
LLNL-JRNL-787242

Porting a 3D Seismic Modeling
Code (SW4) to CORAL
machines

B. Sjogreen , P. Lin

August 15, 2019

IBM Journal of Research and Development

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

IBM J. RES. & DEV. Pankajakshan et al.: Porting a 3D Seismic Modeling Code(SW4) to CORAL Machines Page | 1

Porting a 3D Seismic Modeling Code(SW4) to CORAL Machines
R. Pankajakshan P.-H. Lin B. Sjögreen

SW4 solves the seismic wave equations on Cartesian and curvilinear grids using large compute
clusters with O(100,000) cores. This paper discusses the porting of SW4 to run on the CORAL
architecture using the RAJA performance portability abstraction layer. Performance of key kernels
using RAJA and CUDA are compared to estimate the performance penalty of using the portability
abstraction layer. Code changes required for efficiency on GPUs and minimizing time spent in MPI
are discussed. The paper describes a path for efficiently porting large code bases to GPU based
machines while avoiding the pitfalls of a new architecture in the early stages of its deployment.
Current bottlenecks in the code are discussed along with possible architectural or software
mitigations. SW4 runs 28X faster on one 4-GPU CORAL node than on a CTS-1 node (Dual Intel
Xeon E5-2695 v4). SW4 is now in routine use on problems of unprecedented resolution(203 billion
grid points) and scale on 1200 nodes of Summit.

1. Introduction
This paper details a particular path used to successfully adapt
an extant seismic simulation code to the disruptive change in
node architecture that marked the CORAL deployment.
While earlier efforts, such as the Titan deployment used a
variety[12] of non-portable approaches, more recent work on
the CORAL machines seems to have coalesced around more
portable solutions like RAJA[14], Kokkos[18] and OpenMP
while performance critical applications are using CUDA[7]

In order to have codes ready for the final CORAL
systems, most of the development work was done on
CORAL Early Access (CORAL-EA) machines with Power
8LE CPUs and Pascal 100 GPUs using a proxy app called
sw4lite. Porting results using CUDA and RAJA were used to
evaluate ease of development, maintainability, portability and
performance. The paper also details the porting and tuning
process, presents some performance metrics at scale and
concludes with some lessons learned. An overview of similar
efforts with a large subset of the application codes at LLNL
can be found in [13]

2. Background
Large earthquakes cause damage to buildings, bridges and
other structures. Although predicting exactly when the next
big earthquake will occur is very difficult, the effects of a
hypothetical earthquake are amenable to analysis by modern
supercomputer simulations. The shaking, and thereby the
damage to structures, depends on the properties of the
underground material and on the exact details of the rupture
that initiates the earthquake. The damaging effects from
various likely earthquake scenarios can be assessed from
computer simulations, and thereby guide us to design safer
structures.

Computer simulations of seismic waves are usually based
on solving the elastic or anelastic wave equation in the
heterogeneous underground material. Furthermore, the
simulation code uses a source model that describes initiation
of the earthquake from a point source for small earthquakes,
or from a rupture along a fault surface for larger earthquakes.

To this end, SW4 (seismic waves fourth-order)[2] was
created. SW4 performs simulation of earthquakes on
regional scale. The computational domain can be of sizes up
to 200 km along the sides, which is small enough that the
curvature of the earth is negligible. SW4 computes the three
component displacement field u = u(x, t) as function of
space x and time t by solving the elastic wave equation,

ρutt = L(µ, λ)u + f(x, t), (1)

with boundary data and homogeneous initial data. The
source, f(x, t), which models the earthquake is non-zero at a
point, or on a fault surface. The material density, ρ = ρ(x),
and Lamé parameters µ = µ(x) and λ = λ(x) are given
fields. The linear differential operator L is the divergence of
the stress tensor L = div(σ), and contains spatial second
derivatives of u.

For realistic simulations, SW4 solves the slightly more
general problem where the elastic wave equation is
augmented with visco-elastic damping mechanisms. The
terms associated with visco-elasticity are left out in the
description here, but their contribution to the computational
cost is essentially a few additional evaluations of the
operator L.

SW4 uses a finite difference approximation of (1) on
multiple grids. The geometry is Cartesian with a topographic
profile on the top surface. The elastic wave equation is
discretized on finite difference grids by fourth-order accurate
five-point wide finite difference operators. At the top surface
of the domain, summation-by-parts boundary modifications
of the finite difference operators are used. The
summation-by-parts property ensures that the numerical
method is stable through discrete energy conservation.

In three space dimensions the stencil is supported on three
planes, each with 5×5 grid points, see Figure 1a. See [19],
[17] for details on the numerical method.

At the far-field boundaries, a supergrid sponge layer is
used to allow the waves to exit the domain without artificial
reflections. The sponge layer uses a fourth-order or
sixth-order dissipation term to damp the waves. The

IBM J. RES. & DEV. Pankajakshan et al.: Porting a 3D Seismic Modeling Code(SW4) to CORAL Machines Page | 2

(a) Discretization stencil of operator L on a Cartesian grid. (b) Grid hierarchy in SW4. A topography conforming curvilinear grid near the
surface with Cartesian grids of increasing grid spacing with depth.

Figure 1: Grid hierarchy and discretization stencil of operator L on a Cartesian grid.

damping is only applied inside the sponge layer. See [16] for
details on supergrid sponge layers.

A large earthquake generates frequencies up to
approximately 10 Hz. As a rough estimate, the required grid
spacing to resolve a wave of frequency f with Ppw grid
points per wavelength at wave speed c is

∆x =
c

Ppwf
(2)

For example, a resolution of 6 points per wavelength with
smallest shear wave speed c = 250 m/s and with frequency
10 Hz, leads to

∆x = 4.1m.

