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THIRTEENTH SYMPOSIUM ON ENERGY ENGINEERING SCIENCES
Fluid/Thermal Processes; Systems Analysis and Control

FOREWORD

This Proceedings Volume includes the technical papers that were presented during the Thirteenth
Symposium on Energy Engineering Sciences on May 15-17, 1995, at Argonne National Laboratory,
Argonne, lllinois. The Symposium was organized into nine technical sessions, which included
33 individual presentations followed by discussion and interaction with the audience. A copy of
the schedule and a list of participants is appended to this volume.

This was the thirteenth annual Symposium sponsored by the Engineering Research Program of
the Office of Basic Energy Sciences of the U.S. Department of Energy. The technical areas
encompassed in this year's Symposium were fluid and thermal processes, and systems analysis
and control. The dominant theme was fluid mechanics, which constituted five of the sessions and
included 19 individual presentations. Each paper dealt with the research effort being sponsored
by the Engineering Research Program.

The DOE Office of Basic Energy Sciences, of which Engineering Research is a component
program, is responsible for the long-term mission-oriented research in the Department. It has the
prime responsibility for establishing the basic scientific foundation upon which the Nation's future
energy options will have to be identified, developed, and built. It is committed to the generation of
new knowledge necessary for the solution of present and future problems of energy exploration,
production, conversion, and utilization, consistent with respect for the environment.

Consistent with the DOE/BES mission, the Engineering Research Program is charged with the
identification, initiation, and management of fundamental research on broad, generic topics
addressing energy-related engineering problems. lIts stated goals are: 1) to improve and extend
the body of knowledge underlying current engineering practice so as to create new options for
enhancing energy savings and production, for prolonging useful life of energy-related structures
and equipment, and for developing advanced manufacturing technologies and materials processing
with emphasis on reducing costs with improved industrial production and performance quality; and
2) to expand the store of fundamental concepts for solving anticipated and unforeseen engineering
problems in the energy technologies.

In achieving these goals, the Engineering Research Program supports approximately 130 research
projects covering a broad spectrum of topics cutting across traditional engineering disciplines with
a focus on three areas: 1) mechanical sciences, 2) control systems and instrumentation, and
3) engineering data and analysis. The Thirteenth Symposium involved approximately one-fourth
of the research projects currently sponsored by the DOE/BES Engineering Research Program.

The Thirteenth Symposium was held under the joint sponsorship of the DOE Office of Basic Energy
Sciences and Argonne National Laboratory. Local arrangements were handled by Ms. Jacquie
Habenicht of ANL Conference Services. Ms. Nina Daly of the ANL Office of Technical
Communication Services was responsible for assembling these proceedings and attending to their

publication.

| am grateful to all who contributed to the success of the program, particularly to the participants
for their uniformly excellent presentations, their active involvement in discussions, and their
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infectious enthusiasm. The resulting interactions made this Symposium a most stimulating and
enjoyable experience.

James R. Welty, ER-15
Division of Engineering and Geosciences
Office of Basic Energy Sciences
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VISCOSITY OF COLLOIDAL SUSPENSIONS

E. G. D. Cohen*
and
I. M. de Schepper**

*The Rockefeller University
New York, NY 10021, U.S.A.
**Delft University of Technology
2629 JB Delft, The Netherlands

ABSTRACT

Simple expressions are given for the effective Newtonian viscosity as a function of concentration
as well as for the effective visco-elastic response as a function of concentration and imposed fre-
quency, of monodisperse neutral colloidal suspensions over the entire fluid range. The basic physical
mechanisms underlying these formulae are discussed. The agreement with existing experiments is

very good.

INTRODUCTION

We discuss here suspensions consisting of monodisperse spherical neutral colloidal particles with
a diameter 0. The problem we address is: in the absence of hydrodynamic interactions, what is
the effective viscosity of such a suspension, i.e., its viscosity as different from #7,, the viscosity of
the pure solvent? We are interested in this as a function of the volume fraction ¢ = 7wno3/6 of
the colloidal particles, viz. 7°f(¢), its effective Newtonian viscosity or 7°f(¢;w) its effective visco-
elastic viscosity, when an imposed oscillatory shear rate y(¢) = yel“* of frequency w is present. Here
n is the number density of the colloidal particles and 4 the amplitude of the imposed shear rate.

This is a very difficult problem, since it concerns a strongly interacting many particle system,
especially at large volume fractions. It is part of a large class of “effective” behavior problems,
which can usually only be treated in a systematic way at small ¢ by cluster expansions. Here we
outline an approximate, yet satisfactory solution of this problem, derived from first principles, which
leads to explicit formulae for 7°f(¢) = 7*f(p;w = 0) and 7°F(¢;w), which agree with experiment
and therefore appear to contain the right physics. In the next section we briefly outline the steps
that lead from the fundamental Smoluchowski equation to the basic equation we use to compute
n°f(¢;w). In the following section we present the solution of this equation, the explicit formulae
for n°f(¢) and n°(¢;w) and a comparison of them with experiment. In the last section, we discuss

our results.

THEORY

Basic Equation.

Starting from the N particle Smoluchowski equation in the absence of hydrodynamic inter-
actions and integrating this equation over the positions of all particles but two, one obtains an




equation for the nonequilibrium pair distribution function P2(R;r;¢;w;t) of the suspension, in-
volving the three-particle distribution function Ps. Neglecting P3 and the dependence of P2 on
the center of mass R = (r; + r2)/2 of the two particles at positions ri(i = 1,2), respectively, and
making a Fourier transform of P2 with respect to the relative coordinate r = r; — rz, one arrives

at an equation of the form(!:2l

0 2 w a- e ryet) — Aptwt _Q._ .
[+ e ‘k,,a—l%]és(k, $iwit) = 16" ky gp=Sea(ki ) (1)

Here 65(k; ¢;w;t) = S(k; §;w;t) — Seq(k; @) is the deviation of the nonequilibrium structure factor
S(k; ¢;w; t), the Fourier transform of Py(r; ¢;w;t), from that in equilibrium Seq(k; ¢), the Fourier
transform of the equilibrium radial distribution function g(r; ¢), where r = Ir] and k = |k|. Scq(k; ¢)
is known for hard spheres® and exhibits for 0.3 < ¢ < 0.55 a very sharp maximum at k =~ k~,
where k*c ~ 2r, i.e., for periodic particle configurations with a wave length A* = 2x/k* = o
(cf.fig.1). This sharp maximum at these large ¢ reflects a highly ordered state of the colloidal
particles in the suspension on this length scale (cf.fig.2), where each particle finds itself in a cage

formed by its nearest neighbors, out of which it can only escape, i.e., diffuse, with difficulty(24]. At
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Figure 1 (left). Hard sphere S(k) for ¢ = 0.49 (solid line, cf.Ref.3) and d(k) (dashed line, cf.below Eq.2), as functions
of ko.

Figure 3 (right). Reduced high frequency viscosity #2¥ (¢)/5. (closed symbols) and inverse self diffusion Do/DS%(¢)

{open symbols) as a function of ¢. Open and closed circles from Ref.9(a), open squares from Ref.9(b) and closed

squares from Ref.10. The solid line is x(¢) (cf.Eq.(4)); deviations due to hydrodynamic effects for intermediate ¢

(open squares) are visible.

small @, S.,(k; ¢) displays no such maximum and the colloidal particle diffusion approaches that of
free colloidal particles characterized by Dy, the Stokes-Einstein diffusion coefficient. The inverse
relaxation time 1/7(k; @) in eq.(1) approaches Dok? for small ¢ and is determined for large ¢, by a
-cage-diffusion coefficient D (k), derived from the analogous cage diffusion process in (pure) dense
hard sphere fluids, by replacing the low density hard sphere gas Boltzmann diffusion coefficient Dg’
by the Stokes-Einstein diffusion coefficient Dy, relevant for dilute colloidal suspensionsi?2:4-7]:

Dok?
X(9)Seq(k; )

Here the equilibrium radial distribution function g(r; @) at contact r = o : g(a;¢) = x(¢) is given
very well by the Carnahan-Starling approximation x(¢) =~ (1 - ¢/2)(1 - )73 = 1+ 3¢ + O(¢?),
where the O(¢)) term is exact (cf.fig.3) and d(k) = 1/[1 — jo(ka) + 2j,(ka)], with je(ko) the £-th
spherical Bessel function (cf.fig.1). 1/7(k;¢) is sketched and compared with the results of light
scattering experiments in fig.4 for a typical large #l6.7,

1/7(k; ¢) = D(k)k? = d(k) (0.3 < ¢ < 0.55) (2)




‘Solution and effective viscosity.
Solving the eq.(1) for 65(k; ¢;w;t), integrating the solution over k and ¢ and setting v = 0, one
‘obtains for the visco-elastic behavior of the colloidal suspension:

efff (. Y _ eff kgT [ 4 Seq(k; @) 2 1
U] (¢’w) - noo(¢) + 6—0—7r—2/o dk k [.S',,.:(k,qS)] 2Dc(k)k2 - tw -

(3)

Here nf(¢) is the infinite frequency, i.e., very short time, approximation to 7°f(¢;w) given by:

18(¢) = n:sx(8) (4)

while §{ (k; ¢) = dSeq(k; ¢)/dk. The second term on the right hand side of (3) is the contribution
due to cage-diffusion. '

2000
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Figure 2. (a) The central particle (black) is in a cage whose wall is formed by the particles connected by the thick
black line. Each wall particle is itself the center of a cage, of which the black particle is part of the wall. This is
illustrated for two wall particles of the black particle, for which the cage walls are formed by particles connected by
a solid line or a dotted line, respedtively; (b) cage diffusion collisions of central particle 1 for fixed wall particles 2 to
7. The interparticle distances have been considerably enlarged for clarity.

The high frequency part 7Ef(¢) of 7°f(¢;w) has been studied experimentally by a variety of
methods and the expression (4) is in very good agreement with experiment for all 0 < ¢ < 0.55
(cf.fig.3). The physical interpretation of (4) is that for very short times, even smaller than the
(Brownian) time tg = 02/4v, & 10~7 sec, where v, is the kinematic viscosity of the solvent, the
suspensgion viscosity is determined not only by that of the pure solvent viscosity 7,, but also by
a correction factor x(¢) which gives the increase in effective suspension viscosity due to the pairs
of touching (r = o) particles present in the suspension. This is a very short time contribution
to 7°f(¢;w), due to statistical thermodynamic, (i.e., hard sphere excluded volume) interactions,
arising from the canonical equilibrium distribution of the colloidal particles, rather than the usually
considered hydrodynamic interaction contributions. The time scale of the contributions of the
second term in (3) is much longer than that of the first term and is related to the time scale on
which the cage diffusion takes place, viz., the Péclet time%p = 02/4Dy = 10~3 sec.

For w = 0, one obtains then from (3) for the effective Newtonian viscosity 7f(¢) = n°f(¢;0) of
the suspension, with (2), the simple expression:

7 oy _ 1o &2[5.,(k;9))?
n (¢)—775X(¢)[1+40—7r/0 dﬂm] , (5)

with k = ko.




Although this expression for 7°®(¢) has been derived for large ¢ (0.3 < ¢ < 0.55) it is also
applicable to small ¢ < 0.3, since the second term in the square brackets mainly contributes for
¢ > 0.3 and the first term 7,x(¢$) adequately describes the smaller ¢ behavior (cf.fig.5). -

For w # 0, one obtains the effective visco-elastic behavior of the suspension. Since n°f{(¢;w)
is complex one can consider its real and imaginary parts 7°¥(¢;w) = (¢ w) — infi(¢;w) or -
equivalently those of 7*(¢;w) = [7°f(¢; w) ~ n°1(g; 00)}/[7°%(; 0) — n°(h; 00)), where 7°f(g; 00) =
75%($), used before. In fig.6 they are plotted as a function of w and compared with experiment(3],
‘They show a virtual absence of any concentration dependence within the spread of the experimental
data. The theoretical asymptotic large w behavior ~ (w-rp)‘l/ 2 for all ¢, is consistent with what.
is found experimentally.

‘Discussion

We conclude with a number of remarks.

‘1. The Newtonian viscosity of a colloidal suspension in the fluid phase 0 < ¢ < 0.55 can be obtained
without adjustable parameters for all concentrations from eq.(5). All that is needed, apart from
Dy, is the hard sphere diameter o to define the system. This can be obtained directly from electron
.microscopy or, for concentrated suspensions, from the first sharp maximum of S,(k; ¢4,

2. The good agreement between theory (eq.(5)) and experiment (figs.3,5), appears to confirm the
‘correctness of the two basic physical mechanisms, which are at the heart of the eq.(5): statistical
‘thermodynamic forces for very short times (< tg) and cage diffusion for longer times (> tp).

'3. Hydrodynamic interactions are relevant on a time scale 3> ¢g, but their effect is not detectable on
‘the'scale on which 7°f(¢) is plotted in fig.5, where an almost hundred-fold increase of the effective
viscosity of the suspension occurs over the fluid range 0 < ¢ < 0.55. They are surely present
(cf.fig:3), but relatively small at small ¢ and appear to be quenched at large ¢. ‘

4. This leads to the prediction that the same behavior for 7°(¢) and 7°f(¢,w) will be observed
for charged colloidal suspensions, at least at large ¢ > 0.3, if (a) one identifies the hard sphere
diameter o with the Debye sphere diameter and (b) w is not such that deformations of the Debye

spheres are relevant.
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5. For the very high frequency behavior 7¢#(¢) an Einstein relation holds for all 0 < ¢ < 0.55:

kpT
n5(4) = 67)?5(%)“(5/_2) (6)

Here DSfI(¢) is thé (effective) self-diffusion coefficient of the colloidal suspension at volume fraction
¢, i.e., the diffusion coefficient of a tagged colloidal particle with respect to the other (identical)
colloidal particles. In so far as Df(¢) can be measured by light scattering techniques!8®l, Defi(g),
‘which characterizes the diffusive decay of density fluctuations, allows a non-mechanical determi-

nation of 7Sf(¢). Together with the usual Einstein relation and eq.(4),(6) leads to: 7ff(¢)/n, =
Do/ DF(¢) = x(#) (ctfig4).

The physical origin of the validity of (6) is the inert character of the suspension surrounding
.two touching particles, at high frequencies, i.e., at very short times.
‘6. For large ¢ > 0.3 an expression for the Newtonian viscosity of an atomic liquid very similar to
'(3) for w = 0, has been derived. This illustrates a close physical analogy of concentrated colloidal
suspensions consisting of spherical particles on the one hand and simple atomic liquids, like liquid
argon or liquid methane, on the other hand712l, This analogy is based on a similarity of both
fluid systems to dense hard sphere fluids, a similarity used above (in section 2) to obtain the crucial
relation (2) for the colloidal suspension. The physical origin of this similarity is based on (a)
the similarity of Brownian and Newtonian motion on large time scales (¢ > t5)13 and (b) the
similarity of the cage-diffusion process in the two fluid systems. For further details we refer to the

literaturel4:12],
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Figure 6. Real part (a) and imaginary part (b) of the reduced complex shear viscosity n‘(qﬁ, w), as a function of
reduced frequency wri($) (with r1(¢) = rp/4 cf.Ref.1). The closed circles are from Ref.10. The dashed curves are
from Eq. 3 for ¢ = 0.4 and 0.5 (from left to right, respectively). The solid curve, for ¢ = 0, is exact and from Ref.11.
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GELATION UNDER SHEAR'
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ABSTRACT

An experimental small angle neutron scattering (SANS) study of dense silica
gels, prepared from suspensions of 24 nm colloidal silica particles at several
volume fractions ¢ is discussed. Provided that ¢$<0.18, the scattered intensity at
small wave vectors g increases as the gelation proceeds, and the structure factor
S(g,t = o) of the gel exhibits apparent power law behavior. Power law behavior
is also observed, even for samples with ¢ > 0.18, when the gelis formed under an
applied shear. Shear also enhances the diffraction maximum corresponding to the
inter-particle contact distance of the gel. Difficulties encountered when trying to
interpret SANS data from these dense systems are outlined. Results of computer
simulations intended to mimic gel formation, including computations of $(g,t), are
discussed. Comments on a method to extract a fractal dimension characterizing the
gel are included.

INTRODUCTION

The gelation of silicais of current interest both because gelation contains some interesting
physics and because silica gel technology is an essential factor in the preparation and fabrication of
modern ceramic materials [1]. A theme which has driven progress in the understanding and
subsequent improvement in design of many material systems is the relationship between the
properties of materials (mechanical, thermal, electrical, etc.) and their structure. Surprisingly,
structural studies are relatively rare in the technologically relevant dense gels. This paper
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summarizes some small angle neutron scattering (SANS) data which help to interpret the structural
changes that take place during the gelation of silica. Specifically, the motivation was to understand
better the evolution of the structure, on mesoscopic scales, of dense gelling silica spheres both
with and without the influence of an applied shear. We report on: (1) the evolution of the structure
factorin a gelling silica suspension (sol) subjected to an applied shear and compare this to similar
systems without shear; and (2) the methods we use to interpret SANS data from dense gelling
systems.

Experiments to probe the influence of shear on these systems are novel, but we anticipate that
shear will impact the structure and formation mechanism of gels. Consider a gel as a mechanically
and thermodynamically unstable microscopic network made up of some defined unit, for example,
a particle or segment of a polymer chain. Instability is frozen when the network growth and/or
rearrangement is restricted by the finite size of the container and the experimental conditions [2]. It
is, however, known [3] that a shear rate y applied to a system will affect its equation of state, its
thermodynamic properties, and therefore its phase stability criteria. Thus, a sheared system may
have phase behavior which is perturbed or even qualitatively different from its counterpart formed
in isolation. Since gelation can be treated as a phase change, a shear applied to the precursor or sol
can be expected to influence the final gel structure.

EXPERIMENT

This study [4] was carried out with colloidal silica particles, of nominal diameter o = 24 nm,
on the 30 m SANS instruments at the NIST Cold Neutron Research Facility. Silicaspheres were
suspended in a 70% H,O - 30% D,0O medium (to reduce the effect of multiple scattering) at
volume fractions ¢ of 0.10, 0.12, 0.18, 0.24, and 0.30. Gelation was initiated by lowering the
pH of the suspensions to 5.8 £ 0.1 with the addition of 0.1IM HCl. For gelation to proceedat a
reasonable pace, NaCl was added to some designated samples until the solutions reached 0.4M
NaCl.

The samples were placed in quartz cells of path length 1 mm, and the spectrometer was
configured to an incident wavelength of 0.6 nm at a detector distance of 13 m. The scattered
intensity was measured using a 2D position sensitive detector system, and, since asymmetry was
not observed in any of the samples, the detector counts were averaged azimuthally. The measured
scattered intensities were corrected for cell background and detector efficiency and were placed on
an absolute scale by normalizing to the scattering from an appropriate standard. The structure
factor was obtained by dividing this normalized intensity by a theoretical polydisperse form
factor [4] modified to allow for instrument smearing. Data were collected after gel initiation at
10 min intervals for the first 3 h and then hourly until gelation was complete. Gelation was
considered complete when the measured intensity became time independent (usually after 6-10 h).

For the shear studies, the SANS instrument was configured at 13 m and 8 m at a wavelength
of 0.6 nm with the NIST 0.5 mm gap-width Couctte shearing cell [S] in the sample holder position
with the incident beam perpendicular to the flow direction. A gelation-initiated sample was loaded
into the Couette cell, subjected to a shear ratey = 4500 s-1, and the intensity recorded. A sector
average of the sheared intensities indicated possible weak anisotropy at the higher volume
fractions, but the data were circularly averaged and reduced following the procedure for the
unsheared suspensions and gels. Intensities were measured at regular intervals until the scattering
pattern from the shearing system was time-independent. At this point the shear was removed and




the intensity remeasured. Only very small relaxation was noted; in effect, the intensity did not
change significantly when the shear was removed.

RESULTS

The presentation of these results and their interpretation is a distillation of the discussions of
our work reported in Refs. [4, 6-8]. The data are summarized in Figures 1 and 2. Figure 1 (a)
shows a typical sequence of the variation of the structure factor S(q,¢) as a function of time after
gel initiation for a ¢ = 0.10 sample gelling in the absence of an applied shear. Atthe very earliest
times there is no appreciable small angle scattering, indicating the initial solution is relatively
homogeneous at the length scales probed by this experiment (several particle diameters). As the
gelation proceeds, however, there is a marked increase in the scattering at low ¢ and this becomes
more pronounced at longer times. At these later times, S(q,¢) displays an apparent power-law
increase with decreasing g. Behavior qualitatively similar to this was observed in all samples,
sheared and unsheared, that had silica volume fractions ¢ < 0.18, with the lowest volume
fractions showing the most intense small angle scattering. Quantitative differences between the
samples with ¢ < 0.18 measured with and without an applied shear were small.
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Figure 1: Measurered structure factors at y= 0: (a) as a function of time since gel
initiation, and (b), as a function of volume fraction after the gel has formed.

In contrast, samples with silica volume fractions above 0.18 (¢ = 0.24, 0.30) did not display a
rise in the small angle scattering (even at very long times) when a shear was not applied. This
result is apparent from Fig. 1 (b), which shows the scattering from the final gels as a function of
volume fraction. Thus, the power-law increase in the scattering at small angles observed in the
more dilute systems is not seen in the denser system. This power-law behaviorin S(g,¢) returns,
however, when shear is applied during the gelation of the higher density samples (Fig. 2).
Furthermore, in addition to this large increase in small angle scattering with shear, there is a
significant change observed in the particle-particle ‘contact’ peak located near go/2x =1. This
peak is broad and weak in the unsheared sample, but is much sharper and more intense in the
sample gelled under shear.




Qualitatively, the increase in small angle scattering at low g indicates that the samples evolve .
from an initially homogeneous suspension of silica particles to an arrangement that contains
structural inhomogeneities at length scales of the order of several particle diameters. These
inhomogeneities apparently do not form at allin samples with volume fractions greater than 0.18
unless a shear is applied. This is a surprising result. We might anticipate that a shear will disorder
the gel so as to prevent the formation of inhomogeneities; apparently the opposite is true.
Moreover, the distinct particle-particle contact peak seen in the higher density sheared gels (Fig. 2)
indicates that relatively dense clusters of these spherical silica particles have formed.
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Figure 2: Measurered structure factors for the ¢ = 0.24 gelled samples with and
without an applied shear. The results for ¢ = 0.30 are similar.

ANALYSIS

In low density gels, small angle x-ray [9], neutron [10], and light-scattering [11] studies show
a characteristic power-law increase in intensity with decreasing wavevector. This power-law
behavior, characteristic of fractal aggregation processes [12, 13], predicts that the mass of an
aggregate varies as m ~ é ’, where & is a length characterizing the aggregate size and d, is a
fractal dimension. It is easily shown that the structure factor S(g) of a collection of such Ob_]CCtS is
given by

S(g)~q ™" (1

at wavevectors in the range 2n/& << g << 27/0, provided that there are no correlations between
aggregates. The power-law slopes in the measured small-angle diffraction patterns of these low
density gels (where correlations can be expected to be small) are thus related to the fractal
dimension of the aggregates that form the gel.

It is tempting to apply Eq. (1) to our data and derive a fractal dimension from the slope of the
measured structure factors. But, in this study, the small angle neutron scattering measurements




were performed on dense gels for which an assumption that the collection of aggregates or clusters
of particles formed during gelation are uncorrelated cannot be justified. In these dense systems,
the small angle scattering can be described only by a much more complicated function of the
cluster shapes, cluster-cluster correlations, as well as the particle arrangements inside individual
clusters [7]. Cluster growth and/or cluster-cluster correlations must, therefore, be included in the
interpretation of the increased scattering at low angles. In other words, it is not necessarily the
internal arrangements of the silica particles inside a cluster that cause the rise in scattering as itis in
low density systems; rather, the size and shape of the clusters coupled with their correlation must
be a factor.

COMPUTER SIMULATION

The direct interpretation of such complicated scattering patterns requires that we evoke some
model of the particle rearrangement. We chose to simulate the gelation in a dense 2D system
where it is possible both to observe the particle positions as a function of time and to compare this
to an S(g.t) computed from these configurations. In this way it is possible to gain insight into
how cluster morphologies contribute to particular features of the corresponding diffraction patterns
and therefore be better able to interpret the measurements. Furthermore, it is possible to simulate
the effect of shear on the particle morphologies, and thus S(g,z), and to compare this to our
scattering measurements.

Details of the computer simulation are presented elsewhere [6], but, in brief, it consisted of
quenching (by molecular dynamics methods) a large (N = 14336), dense (p = 0.325), 2D
Lennard-Jones system, from a high temperature disordered fluid into the vapor/solid coexistence
region and observing the subsequent aggregation both with and without an applied shear. The
quench is intended to mimic the sudden change in interaction potential used to initiate gelation in
real systems — the subsequent evolution of the real and simulated systems should therefore be
qualitatively similar. In order to compare these simulations to experiment, S(g,#) was computed
from the simulation and compared with the experimental data and the simulated particle
morphologies. Typical results from the simulations are presented in Fig. 3.

Figures 3 (a) and (b) are taken from a simulation with no applied shear after a total reduced
time r = 500 since the quench. Atthis relatively late stage in the evolution of the system several
large clusters with elongated shapes have formed which, overall, shows an interconnected
morphology. Most interesting for our present purposes is the form of the computed S(g,¢). Like
the experiments reported earlier, S(g,?) shows a power-law-like rise with decreasing wavevector,
but, in this case, the origin of the small angle scattering in the simulation is clear; there is a peak in
S(g,t) at low angles which results from the cluster-cluster correlations evident in Fig. 3 (a). The
power-law slope cannot be identified with any particular internal feature of the clusters but instead
depends on specific details of the correlations which give rise to the peak in S(g,7).

Similar plots after the same time are presented in Figs. 3 (c) and (d) for the case where a shear
is applied. Here we find that the coarsening of the clusters has proceeded much more rapidly than
in the simulation where no shear was applied. While this might not be expected, as we may
anticipate that shear will disorder the systém, it is consistent with our experimental observation
that the application of a shear in the dense gels gives rise to small angle scattering where none is
present in the unsheared gels.
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Figure 3: Molecular dynamics computer simulations of quenched Lennard-Jones
disks: (a) and (c) are particle configurations at a reduced time ¢ = 500
without and with an applied shear; (b) and (d) are the corresponding S(q).

A DYNAMIC SCALING LAW

Close examination of the evolution of the cluster morphology showed that the aggregation
proceeds in such a way that, except for a change in scale, the morphologies are similar. That is,
the structure evolves in a temporally self-similar manner. If the clusters are mass fractals, the
corresponding structure factors should, therefore, scale as [8]

5(a/2a(®) ~ 4u(6)™" 5(q/3,) | @)




where g¢,,(¢) is the location of the low angle peak in S(g,f) and S(g/d,) is a time-independent
characteristic structure function which peaks at §,,. The fractaldimension 4, is allowed to take on
any value less than or equal to the dimensionality of the system and will depend on the structure of
the evolving clusters. For the simulations presented here, this relation is satisfied well provided
d, is assigned a value of 1.85 + 0.05. This result is presented in Fig. 4. Here the computed
S(g,t) have been scaled according to Eq. 2 and are found to lie on a universal curve. This result is
important because it suggests a way to obtain information (the fractal dimension) about the
structure of the evolving system, even in a dense system where correlations are inevitable, by
observing the time dependence of the structure factor.
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Figure 4: Computed stucture factors at different times during the evolution of the MD
computer simulation (no shear) scaled according to Eq. (2). The solid line is

the phenomenological theory of Furukawa [14] which has no adjustable
parameters. See Ref. [8].

CONCLUSION

Measurement of SANS data on silica gels ranging in volume fraction ¢ from 0.10 to 0.30,
were made with and without an applied shear. Those samples with ¢ < 0.18 showed apparent
power-law increases in their structure factors regardless of shear. The two higher density samples
only displayed power-law rises in S(g,¢) when a shear was applied, indicating that shear actually
assists the gelation processes that operate at lower density. A computer model based on the
quenching of a Leonard-Jones system reproduces many features of the measured diffraction data—
a power-law behavior and an increased tendency for ordering when a shear is applied. Comparing
the simulation results with the data, we conclude that the power law behavior originates from the
presence of cluster-cluster correlations and not from the internal fractal structure of these clusters.
We present a dynamic scaling relation which can instead be used to derive the fractal dimension of
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the evolving system even in the presence of these correlations.
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TRANSPORT PROPERTIES OF POROUS MEDIA
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ABSTRACT

The determination of the effective transport properties of a random porous
medium remains a challenging area of research because the properties depend
on the microstructure in a highly complex fashion. This paper reviews recent
theoretical and experimental progress that we have made on various aspects of
this problem. A unified approach is taken to characterize the microstructure
and the seemingly disparate properties of the medium.

I. INTRODUCTION

The purpose of this paper is to review progress that we have made in the last several
years on five basic aspects of the problem of determining effective transport properties of
random porous media: (i) derivation of rigorous bounds on transport properties in terms
of statistical correlation functions; (ii) quantitative characterization of the microstructure
of nontrivial models; (iii) 3D imaging of porous media using x-ray tomography; (iv) and
derivation of rigorous cross-property relations.

II. AVERAGED EQUATIONS

The random porous medium is a domain of space V(w) € R® (where the realization
§2 is taken from some probability space w) of volume V which is composed of two regions:
the pore region Vy(w) (in which transport occurs) of volume fraction (porosity) ¢; and a
solid-phase region Vz(w) of volume fraction ¢,. Let dV(w) be the surface between V; and
Vs.

A. Time Scales for NMR Relaxation

Nuclear magnetic resonance (NMR) is a powerful noninvasive technique for the study
of fluid-saturated porous media [1]. The relaxation times of water contained in a porous
medium are substantially smaller than those of bulk water, primarily because of enhanced
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relaxation mechanisms at the pore-solid interface. NMR relaxation depends upon the char-
acteristic length scales of the pore space and on the surface rate constant k. The decay of the
magnetization density m(x, ) at local position x and time ¢ is governed by a time-dependent
diffusion equation, the solution of which can be expressed as an expansion in orthonormal
eigenfunctions {, }:

m(x,t)

=2 e Tepu(x) (1)
n=1

where the coefficients a, are simply related to the pore-volume average of %, [2]. The
diffusion relaxation times 7,, are inversely proportional to the eigenvalues A,.

The net magnetization, usually the quantity of principal interest in NMR experiments,
is defined as

Mo

M) = /v m(x, t)dx . (2)

1

The mean survival time 7 of a diffusing particle before it gets completely demagnetized is
given by [2]

_ [ M)
T_fo T (3)

where M, = M(t = 0). The mean survival time 7 depends on the diffusion coeffcient, D, ,
and the microstructure.

B. Effective Conductivity

The effective conductivity o is given by an averaged Ohm’s law:
< J(x) >=0. < E(x) > (4)

where < E(x) > and < J(x) > represent the ensemble average of the local electric and
current density fields, respectively. The local fields satisfy the usual steady-state conduction
equations [3].

By mathematical analogy, results for o, translate into equivalent results for the thermal
conductivity, magnetic permeability, dielectric constant, and diffusion coefficient.

C. Fluid Permeability
The fluid permeabilty k£ of a porous medium, defined by Darcy’s law,

<u(x) >= —%Vpo(x) ; (5)

governs the rate at which a viscous fluid flows through it [4]. Here < u(x) > is the ensemble
average of the local fluid velocity which satisfies the steady-state Stokes equations [53], Vp,(x)
is the applied pressure gradient, and p is the dynamic viscosity. k& depends nontrivially on the
pore geometry and may be regarded to be an effective cross-sectional area of pore channels.

ITII. MICROSTRUCTURE/PROPERTY CONNECTION
A. Minimum Energy Principles
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Figure 1: The log of ks?/2¢, vs. log of ¢1 — ¢¢ for several different model microstructures
and a sandstone. Here s is the specfic surface and ¢$ is the porosity at which the pore phase
becomes disconnected.

For general random media, the complexity of the microstructure prevents one from
obtaining the effective properties of the system exactly. Therefore, any rigorous statement
about the properties must be in the form of an inequality, i.e., rigorous bounds on the effective
properties. Bounds are useful since they: (i) enable one to test the merits of theories and
computer experiments; (ii) as successfully more microstructural information is incorporated,
the bounds become progressively narrower; and (iii) one of the bounds can typically provide
a good estimate of the property for a wide range of conditions, even when the reciprocal
bound diverges from it.

Bounds are usually derived using minimum energy principles [3]. Recently, the mean
survival time 7 has been bounded from below in terms of moments of the pore size distribution
function P(8) [2,6]. P(6)dé is the probability that a point in the pore region V; lies at a
distance between § and § + dé from the nearest point on the interface 0V.

The nearest-neighbor distribution function H(r) has been shown to arise in rigorous
bounds on the effective conductivity ., mean survival time 7, and the fluild permeability &
for suspensions of spheres [6]. H(r)dr gives the probability of finding nearest neighbors in
a spherical shell of thickness dr at a distance r from the center of a reference particle.

More recently, we have derived the sharpest available bounds on the effective conduc-
tivity and elastic moduli of two-phase heterogeneous materials that are given in terms of the
n-point probability functions S1, Sa,.i., Sp [7]. Sn(r1,:.., 1) gives the probability of finding
n point at positions ri,...,r, in one of the phases.

Guided by rigorous bounds on the permeability, we have found a universal scaling for
the permeability of a class of porous media [8]. As Figure 1 demonstrates this includes
various sphere packings as well as a sandstone.

B. Brownian-Motion Simulation Technique

We have applied our Brownian-motion simulation technique to compute effective dif-
fusion properties, such as the effective conductivity of packings of spheroids [9] and mean
survival time associated with diffusion-controlled reactions in digitized, synthetic heteroge-
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Figure 2: Dimensionless mean nearest-neighbor distance A/o vs. packing fraction ¢ for hard
spheres. Thin solid line is theoretical prediction. Open circles are simulation data. Thin
dashed line, thick dashed line, and solid lines are upper bounds.

neous media [10]. The latter work can be used to understand the critical issues involved
when examining a digitized image of an actual material sample.

IV. MICROSTRUCTURE CHARACTERIZATION

Some of the different types of statistical correlation functions that have arisen in rigor-
ous bounds on transport properties were described in the previous section. Until recently,
application of such bounds (although in existence for almost thirty years in some cases)
was virtually nonexistent because of the difficulty involved in ascertaining the correlation
functions.

A. Unified Theoretical Approach

For statistically inhomogeneous systems of /N identical d-dimensional spheres, Torquato
[11] has introduced the general n-point distribution function H,(x™; x*~™; r?) and found a
series representation of H, which enables one to compute it. From the general quantity H,
one can obtain all of the aforementioned correlation functions and their generalizations [11].
This formalism has been generalized to treat polydispersed spheres, anisotropic media (e.g.,
aligned ellipsoids and cylinders), and cell models [3,6].

We have developed analytical expressions for the chord-length distribution function for
models of porous media with a polydispersivity in size [12,13]. A new coarse-graining pro-
cedure has been obtained to generate and analyze a wide class of model microstructures
[14].

The nearest-neighbor distribution function H(r) is a fundamental quantity that sta-
tistically characterizes a random system of particles (including liquid structure). We have
found analytical expressions for H(r) for nontrivial particulate models up to the random
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close-packing density [15].

Using H(r) we have been able to obtain new and fundamental rigorous results for the
mean nearest-neighbor distance A between particles [16]. In particular, we have found an
excellent approximation to A for equilibrium hard spheres that is valid up to random close
packing and rigorous upper bounds on A. We have proven that a certain region in the ¢-A
plane is prohibited to ergodic, isotropic hard spheres. (shaded region in Fig. 2).

We have very recently developed an exact algorithm to compute H(r) and other void
statistics [17]). Moreover, we have extracted various statistical measures from digitized rep-
resentations of consolidated-sphere models [18].

The important topological property of connectedness is reflected in the two-point cluster
function which we have evaluated exactly for a certain contimuum percolation model [19].

B. 3D Imaging Using X-Ray Tomography

We have very recently obtained high-resolution 3D digitized representation of a Foun-
tainbleu sandstone using x-ray tomographic techniques [20]. This digitized representation is
used to extract a number of morphological characteristics of the sample. Figure 3 shows a
slice of the sandstone which has a porosity of 0.15. Figure 4 depicts the two-point probability
function obtained from all of the slices.

V. CROSS-PROPERTY RELATIONS

An intriguing fundamental as well as practical question in the study of heterogeneous
materials is the following: Can different properties of the medium be rigorously linked to one
another? Such cross-property relations become especially useful if one property is more easily
measured than another property. For example, it is difficult to measure the permeability k
in situ.

Torquato [21] derived the first rigorous relation connecting the permeability k to the
mean survival time 7 of a porous medium:

k< D¢t . (6)

Generally, inequality (6) is not sharp because 7 is a reflection of the entire pore space,
whereas k is a reflection of the dynamically connected part of the pore space.
More recently, Avellaneda and Torquato [22] derived the first rigorous equality connect-
ing the permeability to the effective electrical conductivity of a porous medium containing a
conducting fluid of conductivity o1 and an insulating solid phase:
LZ
k=— 7
8F ? ( )
where F' = o1/c. is the formation factor and L is a length parameter which is a weighted
sum over the viscous relaxation times associated with the time-dependent Stokes equations.
It has been conjectured that for isotropic media possessing an arbitrary but connected
pore space, the following relation holds [23]:
Dt
k< —. 8
< ®)
We have continued to seek and test cross-property relations that connect the fluid per-
meability of porous media with diffusion properties, such as diffusion relaxation times, ob-
tainable from NMR experiments, and the electrical conductivity [24,25]. Based on the above
rigorous results, it has been proposed [24] that the approximate relation
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Figure 3: Sample filtered slice of Fountainbleu sandstone. The black region corresponds to
the grain phase.
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Figure 4: Two-point probability function vs. distance for Fountainbleu sandstone.

20




D

should be accurate for a large class of porous media.

To test cross-property relation (9), we have recently analyzed the 3D tomographic image
of the aforementioned Fountainbleu sandstone (see Fig. 3) [20]. The quantity 7D was
determined to be 154 ym? from Brownian-motion simulations, F'~! was rigorously bounded
from above by the value 0.089 using three-point information [7], and ¢, was found to be
0.15. Thus, relation (9) predicts k ~ 2.1um?, which is in relatively good agreement with the
experimental value [25] of 1.3 um?.

The attentuation of elastic waves in fluid-saturated porous media depends on their
effective elastic moduli. We have rigorously linked the conductivity to the elastic moduli of
the medium [26-28].
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NMR STUDIES OF MULTIPHASE FLOWS. II

S. A. Altobelli, A. Caprihan, E. FuKushima, I. J. Lowe, and L. Z. Wang
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2425 Ridgecrest Dr., SE, Albuquerque, NM 87108 USA

ABSTRACT

NMR techniques for measurements of spatial distribution of material phase,
velocity and velocity fluctuation are being developed and refined. Versions of
these techniques which provide time average liquid fraction and fluid phase
velocity have been applied to several concentrated suspension systems which will
not be discussed extensively here. Technical developments required to further
extend the use of NMR to the multi-phase flow arena and to provide
measurements of previously unobtainable parameters are the focus of this report.

INTRODUCTION AND HISTORY

Nuclear magnetic resonance (NMR) has been used to study flowing fluids at The
Lovelace Institutes (TLI) for the past ten years. The advantage of the NMR method for flow
measurements is many-fold. Among the more obvious are that it is non-invasive and that, for
certain materials, it can examine a flow system without any opaqueness problems. Among the
possibly less obvious advantages is that the technique can measure many flow parameters not
limited simply to velocity and concentration but also to diffusion, turbulence, acceleration, etc.,
as primary parameters (as opposed to secondary parameters that are derived from the primary
parameters). The advent of NMR imaging (NMRI) allows us to spatially resolve all such
parameters.
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We have embarked on a program to study various properties of multiphase flows by
NMR. In particular, we wish to develop new techniques and apply them to problems in various
fields. The initial objective, five years ago under BES funding, of showing that spatially
resolved measurements of velocity and concentration of liquid/solid multiphase flows was
possible at any concentration of the solid component, has been fulfilled and some results were
presented at the Tenth Symposium on Energy Engineering Sciences in 1992 [1]. Our current
objectives are, on the one hand, to extend such measurements to higher order parameters such as
diffusion and fluctuations of velocity and, on the other hand, to improve the NMR hardware to
permit faster data acquisition which will yield better data for such parameters. In flows of
concentrated suspensions and granular materials velocity fluctuations are hypothesized to be a
crucial element of multi-phase transport processes [2, 3]. In this report, we describe progress
made in several of these areas which represent pre-conditions to actually making such
measurements in multiphase flows.

NMR AND LDA VELOCIMETRY IN A CURVED DUCT

In theory, NMR velocity measurements can produce 2- and 3-d datasets and arbitrary
velocity components can be measured. In practice, mainly simple flows have been used to
validate NMR methods, and the accuracy and precision of NMR velocity measurement
techniques in complicated flows have not been assessed. An NMR velocity measurement system
based on first order phase methods, and appropriate for measurement of a complex flow field
with a primary velocity component and two smaller "secondary” components was implemented.
Velocity dependent mis-registration was minimized by placing the phase-encoding interval
immediately before the read-out interval and using a short echo-time. A geometry amenable to
reliable measurement with transmission mode laser Doppler anemometry was chosen. The LDA
measurements were done at the University of New Mexico in the laboratory of Prof. R. Truman.
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Figure 1. The dimensions of the Plexiglas flow phantom are shown. Flowing

water entered a 61 cm straight duct, and turned in a section with centerline radius of 8.5

cm. Velocity components were measured after 90 ° of bend (M.L.). The cross section of

the duct was 1.9 cm on a side.




A duct having square cross-section (1.9 + 0.05 cm on a side) was constructed from
Plexiglas sheet and cylinder stock. The dimensions of the duct are shown in Figure 1. Water
from a constant height reservoir flowed through flexible tubing into a 61 cm straight section of
square duct, turned through a 180° section of duct, with centerline radius 8.5 cm, and exited
through a circular orifice into a second flexible tube. Tap water was used in the laser Doppler
measurements. Water doped with Gd (T ~ 0.25 s) was used in the NMR measurements.

The rf coil was modified to allow insertion of the phantom in the configuration shown.
Slots were cut in the outer can and between the "rungs" in the resonant circuit. To install the
flow model, the coil was partially disassembled, the curved section inserted through the rungs,
the efflux tube connected, and the rf coil reassembled. The fact that the downstream end of the
curved section was interrupted was less than optimal from the standpoint of comparison with
previous results.

Three orthogonal components of velocity in a curved duct of square cross-section were
measured with NMR, and two velocity components were also measured with laser Doppler
techniques. Comparison between the two methods showed that accurate measurements of 3-
dimensional flows can be made with NMR phase methods. Experiments using static references
gave the most reliable measurements in low velocity regions. In Figure 2, a set of low flow rate
measurements are shown.

k=100 0.2
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o 0.0 °

Figure 2. Comparisons between NMR (continuous lines) and LDA (points) are shown
for the two velocity components measured with LDA. The schematics on the left show
the locations of the measurement traverses, “O” refers to the outside of the curved tube.

At low flow rates, a single pair of vortices similar to low Dean number flow in a curved tube,
symmetric about the plane containing the duct axis, is observed. The sense of the secondary
flow is also the same as in a curved tube -- outward along the axis of symmetry, and inward
along the walls. NMR velocimetry provides measurements over the cross-section, as opposed to
measurements along a single line, and an example obtained at a higher flow rate is given in
Figure 3. A vector plot shows the distribution of the secondary velocity components in the duct.
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Below the vector plot, images of the velocity components are shown. The outer curved wall is
shown on the left of the images and the vector plot. At this flow, two vortex pairs are prominent.
The LDA confirmed the qualitative differences observed with NMR as a function of flow rate.

k=413

Re=826

V=4.2 cm/s

Q=15.3 ml.s
Va V¢ Vy

Figure 3. NMR data obtained in the curved duct at a flow of 15.3 cm’/s are shown. a
vector plot shows the presence of multiple pairs of vortices. The outer edge of the
curved duct is on the left, as in Figures 1 and 2.

NMR DIFFUSION AND TURBULENCE MEASUREMENTS

Some of the techniques for measuring flow velocity by NMR were reviewed three years
ago [1] and will not be reviewed here but the NMR methods for measuring molecular diffusion
and turbulent diffusivity will be described.

