 0 G36 1-24
B1 G1, G2 0 0 G10 1-2, 12-24 G37 8-23
B1 G3, G4 8-23 8-23 G1 1 1-24 G38 0
B2 G5, G6 10 0 G12 0 G39 0
B2 G7 8-24 8-24 G13 0 G40 1-10, 22-24
B2 G8 8-23 8-23 G14 10-22 G41 0
B7 G9 1-23 1-23 G15 0 G42 0
B7 G10 9-24 10-24 G16 9-16 G43 1-24
B7 Gll 10-18 0 G17 0 G44 0
B13 G12 11-22 1-18 G18 0 G45 1-24
B13 G13 0 11-22 G19 0 G46 0
B13 G14 0 0 G20 1-24 G47 0
B14 G15 1-24 1-24 G21 8-24 G48 0
B15 G16-G18 10-15 0 G22 0 G49 0
B15 G19, G20 10-13 0 G23 0 G50 0
B15 G21 9-24 9-24 G24 9-23 G51 9-13
B16 G22 1-24 1-24 G25 0 G52 14-23
B18 G23 1-24 1-24 G26 0 G53 7-24
B21 G24 1-24 1-24 G27 1-2, 13-24 G54 9-23
B22 G25-G30 1-24 1-24
B23 G31-G33 1-24 1-24
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Although our obtained run times are still longer than
those required for operations, our proposed approach
can be used to quantify the (near-) global optimality of
"off-line" solutions, as well as test and validate other
algorithmic approaches including the heuristics and local
solution techniques referenced in Section II.

A considerable fraction of the computational time
associated with our algorithm is in the global solu-
tion of the subproblems. Efficient global solution of
ACOPF subproblems is an ongoing focus in the literature [3]
[64, 65] and furthermore can be leveraged to produce
valid cuts in the master problem. Optimization results
on larger data sets will require further development
that potentially leverages a variety of advancements in
relaxation refinements, MISOCP solvers, cut generation, [4]
and decomposition techniques. For example, other future
directions for research include incorporating symmetry-
breaking methods, and decomposition and parallelization
techniques to improve the efficiency of determining [5]
lower bounds. Improvements to the mixed-integer refine- [6]
ment problem in the nested algorithm include adaptive,
non-uniform partitioning schemes. Security (e.g., N- [7]

1) considerations and parameter uncertainties do not [8]
alter the core UC-AC problem that needs to be solved,
but does increase the dimensionality of the problem;
such dimensionality increase is addressable through the [9]
aforementioned advancements, which are extensions left
for future work.
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