On a computational domain of size 100 km along each side,
this would mean around 25,000 grid points along each
direction, or close to 16 trillion grid points in total. The grid
refinement capability in SW4 provides a way to reduce the
number of grid points while maintaining the resolution. In
the earth, wavespeeds generally increase with depth. This
means, as shown by (2), that the grid spacing at depth can
be made larger while keeping a fixed number of points per
wave length. An example grid configuration is displayed in
Figure 1b, where a two-dimensional cross-section of a
three-dimensional grid is displayed. Our largest simulations
in the 5-10 Hz range use a few hundred billion grid points.
As the above estimate shows, without the grid refinement
capability they would have required trillions of points.

SW4 uses explicit time stepping by a fourth order
accurate predictor-corrector method. Algorithm 1 outlines
the procedure to advance M time steps of size ∆t. The
computationally most expensive parts of the algorithm are
evaluation of the discretized stress divergence, Lh, and
evaluation of the supergrid damping operator SG.

The boundary condition procedure imposes traction free
boundary conditions at the top surface, homogeneous
Dirichlet conditions at the termination of the sponge layers,
and exchanges data across boundaries to other MPI-tasks.
The forcing f will only be non-zero in a part of the domain,
and hence, is not ideally load balanced, but in most cases it
has a significantly smaller computational cost than the
spatial operator, Lh.

Algorithm 1 4th order accurate predictor-corrector scheme
for the elastic wave equation.

1: Initial data: u0 = 0 and u−1 = 0
2: for n = 0, 1, . . . ,M − 1 do
3: Predictor step:

u∗ = 2un − un−1 +
∆2

t

ρ

(
Lh(un) + f(tn)

)
4: Impose boundary conditions on u∗

5: Acceleration: vn =
(
u∗ − 2un + un−1

)
/∆2

t

6: Corrector step:

un+1 = u∗ +
∆4

t

12ρ

(
Lh(vn)+ ftt(tn)

)
+

1

ρ
SG(un−un−1)

7: Impose boundary conditions on un+1

8: end for

For the geometry in Figure 1b, there are two different
implementations of Lh, one for the Cartesian grids of the
bottom parts, and one discretizing L on the curvilinear grid
at the surface. The curvilinear grid discretization is
computationally more expensive due to extra terms coming
from the grid mapping. The number of operations per grid
point to evaluate Lh is estimated from the source code to be

IBM J. RES. & DEV. Pankajakshan et al.: Porting a 3D Seismic Modeling Code(SW4) to CORAL Machines Page | 3

around 670 operations on the Cartesian grids and 2120
operations on the curvilinear grids.

SW4 was originally written in C++, except for the most
computationally intense routines, which were implemented
in Fortran for optimal execution speed. In an effort to
modernize SW4, the Fortran code was replaced by C/C++
routines. C/C++ code facilitated use of modern HPC tools,
since many of these are developed primarily for C/C++.
Converting the Fortran code to C was straightforward,
replacing multidimensional array access in Fortran by
preprocessor macros in C. The execution speed of plain C
code is not as good as speed of Fortran code. However,
various tricks such as declaring pointers by the
__restricted__ keyword and using #pragma ivdep
made the performance of the C code come close to the
performance of the corresponding Fortran code. The key to
narrowing the C/Fortran performance differential was the use
of sufficient aliasing and vector dependency directives in the
C source code to trigger effective vectorization.
Unfortunately, there seems to be no standard way to get
good C performance; the process varies between different
compilers from different vendors, and between different
versions of the same compiler.

The first versions of SW4 were parallelized using MPI.
The domain decomposition onto processors was made
two-dimensional in the horizontal plane. The reason for
keeping the vertical dimension undecomposed is to simplify
load balancing when using grid refinement in the vertical
direction, as shown in Figure 1b.

As part of the modernization effort of SW4, OpenMP
directives were inserted at most loops to make it possible to
execute them on parallel threads on shared memory
many-core CPUs. The performance of SW4 when varying
the number of OpenMP threads per MPI-task was studied in
[11]. In general, the performance is better with many
MPI-tasks, each using fewer threads. The performance
degrades as the number of OpenMP threads per MPI-task
increases beyond some limit. The exact value of this limit
depends on many factors, but the interesting point is that the
optimal tasks/thread ratio is different for different machines,
showing the usefulness of having an implementation that is
flexible with respect to the task/thread number. See [11] for
more details on the development of SW4 for multi-core
CPUs.

3. Evaluation of porting strategies
Sw4lite[3] is a standalone proxy application containing key
numerical kernels from SW4 that was designed as a testbed
for evaluating porting strategies. Sw4lite was created by
simplifying SW4. The procedure for time stepping in sw4lite
is the same as for SW4, which is described by Algorithm 1.
Importantly, sw4lite contains the computationally most
expensive routines of SW4, for example, the spatial
discretization finite difference operators Lh, both on
Cartesian and curvilinear grids, and the supergrid damping
operator SG. The main differences between SW4 and sw4lite
are that viscoelastic wave attenuation and mesh refinement

capabilities are not included in sw4lite. Furthermore, SW4
supports a large number of input file formats to read the
material model (i.e., the fields ρ(x),µ(x), and λ(x)), and
output formats to save the computed data. These input and
output options are considerably more limited in sw4lite.

Sw4lite runs on multi-core CPUs by OpenMP threads and
uses MPI between compute nodes. There is also a CUDA
version and a RAJA version of sw4lite, with the RAJA
version targeting execution on GPUs.

3.1. Sw4lite CUDA port
The CUDA version of sw4lite uses device memory, for
optimal performance and backward compatibility with older
GPUs. The data structures in sw4lite are mainly three
dimensional arrays over the finite difference grid. These are
implemented in a minimal C++ array class. Essentially, the
class contains a pointer to data and some member variables
to keep track of its dimensions, similar to the following:

class Sarray {
int ni, nj, nk;
double *m_data;
double& operator()(int i, int j, int

k){return m_data[i+nj*j+nk*k];}
double* cpu_ptr(){return m_data;}

};

The array class was modified with a pointer to device data,
and some additional member functions that wrap calls to the
CUDA API for allocating and copying the device memory.
Schematically, the code is similar to:

class Sarray {
double *m_data, *m_dev_data;
double& operator()(int i, int j, int

k){return m_data[i+nj*j+nk*k];}
double* cpu_ptr(){return m_data;}
double* dev_ptr(){return m_dev_data;}
void allocate_on_device{

#ifdef SW4_CUDA
cudaMalloc((void **) m_dev_data, ...);

#endif
}
void copy_to_device{

#ifdef SW4_CUDA
cudaMemcpy(m_dev_data, m_data,...);

#endif
}

};

The main time stepping loop was modified by adding calls
to allocate_on_device and copy_to_device, (and
of course a similar copy_from function) wherever
appropriate. With this technique the amount of calls to the
CUDA API and the number of #ifdef regions in the code
were kept to a minimum.