Molecular diffusion measurements by NMR is an area we have gone into in the past two
years. NMR can measure diffusion in the following way. In any NMR experiment, the nuclei
with gyromagnetic ratio y precess about the magnetic field B at frequency f according to the
Larmor theorem: f=(y/2m)B. Suppose an ensemble of spins is made phase coherent at t=0 and a
magnetic field gradient g is applied for a time 6. The gradient causes spins at different locations
Z, to precess in a magnetic field intensity distributed according to gz, i.e., the spread of frequency
across a distance z is (y/2n)gz and the incremental phase gain (or less) is (y/2m)gzd. If, an equal
but opposite gradient is applied at some later time A, the incremental phase changes reverse
exactly and the ensemble finds itself with a regained coherence, leading to an unattenuated NMR
signal. If, however, there is diffusion during the interval A, the full coherence will not be
regained because the incremental phase changes during the two gradient pulses will not be equal
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and opposite. Thus, NMR can be used to measure the diffusion coefficient by the signal
attenuation caused by the diffusive motion of the molecules during an appropriately designed
pulse sequence. In fact, any other incoherent motion will also attenuate the signal and this fact is
used to study turbulent diffusivity.

Diffusion in restricted spaces can be studied by NMR, too, because the technique, as
described above, measures the spin displacements in the interval A and the barriers to diffusion
modifies the range of displacements. Because barriers can only limit the range of molecular
motion, diffusion in restricted spaces can only increase the signal amplitude over unrestricted
diffusion. There is an inherent difficulty that as more restrictive or, equivalently, more diffusive
systems are studied, the gradient pulses that are used to define the range of incoherence will need
to be made more effective. In the expression for the phase increment, given above, the only
variables that can be changed for any given system are g and d, the amplitude and duration of
gradients. Because there is a practical limit to how large the gradient amplitude g can be made,
there is a need to consider lengthening the duration 8. This is the root cause of much of our
present research because much of the past derivations relating the diffusion coefficient D, the
restricted spacing a, and the signal, depend on an assumption that the gradient pulse length &
obeys the relation 8<<a2/D, i.e., it must be short enough that the molecule will not diffuse across
the restricted region of dimension a during 8.

- NARROW PULSE APPROXIMATION IN RESTRICTED DIFFUSION

An alternative manifestation of NMR signals being sensitive to molecular motion,
besides the measurements of velocities, is the use of NMR to investigate molecular diffusion and
the influence of barriers on such diffusion. Qualitatively, this is possible because any random
molecular motion that takes place between two gradient pulses, one to dephase the spins and the
other to rephase them, leads to an incomplete rephasing of the spins and shows up as a signal
attenuation. Standard techniques for microstructure determination has existed for over three
decades provided the magnetic field gradients used can be considered so short that no diffusion
takes place during them.

The problem of diffusion in the presence of barriers, considered in this and next sections
of this report, is an important one in many multiphase flow applications. The interphase
boundaries usually represent significant barriers to diffusion so that any information on such
boundaries leads to information about the multiphase structure.

Barriers to diffusion reduces the attenuation caused by diffusion because they reduce the
range of translational motion for the spins. Therefore, ever stronger gradients must be used to
study smaller and smaller restricted spaces. Because there is a limit to the strength of magnetic
field gradients that can be created, there is a need to increase the duration of the gradient pulses.
Thus, it is possible to violate the condition of “infinitely” narrow pulses, as diffusion is studied
for smaller restricted regions. With the recent impetus for probing diffusion in ever smaller
restricted spaces, this has become a meaningful question. A general expression for the
attenuation has been derived from stochastic theory of random spin motion with an assumption
of Gaussian displacements. The echo attenuation is divided into contributions A and B. A
represents the contribution in the presence of the gradient while B is the contribution with the
gradient off so that F=A/(A+B) must be small for the narrow pulse approximation to hold.
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Figure 4 is a plot of equal values of F as a function of two times, the duratlon of the gradient
pulses 8, and the interval between the gradient pulses A, both in units of a 2/D which is the time
for a molecule to diffuse with a diffusion coefficient D across the restricted space of dimension a.
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Figure 4. The fraction F of the total attenuation occurring during the application of the
gradient pulses or a PGSE experiment as a function of the time intervals & and Q.

We have performed an alternative derivation of the same criterion for the validity of
narrow pulse expressions for restricted diffusion from the diffraction-like behavior of NMR
signal attenuation as a function of qa=ygda/2r, where q is, in effect, a reciprocal lattice vector for
restricted diffusion [4]. In the narrow pulse approximation, the signal has minima at multiples of
g=1/a. From the results of Blees [5], we plotted contour lines of constant fractional deviation of
a particular minimum as a function of 8D/a® and AD/a” as before and the curves have shapes
identical to those of Fig. 2.

We have found that the condition F<<0.1 is equivalent to a 5% shift in the second
minimum position in qa. Although neither of these conditions seems very strlct they lead to the
conclusion that gradient pulse duration 6 must be much shorter than 0. 02D/a* in order for the
narrow pulse expressions to be valid, a surprisingly strong criterion.

ANALYTICAL EXPRESSION FOR TIME-VARYING GRADIENTS

Although analytic expressions for NMR echo signals from an assembly of atomic nuclei
undergoing diffusion in free and confined spaces were derived more than 30 years ago, a general
expression without the assumption that molecular diffusion does not take place during the |
gradient pulses still does not exist. This is a problem that is gaining in importance as more and
more smaller spaces or larger diffusion coefficients are studied. That this is so can be seen by the
fact that the appropriate time unit for these problems is a/D which is how long a molecule with
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diffusion coefficient D takes to diffuse across a restricted space a. Thus, smaller restricted spaces
has the same effect as larger D.

We have derived an approximate analytical solution for diffusion in the presence of a
gradient pulse that is not infinitesimally short by approximating the pulse with a series of
gradient impulses each of which has a known narrow-pulse solution. We examined the
convergence of the solution as a function of the order of the approximation, i.e., the number of
impulses used, and found that 8 impulses is sufficient for most combinations of parameters.
Because the method is general, it can be used for any shape gradient pulse, and its use is not
limited only to rectangular pulses. Furthermore, the formalism is also applicable to non-uniform
initial magnetization distribution.

STUDIES OF DIFFUSIVE AND TURBULENT SPECTRA

There have been suggestions of using gradient pulses that are tailored to probe particular
frequency components of spectral density associated with coherent or incoherent motion [4]. We
have derived relations for the signal attenuation as a function of sine and cosine coefficients of
sinusoidal magnetic field gradients used during an otherwise standard NMR pulsed gradient spin
echo diffusion experiments. We then performed experiments in three model systems: 1)
diffusion measurements of water in an effectively unconfined space; 2) measurements of water
diffusing between mica sheets spaced 25 um apart; and 3) measurements turbulent diffusivity of
water flowing in a circular pipe.

For water at room temperature in an unconfined space, the spectral density for diffusion
is independent of frequency in the range studied, up to 100 Hz, as expected. On the other hand,
in restricted spaces, deviation from the unconfined behavior is expected at the lower frequencies
where the molecules have enough time to encounter walls. Experimentally, we measure the
expected behavior, i.e., the spectral density is flat above 22 Hz but decreases below this threshold
which is consistent with the known spacing between the mica sheets of 25 um, as shown in Fig.
5.

We wish to extend this technique to the measurement of turbulent diffusivity. A
preliminary experiment in water flowing in a circular pipe with Reynolds numbers between
2,000 and 12,000, yielded spectral densities that did not follow the correlation time-based curves
used to fit spectral density for diffusion. This is to be expected because in turbulent diffusivity,
the eddies are not uncorrelated as smaller ones are subdivided from the larger ones in order that

the energy can be dissipated.
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Figure 5. Results from spectral density of diffusion measurements (points) in a stack
with 25 pm spacing shows good agreement with theoretical prediction. The technique is
being evaluated for measurement of the size spectrum of turbulent eddies.
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INITIATION OF SLUG FLOW

Thomas J. Hanratty and Bennett D. Woods

University of Illinois
Urbana, Illinois 61801, U.S.A.

ABSTRACT

The initiation of slug flow in a horizontal pipe can be
predicted either by considering the stability of a slug or by
considering the stability of a stratified flow. Measurements of
the shedding rate of slugs are used to define necessary
conditions for the existence of a slug. Recent results show that
slugs develop from an unstable stratified flow through the
evolution of small wavelength waves into large wavelength
waves that have the possibility of growing to form a slug. The
mechanism appears to be quite different for fluids with
viscosities close to water. than for fluids with large viscosities
(20 centipoise).

INTRODUCTION

The prediction of flow regimes is a central problem in the analysis of gas-liquid flows
in pipes. Early work had used two-dimensional flow maps that employed variables such as
the superficial gas and liquid velocities. These have proven unsatisfactory since they cannot
represent the influence of the large number of variables that define multiphase systems.
Pioneering works in this area are the papers presented by Dukler and his coworkers [1][2].
These papers suggest physical criteria and equations that define transitions from one regime
to another. Flow maps can then be constructed for particular situations.

During the past 15 years the mechanisms suggested in references [1] and [2] have been
examined more carefully and we now realize that some of the physics is flawed. This
accounts for the failure of this approach to explain many observed phenomena. There is a
need to develop an updated equation-based approach which utilizes improvements in our
understanding of this problem.

This paper presents recent results on the transition from a stratified flow to a slug flow
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in a horizontal pipe. Taitel & Dukler [1] suggest, on the basis of geometric arguments, that
the height of the liquid in the stratified flow, h;, needs to be larger than one-half of the pipe
diameter, D, in order for a slug to form. This constitutes a necessary condition for the
existence of slugs. A closer examination of data reveals that the proposed critical h; /D is too
large.

This paper summarizes results of a M.S. thesis from this laboratory [3] which relates
the stability of slugs to the height of the liquid. The idea behind the analysis is quite simple:
Slugs pick up liquid at the front as they propagate downstream and shed liquid at the rear.
If the pickup rate is smaller than the shedding rate, slugs will decay. The critical problem is
to define the volumetric shedding rate, Q; .

Ruder et al [4] developed this idea by assuming the back of the tail as a Benjamin
bubble so that

Q, =A [0.542 (&D)*3] 1)

where A is the pipe area and D is the pipe diameter. This assumption provides only a
limiting value of the critical hL/D at small gas velocities. A series of studies were, therefore,
carried out in which Q; was measured for individual slugs. The system was air and water
flowing in a horizontal pipe. The results of this study provide a necessary condition for the
existence of a stable slug that is consistent with measurements.

For large h; /D, Wallis and Dobson [5] suggested that the initiation of slugs might be
considered to result from the stability of a stratified flow to long wavelength disturbances.
The following critical condition was suggested:

1
U-u = K |8PHG 2 )
Pc

where U is the gas velocity, u, the liquid velocity and Hg, the height of the gas space. The
use of an inviscid analysis gives K=1, but Wallis found for air and water that Kz.;.. Taitel

and Dukler adapted (2) to the geometry of a circular pipe and suggested that

h
k=[1-_1% 3
D

The inviscid analysis yields a wave velocity, C, equal to u. Therefore, the inertia of
the liquid is neither stabilizing nor destabilizing. Lin & Hanratty [6] carried out a viscous
long wavelength analysis. The wave velocity is, then, not equal to u and liquid inertia is

destabilizing. They found that K is a function of liquid viscosity. For water Kz%; for

liquids with viscosities greater than 20 centipoise, K=1.
Equation (2) has two important features. It suggests that a slug evolves directly from




a long wavelength disturbance that grows until it reaches the top of the pipe. It also suggests
that the gas velocity needed to generate a slug increases with D2, Measurements with air
and water agree with this analysis [7]. However, studies with viscous liquids [8] reveal no
influence of pipe diameter if the liquid viscosity is 20 centipoise or greater.

This disagreement suggests that the physical mechanism suggested by (2) is incorrect
even though it correctly predicts the transition for an air-water flow. This paper summarizes
recent results which show that slugs evolve from small wavelength waves and not from the
direct growth of a large wavelength instability.

The implications of these new results from the viewpoint of predicting flow regimes
is discussed.

STABILITY OF A SLUG

If conservation of mass is used in a frame of reference moving with a slug, the
following equation is obtained for incompressible fluids:

(C-up)) Ay - 0, =4 (10) i;’?‘, @)

where C is the slug velocity, uy ; the velocity of the liquid in the layer in front of the slug,
Ay 1, the area occupied by the liquid in front of the slug, o, the void fraction in the slug, L,
the length of the slug and t, time. For a neutrally stable slug, dL/dt=0, and

P ®)
C"'MLI

For AL1<AL]C slugs will decay; for AL1>AL]C slugs will grow.
If the back of a slug can be modelled as the nose of a bubble an equation for C similar
to what is used for elongated bubbles in vertical tubes can be explored:

C=C, + C,u;3, (6)

where C_, is the bubble velocity in a stationary fluid and uj 5 is the average liquid velocity

U U
uL3=__S_G_+__5_L_ @)
1 -(S-1)ot

where Ugg is the superficial gas velocity, Ug; , the superficial liquid velocity and S the ratio
of the gas and liquid velocities in the slug.

The second term in (7) represents the contribution of fluid convection to the slug
velocity. For vertical flow with a turbulent liquid C has a value approximately equal to the
ratio of the centerline and average velocities, C=l.2.

The motion of the bubble relative to the liquid causes a displacement of liquid inside
the slug given by
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0, =(C-up3) A(1-0)

Now if (6) is substituted into (8) and (5) the following relations are obtained:

QL={C°° + (Co—l)uw] Al -0)

L€ [c“ + (Co—l)uu]l-oc
- [C,o * Coups ‘"u]

At large gas velocities up ; can be neglected and C_<<C y; 5 so

LC (c,-1)(1-0)

Ll (CO)

If C,=1.3 and (1-a) = 0.3, equation (11) gives

A
“Ho_o.16
A

h
_L o021
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DESCRIPTION OF EXPERIMENTS

The flow facility consists of a horizontal pipeline with a diameter of 0.0953 m and a
length of 26.5 m. The experiments were conducted at atmospheric conditions. The gas and
liquid phases were combined at the beginning of the pipeline in a tee section with the liquid
phase flowing in the run and the gas phase entering from the top of the tee.

Measurements of the variation of the liquid holdup were obtained with a conductance
probe that consists of two parallel chromel wires. A complete description of the film height
analyzer, including a circuit diagram, may be found in Williams [9].

Conductance probes were used at -II% = 200, 220, and 250. Two conductance probes

are needed fo measure the slug velocity and the flow of liquid out the tail of the slug. A third
conductance probe is added in order to observe changes in a slug as it progresses along the
pipeline. The third probe also provides better measurements of C and Q;_ by averaging results
from the first and second probes and from the second and third probes.

Pressure pulsations associated with the passage of a slug were measured with a
piezoresistive pressure transducer located 0.127 m downstream of the first conductance probe.
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The transducer was mounted flush with the wall so that no disturbances were introduced into
the flow.

The magnitude of the signals from the conductance probes give the liquid holdup, (1-
o), when a slug passes and the height of the liquid layer when a stratified flow was present.
The slug velocity, C, was determined from the time needed for a slug to move between two
of the measuring stations.

Values of Q; were obtained from measurements at two stations using the equation

-(c- -4y 14
| 0, =(C-u) Ay — -9
This was accomplished by attaching a control volume fixed to back of the slug.

Term dV/dt was determined by measuring the change of the volume of the liquid
inside the control volume between two stations. The front of the control volume was located
sufficiently ahead of the slug so that the area of the stratified flow in the front of the slug,
A; |, was the same at all three stations. Velocity up ( was calculated from A and the gas
velocity by using stratified flow relations developed by Andritsos and Hanratty [10].

STABILITY OF SLUGS

Measurements of Q; are presented in Figure 1. It is noted that they agree with the
Benjamin solution only for small values of Ugs. These measurements and equation (5) were
used to calculate critical values of A;; (or hy /D). A trace obtained from the conductance
probes is shown in Figure 2. Peaks could be identified as slugs from measurements of
pressure pulses. Neutral stability is designated by the line indicating the stability height. The
correlation is not perfect, but there is a tendency to find growing slugs when AL1>AL1C and
decaying slugs when AL1<AL1C.

Values of the critical hy ;/D for different Ugg, calculated from (5) are shown as the
dashed curve in Figure 3. The solid curve is the stability condition for a stratified flow. The
points are the observed h;/D at which slugs appear for a fixed gas flow. At low gas
velocities the necessary condition for the existence of slugs lies below the stability condition
for a stratified flow. However, at high gas velocities the opposite is the case. Good
agreement is noted between the observed transition at large Ugg and the necessary condition
for the existence of a slug.

The curve representing the stability of a stratified flow would be shifted to the left
with increasing gas density. Therefore, at sufficiently high gas densities one could expect that
the initiation of slugging would be defined by stability conditions for a slug at all gas flows,
rather than just at high gas flows.

The asymptotic behavior of the dashed curve in Figure 3 gives a critical hy /D=0.21.
This is exactly the prediction from (11) if C=1.31. Measurements of slug velocity are
represented quite well by the equation
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From (7) and (15) it is observed that

o

1 +{s-1)a

Therefore C =1.31 corresponds to a slip ratio of 1.
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STABILITY OF A STRATIFIED FLOW

The transition to slug flow shown in Figure 3 for small gas velocities is governed by
the stability of stratified flow. The mechanism for this transition for air/water has recently
been explored by Fan et al [11]. A carefully designed entry was used to bring the gas and
liquid together smoothly. Conductance probes were located along the pipeline to study the
evolution of waves to form a slug.

Measured wave spectra are shown in Figure 4 for Ugg=1 m/s. The abscissa is the

frequency (in cps).made dimensionless with \/EB . The ordinate is the dimensionless spectral
density function. The measurements at L=3.36 m and at L=7.02 m show a primary peak at
£=0.06 (0.6 cps) and a secondary peak at f=0.12 (1.2 cps). These would correspond to very
long wavelength waves that are observed visually as a swell. They would be predicted to
appear by long wavelength theory. These waves do not evolve into a slug. Two peaks at
- f=0.12 and f=0.25 are observed in the spectral density function for the pressure fluctuations.

The peaks at £=0.06 and {=0.12 are still evident at L=10.1 m, but a peak with a large
amount of energy appears at f=1.2 (12 cps). This corresponds to a capillary-gravity wave
generated by Jeffrey’s sheltering mechanism. A peak with a smaller amount of energy is also
observed at f=0.5 (5 cps). As discussed in [11] the larger wavelength wave evolves from the
f=1.2 wave through a resonance mechanism. This peak grows with distance downstream and
the higher frequency peak shifts from f=1.2 to f=1.0. At 20.78 m, the f=0.5 wave is
dominant. In a longer pipe this wave could stabilize to a fixed height (at which energy fed
by the gas flow is balanced by viscous dissipation) or it could continue to grow until it breaks
or forms a slug. There appears to be a critical liquid height (larger than that required for the
existence of a stable slug), below which slugs cannot form from these waves.

The mechanism for the formation of slugs in these experiments at low gas flows
appears to be different from what is suggested by (2). This is a paradox since equation (2)
does a good job in predicting the initiation of slugs for liquids with viscosities close to that
of water.

Figure 5 shows transition data obtained for a 100 cp liquid in a 9.53 cm pipe. The
open triangular points represent a transition to slugs. The open squares indicate a transition
to large amplitude waves. Because of the large viscosity, waves of the type described in
Figure 4 are not present. The stratified flow that exists to left of the triangles has a smooth
interface.
The transition points at large Ug; are, more than likely, defined by the stability
condition for a slug, equation (5). However, it is noted by comparing Figures 3 and 5 that
transition occurs at slightly higher h; /D for the more viscous liquid. This suggests that C,
in (6) could be larger for large viscosity liquids, as has been found for large bubbles in a
vertical tube.

At small gas flows the initiation of slugs, shown in Figure 5, occurs because of an
instability of the stratified flow. A comparison of Figures 3 and 5 shows that larger values
of h; /D are required for an instability to occur with large viscosity liquids. The waves
described in Figure 4 cannot occur. The first instability of the stratified flow occurs when the
gas gap becomes small enough (for a given gas flow, Ugg) that the gas velocity above the
liquid can cause a Kelvin-Helmholtz instability. The first disturbances that appear at the
interface are capillary-gravity waves. These rapidly evolve into slugs by a mechanism which




has not been identified. The solid curve in Figure 5 represents the critical condition for the
initiation of a Kelvin-Helmholtz instability.
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Figure 5 [Initiation of slug flow or KH waves for a
100 cp liquid in a horizontal 9.53 cm pipe.

DISCUSSION

The flow regime criteria developed by Dukler and his coworkers have had an
important impact on the analysis of two-phase flows. They are widely used - despite the
recognition that they do not always give accurate results. Recently, more careful attention has
been given to the physics defining the transitions. It is now possible to use these new insights
to develop improved predictions of flow regimes.

A necessary condition for the existence of slugs of hL/D 0.5 was suggested in [1] on
the basis of geometric arguments. This paper develops an improved definition of this
condition by considering the stability of slugs.

Equation (2) along with the long wavelength viscous analysis of Lin & Hanratty [6]
does a good job in predicting the evolution of slugs from the instability of a stratified flow
if the liquid viscosity is close to that of water. However, the observed mechanism appears
to be different from what is suggested by (2). This issue needs to be resolved.

The waves which eventually evolve into slugs for stratified air-water flows are
generated by a mechanism whereby energy fed to the waves by gas phase pressure variations
in phase with the wave slope is larger than energy dissipated by viscous effects. As the
viscosity of the liquid increases the critical gas velocity for the appearance of these waves
also increases. For large enough liquid viscosities these waves are not present. In this case
slugs evolve from capillary-gravity waves generated by a Kelvin-Helmholtz mechanism,
whereby destabilization results from pressure variations 180° out of phase with the wave
height. When the height of the liquid layer is too small to sustain a stable slug these Kelvin-
Helmholtz waves evolve into large amplitude irregular waves. Under these conditions the
initiation of slugging is governed by the stability condition for slugs.
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THE DRIFT FORCE ON AN OBJECT IN AN INVISCID
WEAKLY-VARYING ROTATIONAL FLOW

Graham B. Wallis

, Thayer School of Engineering, Dartmouth College
Hanover, NH 03755 U.S.A.

ABSTRACT

The force on any stationary object in an inviscid incompressible extensive steady flow
is derived in terms of the added mass tensor and gradient of velocity of the undisturbed
fluid. Taylor’s theorem is extended to flows with weak vorticity. There are possible
applications to constitutive equations for two-phase flow.

INTRODUCTION

Any vector field (e.g., velocity) may be generated by a combination of flux and circulation
sources. For example, an object in a potential flow may be “created” by putting a distribution
of dipoles over its surface, to represent the jump in potential there, or a set of circulation source
loops around its surface, to account for the jump in velocity [1]. A set of internal sources and
sinks could also be used. Though various combinations of these elements can be selected, the
resulting system has a unique dipole moment or polarization, characterizing a particular ob ject
in a certain environment {2].

Flux sources, which are simpler conceptually, usually have little physical meaning and resem-
ble mathematical devices for setting up a real flow situation. Circulation sources are physically
evident as vortex lines which have a clearer manifestation and actually exist in a real flow with
rotation. The c¢ontribution of this paper is to show how weak vorticity in an inviscid flow inter-
acts with a solid object. The results are of a general nature and apply to objects of any shape.
Vorticity is bound in the fluid and is “entrained” by the object in much the same way as fluid is
entrained by “drift”. The added mass tensor provides the theoretical key to the solution of both
problems.

FLUX SOURCES

An object of volume V moving at velocity v in an irrotational flow may be generated by
internal sources and sinks of strength m; located at r.
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The dipole moment of these sources is [1]
D=/rm,~=/¢ds+Vv (1)

If the object is moving in an extensive fluid at rest far away, the added mass tensor { is

defined by’
/ ¢ds =C -vV (2)

which does not depend on the details of conditions “at infinity” in the way that the induced net
momentum does. Because of the linearity of Laplace’s equation in this situation we may define
the polarizability, D, such that

D=D.-vV (3)

Combining (1) to (3) the two tensors are simply related by

D=C+1 | (4)

Since C is a symmetric tensor depending only on the shape of the object, so is D.
When the same object is at rest in fluid with a uniform velocity U far away, the sources and
sinks are the same and dependent on the relative motion so that

D=-D.UV (3)

The force on a flux source is —pUm;. Forces between sources are mutual and cancel. There
is no net force from the fluid on the sources (i.e., on the object) because > m; = 0. The moment
of the forces from the fluid on the object is, using (4) and (5),

Mz—erpUmiszermi
=pUxD=-pVUxD-U=pVU-CxU - (6)

which is a compact version of the result given by Lamb [3].

When the object is in an irrotational flow that varies slowly on the scale of the object and
can be described by a velocity

u=U+r.VU | (7)

before insertion of the sources, the resultant force is '
Fp = —p(m; + mj)(U + r-VU) : (8)
where m represents a small perturbation,with 3> m} = 0, in response to the gradient in the

external field. To first order, (8) reduces to
F,=-p) mr-VU=—pD.VU (9)

which we call the “polarization force” representing an interaction between the polarization and
the external velocity gradient. Using (4) and (5), (9) can be put in the form

F,=pV(U-VU+U.C.VU) (10)
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where the first term is the “buoyancy” force due to the external pressure gradient and the second
term is compatible with a result derived by Taylor [4] and described by Lamb [3] in the alternative
form

U-g-VU=V(%U-g-U) (11)

which follows because C is symmetric and V x U = 0 in an irrotational flow.

CIRCULATION SOURCES

When a flow is rotational it contains vortices (circulation sources) that travel with the fluid.
If a certain vortex line is marked, it will follow a trajectory which is the same as for a “time-line”
recording the position of elements of fluid composing the vortex at subsequent intervals of time.
If the vorticity is weak, these trajectories are determined by the “main” flow, the effect of vortices
‘on each other being small. This picture formed the basis of Lighthill’s analysis [5] of the wake of
an object in a shear flow, and was later used by Auton [6] to derive the “lift” force on a sphere.

A vortex line passing close to an object will be deformed and will “drift” just as elements of
fluid do. The velocity field from the vortex may be countered by internal sources m!. Since these
have zero total sum and are “small” for “small” vorticity they contribute no net force, as in (8), to
first order. Moreover, in an inviscid fluid, no net circulation is generated on the object. “Bound”
vorticity would have to be generated some other way and it not part of the present analysis.

CROSS-STREAM VORTICITY

Let the main flow past a stationary object have velocity U in the x-direction. Let the
oncoming flow have uniform vorticity in the cross-stream z-direction. Because of the component
Cz of the added mass coefficient, and the resulting impulse on the fluid by way of (2), there is
a drift volume in the wake of the object representing fluid, and corresponding vorticity, that is
retarded by the presence of the object.

We now consider a rectangular control volume around the object, with faces normal to the
coordinate axes and large compared with the object. The total z-direction vorticity in this volume
is augmented by an amount C,,Vw, because of the drift of fluid into this volume, as described
by Lighthill {5] and sketched in Figure 1. The corresponding perturbations in velocity on the
boundaries of the control volume may be determined from the basic equation of vector field

theory:
/de:—/uxds (12)

This is to be applied to the z-component of vorticity, and therefore picks up the following
components on the x- and y-faces of the control volume,

CpzVw, = /wde = /'&ydsx - /ﬂxdsy (13)
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Figure 1. Vortex Lines, Originally in the z-Direction, Stretched Around an Object
and Entrained by Drift in the Wake

Multiplying by pU we get
pVC,  Uw, = /,oU'&ydsac - /pUﬁ,dsy (14)

Now, on the y-faces far from the object the main flow is in the x-direction and therefore the
perturbation in pressure is given by Bernoulli’s equation as

Using (15) in (14), the right-hand side is recognizable as the sum of the y-direction momentum

flux through the x-faces and the pressure over the y-faces, which are exactly the terms in a

momentum balance which shows the “drift” force from the fluid on the object in the y-direction
to be,

Fay = —pVCprUw, (18)

A more detailed derivation of this force is given in [7], where it is also related to the x-
component of vorticity induced in the wake by bending of the vortex lines, originally in the z-
direction. This x-vorticity in the wake loops arourid the object, the overall appearance resembling
the bound vorticity and trailing vortex system for a conventional lifting surface.

Now, if the object is not oriented with one of its principal axes of added mass in the direction
of the main flow, there will also be components of “interphase impulse”, given by (2), in the
transverse directions. For instance, the component Cy, (since C is symmetric, it is not necessary
to be fussy about the order of the subscripts) leads to displacement of the fluid streamlines in
the y-direction due to relative velocity in the x-direction. The z-direction vortex lines that were
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parallel upstream of the object are then bent in the wake as a result of this transverse “drift”. If we
look upstream in the negative x-direction from the far wake, these vortex lines will all be bent into
the same shapes, independent of x, and form a set of vortex sheets, representing “streamlines” for
vorticity (Figure 2). The z-direction vorticity in the wake is related to the corresponding velocity
variations by 5 5
_ Ouy Uy
Wy = rre By (17)

but du,/dz = 0 in a fully-developed wake and therefore

Ugp = — /wzdy (18)

The right hand side of (18) represents the z-vorticity flux which is constant along a “streamline”
for vorticity. Therefore the cross-sections of vortex sheets in Figure 2 also represent contours of
constant u;. The perturbation in u, is

Uy = — /Ozdy =w,Y (19)

where Y is the displacement of a vortex line now lying at the point of interest. When (19) is
integrated over the entire face of the control volume lying in the wake, there is a perturbation in
outgoing mass flux in the amount

m = p/&zdydz = pwz/Ydydz = —pw,VCypy (20)

where the concept of “drift volume” in the y-direction has been used. The negative sign is needed
because v in (2) is replaced by —U. The increased mass flux 72 comes from fluid that is drawn
into the sides of the control volume. The mechanism for “pumping” this secondary flow is the
perturbation in vorticity in the wake. These perturbations form loops in the y-z plane that add
to the original uniform vorticity to produce the pattern shown in Figure 2. In the extended wake
these loops form cylindrical sheets of secondary vorticity that generate axial velocity much as the
coils on a solenoid generate its axial magnetic field.

A fully developed wake cannot maintain pressure perturbations (which would lead to further
“development”) and the momentum flux out of the control volume on the wake side is increased
by

p/ [(U +@)? - U?| dydz = 2Um (21)

Combining (21) with the flux of momentum into the sides of the control volume, pUrn, the
net force due to velocity perturbations induced by vorticity is

For = pVUCzywz : (22)

Results similar to (16) and (22) follow if there is vorticity in the transverse y-direction.
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| Y2
Figure 2. Drift of z-Direction Vortex Lines in the y-Direction Behind an Asymmetric Object

STREAMWISE VORTICITY

A uniform upstream vorticity w; is carried along the streamlines of the primary flow and will
be diverted sideways in the wake if there are components C;, and C, to the added mass tensor.
The effect of Cgy is to displace streamlines in the y-direction, which can also be represented by
Figure 2 which now represents the location in the wake of vortex sheets originally in the x-z
plane. These contours now represent constant values of @, in the amount —Yw,, by arguments
resembling those leading to (19). This produces negligible effect on the sides of the control volume
but introduces a perturbation in the flux of z-momentum in the wake and a corresponding drift
force in the amount

Fy, = pVUCrywy (23)

similar effects occur if there is a C,,, with corresponding results.

SYNTHESIS

All of the components of “drift force” derived above may be added together, assuming each
is small so that interactions can be neglected, to give

Fy=pVU-Cxw (24)

This must be added to the polarization force in (10) to obtain the net force

F=pV(U.VU+U-C-VvUT) (25)
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Since C is symmetric, the second term in (25) is exactly equal to Taylor’s Force derived in
(11) for inviscid flows. Therefore Taylor’s Force is equally valid in flows with weak rotation.

DISCUSSION

The derivations in this paper are given with more detail in [7] where they are shown to be
compatible with Auton [6] and Auton et al. [8]. Some results are derived there for an oncoming
shear flow passing over an object in a tube, showing that it is not necessary for the control volume
to be “large” or for the flow to be unbounded.

The quantity appearing in 1U C - U, when multiplied by pV, has the form of the “kinetic
energy due to relative motion” Wthh plays a key role in effective continuum conservation equations
for inviscid two-phase dispersions developed by Geurst [9,10] and Wallis [11,12]. Indeed, the forces
described by (24) and (25) are recovered from Wallis [12], equation (87), in the limit when C is
isotropic, the volume of the particle is constant, there is no unsteady flow and the particle is at
rest. Geurst’s equations have the desirable property of being objective. It appears that the drift
force is necessary in order to make the overall interaction force objective, as discussed in a more
restricted case by Drew and Lahey [13,14].

Since the mean pressure gradient in the fluid flow is
Vp=-pU.VU (26)

the force in (25) is equivalent to minus the volume of the object times the gradient of a “particle
pressure”:

1
szl_’_§/)U'g'U (27)

"which can be shown (Wallis [15}) to be the same as the mean bulk stress in the object when a
uniform flow is oriented along a principal axis of C and no external forces act on the object, or
more generally when the restraining torque in (3) is applied by simple couples composed of equal
and opposite forces acting perpendicular to a lever arm between them.
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ACTIVE CONTROL of CONVECTION
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ABSTRACT

Using stability theory, numerical simulations, and in some instances experiments, it is
demonstrated that the critical Rayleigh number for the bifurcation (i) from the no-
motion (conduction) state to the motion state and (ii) from time-independent
convection to time-dependent, oscillatory convection in the thermal convection loop
and Rayleigh-Bénard problems.can be significantly increased or decreased. This is
accomplished through the use of a feedback controller effectuating small
perturbations in the boundary data. The controller consists of sensors which detect
deviations in the fluid's temperature from the motionless, conductive values and then
direct actuators to respond to these deviations in such a way as to suppress the
naturally occurring flow instabilities. Actuators which modify the boundary's
temperature/heat flux are considered. The feedback controller can also be used to
control flow patterns and generate complex dynamic behavior at relatively low
Rayleigh numbers.

INTRODUCTION

Until recently, most of the scientific community's work in the convection field has focused on
identifying and describing various physical phenomena. In contrast, our work focuses on directing
convective systems to behave in desired ways. The ability to control flow patterns is important from
both the technological and the theoretical points of view. In many material processing applications,
convection plays an important role. The ability to control the flow may lead to better quality
products and more economical processes than are currently possible. In some processes, it may be
desirable to operate at Rayleigh (R) numbers higher than the one at which convection occurs and yet
have no convection. In other processes, it may be desirable to suppress (laminarize) chaotic or
turbulent motions and maintain a steady, time-independent flow in order to minimize flow
unpredictability, remove temperature oscillations which may exceed safe operational conditions,
and/or reduce drag. In still other processes, it may be advantageous to induce chaos, under
conditions at which it would not normally occur, so as to enhance mixing, heat transport or chemical
reactions. From the theoretical point of view, the ability to control the transition and routes to chaos
and to stabilize otherwise nonstable equilibrium states may assist us in obtaining a better
understanding of the dynamics of convective systems and the transition to turbulence.

Our work on active feedback control of convection has focused on two simple paradigms: the
thermal convection loop which is an experimental analog of the celebrated Lorenz equations [1] and
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the classical Rayleigh-Bénard problem: The: thermal convection loop has the advantage that its flow
dypamics can: be approximated by a low-dimension, dynamic model and that the theoretical
predictions: can be verified by relatively simple experiments. After succeeding in controlling flow
patterns. in the thermal convection loop, we utilized the physical insights we gained there to modify
the flow patterns of a more: complicated convective system, the Rayleigh-Bénard problem which is a
paradigm of convective phenomena occurring in various material processes. Our work on these
problems had: proven applicable to: other flow phenomena as well. For instance, we have successfully
demonstrated. that the loss. of stability of planar Poiseuille flow can be 51gmf1cant1y delayed or
advanced through active: feedback contrel [2].

THE THERMAL CONVECTION LOOP

The thermal convection loop is made of a pipe, bent into a torus, standing in the vertical plane.
The lower and upper halves of the torus. are heated and cooled, respectively. The heating and cooling
conditions. are symmetric with respect to the loop axis that is parallel to the gravity vector. In the
absence of a controller, as the temperature difference between the heated and cooled sections of the
thermal convection loop. inereases, the flow in. the loop changes from no-motion to steady, time-
independent motion to. temporally oscillatory, chaotic motion with occasional reversals in the
direction of the flow. The bifurcation diagram of the uncontrolled system is depicted in Fig. 1. With
the use of a feedback controller making small perturbations in the boundary conditions, we have
demonstrated that it is possible to:

(i) maintain the no-motion state at significantly higher temperature differences between the
heated and the cooled portions of the loop than the critical one corresponding to the onset of
convection in the uncontrolled system [3];

(i1) maintain steady, time-independent flow under conditions in which the flow would otherwise
be chaotic [4,5].

(iti) stabilize periodic, non-stable orbits which exist in the chaotic regime of the uncontrolled
system [3];

(iv) induce chaos. in otherwise laminar (fully predictable), non-chaotic flow [5]; and

(v) render a subcritical bifurcation supercritical through the use of a nonlinear controller [6].

To make some of this work more concrete, we report in Figs. 2-4 a sample of our observations.
Fig. 1 depicts the bifurcation diagram for the flow in the uncontrolled loop. For Rayleigh numbers
R<R], the no-motion state is globally stable. As R is increased above R j, the no-motion state loses
stability and is replaced by time-independent motion either in the clockwise or the counterclockwise
direction. When R is further increased to R=R2, a second bifurcation occurs, and the time-
independent motion loses stability. The loss of stability occurs through a subcritical Hopf bifurcation
into a non-stable, limit cycle. Above R2, the time-independent motion is replaced with a complicated
time-dependent, chaotic motion. Fig. 2 depicts the experimentally observed temperature difference
(AT3.9) between positions 3 and 9 o'clock around the loop as a function of time in the chaotic regime
of the uncontrolled system. Changes in the sign of AT3.9 indicate a change in the flow direction.
When AT3.9>0 (<0), the flow is in the counterclockwise (clockwise) direction. Fig. 3 shows the effect
of the controller. To highlight this effect, the figure depicts the experimentally measured AT3.9 as a
function of time both before and after the activation of the controller. Witness that once the
controller has been engaged, the seemingly random; violent oscillations of Fig. 2 disappear and the
flow is laminarized. The boundary conditions corresponding to Fig. 2 were altered only slightly to
produce the almost time-independent flow shown in Fig. 3 for r>33 minutes. The feedback
controller operates by sensing any deviation of AT3.9 from its desired value and altering slightly the
heating rate, according to a prescribed control rule, in such a way as to nullify the deviation. The
observed behavior is in agreement with our theoretical predictions.

The Hopf bifurcation occurring in the thermal convection loop as well as in many other flow
systems (i.e., shear flows) is subcritical. In the case of subcritical bifurcations, often the size of the
domain of attractlon of the time-independent state is fimited. In fact, in shear flows, the transition to
turbulence typically occurs at subcritical Reynolds numbers, This is apparently du_e to disturbances
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which grow sufficiently large so as to escape the domain of attraction of the laminar state and cause
the system to snap through the nonstable limit cycle to a possibly chaotic or turbulent attractor. In
order to increase the domain of attraction of the time-independent state, we drew inspiration from [7]
and used nonlinear control to render the subcritical bifurcation supercritical. The bifurcation
diagram of the thermal convection loop with and without nonlinear (cubic) control is depicted in Fig.

4. The theoretical predictions were successfully verified in experiments.
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Fig. 1. The (unscaled) bifurcation diagram |Fig. 2: The experimentally observed

depicting various flow patterns in the
uncontrolled loop as a function of the
Rayleigh number. Stable and nonstable states
are denoted by solid and dashed lines,
respectively. The dark region represents the
appearance of the strange attractor, which
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temperature difference, AT3.9, is depicted as a
function of time for the uncontrolled thermal
convection loop.
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temperature difference, AT3.9 is depicted as a
function of time both before and after
activation of the controller. The controller was
activated 33 minutes into the run. Observe the
difference between the chaotic oscillations and
the controlled (laminarized) flow.

convection loop problem is shown without
control {k, k,}={0,0}, with linear proportional
control fk, ku}={-1,0}, and with linear and
nonlinear controllers {k, kp}={-1,-1]. k and kp
denote, respectively, the linear and nonlinear
controller gains.
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THE STABILIZATION OF THE NO-MOTION STATE IN THE RAYLEIGH-BENARD
PROBLEM

Encouraged by our success with the thermal convection loop, we impilemented similar ideas in
two more complicated flow systems: the Rayleigh-Bénard problem of a Newtonian fluid and the
Lapwood problem of a saturated porous medium heated from below and cooled from above. In both
cases, as the Rayleigh number, R, increases, the uncontrolled system undergoes a sequence of
bifurcations from no-motion to time-independent motion (at R=RJ) to time-dependent motion (at
R=R?2). The magnitude of R] depends on the container's geometry. The magnitude of R2 depends
on both the container's geometry and the fluid's Prandtl number (Pr). As the Prandtl number
decreases so does the magnitude of R2. In this section, we describe the stabilization of the no motion

state. In other words, we use a controller to increase the magnitude of R;.

The controller consists of sensors and actuators. The bottom surface consists of individual
. heaters, each equipped with a separately controlled power supply. The heaters serve a dual purpose.
They supply the nominal heat flow needed to drive the convection as well as serve as actuators which
effectuate the control. The sensors are diodes embedded on the heated surface and located at the
layer's mid-height. They detect deviations in the fluid's temperature from the desired conductive
values and direct the actuators to act in such a way as to enhance the disturbance-dissipating
mechanisms in the fluid. More specifically, when the sensors detect an increase (decrease) in the
fluid's temperature caused by an ascending (descending) column of fluid, they direct the actuators to
reduce (increase) slightly the container's bottom temperature beneath the ascending (descending)
fluid column. Through this action, the buoyant forces are reduced, thereby increasing the time
available for conduction to dissipate disturbances before they have the opportunity to manifest
themselves. Once the disturbances have been dissipated, the container's bottom temperature is
restored to its nominal, uniform value.

For example, in the case of a linear,

”£ proportional control, the control law can be

"""""""""""""""" written as g = Keé -where € is a n-dimensional
vector describing the deviations of the measured

e temperatures from their desired values, g is a m-
dimensional vector describing the actuators’
output, and K is a m X n matrix whose entries
are the controller gains. The simplest situation,
which we have studied thus far, is that of a single
sensor being linked to a single actuator through
a feedback loop. In such a case, the matrix K is
square and diagonal. In the future, we will also

[ d r {time ingacendent)

o 0/3.117 (time indeaencent)

- r{tima dependent Pre7.0)
- 0dd Modes
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study other scenarios such as when the matrix K
k is not diagonal as well as nonlinear control

schemes. '
Fig. 5: The normalized critical Rayleigh Due to its accessibility to analytical
treatment, we initially focused our attention on
(r= } and wave (a/3.117) numbers the problem of an unbounded, horizontal fluid
1707.762 ) layer. Using linear stability analysis, we first
are deplc'ted as functions of the thermal  gemonstrated that R, in a saturated porous layer
controller's gain (Kp) for Pr=7. The solid  (he T apwood problem) could be significantly
and dotted curves describe the loss of stability increased [8]. The porous media problem was
through, respectively, a simple eigenvalue studied for three reasons: (i) it is relevant to

(exchange of stability) and a Hopf 0y technological processes such as transport
bifurcation. The dashed curve describes 1oss i, the mushy region of solidification processes
of stability of the first odd mode. and gel electrophoresis of macromolecules; (ii)
it allows simpler and more complete analytic
treatment; and (iii) if necessary, experiments in porous media can be conducted in a cruder and less
expensive apparatus than would be required in the Newtonian fluid case since the onset of convection
in porous media occurs at much higher temperature differences between the container's bottom and
top than it does in a Newtonian fluid.
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Subsequently, we carried out stability analyses of the controlled, no-motion state of a
Newtonian fluid (the Rayleigh-Bénard problem) heated with a uniform temperature [9,10] and with
uniform flux [11}. For example, for the uniform temperature heating and cooling, we demonstrated
that the critical Rayleigh number for the onset of convection can be postponed from 7708 (in the
uncontrolled system) to at least about /7,000 (in the controlled system). It is likely that with more
sophisticated control strategies than the ones we have used, additional increases in R] would be
possible. Fig. 5 depicts a stability diagram which shows the normalized Rayleigh number (R 7/1708)
as a function of a proportional controller gain.