The most arithmetically intense computational kernels,
such as evaluating the difference stencil, are procedures that
use C pointers as arguments. Porting to CUDA consisted of
creating a corresponding CUDA kernel for each CPU
function. The CPU function is called with a CPU memory

IBM J. RES. & DEV. Pankajakshan et al.: Porting a 3D Seismic Modeling Code(SW4) to CORAL Machines Page | 4

pointer as actual argument, while the CUDA kernel is called
with a device memory pointer as actual argument. The
listing below illustrates how a function evalL that
computes Lh(u) from a given u, might exist in a CPU
version and a CUDA version. It is assumed that the integer
array dim with three elements contains the sizes of the
array, and that array objects u and Lu are available.

#ifdef SW4_CUDA
evalLCU<<<g,b>>>(dim,u.dev_ptr(),Lu.dev_ptr());

#else
evalL(dim,u.cpu_ptr(),Lu.cpu_ptr());

#endif

Some routines, for example evaluation of the forcing term,
f(x, t) in (2), seems at a first glance more suited for
execution on CPU than on GPU. However, numerical
experiments showed that using CUDA kernels for all steps
in the time step loop leads to an overall performance
improvement, even if some kernels do not run at optimal
speed, due to reduction in the amount of data that is
transferred between CPU and GPU. Hence, most of the
functions called in the time step loop of Algorithm 1, were
copied and modified into CUDA kernels.

The stencil operations in the finite difference
approximation require exchange of some grid points near the
processor boundaries (halo points) with neighbor processors.
This might require copying the halo points from device to
CPU. Because only a subset of the data is involved in the
exchange of halo points, it is not necessary to transfer full
three-dimensional arrays from GPU to CPU. Sw4lite
implements two alternative ways to communicate between
adjacent nodes. The first is to pack the halo points in a buffer
on the device, send the buffer to the CPU, and then call the
MPI-routines from the CPU. The second method is to rely
on CUDA aware MPI, which consists of MPI-routines that
accept device data pointers as arguments and that perform
the GPU to CPU transfer automatically. CUDA aware MPI
makes the implementation easier, but can be less efficient.

3.2. Sw4lite RAJA port
RAJA [1][10] is library of C++ abstractions designed to
extract performance without sacrificing portability in High
Performance Computing(HPC) applications. RAJA enables
both architectural (CPU vs GPU) and programming model
(OpenMP vs Thread Building Blocks(TBB)) portability with
multiple back-ends for a given architecture. RAJA does this
by separating the loop bodies from the actual methods used
to execute them through execution policies that can be
tailored for performance based on the underlying
architecture, programming model as well as specific loop
body type. The loop body is captured using one or more
lambda expressions with loop dispatch and execution being
controlled by a policy generated by composing RAJA
statements. For example, the following loop fills an MPI
buffer with a halo values:

for (int i=0;i<iend;i++){
for(int k=0;i<kend;k++){

buf[k+i*bl]=data[i*stride+k];
}

}

The RAJA equivalent would be the following:

RAJA::RangeSegment k_range(0,kend);
RAJA::RangeSegment i_range(0,iend);

RAJA::kernel<BUFFER_POLICY>(
RAJA::make_tuple(k_range, i_range),
[=]RAJA_DEVICE (int k,int i) {

buf[k+i*bl]=data[i*stride+k];
});

where BUFFER POLICY for offloading the loop to the
GPU would be:

using BUFFER_POL=
RAJA::KernelPolicy<
RAJA::statement::CudaKernelAsync<
RAJA::statement::For<1,

RAJA::cuda_block_x_loop,
RAJA::statement::For<0,

RAJA::cuda_thread_x_loop,
RAJA::statement::Lambda<0> >>>>;

while the policy for executing the same loop body on the
CPU using OpenMP would be:

using BUFFER_POL =
RAJA::KernelPolicy<
RAJA::statement::For<1,

RAJA::omp_parallel_for_exec,
RAJA::statement::For<0, RAJA::seq_exec,
RAJA::statement::Lambda<0>
>>>;

RAJA assumes that any data referenced in the lambda
expression is accessible on the device. In sw4lite and SW4
this is ensured by using Unified Memory (UM) which is a
single memory address space that is accessible by all devices
and CPUs on the node. In sw4lite and SW4, the setup phase
happens almost exclusively on the CPU. In the solver phase,
the data migrates to the device though GPU page faults.
These tend to slow the first calls of the corresponding
kernels by a factor of two or more but have negligible
impact on total runtimes. There is further discussion of UM
in Section 5.2

3.3. Sw4lite CUDA optimizations
The optimization strategy for sw4lite running on the CPU
heavily relies on exploiting SIMD vectorization and
hardware caches available on the CPU architecture. For the
GPU system, we are able to apply the single-instruction,
multiple-threads (SIMT) technique to mimic the SIMD
vectorization for sw4lite. However, we found the 125-point
stencil in the sw4lite demanded high memory bandwidth
between the GPU cores and the global memory to transfer
required data for computation. The limited hardware cache
size on the GPU cores is not adequate to stage enough data

IBM J. RES. & DEV. Pankajakshan et al.: Porting a 3D Seismic Modeling Code(SW4) to CORAL Machines Page | 5

for reuse. The optimization strategy for sw4lite mainly
focuses on reducing the memory traffic between the GPU
cores and the GPU global memory. We experimented with
multiple strategies to achieve this goal and discovered that
the optimizations listed below can help to improve the
computation performance of sw4lite running on the GPU.