In order to study the

s supercritical flow dynamics in the
127 A uncontrolled and controlled systems
- e and the stability in cylindrical
~ 7(0.0,-0.5) Cermmrmaerm e m——— M y y 3
16 pm-m-oo-sn e TemTTTT bttt containers, we developed numerical
. ! V4 . p . .
ol ' o codes. The numerical simulations
' [02.99) '/ R demonstrated that the controller can

successfully suppress non-linear
disturbances. Fig. 6 illustrates the

0.4 (00,051 /20 - controlled system's response to
X po ‘ R random disturbances. For Rayleigh
o2r \ ANy number, R=3000, Pr=0.7, and
oL ~o B = . controller gain Kp=3, Fig. 6 depicts,
as functions of time (¢), the mid-
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Fig. 6: The temperatures, 7(0,0) (solid line) and T(0,-0.5) (dot-dashed line) on the left hand

(dashed line), and the , vertical velocity v(0,0) are depicted as side of the computational domain.
functions of nondimensional time (¢) for R=3000 and For the controlled system, the critical
Pr=0.7. For 0<t<4, the controller is off. For 4<t<8, the Rayleigh number, wavenumber, and
controller with gain A is active. For ¢t>8, the controller cell width are, respectively, Rc=3538,
counteracts the action of random disturbances. ar=3.877,and Ly=0.81.
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Fig. 7: The temperature field (isotherms) for| Fig. 8: The temperature field (isotherms)
R=10,000 and Pr=0.7 in the presence of a| associated with time-independent flow in the
controller with gain K, =8.0 and random| absence of a controller for R=70,000 and
fluctuations in the temperature field. The almost| Pr=0.7. The boundary conditions are similar
horizontal isotherms indicate lack of convection.| to the ones in Fig. 7.

This figure should be contrasted with Fig. 8.

The initial conditions in Fig. 6 correspond to a no-motion state (t=0). In the beginning, the
controller is off and the nondimensional bottom (z=-0.5) temperature is uniform, 7(0,-0.5)=1. As a
result of a thermal disturbance intentionally introduced at point (0,0), counter-clockwise motion
begins. In order to contrast the controlled and uncontrolled states, we allow the motion state to
achieve equilibrium (this normally will never happen when the controller is active). At time =4, the
proportional controller with a gain Kp=3 is switched on. Since, in this case, we are dealing with
established motion, the controller alters significantly the container's bottom temperature. This
alteration in the container's bottom temperature causes a prompt reduction in the buoyancy force,
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which, in turn, causes the flow to slow down. This slow down provides sufficient time for thermal
dissipation to restore the conductive temperature field. As a result, the motion is successfully
suppressed. The fact that the controller succeeded in suppressing an established motion suggests that
it has a large domain of attraction. Once the motion has been suppressed, the controller restores the
bottom's nondimensional temperature to its nominal, uniform value of J, the mid-plane's
nondimensional temperature to its conductive value of 0.5, and the vertical velocity to its no-motion
value of zero. A glance at the temperature field (not shown here) reveals perfectly horizontal
isotherms. In other words, for 4<¢<8, a stable, no-motion state is sustained for supercritical Rayleigh
numbers with boundary conditions identical to the ones of the uncontrolled system.

We also tested the controller's response to small disturbances for >8. We introduced random
fluctuations in the temperature of magnitude up to +1%. Despite these disturbances, the container's
bottom temperature remained close to its nominal value of one and there was essentially no motion in
the fluid. In order to illustrate the temperature and velocity variations, it was necessary to stretch the
vertical axis (see the insert in Fig. 6).

Fig. 7 depicts a snapshot of the temperature field (isotherms) for a controlled layer (Kp=8) with
R=10,000 (r~5.85). The temperature field was subject to random disturbances of magnitude up to

+1% of the grid point's temperature. The fact that the isotherms remained essentially horizontal
suggests the absence of convective motion. This figure should be contrasted with Fig. 8 which
depicts the temperature field for the same conditions in the absence of a controller. Fig. 7 clearly
illustrates that the controller has successfully maintained a no-motion state under conditions in which
convection normally would occur.

Although the controller preserves the classical no-motion state of the Rayleigh-Bénard problem,
it has a profound effect on the supercritical behavior. The stability diagrams indicate that the
controller can cause a transition from the no-motion state to complicated, time-dependent,
supercritical motions at relatively low Rayleigh numbers. This suggests yet another potential
application of the controller. Rather than stabilizing an equilibrium state of a given system, the
controller could be used to create flow structures to suit particular requirements.

Before constructing an experimental apparatus to verify the numerical predictions, we needed
to determine the optimal number and location of the sensors and actuators required to effectuate the
control. We modified our numerical codes to analyze 3-D convection in an upright, circular
cylinder. Preliminary results were presented in [12]. Since the three-dimensional, time-dependent
computations required a considerable amount of computer time, a great effort went into code
optimization. Computations have been carried out to determine the magnitudes of Ry and R2 as
functions of apparatus geometry, various control strategies, the number of sensors and actuators, and
potential time delays.

We are now in the process of
constructing an experimental
apparatus. The experimental set-up
is described schematically in Fig. 9.
Briefly, the experimental apparatus
consists of an upright cylinder, 0.06m
= \ in diameter, heated from below and
Hi TR cooled from above. The height of
o 5 ' the fluid layer and the aspect ratio of

[rower Arpiters | - the apparatus (radius/height) can be
' | varied. About 40 sensors and 40
5 actuators are used to facilitate the

| Fower sopely control. The bottom of the
apparatus contains a network of

individually controlled heaters.

Fig. 91 A schematic description (not drawn to scale) of the
experimental set-up.

The need to use a relatively large number of sensors and actuators has required us to devise
novel solutions. Since we were not able to purchase the necessary actuators, we were forced to
microfabricate them ourselves. The heaters were manufactured by growing an oxide layer on the
back of a silicon wafer and spattering a thin nichrome layer on top of the oxide. Using
photolithography, we shaped the heaters to the desired form. Next, we spattered silicon nitride on top




of the nichrome layer and etched windows in the silicon nitride to allow the deposition of gold
electrodes on top of the heaters. The electrodes are used to assure uniform current density in each
heater. Bonding pads were deposed on top of the silicon nitride layer to accommodate electrical
leads for the supply of power .

Our theoretical studies suggest that the most effective location of the sensors is at the fluid
layer's midheight. We have selected diodes to serve as temperature sensors. Because the diodes allow
only unidirectional current flow, we have been able to significantly reduce the number of lead wires
and multiplexer channels compared to what would be required if we were to use other sensing devices
such as thermistors and/or thermocouples. The diodes are interconnected with two sets of intersecting
wires (Fig. 9). We denoted one set of parallel wires with letters A, B, ... and the other set with numbers
1, 2,.... The temperature sensed by diode C4 can be read by measuring the potential across wires C

and 4. In order to measure n? diodes, we need only two sets of n intersecting wires and a multiplexer
with 2n channels. In contrast, if we were to use thermistors or thermocouples, the number of lead

wires and multiplexer channels would be proportional to n2. We tested the operation of the diode
arrays, individually calibrated the diodes, and demonstrated that we can detect temperatures with a
precision better than 0.0/K.

Via a multiplexer, the sensors' output is transmitted to a computer. Any of the sensors can
control any of the actuators. According to a predetermined control law, the computer modulates the
actuators' power.

For the onset of convection experiments, we will use Dow-Corning 200 fluids. We can
customize the fluid to obtain the desired temperature difference between bottom and top at the onset
of convection. For example, for Dow Corning 200 with a viscosity of /000cs and a layer height of
0.02m, the critical temperature difference at onset is about 3K.

Initially, experiments will be conducted in the absence of a controller to determine, as a
function of the apparatus’ aspect ratio and the working fluid, the critical Rayleigh numbers for the
onset of convection in the uncontrolled system. A description of the post-critical flow patterns in our
apparatus will also be obtained. The measured results will be compared with our theoretical
predictions for the uncontrolled system. Subsequently, we will repeat the experiments in the presence
of a controller and observe the effect of the controller on the stability of the no-motion state as well
as on the supercritical flow patterns.

SUPPRESSION OF OSCILLATORY RAYLEIGH BENARD FLOWS
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Fig. 10: The angular veloc1ty u¢ at a point on numerical simulations allow us to obtain a wealth
the cylinder's midplane is depicted as a function ©of information which can not be readily
of time. The system is (not) controlled for measured in experiments and enhance our
(t<40) t>40. R=5000. understanding of the flow dynamics at high
Rayleigh numbers.

For example, for a cylindrical container, with an aspect ratio (radius/height) of one, contammg
Newtonian fluid of Pr=0.02 (i.e., gallium), we found that the first bifurcation from no-motion to
time-independent motion occurs at Rj~2200. A second bifurcation from time-independent flow to
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time-dependent flow occurs at R2~4800. A sequence of additional bifurcations follows in quick
succession until chaotic flow is observed for R>9000. A

For R<R2, the flow consists of two counterrotating cells. With the onset of oscillatory behavior,
the two cells oscillate angularly at relatively low amplitude. Using control strategies similar to ones
we described in the previous section, we were able to suppress the oscillatory behavior. Fig. 10
depicts the angular velocity u¢ at a point on the cylinder's midplane for R=5000. The initial
conditions correspond to a no-motion state. For t<40, the system was not controlled and oscillatory
motion has evolved. For ¢>40, the controller is active. The controller successfully suppresses the
oscillatory behavior and retains time-independent convection under the same conditions in which, in
the absence of a controller the motion would have been oscillatory.

CONCLUSIONS

We have tackled the complicated problem of controlling highly nonlinear, distributed
parameter systems. Through analysis, numerical simulations, and experiments (in the case of the
thermal convection loop only), we have demonstrated that flow patterns can be controlled. Our
immediate challenge now is to obtain experimental verification for our theoretical predictions for the
Rayleigh Bénard problem. If successful, this research may provide the material processing
community with an enabling technology.
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ABSTRACT

Buoyancy-induced convection during the solidification of alloys can
contribute significantly to the redistribution of alloy constituents, thereby creating
large composition gradients in the final ingot. Termed macrosegregation, the
condition diminishes the quality of the casting and, in the extreme, may require that
the casting be remelted. The deleterious effects of buoyancy-driven flows may be
suppressed through application of an external magnetic field, and in this study the
effects of both steady and time-harmonic fields have been considered. For a steady
magnetic field, extremely large field strengths would be required to effectively
dampen convection patterns that contribute to macrosegregation. However, by
reducing spatial variations in temperature and composition, turbulent mixing
induced by a time-harmonic field reduces the number and severity of segregates in
the final casting.

INTRODUCTION

During solidification of an off-eutectic metal alloy, zones of pure solid and liquid are
separated by a two-phase (solid/liquid), or mushy, region, consisting of fluid saturated dendritic
structures. When solidification is induced by chilling a static mold from the side and/or from
below, dendritic crystals which initially form at the cold surface may reject a lighter constituent
which is redistributed by the combined influence of solutal and thermal buoyancy forces in the
mushy and molten zones. Composition changes within the mushy zone may also induce regions
of localized remelting in which channels develop and provide preferential paths for the flow of
interdendritic fluid. The channels ultimately become sites of large composition gradients (termed
segregates), and the large-scale redistribution of constituents in a fully solidified ingot is termed
macrosegregation. One objective of research on alloy solidification is to reduce




macrosegregation by altering patterns of natural convection inherent in the solidification process.
Options include solidification in a y-gravity environment or active control of the process by
thermal, mechanical or electromagnetic means. In the following sections consideration is given to
the effects of both steady and time-harmonic magnetic fields on flow and macrosegregation
occurring during solidification.

Regardless of the manner in which a magnetic field is applied, the induced Lorentz force is
determined by a cross product of the current density and the field strength, F. = J x B. Fora
moving medium, the current density follows from Ohm’s law, J = 6, (E + V x B), where o is the

electrical conductivity of the medium, E is an externally applied electric field, and V x B is the
electric field induced by fluid motion through the magnetic field. Magnetic damping occurs when
an electrically conducting fluid flows transversely through a steady magnetic induction field, and
with E = 0, the Lorentz force reduces to F, = 6.(V x B) x B. In contrast to the passive
(dissipative) influence exerted by a steady (d.c.) magnetic field on a convecting liquid metal, a
time-harmonic (a.c.) magnetic field has an active influence which involves stirring of the molten
alloy. The electric field induced by a time-varying magnetic field drives eddy currents, which
interact with the magnetic field to induce the Lorentz forces. In this study an external inductor is
configured to provide a traveling magnetic field in a vertical, annular mold. The field is
characterized by its angular frequency , axial phase variation (wave number) k,, and phase

velocity V, = a/k,.

MATHEMATICAL MODEL

A continuum model for transport phenomena in binary, solid-liquid phase change systems
(Prescott et al., 1994) has been extended to account for the effects of magnetic damping or
electromagnetic stirring (EMS). Assuming two-dimensional (r,z) conditions in a vertical, annular
mold, the model transport equations for conservation of total mass, axial and radial momentum,
energy and species may be expressed as

d
a—‘x) +V-(pV) =0 1)
2 (pu)+ V{pVu)= V-—(p rp)2ve[-B Py )epB, - 4E @)
at I 1 t : K pl s 11z aZ Lz |
d i p p (v=£vs) i p oP
Z (V) +V-(pVW) = V.| (g +11) E Vv |~ (g +p ) AT B P (o ) Z 4R ()
R [ R - AT )
-gt—(ph)+ V-(pVh) = V- (2124-%&!:71]%} + V-[(Cl‘;Jr%;rﬁfs-]v(h: —h)}
L\ >s t Vs s tvs
= V-[£p(V = Vo)(h; — hy)] @
2 (p£%) + V-oVE%) = V-[(pD +-fsl—t‘—t)Vf“]+ V-[(pD +%Jv(f{” ~£° )]
t t
— V-[£,p(V = VO)(f — £)] (5)
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where B,, is the net (thermal/solutal) buoyancy force per unit mass of liquid and F,_ is the Lorentz
force.

For the magnetic damping conditions of this study, the Lorentz force is oriented
exclusively in the radial direction (F_, = 0) and the corresponding force component is
F, _=-0_B2v. Moreover, since turbulence generation is negligible, u, = 0. In contrast, for
EMS, Lorentz forces are manifested principally in the vertical direction and turbulent mixing is a
likely consequence of the stirring action. The radial dependence of K , has been determined
(Prescott and Incropera, 1994), and a low Reynolds number k-€ model (Launder and Spalding,
1974) has been used to evaluate the turbulent viscosity p, (Prescott and Incropera, 1995).
Turbulence has the effect of increasing the effective viscosity, | =, +},, and a dimensionless
viscosity may be defined as p* = (i, + 1, J,. Effective Prandtl and Schmidt numbers may also be

defined as Prg =V q/0l g = Prjt’{1+Pr{p’ ~1)Pr, | and Sc 4 = v o/D gy =
Scp"f1+Sc(u’ ~1)Sc, |. For the Pb-Sn system, Pr = 0.02 and Sc = 172 (Le = Sc/Pr = 8600).

Hence, for representative values of 1° = 100, Pr, = 1.2, and Sc, = 1.0, Pr,; =0.75and Sc =1,
yielding an effective Lewis number of 1.33. Although the respective molecular diffusion rates of
momentum, energy, and species are highly disparate, turbulence has the effect of approximately
equalizing these diffusion rates. Furthermore, by increasing the effective diffusion coefficients for
all field variables, turbulence reduces the influence of advection, rendering all transport rates less
sensitive to velocity vectors and more sensitive to gradients in the respective field variables.
Calculations were performed for an experimental mold cavity of height H = 150
mm and inner and outer radii of r, = 15.9 and r, = 63.5 mm, respectively. The mold contains a
molten charge of Pb-19 wt pct Sn, which is initially at 305°C, and solidification is initiated by
subjecting the side wall to cooling characterized by a chill temperature of T, = 13°C and an
overall coefficient of U =35 W/m” K. For magnetic damping, field strengths of B, = 0.1 and 0.5
T are considered. For EMS a downward magnetic field characterized by @ = 377 rad/s, k, = -29

rad/m and B_(r,) = 2.9 mT (rms) is considered.

RESULTS

Magnetic Damping. Three simulations, corresponding to values of B, =0,0.1 and 0.5 T,
were performed to assess the effects of magnetic damping. For the base case, B, =0 (Fig. 1), a
strong, counterclockwise thermal convection cell is established shortly after the sidewall is chilled,
and within t = 120 s, crystals begin to precipitate at the bottom of the mold wall, thereby forming
a two-phase (mushy) zone. As cooling continues, the mushy zone grows, with the liquidus
interface moving vertically upward and radially inward. Att= 140 s, a thin mushy zone of
nonuniform thickness is attached to the bottom one-third of the cooled mold wall. The
precipitation of solid is accompanied by solute (Sn) enrichment of interdendritic liquid, Fig. 1i (d),
which induces solutal buoyancy forces acting upward on the interdendritic liquid and opposing
thermal buoyancy forces caused by the radial temperature gradient, Fig. 1i (c). Because the
density of Sn is significantly less than that of Pb, solutal forces dominate within the mushy zone.
Interdendritic fluid which escapes from the mushy zone at z~ = 0.27, Figs. 1i (a) and (b), is turned
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Fig. 1 Convection conditions after (i) t = 140 s and (ii) t = 175 s of cooling with no magnetic
field: (a) velocity vectors, (b) streamlines, (c) isotherms, and (d) liquid isocomps.

downward along the liquidus interface by the momentum of the thermal convection cell, thereby
confining the liquid composition gradient primarily within the mushy zone, Fig. 1i (d).

With time, the liquidus interface moves radially inward and vertically upward along the
cooled mold wall. As this process occurs, fluid is exchanged between the mushy and melt zones
in a relatively confined region near the top of the mushy zone, where a strong, solutally driven
(Sn-tich) flow emerges from the mushy zone and interacts with thermally driven flow in the bulk
melt, Fig. 1ii (b). Since the Pb-Sn system is characterized by a large Lewis number (Le ~ 8600),
fluid within the solutal convection cell readily exchanges energy with the bulk liquid but largely
retains its composition. As shown in Fig. 1ii (a), these conditions favor the development of a
channel within the mushy zone. Since fluid ascending along the cooled mold wall is enriched with
Sn, there is a depression in the local liquidus temperature, which is conducive to remelting. In
addition, due to the advection of warm, Sn-rich fluid from the melt into the mushy zone, remelting
is enhanced and a channel is spawned. The channel is aligned vertically along the mold wall and is
delineated by a thick dashed line in Fig. lii (a). In addition to the exchange of liquid between the
mush and melt promoted by the channel, three small recirculation cells are active along the
liquidus interface at z* ~ 0.3, 0.6, and 0.8, Fig. lii (b). Such recirculations are responsible for
establishing preferred flow paths of interdendritic liquid at later times. Fluid of nominal
composition enters the mushy zone at the bottom of these recirculation zones and displaces fluid
of higher Sn concentration. Thus, a small Sn depleted region, with an increased solid fraction and
decreased permeability, is created. At the top of a recirculation cell, there exists a Sn enriched
zone with decreased solid fraction and increased permeability. The position of these interfacial
recirculation cells moves as the liquidus interface advances inward and upward, thereby creating a
series of channels, which manifest themselves as A-segregates in the final casting. The
momentum associated with the thermal convection cell gradually decreases, as temperature
gradients in the melt diminish and opposing solutal buoyancy forces increase.

For B, =0.1 T, development of the mushy zone and the solutally driven convection cell,

Fig. 2i (b), is accelerated. Magnetic damping reduces the strength of the thermally driven
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circulation, thereby decreasing heat transfer between the melt and the cooled mold wall.
Furthermore, due to the decreased momentum associated with the thermally driven downflow
along the outer mold wall, Sn rich fluid from the mushy zone penetrates further into the melt, Fig.
2i (d). Since the thermal cell 1s weakened by the magnetic field, it is less effective at opposing the
discharge of Sn rich liquid from the mushy zone, and the propensity for channel development is
increased. A fully melted channel which turns radially inward from the outer mold wall, Fig. 2ii
(a), provides a preferred flow path for interdendritic fluid, Fig. 2ii (b), facilitating its transfer to
the top of the mold cavity, where Sn rich layers of liquid are forming, Fig. 2ii (d).

By increasing the induction field to 0.5 T, radial damping increases twenty-five fold,
significantly reducing thermal convection and thermal stratification during the initial cooling
period. Att= 140 s, Fig. 3i, a mushy zone covers nearly 90% of the vertical extent of the outer
mold wall, the temperature gradient is primarily radial, and the positive buoyancy associated with
the Sn concentration gradient in the interdendritic fluid produces an annular plume of Sn rich
liquid ascending from the mushy zone. Since the magnetic field strongly dampens thermal
convection during the initial cooling period, this solutal upwelling is virtually unopposed and is
responsible for the channel which forms along the mold wall, where the local liquidus temperature
is depressed. The strong magnetic damping causes the thermal and solutal convection cells to be
sharply divided by a hypothetical cylindrical surface whose radius corresponds closely with the
liquidus interface, Fig. 3i (b). With time, the mushy zone and the vertical interface between
thermal and solutal convection cells move radially inward. Since vertical motion is undamped,
solutal buoyancy forces continue to accelerate interdendritic fluid to relatively large velocities
within the channel adjacent to the outer mold wall, while magnetic damping has the effect of
minimizing radial motion. At t=210 s, the counterclockwise thermal cell is virtually nonexistent,
Fig. 3ii (b), and with the dominance of solutal buoyancy, solutal stratification eventually occurs.

Macrosegregation patterns at a time for which fluid flow is negligible and
macrosegregation is essentially complete are shown in Fig. 4. The A-segregates of Fig. 4 (a)

Sn.
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Fig. 2 Convection conditions after (i) t = 140 s and (ii) t = 210 s of cooling with B, = 0.1 T: (a)
velocity vectors, (b) streamlines, (c) isotherms, and (d) liquid isocomps.
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Fig. 3 Convection conditions after (i) t = 140 s and (ii) t = 210 s of cooling with B, = 0.5 T: (a)
velocity vectors, (b) streamlines, (c) isotherms, and (d) liquid isocomps.
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Fig. 4 Macrosegregation pattersn after 600 seconds of cooling: (a) without magnetic damping,
(b) with B, =0.1 T, and (c) B, =0.5T.

correspond to a series of Sn-rich pockets extending upward and radially inward from a Sn-
depleted region. In addition to the pattern of A-segregates, there is a large cone segregate of Sn-
rich material, which extends downward from the top of the ingot and results from solutally
induced flow during intermediate stages of solidification. Application of the magnetic field has
virtually no influence on development of the cone of positive segregation, but does affect the
patter of A-segregates. For B =0.1 T, Fig. 4 (b), the channel that existed at earlier times yielded
a highly segregated zone among the array of A-segregates, which consists of adjacent extremes in
positive (Sn-rich) and negative (Sn-depleted) segregation. Although the number and severity of
the A-segregates are reduced for B, = 0.5 T, Fig. 4 (c), overall segregation remains pronounced.
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Magneric Stirring. With application of a downward traveling magnetic field (k, < 0), the

Lorentz force acts in the downward direction and decreases with decreasing radius. Hence, the
corresponding recirculation is one for which fluid ascends near the inner radius of the cavity and
descends near the outer radius, thereby augmenting and opposing thermal and solutal buoyancy
forces, respectively.

Predictions based on the turbulent model yielded a large convection cell and melt
velocities during the early stages of solidification. However, correspondingly large values of the
effective viscosity suppressed development of the velocity field, and att = 160 s, Fig. 5i, the
maximum velocity is 12.1 mmy/s, with p* = 208. Solidification has progressed for approximately
10 s, and a mushy zone of highly nonuniform thickness covers approximately 60% of the mold
wall. The main convection cell, Fig. 5i (b), is driven by Lorentz forces, while a solutally driven
convection cell is developing near the bottom within the confines of the mushy zone. Although
i” =1 along the mold walls, Fig. 5i (e), large levels of turbulence exist throughout the melt. Due
to the combined effects of local turbulence generation and distance from the walls, at which the
turbulence kinetic energy, k., is zero, the maximum effective viscosity J_, occurs at ' = 0.5 and

z' = 0.7, Fig. 5i (¢). Turbulence is damped in the mushy zone, but significant turbulent mixing
still occurs near the liquidus interface within the mushy zone and is responsible for reducing
gradients in the liquid Sn concentration, Fig. 5i (d,e).

With rapid growth of the mushy zone and a concomitant reduction in fluid velocities, the
mushy zone occupies almost the entire mold cavity at t = 180 s, Fig. 5ii. Although the turbulence
intensity has also decreased significantly, Fig. 5ii (), it still enhances mixing in the interior of the
cavity, thereby maintaining nearly uniform temperatures and concentrations in much of the mushy
zone, Fig. 5ii (c,d). The turbulence intensity is a maximum for r* = 0.5 at the top surface, Fig. 5ii
(e), where damping is small due to small volume fractions of solid. The solutal convection cell is
growing and eventually dominates flow conditions in the cavity. However, because Lorentz
forces oppose solutal buoyancy forces, the clockwise convection cell in Fig. 5ii (b) grows more
slowly than it would without electromagnetic stirring. Att = 195 s, most of the turbulence has
been dissipated by damping, and its influence is confined to relatively small interior regions near
the very top and bottom of the cavity, Fig. 5iii (¢), where solid volume fractions are relatively
small. However, under the influence of prior, turbulence-induced mixing, uniform temperatures
and liquid compositions persist in much of the mushy region, Fig. 5iii (c,d).

The solutal convection cell continues to grow, while the electromagnetically driven cell
and turbulence gradually decay. By t =210 s, solutal buoyancy dominates convection, forming
layers of Sn-rich liquid and causing dendrites to remelt at the top. Convection conditions
representative of intermediate stages of solidification are shown in Fig. Siv, which corresponds to
t =240 s. Turbulence is virtually fully decayed, Fig. 5iv (e), and interdendritic liquid is
recirculated through the cavity in one large convection cell, Fig. 5iv (a,b). The small,
counterclockwise recirculation cell at the bottom of the cavity vanishes completely shortly after t
= 240 s, due to the increasing radial gradient in liquid Sn concentration. The convection pattern
supplies cool Sn-rich liquid to the top interior region of the cavity, Fig. 5iv (c,d), thereby
establishing vertical gradients of temperature and liquid Sn concentration. In the outer periphery
of the mold cavity, gradients in temperature and liquid concentration are primarily radial and
nearly uniform in the vertical direction.
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Fig. 5 Effect of EMS on conditions at (i) t = 160 s, (i1) t = 180 s, (iii) t = 195s and (iv) t =240 s:
(a) velocity vectors, (b) streamlines, (¢) isotherms, (d) liquid isocomps, and (e) effective
visocity (turbulence).

The subsequent development of macrosegregation patterns is shown in Fig. 6. Att =240
s, Fig. 6 (a), macrosegregation is slight, with more than 95% of the partially solidified ingot
remaining within 0.66% of the nominal composition. However, the solutal convection pattern of
Fig. 5iv (b) is ultimately responsible for the formation of a cone of positive segregation at the top
of the ingot, Fig. 6 (e), and although the overall rms macrosegregation is less than that predicted
without electromagnetic stirring, the cone segregate of Fig. 6 (¢) is only slightly smaller than that
predicted without a magnetic field, Fig. 4 (a).

Turbulence has the effect of diminishing perturbations in the temperature and liquid
concentration fields, thereby inhibiting the formation of channels in the mushy zone. With
increased turbulent mixing, effective diffusion coefficients for momentum, energy, and species
transfer are essentially equalized, decreasing the relative effect of advection and causing gradients
in temperature and liquid Sn concentration to remain primarily radial and nearly uniform in the
vertical direction. During early stages of solidification, counter-rotating convection cells driven
by solutal buoyancy and Lorentz forces occupied the outer and inner portions of the cavity,
respectively, with minimal mutual interactions and hence reduced the propensity for forming
severely segregated regions associated with channels.
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SUMMARY

Options for suppressing the effects of natural convection on macrosegregation during the
casting of molten alloys include active control of the solidification process by thermal, mechanical
and/or electromagnetic means. However, results of this study indicate that, without unreasonably
large field strengths, use of a steady magnetic field to dampen convection is not a viable option.
In contrast, through a stirring action, use of a time-varying magnetic field of moderate strength
has been shown to reduce the severity of macrosegregation.
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ABSTRACT

Pool boiling and flow boiling were examined for near-saturated bulk conditions
in order to determine the critical heat flux (CHF) trigger mechanism for each.
Photographic studies of the wall region revealed features common to both
situations. At fluxes below CHF, the vapor coalesces into a wavy layer which
permits wetting only in wetting fronts, the portions of the liquid-vapor interface
which contact the wall as a result of the interfacial waviness. Close examination of
the interfacial features revealed the waves are generated from the lower edge of the
heater in pool boiling and the heater's upstream region in flow boiling.
Wavelengths follow predictions based upon the Kelvin-Helmholtz instability
criterion. Critical heat flux in both cases occurs when the pressure force exerted
upon the interface due to interfacial curvature, which tends to preserve interfacial
contact with the wall prior to CHF, is overcome by the momentum of vapor at the
site of the first wetting front, causing the interface to lift away from the wall. It is
shown this interfacial lift-off criterion facilitates accurate theoretical modeling of
CHF in pool boiling and in flow boiling in both straight and curved channels.
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1. INTRODUCTION

Predicting CHF has been the focus of a considerable body of research spanning over three
decades. For pool boiling, the well known CHF model of Zuber et al. [1] has maintained its
popularity because. of its theoretical appeal and use of well-established hydrodynamic instability
hypotheses in determining limits on liquid access. to a horizontal surface. Many attempts have
been made to alter this model in order to account for effects the original model did not address.
These include: finite heater size, heater geometry, and surface orientation. The latter of these
effects, particularly the case of a vertical surface, is of special interest to the present study.

While the model by Zuber et al. [1] predicts zero CHF for vertical surfaces, experimental
evidence proves CHF for this orientation and all orientations between horizontal and vertical are
only slightly smaller than for a horizontal surface. Not only does this negate the suitability of this
model for vertical surfaces, but it also raises questions concerning the CHF trigger mechanism on
which the model is founded, even for horizontal surfaces. It is one of the key objectives of the
present study to develop a new model for pool beiling CHF from vertical surfaces.

With regard to flow boiling, six main types of models have been proposed which encompass
virtually all of the CHF research. These are boundary layer separation [2, 3, 4], mechanical
energy criterion [5, 6], bubble crowding [7, 8, 9], sublayer dryout [10, 11, 12], and interfacial
lift-off [13, 14, 15, 16]. The latter is the model discussed in the present paper.

Numerous, fairly reliable empirical CHF correlations also exist in the literature. However, in
recent years, many researchers have refocused their efforts on determining the key physical
mechanisms responsible for initiating CHF in pursuit of a universal CHF model.

The present study will first explore the trigger mechanism for CHF from a short vertical
surface in near-saturated flow boiling using an apparatus which lends itself to high resolution
photographic study of interfacial features. A model is proposed the validity of which will be
tested for both straight and curved flow boiling. The curved flow configuration facilitates an
assessment of the accuracy of the model in predicting the enhancement effects measured by many
researchers due to curvature [17, 18, 19, 20]. This study will then treat pool boiling on a vertical
surface simply as a limiting condition of flow boiling corresponding to zero liquid velocity. It will
then be shown the proposed model reduces to a simple expression for pool beiling CHF.

2. EXPERIMENTAL METHODS

Straight and Curved Flow Boiling Visualization Facility

A CHF flow visualization apparatus was designed to maximize photographic access to
interfacial features in close proximity to the heater surface in both straight and curved flows. The
apparatus consisted of a curved flow channel having a 4.19-cm outer radius of curvature, which
was located downstream from a straight channel. A 1.27-cm long heater was inserted in each of
the straight and curved regions of the channel. As shown in Fig. 1, the flow channel was formed
by milling a 0.16 cm X 0.64 cm slot into a transparent polycarbonate plastic (Lexan) plate. A
second Lexan plate was clamped onto the first plate trapping an o-ring seal. The centerline of the
curved heater was positioned at a 135-degree angle relative to the inlet flow. Both the straight and
curved heaters were constructed from copper and heated by a thick-film electrical resistor silver
soldered to the outer protruding surface. The heaters were inserted into insulating flanges made
from G-10 fiberglass plastic. An o-ring was pressed between the base of each heater assembly
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and the flow channel plate providing a leak proof seal. FC-87, a 3M dielectric fluid, was tested at
a pressure of 1.37 bars (T,; = 39 °C) with 8 °C inlet subcooling. Tilting the entire flow channel
module allowed all tests to be conducted in an upflow configuration with respect to the tested
heater. Only one heater was operated at a time.

Pool Boiling Facility

Figure 2 shows a schematic of the pool boiling test chamber which was constructed of G-10
fiberglass plastic and fitted on the front and back with Lexan windows. The chamber was
equipped with two condensers and three cartridge heaters. The condenser coiled inside the
chamber effectively recovered all of the vaporized liquid. An external reflux condenser connected
to the chamber's vent acted as a final barrier to any escaping vapor during both deaeration and
testing. To prevent the boiling on the cartridge heaters from influencing CHF on the primary test
heater, the cartridge heaters were placed at the back of the test chamber, isolated from the test
heater by a baffle plate. Water and FC-72, another 3M dielectric fluid, were tested at atmospheric
pressure. The FC-72 test heater consisted of a 12.7 x 12.7 mm? copper block which was heated
by a thick-film electrical resistor silver soldered to its back. A similar configuration was used for
pool boiling of water but with a heater measuring 12.0 x 62.0 mm?. Each heater was mounted on
an angular rotation platform to facilitate testing at different surface orientations.

Pressure and Temperature
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Figure 1. Flow Boiling Apparatus
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3. PHOTOGRAPHIC STUDY OF VAPOR LAYER INTERFACIAL FEATURES

The flow and pool boiling facilities showed similar vapor production behavior at conditions
leading to CHF. At a heat flux of about 85% of CHF, large coalescent bubbles were observed
sliding over the heater surface. The length of these coalescent bubbles increased with increasing
heat flux until, eventually, a fairly continuous wavy vapor layer was formed over the heater
surface at heat fluxes below CHF. Boiling was sustained by liquid entrainment near the lower
edge of the heater in pool boiling and the heater's upstream edge in flow boiling, as well as in
wetting fronts, where the liquid-vapor interface made contact with the heater surface.
Experimental evidence supporting this wetting front description is also available from studies by
Fiori and Bergles [21], Hino and Ueda [22, 23], and Galloway and Mudawar [20]; all of whom
measured fluctuations in heater surface temperature synchronous with the passage of vapor slugs.

Figure 3 shows the vapor layer formation on the curved heater in flow boiling corresponding
to heat fluxes equal to 99% of CHF. Using a magnification better than 50X, no vapor jets could
be seen emanating from the heater surface. Rather, a violent surge of small bubbles in the wetting
fronts was observed to be feeding the vapor layer. The wavelength for both the straight and
curved heaters decreased with increasing velocity. However, the curved heater exhibited
significant differences in the shape of the wavy vapor layer as compared to the straight heater. For
equal inlet velocities, the interfacial wavelength was greater for the straight heater than for the
curved heater and, occasionally, at inlet velocities greater than 1.25 m/s, the curved heater
projected vapor away from its surface in the form of vapor slugs which protruded from the wave
peaks. No such behavior was observed with the straight heater.

Vapor layer mean thickness and wavelength were measured from high-speed video images
captured by a 6000 partial frames per second Kodak EktaPro 1000 motion analyzer, which were
later analyzed on a 55-cm wide screen; only still photography was used in the pool boiling tests.
Thirty measurements were made for each inlet velocity to quantify the randomness of the
interfacial features. Figure 4 shows the wavelength for the straight heater was greater than for the
curved heater and the wavelengths for both heaters decreased with increasing inlet velocity.
Figure 4 also compares the ratio of wavelength to mean thickness of the vapor layer for both
heaters.

Translation
micrometer

Condenser inlet @ ﬁ
Vent to Condenser outlet

atmosphsre

Window - : Condenser

Window

Thermocouple
translation stage

Orientation platform
Test heater

Figure 2. Pool Boiling Test Chamber
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4. CHF MODEL

Model Assumptions

The proposed CHF model is built upon physical observations from extensive high speed video
imaging studies as discussed in the previous section and illustrated in Fig. 5: (1) at heat fluxes
approaching CHF, vapor coalesces to form a fairly continuous wavy vapor layer; (2) liquid is
entrained at wetting fronts where the liquid-vapor interface contacts the heater surface; (3)
vigorous boiling persists near the leading edge of the heater and in the wetting fronts while regions
between neighboring wetting fronts dry out; (4) CHF commences when the liquid-vapor interface
separates from the heater surface at the location of the most upstream wetting front; and (5)
remaining wetting fronts are separated, in succession, after separation of the upstream wetting
front.

As shown in Fig. 5, the first wetting front is established at a distance z* from the leading edge
and then propagates along the heater surface at a speed c,. The vapor layer interfacial wavelength,
2A., was determined from hydrodynamic instability theory (discussed below) and observations
made using the high-speed video imaging. When the liquid-vapor interface is unstable, a
disturbance having a wavelength equal to A, is assumed to touch the heater surface at z = z* (z* is

U,,=0.50 m/s

Figure 3. Wavy Vapor Layer Development on Curved Heater in Flow Boiling Just Prior to CHF
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slightly greater than A, the difference being a negligible distance zg over which the vapor velocity
just exceeds the liquid velocity as discussed by Galloway and Mudawar [14]), enabling liquid to
contact the heater over a localized region. A short time later, at ¢ = A./c,, another disturbance
approaching the heater surface will be forced away by the momentum of vapor emanating from
residual liquid at z = z+ left after the passage of the previous wetting front. Not until a later time
t =22Jc,, after the residual liquid has been consumed at the location of the first wetting front, will
a new wetting front be established on the heater surface. Wetting is, therefore, skipped every
other cycle and wetting fronts are separated by 24, wavelengths.

Surface Energy Balance at CHF

A Lagrangian frame of reference is used to model heat transfer to the moving wetting fronts
illustrated in Fig. 5. Equation (1) sums the transient energy removed from the heater by the
passage of all wetting fronts in contact with the heater between the time a wetting front first forms
on the heater surface and the time the next wetting front is established at the same location.

Equation (1) also accounts for the steady heat removal from the continuous wetting zone,
O<z<2z"

c/2/1

Gm=—""-5> J‘ f g, dz dt + - +f f qs npdz dt|, (D

where 45195725 - - » 95, are the local heat fluxes corresponding to wetting fronts 1, 2, . ., n,
respectively. Where a wetting front is present, g, is equal to some localized heat flux value, g;,
otherwise g, is essentially zero where the heater surface is dry.
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Figure 4. Vapor Layer Wavelength and Ratio of Wavelength to Mean Thickness Just Prior to CHF
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The photographic study and data base revealed the span (length) of each wetting front was
one-fourth the separation distance between wetting fronts; i.e., CHF is about one-fourth the heat
flux concentrated in the wetting fronts. A surface energy balance detailed by Galloway and
Mudawar [14] reduces equation (1) to the following expression for CHF:

k| @

where the coefficient in the brackets is close to unity for most operating conditions and accounts
for continuous wetting in the region 0 < z < z* and any partial wetting fronts in the downstream
region, and g; is the heat flux required to cause lifting of the most upstream wetting front.

CHEF Trigger Mechanism: Lift-off Criterion
The lift-off heat flux will develop when the normal momentum of vapor generated in the

wetting front just exceeds the pressure force exerted upon the interface as a result of interfacial
curvature.
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Figure 5. Wetting Front Propagation along a Vertical Surface
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Combining equations (2) and (3) yields an expression for CHF which is applicable to both

straight and curved heaters.
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Equation (4) shows predicting CHF requires estimation of Pr-P,. The next section will discuss
an instability model which will be used to predict this key parameter for both straight and curved
heaters.

The lift-off criterion alone can explain why, in flow boiling, CHF is greater for the curved,
concave heater than the straight heater. For an assumed sinusoidal wave with wavelength A and
amplitude 7, curvature at the wave peak is proportional to (7,/A)?/ n,. Although the straight
and curved heaters produced waves with fairly equal amplitudes, Fig. 4 indicates the waves
acquired greater curvature over the curved heater than they did over the straight heater. This
increased curvature resulted in a greater pressure force exerted upon the interface and,
consequently, increases both the lift-off heat flux in the wetting fronts and CHF relative to the
straight heater. As will be shown later, the curved heater produced an average enhancement of
23% compared to the straight heater.

Interfacial Instability of Vapor Layer

The interfacial waviness illustrated in Fig. 5 can be idealized as a hydrodynamic instability of
an interface between a vapor layer of velocity u, ,, and height H, and a liquid layer of velocity
Uz , and height Hy. Using classical instability theories [24, 25], the interfacial pressure difference

resulting from a sinusoidal disturbance of the form 7(z#)=7, &*6=<) perpendicular to the
unperturbed interface can be expressed as [14] ‘

I'}— ——ﬂk[l?f(c ufm) +pg( gm 0)2]—(Pf—l3g)gnﬂ=-0'k277, (5)

where g, is the body force per unit mass perpendicular to the unperturbed interface (g, = 0 for
vertical upflow over a straight heater), and the modified density terms for a straight channel are
expressed as [14]

p} = pycoth (k Hf) , (6a)

Py =Py coth (k Hy). (6b)
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Solving equation (5) yields the following equation for ¢:

R— RV
_Pelem* Pr¥im ok g,,(pf—pg) pgpf(ug,m_“f,m)

o (p; + P}) (P; + P}) & (p; + P}) i (p; + P})z Y

The critical wavelength is defined as the wavelength that produces a neutrally stable wave. This
wavelength can be calculated by setting the argument of ¢ in equation (7) equal to zero.

. -2 . - -2
2 _ pf pg (ug,m_uj;m) pf pg (ug,m_uf,m) N &n (pf_ pg) ®
& 2 a(p} + p;) 2 o(p} + p;) c -

This classical hydrodynamic instability model is not applicable to curved flow. Recently,
Galloway and Mudawar [26] developed a new model for hydrodynamic instability along a curved
interface. Interestingly, the above instability model was proven equally valid for curved flow,
provided the liquid and vapor velocities in equations (5), (7) and (8) are calculated along the
interface, and the modified density terms are replaced by the following:

P =py (92)

(9b)

CHF Model Predictions for Straight and Curved Flow Boiling

A separated flow model given by Galloway and Mudawar [14, 26] was employed to predict
local mean values of vapor layer thickness and velocities of the liquid and vapor layers in terms of
. inlet velocity, subcooling, and heat flux. These local values are required in order to predict the
interfacial wavelength and P—P, .

Figure 6 shows the CHF model predicts the experimental data for the straight and the curved
- heaters with mean absolute errors of 7% and 14%, respectively. The accuracy of the model
predictions is proof of the validity of assumptions used in constructing the surface energy balance
and of the lift-off criterion. The CHF enhancement obtained with the curved heater over the
straight heater is a direct consequence of the increased curvature of the individual interfacial waves
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causing an increase in the net pressure force exerted upon the interface in the wetting fronts.

As for the limitations of the present model, several conditions exist for which the assumptions
used may not be valid. They include (a) near-critical pressure, (b) highly subcooled flow, where
the vapor layer development may be strongly influenced by condensation along the vapor-liquid
interface, (c) high inlet velocities corresponding to g, = U /R, > 10g, , where vapor slugs begin to
detach from peaks in the wavy vapor-liquid interface, and (d) long heaters. A recent study by two
of the authors [15, 16] explored the stream-wise changes in the interfacial features at CHF over
long heaters. The vapor waves between wetting fronts maintained equal wavelengths over an
axial distance close to the length of the heaters used in the present study, but were found to grow
downstream due to merging of adjacent waves. This behavior increased the distance between
wetting fronts resulting in smaller CHF for long heaters as compared to heaters close in size to the
one used in the present study. These findings, while determined from straight heater experiments,
clearly indicate the present model should not be applied in its present form to long straight or
curved heaters.

5. THEORETICAL MODEL FOR POOL BOILING CHF FROM A VERTICAL SURFACE

Growth of Vapor Layer

Figure 7 shows pool boiling data for water for orientations ranging from horizontal
(6 = 0 degrees) to vertical (90 degrees), compared with predictions of the model by Zuber et al.
[1], modified by replacing g, by g. cos6. CHF decreases with increasing angle of orientation
following, to some degree, the predicted trend. However, while the model predicts zero CHF for
the vertical orientation, the data show an increase in CHF between 75 and 90 degrees. Obviously,
the mechanism proposed by Zuber et al. is not suitable for near-vertical orientations.