3.4. Shared memory
We exploit shared memory to cache the shared data in the 3
dimensional 125-point stencil in the sw4lite. sw4lite is able
to allocate an array with 46.875 KB in the shared memory
to host data of 20 × 20 × 5 grid cells and each grid cell
contains three double precision values. At each iteration, the
bottom plane of the cached data is no longer used after the
completion of the previous iteration. Data in the top four
planes in the shared memory is moved to the bottom four
grid planes to spare the top plane for new data. Data from
the next plane in the vertical dimension is loaded into the
top plane of the allocated array in shared memory for the
upcoming computation. Another optimization applied treats
the 5 planes of cached data similar to a circular buffer. The
newly loaded data from the next plane in Z dimension
simply overwrites the memory space that contains data no
longer used. This avoids data movement within shared
memory and can further improve computational performance.

3.5. Prefetching
Double buffering can be applied to further improve the
overall throughput. However, the 46.875 KB shared memory
usage is close to the capacity of the shared memory
available to the Pascal GPU and the default capacity
available to the Volta GPU. We exploit GPU registers as the
alternative memory buffer to implement the data prefetching.
The new data is prefetched into GPU registers one iteration
before it is consumed and then moved from register into
shared memory (accessible by all threads in a block) for the
computation. A total of 12 registers in each GPU thread are
needed in the prefetching for sw4lite and there is no register
spilling reported after the compilation. Registers with the
lowest memory latency in the GPU memory hierarchy makes
prefetching possible to maximize sw4lite computational
performance on the GPU. Figure 2 shows the performance
results, in Gflop/s, for sw4lite rh4 kernel with different
optimizations applied. All the optimizations jointly assisted
the rh4 kernel to achieve 37% of double precision peak
performance on Nvidia Volta GPU.

3.6. Kernel fusion
Computation in sw4lite is split into multiple stages
implemented in multiple functions. evalRHS, one of the
most computation-intensive functions in sw4lite, computes a
temporary output for each grid cell, stored in a temporary
array, that will be consumed immediately by
evalPredictor or evalCorrector in the computation
process. evalPredictor and evalCorrector both
traverse the whole grid a second time after a grid traversal
done in evalRHS. With relatively low computation
performed in evalPredictor or evalCorrector
compared to evalRHS, we can merge these three functions

0

500

1000

1500

2000

2500

3000

400x400x400; corder = yes

Gf
lo
p/
s

SW4lite Optimization

With SharedMem

With_SharedMem_CircularBuffer

With_SharedMem_Prefetch

With_SharedMem_CircularBuffer_Prefetch

Figure 2: Performance comparison on Nvidia Volta GPU
among different optimizations

altogether into a single GPU kernel without increasing the
GPU register usage for the merged kernel. This merge can
avoid the second grid traversal and eliminate the temporary
array for storing the output from evalRHS.

3.7. Overlapping communication & computation
Boundary data exchange is unavoidable when the
computation involves multiple nodes with distributed
memory. To avoid overhead caused in synchronous boundary
data exchange, we create multiple CUDA streams for sw4lite
to lower the communication overhead caused by the
boundary exchange. One CUDA stream is designated to
compute the center data and the other is for boundary data
update and exchange. The boundary data can be packaged
after the completion of boundary data update, without
waiting for the center data update from the other CUDA
stream, and sent immediately to the target compute nodes. A
MPI receive is called right after the message send to wait
for the updated boundary data from the other compute
nodes. The center data update in sw4lite has sufficient
computation to hide the communication needed by the
boundary data exchange. This effectively reduces the
overhead caused by the boundary exchange.

3.8. Performance
During the optimization of the CUDA version of sw4lite, we
used a layer over half space problem as benchmark (LOH.1).
This is a well-known benchmark problem for seismic
simulation codes. It exercises the Cartesian grid
discretization, but not the curvilinear discretization and
contains all other features of a seismic elastic wave
simulation. The grid spacing used was h = 100m which
leads to a problem size of approximately 16 million grid
points. The more common resolution for LOH.1, h = 50m
was not used because it leads to a problem size that is too
large to fit on a single GPU.

The development of sw4lite was made on a computer
where each node were equipped with four P100 GPUs and
an IBM Power8 CPU. This was an early access system
made available before the CORAL systems came online. A
first CUDA version of sw4lite was available early in 2017.

IBM J. RES. & DEV. Pankajakshan et al.: Porting a 3D Seismic Modeling Code(SW4) to CORAL Machines Page | 6

Broadwell Xeon Phi P100 V100
seconds seconds seconds seconds

Ref. 146 93 17 11
RAJA 149 96 22 8
RAJA
Ref

1.02 1.03 1.3 0.7*

Table 1: Comparison of sw4lite RAJA performance with native
implementation

For the discussion below, let the execution time of the first
version be normalized to 1. The first optimization was to
reorganize the time step loop to reduce the amount of
memory transfer between CPU and GPU. This reduced the
execution time to 0.5. The optimization techniques described
in Sections 3.4–3.7 were introduced step by step, and by the
end of 2017 the execution time had been reduced to
approximately 0.17, giving a factor 6 of total improvement
for the optimization effort.

Figure 3 gives a comparison of the optimized CUDA and
RAJA versions of sw4lite. The comparison was run on a
single node of the computer Lassen at LLNL (a scaled down
version of the CORAL system Sierra) equipped with four
V100 GPUs and two IBM Power9 CPUs. The computation
was run on four GPUs with one MPI-task/GPU. The
execution times shown are measured on one of the four
GPUs. All four MPI-tasks showed similar performance. The
x-axis shows different routines in sw4lite’s time stepping
loop. rhs4 denotes the evaluation of Lh(u) on a Cartesian
grid; pr is the predictor update; co is the corrector update;
dpm is the acceleration update (5. in Alg 1); sg4 is
evaluation of the supergrid damping term; bc is imposing
boundary conditions; r4u is evaluation of the operator
Lh(u) at the six topmost grid planes at the top boundary of
the domain, which is where summation-by-parts boundary
operators are used; CU represents the time spend in memory
copies between host and device; cp is copy halo points into,
or from, a local buffer; F is evaluation of the source term.

The largest amount of time is spent in rhs4, which is the
procedure that performs the most arithmetic operations. In
the CUDA code, the predictor and corrector update kernels
were eliminated by fusing them with rhs4. Hence, this
routine takes somewhat longer time in the CUDA code. On
the other hand, the kernels pr and co are not needed in the
CUDA code. The RAJA code still performs very well
considering that the CUDA code was hand optimized to use
shared memory, while no such effort was done for the RAJA
code.

4. Selection criteria
Table 1 shows the performance penalty incurred by the
sw4lite RAJA port when compared to the corresponding
native implementation(OpenMP3.0 for the Broadwell and
Xeon Phi and CUDA for the Pascal 100/Volta 100). The
30% penalty on the P100s is due to the combined effect of
several factors. First, some CUDA kernel optimizations
using shared memory are not in the RAJA version. Secondly,
some optimizations, for example, overlapping

Figure 3: Comparison between CUDA (purple) and RAJA
(yellow) performances of sw4lite on the LOH.1 problem.
Different routines are shown vs. GPU execution time. The
problem was run on four V100 GPUs.

communication with computation that are related to neither
CUDA nor RAJA, were implemented in the CUDA version
of sw4lite only. There is also some managed memory
overhead in the RAJA version that becomes negligible in
full-scale simulations since it only affects the first time step.

Our assessment from the experience with sw4lite clearly
pointed to RAJA as the preferred way of making SW4 run
on GPUs. The performance overhead of RAJA in
comparison with CUDA code is acceptable, especially when
considering the gain in portability and code development
effort with RAJA. The CUDA port of sw4lite took
approximately 8 months of full time effort with an additional
month for kernel optimization, the full SW4 code was ported
to RAJA with the equivalent of two months of full time
effort and was running efficiently within three with SW4
having 4X more kernels than sw4lite. As SW4 evolves,
RAJA will make it easier to implement new features, since
no separate CUDA source code version will be required. The
same source code can be used for CPU or GPU, depending
on how RAJA is configured. Furthermore, RAJA will
facilitate running SW4 on GPUs that do not support CUDA
in the future. For such GPUs, it is expected that RAJA will
add back-ends, making it possible to use the source code of
SW4 without major modifications.

The last column in Table 1 is a recent result from runs on
Volta 100 GPUs. While it looks like the CUDA code is now
slower than the RAJA code, this is solely due to a drastic
slowdown(35X) in a copy operation. If this operation is not
counted or is otherwise mitigated, the CUDA code is about
2X faster than the RAJA code on the V100. The RAJA code
on its part suffers a slowdown in buffering (cp) and a
speedup in the stencil calculation (rhs4), see Figure 3.

5. RAJA port of SW4
The RAJA port of SW4 incorporates some of the lessons
learned from the CUDA and RAJA ports of sw4lite. Some
of the CUDA optimizations discussed earlier can now be
implemented using the latest version of RAJA that supports

IBM J. RES. & DEV. Pankajakshan et al.: Porting a 3D Seismic Modeling Code(SW4) to CORAL Machines Page | 7

RAJA+Fission RAJA
Solve time(s) 34.9+38.4+25.7= 99.0 302.2

Registers 252-255 255
Spill stores(bytes) 0 1164
Spill loads(bytes) 0 1532

Table 2: Performance improvement of curvilinear Lh operator
due to loop fission

RAJA UnRAJA
Time(s) Registers Time(s) Registers

Kernel 0 27.2 254 18.2 249
Kernel 1 35.0 255 20.4 254
Kernel 2 38.4 255 20.4 254
Kernel 3 25.7 252 17.8 168

Total 126.3 76.8

Table 3: Performance improvement of curvilinear Lh operator
due to reduced register pressure

shared memory but this has not been attempted yet.

5.1. Kernel optimizations
5.1.1. Loop fission
Manual loop fission was found to substantially improve
kernel performance of the Lh operator of the SW4 RAJA
port. As shown in Table 2, a split along the three coordinate
directions for the curvilinear discretization leads to a 3X
improvement in performance by eliminating costly register
spills.

5.1.2. RAJA overhead
RAJA loop offloading constructs include additional
infrastructure for allowing reductions to take place within
the nested loops running on the GPU. These helper functions
use a small amount of registers (estimated to be around 10
registers/thread) in addition to those used by the loop body
itself. For loops under severe register pressure, this can result
in a performance penalty when compared to a non-RAJA
loop offload without support for reduction operations.
Table 3 shows that a naive re-implementation(labeled
UnRAJA) of the nested loop RAJA construct without
reduction support results in a 1.6X performance
improvement. It is expected that a RAJA policy without
reduction support will be available in a future release.

5.2. Memory management
A CORAL node has two disjoint physical memory spaces
with hardware and software support that enables them to be
treated effectively as a single space using Unified Memory.
Memory in the unified space has to be allocated using a
special allocator (cudaMallocManaged) and can be accessed
from both the host and the device. Depending on where the
data was last touched, there is an additional performance
penalty associated with accessing memory which is not local
to the execution unit. However, the use of UM greatly
simplifies the porting process since the the onus of ensuring
that the correct data is staged to the correct device before
compute kernels are launched is no longer on the developer.

In the case of SW4, the setup phase is completed almost
entirely on the CPU while the solve phase which accounts
for greater than 99% of the runtime is executed entirely on
the GPU. Once past the setup phase the CPU is mostly idle
except for launching CUDA kernels, MPI tasks and I/O
processing. The first cycle of the solve phase incurs an
additional penalty of a few seconds as the GPU page faults
and the data is migrated to the device but this negligible in
the context of simulations that take between 8 to 15 hours to
complete.