In pool boiling on a vertical surface, the mean velocity of liquid outside the vapor layer is zero.
Equations for the mean vapor velocity, u, ,, , and vapor layer thickness, d, can be derived by
applying mass, momentum, and energy conservation for a control volume of the vapor layer of
length Az. Combining both mass and energy conservation for this control volume and integrating
with respect to z gives

100 [

Heater
Straight
Curved

1.0
Um (m/s)

Figure 6. Comparison of Model Predictions and Flow Boiling CHF Data for Straight and Curved
Heaters
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A momentum balance on the same control volume yields
45 a2, 8= ) (11)
dz pgug,m - (pf - Pg) 8e 0-
Combining equations (10) and (11) gives a differential equation relating L-tg, m to z. The solution

for this equation is

172
- 2 pf—pg
Uy m=l7|——— 182 - (12)

Substituting for L-tg, m using equation (12) in equation (10) gives the variation of é with z.

-172

5= A %(pf—pg)ge V. (13)

Pg

The critical wavelength corresponding to the onset of instability can be derived from equation
(8) by setting g, and ug ,, equal to zero; further simplification is also possible because, for the
conditions of the pool boiling study, Pe=P,-

o.2o$r....,‘.r.,,..,[
§  oasf B & g 1
2 &
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& Zuber et al.
-] [
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Figure 7. Comparison of Pool Boiling CHF Data for Different Orientations with Predictions of
the Modified Model by Zuber et al. [1]
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The mean interfacial pressure force over the wetting front for a sinusoidal wave with
k=2n/ (24, becomes
6.

' (15)

B-P,=2y2x

Substituting the above expression in equation (4), neglecting the coefficient due to the upstream
continuous wetting zone and the downstream partial wetting front, gives

12
(16)

Since the first wetting front is centered at z = lc, the critical wavelength, equauon (14), can be
expressed in terms of g ,, , equation (12), corresponding to z = - Ac. This gives

12

a=|3n|20e) O ) (17
| \PrmPg | Pr8e|

Substituting the expressions for § (based on z = A.), equation (13), and A., equation (17),
in equation (16) yields the following CHF relation

1/4

3

In=3 (18)

hfg pf"'pg P2

8

. 304 '
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The above equation can be further simplified for saturated conditions, and pressures much smaller
than critical to

144
’ O-(pf—pg)ge
Do

Interestingly, equation (19) is identical in form to the model by Zuber et ql. [1], although the
- mechanisms proposed in the individual models are distinctly different. Also, while the model by
Zuber et al. predicts zero CHF for vertical surfaces, the present model, as shown in Fig. 7,
predicts a CHF value for the same orientation only 11% smaller than the data.




6. CONCLUSIONS

Experiments involving pool and flow boiling from vertical surfaces were performed to
ascertain the CHF trigger mechanism for each. The flow boiling experiments included both
straight and curved surfaces. Key conclusions from the study are as follows:

(1) A fairly continuous wavy vapor layer engulfs the heater surface at heat fluxes smaller than
CHEF in both pool and flow boiling. Boiling remains active in wetting fronts, where the interface
of the vapor layer contacts the heater surface. CHF is triggered when the normal momentum of
the vapor produced in the wetting front exceeds the pressure force exerted upon the interface due
to interfacial curvature. ,

(2) A CHF model constructed from these observations predicts flow boiling CHF data for the
straight and curved heaters with mean absolute errors of 7% and 14%, respectively.

(3) In flow boiling, CHF is higher for the curved heater than for the straight heater because of
a greater pressure resistance to interfacial separation in the case of the curved heater.

(4) For pool boiling, the present model reduces to an expression identical in form to the model
by Zuber et al. [1], although the mechanisms proposed in the individual models are distinctly
different. However, while the model by Zuber et al. predicts zero CHF for vertical surfaces and is
therefore unsuitable for vertical surfaces, the present model predicts a CHF value for the same
orientation only 11% smaller than the data.
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NOMENCLATURE
c wave speed
(e specific heat at constant pressure
c, real component of wave speed
&e Earth gravity
8n component of body force per unit mass normal to

liquid-vapor interface

H channel height, Hf+ Hg, Ry -R,

H liquid layer thickness

P/g vapor layer thickness

hg,  latent heat of vaporization

k wave number, 21/A

k. critical wave number, 27/A,

L heater length

n number of wetting fronts

P pressure

P¢— P, mean interfacial pressure difference in wetting front
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q1 heat flux (at CHF) corresponding to wetting front separation (lift-off)

Am critical heat flux (CHF)

Ry radius of unperturbed interface in curved flow

R, inner radius of curved channel

R, outer radius of curved channel and curved heater surface

t time

T = temperature

AT, liquid subcooling

u,  mean velocity across liquid or vapor layer

U,,  mean liquid velocity upstream of heater in flow boiling

z spatial coordinate in the stream-wise direction

z* distance from leading edge of heater to center of first wetting front, zo + A.(z*)
2 position from leading edge where the liquid and vapor velocities become equal

Greek Symbols

mean vapor layer thickness (= H,)

interfacial displacement

amplitude of interfacial displacement

surface angle of orientation

wavelength of interfacial perturbation

critical wavelength corresponding to onset of instability
density

modified density defined in equations (6a) and (6b)
modified density defined in equations (9a) and (9b)
surface tension

wetting period

NQADOVDO P OII X

Subscripts

f saturated liquid
g saturated vapor
m mean

sub  subcooling
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ABSTRACT

High-power, short-pulse lasers in the picosecond and subpicosecond range
are utilized in an increasing number of technologies, including materials processing
and diagnostics, micro-electronics and devices, and medicine. In these
applications, the short-pulse radiation interacts with a wide range of media
encompassing disordered materials and liquids. Examples of disordered materials
include porous media, polymers, organic tissues, and amorphous forms of silicon,
silicon nitride, and silicon dioxide. In order to accurately model, efficiently control,
and optimize short-pulse, laser-material interactions, a thorough understanding of
the energy transport mechanisms is necessary. Thus, fractals and percolation
theory are used to analyze the anomalous diffusion regime in random media. In
liquids, the thermal aspects of saturable and multiphoton absorption are examined.
Finally, a novel application of short-pulse laser radiation to reduce surface adhesion
forces in microstructures through short-pulse laser-induced water desorption is
presented.

INTRODUCTION

Since their invention thirty years ago, lasers have altered the direction and rate of the
development of science and technology. Laser applications have fundamentally influenced modern
technology in the areas of measurement, materials, manufacturing, information, and
communication [1]. Short-pulse lasers are being applied to materials processing and diagnostics,
electronic device fabrication and maintenance, and medical procedures. In these varied
applications, short-pulse laser radiation interacts with a multitude of different materials, including,
but not limited to, metals, semiconductors, polymers, porous media, liquids, and biological tissue.

Examples of short-pulse laser applications in materials processing and diagnostics include
annealing of radiation damage in ion-implanted semiconductors, recrystallization of amorphous
(noncrystalline) and polycrystalliné silicon, rapid thermal cleaning, deposition of thin films,
creation of metastable alloys, and thin-film and atomic-level diagnostics [2]. The increased
temporal resolution of optical observations in diagnostics allows detailed "stop action"
observations of previously inaccessible phenomena. In addition, the ultrashort laser-material
interaction time permits highly localized observation and processing due to the short-range of
diffusion during the interaction time.
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In these applications, laser interactions with random media such as amorphous materials,
porous media, and composites are often required. Amorphous forms of materials such as silicon
dioxide, silicon nitride, and silicon are widely used in microelectronics and micro-sensor/actuator
fabrication. Many nanostructured and metastable materials formed by laser processing are also
amorphous [3]. Also, porous silicon, porous metal "black" coatings, polymers, and composites
are becoming increasingly important. Nanosecond and picosecond laser pulses have also been
used to ablate atherosclerotic tissue [4], a biological tissue which is random in nature.

Additionally, the interaction of high-power, pulsed laser radiation with liquids is
fundamental to applications in many contemporary technologies, including ophthalmic
microsurgery and gall-stone fragmentation [5], laser-induced desorption of thin films [6], laser
particle removal [7], photothermal spectroscopy, and laser pulse generation and modification [8,9].
The liquid phase is also present in both laser melting and vaporization processes. Moisture
induced device failure is a significant and persistent problem in the microelectronics industry
[10,11], with incomplete moisture removal from electronic devices being a cause of leakage
current, oxidation, and contamination [11]. Microelectromechanical systems are also subject to
liquid related problems during fabrication and operation. Sticking and the accompanying high
static friction between a tiny movable part and an underlying substrate, termed stiction, is a major
problem for microstructures and is mainly due to capillary forces from residual water [12,13].

In laser-assisted processes and laser design, temperature control is a major consideration
necessitating the accurate characterization and modeling of energy transport during laser-material
interactions. As the pulse width of lasers used in many applications has decreased into the
picosecond and subpicosecond range, the applicability of conventional models of energy transport
is questionable [1,14]. Short-pulse laser heating of metals has been recently researched for both
single- and multi-layer metal films [15,16,17], but the interaction between short-pulse laser
radiation and random media or liquids is not fully understood and will be discussed in this paper.
An application of short-pulse laser radiation to reduce the surface adhesion of silicon
microstructures is also presented.

TRANSPORT IN AMORPHOUS AND NANOSTRUCTURED MATERIALS

In short time-scale applications involving random media, a regime of anomalous diffusion
is observed, where the thermal diffusivity is time dependent. In this anomalous regime, transport
is slowed compared to that which occurs during normal diffusion. Fournier and Boccara [18]

observed anomalous diffusion in an assembly of weakly-bonded, copper spheres (~ 100 um in
diameter) heated by a short-pulse (~ 1 ns) laser. By measuring the transient surface temperature,
they were able to distinguish the anomalous diffusion region from those in which normal diffusion
occurred. Gefen et al. [19] predicted that anomalous diffusion will have an important effect on the
AC electrical conductivity of a percolating network in high frequency (short time-scale)
applications. Similarly, Goldman et al. [20] predicted that anomalous diffusion will have a
significant effect on thermal transport in amorphous materials on short time scales such as short-
pulse laser-material interactions.

The range and impact of anomalous diffusion in transient thermal transport in random
media was studied using fractals and percolation theory. A fractal is a shape that is made up of
parts similar to the whole in some way [21]. A percolation network is characterized by its
correlation length, &, a length scale below which the network exhibits fractal behavior and above
which it appears homogeneous. Figure 1 shows the temporal behavior of surface temperature of a
random medium heated by an instantaneous plane source. Three distinct regimes are present. In
the first regime, the heat is absorbed by the basic unit of the percolating network which is
Euclidean, so the temperature follows that predicted for normal diffusion. An example of a basic
unit of a percolating network is a porous silica particle in a silica aerogel [22,23]. Next, the energy

84




is transmitted from one site to another in the fractal cluster and diffusion is anomalous. Finally, the
energy carriers have traveled a distance greater than the correlation length in the material, the
material appears homogeneous, and diffusion is once again normal.
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The impact of anomalous diffusion can be determined by considering the characteristic time
and length-scales of heating and other transport mechanisms relative to the time and length-scales
of anomalous diffusion[24]. Anomalous diffusion is expected to occur when the length-scale of
transport is on the order of the correlation length. The characteristic crossover times, t; and t.,

depend on the particle size, a, and correlation length, &, respectively, as well as the diffusivities, o,
and 0. Figure 2 illustrates the dependence of the anomalous diffusion regimes on particle size,
correlation length, and diffusivity of the particle or random medium.

SHORT-PULSE, HIGH-INTENSITY LASER-LIQUID INTERACTIONS

When exposed to laser irradiation, liquid molecules absorb photons and transition to
excited states, which usually have different absorption characteristics than the initial (ground) state.

After a characteristic relaxation time, Tp, ~1072-1071° s, the molecule will relax back to the ground
state. At low intensities, relaxation occurs fast enough to keep the majority of the molecules in the
ground state; the absorption is then linear, obeying an exponential decay with distance into the
liquid (Beer's law). At high laser intensities, however, enough molecules can be promoted to
excited states to alter the bulk transmission and heating effects [25]. This is called saturable
absorption, and occurs in both pure liquids and solutions, including organic dyes, alcohols, and
water. In Figure 3, plots of the temperature rise as a function of distance x into a common
saturable absorber (Eastman dye # 9470) are shown. One-hundred 35 ps laser pulses with
wavelength of 1064 nm and pulse energy of 70 mJ pass through a 1 cm dye cell. The dye

‘concentration is 8.1-107° mol/liter in a 1,2 dichloroethane solvent. The threshold intensity I
represents the onset of saturation, and the intensity is increased by an order of magnitude in each
frame. The dashed lines are classical, low-intensity model results; the solid lines represent the
microscopic model. The deviation from low-intensity models (Beer's law) is seen to be very
significant at high intensities.
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Figure 3. Intensity-dependent temperature during saturable absorption [25]
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At even higher intensities the molecule can absorb enough photons to either ionize, which
removes an electron completely, or dissociate into simpler constituent products. This process,
called multiphoton absorption and photolysis, results in a combination of free electrons, ionized
cations, and dissociation products that can interact strongly with the incident laser pulse, strongly
altering the absorption and heating properties of the liquid [26]. Figure 4 shows the temperature
profiles in 1 cm of water irradiated by a combination of 532 nm and 266 nm laser pulses of 1 ns

duration at intensities of 1-10° and 1-10' W/cm®. For the high-intensity pulse, the temperature
rise varies over one to two orders of magnitude from the front to the back of the liquid. The total
temperature rise due to the 266 nm and 532 nm laser pulses can exceed 40 K, which is three to
four orders of magnitude greater than that predicted by classical models [26]. Also, the
temperature rise is a strong function of intensity, thus precise control of heating in the liquid can be
accomplished by varying the intensity.
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Figure 4. Temperature profiles in water during multiphoton absorption [26]
REDUCTION OF STICTION USING SHORT-PULSE LASER RADIATION

Stiction, the high surface adhesion between microelectromechanical surfaces, is often the
result of forces from capillary liquids during the microdevice release process. Residual water
molecules can be present underneath the silicon microstructures stuck on the underlying substrate.
The desorption of trapped liquid molecules should reduce the adhesion force on the structures.
Desorption induced by ultrashort-pulse laser radiation for metals and resulting electronic excitations
was first reported by Prybyla et al. [27]. After irradiating a Pd surface with 200 femtoseconds
(fs), 620 nm laser pulses, they measured the desorption rate of NO molecules from the Pd surface
and showed that the total desorption yield varies superlinearly with the absorbed laser fluence.
Since the desorption yield is proportional to the fluence at pulse durations longer than nanoseconds
[28], a desorption mechanism other than thermal desorption due to lattice vibrations was involved.
The role of the extremely high electron temperature was later confirmed by Prybyla et al. [29], and
a model of desorption yield was proposed by Kao et al. [30].
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Calculations for silicon microstructures (~ 2 um thick) irradiated by short-pulse lasers (< 5
ps) indicate that high electron temperatures would exist at short times at both the front and rear
surfaces (where the front surface is the surface irradiated by the laser) [31]. At the same time, the
lattice temperature does not significantly increase. Therefore, the possibility for short-pulse laser-
induced water desorption and a subsequent reduction in stiction is possible. If the adhesion force
is reduced below the value of the restoring force of the microstructures, structures stuck to
underlying surfaces will be freed as shown in the schematic in Figure 5.

short-pulse laser radiation

polysilicon cantilever

/\

ilicon substrate

Figure 5. Schematic of the Stiction Reduction Experiment

Experiments to determine the feasibility of using short-pulse laser radiation to reduce the
surface adhesion in silicon microstructures were conducted using a 790-nm-wavelength
Ti:Sapphire laser [32]. The pulse duration and repetition rate were 150 fs and 1 kHz, respectively.

The laser fluence had maximum value of 17 mJ/cm2. A stiction test structure consisting of
cantilevers ranging in length from 60 pm to 1 mm at 20 pm increments was fabricated on an
undoped polysilicon substrate. All of the cantilevers have same width (5 um) and thickness (2
um), and the free separation between a cantilever and the substrate is 1.5 pm. After the drying
process, cantilevers longer than 100 um on the test structure were stuck to the substrate. An image
of the test structure after five seconds of irradiation by the laser beam showed the release of two
cantilevers of length 100 um and 120 pm from the substrate due to the ultrashort-pulse laser
irradiation. Thus, the experiments indicated the feasibility of using short-pulse laser radiation to
reduce stiction by the possible mechanism of water desorption induced by electronic excitations.

CONCLUSIONS

Short-pulse laser-material interactions are examined for disordered or random materials.
Using fractals and percolation theory, an analysis of short time-scale energy transport in random
media delineates three regimes of heat transport. The three regimes correspond to transport over
the basic percolation unit (particle), the fractal cluster, and the homogeneous medium. Scaling
shows that the anomalous diffusion regime is bounded by characteristic times depending on the
material properties and structure.

In high-power, laser-liquid interactions, the saturable and multiphoton absorption
mechanisms of energy deposition are investigated. Saturable absorption occurs when a sufficient
number of molecules have been promoted to excited states by incoming laser radiation, thus
affecting bulk transmission and absorption. In multiphoton absorption and photolysis, molecules
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absorb a sufficient number of photons to ionize or dissociate. This results in a combination of free
electrons, ionized cations, and dissociation products which can interact strongly with the incident
laser pulse, altering the absorption and heating properties of the liquid. Temperature profiles
calculated considering the effects of saturable absorption or multiphoton absorption and photolysis
differ considerably from those predicted by classical heating models.

An application of short-pulse laser radiation is the reduction of surface adhesion in
microstructures. Through short-pulse laser-induced desorption of liguid molecules present below
a microstructure stuck to an underlying substrate, the adhesion forces on the structures can be
reduced and device recovery achieved. This process could be used to both increase device yield
during fabrication and extend the operation of microelectromechanical systems.
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STUDIES ON THE FORMULATION OF THERMODYNAMICS AND STOCHASTIC
THEORY FOR SYSTEMS FAR FROM EQUILIBRIUM
John Ross
Department of Chemistry
Stanford University
Stanford, California 94305

ABSTRACT

We have been working for some time on the form-
ulation of thermodynamics and the theory of
fluctuations in systems far from equilibrium and
progress in several aspects of that development are
reported here.

THEORY

The theory is based on the concept of an excess work, ¢,
that is the work necessary for a differential displacement of
a system in an arbitrary state, further away from a
stationary state, minus the work of the same displacement
away from the stationary state (or at a specified reference
state). This excess work, ¢, has the following properties:

1. the excess work, ¢, provides necessary and sufficient
conditions of global stability for systems with one or more
stable stationary states. 2. ¢ is the thermodynamic driving
force towards the stationary states and is a species-specific
affinity. 3. ¢ is a Liapunov function with ¢ in the form of

Boltzman's H theorem. 4. ¢ is a measurable excess work
attainable from the spontaneous relaxation in a differential
displacement along the deterministic trajectory minus the
work of that same displacement from the stationary state. 5.
¢ provides a criterion of relative stability of two stable

stationary states. 6. With proper reference states ¢ yields
the stationary probability distribution of stochastic
equations describing the given processes.

The structure of the theory is analogous to that at
equilibrium and revolves into that theory as the system
approaches an equilibrium point, rather than a stationary
state.

We have established a new fluctuation-dissipation
relation for one-variable nonlinear processes which connects
the macroscopic deterministic net reaction rate, the
probability diffusion coefficient, and the species-specific
affinity. This fluctuation-dissipation relation may also be
viewed as a force-flux relation. The main feature of this
development is the symmetry with respect to the contributions
of the forward and backward chemical processes to
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fluctuations and relaxation. Two new physical
interpretations of the probability diffusion coefficient are
given: one corresponds to a measure of the strength of
fluctuations at a steady state, and the other to a measure of
the instability of a given fluctuation state. The dispersion
of the number g of reaction events in a given time interval

is given by a generalized Einstein relation: {Aq2}=2VD(x)t,
where V is the volume of the system. Further, the diffusion
coefficient D(x) is proportional to the reciprocal value of

the mean age {t(x)} of a fluctuation state characterized by

the concentration X2 D(x)=1/[2V{T(X)}]. These

interpretations are not related to the use of a Fokker-Planck
approximation of the chemical master equation.

For single variable systems the excess work, ¢, is a
state function which, however, is not the case for multi-
variable systems. Hence in the evaluation of the excess work
for multi-variable systems a path of integration through the
concentration space for chemical systems must be chosen. If
the process to be described follows the deterministic
equations of motion then that path is also the most probable
path in a stochastic investigation and the excess work must
then be evaluated along that path. If, however, we
investigate fluctuations away from a stationary state then
the excess work for such fluctuations must be evaluated along
the most probable path of a fluctuation from a stationary
state to a given nonstationary state. We have shown that, in
general, deterministic paths of relaxation to stationary
states are not the same as most probable fluctuational paths
away from stationary states. We have investigated these
issues by means of the eikonal (WKB type) solution of the
master equation for two-variable chemical systems with
multiple stationary states. If we suppose there to be two
stable stationary states then these are separated by a
deterministic separatrix and as well by a different
fluctuational separatrix. Caustics occur in the system and
require careful analysis. We have checked the validity of
the eikonal approximation against a Monte Carol solution of
the master equation and find the results accurate.

We have conducted extensive calculations and experiments
to test our theory in regard to relative stability of two
stable stationary states. Consider a volume such as a tube
filled with the system, subject to given constraints, in one
of the two stable stationary states. Next consider a similar
volume for the same external constraints filled with the
system in the other of the two stable stationary states. On
connection of the two tubes there occurs a motion of the
front between the two different stationary states such that
the more stable stationary state eliminates the less stable
stationary state. At equistability of the two stable
stationary states the front velocity is zero. We have shown
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that the excess work for creating the front between the two
stable stationary states from either of the two stable
stationary states provide the necessary criterion of relative
stability. Thus if the excess work calculated from one of
the stable stationary states to the stable front of the
interface between the two stationary states exceeds that of
the excess work from the other stable stationary state to
that stable front then the interface moves in the direction
of annihilating -the region with the larger excess work.
Experiments in relative stability in the bistable multi-
variable bromate-ferroin reaction confirm this result of the
theory.

We have attempted an application of our theory to a
thermodynamic theory of hydrodynamics. The thermodynamic
potential (state) functions for irreversible processes
approaching equilibrium are known: for example, the Gibbs
free energy change for the processes at constant temperature
and pressure. Changes in this Gibbs free energy yield the
maximum work available from the changes. Then, by analogy,
the goals of thermodynamics for hydrodynamic processes are
the establishment of macroscopic evolution criteria (Liapunov
functions) with physical significance, such as the connection
with excess work; the work (and power) available from a
transient decay to a stationary state; macroscopic necessary
and sufficient criteria of stability; thermodynamic criteria
for bifurcations; a thermodynamic criterion of relative
stability of stable attractors in systems with more than one
attractor, that is, a thermodynamic criterion of state
selection; and finally a connection of the thermodynamic
formulation to fluctuations.

We start with the Navier-Stokes equations and the
Boussinesq approximation and then proceed according to the
studies of Saltzmann, who reduces these equations to a set of
ordinary differential equations by means of a spectrum
expansion. In lowest order one then arrives at the Lorenz
equations and we investigate the steady states of those
equations. We construct the excess work and show that it has
the following properties. 1. The differential of ¢ is
expressed in terms of thermodynamic functions: the energy for
viscous flow and the entropy for thermal conduction when
taken separately. 2. ¢ is an extremum at all stationary
states, a minimum (maximum) at stable (unstable) stationary
states, and thus yields necessary and sufficient criteria for
stability; 3. ¢ describes the bifurcation from homogeneous to

inhomogeneous stationary states; 4. ¢ is a Liapunov function
with physical significance parallel to that of the Gibbs free
energy change (maximum work) on relaxation to an equilibrium
state; 5. ¢ is the thermodynamic “driving force” (potential)
towards stable stationary states; 6. ¢ is a component of the
total dissipation during the relaxation towards a stable
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stationary state; 7. for constraints leading to equilibrium ¢
reduces to the known thermodynamic function, which is the
work of displacing the system from the equilibrium for those
given constraints; and 8. ¢ qualitatively explains the
positive energy release in both the destruction and formation
of a convective structure in a Rayleigh-Bénard experiment.
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LINEAR KINETIC THEORY AND PARTICLE TRANSPORT IN
STOCHASTIC MIXTURES

G. C. Pomraning

School of Engineering and Applied Science
University of California, Los Angeles
Los Angeles, CA 90095-1597

Abstract

We consider the formulation of linear transport and kinetic theory describing en-
ergy and particle flow in a random mixture of two or more immiscible materials .
Following an introduction, we summarize early and fundamental work in this area,
and we conclude with a brief discussion of recent results.

INTRODUCTION

In the last decade these has been considerable interest in the problem of describing linear
particle transport in a stochastic medium consisting of two (or more) randomly mixed
immiscible materials. The goal in this research has been to develop a relatively simple
and accurate description for the ensemble-averaged solution of the stochastic transport
problem. In this brief report, we will attempt to summarize the salient features of this
work and present an overall view of the status of this research, with particular emphasis on
the work of the present author.

The generic linear transport equation we will concerned with is written

10y _ O
s TRV tod= e+, (1)

where

o= | dap(Q). (2)

In writing Eqgs. (1) and (2) we have used the notation of neutron transport theory, but
our considerations are equally applicable in any linear transport setting. The dependent
variable in Eq. (1) is the angular flux ¥(r,Q,t), with r,Q, and ¢ denoting the spatial,
angular (neutron flight direction), and time variables, respectively. The quantity ¢(r,t) is
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the scalar flux, v is the neutron speed, o(r,t) is the macroscopic total cross section, o4(r,t)
is the macroscopic scattering cross section, and S(r,,?) denotes any internal source of
neutrons. We have assumed isotropic and coherent (no energy exchange) scattering in Eq.
(1), but this simplification is not necessary for the essentials of the considerations to follow.
Thus Eq. (1) is a monoenergetic (one group) transport equation, and there is no need to
display the independent energy variable which is simply a parameter.

To treat the case of a binary statistical mixture, the quantities o, 0, and S in Eq. (1)
are considered as discrete random variables, each of which assumes, at any r,Q,t, one of
two sets of values characteristic of the two materials constituting the mixture. We denote
the two materials by an index 7, with ¢ = 0, 1, and in the ¢th material these three quantities
are denoted by o;(r, 1), o4i(r,t) and S;(r,82,t). That is, as a neutron traverses the mixture
along any path, it encounters alternating segments of the two materials, each of which has
known deterministic values of o,0,, and 5. The statistical nature of the problem enters
through the statistics of the material mixing, i.e., through the probabilistic knowledge as
to which material is present in the mixture at space point r and time ¢. Since 0,0, and S
in Eq. (1) are (two state, discrete) random variables, the solution of Egs. (1) and (2) for
¥ and ¢ is stochastic, and we let () and (p) denote the ensemble-averaged angular and
scalar fluxes, respectively. The goal is to develop accurate and , hopefully, simple models
for these ensemble-averages.

To discuss this problem in a qualitative way, it is convenient to consider the simple
case of time-independent transport in a purely absorbing (¢s = 0) medium. Then Eq. (1)
reduces to

dip

_(Z;+a¢=5a (3)

where s denotes the spatial variable in the direction of propagation. If we write any random
variable @) as the sum of its ensemble average (Q)) and the deviation from this average @,
an ensemble averaging of Eq. (3) gives

)

-+ (0)($) + (59) = (5)- (4)

It is clear from Eq. (4) that one needs to calculate (or approximate) the cross correlation
term involving the ensemble average of the product of & and v to obtain a formulation for
the quantity of interest, namely (v). |

On physical grounds, and it can also be shown mathematically by using asymptotics,
it is clear that this term is very small and can be neglected when o;l; < 1, where [; is
a characteristic chord length for the material packets of material ;. However, when this
inequality is not satisfied, the neglect of the cross correlation term in Eq. (4) can lead to
large errors in (¥). In particular, the attenuation of a beam of particles can be grossly
overestimated by using Eq. (4) without the cross correlation term. Simply stated then, the
challenge is to compute the cross correlation term in Eq. (4). To do this, one must specify
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the statistics of the material mixing, and we discuss both Markovian and non-Markovian
mixtures.

FUNDAMENTAL RESULTS

References to the original works for the material discussed in this section can be found
in the recent book by the present author.!

We initially consider the simple transport equation given by Eq. (3), under the assump-
tion of Markovian mixing. These mixing statistics are defined by a no-memory statement.
Given that point s is in material ¢, the probability of point s + ds being in material j # ¢
is given by

Prob(i — j) = %, Jj#1, (5)

where the A;(s) are the prescribed Markovian transition probabilities. The probability p;(s)
of finding material ¢ at position s, and the correlation length A.(s) for the Markov mixture
are uniquely and simply related to the A;(s). With the mixing statistics defined by Eq. (5),
one can obtain an exact description for (1) corresponding to the transport problem given
by Eq. (3). This is given by the two coupled equations

401 [ 11919 0

vx = (69), v = (pop1)"*(00 — 01), (7)
. 1
(o) = pooo + pro71, g = p10g + poo1 + +, (8)

(S) = poSo + p151, T = (pop1)'/*(So — S1). 9)

Two derivations of Eq. (6) can be given. The first is based upon the so-called method
of smoothing. Subtraction of Eq. (4) from Eq. (3) gives
B il =5
— @)Y+ [5h— (59)] = § - 5(p). (10)
Inserting a smallness parameter in front of the bracketted term in Eq. (10) and seeking a
solution as a power series in this smallness parameter gives the Neumann series

§ = S (-G — P)T"G(S - 5(w)), (11)

n=0




where [ is the identity and G and P are Green’s and projection operators defined by

G = [[ds [eap [ dete@)] ), PI=(5) (12)

For Markovian statistics, all of the terms in the sum of Eq. (11) can be evaluated and the
infinite summation performed. The result of the these algebraic manipulations is just Eq.
(6).

The second derivation of Eq. (6) is based upon the observation that the transport
problem given by Eq. (3) describes a Markov process; it is an initial value problem with
the spatial variable s playing the role of time. Thus, together with the assumed Markovian
mixing, we have a joint Markov process and we can write a Liouville master equation for
the joint probability P;(s, ), defined such that P;dy is the probability of finding material
¢ and intensity ¥ lying between 1 and ¥ + di at position s. This master equation is given

by
aP;

0s
The probability p;(s) is just the integral of P;(s, ) over ¢, and the conditional ensemble-
averaged intensity given that position s is in material ¢, 1;(s), is the integral of ¥ P;(s, )
over 1, divided by p;. Multiplying Eq. (13) by % and integrating over 3 gives two coupled
equations for the ;. Making the change of variables

(¥) = Potbo + P11, X = (P0P1)1/2(¢0 — 1) (14)

once again leads to Eq. (6).

9 N Y
- _a—,‘z(’l/)o-'P‘ - S’R) - A] - Ai, J # 2. (13)

No such exact results are available when time-dependence and scattering are present in
the transport problem, i.e., when Eq. (1) is the underlying stochastic transport equation.
In this case, the algebra of the method of smoothing cannot be carried through. Further,
with scattering the transport problem is not a Markov process (it is a boundary value
problem) and hence the master equation approach cannot rigorously be used. Nevertheless,
it has been suggested that the use of the master equation might lead to a useful, albeit
approximate, model. This model is

(aeose)[9]-gn[9) (5] o

where
s=[@ 4], m=[C ¥, (16)
where, in addition to Egs. (7) through (9), we have
(@) = [ daw), n=[ do v.=(pop) (00— 0u), an

4

{05) = PoTso + P10, s = P10s0 + PoTs1. (18)
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Several other derivations of this model are available. Sahni has shown that the assump-
tion of independent particle flight paths leads to Eq. (15), and he has also shown that
nuclear reactor noise techniques can be used to obtain this model. It has also been demon-
strated that one can derive exact particle balance equations in this stochastic transport
setting; but involving two ensemble averages conditioned upon being in material 2, namely
a volumetric average 1; and a surface (interface between materials) average ;. Making
the approximation that these two ensemble averages are equal again yields the model given
by Eq. (15). Numerical comparisons with exact Monte Carlo results shows the accuracy
of this model to be of the order of ten percent or so, with the error being the largest, as
expected, for problems with multiple scattering interactions.

Although no exact transport-like equation(s) formulation is available in general for (1))
in the presence of time dependence and scattering, a few exact results have been reported
for certain time-independent problems including the scattering interaction in rod (particles
are restricted to move along a line) and planar geometry. Vanderhaegen and Deutsch con-
sidered the sourcefree purely scattering rod problem and used a Riccati transformation to
convert the boundary value transport problem for the intensity to an initial value problem
for the rod transmission. They then applied the master equation approach to this initial
value problem. Their results were confirmed in a paper devoted to numerical and analytical
solution methods for the Liouville master equation applicable to a large class of initial value
problems. An exact formalism in rod and planar geometry has been developed for a re-
stricted class of problems, in which o,/0 and S/o are nonstochastic; the only stochasticity
is the optical depth variable. The results of Vanderhaegen and Deutsch were again con-
firmed, and results for several classical halfspace and infinite medium transport problems
were developed.

If one accepts Eq. (15) as a reasonable model of particle transport in a binary Markovian
mixture, two simplifications involving certain asymptotic limits have been reported. The
first of these corresponds to a small amount, of O(e?), of one material admixed with an
O(1) amount of the second material. Further, the first material has large, of O(1/€?), source
and cross sections compared to O(1) quantities for the second material. In this asymptotic
limit, one finds a renormalized transport equation of the standard form given by

= 2 (o) + Segs + O(), (19)

Oseff = Ocff — Oaeffs (20)

Surs = (5) - L2, (21)

(6 —6.)




Equation (21) for Sss assumes that the sources are isotropic, i.e., S; # S;(§2). The cor-
responding expression for anisotropic sources is more complex. The result given by Egs.
(19) through (21) is robust in that all of these effective cross sections and source are always
nonnegative, even when one is far from the asymptotic limit under consideration. This
derivation of a renormalized transport equation as an asymptotic limit has been general-
ized to a mixture containing an arbitrary number of the material components, and leads to
an entire class of reduced (in complexity) transport descriptions.

The second asymptotic limit of Eq. (15) is one in which the scattering interaction is
dominant, of O(1). Absorption, sources, and all derivatives are assumed small, of O(e?),
except for the spatial derivative which is scaled to be O(e). This scaling eliminates the
angular variable in the transport problem, and is analogous to the Hilbert expansion which
gives the Fuler material equations from the Boltzmann equation. If we restrict ourselves
to isotropic sources as well as an isotropic correlation length, one finds in this asymptotic
limit two coupled diffusion equations given by

(g-vomen)[9]-w[fron e

where X, = ¥ — ¥, and

| —— 1 6 —v

D=32"= 3((o)6 — v?) [—-u (0)] ' (23)
It can easily be shown that the diffusion coefficient matrix D is positive definite under all
choices of the physical parameters, thus assuring robustness in this diffusion approximation.
Since the scaling which lead to Eq. (22) corresponds to a singular perturbation problem,
both boundary and temporal layers exist. Performing the appropriate asymptotic matching
analyses, one obtains boundary and initial conditions for Eq. (22). The boundary condi-
tion is of the mixed (Robbin) type, involving the number 0.710446. .. , the classic linear
extrapolation distance for the Milne problem.

We note the suggestion that non-Markovian statistics of the renewal type can be treated
by modifying the correlation length A. in Eq. (8). Specifically, if @;(z) is the probability
that a segment length in material 7 exceeds length z, then it has been proposed that Eq.
(15) approximately describes this statistical situation, if A, in & [see Eq. (8)] is replaced

with gA., where
1 1 1 1 1 1
=oleon %) Yo \eoy ) - %
! %o (Qo(ao) ~/\0> o1 (Q(al) /\1> ' (24)

Here Q,-(a,-) is the Laplace transform of Q);(z), evaluated at the transform variable o;. For
Markovian statistics, @;(z) is exponential with decay length )\;, and in this case ¢ = 1.

Finally, most of these binary mixture considerations have been generalized to a mixture
with more than two components.
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RECENT RESULTS

We close this report with a very brief discussion of results obtained in the last few
years.2~1® Space limitations allow simply a listing of such results, and references where
more detail can be found. One group of papers®!2-1%18 deals with the generic problem
of attempting to construct a more accurate model than that given by Eq. (15). One
such model* retains the simplicity of two equations in two unknowns as in Eq. (15),
but it incorporates small correlation length physics into these two equations.}> Two other
models®'® involve additional equations, yielding four equations in four unknowns. These

models are obviously more complex, but are more accurate. An independent variational
approach to stochastic transport has also been attempted,'? with limited success. A paper
has been published® which compares the accuracy of several models against Monte Carlo

benchmark results. Such benchmark results are available for both Markovian and non-
Markovian statistics.!®

Another group of papers®®7®1617 deals with diffusive approximations to the two equa-
tion model given by Eq. (15). Two of these papers*!? develop flux-limited diffusion equa-
tions, a third deals with the P, approximation,'® and the remaining three®"# develop various
asymptotic diffusive limits which result from different scalings of the Markovian transition
lengths.

Finally, four papers have been published concerned with applications of this stochastic
transport formalism. Two of these®!! deal with the cloud-radiation interaction problem
within the context of general circulation models of the atmosphere, one addresses a random
heterogeneity problem in fission reactor fuels,? and one is concerned with beam transport
and energy deposition as might be encountered in medical applications.!®

Under continuing DOE support, we expect to report additional results from this line of
research in the near future.
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ABSTRACT

A combined experimental and numerical investigation of miscible two-phase flow in a capillary
tube is reported. The fraction of fluid left behind on the wall is obtained as a function of the

Peclet, Atwood, and Froude numbers. Scaling arguments are presented for two distinct flow
regimes, dominated by diffusion and convection, respectively. In the latter one, an effective
surface tension value can be estimated.

INTRODUCTION

An improved understanding of the dynamics of multiphase porous media flows remains an
essential prerequisite for progress in the fields of enhanced oil recovery, fixed bed regeneration,
hydrology, and filtration. From basic stability theory we know that, if the displacing fluid is less
viscous than the displaced fluid, the unfavorable mobility profile is likely to lead to the well-known
fingering instability, a topic that has been reviewed by Saffman [1] and Homsy [2]. Depending
on whether the fluids are immiscible or miscible, one can distinguish two fundamentally different
problems: In the immiscible case, where surface tension acts at the interface between the two
fluids, the capillary number, which represents the ratio of viscous to surface tension forces, is a
dynamically important parameter. It determines the most unstable wavelength of the fingering
instability, as well as the dynamics of the evolving fingers. For miscible displacements, it is con-
ventionally assumed that the dynamics are governed by the relative importance of convective and
diffusive effects, as expressed by the Peclet number. However, the proper and accurate form of the
governing equations and related boundary conditions in the area of contact between the miscible
fluids is not known. Past investigations relied on ad hoc approaches that cannot be rigorously
justified. Zimmermann and Homsy (3] have taken a first step towards more realistic conditions by
assuming an anisotropic, velocity dependent Taylor dispersion approach. Within the present in-
vestigation, we address this issue by conducting physical as well as numerical experiments within
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capillary tubes, which can be considered a simple model of the miscible displacement process
within a single pore of a porous medium. In particular, we carry out Taylor’s [4] experiment
(cf. also the numerical investigation by Reinelt and Saffman [5]) in capillary tubes using miscible
fluids. We discuss the possibility to define an ”effective” surface tension and capillary number,
on the basis of both computational and experimental results.

GOVERNING EQUATIONS

Our investigation concerns the displacement of a more viscous phase ’2’ by a less viscous one
’1’ in a capillary tube of diameter d. To this end, we consider the incompressible Stokes equations
in axisymmetric form. The concentration field is governed by a convection-diffusion equation, in
which the diffusion coefficient D is taken to be constant. This represents a simplifying assumption,
as the experimental measurements to be discussed below reveal a concentration dependence of the
diffusion coefficient. Density is assumed to vary linearly with the concentration, while the viscosity
is taken to depend exponentially on it. After rendering the governing equations dimensionless by
means of characteristic scales, we identify as the governing dimensionless parameters a Peclet, an
Atwood, and a Froude number

d - d? p; —
pe=Y% = gy_t2amHm p_STpop
D g2+ U p;
Here U represents the of the unperturbed Poiseuille flow far away from the mixing region, while
g denotes the gravitational acceleration, which is assumed to act in or against the direction of the

displacement. p indicates density.

NUMERICAL APPROACH

We solve the incompressible Stokes equations in axisymmetric form, employing streamfunction
and vorticity variables. In this way, the pressure is eliminated, and the continuity equation is
satisfied identically. At the tube wall and the centerline, we employ standard boundary conditions
for the velocity components and the normal derivative of the concentration. At the in- and outflow
boundaries, we set the second derivatives in the streamwise direction to zero. Test calculations
for computational domains of different sizes confirm that these conditions are appropriate. The
convective terms in the concentration equation are represented by four point upwind biased finite
difference stencils, whereas the diffusive terms are discretized by five point central differences.
The elliptic vorticity equation is solved by means of a standard multigrid technique.

COMPUTATIONAL RESULTS

Pe > 0(10%)
The evolution of the flow in this parameter regime is exemplified by the case Pe = 1,600
and At = 0.9866, shown in figure 1 in a moving reference frame. Gravity is absent for this flow.

Q0.5 ] 1 0.5 0.5
i
1 1.5 0

0 05 . 0.5 1 15 0 05 1 15
Fig. 1: Concentration contours at times 0, 1, and 3.

o

The initial condition specifies a one-dimensional error-function profile for the concentration, along
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with axisymmetric Poiseuille flow for the velocity components. The velocity field results in an
immediate strong deformation of the concentration distribution in the interior of the tube, while
at the wall concentration changes are the result of diffusion only. The transient evolution of the
concentration distribution, in turn, causes corresponding changes in the viscosity field, thereby
modifying the velocity field. This effect distinguishes the present situation from the one analyzed
by Taylor [6], in which there is no feedback by the concentration distribution onto the velocity
field. For the present parameters, we observe the development of a well-defined finger of the less
viscous fluid in the center of the tube. The finger tip consists of a steep concentration front, while
its sides are formed by diffusively spreading layers over which the concentration varies. The figure
indicates that the mixed inflow/outflow boundary to the left is handled well by the present set
of numerical boundary conditions, as there are no detectable disturbances propagating from the
boundary towards the finger tip.

By time t = 2, the finger tip shape and the associated concentration field have reached a
quasisteady state. This is confirmed by the propagation velocity Vi;, of the finger tip, which is
defined as the velocity with which the ¢ = 0.5 contour moves along the tube’s axis. The steepness
of the concentration front at the finger tip is determined by the local balance of strain and diffusion.
The strength « of the local strain field is governed by the difference of the streamwise velocities
ahead of and behind the finger tip. By assuming that this velocity difference of approximately
2(Viip — 1) is achieved over a distance comparable to the tube radius, we obtain

~ 4(Viip — 1)
a d

A straightforward one-dimensional balance of strain and diffusion then yields for the front thick-
ness §p at the finger tip

b D
d = 2V, — 1)d

indicating that the front thickness scales with the square root of the inverse of the Peclet number
formed with the velocity difference across the finger tip. For the present case, this results in
do/d = 1/30, which is in good agreement with fig. 1. The one-dimensional analysis furthermore

gives

o fZ, W=D
0%y Vrm D

which for the present parameters yields approximately 17. Considering the rough estimate of the
strain intensity, this value is in reasonable agreement with the computational results of approxi-
mately 28, confirming that the concentration field near the finger tip is indeed determined by a
nearly one-dimensional balance of strain and diffusion.

On the sides of the finger, the concentration layers grow diffusively with increasing distance
from the finger tip. These layers will merge when é/d = 0.5. Straightforward scaling yields

Dt Lf

6~ t~
d” V&2 ’ ~

tip
where Ly represents the length of the finger as a function of time. Consequently, the diffusion

layers will merge when the finger has reached a length L; = Ped/4. Once the finger has grown
to this length, the supply of uncontaminated fluid to the tip region will gradually be cut off, and
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eventually the quasisteady state will begin to decay. The above scaling laws indicate that we
can neither employ a sufficiently large computational domain, nor can we carry the simulation to
sufficiently long times, in order to capture these effects for the present set of parameters.

For practical considerations, a relevant quantity is the fraction of more viscous fluid left
behind on the walls of the tube once the quasi-steady state has developed. Taylor [4] calculates
an effective film thickness of this fluid from the tip velocity of the finger as m =1 — 0.5/V;, In
particular, it will be of interest to record m = m(At) in the limit of infinitely large Pe. Since
grid based numerical simulations will not provide accurate results for this limit, we resort to an
extrapolation procedure for Vi, = f (Pe™!). These calculations demonstrate that the tip velocity
for Pe = 1,600 is within less than one per cent of the extrapolated value for Pe — oo. In view of
the considerable computational cost associated with carrying out several simulations at different
large Pe for each value of At in order to perform the extrapolation, we will in the following present
the simulation results for Pe = 1,600 in lieu of Pe — oo. In this way, we arrive at the (m, At)-
relationship depicted in fig. 2. Notice that for At = 0.5 we obtain m < 0.5 as a result of the

0.82 -

a.60 "-‘v.
s : : , x
j 9.58 f : Fig. 2
S osed: . - % :
0.524- <
.50 ; = f : i
E — e E x computational results
ool = s ; a 3 e experimental results

finite Pe-effects. These lead to a diffusive slowing of the finger tip, and thereby to a reduced film
thickness. The agreement with the experimental results, also shown in fig. 2 and to be discussed
below, is resonable, although not perfect. A possible reason for the observed discrepancy includes
non-axisymmetric flow features in the experiment, due to density differences between the two
phases. We remark that the value m = 0.61 for the film thickness in the limit A¢ = 1, Pe — oo
agrees well with the observations by Cox [7] for immiscible flow in the limit At — 1,Ca — oo,
where Ca denotes the capillary number. Taylor [4] previously found a maximum value of 0.56,
but he suggested that higher values might be reached. This indicates that as diffusion or surface
tension, respectively, become very small, their dynamical significance decays to zero in a smooth
fashion, so that the shape of the finger tip is determined by the viscosity contrast alone.

Pe < 0(10%)

For this range of lower Pe-numbers, the formation of a quasi-steady finger shape is not
observed. Instead, as exemplified by the case of Pe = 100, At = 0.9866 (fig. 3), diffusion soon
causes the concentration front to decay, thereby resulting in a progressively more spread out finger
tip. As discussed above, at higher values of Pe a balance between strain and diffusion is in effect,

] 1 1
0 2 4 6 8 10 12

0.5 T T

o

20 Fig.3
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which maintains a steep concentration front. This quasi-one-dimensional balance can only exist
if the front thickness at the tip, ¢, is significantly smaller than the tube diameter. Consequently,
there will be a critical level of diffusion beyond which the strain can no longer maintain a suf-
ficiently steep front. In other words, below a critical value of Pe, the strain field will not be
strong enough to counter the tendency of diffusion to smear out the finger front. The condition
do/d < const leads to an estimate for this critical value of Pe. With the above relationship for
the ratio of front thickness and tube diameter, and with V;;, = 1.25, we obtain

% =] \/ 2 < const
d Pe

For const = 1/10 and 1/20, this criterion yields Pe..; = 200 and 800, respectively. Since the
finger velocity, and consequently the strength of the strain field, depend on At,"we expect Pe.ri:
to vary with At as well, although only weakly. Our numerical simulations for At = 0.9866 show
the development of a quasi-steady finger with a steep front for Pe > 800, and a diffusing finger
tip for Pe < 400. For lower values of At, we obtain diffusing fingers even for Pe = 800. These
Pe-values are in reasonable agreement with the critical values estimated above.

The computational results of fig. 3 indicate that with increasing time the concentration
field becomes progressively smoother. It is interesting to note that for ¢ # ¢(r), Poiseuille flow
represents an exact solution to the Navier-Stokes equations, independent of the z-dependence of
the concentration. As a result, we expect Taylor’s [6] work on passive dispersion in Poiseuille
flow to provide some guidance for the analysis of the flow development in the low Pe regime. In
particular, under the assumption that axial diffusion is much less significant than radial diffusion,
Taylor shows that convective effects on the concentration field will be small compared to diffusive
effects if §/d >> Pe/58, where 4 is a measure of the thickness of the smeared out front. Conse-
quently, we would expect to see Poiseuille flow under this condition. If we take § as the distance
along the centerline between the 0.1 and 0.9 concentration contours, then fig. 3 indicates that for
Pe =100 and t = 10 we have §/d = 6, while Pe/58 = 1.7. An examination of the fluid velocity
confirms that by this time the velocity field has indeed decayed to near Poiseuille flow. The same
observation can be made for Pe = 200 and ¢ = 22, and for Pe = 400 and ¢ = 38, when §/d = 12.6
and 23 for Pe/58 = 3.4 and 6.9, respectively. These results confirm the above scaling considera-
tions, and we can conclude that Poiseuille flow will be reached approximately when §/d =~ Pe/16.
Taylor furthermore observes that § is related to time and the Taylor dispersion coefficient k as
8 = 3.62vkt. Here k depends on the tube diameter, the centerline velocity U of the Poiseuille
flow, and the diffusion coefficient as k = d2U?/768D With the above estimate for §/d by the time
Poiseuille flow is reached, we can now estimate the time it takes to approach Poiseuille flow as
t = 0.23Pe. Consequently, after this time the cross-section-averaged concentration profile ¢, (z)
should approach the shape of an error function. Equivalently, dc,,/dz should take the form of a
Gaussian. This is confirmed by the numerical results, validating the above scaling arguments.

EXPERIMENTS

Apparatus

Two separate pieces of equipment were used in this study. The first, while not directly
involved in the study of miscible displacements, was nontheless critical to its success. An exten-
sive survey of the literature on the properties of the glycerine-water system, which was used in
this study, failed to find any useful information on the molecular diffusivity D between the two
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species. Since the major control parameter Pe involves this property, it was essential to mea-
sure it independently. This was accomplished by introducing a glycerine-water mixture on top
of a pure glycerine layer in a thin cell. A thin laser beam was projected through the interface
and its deflection related to the local refractive index n gradient. The distribution of Vn was
measured at various times and the resultant growth of the interface thickness used to calculate
the coeflicients of species diffusivity. Due to the differences in mobility between glycerine and
water, the diffusivity of the mixture into glycerine is less than that of glycerine into the mixture.
The results are shown in figure 4. The value used in the calculation of Pe is the sum of the two

D (em?/9)

Fig. 4

individual diffusivities, which is dominated by the latter value except for values of cg (glycerine
concentration by weight) close to 100%.
The main piece of apparatus is shown in Figure 5. It is a minor adaptation of that due to

a/ Constant pressure nitrogen
Mixing glycenn-

RAAT
water supply

Square tube filled with a fluid
{same refractive index than giass)

Precision bore tube

Mixing glycerine-

IR e al :
H g Fig. 5
\ iso-index fluid

Taylor [4]. It consists of two plastic manifolds connected by a precision bore capillary tube. Four
different tube diameters d were used: 1,2,3 and 4mm. For each experiment, the tube was first
filled with pure glycerine from the right-hand reservoir. The desired mixture, dyed to improve its
visibility, was then introduced at the left-hand end, the flow rate being controlled by a very precise
compound needle valve. The motion of the nose of the intruding "finger” was timed between
10cm marks, and the amount of glycerine expelled from the tube during that time measured by
. an electronic balance to 1mg. From these two measurements the effective film thickness m could
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be calculated.

Results
A large number of experiments were performed for all four tubes, for several values of At and

various tube orientations, i.e., horizontal, vertical with the heavier glycerine on the bottom, and
vertical with glycerine on top. The former orientation introduced interesting, non-axisymmetric,
gravitational distortions of the finger that need to be discussed in more detail than possible here.
On the other hand, the vertical cases introduced distortions that were axisymmetric so that these
could be used to determine the state of the finger when gravity was not present, i.e., by plotting
m as a function of F and interpolating to F = 0. Thus we concentrate on some aspects of the
vertical cases that appear to be of widest interest. Notice that for the experimental results the
measured velocity of the finger tip was used for the calculation of the dimensionless governing
parameters. In figure 6 we show curves of m vs. Pe for At = 0.79 and for the two vertical

1.0~

Asom, de3en

Fig. 6

2 -
orientations of a 3mm tube. Both curves asymptote m = 0.54 at large Pe. In fact, the curves for
all values of At and all tube diameters asymptote a value of m that depends only on At (figure
2). At smaller values of Pe the curves diverge with one appearing to approach zero and the other
unity. Repeating these measurements for other values of tube diameter, but the same value of
At, allows us to construct curves of m or alternatively V;;;, vs. F at a fixed value of Pe (figure 7).
Interpolating to F' = 0 gives the value of m for no gravitational effect, with the results for various

o8 . - Fig. 7
<o 1 ~20 » . o »

values of Pe and for At = 0.79 given in figure 6. It appears that in this case m — 0.5 as Pe — 0,
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as discussed in the previous section.

Two further observations are of interest. Firstly we note that when m is less than 0.5, Taylor
[4] gives two possible streamline patterns for the flow relative to the moving nose. We have found
that in such cases a thin needle of fluid is continuously ejected from the tip of the finger in a way
that makes it clear that of the two flow pictures the one with a single stagnation ring on the finger
surface is the one found in these experiments. Secondly, by matching Taylor’s results of m vs.
Ca = pU/o (where p is the dynamic viscosity of the displaced fluid) for immiscible fluids, with
the present measurements it is possible estimate an effective surface tension ¢ for the miscible
interface for values of Pe greater than approximately 250, i.e., when a thin interface exists. Such
a match is shown in figure 8 and results in an estimate for o of
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ABSTRACT

We carry out simulations of the anisotropic uniformly frustrated 3d XY
model, as a model for vortex line fluctuations in high 7. superconductors. We
compute the phase diagram as a- function of temperature and anisotropy, for a
fixed applied magnetic field B. We find two distinct phase transitions. Upon
heating, there is first a lower 7,; where the vortex line lattice melts and super-
conducting coherence perpendicular to the applied magnetic field vanishes. At
a higher T, within the vortex line liquid, superconducting coherence parallel to
the applied magnetic field vanishes. For finite anisotropy, both 7., and T.. lie
well below the crossover from the vortex line liquid to the normal state.

INTRODUCTION

In the presence of an applied magnetic field, the low temperature state of a clean type
IT superconductor is the Abrikosov vortex line lattice, consisting of a triangular lattice of
perfectly straight lines of vorticity in the phase of the complex superconducting wavefunction
1. The lines are parallel to the magnetic field, with a density given by B/dg; B is the
magnetic field that penetrates the sample (B < H), and ¢¢ = hef2e is the flux quantum.
For a conventional “low temperature” superconductor, this vortex lattice persists up to a
critical temperature T,;(H), where the amplitude of the spatially varying superconducting
wavefunctipn vanishes, superconductivity is lost, and the normal metallic state is entered
[1]. Experimentally, To2(H) is signalled upon cooling, by the onset of a strong diamagnetism
as well as by the vanishing of electrical resistance.

From a phenomenological point of view, the “high T.” copper-oxide superconductors
differ from conventional low T, superconductors due to the dramatically enhanced role that
thermal fluctuations play {2]. This is due to the high values of T, the very strong anisotropy
arising from the layered nature of the materials, and the large ratio of magnetic penetra-
tion length Ay to coherence length &. For a magnetic field oriented perpendicular to the
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copper-oxide planes, theoretical models have predicted [2-5] that thermal fluctuations will
cause the vortex line lattice to melt at a T well below the 7., where the amplitude of the
locally fluctuating ¢ vanishes. Between these two temperatures is a new vortex line liquid
state. Experimentally, this picture has been supported by the observation that, in high T,
materials, the onset of reversible diamagnetism occurs at a temperature well above that
where resistance vanishes [6]; the separation between these temperatures increases with in-
creasing B. According to this picture, the onset of diamagnetism at T.(H) is associated
with a growth in superconducting correlations, giving rise on short length scales to a finite
superconducting wavefunction ¢(r) in terms of which vortex lines can be defined. This T,
marks a strong cross-over region, rather than a sharp thermodynamic transition. In the
resulting vortex line liquid, free diffusion of vortex lines gives rise to “flux flow” electrical
resistance [1]. The vanishing of resistance only occurs at a lower T when the line liquid
freezes mto a lattice.

MODEL

To investigate the above scenario we have carried out Monte Carlo simulations using the
uniformly frustrated XY model as a model for a fluctuating superconductor [7]. Making the
London approximation that the amplitude of the superconducting wavefunction is constant
outside of a vortex core, ¥(r) = |[¢|e?(®), and discretizing the continuum to a cubic mesh of
points, the Hamiltonian for our system is

H[G,] = — Z']U COS(H{ — 01' - Az‘j) (1)
(i3}

where 0; is the phase of the wavefunction at site 2 of the cubic mesh, the sum is over nearest
neighbor bonds, A;; = (27/¢0) f7 A-dl is the integral of the magnetic vector potential across
the bond, and J;; = J, or J, is the anisotropic coupling in the direction of the bond. The
argument of the cosine is the gauge invariant phase difference across the bond, and is thus
proportional to the supercurrent flowing along the bond. Since cosine is quadratic for small
arguments, Eq.(1) represents the kinetic energy of the flowing supercurrents. If we identify
the discrete spacing along Z as the distance d between copper-oxide planes, and the discrete
spacing in the zy plane as representing the short length cutoff for a vortex core of radius &,
we have

[
S’

;- _dud _ %ok g
T =3 VRGN SV X

where A; and A, are the magnetic penetration lengths within and normal to the copper-oxide
planes, respectively. We define an anisotropy parameter 7 as

J_L /\~ (l . |
=\ =—-. 3
=V TG 3)

In our model of Eq.(1) we ignore spatial variations and fluctuations in the internal
magnetic field, taking V x A = Bz a uniform constant. This should be valid provided
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[7] that B is so large that the spacing between vortex lines a, = {/¢o/B < AL (so the
magnetic fields associated with each vortex line strongly overlap), yet B is small enough
that a, > & (so details of the vortex cores are not important). The anisotropy must also
be such that d < A%2/),, so that Josephson coupling between the planes dominates over
magnetic coupling [5,8]. For our simulations, we thus take the A;; as fixed constants, chosen
to give a particular fractional density f = BE2/¢o of vortex lines penetrating the zy plane

[9].

To model a particular material, we would like to map out the phase diagram as a function
of T and magnetic field B, for a fixed value of anisotropy n. However, due to commensu-
rability difficulties between the triangular vortex lattice preferred in a continuum and the
discrete sites permitted by our numerical mesh, different vortex line densities would form
lattice structures of differing symmetry in the ground state. Since we are computationally
limited to a fairly coarse mesh, this would make direct comparison of systems with differ-
ent B difficult. We therefore choose to map out the phase diagram as a function of T and
anisotropy 7, for fixed B. We can see however, using dimensional arguments, that increasing
n at fixed B, is similar to increasing B at fixed 7. If we measure any transition temperature
T. in units of J,, then the dimensionless T,./J, can only depend on the other dimension-
less parameters of the model, the anisotropy 7 = A,d/A &, and the vortex line density
f = B&%/do = (é0/a,)?. Since our London approximation ignores details of the vortex cores,
if we consider the continuum limit of our model, a, > &, we expect that T,./J, should be
at most weakly dependent [10] on the core radius £. The only combination of 7 and f that
is independent of & is n?f. Thus, the dominant dependence of T./J, on n and f can only
be through some function of nf ~ n2B.

We can further argue how transition temperatures should depend on the quantity »*f.
In the limit of extreme anisotropy, n — oo, we have completely decoupled planes, and
the transition temperature should be independent of 7; thus we expect T, ~ .J,. In the
limit of a nearly isotropic system, n ~ 1, we expect that 7. should be independent of the
spacing between planes d; thus we expect T, ~ Jy /nv/F = (¢2/1673 2} ( AL /A, )(do/ B)'/2.
These are in fact the predictions for the melting temperature based on Lindemann criterion
calculations [2].

RESULTS

We now simulate the Hamiltonian (1), using periodic boundary conditions in all direc-
tions, on meshsizes L x L. To test for superconducting coherence, we compute the helicity
moduli Y, (T') and Y.(T) which measure the stiffuess with respect to applying a net gradient,
(“twist”) in the phase of the wavefunction along directions perpendicular and parallel to
the applied magnetic field [7]. The helicity modulus in direction 2 is given by the phase
correlation :

1 R .
Y (T) = <L2 17 > Jijcos(0; — 0; — Ay;) (8, - u)z>
L7 ()

2

1 . ..

TTINL <[Z Jijsin(8; — 0; — Ay ) (& - u)} > (4)
= \ (@)
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where &;; is the unit vector from site ¢ to j. Y, and Y, are proportional to the density of
superconducting electron pairs for currents flowing perpendicular and parallel to B. When
Y, is positive, there is superconducting coherence in direction . When Y, vanishes, super-
conducting coherence is lost.

We also measure the specific heat of the system using the usual energy fluctuation for-
mula. A peak in the specific heat locates the temperature at which, upon cooling, there is a
dramatic freezing out of thermal fluctuations and the system looses the bulk of its entropy.
We will take the location of the specific heat peak as indicating the cross-over temperature

Tc2 [11]

We carry out our simulations with a B yielding a fractional density of vortex lines
f =1/15. The ground state, shown in Fig. 1, is a nearly triangular vortex line lattice. OQur
runs are typically 10,000 sweeps through the mesh to equilibrate, followed by 128,000 sweeps
to compute averages. These simulations are about 9 times longer than in our previous work

[7}-

FIG. 1. Ground state locations of vortex lines in the zy plane for line
density f = 1/15 on a cubic mesh. Vortices form a nearly triangular lattice

with sides V18 x V18 x V17.

A sample of our results, for the case of n = /10 is shown in Fig. 2. We see that Y,
vanishes at a T,, significantly lower than the 7., where Y, vanishes. We show data for
heating and cooling, for three different mesh sizes, 15°, 303, and 15% x 120. We see no
appreciable hysteresis comparing heating and cooling, nor is there any apparent finite size
effect as Ly and L. are varied. By computing the density-density correlation function of
vortices in the zy plane, we identify T, as locating the melting of the vortex line lattice [7].

For T' < T., we have an ordered vortex lattice which is commensurably pinned to the
discrete mesh, resulting in a finite Y, . For T' > T, we have a vortex line liquid of unpinned
diffusing vortex lines; the resulting “flux flow” resistance drives Y; — 0. Between 7. and
T.. we have a vortex line liquid which retains superconducting coherence in the direction
parallel to the applied magnetic field. These results are in complete agreement with our
earlier simulations [7] on a similar zsotropic model. In contrast to these earlier simulations

however, we now see that, in agreement with experiment, both 7., and 7. lie noticeably
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below the cross-over T,, as determined by the specific heat peak.

15° heat
153 cool
30° heat
30% cool
152x120 heat
152x120 cool

helicity moduli and specific heat

0.6 0.8
temperature T

FIG. 2. Helicity moduli Y, and Y, and specific heat C versus temperature
T for anisotropy 7 = v/10 and vortex line density f = 1/15. Heating and
cooling for three different system sizes are shown. Y, Y,, C, and T are all
measured in units of J .

Carrying out simulations at other values  on a 15 size mesh, we show in Fig. 3 the
resulting phase diagram in the 5 — T plane. The T,, line locates the melting of the vortex
line lattice. The T, line locates the loss of coherence parallel to the magnetic field. The line
“Cpear” locates the peak of the specific heat, which we take as the cross-over temperature
T,,. For T > T,.; we have the normal metal. For T., > T > T.. we have a vortex line liquid,
with resistive behavior in all directions. For T, > T > T, we have a vortex line liquid with
superconducting coherence parallel to B. For T.; > T we have a pinned Abrikosov vortex
line lattice.
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FIG. 3. Phase diagram in the anisotropy—~temperature plane for vortex
line density f = 1/15. T is measured in units of J, and £, in units of d.
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The solid phase boundary lines for 7., and T, are fits to a simple form T = a + b/,
as motivated by our discussion at the end of the preceding section. If we fit the lowest five
data points (those for n < 7,,) to a power law, we find T,y ~ 1/7%°"* and T,. ~ 1/5°%¢,
in excellent agreement with our dimensional argument that characteristic temperatures at
small 7 should scale as T ~ 1 /5. We can also fit the melting temperature at these low 5 to
the form predicted by a Lindemann criterion [2], T.; = 4¢3 (¢2/1672A2 )} (AL /A ) (¢o/B)/? =
4wc? Jo /n\/f, where the Lindemann parameter ¢ = (u?)/a? gives the average displacement
of a vortex line from its equilibrium lattice position, at melting. We find ¢z, = 0.14. At large
n, we see that T, approaches a constant value 7%, which we have found from independent
simulations to be the melting temperature for an isolated two dimensional plane.

The cross-over from small to large n, where the discreteness of the layering along 2
becomes important and one approaches the two dimensional limit, can be estimated, fol-
lowing our discussion at the end of the previous section, by the criterion 52 f ~ 1, or, using
f = BE:/do = (£0/av)?, as 1 = a,/&. Using an effective elastic medium approximation
to describe vortex line fluctuations in the line lattice, one can show [2] that for n < 7.,
the dominant wavenumber ¢, of fluctuations at melting satisfies the condition d < =w/q.,
and hence the layering of the material is averaged over. For n > 5. however, the dominant
wavenumber is at d = 7/q., and layering is important. Some theoretical models [5] have
predicted that 5. will mark a dramatic change in behavior, reflecting a three dimensional to
two dimensional cross-over. In Fig. 3 we indicate the cross-over 7.,. We see that the specific
heat peak for n > 7., is independent of 5. Thus at these high temperatures and anisotropies, -
our three dimensional system is behaving as effectively decoupled layers. However we see no
dramatic change in behavior for T,; and 7., as 7. is crossed. In particular we continue to
find T., > T, for all > 7.

An intriguing question concerning behavior in the vortex line liquid is how easily lines
can cut through each other. This has important consequences for line diffusion. If lines
cannot cut, they can be effectively pinned by their mutual entanglements [3,12]. To investi-
gate this we have computed the average number of vortex line intersections, N, present in
any instantaneous configuration of the system. An intersection is defined when two vortex
lines enter and leave the same unit cell of the mesh, and corresponds to vortex lines with
overlapping cores. Once two lines intersect, they are free to cut through each other, or even
to detach and reconnect different ingoing and outgoing segments. We define the “cutting
length” ¢ = fL3L./N. as the average distance (in units of d) along % between cuts of the
magnetic field induced vortex lines. ¢, gives a crude measure of the average length over
which a vortex line remains a well defined string, or equivalently a measure of the number
of planes which remain correlated. In Fig. 3 we show contours of constant & = 2, 4, 6,
and 10 in the n — T plane. We see that planes are essentially uncorrelated at temperatures
above the specific heat peak. Correlations grow as one starts to cool below the specific heat
peak towards T, but cutting remains relatively frequent throughout most of the vortex line
liquid.
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DISCUSSION

We have computed the phase diagram of a fluctuating type Il superconductor in the
anisotropy temperature plane. OQur results are consistent with general experimental obser-
vations, that vortex lattice melting occurs well below the cross-over T, associated with the
formation of local superconducting order. Our melting curve agrees well with that predicted
by the Lindemann criterion. No dramatic change in critical behavior is seen at the so-called
3d-2d cross-over anisotropy 7.,. We find that vortex line cutting can occur over most of the
vortex line liquid region. From our earlier isotropic simulations [7] we believe that cutting
can be frozen out on long time scales only for 7' < T..

We find a new distinct transition 7, inside the vortex line liquid [13]. For T,y < T < T,
we have a vortex line liquid with superconducting coherence parallel to the applied magnetic
field. Recent “flux transformer” experiments [14,15] on YBCO single crystals show that there
is a temperature “T},” below which vortex line correlations parallel to B become comparable
to the thickness of the sample. “T},” is clearly found to be above the “T;,,” where resistivity
transverse to B vanishes. Resistivity parallel to B however appears to vanish at “T3,”. A
phenomenological fit [14] shows that the region over which correlations parallel to B grow,
extends over the entire region between T, and “T3,”. If we identify “T%,” with our T, T;,,
with our T, and T,; with our specific heat peak, our results are in complete accord with
these experimental finding. These experiments on YBCO are carried out in the “3d” region
corresponding to n%f < 1. Similar results in the “2d” region 5%f > 1 have been reported in
artificial MoGe/Ge multilayers [16].

By consideration of other properties of the vortex line system, such as vortex density-
density correlation function, density of thermally activated vortex rings, and vortex winding.
the picture we have formed of transitions in the anisotropic vortex line system is as {ollows
[7]. Upon heating, the vortex line lattice melts into a vortex line liquid, in which vortex lines
maintain a well defined identity in passing down the thickness of the system. As T increases,
transverse fluctuations increase, and thermally excited vortex rings appear between adjacent
zry planes. At T, these rings have so proliferated that they link up all the magnetic field
induced vortex lines into a percolating tangle; one can find a connected path of vortex line
segments that travels completely around the system in the direction transverse to the applied
magnetic fleld. As T increases, the correlations between planes decreases, and each plaue
behaves more like an uncoupled two dimensional liquid of point vortices. Finally, as T, is
reached, thermally excited vortex rings may now pierce the zy planes, creating the analog of
vortex-antivortex pairs in a 2d layer. The proliferation of these rings leads to an explosion
of vorticity in the planes, destroys the local fluctuating superconducting wavefunction in the
plane, and results in the cross-over to the normal metallic state.
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ABSTRACT

We present progress on our work to develop synthesis methods to aid in the design of
cost effective approaches to waste minimization. Work continues to combine the
approaches of Douglas and coworkers and of Grossmann and coworkers on a
hierarchical approach where bounding information allows it to fit within a mixed
integer. programming approach. We continue work on the synthesis of reactors and
of flexible separation processes. In the first instance, we strive for methods we can use
to reduce the production of potential pollutants, while in the second we look for ways

to recover and recycle solvents.

INTRODUCTION

We summarize progress made on the following topics which we are pursuing in this work.

1. Integration among design levels for process synthesis in order to develop cost effective waste
minimizing processes.
2. Quantitative targeting approaches for the synthesis of reactor networks

3. Synthesis of nonideal separation sequences for byproduct recovery and reuse.

MULTILEVEL SYNTHESIS OF PROCESS FLOWSHEETS

The main objective of this project has been to develop a new framework for the synthesis of total
processing systems that can address the issue of generation of superstructures and optimization under
a methodology that combines preliminary screening and MINLP optimization. This challenge was in

120




fact proposed by the late David Rippin at the session on process synthesis at the FOCAPD Meeting in
1989.

The basic question that we have addressed over the past year is how to develop a search procedure
that avoids solving a single flat MINLP that contains all the alternatives of interest for a process
flowsheet, and that in principle is capable of producing the same result as if the single MINLP had
been solved at once. The emphasis in this work has been on the development of a design
methodology that integrates thermodynamic analysis (mostly second law analysis), the hierarchical
decomposition by Douglas and the MINLP optimization developed by our group at Carnegie
Mellon.

To provide a conceptual basis for our work we had developed in our previous work an abstract
mathematical model for characterizing aggregated models. These models are higher level
representations that are given in terms of algebraic relations for equations and variables that
-guarantee bounding properties with respect to the original problem. These aggregated models must
be derived for each problem at hand, but one particularly useful framework is the one that relies on
thermodynamic analysic as described below. Given aggregated models at various level of abstraction
and that obey bounding properties, the question that arises is how to integrate these within a
multilevel strategy for flowsheet synthesis.

We have developed a multilevel synthesis strategy that can be viewed as a hierarchically driven
tree enumeration in which simultaneous optimization models at increasing levels of detail are
considered for predicting bounds on the profit. The basic idea for the enumeration consists of
applying a hierarchical decomposition that involves four major levels: input/output, reaction,
separation and heat integration.

Rather than relying directly on Douglas' procedure, our approach consists of a branch and bound
search coupled with aggregated or "black box" models that through their predicted bounds allow us
to eliminate many alternatives in the search. The aggregated models consist of higher level
representations that are physically based and that make use of stoichiometry and thermodynamic
analysis. The basic idea is to combine high level or black box models with superstructure
optimization models. In particular, at the input/output level thermodynamic availability is considered
to estimate a lower bound for the energy requirements in addition to minimum material flows. At the
reaction level, a superstructure model is considered together with thermodynamic models for
separation and heat integration. At the separation level the reactor network is fixed while the heat
integration is treated as a "black box" using the Duran and Grossmann model. Finally, at the heat
integration level a fixed flowsheet is considered with a superstructure for a heat exchanger network.
Note that each level gives rise (o a simultaneous optimization model at different levels of complexity.
Normally at the input/output level the optimization problem corresponds to an NLP subproblem,
while at the heat integration level it corresponds to an MINLP problem.

The search of the optimal flowsheet involves the multiple levels within a rigorous tree search
whose terminal nodes correspond to feasible NLP solutions of the flowsheet. One advantage of this
strategy is that it involves the solution of NLP and MINLP subproblems which are much smaller than
the original MINLP problem. The potential drawback is that the number of subproblems to be
solved can be rather large. We tested this strategy with the HDA process by Douglas. In a restricted
version of this problem, our proposed method required the enumeration of only few nodes.
Furthermore, the predicted upper bounds on the profit were rather tight. This is due to the
anticipation of energy requirements at the higher levels of decision (e.g. input-output structure).
Shown in the figure below is the flowsheet obtained from the proposed method.

‘Mark Daichendt, the student working on this project is finalizing the writing of his Ph.D. thesis.
The manuscript of this work [1] is currently under preparation. The next major step in this project is
the integration of operational considerations as part of this design methodology.
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PROFIT = 5.887 M$/yr

22.3% improvement

Membrane reduces H, feed flowrate by 50%
Coversion per pass 62.8% compared to 56.6%

Figure 1. HDA process synthesized using proposed method

REACTOR NETWORK SYNTHESIS FOR WASTE MINIMIZING PROCESSES

The public is demanding processes that are environmentally benign. One of the most efficient
approaches to designing such processes is to increase raw material conversion to product rather than
wasteful byproducts. In this work we consider the development and application of optimization-
based process synthesis tools to improve reactor and separation process performance to improve the
environmental characteristics of processes.

We apply systematic process synthesis approaches to the design of the reactor network to
maximize the overall conversion to useful product and thus minimize harmful byproducts. This
approach is based on concepts of attainable regions in concentration space and is supported by
powerful, large-scale optimization tools. Examples that can benefit from this approach are processes
for the manufacture of chlorinated hydrocarbons especially allyl chioride and vinyl chloride, two
high volume polymer intermediates. The improvements made by this approach can also validated by
rigorous process simulation models.

We use these approaches to improve both economic and environmental performance.
Specifically we describe recently developed techniques for process synthesis and extend them to
consideration of reactor networks and their interaction with other process subsystems.

The nature of the reaction mechanism and the resulting reactor design frequently determines the
entire character of a chemical process. Once a kinetic route is chosen and a quantitative (not
necessarily a mechanistic) rate law has been established, the flow pattern, mixing characteristics and
rates of heat addition or removal have a strong influence on product yield and selectivity. The
reactor effluent then determines the downstream separation sequence which then impacts on the
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energy network. More importantly, the generation of hazardous waste is almost always the result of
the characteristics of the reactor network.

Over the past three decades process synthesis methodologies for heat exchanger and separation
systems have seen considerable research activity. Many of the resulting synthesis methods are either
rule-based or graphical techniques driven by physical insights; others can be formulated as well-
characterized optimization problems. For example, efficient synthesis methods based on pinch
technology have been established for heat exchanger networks [2]; design of simple separation
networks has been formulated as a structural optimization problem and azeotropic separation
sequences can be synthesized through phase plane analysis (see next section). However, relatively
little research has been done for reactor network synthesis. Here well-known heuristics for single
reactions or series-parallel systems [3, 4] may yield inconsistent or conflicting results when dealing
with more complex systems. On the other hand, quantitative optimization approaches lead to
difficulties as a result of nonlinear reactor models (frequently described by partial differential
equations) and in solving large, nonconvex optimization problems.

A much more efficient approach was recently developed, based on the construction of an
attainable region [5]. This approach uses geometric properties to find a region in concentration space
that cannot be extended by further reaction or mixing. Once known, the determination of the
optimum point is greatly simplified. Construction of the attainable region is accomplished by
analyzing the rate vector field and determining a surface that is a) convex (all points can be mixed),,
b) has no rate vectors pointing out of the region (cannot be extended by further reaction), and ¢) no
rate vectors external to the region can be reversed back into the region (cannot be extended by a
mixed reactor). Thus, a simple graphical approach can been used to derive superior reactor
networks; this approach has been demonstrated for numerous reaction mechanisms.

The attainable region can be constructed efficiently in two and even in three dimensions [6], but,
for larger reaction systems, a graphical approach has clear limitations. As a result, Balakrisnan and
Biegler [7] adapted these attainable region concepts so that they can be formulated as small nonlinear
optimization problems for reaction mechanisms of any dimension. Consequently, optimal reactor
networks can now be synthesized for arbitrarily complicated reaction mechanisms, through small and
inexpensive optimization problems. This approach has also been extended to nonisothermal systems
{8] with only slightly more complicated optimization problems. Finally, Lakshmanan and Biegler [9]
recently considered this approach for the synthesis of waste minimizing processes. In addition,
refinements of this optimization-based approach using a compact MINLP strategy have been
presented recently by Lakshmanan and Biegler [10].

While construction of the reactor network is not difficult from the boundary of the attainable
region, the attainable region itself also provides information on the performance of the reactor
network without explicitly constructing it. Instead, compact optimization formulations can be used to
target reactor performance, and these can be embedded into larger process systems. For instance, an
attainable region formulation can be substituted for a complex reactor model, and this can be
coupled to the recycle and separation network as well as a heat exchanger network. By combining
these systems, a resulting optimization formulation can exploit the interactions and the synergy
among these subsystems, and far better processes can result. Balakrishna and Biegler [8, 11] have
shown how this approach can be coupled to heat exchanger network and separation synthesis
formulations with the result that very complex flowsheets can be synthesized and optimized
simultaneously. :

The waste minimization problem also forms an important component to be addressed by reactor
targeting and here we also include the waste treatment step into the synthesis procedure. In our
research we apply these synthesis techniques to processes for reaction mechanisms and rate laws that
are well-known. As an example we consider a simple (allyl chloride) Van de Vusse process to
illustrate the reactor targeting approach and demonstrate its potential.
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Example Problem

Consider the simplified allyl chloride process shown in Figure 2. Propylene and chlorine are mixed
and reacted at high temperature to allyl chloride, hydrogen chloride and dichlorinated byproducts.
The reactor effluent is flashed to separate the unreacted propylene and chlorine and hydrogen
chloride from the reaction products. This mixture is sent to a scrubber to recover the hydrogen
chloride and recycle the reactants. On the other hand, the reaction products, allyl chloride,
dichloropropene and dichloropropane, are further separated downstream and the dichlorinated
compounds are discarded. The reaction can be described by rate expressions from Groll and Heame
[12] and, if chlorine is assumed in excess, the system follows van de Vusse kinetics: A --> B --> C, A
--> D where A, B, C, and D are propylene, allyl chloride, dichloropropene and dichloropropane,
respectively. This process is well-characterized and has been the subject of numerous studies [13, 14].

This process was modeled in GAMS, an optimization/modeling platform, using the targeting
concepts explained above along with simplified separation models. The resulting formulation
consists of 542 constraints and 523 variables and was solved in 3.0 CPU sec’s on an HP 9000/720
workstation. Here it tums out that the optimal reactor network is a tubular reactor (as in practice) but
with the falling temperature profile shown in Figure 3 (as opposed to the adiabatic profile used in
practice). This falling profile can also be used to exploit the heat of reaction elsewhere in the
process. While this is frequently done, the heat recovery network is usually constructed sequentially,
without changing process conditions to its advantage. In fact, if we are able to synthesize the heat
exchanger network simultaneously with the reactor system, the overall profit can be increased by over
90%. A comparison oi the sequential and simultaneous optimization is given in Table 1. Note that
the overall conversion of propylene to allyl chloride increases from 49.6% to 61.5%. This results
from a higher selectivity to main product vs. waste, lower conversion per pass, higher recycle and
lower feed requirements.
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Figure 2. Allyl chloride process flowsheet

Additionally, we constrain the amount of hazardous waste being produced in the optimization
formulation and can synthesize a maximum profit reactor network for a given waste limit. This
allows us to establish an optimal trade-off curve of profit (before waste treatment) vs. waste generated,
as shown in Figure 4. While waste treatment costs can be directly incorporated into this problem
directly, the trade-off curve provides a very useful tool for decision-making when confronted with
uncertain waste treatment costs and changing regulations.
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Figure 3: Reactor temperature profiles
Table 1. Comparison between sequential and simultaneous optimizations
Sequential Simultaneous
Overall Profit 38.98 * 105 $/yr 74.02 * 105 $/yr
Overall Conversion 496 % 61.55 %

Hot utility load 3.101 * 105 BTU/r 2.801 * 105 BTU/r
Cold utility load 252.2 * 106 BTU/r 168.5 * 106 BTU/hr
Fresh Feed A 8.057 * 104 1b/hr 6.466 * 104 1b/hr

Degraded Product C 3.112 * 104 Ib/hr 1.44 * 104 1b/hr
By-Product D 0.933 * 104 1b/hr 1.00 * 104 1b/hr.
(Recycled) A 1.22 * 104 Ib/hr 1.963 * 104 1b/hr

As future work we nlan to consider and further develop the following topics:

- development of large-scale nonlinear programming tools for optimization formulations based
on differential-algebraic models.

- advanced software environments for the rapid development and prototyping of reactor and
process models

- development and enhancement of fundamental concepts for reactor targeting and extension
to separation and waste treatment systems

- access to rigorous process models embedded within the ASPEN simulator as well as the CRDT
reactor design program.

A major goal of our research will be the demonstration and refinement of an optimization-based
process synthesis methodology for waste minimization of important chemical processes. Process
models developed in ASPEN and CRDT along with the optimization formulations for reactor
targeting can then be developed for more rigorous process evaluation.
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Figure 4: Allyl Chloride trade-off curve (noninferior curve)

SYNTHESIS OF NONIDEAL SEPARATION SEQUENCES FOR BYPRODUCT RECOVERY AND
REUSE.

We have been working on methods to synthesize separation processes for liquid mixtures displaying
azeotropic and liquid/liquid behavior since 1989. In this work we developed SPLIT, an expert system
for the synthesis of such processes [15, 16, 17, 18]. We also developed many insights for separating
mixtures that allowed, for example, the prediction of the all the reachable products that a
conventional and an extractive three component distillation column can produce, where the operation
of the column ranged from total reflux to reversible [19, 20, 21]. The pinch trajectories
corresponding to reversible operation allowed the computation of how far column operation can
cross the so-called residue and distillation curve boundaries. These trajectories can be very rich --
having multiple branches.

The computations to support each decision in the synthesis of separation processes for azeotropic
mixtures are very extensive, causing us to term this approach "analysis-driven synthesis."

We have recently extended the insights for continuous distillation processes to batch distillation-based
processes [22]. In the course of developing these insights, we investigated unconventional batch
column configurations such as those shown in Figure 5. The leftmost is a conventional batch still
with a pot at the bottom. The second is a top pot column where the condenser has large holdup and
one draws off a bottom product. The third is the most interesting and is a batch column with a center
stage holdup. It has both a stripping and an enriching set of trays. It can be run with either heating
or cooling of the pot. As Morari and coworkers [23] reported, this configuration cuts utility use in
half (generally not economically significant, but interesting). It also allows one to double the
throughput, making essentially two cuts in the time a conventional column can make cne (more
significant economically), but, of coure, it will be more expensive to purchase. We also show an
optional extractive agent feed in the top section of the column. The fourth is a conventional batch
column with an extractive agent fed continuously as one carries out the separation. We can break
azeotropes with the last two configurations.
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Figure 5. Conventional and unconventional batch columns

We are working on comparing the optimal operation as found using optimal control to how we
would predict one should operate such a column using the above insights, where the insights give
bounds on the solvent flow vs. reflux ratio vs. the amount of material separated [24].

Flexibl .

The recovery of solvents from processes is an important environmental problem. If several processes
at a single site share a single solvent recovery system, then we find the need to design such a system to
operate with a variety of potential feed compositions and flow rates.

Collocation models: To carry out the synthesis of flexible separation systems, we identified the need
to reduce the analysis burden, especially to determine the detailed behavior of a column. . We often
needed to solve tray-by-tray models. Unfortunately these computations involve fixing the number of
trays in each of the column sections and guessing the reflux ratio to use to effect a desired separation.
It is difficult to know the number of trays and a suitable reflux a priori.

Based on work by others [25, 26, 27], we [28] developed a collocation model for distillation.
Such models have had difficulty in producing accurate composition profiles when portions of the
profiles flattened out, as in a column where there are too many trays or where one seeks high purity.
We introduced two variable transformations to our collocation model. The first maps trays ranging in
number from zero to infinity onto the range zero to one:

z=1-e%

where z is the transformed stage location and s is the original tray number. The second
transformation mapped composition from the range zero to one into the range minus infinity to plus
infinity:

-1<2(x-0.5)=tanh(¢) = Ei:.f..
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where x is composition and £ is the transformed composition. Both change the shape of the column
profiles to those more easily characterized by low order polynomials.

Our collocation model involves a feed
tray, a condenser, a reboiler and two tray
stacks, as shown in Fig. 6. We models the tray
stacks as two opposing collocation sections,
where the transformed tray number z is zero

at the opposing ends of each section and
nonzero where they merge. Testing of this
model on several example problems, where
the components range from displaying ideal
to azeotropic behavior, shows it compares
very favorably to that obtained using tray-by-
tray computations, even for cases for sharp
separation and too many trays. We have
developed a robust computation method that
creeps up on the solution (continuation for
degree of separation and model refinement to
move from ideal to nonideal equilibrium
models).

Flexible design: We have used this model for
column design and optimization. Our latest
use is for the design of a single flexible
column. We defined flexible operation as
being able to operate at steady-state with any
§ one of a given set of alternative feeds to the
Figure 6. Reduced order column model column. g'II‘he designer sets the fraction of

time each feed will exist for the column so we
can compute appropriate operating costs relative to capital costs.

A conventional optimization code fails to simultaneously converge a column model and move to
an optimum solution. We therefore use a grid of nine column designs -- using our robust procedure
to creep up on the solutions for each column, one for each feed. For each feed we fit a quadratic
polynomial to characterize a column's reflux ratio vs. total trays and feed tray location. The
optimization code has no difficulty with this very reduced model in finding the optimal diameter and
total number of trays for the column. It also picks which tray to feed and what reflux rate to use to
operate the column for each feed.

If the optimal design is at the edge of the nine grid points used to characterize the model, we
compute more column designs to place that point interior to the grid and repeat Tests include both
nearly ideal and azeotropic mixtures.

Future work on flexible separation process synthesis: To design flexible complete processes
comprising several columns, we are examining setting up a superstructure model for separating feeds
from anywhere in a composition diagram using the ideas presented recently by Sargent [29]. He
treats each azeotrope as a new species. For each distillation region, he puts the bounding components
(pure and azeotropic) into an order that corresponds to their volatility and develops a superstructure
for separating them. Curvature of the distillation boundary influences possible products. His rules
also suggest where recycling should be allowed. We shall attempt to optimize this superstructure
using the design approach we developed earlier for a single flexible column. We are also examining
the potential of using A-teams [30] as an approach to carrying out the optimization. Our concern is
that the optimization of superstructures is likely to have multiple local optima, a problem that A-
teams may address effectively.
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ABSTRACT

The batch process development problem serves as good candidate to guide the
development of process modeling environments. It demonstrates that very robust
numerical techniques are required within an environment that can collect, organize,
and maintain the data and models required to address the batch process devel-
opment problem. This paper focuses on improving the robustness and efficiency
of the numerical algorithms required in such a modeling environment through the
development of hybrid numerical and symbolic strategies.

1 INTRODUCTION

Over the past twenty five years process modeling technology has emerged as an invaluable and
widely used tool for the solution of many problems in process design and operation {1]. A major
current trend in this technology is the evolution of equation-based simulation tools, such as SpeedUp
(2], ASCEND [3], POLYRED [4], or ABACUSS [7], into process modeling environments in which
a common reusable process model may be used reliably for a variety of different computational
tasks, such as steady-state and dynamic simulation, steady-state and dynamic optimization, data
reconciliation and parameter estimation, etc. [6]. Concurrently to these advances in the underlying
technology, it is necessary to investigate the complex process design tasks that might be addressed
by such software. In this context, we can envision sophisticated software environments that can
collect, organize, and maintain the data and models required to address complex design problems,
and facilitate the seamless application of numerical algorithms to steps in the solution of the overall
problem. '

A process design task that serves as a good candidate for this approach is the batch process
development problem recently formalized by Allgor et al[5]. In the specialty chemical and phar-
maceutical industries, major competitive advantages can be derived from the rapid development
of efficient batch processes with low environmental impact. Allgor et al.[5] present an industrial
case study in which the combined discrete/continuous simulation capabilities of ABACUSS [7] are
used to develop a process design significantly more efficient than that resulting from a direct im-
plementation of pilot scale experiments in the large scale plant. A prototype methodology in which
process modeling technology is employed for batch process development is also presented.