Memory that was accessed only on the CPU was allocated
using system new. Memory that was accessed on the GPU
was mostly allocated using cudaMallocManaged with the
GPU selected as the preferred device using cudaMemAdvice.
The only exceptions were MPI buffers whose location was
selectable at compile time to be in device, managed or
host-pinned memory. Managed memory allocation was 45
times slower than system new while managed frees were
6 times slower than system deletes. A majority of the
memory used by SW4 was allocated once and freed at the
end of the simulation and as such was not affected by the
high cost of managed allocation and deallocation. There
were several small temporaries that were allocated and
deallocated multiple times per time step and adversely
impact the solution time directly. The implicit
synchronization present in the allocation/deallocation also
blocks asynchronous kernels used to hide the kernel launch
latency. This performance bottleneck was overcome using a
memorizing allocator that replaces allocate/deallocate pairs
with a static allocation that persists till program termination.
The downside was an increased memory usage of 9% since
it was equal to the sum of all the temporaries allocated
instead of the maximum of all the temporary sizes.

Subsequently, memory management in SW4 switched to
Umpire[5] since the use of its memory pools offers several
advantages:

1) The memory management routines are portable and
performant across multiple architectures

2) The high cost of allocating and deallocating device,
managed and host-pinned memory can be avoided

3) Memory usage in temporaries is reduced without any
loss in performance

4) cudaMemAdvices can be performed at the pool level
5) Bulk prefetches can be performed at the pool level

SW4 uses three dynamic pools
(umpire::strategy::DynamicPool) with fixed starting sizes
that add up to 90% of the physical memory on the device.
The first pool accounts for the bulk of the allocation and
was used for arrays that persist till program termination. The
second pool was for temporaries. The third pool was used
for a series of fixed size allocations that also persist till
program termination. The separation of the memory space
into multiple pools speeds up allocation and deallocations,
allows the use of different strategies based on the temporal
behavior of the allocations in the pool and permits bulk
operations on the pool. Umpire pools reduced the amount of

IBM J. RES. & DEV. Pankajakshan et al.: Porting a 3D Seismic Modeling Code(SW4) to CORAL Machines Page | 8

memory used by temporary arrays by 50% (total memory
usage reduced by 9%) while reducing time spent in the
solver phase by 11%. The speedup was mainly due to a
reduction in the number of cudaMallocManaged calls from
1.1 million to three (one per pool).

5.3. C++ objects and memory spaces
In the RAJA port of SW4, the data stored in the Sarray class
is allocated in managed memory and therefore can be
accessed on the device without any explicit copies. However,
device lambdas used in RAJA can only capture variables by
value and a copy of the Sarray object is created on the
device. On exit from the lambda, the Sarray destructor
deallocates the memory used to store Sarray data. Thus,
Sarray objects cannot be directly used within RAJA
constructs without modifications. The RAJA port solved this
problem using a helper class with a constructor that takes an
Sarray object as its sole argument and mirrors it on the
device. This helper class has an empty destructor and
implements device versions of the member functions of
Sarray that are called within the device lambda. The use of a
shadow class specialized for execution on the device is a
useful pattern for writing portable performant code for
machines with multiple execution spaces.

5.4. Message passing
The solve phase of an SW4 simulation is almost entirely
executed on the GPU and all the simulation variables are in
managed memory on the device. There are multiple paths
for sending and receiving data to and from remote nodes
that are selectable through a combination of compile time
and run time options. The performance characteristics of the
various options are in a state of flux and SW4 currently
allows all the possible choices at compile time with a default
based on the best current performance. This default is to use
host-pinned MPI buffers that are packed and unpacked by
GPU kernels for large messages and by host code for
smaller ones. The other options of using device or managed
memory buffers have total solve time performance penalties
of 10% and 2% respectively. Host packing of MPI buffers
was found to be effective for messages sizes where the
packing time on the host was less than than the launch
latency of a CUDA kernel(9.0 µseconds) and the source
data on the device was prevented from being paged back to
the host using a cudaMemAdvice call setting the preferred
device to the GPU. In SW4 all the messages used for
updating surface data satisfy this criterion while all the
volume data updates are packed and unpacked on the GPU.

5.5. Code optimization procedure
Once all the solver phase loops had been ported to run on
the GPU using RAJA the following procedure was used to
systematically improve performance.

1) The nvprof Sqlite database was interrogated using a
Python script to obtain a list of kernels sorted in order
of decreasing GPU page faults. This was done with all
cudaMemAdvice calls suppressed in order to enable
the default paging behavior between the CPU and

GPU.
2) The source of the GPU page faults were then located

and then eliminated if possible.
3) This process was repeated until only the unavoidable

GPU page faults(e.g. MPI buffer packing on the host
from device data) were left.

4) The nvprof profiles were again processed to generate a
sorted list of kernel-pairs with the largest inter-kernel
gaps. This metric measures and localizes the largest
sources of GPU idle time. Unavoidable GPU idle
times like MPI and I/O calls were marked and ignored
while avoidable ones such as host function calls and
memory allocations were eliminated by porting host
code or moving memory allocation calls.

5) This process was repeated until the gaps were removed
or otherwise accounted for.

6) The longest running kernels were then optimized
individually by changing policies and manual
refactoring.

7) CudaMemAdvice directives were re-enabled to prevent
the remaining device memory accesses from the host
from triggering paging. The directives also prevent
some data movement due to prefetching by the CUDA
driver.

The procedure was greatly helped by Nvtx ranges for
tracking CPU sections that were inserted into the code
through Caliper[8] annotations. The net result of the above
procedure was a solver with setup on the CPU, memory
migration to the GPU during the first time step and no
further memory migration until the solution phase was
complete.