Our current research is addressing two major issues in refining this methodology and making
it accessible to the practicing engineer: development of a suitable software environment, Batch

* Author to whom correspondence should be addressed.
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Developer, that implements this methodology and coordinates the overall process development, and
further developments of the underlying process simulation and optimization technologies driven by
the challenging problems posed by the steps of the methodology. A simultaneous investigation of
these two issues is proving particularly fruitful. This paper will focus on advances in the second
category.

A major advantage of a process modeling environment, particularly when applied to problems
such as batch process development, is the potential to decouple the process model from the nu-
merical solution procedures applied to it. In addition to enabling a variety of different calculations
to be performed with a single model, this feature frees the engineer to concentrate on the correct
formulation of the model and the design, rather than the details of the numerical solution proce-
dures. While this is a very desirable goal, it places very stringent demands and constraints on the
robustness and generality of the solution procedures. Our experience has demonstrated that current
technologies do not provide the level of robustness or efficiency required for routine application of
modeling technology to the batch process development problem.

Detailed modeling of batch processes requires the use of combined discrete/continuous simula-
tion applied to differential-algebraic models exhibiting complex and highly nonlinear behavior [8].
This problem is further complicated by the fact that during a batch operation state variables may
vary over many orders of magnitude (e.g. the composition profile in a batch distillation column),
and several physical regimes (e.g. the phase changes in a solvent switch operation). Recent research
on combined discrete/continuous simulation (7, 9] has led to the development of what is termed
an interpretative simulator architecture. In contrast to the more conventional code generation ap-
proach, in which the model is automatically coded as a FORTRAN subroutine and then linked
with numerical solvers, the interpretative approach creates an image of the process model as data
structures in machine memory, and during a simulation these data structures are ‘interpreted’ to
pass residuals, partial derivatives, etc., to numerical solvers. The interpretative approach is ideally
suited to discrete manipulation of the mathematical model at any point during the combined dis-
crete/continuous simulation [10], and reporting and diagnosis of problems or errors in the solution
process [11].

A further advantage of the intepretative architecture is that the complete functional form of
the model is available in explicit symbolic form for analysis and/or manipulation throughout the
entire simulation. This symbolic information has the potential to be extremely useful in addressing
the issue of robustness discussed above. In addition, it prompts an investigation of hybrid symbolic
and numerical strategies for more robust and efficient solution of simulation and optimization
problems. This paper reports on the progress and results of our preliminary investigations. The
current implementation of the interpretative architecture in ABACUSS serves as the platformn for
our efforts.

The next three sections of the paper identify areas in which the robustness and efficiency of
existing numerical techniques can be improved. Section 2 demonstrates shortcomings of current
numerical integration techniques for the solution DAEs and identifies improvements. Scction 3
demonstrates the potential for exploiting the interpretative architecture for the efficient solution
dynamic optimization problems. Finally, section 4 investigates a new method for the solution of
large scale highly nonlinear optimization problems.

2 ROBUST NUMERICAL INTEGRATION OF
DIFFERENTIAL-ALGEBRAIC SYSTEMS

As noted above, models of batch processes typically give rise to systems of differential-algebraic
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equations (DAEs):
f(x,x,u,t) =0
u = u(t) (1)

where x,x € R", u € Rl and f : R” x R® x R! x R — R™. Standard BDF codes for numerical
integration of DAEs provide certain guarantees on the accuracy of the numerical approximation.
Results from the application of ABACUSS as part of a batch process development strategy, partic-
ularly the batch distillation of certain wide-boiling mixtures, indicate that under certain situations
these guarantees break down. This section demonstrates the new result that a breakdown of the
error control mechanism can stem from an ill-conditioned corrector iteration matrix. Bounds are
derived that define the conditions under which the accuracy can be guaranteed, and scaling tech-
niques are investigated to mitigate the problem. ABACUSS is currently interfaced to the DASOLV
[12] implementation for sparse unstructured systems. Comparisons of DASOLV are made with the
widely used dense implementation DASSL [13]

Accuracy is maintained by adapting the step size to control the local truncation error (DASSL
also controls the interpolation error, using the more restrictive criteria to determine the allowable
step size.) The local truncation error is defined as follows for both DASOLV and DASSL [13]:

error = M - ”xc ~ xP” <1.0 (2)

where xC is the corrected solution and x¥ is the predicted solution. In DASOLV M is defined as
the inverse of the step size (h); M varies with the order of the method and the step size in DASSL,
but for a first order method when h,41 < hy,, M approaches —ll‘_t{:‘h— Note that in both cases the
truncation error scales with the integration step size, and the user requested tolerances are buried
in the definition of norm used in (2).

The DASOLV implementation allows the step size to be reduced up to eight times before
declaring that the step is too small. This permits large differences between the predicted and
corrected values of certain variables to be accepted when the step size becomes small.! For example,
Figure 1 shows the trajectory of the condenser duty for a batch distillation simulation performed
with ABACUSS. The model has no discontinuities, and the observed ‘spikes’ are the result of
successful integration steps with a very small step size. Effectively, the error control mechanism has
broken down but solution has continued. On the other hand, the DASSL implementation defines
a minimum allowable step size. This criterion is more likely to cause the equally undesirable
premature termination of the simulation (a familiar phenomenon to experienced users of these
codes).

The fact that DASOLV continues integration has enabled elucidation of the source of the
problem: an ill-conditioned corrector iteration matrix. The corrector employs a modified New-
ton method, terminating iterations based on the size of the update vector Ax calculated in exact
arithmetic.

lAx| <7 (3)

Assuming that the predictor provides an initial guess within the region of convergence of Newton’s
method and that the operations are performed using exact arithmetic, the superlinear convergence
of Newton’s method [14| bounds the distance from the current iterate x; to the solution x* using
the Newton update Ax and the convergence rate 3 as follows:

B

Ty (4)

%
X - x* < Axpll < 1
e =7l < T2 1A%l <

"The norm employed in DASOLV, a weighted root mean square norm, is scaled by the system size, so it is less
restrictive than a weighted infinity norm.
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Condenser Duty versus Time
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60.00 80.00 100.00 120.00 140.00

Figure 1: Plot of condenser duty resulting from ABACUSS simulation.

Unfortunately, the criterion defined in (3) cannot be applied directly because the only information
available is the size of the Newton update Ax calculated using floating point arithmetic. However,
as long as the current iterate is within the region of convergence, we need only demonstrate that
(3) is satisfied to attain the desired accuracy. The following linear error analysis uses Ax and the
condition number of the iteration matrix (x(J)) to derive conditions under which (3) must hold.

The criterion of (3) dictates that Ax must lie in a closed neighborhood of the origin of radius
7, defined by N(0). Although the exact location of Ax is not known, Ax must lie within a closed
neighborhood of radius 7 > ||§z|| of the numerically calculated update Ax. Thus, (3) will hold as
long as N,(Ax) C N,(0). Linear error analysis is used to prove the following: If there exists a Ax
such that (5) and (6) are satisfied, then N,(Ax) C N-(0).

[5] < ——1 6)

1+n(J)'ﬁ|

_ 51
[a] < - (J)”ufn”

Linear perturbation analysis provides the following bounds.

6|l [67]]
ot oz =
[l 6] 651l
< &S
llAx|] [I£]]
Combining (5) and (7) using the triangle inequality produces (9) which shows that ||Ax|| < 7.
ll6J ||
(M |l

Given that ||Ax|| < 7, (8) provides an upper bound for ||6z||.

T > "Ax“ (14 &(J)———

> |[5x] + gl 2 f1ax] o)

joel < @) g 1AL < w08 =
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(6) shows that “H” + r is bounded from above by 7, which implies that ||§z| < 7 by applying

the triangle inequality. Thus, N,(Ax) C N,(0), an (3) must hold.
In the best case, the only error in the calculation process comes from storing the original data,

so the error in the data is bounded by the machine unit roundoff €. In this case, |6 f|| < €||f|| and
16J]] < €]|J)|. Thus, (6) reduces to (11).

"Z‘i“ < 1(1 - &(J)e) (11)

If the condition number is high, then we admit the possibility that the accuracy cannot be main-
tained. The condition number of the iteration matrices from the previously mentioned batch
distillation experiments, show that it is impossible to find a Ax to satisfy (11).

To obtain solutions to such numerical experiments, the condition number of the iteration matrix
must be reduced, or the simulation must be performed in higher precision. Scaling the variables and
the equations of the model offers the opportunity to improve the conditioning of the matrix. An
ad hoc application of variable and equation scaling on the distillation model has shown significant
improvement in the conditioning of the iteration matrix. Therefore, automated scaling techniques
are currently being implemented within ABACUSS. Variables are adaptively scaled throughout the
simulation, since a given variable may change over orders of magnitude during the simulation of a
batch operation. The equations will be scaled based on their functional form.

3 HIGH-INDEX FORMULATIONS FOR DYNAMIC OPTIMIZATION

A subproblem of batch process development is the design of optimal operating policies for
individual processing tasks [5]. For example, system level targets may require the selectivity from a
reaction task to be maximized, and this can be achieved by searching for the optimal time profiles
for reactant feed rate and reactor temperature. This subproblem can in principle be posed as a
dynamic optimization problem. However, adequate models are relatively large and must reflect
nonideal phase behavior, complex reaction kinetics, and discontinuous physical behavior. Further,
formulations must accurately reflect equipment constraints such as design pressures, which typically
translate into path inequality and equality constraints. The combination of these issues poses severe
problems for current dynamic optimization algorithms {15, 16]. This section introduces a combined
symbolic and numerical strategy that has the potential to solve large scale dynamic optimization
problems with general path constraints in an efficient manner.

The indez of a differential-algebraic system is defined as the smallest integer I such that the
system formed from equations 1 and their first I time derivatives define x(t) as locally unique
functions of x(¢) and ¢ [13]. According to this definition, a system of ODEs is index-0. The term
high-indez is usually used to refer to systems with index > 2. High-index DAEs can occur for two
reasons. On the one hand, equations 1 may be inherently high index due to engineering assumptions
made in the derivation of the model. On the other hand, the index of the system may be raised by
the choice of which subset of model variables are specified as explicit functions of time u in order
to satisfy the degrees of freedom (DOF). This latter property is of interest here. Note that in this
context, even a system of ODEs may be made high index by specifying an output trajectory rather
than an input trajectory.

In dynamic optimization, the functions u(t) are the decisions. If path equality constraints
involving x are appended to equations 1, this reduces the DOF and raises the index. Path inequality
constraints can be treated in a similar manner by introducing slack variables. In this case, the index
is raised locally while the inequality is active. Hence, any solution method must adapt to changes
in the index as the trajectory is traced.
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The control parameterization approach to the solution of dynamic optimization problems [16]
relies on a decomposition in which an augmented DAE system is repeatedly integrated to evaluate
the objective function and gradients for a master NLP, which has as its decision variables the
parameters of the basis functions chosen to approximate u(t). Current approaches [16] avoid the
difficulties associated with integration of high-index systems [17] by removing path constraints from
the DAE system, and lumping their violation over the entire time interval into terms in the master
NLP. This infeasible path approach is less than satisfactory because the master NLP is provided
with little information concerning the path constraints, and this leads to an excessive number of
expensive DAE integrations.

We are investigating a feasible path control parameterization approach that includes all path
constraints explicitly in the DAE subproblems. This should lead to a dramatic reduction in the
number of DAE integrations required to solve path constrained problems. This work is predicated
on the ability to solve high index systems reliably. Mattsson and Soderlind [18] have presented
an algorithm in which the over-determined system of index-1 DAEs that can be derived from a
high index system by differentiation is made fully-determined by the symbolic substitution of time
derivative variables by ‘dummy’ algebraic variables. However, there are no reports on the appli-
cation of this algorithm to anything other than small problems due to numerical issues associated
with a large-scale implementation (dummy pivoting). We are currently resolving these issues and
implementing the algorithm in ABACUSS.

Mattsson and Soderlind’s approach uses Pantelides’ [19] structural algorithm to identify which
equations to differentiate in order to derive the index-1 system, and symbolic differentiation can
perform the necessary differentiations. We have successfully implemented these two steps in ABA-
CUSS and are currently using this feature for consistent initialization of large scale high-index DAE
systems.

We have also demonstrated that certain classes of dynamic optimization problems can be solved
extremely efficiently by deliberately making them high-index. In this case, the problem reduces to
a NLP in terms of the model variables at a finite number of points. This is similar to the collocation
approach [15] but gives rise to NLPs that are dramatically smaller.

4 ROBUST OPTIMIZATION OF LARGE SCALE HIGHLY NONLINEAR
PROBLEMS

Many problems in process development and design give rise to large, highly nonlinecar mathe-
matical programming problems. Consider the following nonlinear program (NLP):

min /(%) (12)
st. hix) = 0 » (13)
gx) =2 0 (14)

The first-order necessary conditions for optimality are the well known Karush-Kuhn-Tucker (KIKT)
conditions, which are a mixture of nonlinear equations and inequalities. It is shown by Mangasar-
ian that the complementary slackness condition in the KKT conditions can be reformulated as
an equivalent set of nonlinear equations [20]. After applying Mangasarian’s theorem, the KKT
conditions become:

Vf(x)-Vhx)Tv-vVgx)Tu = 0 (15)
hix) = 0 (16)
M(|gi(x) —uil) - M(gi(x)) - M(w;) = 0 Vi (17)
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where M : R — R is a strictly increasing function with M (0) = 0. This set of equations will be
solved using the globally convergent homotopy continuation method. A similar approach has been
proposed by Brengel and Seider [21] in an attempt to coordinate design and control optimization
and by Sun and Seider [22] in Gibbs free energy minimizations. The ability to dervive equations
(15-17) automatically by symbolic differentiation and manipulation in an equation-oriented simu-
lation environment plays a pivotal role in this approach for solving large-scale NLPs. In addition,
symbolic manipulation techniques are being investigated to improve the performance of the homo-
topy continuation method itself.

Homotopy continuation has been used in the past to solve systems of equations when a good
starting point is not known or when the equations contain many singularities. Suppose F(x) =0
is a set of equations we are interested in solving. One popular homotopy is the convex linear
homotopy given by:

H(x, \) = AF(x) + (1 — A)G(x) (18)

where A is the homotopy parameter and G(x) is set of equations which has a known solution x°.

The idea behind homotopy continuation is to begin at A = 0 and x = x°, where H(x% 0) = 0, and
track the homotopy path given by H(z,A) =0 to A = 1 and x = x*, a solution of F(x) = 0.

One particular homotopy is the Newton homotopy where G(x) = F(x) — F(x?). The homotopy
map is given by: :

H(x,\) = F(x) - (1 - )F(x°) (19)

Parameterizing x and A with respect to the arclength of the homotopy path, and differentiating,
we obtain:
d\

==
Combining this equation with equation (19) and rearranging, we obtain:

VF(X)% + F(x?) 0 (20)

dx _ d)/ds

— =75 VF(®)'F(x) (21)

Now consider the global Newton method. The global Newton method can be interpreted as the
integration of the autonomous ODE system:
dx

— = ~VFx)'Fx) (22)

A damped Newton method, given by the iteration formula
xFtl = x* - oF VR (xF) T F(x*) (23)

can be obtained by a first-order explicit integration of equation (22) with a stepsize, o, selected such
that “F(xk+1)|| < ”F(x’“)“ Now consider the successive quadratic programming (SQP) algorithm
for nonlinear optimization. SQP converges to an optimum by obtaining search directions from the
solution of a quadratic program (QP) subproblem formed by taking quadratic approximations of
the objective function and linear approximations of the constraints. The current point is updated
by moving in the direction obtained in the QP a stepsize determined by minimizing some merit
function. It can be shown that the directions obtained in the QP subproblem are the same as the
directions obtained by applying Newton’s method to the KKT conditions of the NLP, considering
only the active constraints (i.e. inequality constraints equal to zero). Thus, SQP can be interpreted
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as applying a damped Newton method to the IKKT conditions. In the homotopy continuation
approach for solving NLPs, the KKT conditions are solved using homotopy continuation. The
relationship between homotopy continuation and the damped Newton method indicates that SQP
and the homotopy continuation approach for solving NLPs are quite similar.

Although these two approaches are similar, using homotopy continuation has the following
advantages. First, homotopy continuation can locate solutions where other methods fail due to
both lack of a good initial guess and the presence of singularities. Homotopy continuation is
globally convergent with probability 1 [23] and, unlike the related global Newton method, remains
stable near singular points [24]. Second, under reasonable assumptions, the homotopy path given
by (18) is a connected one-dimensional submanifold. This feature makes it possible to track out
several solutions using homotopy continuation. Being able to track out multiple (possibly all) KKT
points is, in many cases, better than obtaining a single global minimum (for example, the global
minimum is useless if it is not possible to control the plant when operating at that point). Finally,
deriving equations (15-17) does not change the sparsity of the original problem. Therefore, this
approach should be able to handle large NLPs with many degrees of freedom. These properties
suggest this approach has the potential to be effective in solving large-scale, non-convex NLPs
with highly nonlinear constraints and many degrees of freedom, where the performance of SQP is
seriously degraded.
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ABSTRACT

A hierarchical control system is being developed and applied to a mixed culture
bioprocess in a continuous stirred tank reactor. A bioreactor, with its inherent
complexity and non-linear behavior was an interesting, yet, difficult application for
control theory. The bottom level of the hierarchy was implemented as a number of
integrated set point controls and data acquisition modules. Within the second level
was a diagnostic system that used expert knowledge to determine the operational status
of the sensors, actuators, and control modules. A diagnostic program was success-
fully implemented for the detection of stirrer malfunctions, and to monitor liquid
delivery rates and recalibrate the pumps when deviations from desired flow rates
occurred. The highest control level was a supervisory shell that was developed using
expert knowledge and the history of the reactor operation to determine the set points
required to meet a set of production criteria. At this stage the supervisory shell
analyzed the data to determine the state of the system. In future implementations, this
shell will determine the set points required to optimize a cost function using expert
knowledge and adaptive learning techniques.

INTRODUCTION

Bioprocesses which utilize axenic cultures and sterile feeds predominate in the food,
pharmaceutical and specialty chemical industries. However, large scale bioprocessing for the
mining industry or waste water treatment utilize mixed populations of microorganisms for two main
reasons. First, and most important, is that mixed populations of indigenous microorganisms are
more effective and can ever improve the performance through natural selection. Not only do these
naturally occurring microorganisms behave as consortia, bacteria which have been added to enhance




activity may not be maintained within the indigenous microbial population. Difficulties and the
expense involved with the sterilization of feed stocks required for large scale processing is a second
reason that large scale processes must accommodate the presence of mixed microbial populations.

Control of any biologically-based process is complicated by the fact that microbial activity can
not be directly manipulated. Microbial activity can be indirectly influenced through the manipula-
tion of the physical and chemical environment. Furthermore, while the microorganisms are
controlled by their environment, the microbial culture’s environment is being changed by the
metabolic activities of the microorganisms. Mixed culture bioprocesses further compound control
issues by the additional requirement that the process must be regulated in such a manner as to
maintain the desired activities of all consortium members that are necessary for the process. Another
important consideration is that the main process variable, the microbial activity, can not be measured
on-line in a commercially reliable fashion.

An intelligent control system for mixed culture bioprocesses using acidophilic microorganisms
is of increasing importance to the mining industry. The long-term objective is a control strategy that
will optimize economics of bioprocess. To this end, a hierarchical control system is being developed
and applied to a nonlinear, unstable, mixed culture bioprocess in a continuous stirred tank reactor
(CSTR).! At the bottom of the hierarchy was a number of integrated set point controls and data
acquisition modules. The next level was a diagnostic system that used expert knowledge to
determine the operational status of the various sensors, actuators, and control modules. The top
level was a supervisory shell that is currently under development. This stage was capable of
identifying the bioreactor state by reading information from the low level sensors, control systems,
and the diagnostic system. In its envisioned, full, implementation, the supervisory shell will control
the operation of the reactor by using expert knowledge and the history of the reactor operation to
determine the set points required to meet a set of production criteria. In this paper, we describe the
microorganism, the integration of the diagnostic system and the results obtained to date as they will
be implemented into the top level supervisory shell.

SYSTEM DESCRIPTION

Microbial Culture

The mixed culture bioprocess used as the model system for this program is one that would be
utilized for the microbial desulfurization of coal. Thiobacillus ferrooxidans, the causative agent of
acid mine drainage, is a valuable microorganism for the bacterial leaching of sulfide mineral ores
and the oxidation of pyritic sulfur in coal. T. ferrooxidans is a microorganism that inhabits acidic
environments, utilizes CO, as a carbon source and Fe** as the energy source. In our test system, this
microorganism was defined as the biocatalyst with CO, and Fe*" as substrates. Fe’* and metabolic
products were the product and byproduct, respectively. In natural environments, acidophilic
heterotrophic microorganisms enhance the desulfurization activity of 7. ferrooxidans by scavenging
the metabolites and other inhibitory organic compounds. Thus, in later stages of the program, an
acidophilic heterotrophic microorganism will be added that will utilize, as its growth and energy
source, the metabolic products excreted by T. ferrooxidans.
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T. ferrooxidans (ATCC 23270) was cultivated at 30°C using a modification of the basal salts
medium of Johnson et al.> The medium (pH 1.8), contained per liter (NH,),SO,, 1.25 g;
MgSO0,-7H,0, 0.50 g; K,HPO,, 0.25 g; trace elements solution, I mL and 50 mM FeSO,.

Hardware

The bioreactor was a 2 liter continuous culture system (Multigen F-2000, New Brunswick
Scientific Co., Inc.) that was modified to receive external control signals for stirrer speed and
heating. A stainless steel lid was constructed and fitted with 4 liquid inlet ports; sampling port;
thermocouple; heating probe; sensors for oxygen, pH and redox (Ingold Electrodes, Inc., Wilming-
ton, MA); air exhaust through a demister/condensation column; and an impeller and aeration
assembly. Air and CO, were humidified by sparging through sterile water. Five peristaltic pumps
(Masterflex 7520-35; Cole-Parmer Instrument Co., Niles, IL) were used feed water, basal salts, iron
solution, acid and base into the bioreactor. Passive over flow was used to maintain the working
volume of the reactor. Each of the three main pumps, i.e., water, nutrients and iron, had a fuzzy
logic control loop to maintain the desired flow rates.

A Macintosh IIx computer equipped with a NB-MIO-16HX multifunction Input/Output board
and two NB-AO6 analog output boards (National Instruments, Austin TX). These boards provided a
* total capacity of 16 analog input, 14 analog output, and 32 digital I/O lines for the bioreactor
system. The I/O lines were isolated and conditioned with 5B series back plane and isolation
modules. Additionally, the Macintosh was equipped with a 4 port serial board. Combined with the
computer’s 2 ports, this provided six RS-422 serial lines. The RS-422 ports were wired with custom
made cables that made them compatible with the RS-232 instruments used in the system. The pump
subsystem of the bioreactor used 1 analog input, 5 analog outputs, and 4 serial lines. The computer
and all of the instruments in the system were protected with a Fortress uninterruptable power supply
(Best Power Technology, Inc., Nedcedah, WI). Computer programming, data acquisition and
analysis was done using LabVIEW graphical programming language (National Instruments Corpora-
tion, Austin, TX). LabVIEW provided a convenient operator interface, as well as a sophisticated
language interface to the I/O boards for data acquisition and control.

Analytical Methods

Off-line titration of Fe** species with potassium dichromate’ was used to determine the
concentration of Fe (II). The concentration of Fe'* in solution was determined offline by absorption
at 304 nm.* On line measures for total organic carbon (TOC) were obtained by difference of total
carbon and inorganic carbon using a total organic carbon analyzer (Model TOC-5000, Shimadzu
Corporation, Columbia, MD). Dissolved organic carbon determinations were obtained by off-line
measures of a filtered (0.2 pm, Whatman Puradisc, polypropylene filter, Clifton, NJ) reactor fluid.
Cell counts were made by staining cells filtered onto black polycarbonate membrane filters (0.2 um,
Poretics, Livermore, CA) with acridine orange (0.01% final concentration in water adjusted to a pH
of 11 with NaOH). Prior to staining cells were washed with water adjusted to pH 1 with sulfuric
acid then with water adjusted to pH 11 with NaOH. After staining cells were washed with de-
ionized water and counted using an epifluorescence microscope.

Low-Level Sensing and Control System

On-line sensors were used to determine the pH, temperature, dissolved oxygen, redox potential,
and air and carbon dioxide flow rates (Figure 1). In addition a carbon analyzer was used on line to
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determine total organic carbon,

dissolved organic carbon, and dis- *

solved carbon dioxide. The differ- oH T TEUPERATORE
ence between the TOC and DOC HEATER . o T FLOW RATE
was l‘lsed a measure of piomass.  NUTRIENTS —% oW e o L % STIRRER
Off-line measurements included WATER — o |0

cell counts and [Fe*?] and [Fe™] as STIRRER ——4- —— CO;
described below. Fuzzy PID’ con- AERATION ——- ol ., |——» rebox
trollers were implemented to con- . €O —p 1° | — voc

trol the pH and temperature of the 0, 4 > FE2+, FEB+
reactor. The pH was controlled by > CELLS
activating one of two pumps to CONTROL ACTIONS CONTROL INPUT

add acid or base as necessary and
the temperature maintained at the
desired set point above the ambi-
ent room temperature by turning
on or off a heater. The flow of air v
and carbon dioxide was controlled by mass flow controllers. Substrate feed concentrations were
controlled by setting the flow rates of two pumps that transferred basal salts and iron solution from
reservoirs into the reactor and the dilution rate controlled by adding water through a third pump.
The reservoirs were placed on scales and the pumps recalibrated every 24 hours using the scale
measurements. In addition, the effluent mass was measured as a check on the dilution rate. The
system accounted for the addition of acid or base for pH control when determining the water flow
such that the dilution rate remains constant.

Figure 1. Schematic of reactor with control actions and
control input variables obtained by on-line sensors and off-line
analyses.

Diagnostic System

At the next level of control, a diagnostic system used expert knowledge to determine the
operational status of the various sensors, actuators, and control modules. Sensed and controlled
parameters were examined to be sure that the measured values were within the tolerance of the
control system and, if not, the data was analyzed to determine the specific cause of the problem.
Other problems were diagnosed indirectly from combinations of sensor data. For example, the
increase in Redox and decrease in oxygen at 20 hours in Figure 2 was interpreted as a stopped stirrer
by the diagnostics program. The importance of detection and diagnosis of instrument failures
increases as run time increases. We have observed increased equipment malfunctions near the later
stages of our extended bioreactor operations.

Supervisory Shell

The top level was a supervisory shell that is currently under development. At its current stage
of development, the supervisory shell was capable of identifying the state of the bioreactor by
reading information from the low level sensors and control systems and from the diagnostic system.
In its envisioned implementation, the supervisory shell will be able to control the operation of the
reactor by using expert knowledge and the history of the reactor operation to determine the set
points required to meet a set of production criteria. This supervisor will observe the operation and
make decisions to change the set points, adapting to the current status of the reactor and its
inhabitants.
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In this study, the supervisory
shell monitored the acquired data to 1.3 L VOLUME
determine whether the bioreactor was pH°2
in one of three operational states, 2%;3“' ON 1 SLM
1) transition phase; 2) steady state or lﬁr
3) washout. Transition phase is a
transient state of the bioreactor that
occurs when any operational parameter
e.g., flow rates, substrate loading, or 18}
pH, has been changed. During the
transition phase, as the reactor is ap- /_A/_ EH /100
proaching a new steady state, micro-
bial activity is changing in response to
the changes in the physical-chemical
environment of the system. Steady pH
state occurs when the microorganisms al : . : . : T ' .
have achieved an approximate state of 25 S8 75 108 125 158 175 200
balanced growth in response to a HOURS
steady environment. Once steady state Figure 2. An example of the data set obtained by on-line
has been achieved the human operator  Redox (mV), pH, and oxygen (ppm) determinations.
is prompted to modify operating pa-
rameters, i.e., flow rate if desired. While steady state can be defined in a variety of ways, our
program defined steady state as a minimum of 5 reactor volumes, substrate (Fe?*) and product (Fe*)
concentrations that varied by less than 10% and biomass as determined by cell counts that varied by
less than 25%. The latest installation of the program utilized TOC values that varied less than 10%
instead of cell counts for the biomass measure. Washout condition is the operational state of the
bioreactor in which the flow rate exceeds the maximum growth rate of the microorganisms and the
cells are washed out of the reactor.

DO2 (PPM)

RESULTS AND DISCUSSION

We are developing and applying a hierarchical control system to a nonlinear mixed culture
bioprocess in a CSTR. A CSTR bioreactor is inherently stable. However, we have introduced the
dangers of instability by imposing an operating constraint that the volumetric productivity be a
maximum. This requires that the bioreactor be operated near the washout point. To operate with an
economic constraint also requires the minimum inputs of other nutrients. Data is reported here from
a run of 47 days with a reactor volume of 1.3 L, air flow of 1 L/min, an iron feed concentration of
50 or 100 mM, and a range of dilution rates from 0.132 hr' < D < 0.441 hr' which corresponds to
liquid delivery rates of 3 mls/min to 10 mls/min. The objectives were to test the lower-level control
loops, to evaluate the ability of the diagnostic level to perform some simple tasks and to identify the
limiting nutrient in order to start to construct rules by which the supervisory control system can
move the system towards the optimal operating point.

Redox and oxygen probes were particularly subject to fouling problems, thus, were cleaned
frequently. Differences in redox and oxygen values between fouled and cleaned probes was apparent
from the data (Figure 2). Cell counts, and Fe** and Fe** concentrations were determined, at a




minimum, daily and entered into the data base (Figure 3). Excursions in TOC values occurred when
the physical disturbance of the reactor resulted in the dislodging of solid material that had built up in
dead zones in the reactor (Figure 3). While there was an increase in TOC during these excursions,
there was little affect on the overall behavior of the reactor. In Figures 2 and 3, steady state was
achieved at approximately 45 hours, and at 50 hours the flow rate was decreased from 10 mls/min to
6 mls/min. This corresponded to a decrease in dilution rate (D) from 0.441 hr' to 0.265 hr'. The
decreased flow rate resulted in increased cell counts, and increased product (Fe**) concentration.

Redundant measures of process parameters will be used until the most effective and reliable
means of assessing bioreactor performance are determined. While redox values provide an estimate
the ratio of Fe(IIl) to Fe (II), they do not provide a measure of the concentration of the iron species.
Total iron values obtained by the summation of values obtained for Fe (II) and Fe (III) by off-line
quantitation agree with total iron concentrations obtained by atomic absorption spectroscopic
methods (Data not shown). Fouling or coating of the redox probe and resulted in deviations from
Redox potential of the bulk fluid. Graindorge et al..® in relatively short bioreactor runs, utilized
Redox measures as an estimate of biomass yield and biological activity. Because of errors
introduced by fouling, Redox as a measure of microbial productivity could introduce error into our
control decisions. Until a direct measure of microbial activity is developed in the context of this
program, an indirect measure of activity will be biomass as measured by organic carbon measures
and cell counting procedures. Initially, process monitoring and determination of steady state
conditions was accomplished using cell counts as an estimate of microbial activity. With the
addition of the total organic carbon (TOC) analyzer, on-line measures of organic carbon as an
estimate of microbial growth and activity were used for the determination of steady state conditions.

The experimental plan that would determine the operational limits of the bioreactor was based -
on relationships for the kinetic behavior of a CSTR (Figure 4). Conventional treatment of kinetic
data obtained from bioreactors assume
that there is a single limiting nutrient
in the liquid feed that, ultimately, con- 45
trols the growth rate of the microor- DILUTION RATE * 108
ganisms. In our initial hypothesis, 404
Fe** was the single limiting nutrient
and that there would have been suffi-

“cient CO, introduced by aeration to - 304
support the growth of the microorgan-
isms. The data from four steady-state 25
conditions examined, plotted in
Figure 5, show a pattern unlike that in
Figure 4, indicating that microbial 15
growth was not limited by Fe** or any
other liquid-phase nutrient. Since dis- 104
solved oxygen was maintained at non-
limiting values (4 -6 mg/L) throughout 97
the experiment, the most likely

354
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hypothesis is that metabolism was lim- = % b 125 150 175 200
ited by the availability of CO,, the HOURS

carbon source for the autotrophic T. Figure 3. An example of the data set obtained for cell
ferrooxidans. Generally, on-line inor-  density (x E® cells/mL), Fe*" concentration (mM), Fe’*
ganic carbon values were less than 5 concentration (mM) and on-line total organic carbon

determinations (ppm).
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density (10° cells/mL).

ppb which suggested that the reactor was, indeed, operating under CO, limitation. Note that cell
numbers did not rapidly approach zero as flow rate was increased (Figure 5). When the limiting
nutrient must be transferred from the gas phase, cell washout did not occur was if would have if the
limiting nutrient is dissolved in the liquid feed. Data obtained at steady state indicated that dilution
rates greater than 0.176 (4 mL/min) resulted in marginal improvement in total Fe’* yield (Figure 6).
Maximum Fe’* yield per unit biomass was observed for a dilution rate of 0.265 (6 mL/min). The
observed €O, limitation at relatively low iron concentrations (~50 mM) has implications for the
development of a control system that maximizes the iron oxidation rate. The feed must be enriched
with CO, and controlled using on-line dissolved inorganic carbon measurements so as to maintain a
reasonable non-limiting CO? concentration at reasonable cost.

SUMMARY

We have found that several lower-ievel control loops successfully performed control tasks such
as pH and temperature control, accurate delivery of liquid feeds. Upper level control programs were
successful in determining the operational state of the reactor and diagnosing equipment malfunctions.
And working towards the goal of a supervisory control system, we have identified the limiting
nutrient in order to start torconstruct rules by which this control system can move the system
towards the optimal operating point. Problems such as analytical difficulties, equipment malfunc-
tions and the complexity of the biological system which are typically encountered when running long
term continuous processes must be accounted for and incorporated into any supervisory control
program.
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ABSTRACT

This paper discusses a methodology for controlling complex dynamics and chaos in dis-
tributed parameter systems. The reaction-diffusion system with Brusselator kinetics, where
the torus-doubling or quasi-periodic (two characteristic incommensurate frequencies) route to
chaos exists in a defined range of parameter values, is used as an example. Poincaré maps
are used for characterization of quasi-periodic and chaotic attractors. The dominant modes
or topos, which are inherent properties of the system, are identified by means of the Singular
Value Decomposition. Tested modal feedback control schemas based on identified dominant
spatial modes confirm the possibility of stabilization of simple quasi-periodic trajectories in
the complex quasi-periodic or chaotic spatiotemporal patterns.

INTRODUCTION

The discussion of problems connected with the development of a systematic framework for
control of complex dynamics and chaos in distributed parameter systems is the subject of this
work. The control of complex dynamics has significant practical implications. Transition to
chaos via the quasi-periodic route occurs in a number of hydrodynamic and other systems.
Control of such transitions could be used to improve characteristics of process systems. The
issue of chaos control in distributed parameter systems (DPS) has been discussed in several
papers [1]. However, there do not appear to be studies that address the problem of controlling
chaos when it occurs through the quasi-periodic route in a DPS. The focus of this effort is to
explore the possibility of controlling the chaotic attractor in a distributed system to one of the
quasi-periodic attractors, namely tori from which it evolves based on an understanding of the
underlying dynamics. The distributed parameter system considered is of the reaction-diffusion
type with Brusselator kinetics. A quasi-periodic or torus doubling route to chaos is known
to exist in the selected region of parameter space [2]. In order to achieve the desired control
objective, it was found useful to combine ideas from previous work in the area of control of
chaos in lumped parameter systems (LPS) and low dimensional maps [1], general methodology
of identification and control of distributed parameter systems [3] and analysis of spatiotemporal
patterns in distributed systems [4].

*Permanent Address: Dept. of Chemical Engineering, Prague Institute of Chemical Technology, Prague, Czech
Republic
' Author to whom correspondence should be addressed
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DyYNAMICS

System description

The Brusselator reaction kinetic scheme is a standard model system used for the study of dissi-
pative structures in nonlinear chemical systems [5]. The reaction scheme involves the transfor-
mation of initial components A and B into products D and E through the reaction intermediates
XandY.

4 & ox
B+Xx = vip
9X+Y B, 3x

X & E

The case of the Brusselator reaction occurring in a membrane reactor is studied in this work. It
is assumed that the reactor remains isothermal. A possible reactor design is shown in Figure (1).
The reaction medium in the reactor is in a thin tube without radial variations in composition.
The concentrations of A and B and of the products D and F in the reactor are controlled by
a lateral semipermeable membrane between the reactor tube and the zoned chambers formed
by the tube jacket. There are 19 such zoned chambers with concentrations being measured by
sensors located at the mid-point of each zone. The only exceptions are the zones at either end
which are 1.5 times longer than the rest and have measurement sensors at the two-thirds point.
Separate membranes at the end of the reactor control the concentration of intermediates X,
Y at each end of the tube. There is no convective contribution so that the system could be
alternately viewed as a series of well mixed reaction cells coupled by diffusion. The governing
set of partial differential equations for the Brusselator kinetics in a reaction-diffusion system can
be expressed as [2, 5]:

8x Dx 8*X

5 = e tXY-(B+1X+4 | 1
Y _ DydY :

The length of the reactor L is chosen as the bifurcation parameter. The diffusion coefficients

ABD,E A,BD,E
Al Al A A
sl o s B o
XY ;Membrane Reaction Medium é —X,Y
=y L NN
5AH—HA

Figure 1: Membrane Reactor Geometry.
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Dx, Dy of X and Y are chosen as (.008 and 0.004 respectively. The dimensionless distance
coordinate z ranges from 0 to 1. Also, A and B are 2.0 and 5.45 respectively. The boundary
conditions are of the Dirichlet type:

X(t,0)=X(t,1)=X, Y(,0)=Y(,1)=Y (3)

where X and Y are the steady state concentrations in the homogeneous system. Thus X = A = 2
and ¥ = B/A = 2.725.

For purposes of computation of spatiotemporal data for dynamic analysis, the finite difference
approximation, where the spatial domain is discretized into 20 intervals of equal length, is used.
Holodniok et al [2] observed that the leading eigenvalues of the monodromy matrix, a measure
of the stability of the periodic solution, were almost identical for 20 and 40 intervals. Also, we
found the results of the simulations performed with 40, 80, 160 intervals to be consistent with
those for 20.

Poincaré maps

The nonlinear dynamics of interest can be studied by means of properly chosen Poincaré maps.
The Poincaré map for the present problem essentially represents the intersection of the trajectory
obtained by integration of equations (1) and (2) and a 37-dimensional hypersurface suitably
defined. For example, the surface could be defined by the following equation:

Xz_—_o_;;(t) = 2.0 (4)

with dX,=0.3(t)/dt > 0. The Poincaré map would then contain only those spatial profiles which
satisfy the requirement of equation (4) as denoted by solid lines in Figures (2a) and (2b). To
represent the Poincaré map in two dimensions it becomes necessary to project the map onto
chosen two phase-space coordinates i.e. concentrations of X and Y at chosen location in the
reactor. The concentrations of X and Y at z = 0.5 when the concentration of X at z = 0.3
is 2.0 and increasing (see points Q and R in Figure (2)) were used here. In such a 2D map,
a single point denotes periodic behavior. A closed orbit indicates quasi-periodic behavior (or
torus) while a double closed orbit would suggest a torus doubling.

Equations (1) and (2) were integrated using two sets of initial conditions. The first set of
initial conditions, denoted by A (or IC-A) throughout this paper, corresponds to:

X=232,Y =17forz2<05 and X =3.32, Y =2.75for z > 0.5

The second set of initial conditions, referred to as B (or IC-B) is the mirror image of the initial
condition A. The Poincaré maps that result as L is varied from 1.403 to 1.43 are presented
in Figure (3), which reveals the existence of two co-existing and mutually mirror-symmetric
spatially asymmetric attractors. The symmetry arises from the symmetry in the geometry of
the problem and the solution reached depends on the initial conditions used.

Singular Value Decomposition (SVD)

Spatiotemporal patterns can be better understood if they are decomposed into time-independent
spatial structures and their time-varying amplitudes. This orthogonal decomposition can be
accomplished by means of the Singular Value Decomposition [6]. Implementation of SVD in
this context is in principle similar to the Karhunen-Loéve expansion. The SVD analysis is
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Figure 2: Selecting spatial profiles for Poincaré maps of DPS. (a) and (b) correspond
to initial conditions A and B (cf. text). t; < 3 < &3 < t4 < t5 < tg. Equation (4) defines the
Poincaré surface.

applied to both reactants X and Y. The spatiotemporal data for reactant X typically consists of
M snapshots at N points in space which constitutes an N X M matrix X' Application of the
matrix SVD yields left and right unitary singular matrices and a diagonal singular value matrix.
The columns of the left (spatially dependent) and right (time dependent) singular vectors are
referred to as topos and chronos respectively. ‘

Figure (4) illustrates the behavior of the topos, w;(z), corresponding to the first two modes
(i = 1,2) when using initial condition A. Initial condition B yields a set of topos wj(z) which
satisfies the condition w{(z) = wy(1 — z). The (2,1 — 2) relation indicates that the symmetry
is of the same mirror-image type seen in the Poincaré maps. The topos w;(z) are inhkerent
properties of the system and were found to fluctuate very little as I was varied.

From the square of the singular values, the relative energy of each mode can be assessed.
The singular values are arranged in descending order. It was found that about 85% of the
energy is concentrated in the first mode itself and another 12% in the second mode. Also the
distribution of the energy amongst the dominant modes remained similar throughout the regime
of transition to chaos i.e. L = 1.403—1.43. This observation coupled with the robustness of
the topos lends support to the idea that in a feedback control framework, desirable performance
could be achieved by controlling the first mode alone.

MoDAL FEEDBACK CONTROL

The primary goal is to develop a feedback control framework which would facilitate control of
the chaotic attractor to any of the tori from which it evolves or vice-versa or from one torus
to another. A modal feedback control methodology that accounts for the spatial nature of the
output is schematically depicted in Figure (5). A detailed account of the different modal control
schemes used can be found in [7].

‘First, let us suppose that we wish to control the chaotic attractor to the 1-torus. Let X (z,t)
in the open loop represent chaotic behavior and X,,(z,t) be indicative of the desired quasi-
periodic behavior. Thus the set point is a dynamically varying profile. &(z,t) is the deviation
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Figure 3: Poincaré maps. The horizontal and vertical axes represent the concentration of X
and Y at the midpoint, z = 0.5. The attractors in the top left corner are obtained using initial
condition A while the ones in the bottom right correspond to initial condition B. Equation (4)
defines the Poincaré surface. ’
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Figure 4: Topos for modes 1 and 2 with L = 1.403. Initial condition A is used. The
horizontal axes denote the distance coordinate while the vertical axes represent the magnitude
of the topos.
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Figure 5: Modal feedback control scheme.

of the output profile X(z,t) from the set point X,,(z2,t):
e(z,t) = Xop(2,t) — X(2,¢) , (5)

Since the topos w;(z) were shown to be intrinsic properties of the system (i.e. consistent throug-
hout the transition regime), the modal error vector e(t) is obtained by projecting the deviation
(z,t) onto the topos.

ei(t) = /0 L (2, ywilz) dz (6)

The modal controller computes the control coefficients b;(t) corresponding to each e;(t). A
suitable form of control law could be used. For instance, with proportional control, b;(t) =
Ke(t). The control action u(z,t) is then obtained as follows:

N
u(z,t) = Y bi(t)wi(2) ' | )

1=1

Though a distributed parameter system is of infinite dimension (i.e. N = o0), in practice N could
be set to a value which ensures that the first N modes capture the desired amount (for example,
90%) of the original behavior. This information can be obtained from the singular values. It
is difficult to practically implement a control action of the type described by equation (7) that
is continuous in space. A more physically realizable technique would be having M zones of
piecewise uniform control in the interval zx < z < zy, (cf. Figure (1) for an example). The
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control action could then be expressed as:

M
u(z,t) = 3 eult)gelz) (8)

k=1

where gi(2) = H(z — zx) — H(z — zg41). H(z) refers to the Heaviside step function. ci(t) can
be obtained by using the orthogonality of gg(z), thus yielding the expression:

M N ot 1
u(z, t) = E Z K (/0 [Xop(2,t) — X (', )] wi(2') dz') (/0 wi(2)gr(Z) dz’). a(z) (9)
k=1t i=1 ; '
In the reaction-diffusion system (equations (1} and (2)) contrel is physically accomplished by
the addition or removal of reactants 4 and B as shown in Figure (1}). The exact increments
or decrements of A and B, referred to as uy and uy, are computed based on the deviations of
X (z,t) and Y (z,t) from X,,(z,t) and Y,;(z,t) respectively. Proportional feedback is used based
on the observation that earlier works dealing with the problem of control of chaos have found
such a scheme adequate for the purpose of stabilization of the strange attractor onto one of the
embedded unstable orbits. With the inclusion of feedback control the governing equations (1)
and (2) are transformed to:

10,4 Dx 8°X

= = —17--5;{+X2Y—(B'+uy+1)X+(A+ux) (10)
ay Dy 8%Y
5 = Traa - XY +(Bun)X (11)

The boundary conditions (equation (3)) remain unchanged. As in the case of dynamics, the
computations are performed using the finite difference approximation with 20 intervals of equal
length. The approach is to try several forms of modal contrel — 1 mode, 1 zone and 1 mode, 19
zones. Figure (6) illustrates the results of trying to direct the chaotic attractor to the 1 torus.
Using 19 zones expectedly enhances the performance. The same modal feedback control scheme
can also be used to control the chaotic attractor to any other torus and also any torus to the
chaotic attractor or any other torus.