6. Performance
For comparing single node performance, a test problem was
run on a Commodity Technology System 1 [CTS-1] node (
2 Intel Xeon E5-2695 v4 CPUs with 18 cores each) and
compared to a CORAL node(2 IBM Power 9 CPUs and 4
Nvidia Volta 100 GPUs with 16GB of HBM each). The
fastest solution time (118 minutes) from the CTS-1 node
was obtained using 36 MPI ranks. On the Lassen node, four
MPI ranks were used with each rank using a V100 GPU and
the solution time was 4.23 minutes. Thus the speedup on a
CORAL node compared to a CTS-1 node is 28X. The
CORAL node has a 23X advantage over the CTS-1 node in
terms of peak theoretical memory bandwidth and 27X in
terms of achievable(Stream Triad) bandwidth. The double
precision FLOP efficiency reported by nvprof for the
curvilinear kernels varies between 29% and 36% with
memory bandwidths of up to 50% of max. These kernels
account for about 63% of the solution time for large scale
problems. On a CTS-1 node, the approximate double
precision FLOP and bandwidth efficiencies for the
curvilinear function are 19% and 22% respectively. SW4
realizes good performance on accelerators by maximizing
GPU utilization (80% of runtime) and using kernels with
large execution times(average of 285 µs) relative to the
kernel launch latency(9 µs).

IBM J. RES. & DEV. Pankajakshan et al.: Porting a 3D Seismic Modeling Code(SW4) to CORAL Machines Page | 9

An early verification run of SW4 simulated an earthquake
on the Hayward fault using 26 billion points on 256 nodes
of Sierra in around 10 hours. The same problem[6] had been
solved earlier on around 8000 nodes of the Cori II machine
at NERSC in the same amount of time. Scaled benchmarks
for these node counts from the Top500[4] submissions give
Cori II a 2X advantage on HPL and a 3X advantage on
HPCG. The results from the run matched up to machine
precision. Since then, improvements to the CORAL system
software, MPI and SW4 have contributed to a further 34%
improvement in performance. The factors that contributed to
this speedup include lower kernel launch latency, improved
MPI bandwidth, better hiding of launch latency using
asynchronous kernels, Umpire pools and tuning of kernel
launch parameters.

For large scale runs involving more than 1000 nodes of
Summit, the limiting factor for performance (measured as
time to solution) was premature job termination due to either
uncorrectable ECC memory errors or GPFS instability. This
necessitated frequent checkpointing with the optimal interval
being calculated using the methods detailed in [20] and [9].
If this continues to be a problem, the solution would involve
the use of near-instantaneous asynchronous checkpoints to
the host memory that then drain asynchronously to the file
system using something like SCR[15].

7. Impact
The RAJA port of SW4 shows good performance on
CORAL machines and is currently being used for large
unprecedented simulations of more than 200 billion points.
Performance on this 1200 node problem on Summit is only
3% slower than on Sierra (using 1800 nodes) in spite of the
differences in node and network architecture[21]. The speed
of the code is also enabling routine parametric studies at a
scale previously restricted to grand challenge campaigns.

8. Conclusion
An OpenMP 3.0 port and optimization is a good place to
start a GPU port since the both OpenMP and supporting
tools are more mature and easily accessible. Unified
Memory allows kernels to be incrementally offloaded to the
GPU using RAJA or OpenMP 5.0 and rigorously tested at
each step. For codes that fit in GPU memory, the use of UM
incurs no significant penalty if allocated and annotated
appropriately based on usage. Umpire provides tools for
collecting usage patterns and segregating memory pools for
optimum performance while enhancing portability. The use
of RAJA also results in portable code that runs on most
current HPC platforms. However, performance of the
OpenMP back-end is very sensitive to compiler differences
and even compiler versions and performance regression
testing is recommended.

On large scale problems(1200 nodes of Summit) the total
kernel and MPI time account for 75% of the solution time.
The remaining 25% manifests as a load imbalance. About
half this imbalance was due to variations in GPU
performance and forcing functions that are only executed by
a few ranks in the simulation. The source of the remaining

12% is currently unknown. The problem does not appear at
smaller scales indicating that it might be partially
attributable to network contention.

Future work will include further tuning of kernels,
location and elimination of load imbalances and switching
the checkpoint/restart system to the N-N I/O pattern suitable
for GPFS.

9. Acknowledgment
NOTICE: This manuscript has been authored by Lawrence
Livermore National Security, LLC under Contract No.
DE-AC52-07NA2 7344 with the US. Department of Energy.
The United States Government retains, and the publisher, by
accepting the article for publication, acknowledges that the
United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so,
for United States Government purposes.

This document was prepared as an account of work
sponsored by an agency of the United States government.
Neither the United States government nor Lawrence
Livermore National Security, LLC, nor any of their
employees makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States
government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States
government or Lawrence Livermore National Security, LLC,
and shall not be used for advertising or product endorsement
purposes.

LLNL-JRNL-787242

References
1. Raja performance portability layer.
https://github.com/LLNL/RAJA, 2019.

2. Sw4 (seismic waves, 4th order).
https://github.com/geodynamics/sw4/tree/master, 2019.

3. Sw4lite::testing numerical kernels in sw4.
https://github.com/geodynamics/sw4lite, 2019.

4. Top 500. the list. https://www.top500.org/lists/2019/06/, 2019.

5. Umpire::an application-focused api for memory management on
numa & gpu architectures. https://github.com/LLNL/Umpire, 2019.

6. A.J.Rodgers, N.A.Petersson, A.Pitarka, D.B.McCallen,
B.Sjögreen, and N.Abrahamson. Broadband (0-5 hz) fully
deterministic 3D ground-motion simulations of a magnitude 7.0
hayward fault earthquake: Comparison with empirical
ground-motion models and 3D path and site effects from source
normalized intensities. Seismol. Res. Lett., 90:1268–1284, 2019.

7. Evan Berkowitz, M. A. Clark, Arjun Gambhir, Ken McElvain,
Amy Nicholson, Enrico Rinaldi, Pavlos Vranas, André
Walker-Loud, Chia Cheng Chang, Bálint Joó, Thorsten Kurth, and

https://github.com/LLNL/RAJA
https://github.com/geodynamics/sw4/tree/master
https://github.com/geodynamics/sw4lite
https://www.top500.org/lists/2019/06/
https://github.com/LLNL/Umpire

IBM J. RES. & DEV. Pankajakshan et al.: Porting a 3D Seismic Modeling Code(SW4) to CORAL Machines Page | 10

Kostas Orginos. Simulating the weak death of the neutron in a
femtoscale universe with near-exascale computing. In Proceedings
of the International Conference for High Performance Computing,
Networking, Storage, and Analysis, SC ’18, pages 55:1–55:9,
Piscataway, NJ, USA, 2018. IEEE Press.