CONCLUSIONS

Through properly chosen Poincaré maps, it was observed that the dynamics of the reaction-
diffusion system with Brusselator kinetics (in the parameter space of interest L = 1.403—1.43)
is characterized by the presence of two co-existing and mutually mirror-symmetric spatially
asymmetric attractors. The mirror-symmetry was initially ascertained from the use of mirror-
symmetric sets of initial conditions. This finding was also corroborated from the relationship
between the topos for the two sequences of attractors. Thus, Singular Value Decomposition
proved to be a useful tool in detecting the presence of co-existing and mutually mirror-symmetric
attractors. The consistency of the topos throughout the transition region coupled with the
distribution of energy amongst the various modes suggested their possible use in the development
of the control strategy.

Finally a modal control strategy was developed and applied to the control of chaos occurring
through the torus doubling route in the reaction-diffusion system. The key idea was to compute
the control action by projecting the deviation of the current dynamic behavior of the system
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Figure 6: Poincaré map depicting the control of the open loop chaotic attractor
(L = 1.43) to the underlying torus using (a) 1 zone, (b) 19 zones and the most
dominant mode. Equation (4) defines the Poincaré surface. K = 0.03, solid line refers to the
“set point” attractor, dots refer to the controlled attractor. :

from the desired behavior onto the dominant modes. It was possible to obtain behavior close to
any of the tori by suitably controlling the chaotic attractor and vice-versa. Although applied to
an example which demonstrated a quasi-periodic route to chaos, the control scheme is essentially
independent of the route to chaos and so could potentially be applied to instances of chaos in
distributed parameter systems occurring through other routes too.
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ABSTRACT

The interaction between two-dimensional mechanically generated waves, and
a turbulent stream was investigated experimentally in a horizontal channel, using
a 3-D LDA synchronized with a surface position measuring device and a micro-
bubble tracers flow visualization with high speed video.

Results show that although the wave induced orbital motion reached all the
way to the wall, the characteristics of the turbulence wall structures and the tur-
bulence intensity close to the wall were not altered. Nor was the streaky nature
of the wall layer. On the other hand, the mean velocity profile became more uni-
form and the mean friction velocity was increased. Close to the free surface, the
turbulence intensity was substantially increased as well. Even in predominantly
laminar flows, the introduction of 2-D waves causes three dimensional turbu-
lence. The turbulence enhancement is found to be proportional to the wave
strength.

INTRODUCTION

This study is part of an ongoing research effort in our laboratory concerning turbulence at a
gas-liquid interface. Previous works, both experimental and computational using direct numeri-
cal simulations, have focused on smooth turbulent open channel flows with and without imposed
wind shear. In this work the question of turbulence in the presence of two-dimensional waves,
moving with the current, and without wind is addressed.

One of the main effects of waves on a turbulent current is to increase the turbulence intensity
close to the free surface (e.g. Kemp & Simons!). This may be most important in transport proc-
esses at the surface, particularly with sparingly soluble gases. The reason for the increased in-
tensity is not clear. Rashidi et al.2 examined this question by investigating the relationship be-
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Table 1. Wave parameters

Rey, |h H f u* A Rey, |h H f u* A
[mm] |[(mm] [[Hz] |[m/s] [[m] [mm] [[mm] |{Hz] [[m/s] ([[m]
7500 1372 |7.0 1.90 9.4e-310.39 [5000 |40.8 [6.13 |2.40 |6.1e-30.29
5000 |55.0 (8.4 1.90 14.8¢-3]0.38 5000 [41.3 [12.13 ]2.37 16.1e-30.29
5000 [40.5 |6.4 1.62 16.5e-310.46 (4400 [39.5 [5.55 |2.37 |6.0e-3]0.29
Re,=U, h/v Reynolds number. v is kinematic viscosity.

H Wave height.

u* Mean friction velocity. See below.

tween the waves and the wall structures, because the structures are considered to be responsible
for most of the turbulence production in the boundary layer. They found that the number of wall
ejections increased in wavy flows and proposed that this may be the reason for the enhanced
turbulence. However, the frequency of the bursts themselves (each containing a number of
ejections), was not changed. Since it now seems that the large scale structures are the ones re-
sponsible for turbulence production (i.e., the bursts, or funnel-shaped vortices, as they were in-
terpreted by Kaftori et al.3), rather than the internal structures (i.e., separate ejections), this
question remains unresolved. In addition, Rashidi et al. could not make measurements very
close to the wall and could not measure the variations in turbulence quantities there.

In this work the increased turbulence in wavy flow was examined. The rate of increase
throughout the flow profile was measured in an attempt to identify the causes and mechanisms
that govern it. Other turbulence characteristics, such as the velocity profile, friction velocity,
and the wall structures, were also measured and observed. While the exact causes for the en-
hanced turbulence still remain unclear, the results obtained suggest that they are not related to
the wall layer. Instead, it appears that they originate at the wavy interface. In addition, a rela-
tionship between the rate of increased intensity and the wave strength is presented.

EXPERIMENTS AND PROCEDURE
Experiments were conducted in an open water flume with waves superimposed onto the tur-
bulent stream by a mechanical wedge-shaped wave maker. A diagram of the system is shown in

P JLSSSENSUE. BRI
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Figure 1: The experimental facility. Figure 2: Wave phase division.
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Figure 1. The mean water depth in the channel was typically in the range of 40-55 mm.

The channel was equipped with a 3-D laser Doppler anemometry system for data acquisition,
an ultrasound distance measuring device (Air gauge) for surface elevation measurements, and a
microbubble tracers flow visualization apparatus with high speed video. The LDA and Air
Gauge were synchronized so that each velocity data point could be related to the correct wave
phase. In addition, two wire gauges, each measuring the instantaneous water depth, were used.

- : C  Experimental data
E —~~—~ Lamb (1945)

Figure 5: Wave velocity profile under Figure 6. Funnel-shaped streamwise
the crest in the wave boundary layer, in vortices in a wavy flow. Top - plan view
experiments and according to Lamb*. from underneath. Bottom - side view.
Normalized by the velocity at the edge Microbubble tracers were generated only in
of the wave boundary layer. the lower 1/3 of the flow. Scale: width

of photo ~600 wall units.




The gauges were displaced in the streamwise direction so that the phase lag between them could
be used as a measure of the wave length A. The measured wave length was within 7% of the
theoretical length, based on linear wave theory:

(w-kU,,) = gk-tanh(kh) | (1)
where a=2nf is wave period with f the wave frequency, k=27/A is wave number, U,, is mean
velocity of the turbulent current, g is gravitational acceleration, and 4 is mean water depth.

In all, 6 experiments with waves were conducted, along with several runs with a smooth sur-
face. The wave parameters were varied between experiments and are detailed in Table 1.

In order to distinguish between the various contributions to the velocity field, each measured
velocity data - #, was decomposed into mean velocity of the turbulent stream - U, wave induced
fluctuations - u,,, and turbulence fluctuations - #’, as:

u=U+u,+u" . 2)
The average (mean) velocity was computed at each measuring point as:

v=1su | 3)
n

where 7 is the number of data samples. The wave induced velocity was calculated for each
phase of the waves by dividing the waves into 6 (or, in some experiments, 18) sections, each
representing a phase, as in Figure 2. The average wave induced velocity was then calculated for
each phase:

uwlph =

ph -U . (4)

Here u;

ph 18 a velocity data point at a given phase of the wave, and the overbar represents an
average over all waves. In determining the wave phase of each data point, the information col-
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Figure 7: Instantaneous velocity profile Figure 8: Normalized mean velocity
under wave trough. Note flow reversal profiles in smooth and wavy flows.
at the surface and close to the wall.
Scale: width of photo ~340 wall units.
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lected from the ultrasound surface elevation measurements was used. The fluctuating turbulence
velocity component was deduced from Eq. (2).

In order to qualify the type of waves in the experiments, the measured velocities and wave
forms were compared with some establish wave types. Figure 3 depicts a typical wave form
measured in an experiment together with a sinusoidal wave form and a second order Stokes
wave given by:

Hk cosh(kh)
16 sinh3(kh)

nzﬁzl—cos(kx—a)l)+

[2 +cosh(kh)]|cos[2(kx — ax)] , 5)

where x is the streamwise coordinate and ¢ is time. The first term on the right is the sine wave in
the figure. As can be seen, the waves were close to second order waves but with a somewhat
sharper crest, implying a higher order of non-linearity. The wave velocity profile was also in
agreement with that of second order Stoke's waves, as illustrated in Figure 4. Close to the wall
the wave velocity was also in agreement with Lamb's* prediction, based on linear wave theory,
as shown in Figure 5.

Wall Structures

The behavior of turbulence wall structures in wavy flow was examined and compared to
smooth flow using microbubble tracers with high speed video. These observations show that the
same structures which are seen in smooth flows appear in wavy flow as well. These funnel-
shaped vortical structures (see Kaftori et al.3), originate close to the wall and stretch in the
streamwise direction while expanding outward from the wall in a spiraling motion. In wavy flow
the structures seem to be of the same size and shape, as shown in Figure 6. This was true in
spite of the fact that the effect of the waves was apparent all the way to the wall, where the or-
bital wave induced velocity caused the flow to reverse at the wall, as shown in Figure 7.
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Figure 9: Percent increase in friction Figure 10: Turbulence intensities profile
velocity as a function of wave frequency. (wave induced velocity removed).
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The streaky structure of the wall layer, typical to smooth flow, was also preserved when
waves were introduced. The streak spacing seemed to remain approximately the same (~100
wall units). It seems that the streaks became better defined, with a larger difference between the
streamwise velocity of the high- and low-speed regions. Similar observations were make by
Rashidi et al 2.

Velocity profile

The effect of surface waves on the mean velocity profile is shown in Figure 8. It appears
that the waves reduce the mean velocity in the outer part of the flow but do not affect the profile
in the wall layer. In general, the velocity profiles become more uniform and the effect is
stronger with larger waves. The deficit in mass flow rate due to the lower velocities in the fig-
ure is balanced by the flow in the crest region of the waves. The instantaneous velocity profiles
varied with wave phase. An example of the profile under a trough was given in Figure 7, where
the velocity is reversed close to wall, positive in the mid section, and is negative again close to
the free surface. The same type of instantaneous profile was recorded by Kemp & Simons!.

The mean friction velocity #*, was calculated from the average velocity profile in the vis-
cous layer (y+<5). In wavy flows the friction velocity was up to 10% higher than in smooth
flow. The increase was proportional to the wave length, and indirectly proportional to the fre-
quency, as depicted in Figure 9.

Turbulence intensities

r.m.s velocity fluctuations of a wavy flow are compared to those of smooth flow in Figure
10 with the wave induced fluctuations removed, the r.m.s. curves are of the same shape as in
smooth flow but the intensities of the three components are higher in the upper portion of the
flow profile. The increase was larger for stronger waves. The waves did not affect the r.m.s
close to the wall.

These results imply that turbulence production occurred in the upper portion of the flow as a
result of the waves. While wave induced motion can be seen throughout the flow profile, they
seem not to affect the turbulence wall structures, which are generally responsible for most of the
turbulence production, nor alter the shape or magnitude of the turbulence intensities in the wall
region. They do, however, significantly increase the intensities close to the free surface. Thus it
appears that unlike simple turbulent open channel flow, where wall shear is the primary
mechanism for turbulence production, in wavy flow there exists another production mechanism.
This turbulence source is strongest close to the wave trough and weakens toward the wall.

In order to test this hypothesis, turbulence production in laminar wavy flow was examined
using dye and particle tracers flow visualization. In these experiments dye diffusion and particle
dispersion were observed and measured in both simple laminar flow, and in laminar flow with
waves. Figure 11 is a sample of a dye diffusion experiments. In simple laminar flow there is
hardly any diffusion at all. In the wavy flow, on the other hand, there is turbulent diffusion and
the dye is dispersed immediately. The diffusion was three dimensional, with the same rate of
dispersion in the spanwise direction as in the wall normal direction. The spanwise dispersion can
only be accounted for by turbulence.
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Figure 11: Dye diffusion experiment.
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Bottom - Laminar flow with waves.

by
o

het
[

B
3
=
<
=
—~
»*
\zv’.
£
2z
~
H
3
—~
*
\="!
8
>
N’

Tmsu®) o o / (FIM3/U™) it waves

u /U
Figure 13: Increase in r.m.s levels with
waves at y/h=0.8.

*
r.m.s/u )HO waves

(wr.m.s/ u*)waves/ (W

Figure 12: Increase in r.m.s level in wavy flow compared to
smooth flow, as a function of wave strength. Lines are curve fits.

162




In the particle tracers experiments, polystyrene particles (specific density ~1.05, nominal di-
ameter 275 pum) were released into the flow and were photographed using high speed video.
Their spanwise displacement was then measured in order to examine the particle spanwise dis-
persion. Results show that in wavy flow the particle spanwise dispersion rate was up to three
times higher compared to the non-wavy flow. These findings confirm that three-dimensional
turbulence is generated by the predominantly two-dimensional waves. »

As mentioned above, the rate of turbulence production due to waves increased with wave
amplitude and frequency. Figure 12 shows the increase in turbulence intensities of the three ve-
locity components as a function of wave strength, defined as the ratio of (a fluid) particle veloc-
ity to mean current velocity. The particle velocity at the mean water level was used. As can be
seen, the r.m.s level in the upper half of the flow profile increases with increasing wave strength.
In order to quantify this behavior, the r.m.s increases of all runs were compared at y/4=0.8. Re-
sults are in Figure 13. There it seems that the increase is directly proportional to wave strength.

The reason for the turbulence enhancement by the waves is still not clear. Evidently, it must
be related to a coupling between the wave induced velocity fluctuations and the turbulence
fluctuations, resulting in additional Reynolds stress-type terms in the momentum equation. In
addition, since a wave induced drift usually exists in wavy flows (Phillips), additional viscous
shear may be introduced. These points and their relative importance are currently under
investigation.

CONCLUSIONS

The introduction of 2-D waves onto a turbulent stream substantially increases the level of
turbulence in the upper portion of the flow, while having only little effect on the turbulence in
the wall layer. Even in laminar flow the introduction of waves causes the onset of turbulence.
The enhancement seems to scale with the strength of the waves, namely the ratio of wave in-
duced velocity to the mean current velocity. Since the turbulence characteristics close to the
wall, and the nature of the wall structures, seemed to be unchanged by the waves, it appears that
the enhanced turbulence is not related to increased shear at the wall or to turbulence in the wall
layer. Rather, it seems that it may originate at the wavy region. This must be investigated fur-
ther.
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NUMBER BUBBLE MOTION
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ABSTRACT

This paper presents the results of numerical simulations of bubble motion. All the results
are for single bubbles in unbounded fluids. The liquid phase is quiescent except for the
motion created by the bubble, which is axisymmetric. The main focus of the paper is on
bubbles that are of order 1mm in diameter in water. Of particular interest is the effect of
surfactant molecules on bubble motion. Results for the ”insoluble surfactant” model will be
presented. These results extend research by other investigators to finite Reynolds numbers.
The results indicate that, by assuming complete coverage of the bubble surface, one obtains
good agreement with experimental observations of bubble motion in tap water. The effect of
surfactant concentration on the separation angle is discussed.

INTRODUCTION

Bubble motion in liquids is of interest in many engineering problems. In the context of Bioreactors,
bubbles are important in mass transfer, the hydrodynamics of the reactors, and because they represent a
volume that is not available for reaction [1]. Visual inspection of fluidized bed ethanol Bioreactors indicates
that the bubbles are typically on the order of a few miilimeters in diameter {1, 2]. A characteristic of
Bioreactors is that they typically contain surface active materials in the form of biopolymers that are
generated by the microbes.

Thus, it is of interest to develop models for the effect of surfactants on bubble motion. Andrews et
al. [2] took a step in this direction. They developed a boundary layer analysis to describe the surfactant
concentration on the upper portion of bubble. Their analysis is valid up to the point of flow separation.
An interesting result is that large concentrations of surfactant can cause the point of separation to move
closer to the top of the bubble, suggesting that there may be a corresponding increase in wake volume.

The approach taken by Andrews et al. cannot provide information about the nature of the wake. Ryskin
and Leal [3-5] developed a numerical simulation technique for axisymmetric bubbles. They presented results
for bubble Reynolds numbers as large as 200 and Weber numbers as large as 20. A surprising result was
that, as they increased the Weber number for a fixed Reynolds number, flow separation from a bubble was
preceded by the formation of detached eddies.

Haberman and Morton [6], Saffman [7], and Hartunian and Sears [8] reported experimental results
for bubble motion in water and a variety of other liquids. Bubble velocities in distilled water and tap
water are virtually the same for bubbles with equivalent spherical diameters, d., smaller than about lmzmn.
Bubbles of this size are approximately spherical and, have approximately the same drag coeflicient as a
rigid sphere of the same diameter. For values of d. between 1mm and about 6mm, there are siguilicant
differences between distilled water and tap water. In distilled water, the bubble rise velocity exhibits a
local maximum at d. = 1.4mm. Bubbles of this size rise twice as fast in distilled water as in tap water
(35¢m/s compared to 17em/s). The corresponding Reynolds numbers, based on d,, are 490 and 240.

The differences between bubble motion in distilled water and tap water have been attributed to the
presence of surfactants [6-8]. The air-water interface is particularly susceptible to surfactants because of
the polarity of the water molecule. Sadhal and Johnson [9] devised a theory for the effects of surfactants
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on bubbles and drops for Stokes flow. They assumed that the adsorption-desorption kinetics was slow
and that one could neglect surface diffusion. This approximation has been referred to as the ”insoluble
surfactant” approximation. They showed that the surfactant would collect in a cap on the rear portion of
the bubble, and obtained an exact solution.

The insoluble surfactant approximation has been used by Stone and Leal [10] to study the effect of
surfactants on bubbles in two-dimensional straining flow. They studied only the Stokes flow limit.

Pan et al. [11] used the static pendant drop method to determine the kinetic rate constants for
surfactant exchange between an aqueous sublayer and an air-water interface. A key feature of their
approach is the use of high volume concentrations of surfactant. They showed theoretically that, by
using sufficiently high volume concentrations of surfactant, one could distinguish kinetics from diffusion.
The availability of such results opens the possibility of checking the conditions of the insoluble surfactant
approximation for experiments with controlled amounts of a known surfactant.

GOVERNING EQUATIONS

The numerical techniques in this study were described by Ryskin and Leal [3-5]. Therefore, this section
‘contains only a brief summary of the equations and the computational parameters.

In what follows, the equivalent spherical radius, r., the bubble rise velocity, U, the liquid density, p,
the fluid kinematic viscosity, v, the interfacial surface tension, ¥ ,and the acceleration of gravity, g, will
be used to make quantities dimensionless. The gas density is assumed to be negligible. The Reynolds
number, Re, the Weber number, W, and the Morton number, M, may be used to characterize the fluid
mechanics problem for clean interfaces:

d.U
Re=—— (1)
2 .
4
gu
The drag coefficient, Cp, is given by
' 4(d.)g
cp =3, (4)
The above quantities are related by
3., wd

Figure 1 shows a (o, ¢) plane in a cylindrical coordinate system (o,¢, ). Following Ryskin and Leal [3],
it is convenient to introduce an orthogonal, curvilinear coordinate system (£,7,4) in which the variables ¢
and 7 lie between 0 and 1. The coordinate mesh is shown in Figure 1. The surface of the bubble is given
by € = 0. The point at infinity corresponds to n = 0. The positive ¢ axis corresponds to n = 0 and the
negative x axis corresponds to 7 = 1. The coordinate mapping is determined by the covariant Laplace
equations as described by Ryskin and Leal. For the bubble in Fig. 1, Re = 200 and W = 5. Only half the
bubble is shown since the flow is axisymmetric.

The present study is limited to axisymmetric motion. Therefore, it is convenient to use the stream-
function-vorticity method. For steady motion, the governing equations, written in dimensionless [orm,

are
2 Re 8¢ dw/oc OYpdw/o, ,
L'(WU)—-{B—E 30 oy B¢ )=0 (6)
L% 4w =0, (7)

where the operator L? is defined by

L? = 3—77(F-5';7—)] ’ (8)

hehy, [.3_5.(;:92




Figure 1: Coordinate Curves for a Bubble with Re = 200, W =5

In Egs. (6-8), w is the ¢ component of the vorticity, 1 is the streamfunction, k¢ and h, are metric functions,
and f is the ratio h,/he. All quantities are dimensionless.
The pressure on the interface may be obtained by integrating the Navier-Stokes equation along the

bubble surface: 3 4 . fo
P 2 2
p= 4CD:c Up = o T (ow)dn, (9)

where the pressure has arbitrarily been chosen to be zero at n = 0. By demanding that, in steady-state,
the net force on the bubble vanishes, one may express Cp in terms of pgyn, where pgyn is the sum of the
second and third terms on the right hand side of Eq.(9).

The boundary conditions at the surface of the bubble are as follows:

Pp=0 (10)
w—2Kpug =0 (1

4
Teg = 77 (Ko + £¢) = 0. (12)

In Eqs.(10-12), £, and k¢ are the normal curvatures, u, is the n component of the liquid velocity, and 7¢¢
1s a component of the liquid stress tensor at the interface. The normal curvatures may be computed from
expressions given by Ryskin and Leal [4].

The covariant Laplace equations and the streamfunction-vorticity equations are put into a canonical
form discussed by Ryskin and Leal [4] and solved with the constant step ADI method suggested by Ryskin
and Leal. In this iterative approach, one uses an artificial time step, At, and relaxation parameters for
the vorticity boundary condition, 3, and the normal stress balance, 3.

When an insoluble surfactant is present, one must include the transport equation for the surface
concentration of surfactant, I':

V- (Tu, — 1—1—V3F) =0, (13)
where V; is the surface gradient operator and P, is the surface Peclet number. If P; >> 1, one obtains
the Sadhal-Johnson result:

up=0,0<¢ (14)

r=0,0>¢, (15)

where the angle ¢ is a cap angle in which the surfactant is concentrated. The angles ¢ and ¢ are measured
from the positive z-axis. Thus, one may specify a cap angle and then use essentially the same procedure
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as for the clean interface. The main modification is that one must impose a condition on the normal
.derivative of the streamfunction associated with the no-slip condition on the surfactant cap.

The calculations to be reported were performed for an ”ideal gas” equation of state for the surfactant.
This equation of state has the following form:

v = 70 — RTT, ' (16)

where v is the surface tension, 7o is the surface tension of the clean interface, R is the gas law constant,
T is the absolute temperature, and T is the surfactant concentration (moles/m?) on the interface. This
model is reasonable as long as the average distance between surfactant molecules remains large compared
to the molecular size. For the calculations to be reported, this condition is satisfied.

To express Eq.(16) in dimensionless form, one can use vy as the characteristic surface tension. The
dimensionless surfactant concentration is-defined by

+ RIT

' = 17)
Yo (1"

Thus, the dimensionless form of the ideal gas law is
¥ =1-T. . (18)

The total amount of adsorbed surfactant, S, is given by the integral of I over the bubble surface. Using
the axisymmetry of the problem, this integral may be reduced to the following form:

1
S= 27rrf/ Toh,dy. - (19)
0
One way of characferizing the amount of surfactant is with the dimensionless parameter S' defined as
follows: 1 SET
S = — . (20)
4nré Yo

One may also. express S’ in terms of the Marangoni number, Ma, the capillary number, C, and the
dimensionless surface area, A , as follows:

S = MaCA, (21)
where | SRT ,
w
= oo 3
C e (23)
1
A =2xr? / ahydn (24)
0
and 4
"= 25
A 4mr2 (25)

NUMERICAL SIMULATIONS

Haberman and Morton [6] measured the bubble rise velocity in tap water and filtered water as well as
a variety of other liquids. Figure 2 shows their measurements for tap water and filtered water. In filtered
water, the bubble rise velocity reached a local maximum at d, = 1.4mm. The corresponding values of
Re and W are 490 and 2.35, respectively. The program was run with 61 equally spaced grid points in
both the ¢ and 7 coordinates. The computed Morton number, M, was 2.64 - 107!, The value of M for
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Figure 2: Bubble Rise Velocities Measured by Haberman and Morton [6]

the Haberman-Morton experiments was 2.55 - 10711, The flow did not separate, which is consistent with
Hartunian and Sear’s conclusion that flow separation occurs for W > 3.2 in clean, low Morton number
Auids.

Numerous authors have suggested that the difference in bubble rise velocities between distilled water
and tap water is due to the presence of surface active materials in tap water. A goal of the present work is
to test this idea with computer simulations using the insoluble surfactant model. The program was tested
by making a series of runs for Re = 0.1 and comparing the results with the Sadhal-Johnson theory. The
results for the drag coefficient as a function of cap angle are shown in Fig. 3.
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" Figure 3: Computed Drag for Re = 0.1, W = 0.02 Compared with Sadhal and Johnson {9}

For tap water, Haberman and Morton’s experiments indicate that the rise velocity of a bubble with
d. = 1.4mm is approximately 17em/s. For such a bubble, Re = 240 and W = 0.55. A run was made
with the latter values of Re and W and ¢ = 180°. This corresponds to a bubble interface that is covered
with surfactant (although the distribution is nonuniform). The computed Morton number was 2.62-107 1.
Table 1 contains a summary of runs with different cap angles, ¢. For ¢ = 148°, the Morton number is
2.55 - 107!, Thus, the insoluble surfactant model suggests that the rising bubbles are nearly covered
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with surfactant. The value of S' is 0.0227. This may indicate that the ideal gas law is a reasonable
way of estimating the surface tension. For example, Andrews et al. [2] estimated the maximum surface

concentration of heptanoic acid to be 4.4 - 1071%m?/s. The corresponding value of S’ is 0.142. The
average distance between molecules at close packing is about 6A. Other molecules with comparable (low)
solubilities in water will likely have about the same maximum surface concentration. The maximum bulk
solubility of heptanoic acid in water at room temperature is 8mg/L.

Table 1

Computer Runs for Re = 240, W = 0.55

7

$ Ca [M-10"T 0, | A X S

0° [0.192] 0.722 1.000 | 1.070 0
16.6° | 0.192 | 0.724 1.000 | 1.070 | 0.000011
26.0° | 0.194 | 0.729 1.000 | 1.070 | 0.000054
32.1° | 0.196 | 0.736 1.000 | 1.069 | 0.000120

36.5° | 0.198 0.744 8.06° | 1.000 | 1.068 { 0.00019
60.5° | 0.221 0.832 36.8° | 1.000 | 1.058 { 0.00139
90.8° | 0.353 1.33 58.1° | 1.000 | 1.039 | 0.00555
111.9° | 0.495 1.86 64.9° | 1.000 { 1.038 | 0.0103
134.8° | 0.633 2.38 67.3° { 1.000 | 1.041 0.0179
148.4° | 0.680 2.56 68.0° | 1.000 | 1.042 | 0.0227
166.4° | 0.697 2.62 68.5° | 1.000 | 1.043 | .0.0273
180° | 0.698 2.62 68.6° | 1.000 | 1.043 | 0.0287

Figure 4 shows the dimensionless surface tension as a function of the polar angle measured from the
positive z-axis (i.e., measured from the direction of liquid motion in the bubble frame of reference). For
this figure, ¢ = 180°. The surface tension varies by only a few percent even though this variation is
sufficient to immobilize the interface. The surface tension at 8§ = 1807 is taken to be the surface tension of
pure water. This assumption is not necessary. However, in modeling tap water, it produces results that
agree well with experiment.
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Figure 4: Dimensionless Surface Tension as a Function of Polar Angle for Re = 240, W = 0.55, and
¢ = 180°

Even in distilled water, bubbles that are smaller than about 0.8mm behave like rigid spheres. Thus,
there is evidently enough surface active material to immobilize the surface of sufficiently small bubbles.
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Does this low level of surfactant have an effect on the 1.4mm bubble considered earlier? Figure 5 shows
the drag coefficient as a function of the cap angle for Re = 490, W = 2.35. One can obtain the observed
rise velocity in two ways. One way is to assume that the interface is completely clean. The other way
is to assume that the cap angle is approximately 105°. The corresponding value of S’ is 0.015, which is
considerably lower than the value for tap water (0.023), but still significant. An important consequence
of the adsorbed surfactant is that there is sizeable wake behind the bubble. The separation angle is close
to 75°. This may be consistent with the experimental observations made by Subramanian and Tien [12].
Subramanian and Tien performed visualization experiments using India ink. The experiments indicated
the presence of a sizeable wake behind bubbles that were roughly 1mm in diameter even in distilled water.
However, the ink may have acted as a surfactant. If the above inference is correct, it indicates that the
boundary layer analyses based on potential flow theory such as those of Moore [13-14] are in inappropriate
for bubbles in distilled water.

0.0-...Ll_._...I,,;LI.,..llk..)....
0° 30° 80° 90° 120° 180° 180°
¢

Figure 5: Drag Coefficient as a Function of Cap Angle for Re = 490, W = 2.35

The results for water indicate that surfactants have little effect on the rise velocities of bubbles with
W = 5. The Reynolds number of these bubbles is 1600. Calculations at such a Reynolds number would
be computationally expensive. According to Hartunian and Sears, the Reynolds number should have
little effect on the stability of the bubble for Re > 200. Therefore, a run was made for a clean bubble
with Re = 200 and W = 5. The corresponding Morton number is 4.26 - 10~3. To determine the effect
of surfactant on the wake, runs were made at smaller Reynolds numbers with different cap angles. To
simplify the physical interpretation, the bubble volume was held constant. This was done by computing
the Weber number as follows: R
— 52
W =5(355)" (1)
For each Reynolds number, the cap angle was varied to obtain the correct Morton number. The Reynolds
number for ¢ = 180° is 167. Therefore, surfactant has relatively little effect of on the motion of bubbles
of this size. However, the wake is considerably larger for contaminated interfaces. For the clean interface,
the separation angle is 57.2°, but, for complete coverage, the separation angle is 79.9°. For a rigid sphere,
the separation angle is 70.4°.

CONCLUSIONS

The Ryskin-Leal simulation technique has been used to compute axisymmetric bubble motion at higher
Reynolds numbers than previously reported. The effects of an insoluble surfactant have been included using
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the ideal gas model. Assuming complete coverage, one obtains good agreement with the observations for
a 1.4mm bubble in tap water. The computations predict the existence of a large wake behind the bubble.
The computations also reveal the possibility that the bubble may possess a large wake in distilled water.

This suggests that boundary layer treatments based on potential flow theory may be inappropriate even
for distilled water.

Computations at large Weber numbers show that the the surfactant has little effect on the bubble rise
velocity. However, the bubble wake is increased substantially.
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ABSTRACT

The “vortex strings” scale £, ~ LRe=3/1° (L-external scale, Re - Reynolds
‘number) is suggested as a grid scale for the large-eddy simulation. Various
aspects of the structure of turbulence and subgrid modeling are described in
terms of conditional averaging, Markov processes with dependent increments
and infinitely divisible distributions.

The major request from the energy, naval, aerospace and environmental engineering
communities to the theory of turbulence is to reduce the enormous number of degrees
of freedom in turbulent flows to a level manageable by computer simulations. The vast
majority of these degrees of freedom is in the small-scale motion. The study of the structure
of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the
large-eddy simulations (LES). The general strategy, developed in this work is summarized

in the Diagram.

Conditional Markov Generalization of
Averaging Modelling | intermittency Traditional LES

Models

SGS Modelling
for LES

/ ™~

Isotropic Turbulence Free-Surface Turbulence

Diagram: Structure and Modeling of Turbulence




The first block in the Diagram (“vortical scales”) is about an interface between numerics
and a model. It seems natural to choose a grid scale for LES to be of the order of the
“vortex strings” scalelll ¢, ~ LR™3/1% (L-external scale, Re = VLv~! - Reynolds number,
V - characteristic velocity, v - molecular viscosity). At this scale, the most important
(physically and numerically) nonlinear effect of vortex stretching in three-dimensional (3D)
turbulence does not produce a flux in the vorticity correlations. Thus, we expect a smooth
connection between numerics and modeling at this scale. The effective number of degrees
of freedom with such grid scale is N, ~ (L/¢,)* ~ Re®/'°. A potential reduction in the
numerical capacity is huge if we compare N, with the classical estimatel?l N ~ Re®/4, based
on the Kolmogorov internal scale £, = >4~/ (¢ - mean rate of the energy dissipation).

Next in the Diagram is a horizontal row of four blocks, representing various aspects of
the statistical structure of turbulence and' ingredients of SGS modeling. The first block
in this row refers to the conditional averaging of the Navier-Stokes equations with fixed
vorticity in a point (for 3D flow). It was analytically predicted®=® that for high Re the
effect of vortex stretching is statistically balanced with viscous dissipation on any level of
fixed vorticity w and other terms in the vorticity balance are ~ Re~!/2, This prediction was
recently confirmed by direct numerical simulations (DNS)l, which also revealed that the
conditionally averaged rates of vortex stretching and dissipation increase exponentially with
w. It was also predicted®-%! and recently confirmed by DNS[? that conditionally averaged
vorticity field £(r,w), as a function of distance r from a point with fixed vorticity w, has
a characteristic twist of vortex lines, connected with the effect of vortex stretching. It
was also argued® that local imbalance between vortex stretching and dissipation leads to
the formation and destruction of twisted vortex strings with characteristic scale £, indicated
above. Having the field £2, we can construct a relaxation schemel®, which will make vorticity
on a grid in LES to be consistent with . We plan to test such a schcme in the near future.

Let us note, that instead of vorticity we can use microcirculations (velocity circulations
over infinitely small fluid contours), which are inviscid invariants of motion. Such approach
separates the effect of vortex stretching into an additional linear equation (for fluid surface
elements) with independent initial condition®. Conditional averaging was also applied
to the free-surface turbulencel'® with the use of the fully nonlinear dynamical boundary
condition on free surface.

The second block in the same row in the Diagram refers to the Lagrangian and Eulerian
description of velocity increments in terms of Markov processes with dependent increments,
consistent with the Navier-Stokes equations!''='4. The 3D vector of velocity increments
(vi) can be presented in the form:

u; = vi(x +r) — vi(x) = u,n; + 4, n; =rir ! (1)
Here u, = u;n, is the radial (longitudinal) component of vi, @; is the transversal v, normal

to the separation distance r. In the inertial range (¢, € r < L) we have the Kolmogorov
result:

4
< Uz >= —367' (2)
which can be written in tensor form{tl:
4
< UUjUR D= —Ef(riajk + bk + mbi;) (3)

Here < > means statistical (unconditional) averaging. The Kolmogorov result (2) has
been originally obtained for decaying turbulence. The same result was derived!'®, by using
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a special functional formalism!'®'®, for statistically stationary turbulence with large-scale
random forces, supplying energy. This formalism was also used in the derivation of the
balance equation for the vorticity correlations!!] leading to the indicated above scale ¢,.
Two components of v: are physically different, even simply because of incompressibility
condition:
7]
5; < Uiy >= 0 (4)
Loosely speaking u, and #; signify correspondingly deformation along the vector r and
rotation around a vector, normal to r. Statistical preference of negative u,, emphasized
by (2), corresponds to compression of fluid element in the direction of r and (because of
incompressibility) ‘expansion in a normal direction. Since #; represents vortex, oriented
normally to r , we can interpret (2) as an inertial range manifestation of the same effect
of vortex stretching, which is analyzed by conditional averaging (see above). Probabil-
" ity density function (pdf) for the vector vi has unusual form4. Asymptotically (when
u? > < u? >) it reduces to the function of peculiar argument:
u? + @2 ] (5)
(eri)t/2

P(u,u;,r) = (erﬂ)“”/“f[

f(z) = N7 exp {-6:2"°} (6)

Here constants /N and 8 are different for the cases u, > 0 and u, < 0, which is reflected
by subscript . This asymptotic was obtained™ without Markovian assumption and cor-
responds to experimentally observed exponential behavior of pdf for w,.. The global pdf for
the vector vi is obtained[!3'4 assuming that relative velocity of fluid particles is Marko-
vian with a local relaxation and simplest forcing (diffusion in the velocity space). The
Markovian assumption is consistent with (3)-(6) and with the classical similarity. It also
gives the Lagrangian description of turbulencel!’=' which corresponds, in particular, to
the Richardson law:

< r?(t) >p~ et? (7)
Here r(t) is the distance between two fluid particles and subscript L indicates the La-
grangian ensemble of averaging. The exact relations between Lagrangian and Eulerian
descriptions?718! are used in this approach.

Preliminary LES tests of a Markov type SGS model give positive results. However,
intermittency effects, which are important physically and numerically, have to be included
into SGS modeling. This leads to the next block in the same row in the Diagram. The
intermittency is described in terms of the breakdown coefficients (bdc) for the energy
dissipation(!®'%20, The most recent progress is associated with the imbedding of self-similar
intermittency into the theory of infinitely divisible distributions?®. This gives us access to
the well developed mathematical apparatust?!l, An intermittency correction in terms of bdc
for a simple SGS model was obtained in Ref. [12]. For the comparison with the experiment
we use data sets, obtained from the big Russian wind tunnel®?, and plan to use data sets
from atmospheric boundary layer. ]

The last block in the same row in the Diagram refers to traditional SGS models {Smagorin-
skyl®], Bardina®) and their broad generalization!?%2¢],

All models are coming into a melting pot - block “SGS modeling for LES”, which serves
as a “free market” for SGS models. Here we use the test-filtering procedure (running LES
with two different resolutions) in order to determine dynamically weighing coefficients to
all models and to find optimal combinations of models for different applications. These
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applications, represented in the last row in the Diagram, range from the simplest (isotropic
turbulence) to the most complex (free-surface turbulent flows with fully nonlinear dynamical
conditions on free surface).

Each of these blocks in the Diagram is an independent and fruitful area of research. By
putting them together and focusing on LES implementation, we can see new connections
and a more general picture of the structure and modeling of turbulence is developing.
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ABSTRACT

The dispersion of smoke downstream of a line source at the wall and at y* = 30
in a turbulent boundary layer has been predicted with a non-local model of the scalar
fluxes, u¢ and v¢. The predicted plume from the wall source has been compared to
high Schmidt number experimental measurements using a combination of hot-wire
anemometry to obtain velocity component data synchronously with concentration
data obtained optically. The predicted plumes from the source at y* = 30 and at the
wall also have been compared to a low Schmidt number direct numerical simulation .
Near the source, the non-local flux models give considerably better predictions than
models which account solely for mean gragient transport. At a sufficient distance
downstream the gradient models gives reasonably good predictions.

INTRODUCTION

The prediction of thermal and mass concentration fields diffusing within turbulent shear flows
is of paramount importance in numerous applications in environmental science and engineering.
Current prediction methods are mainly confined to simple Gaussian diffusion models [1], solutions
of the Reynolds averaged equations for which the turbulent scalar flux rate must be modeled LZ—4]
and to random flight models which mimic the motion of individual tracers in turbulence through an
assumed Markov process [5-8]. Closure models for the scalar flux correlation usually Bave adopted
the gradient form in the absence of better knowledge about the physics of scalar transport, although
it has long been recognized [9-11] that gradient transport is incapable of representing the short time
dispersion near the source of contaminant plumes.

While many tests of the predictions of random flight and closure models have been made against
experimental data, until recently [12-17] such comparisons have not been in controlled settings
where accurate information about the turbulence scales and other correlations appearing in the
models are available. As a result, it has been difficult to discern what the relative strengths of
the two methodologies are, and especially whether the substantially greater computational cost of
random flight methods in comparison to closure models pays off by providing greater accuracy in
the prediction of the near field of scalar dispersal.

Past work of our research group [17] has provided a successful analysis of some important as-
pects of the physical mechanisms associated with the scalar flux in the near field of plumes. This
uses a Lagrangian technique which had heretofore been instrumental in exploring the mechanisms
of Reynolds stress and vorticity transport [18 - 20]. Among the accomplishments of this work was
a demonstration that the turbulent flux in the near field of plumes is due to meandering of the
turbulent field over the source, a physical process bearing no relationship to gradient diffusion.
It was also shown, however, that gradient transport physics does emerge at locations far enough
downstream of the source. Extensive tests of closure models versus random flight models were
made for the case of Prandtl number 0.71 in which a direct numerical simulation (DNS) of the
plume flow was used to supply an accurate solution. These tests showed the closure models to be
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generally superior to the random flight approach both in speed and accuracy, though serious errors
near the source were apparent due to the inappropriateness of the gradient model.

A new non-local turbulent transport theory has been derived as an outgrowth of the previous
formal Lagrangian analysis of transport using ensembles of backward particle paths [21]. This is
based on replacing ensemble averaging by spatial averaging over the initial locations of the fluid
particles. The probability density function (pdf) of initial particle position — which plays a critical
role in the theory — is derived heuristically and shown to be in good agreement with available
data. Applications of the approach to the scalar field in a fully developed channel flow with a
uniform source and to a spanwise line source plume, show the non-local formulation to offer some
considerable improvements over gradient transport models.

We have carried out closely coordinated experimental, numerical and modeling studies of dif-
fusion of near wall plumes. The inherent restriction of DNS to low Prandtl (or Schmidt) number
plumes in relatively simple geometries at low Reynolds numbers places a high premium on well
designed experiments to guide the development and testing of scalar transport models suitable
for realistic complex flow conditions. For this purpose we have experimentally obtained the mean
scalar concentration and concentration fluxes in plumes resulting from a spanwise line source of
scalar smoke particles originating at the wall of a turbulent boundary layer. Comparisons for high
Schmidt numbers, when combined with the Pr = 0.71 number model comparisons and evaluations
with the DNS, give a fairly complete picture of the capabilities of current models under a significant
range of shear flow conditions. Our analysis of the near source plume diffusion indicates how mod-
els need to be formulated to acquire a greater measure of physical accuracy. Implementation and
testing of one such model, using experimental data as the essential and final arbiter for determining
physical appropriateness, forms the main thrust of this paper.

EXPERIMENTAL FACILITY, INSTRUMENTATION AND METHOD

Experiments (cf.[22-23]) have been carried out in a turbulent boundary layer at R, = 725
(Rg = 1600) in which smoke was seeped into the sublayer through a downstream facing slot at a
location 7 m downstream of the boundary layer trip. The smoke, formed by smoldering incense,
was passed through steel wool to remove the tar and then through a heat exchanger to bring it to
the temperature of the flow. The smoke generation can be maintained in an equilibrium state for
up to two hours and can be reproduced from experiment to experiment. The particle sizes ranged
in diameter from 0.12—1.92 pm, and thus follow the flow quite well. Care has been taken to control
the smoke injection from the slot so as not to create a wall jet.

In oder to obtain concentration flux values, the U (streamwise, z-direction) and V' (wall normal,
y-direction) velocity components were measured with a calibrated 4-sensor hot-wire probe, which
accounted for binormal cooling of the sensors. It was positioned in a sheet of laser light, oriented
in the z — y plane, which illuminates the dispersing scalar smoke particles. In order to create this
light sheet, the beam from a 15 W copper-vapor pulsed laser was passed through a set of spherical
and cylindrical lenses to form an approximately lmm thick sheet. The illuminated smoke was
photographed on Kodak TMAX instrumentation film (ASA 400 and resolution of 400 lines/mm)
with a high speed Photonec 16 mm movie camera during the acquisition of synchronized hot-wire
data. These photographs constitute an ensemble of images with light intensities which were sub-
sequently mapped into quantitative values of scalar concentration by means of a calibration and
transformation procedure, described below. Averaging over the ensemble yielded contours of mean
concentration in the plane of illumination; the averaged products of the instantaneous velocity
fluctuations, u and v, with the instantaneous concentration fluctuation values yielded the scalar
fluxes.