8. D. Boehme, T.Gamblin, D. Beckingsale, P-T. Bremer,
A. Gimenez, M. LeGendre, O. Pearce, and M. Schulz. Caliper:
Performance introspection for hpc software stacks. SC16, 2016.

9. John Daly. A model for predicting the optimum checkpoint
interval for restart dumps. In Peter M. A. Sloot, David Abramson,
Alexander V. Bogdanov, Yuriy E. Gorbachev, Jack J. Dongarra, and
Albert Y. Zomaya, editors, Computational Science — ICCS 2003,
pages 3–12, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

10. R. Hornung, H. Jones, J. Keasler, R. Neely, O. Pearce,
S. Hammond, C. Trott, P. Lin, C. Vaughan, J. Cook, R. Hoekstra,
B. Bergen, J. Payne, and G. Womeldorff. Asc tri-lab co-design
level 2 milestone report 2015. Technical Report LLNL-TR-677453,
Lawrence Livermore National Laboratory, 2015.

11. H. Johansen, A. Rodgers, N.A. Petersson, D. McCallen,
B. Sjögreen, and M. Miah. Toward exascale earthquake ground
motion simulations for near-fault engineering analysis. Computing
in Science & Engineering, 19:27–37, 2017.

12. Wayne Joubert, Rick Archibald, Mark Berrill, W. Michael
Brown, Markus Eisenbach, Ray Grout, Jeff Larkin, John Levesque,
Bronson Messer, Matt Norman, Bobby Philip, Ramanan Sankaran,
Arnold Tharrington, and John Turner. Accelerated application
development: The ornl titan experience. Computers & Electrical
Engineering, 46:123 – 138, 2015.

13. Ian Karlin, Yoonho Park, Bronis R. de Supinski, Peng Wang,
Bert Still, David Beckingsale, Robert Blake, Tong Chen, Guojing
Cong, Carlos Costa, Johann Dahm, Giacomo Domeniconi, Thomas
Epperly, Aaron Fisher, Sara Kokkila Schumacher, Steven Langer,
Hai Le, Eun Kyung Lee, Naoya Maruyama, Xinyu Que, David
Richards, Bjorn Sjogreen, Jonathan Wong, Carol Woodward,
Ulrike Yang, Xiaohua Zhang, Bob Anderson, David Appelhans,
Levi Barnes, Peter Barnes, Sorin Bastea, David Boehme, Jamie A.
Bramwell, Jim Brase, Jose Brunheroto, Barry Chen, Charway R.
Cooper, Tony DeGroot, Rob Falgout, Todd Gamblin, David
Gardner, James Glosli, John Gunnels, Max Katz, Tzanio Kolev,
I-Feng W. Kuo, Matthew P. Legendre, Ruipeng Li, Pei-Hung Lin,
Shelby Lockhart, Kathleen McCandless, Claudia Misale, Jaime
Moreno, Rob Neely, Jarom Nelson, Rao Nimmakayala, Kathryn
O’Brien, Kevin O’Brien, Ramesh Pankajakshan, Roger Pearce,
Slaven Peles, Phil Regier, Steve Rennich, Martin Schulz, Howard
Scott, James Sexton, Kathleen Shoga, Shiv Sundram, Guillaume
Thomas-Collignon, Brian Van Essen, Alexey Voronin, Bob
Walkup, Lu Wang, Chris Ward, Hui-Fang Wen, Dan White,
Christopher Young, Cyril Zeller, and Ed Zywicz. Preparation and
optimization of a diverse workload for a large-scale heterogeneous
system. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC
’19, pages 32:1–32:17, New York, NY, USA, 2019. ACM.

14. A. Kunen, J. Loffeld, A. Black, R. Chen, P. Nowak, T. Haut,
T. Bailey, P. Brown, S. Rennich, P. Maginot, and B. Tagani.
Porting 3d discrete ordinates sweep algorithm in ardra to cuda. In
Proceedings of the International Conference on Mathematics
Computational Methods and Reactor Physics. ANS, Aug 2019.

15. Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis
R. de Supinski. Design, modeling, and evaluation of a scalable
multi-level checkpointing system. In Proceedings of the 2010
ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’10, pages
1–11, Washington, DC, USA, 2010. IEEE Computer Society.

16. N.A.Petersson and B. Sjögreen. Super-grid modeling of the
elastic wave equation in semi-bounded domains. Commun.
Comput. Phys., 16:913–955, 2014.

17. N.A.Petersson and B. Sjögreen. Wave propagation in
anisotropic elastic materials and curvilinear coordinates using a
summation-by-parts finite difference method. J. Comput. Phys.,

229:820–841, 2015.

18. S. J. Plimpton, S. G. Moore, A. Borner, A. K. Stagg, T. P.
Koehler, J. R. Torczynski, and M. A. Gallis. Direct simulation
monte carlo on petaflop supercomputers and beyond. Physics of
Fluids, 31(8), 2019.

19. B. Sjögreen and N.A.Petersson. A fourth order accurate finite
difference scheme for the elastic wave equation in second order
formulation. J. Scient. Comput., 52:17–48, 2012.

20. John W. Young. A first order approximation to the optimum
checkpoint interval. Commun. ACM, 17(9):530–531, September
1974.

21. Christopher Zimmer, Scott Atchley, Ramesh Pankajakshan,
Brian E. Smith, Ian Karlin, Matthew L. Leininger, Adam Bertsch,
Brian S. Ryujin, Jason Burmark, André Walker-Loud, M. A.
Clark, and Olga Pearce. An evaluation of the coral interconnects.
In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC
’19, pages 39:1–39:18, New York, NY, USA, 2019. ACM.