The images recorded on film were digitized with a personal computer controlled image acquisi-
tion system, which consist of a Reticon 8 bit (256 grey levels), 2048 pixel line scanning camera and a
motorized film transport device. The averaged digitized image was contrast-enhanced to maximize
the range of usable grey levels. Particle sampling was carried out isokinetically at several locations
above the wall. The grey level intensities from the images were calibrated- against the measured
number density of the smoke particles, sorted by particle size with a Laser Aerosol Spectrometer,
over a matrix of locations for the same flow and particle emission conditions. The dependence of
the light intensity on particle diameter, d, was accounted for by determining an effective number
density, N.s¢, for an arbitrarily chosen particle size (from within the size range), that would scatter
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(4) which accounts for any systematic relationship between the velocity field and alterations to C
along particle paths. These changes may oceur either by diffusion or by the presence of sources in
the flow.

Equation (4) may be made the basis for a physically consistent transport model by replacing the
ensemble averages by averages over initial particle location. A detailed account of this methodology
may be found in [21]. Here, some of the principal ideas are summarized together with numerical
results. First, the theory appropriate to a uniform constant source of strength 2/R,S, is briefly
discussed; to be followed by consideration of plume flows. For the wall normal flux in a channel

flow (4) gives

T)‘é(y) = ’Ua(ﬁb - _C—a) + 'Ua(oa - Cb)- (5)
The formal Lagrangian expansion
va=v+ (Vo — Vo) + (Vo — V3), (6)

to which may be added the natural approximation

!

y—vy
Ty '

(7)

Vp N

where 3’ denotes the y coordinate of the particle at b and Ty is a Lagrangian integral time scale,
provides a basis for modeling v, in (5). For channel flow V — V, = 0 while the fluid particle
acceleration can be modeled as -

aP*
Vo—Vp = —Tzza—y , (8)
where the asterisk is meant to denote an average between 4/ and y. Similarly, the approximation
Ty (d*C”
Co—Cp = — +2 9

may be developed.
Now substituting volume averages over the initial locations of the fluid particles for the ensemble

averages in (5), and using (6 - 9) it follows that

—_— hoof 4 . ' h __ _ D *
v(Cp — Co)(y) = — /0 miy(C(y’) - Cy))p, y)dy — Tao /D (Cl) - Cw)) %y{'i (v, y) &y,
(10)

and
! 2c* P T2 25*
—_— y —y d°C , , aP Ty (d°C
- = — — dy — | — —==|— +2 11
'Ua(Ca. Cb) / R,S, dy2 p(y )y) Y dy R.S, dy2 + s ( )

where h is the channel height and p(y/,v) is the pdf for the chance that a fluid particle originating at
v/’ travels to y over a mixing time. In each of the terms in (10}, the identity C, — C, = C(y') — C(y)

is used. \
Equations (10) and (11) are useful once an explicit formula for p(y/,y) is provided. If it is
assumed that the pdf of v at any point in a flow is Gaussian, then it may be shown heuristically

that .
h z(m% (12)

€

1
/ —_
(Y, y) Worh

where [, = Vv2Ty,. This equation is exact for the case of a linear distribution of C in homogeneous

turbulence. o
Near boundaries it can be expected that the pdf of v departs from Gaussianity, so some mod-

ification to (12) is necessary near solid walls. For a fixed wall at y = 0, p(y’,y) = 0 for ¢ = 0,
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the same amount of light as the poly-sized particle cloud:

Toc ) diN; = dZ;;Neyy, (1)

where I is the average grey-level intensity at the corresponding concentration measurement location.
Thus at each node of the calibration matrix,

4\’ |
Nyr=|——1] N,
i ( deff) i (2)

When this effective number density is plotted against the average light intensity, as shown in Fig. 1,
a linear calibration relationship between these two variables is obtained. With this relationship, the
grey level intensities in each instantaneous image were converted to effective concentration values.
The value of the particle flux was determined across the vertical plane at z = 95, and this value
was used to set the release rate of the source term in the model, to be described below.

NUMERICAL SIMULATION AND MODELING

To analyze the physics of transport, ensembles of backward particle paths were obtained from a
direct numerical simulation of a line source plume developing in turbulent channel flow. The paths
were computed from a large set of previously computed and stored consecutive numerical velocity
fields. The simulation [17] has a mesh with 96 x 97 x 96 points in the streamwise, wall-normal
and spanwise directions, respectively, and a computational box of dimensions 1822 x290 x 683,
expressed in wall units. The numerical scheme consists of a pseudo-spectral method to solve the
full incompressible 3D Navier-Stokes equations. The velocity and scalars on off nodal points needed
in the path computations are obtained through tricubic interpolation {24]. The Reynolds number
of the simulation is R, = U;h/v = 145, where U; is the friction velocity and h is the channel
halfwidth. The mean velocity and Reynolds stresses for the simulation agree closely with those
found in previous studies [25]. In a further test of the code, a spatially uniform source flow was
computed and shown to agree very closely with previous simulations [12,13].

We have attempted to develop a physically accurate model of scalar transport using a La-
grangian decomposition of the scalar flux correlation, %W;c, into identifiable physical processes. This
correlation appears naturally in the averaged scalar transport equation

oC . dC du;e

_ 1 o
ot T Vigs, = "oz, T Rese’ C @ 3)

where C is the concentration field, C and c are its mean and fluctuating parts with overbars
denoting ensemble averaging, u; is the velocity fluctuation vector, U; is the mean velocity vector
and Q is a source term for the scalar. The basis for the model described below is the identity

Uiy Ca = i, & + ©3, (Cp ~ Ca) + 13, (Ca, —Ch), (4)

where the subscript a refers to the given endpoint of a large ensemble of fluid particle paths at time
t which are at the random locations b at an earlier time ¢ — 7. As discussed elsewhere in related
contexts and verified numerically {17-20], the mixing condition %;,¢, = 0 is satisfied for 7 large
enough. We define the mixing time, say 7, as the smallest interval at which %; ¢y =~ 0. 7,,, may
be thought of as the time over which events in the flow cause the correlation between u; and c to
develop. Equation (4) thus shows that for times 7 > 7,,, ;¢ is a result of the processes represented
by the last two terms.

The second term on the right-hand side of (4) represents transport arising from the displacement
of fluid particles. Tt is a formal statement of the classical argument that in the presence of a gradient
in the mean scalar field, turbulent eddying motion should lead to a net transport. In particular, the
resulting directional dependence of the scalar flux on the gradient of C' is created by fluid particles
carrying on average — without alteration — the local mean scalar field of their starting point to their
final point over a mixing time. Non-gradient sources of transport are contained in the last term in
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since fluid particles on the surface have no chance of migrating to interior points in the flow. A
convenient means of enforcing this condition is to generalize (12) via

@ -w)? W)
p(y,y) = = (e St _ ‘2<’§J%)
V2rls

(13)

e

where I3 = min{ls,y/3+/2}, a condition assuring that foh (v, y)dy’ =~ 1 for y near the boundary.
Numerical computations show that 3 slightly deviates from I5 only in the region y* < 25.

Despite the heuristic derivation of (13), its general validity is supported by comparisons with
measurements of p(y’, y) obtained in a turbulent channel flow. Fig. 2 shows predictions of p(y/',y)
at yt = 7.4 and y* = 36.6 obtained from a direct numerical simulation compared to (13). It is
clear that the latter gives a reasonable estimate of p(y',y) including an excellent prediction of the
scale of its support. The model curves do not show the effect of the boundary to the same degree
as the DNS results, suggesting that (13) does not sufficiently take into account the departure of
the pdf of v from Gaussianity near the wall. On the whole, however, (13) provides a sufficiently
accurate description to make a useful implementation of the theory.

Application of (5) and equivalent formulas for We give excellent predictions of channel flow
containing a uniform source as shown in [21]. It was found that the first term in (10) is a dominant
effect in wall normal transport and may be used by itself to most efficiently capture the important
physics for predictive schemes. Now we concentrate on an extension of the method suitable for two-
dimensional plumes. In this case, previous work [17] showed that the physics of transport along a
plume is distinctly different near and far from the source. In the former case, transport is primarily
due to the effect captured in the last term in (5), which represents fluid particles picking up the
scalar as they meander through the source. Away from the source the physics are well accounted
fcg by the first term in (10). Proceeding formally, we have that near the source the most important
effect is

! _ 0 .
1,(Co — Cp) = — / y—T—;:l—y ( ', Q(s)ds) p(x', x)dx’ (14)

where [ Q(s)ds is the amount of scalar acquired by a fluid particle arriving at a given point x after
leaving from x’. Note that for constant @, this term is zero, which is why it does not appear in
(11). An estimate of [ Q(s)ds for fluid particles traveling from x’ to x must be found if (14) is to
be evaluated. ‘Here it will be assumed that the only paths for which [ Q(s)ds # 0 are those for
which the source lies between x’ and x, i.e. x’ lies in the ‘shadow’ behind the source as viewed
from x (see Fig. 2). Thus, every fluid particle leaving from the region contained within the dashed
line in the figure and arriving at x after a mixing time is assumed to pass over the source, while no
others do so. This probabilistic model is consistent with the approximations such as’(7) and our
intuitive sense of where the particles most likely to cross the source come from.

To evaluate (14), the source region is discretized into small sections represented by the grid as
shown in Fig. 3. For each of these, such as the one which is dark shaded, it is assumed that all fluid
particles starting out in the region contained in the dashed outline will pass through this part of
the source and thus have a non-zero value of [ Q(s)ds. The amount of [ Q(s)ds can be estimated
as the local magnitude of the source in a particular area, say Q;; for the 4, jth box, times the time
it takes the fluid particle to cross it, say 7. The latter may be estimated as the characteristic
dimension of the grid spacing Az divided by the speed at which the fluid particle passes over this
area. The estimate may then be made:

Az -
s)ds = Qi X
/Q( 1= Qi X =T G =V
The width of the dashed region behind the source element is given by the small number Az, so
that after substitution of (15) into (14), it is justifiable to collapse the area integral in (14) to just

a line integral along the length of the shadow region in Fig. 3. Collecting these results together
gives

(15)
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where Q; = QijAA;, AA;j is the area of the (i,j)th source element, X;; = (z — z;)/l1,

Yy = (y— vi)/las Rij = /(2 — 25 + (y — 93g)2/h and X = Un/ly.

An equivalent analysis of the streamwise flux may be performed with similar results. The
complete non-local closure may be applied to the study of plume flows in a wide variety of circum-
stances.

RESULTS

Fig. 4 illustrates the improvement over a gradient law which is attainable from (16). Pre-
dictions of B¢ are given along the line y* = 43.5 through a plume centered at z+ = 0,3t = 30.
Equation (16) shows very good agreement with the DNS while the gradient model is subject to
extremely large errors in the vicinity of the source. These only diminish to a reasonable level by
zt = 250, after which point the gradient model appears to be a reasonable approximation. The
different roles of the two terms in (16) is shown in Fig. 5. Near the origin of the plume the dis-
placement effect is negligible and transport is entirely due to the source term. Downstream, the
situation is reversed as the displacement mechanism begins to dominate transport by z+ = 200.
These results are fully consistent with the previous evaluation of (5) using ensembles of particle
paths, [17]. It should be noted that the results from the DNS shown here have not been'sufficiently
averaged to remove some of the obvious statistical variations. This is most true of the gradient
curve in Fig. 4 which was evaluated from finite differences of the mean scalar field computed in
the DNS. -

Contours plots of C' determined from the gradient model, the DNS and experiment are shown
in Fig. 6. Clearly the gradient model does not capture the character of the DNS plume near the
source. This is shown even clearer in FFig. 7 where the values of C along the wall are plotted.
Further downstream the gradient model, the DNS and the experiment are in relatively good agree-
ment. Experimental values of the fluxes u¢ and T¢, were measured; they show the expected trend
in sign and magnitude in the buffer layer and in the lower part of the logarithmic layer.

CONCLUSION

A non-local closure for turbulent scalar flux was derived as an extension of a previous La-
grangian transport analysis. Assuming the availability of the appropriate length and time scales
of the underlying turbulent flow field, the closure was shown to be effective in capturing many
aspects of scalar transport which are erroneously predicted by gradient closures, by comparison to
experimental and DNS results.
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ANOMALOUS SCALING OF A SCALAR FIELD ADVECTED BY TURBULENCE

Robert H. Kraichnan

Robert H. Kraichnan, Inc.
369 Montezuma 108, Santa Fe, NM 87501-2626

ABSTRACT

Recent work leading to deduction of anomalous scaling exponents for the iner-
tial range of an advected passive field from the equations of motion is reviewed.
Implications for other turbulence problems are discussed

Understanding of the dynamics of the small scales of turbulence is essential to construction of
improved parametrization of small scales in computer modeling of turbulence. It is also an out-
standing challenge in non-equilibrium statistical mechanics. For over 50 years, thinking about the
small scales of turbulence has been dominated by the cascade ideas first presented by Kolmogorov
in 1941 and modified in 1962 to include phenomena associated with intermittency of dissipation
[1]. It has long been recognized that the small scales of turbulence are intermittent and that the
intermittency of the velocity derivatives increases with Reynolds number. An unsettled question
is whether the increase persists to infinite Reynolds number so that the scaling exponents of the
inertial-range structure functions at infinite Reynolds number differ from the total self-similarity
by Kolmogorov in 1941 (K41) [1].

In the years since 1962, a very large number of models of intermittency in the inertial and
dissipation ranges have been proposed and compared with experimental data [1]. In particular,
many fractal models of inertial range structure have been offered, some of great sophistication and
mathematical complexity. One thing conspicuously missing in almost all of this work is contact
with the equations of motion; the models are not derived from the Navier-Stokes (NS) equation.
The present paper reviews recent work in which this pattern has been broken in the case of a
particular limit of the advection of a passive scalar contaminant field by a random incompressible
velocity field. Non-trivial anomalous scaling exponents for the inertial-range structure functions of
the scalar field are deduced from the equations of motion [2,3]. The implications of the scalar-field
analysis for two other problems, Burgers and NS dynamics, are discussed qualitatively.

Successive random strainings of flow subvolumes containing a passively advected scalar field
tend to produce intermittency in the gradient of the scalar field. If there were no counteracting
mechanism, the probability distribution function of the scalar gradient would become ever more
intermittent as the number of effective independent steps of straining increases. Thus the steady-
state intermittency would increase with increase of ratio of macrolength scale to dissipation length
scale (increase of Péclet number). A corresponding argument suggests an increase of intermittency




of vorticity with Reynolds number as a result of successive strainings. The increase is compounded
by vorticity intensification as vortex tubes are stretched.

What can oppose the increase? One mechanism that can inhibit growth of intermittency
is molecular diffusivity/viscosity, which relaxes a non-Gaussian field toward Gaussian statistics.
Crudely speaking, this is because unusually strong spikes in the field are preferentially relaxed
(spread in space). The same effect can come from the action of eddy diffusivity/viscosity associ-
ated with scales smaller than those suffering the relaxation. At a given scale size in an inertial
range, the eddy diffusivity/viscosity effects are of the same order as the straining effects that act
to increase intermittency. Thus power counting, order-of-magnitude arguments, and associated
dimensional considerations, are inadequate to determine whether increase of intermittency with
decrease of scale size eventually is halted by the relaxation effects [4].

Eddy relaxation effects characterize both NS dynamics and the advection of a passive scalar field
by a stochastic velocity field. They take a degenerate form in Burgers dynamics, where nonlinearity
produces shocks that eventually relax without loss of form under the combined action of molecular
viscosity and self-advection. Burgers dynamics exhibits extreme intermittency of velocity gradients.

Turbulence may be examined in either the physical space (z space) or wavenumber (k space)
domains. There are also hybrid representations, such as by wavelets or by subfields in z space that
are band-limited in k space. There are some pitfalls in passing among different representations.
In particular, one must be wary of asserting that certain quantities live exclusively in the inertial
range.

Isotropic absolute-value structure functions for an isotropic, homogeneous velocity field u(x)

may be defined by
Sa(r) = (lu(x +r) — u(x)["), (1)

where ( ) denotes ensemble average. If the inertial-range spectrum of the velocity field is E(k)
k=33 or something near to that form, then there is a close link between description by structure
functions and band decomposition: If the statistics are not too exotic, and n is not too large, the
value of S} (r) is dominated by contributions from O(1/r) velocity-field wavenumbers. Thus there
is justification for linking “scale size” r to a band of wavenumbers k£ and speaking of “inertial-range
scales 77,

The concept of a pure inertial-range of r for structure functions is less justified when one turns
to dynamics. The equation of motion for S;(r) involves molecular dissipation in an essential way,
even when r is in the inertial range [2]. This is easily understood by taking the simplest case of
Gaussian u(x), expanding the right side of (1), and decomposing the average into sums of products
of covariances. If r is in middle of a long inertial range, the covariance {u(x + r)-u(x)) decays
negligibly from direct molecular dissipation. However, the variance (Iu(x)|2) also occurs. Its decay
rate is finite and independent of r because its spectral support includes the dissipation range of
wavenumbers. Molecular viscosity appears directly, and importantly, in the equation of motion for
S2(r) at inertial-range r. It should play a central role also in the construction of dynamical models
of the inertial-range Si(r).

Suppose that there is a power-law scaling range of r such that

Sa(r) o< 1%, (2)

where the exponents (, are independent of r. It is useful to define the terms “regular scaling”,
“anomalous scaling”, and “progressive scaling”. Scaling shall be called regular here if {,, /(,, = n/m.
This corresponds to full similarity of statistics at all 7 in the range. A more concrete description
may be given in terms of the band-limited fields. Suppose that the entire scaling range of k = 27 /r
is divided into decade bands in wavenumber. Then regular scaling implies that all moments of the
z-space velocity field in a band are independent of band location, provided that the moments are
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normalized by the variance of the band-limited velocity. Regular scaling corresponds to the K41
picture of the inertial range.

All scaling that is not regular shall be called anomalous here. If the scaling range is infinitely
long, and structure functions at macroscales r are finite, Holder inequalities require (,/n < (n/m
if n > m; as n increases, anomalous exponents can only decrease below regular values. Progressive
scaling shall denote anomalous scaling in which the exponent differences (,+1 — (» become ever
smaller as n increases.

Burgers equation

du Oou 0%u
7t =V 3)

evolves the velocity u(z,t) of an infinitely compressible fluid of viscosity . Shocks form under (3)
as fast-moving fluid overtakes slow-moving fluid. The inertial range at large Reynolds number is
asssociated with the neighborhoods of the shocks. The shocks have a characteristic sawtooth shape
which represents coherence over a wide range of wavenumbers. Dissipation is concentrated within
the shocks and thereby is highly intermittent. The structure functions Sp(7) = (Ju(z + r) — u(z)|™)
for inertial-range r have the form

Sa(r) = ugr/L, (4)

where uq is the root-mean-square (rms) velocity and L is a macroscale for velocity fluctuations.
The support of S2(r) is dominated by the shocks: r/L in (4) measures the probability that a major
shock occurs between z + r and z while ug measures the jump in velocity at a major shock.

Equation (4) is an extreme example of anomalous scaling. It is not progressive scaling. The
differences (n4+1 — ¢ degenerate to zero and so do not decrease as n increases. The strong in-
termittency of high-Reynolds-number Burgers flow arises from the shocks, which are structures
involving coherence over a wavenumber range that extends from 1/L to dissipation wavenumbers.
Nevertheless, it is easy to demonstrate that the cascade of energy toward higher wavenumbers is
local in the wavenumber space [5]. The straining across a distance r that sharpens the shocks and
maintains them in a sharp state is dominated by contributions from wavenumbers O(1/r). Spatial
coherence and dynamical locality in wavenumber do not preclude each other.

The scalings of S§(r) and S¥(r), features closely associated with existence of shocks, are given
correctly by an approximation that is quite incapable of explicit description of shocks or any coher-
ent spatial structures. This is the Lagrangian-history direct-interaction approximation (LHDIA) [5].
The LHDIA uses only limited information from Burgers equation: conservation laws and invariance
to Galilean transformations as incorporated in expressions quadratic in the interaction coefficients
of individual wavenumber-triad amplitudes. Cross terms between different wavenumber-triad coef-
ficients, which could express phase coherence in physical space, are absent. An implication of the
success of this approximation is that relatively elementary properties of the interaction coefficients
directly imply the scaling, so that it is possible to recover the latter without being able actually to
describe the structures in space. In this picture, the shock structures are regarded not as the cause
of the scaling but as a parallel manifestation of an underlying dynamics.

The equation of motion of a passive scalar field T(x,t) advected by an incompressible velocity
field u(x,t) is ’

a
(a + u(x,t)-V) T(x,t) = kV2T(x, 1), (5)
where x is molecular diffusivity. The inertial-range structure of T depends on that of u. In order
to clarify what causes what, it helps to start with a Gaussian u field rather than a solution of the
NS equation. Maximum simplification occurs when u(x,t) has a correlation time that is infinitely
short compared to any eddy circulation time. This limit yields exact expressions for the effects of
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advection on scalar-field statistics [6,7]. It can be approached in such a way that the single-particle
and two-particle eddy diffusivities resemble those of more realistic fields.

In the rapid-change limit, the exact evolution equation for the structure functions S5.(r) =
(|AT(r)|*"), where AT(r) denotes T(x + r) — T(x), can be derived as :

T (r z.(r
6539,;( ) _ rd2'1 % (rd"lﬂ(r)és—g:u) = Kdzn(r)- (6)

Here d is space dimensionality, n(r) is the two-particle eddy-diffusivity scalar defined by

o0 =3 [ (e, 0syuce, ) at, ™
with §yu(r,t) = [u(x,) — u(x +r,t)]-r/r, and
Jan(r) = 20 (AT (V2 + V2)AT()) ®

is the dissipation term anticipated in the discussion following (1). It is assumed that the velocity
field is switched on at t = 0 and that T(x,t = 0) is Gaussian [2].

The difficulties in turbulence theory usually are ascribed to the nonlinearity in stochastic quan-
tities, which poses the so-called closure problem. In the present case, the dynamical effects on
ST.(r) of the advection term in (5), which contains all the stochastic nonlinearity, are fully and
exactly described by the #(r) term in (6), so what is usually called the closure problem disappears.
However, another kind of closure problem remains: the dissipation term Jy,(r) in (6) contains
space derivatives in such a way that it cannot be expressed in a closed form that involves only the
structure functions. Closed equations can be written for the general 2n-point, single-time moment
of T', but they are much more complicated than (6) [7]. Equations (6)—(8) do form a closed set for
n=1.

Despite the lack of closure of (6)-(8), it has been possible to make some progress in deducing
the inertial-range scaling exponents from them. A key step is the introduction of the conditional
mean

H[AT(r)] = (V2 + V2)AT(®)|AT(r)) , (9)

where (-|AT(r)) denotes ensemble average conditioned on a given value AT(r). J,(r) may be

written
Jon(r) = 20 ([AT ()P TH[AT(T)]) . (10)

It can then be argued persuasively (but not yet rigorously) that there are only two forms for
H[AT(r)] that permit steady-state power-law scaling solutions of (6) in the inertial range [3].
Either H has the form r—2/2h(AT/r¢2/2), where h is a function to be determined, or else H is a
linear function of AT of the form f(r)AT(r). The former case yields regular scaling and the latter
case leads to a fully-determined expression for J,(r),

Jan(r) = WS (A(r)/ 55 (r), (11)

where A(r) = V25¥(r) — V255(0), and anomalous scaling of a precise. form:

(on = 3V40d( + (d - 2)? - H(d - (2), (12)

where 7(r) o 74", ST (7) & 7 in the inertial range and {; = 2 — ((). As n — 0, (o x n'/%.
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An independent argument involving realizability inequalities on the dissipation field V2T appears
to rule out regular scaling [3], so that, if the analysis is valid, (12) remains as the only possible
power-law scaling in the inertial range. This result was obtained under the special assumption
of very rapidly changing velocity field, but some features may be of broad applicability. Plausible
arguments can be made that the dependence of the (2, on {(7) is unchanged if the velocity field has
finite correlation times but remains Gaussian. Corrections to the (3, are expected if the velocity
field displays intermittent (anomalous) scaling.

It was noted earlier that some scaling properties of Burgers turbulence are correctly given by a
statistical approximation (LHDIA) that is incapable of describing the shocks associated with the
scaling. If (12) is correct, something analogous may be going on in the passive scalar case. The
high-order anomalous exponents certainly are strongly affected by spatial structures in which the
scalar gradient is exceptionally large. Such structures are not captured by statistical description in
terms of the SZ (r) alone, and the scalar-field analysis sketched above certainly takes no account
of specific spatial structures. The hope raised is that it may be unnecessary to do so if only scaling
exponents are sought.

The Burgers scaling discussed earlier can be obtained from a framework like that erected for
the passive scalar by adding heuristic elements associated with LHDIA. The advection term in
the equation of motion for S3 (r) cannot be written exactly as for a passive scalar with rapidly
changing velocity field. However, a very similar form is obtained by doing renormalized perturbation
- approximation based on LHDIA. The result is an equation like (6), but with an important difference:
a factor of 2n appears in the advection term on the left side because, in contrast to the scalar case
where there is only one u factor, any of the 2n factors u in <u2"8u/6m) may be regarded as the
advecting velocity.

For inertial range r, 7(r) « r in Burgers dynamics, where S§(r) o r. One way to see this
is to note that the cascade rate n(r)r=25%(r) mediated by eddy viscosity is then independent of
r. The similar fact for NS under K41 assumptions is that n(r)r=25¥(r) is independent of r with
n(r) « r4/3, §3(r) « r*/3. In both cases, V? is expressed by r~2. With 5(r) « r, the analog of (6)
gives the correct Burgers scaling 53,(7) «x 7 by balance of advective and dissipative terms, if the
dissipative term is taken in the form corresponding to (11). It is easy to see independently that
this form is exact in the shock-dominated Burgers inertial range, where dissipation is confined to
the shocks.

It is unclear to what extent similar procedures are meaningful in three-dimensional NS dynamics,
where intense vortex tubes and sheets are expected to make major contributions to high-order
structure functions in place of the shocks of Burgers dynamics. One can write a balance equation
like (6) in steady state and argue as in 3] that, if both sides scale as as powers of r, then anomalous
scaling is possible only if the conditional mean corresponding to (9) is linear so that the dissipation
term has a form like (11). '

To go further, some estimate must be made of the advective term. Here the vector character of
u, incompressibility, and pressure all make things more complicated than in the Burgers case. An
LHDIA-like perturbative evaluation can be carried out, as in the Burgers case, but this has not yet
been done. Plausibly, the Burgers and rapid-velocity-field passive scalar cases represent limits for
three-dimensional NS scaling. Burgers presents the most rapid possible growth of intermittency
with decrease of scale size; there is no disruption of coherence by eddy effects. The passive scalar,
on the other hand, appears to give the best possible opportunity for relaxation of intermittency by
eddy transport effects.

The stretching of vorticity in an incompressible three-dimensional NS field would seem much
more analogous to stretching of scalar blobs than to the formation of shocks under Burgers equation.
If so, the n!/2 behavior for the scaling exponents of a scalar field given by (12) may be a meaningful
zeroth approximation to the exponents of the NS velocity field. At the present time this is only
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speculation. However, Nelkin has shown that models incorporating such behavior can be consistent
with experimental data on NS structure functions [8]. He points out that the n'/? dependence can
be related to a class of fractal processes recently described by Novikov [9)].

In general, the determination of higher scaling exponents has proved very resistant to analytical
treatment. The shock-mediated intermittency of Burgers and the scalar advected by a rapidly-
changing velocity field are particularly friendly cases. It may be of general significance that the
deduction of scaling exponents for the passive scalar reviewed above involves conditional means .
in an essential way. Most analytical work on turbulence has been related more or less closely to
renormalized perturbation analysis. Systematic approximations for moments can be constructed
fairly straightforwardly by such analysis, but this is very much not the case for conditional means.
The present analysis suggests, therefore, that nonperturbative methods should be sought if higher
statistics are the goal.
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ABSTRACT

Experimental results for convection in a thin horizontal layer of a
homeotropically aligned nematic liquid crystal heated from below and
in a vertical magnetic field are presented. A subcritical Hopf bifur-
cation leads to the convecting state. There is quantitative agreement
between the measured and the predicted bifurcation line as a function
of magnetic field. The nonlinear state near the bifurcation is one of
spatio-temporal chaos which seems to be the result of a zig-zag insta-
bility of the straight-roll state.

INTRODUCTION

Convection in an isotropic fluid heated from below is well known as Rayleigh-Bénard
convection (RBC).l’2 However, this phenomenon is altered dramatically in the case of a ne-
matic liquid crystal (NLC). Here we discuss what happens when the NLC has homeotropic
alignment (i.e., has a director which is aligned in the vertical direction parallel to the heat
flux) and is heated from below.3*® The usual Rayleigh-Bénard destabilization due to a
thermally-induced density gradient is opposed by the stiffness of the director field which
is coupled to and distorted by any flow. It turns out that relaxation times of the director
field are much longer than thermal relaxation times. For that reason it is possible for direc-
tor fluctuations and temperature/velocity fluctuations to be out of phase as they grow in
amplitude. This situation typically leads to an oscillatory instability (also known as over-
stability), and the bifurcation at which these time-periodic perturbations acquire a positive

growth rate is known as a Hopf bifurcation.® This case is closely analogous to convection
in binary-fluid mixtures with a negative separation ratio.”® In that case, concentration
gradients oppose convection, and concentration diffusion has the slow and heat diffusion
the fast time scale. It turns out that the Hopf bifurcation in the NLC case is subcritical,®
and that the fully developed nonlinear state no longer is time periodic. Instead, the statis-
tically stationary state above the bifurcation is one of spatio-temporal chaos with a typical
time scale which is about two orders of magnitude slower than the inverse Hopf frequency.®
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However, it was possible to actually measure the Hopf frequency by looking at the growth
or decay of small perturbations which were deliberately introduced when the system was

close to the conduction state and near the bifurcation point.?

A convenient aspect of thermal convection in NLCs is that an external magnetic field
will couple to the fluid because the diamagnetic susceptibility is anisotropic. A field of
modest strength can have a dramatic effect on the phenomena which are observed. This
adds greatly to the richness of the physics accessible to the experimentalist. In the case of
homeotropic alignment to be discussed, the field is parallel to the heat current.

An interesting aspect of NLC convection is that we are dealing with a system whose
equations of motion are well known,1911 but significantly more complicated than the
Navier-Stokes equations for isotropic fluids. The usual viscosity 7 and conductivity A
are replaced by six viscosities a;,7 = 1,...,6 and two conductivities Ay and A, and the
equations for momentum and energy balance must be coupled to an equation for the direc-
tor field which contains three elastic constants k;;,7 = 1,2, 3. In spite of these complexities,
it has been possible to carry out quantitative stability analyses, and under some condi-
tions predictions in the weakly nonlinear regime have been made.!2:13:14 Thus, one may
argue that comparison of quantitative experiments on thermal convection in NLC’s with
corresponding detailed theoretical calculations provides an excellent testing ground for the
applicability of methods of stability analysis and of weakly nonlinear theory to systems
which are more complex than isotropic fluids.

From another point of view, thermal convection in NLCs provides a rich system for the
study of general problems in pattern formation. During the last two decades interest in
this nonlinear topic has seen a revival in the physics community, and a great deal has been
learned from experiments about nonlinear pattern-forming dissipative systems.1%16 The
case under consideration here leads to a spatlo-temporally complex pattern often referred
to as spatio-temporal chaos (STC).

The most common NLC for the study of Rayleigh-Bénard convection has been p-
methoxy benzylidene-p-n-butylaniline (MBBA). The reason for this apparently is historical;
MBBA was the first material for which all relevant physical properties, which are necessary
for comparison between experiment and theory, had been measured. However, a recent sur-
vey of the literature revealed that the properties of some of the cyano-biphenyls are known
nearly as well. These materials are far more stable and less toxic than MBBA, and thus
have advantages for precise experimental work. They are also relatively inexpensive, and
this is an important factor for thermal convection because comparatively large amounts

3 17 o _
(typically perhaps 30 ¢m”) are required.'’ In the present work we have used 4-n pentyl

4/—cyanobiphenyl (5CB).
THEORETICAL PREDICTIONS

As for Rayleigh-Bénard convection in an isotropic fluid, the conduction state has ro-
tational symmetry in the horizontal plane because its director is oriented vertically and
parallel to the magnetic field and the heat flow. Thus, patterns of arbitrary angular ori-
entation should form unless the boundary conditions of the experiment select a particular
direction.

The first instability should be a Hopf bifurcation, that is the disturbances which first
acquire a positive growth rate should be time-periodic.3# As the ma.gnetlc field is increased,
the threshold for convection is predicted to shift to larger values.513 This was confirmed by
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early experimental work on this system.® For sufficiently high fields the primary bifurcation

is predicted to be to a stationary state of convection.!3 There is a codimension-two point
where the two bifurcation lines meet. The situation is somewhat similar to binary-mixture

convection,!® which has been studied extensively in recent years.

The quantitative aspects of the instabilities are determined by four dimensionless pa-
rameters which are formed from combinations of the fluid properties.18 They arel? the
Prandtl number 0

PRl
the ratio between the director relaxation time and the heat diffusion time
a/2)K
F= (o2/2)ky , (2)
k33
the Rayleigh number
_ agpd3 AT

= (aa/2)ry

(3)
and the dimensionless magnetic field
h=H/Hp, @

with the Fréedericksz field

7w [k33
He) = 3\ oxa (5)

The time scale of transients and pattern dynamics is measured in terms of

ty = dz/lc" . (6)

As usual, &) is the thermal diffusivity /\" /pCp. Both h and R are easily varied in an

experiment, and may be regarded as two independent control parameters. The availability
of h in addition to R makes it possible to explore an entire line of instabilities. The
parameters F, o, and t,, are essentially fixed once a particular NLC and temperature range
have been chosen, and even between different NLCs there is not a great range at our
disposal. For 5CB at 26° we have ¢ = 272 and F = 460. The critical value R, of R and
the fluid parameters determine the critical temperature difference AT, for a sample of a
given thickness d. The realistic experimental requirement that AT, ~ a few °C dictates
that the sample thickness should be a few mm. Typical values of H F|| are near 20 Gauss.

Thus modest fields of a kGauss or so are adequate to explore the entire range of interest.

A linear stability analysis was carried out by several investigators.4’19’20’21 A very
detailed analysis of this case was presented recently by Feng, Decker, Pesch, and Kramer

(FDPK).13 These authors also provided a weakly nonlinear analysis, and we shall briefly
describe their results.

For low fields, FDPK predict that the first instability will be a subcritical Hopf bi-
furcation. The critical Rayleigh number R (H) varies typically from about 1500 at small
fields to about 3400 for A ~ 50. The details of R.(H) depend upon o and F, and have
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to be computed for each particular case. The wavevector which first becomes unstable is
predicted to vary from about 3.2 to 4.6 as the field increases from A = 0 to h ~ 50. The
Hopf frequency is expected to be between about 12 and 2 over this range. It would not
be too helpful to be more specific here since the details of all these parameters depend
upon ¢ and F. At h = h° ~ 50 (assuming typical parameter values for MBBA), the Hopf
bifurcation line meets a stationary bifurcation at a codimension-two point. At this point,
the Hopf frequency is predicted to be finite (close to 2) and there is a discontinuity of about

10% in the wavevector. The stationary bifurcation for A > h¢ initially is also predicted
to be subcritical, but for h 2 63 (for typical MBBA parameters) it is expected to become

supercritical. At h = h® ~ 63, the coefficient of the cubic term in a Ginzburg-Landau
equation vanishes and a tricritical point is predicted for the stationary bifurcation branch.

EXPERIMENTAL RESULTS

Early measurements for this system were made by Guyon, Pieranski, and Salan® (GPS).
These authors used the NLC MBBA. Their sample had a thickness d = 5 mm, yielding
Hp | = 15 Gauss. It had a circular cross section, and a diameter of 54 mm.22 At half-

height, several thermocouples were mounted in the fluid to monitor the local temperature.
A heater wire near the thermocouples also traversed the sample. It is difficult to say
whether these intrusive devices had an influence on the hydrodynamics. The temperature
stability of the water baths above and below the sample was of the order of 0.01°C. GPS
measured the onset of convection by monitoring the response of their thermocouples to
a temperature perturbation induced by a heat pulse delivered by the heater wire. If this
response grew (decayed) as a function of time, the threshold of their system had (had
not) been exceeded. They were also able to determine a characteristic frequency from
the thermocouple response during the transients which led to the convecting nonlinear

state. The results for AT, are qualitatively consistent with the theoretical results!3 for
the laterally infinite system. The magnitude of AT, at a given field was within 10 or 20
% of the theoretical value. AT, increased with H up to H ~ 580 Gauss(h ~ 33), and
then decreased again. The maximum was interpreted!3 as the predicted codimension-two
point which for the laterally infinite system is expected at At = 51, although it occurred
at a rather low field. The measurements also provided clear evidence for hysteresis at the
primary bifurcation. The measured Hopf frequency had a maximum near h = 13, whercas
the theory predicts the maximum to occur near h = 32. The frequency was generally of
the same size as the one given by the theory, but at the highest field values h ~ 33 it was
still much larger than expected for h = h®. We conclude that these experiments clearly
established a number of central features of the bifurcation. These include its subcritical
nature and the time-periodic behavior of the growing perturbations of the conduction state.
However, at the quantitative level there are substantial differences between the experiments
and the theory for the laterally infinite system.

We used a circular cell with d = 3.94 mm and r = 41.9 mm, corresponding to a ra-
dial aspect ratio I' = r/d = 10.6. The fluid was 5CB. For this system, #, = 136 s and
H F|| = 21.1 Gauss. Monodomain homeotropic samples were prepared before each exper-

imental “run”. The heat current was increased in small steps while the top temperature
was held fixed at 19°C, until convection occurred. The heat current then was decreased
again in small steps until convection ceased. At each heat-current value, the bottom-plate
temperature was measured at one-minute intervals for two hours (=~ 53t,). The tempera-
ture measurements and the heat current were used to determine the Nusselt number, which
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is given by

N=ders/
Here )\" is the conductivity of the homeotropically aligned sample, and

Aeff = —Qd/AT

is the effective conductivity and contains contributions from diffusive conduction and from
hydrodynamic flow. While the current was steady, images of the convection pattern were
acquired by the computer-interfaced CCD camera.
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Figure 1. Nusselt number measurements for h = 9.4 (H = 200 Gauss). Open (filled)
circles were obtained with increasing (decreasing) steps in AT.

Figure 1 shows N as a function of AT for H = 200 Gauss (h ~ 9.4). Surprisingly, N
decreased below one when convection started. This can be understood because the conduc-
tivity of a sample with parallel alignment, in which Q is perpendicular to 7 (A} ), is much
less than the conductivity of the homeotropic case (/\").23 The direct hydrodynamic con-

tribution to the heat flux is smaller than the decrease in the heat flux due to the deviations
of the director from parallel alignment caused by the flow. As the current decreased, the
conduction state was reached at a value of AT equal to ATs < AT, showing the predicted
and previously observed® hysteresis. For small fields (H < 250G), the conduction state
reached from the convecting state had a conductivity less than )\“, correspondingto N < 1, °

because the hydrodynamic flow experienced by the sample had introduced defects which
reduced the average conductivity below /\". At the field value of this experiment, the elimi-

nation of defects from the sample occurred on a time scale which was much longer than the
duration of the experiment. The visual appearance of the conduction state reached after
convection is interesting. It had the appearance of curdled milk, with the clusters of non-
homeotropic alignment corresponding to the curds suspended in a nearly-clear background
fluid of homeotropic alignment.

From data like those in Fig. 1, values of the critical temperature difference AT, and
of the temperature difference at the saddle node AT were determined with an uncertainty
of about 0.5 %. The corresponding Rayleigh numbers are shown in Fig. 2 as a function
of h? (solid circles: AT, open circles: AT;). The solid line in the figure is the theo-

retical prediction,!3 evaluated for the properties of 5CB at the mean temperature of the
experiment. As can be seen, the agreement with the measurements is excellent. The small
deviations at large h are probably caused by excessive variations of the fluid properties over
the temperature interval of the measurement when the temperature of the cell bottom is
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rather close to Tyy. There are as yet no predictions for Rg. It is interesting that R is only
about 10% below R.. Nonetheless, a calculation may turn out to be difficult because there
is already severe distortion of the originally homeotropic director ficld by the fluid flow, as
evidenced by the defects encountered after the conduction state is reached once more.

2000 J
o 1800

> 1600

R; or R

1400

1 200 1 1 1 1 1
0 50 100 150 200 250

h? = (H/Hg)?

Figure 2. Solid circles: Critical Rayleigh numbers for the onset of convection as a function

of h2. Open circles: Rayleigh numbers at the saddle node where convection ceased when
the heat current was lowered.

The pattern which evolves beyond the bifurcation is extremely interesting. The first
two rows of Fig. 3 show typical images of the flow field immediately above the convective
threshold for A = 9.4. By examining relatively rapid time sequences of images, it was
found that, on the time scale of the inverse of the expected Hopf frequency, the convection
rolls were steady rather than travelling or standing waves. This is not in contradiction
to the predicted Hopf bifurcation because the subcritical nature of the bifurcation leads
to a finite-amplitude state at threshold whereas the theory pertains to an infinitesimal
perturbation of the conduction state. A similar situation is encountered in binary-mixture
convection, where for a range of values of the separation ratio the convection rolls are steady
when AT = AT, even though small perturbations of the conduction state are travelling
waves. In our experiment, there unfortunately was no way to determine the frequency of
small-amplitude transients as had been done by GPS.

On a much longer time scale, the pattern evolved continuously. This is illustrated by
the images in Fig. 3, which are from a single experimental run with constant external con-
ditions. They were taken at the times indicated in each image, in units of £, = 136 s, which
had elapsed since an arbitrary origin at which the pattern already had been equilibrated
for some time. Even in runs of much longer duration (up to two weeks or 9000¢,) no steady
state was reached. The nature of the pattern did not change noticeably over the field range
5 < h < 16 covered by the experiments, although no quantitative studies as a function of
h have been carried out. It appears that the patterns are disordered both in space and in
time, providing an example of spatio-temporal chaos.

The bottom row of Fig. 3 gives the modulus of the Fourier transform. The trans-
forms were base on the central parts of the images, by using the filter function W (r) =

cos®[(n/2)(r/rg)] for r < rg and W(r) = 0 for 7 > ry. Here rg was set equal to 85%
of the sample radius. The transforms for ¢ = 449 and 1033 show that the nature of the
pattern changed dramatically with time. The rightmost image in the bottom row of Fig.
3 (labeled “Avg”) shows the square root of the time average of the square of the modu-
lus of the Fourier transform [i.e. of the structure factor S(k)]. The average involved 250
images taken over a total time period of 1123¢, (nearly two days). It is seen to contain
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contributions at all angles, consistent with the idea of a statistically stationary process of
non-periodic pattern evolution and with the expected rotational symmetry of the system.

Figure 3. Top two rows: a sequence of images from the same run at 200 Gauss (h = 9.4),
taken with constant external conditions. The time elapsed since the start of the run (in
units of ¢, = 136 s) is given in the top left corner of each image. Bottom row: Square
root of the structure factor of the central portions of two of the images shown above, and

the average of the structure factor of the central portions of 250 images spanning a time
interval of 1123¢,,.

Figure 4a shows the azimuthal average S(k) of the temporal average of the structure
factor for the run described above, i.e. of the lower right image in Fig. 3. Both the
fundamental and the second harmonic (corresponding to a roll width of half a wavelength)
are well developed, but the higher harmonics are so weak as to be unobservable on the
scale of the figure. The characteristic wavenumber of the pattern is about 3.4. This is
fairly close to the theoretically predicted wavenumber for the mode which first acquires a
positive growth rate; but since the observed state is one of finite amplitude, this agreement
is not particularly significant. Figure 4b shows the average over k of S(k) as a function
of the azimuthal angle © [the average over k was computed only in the vicinity of the
fundamental peak of S(k)]. Although there is a discernable maximum near © = 0.75, the
angular distribution is really quite uniform. Any remaining structure might well disappear
if data were averaged over longer time periods. On the other hand, it could also be indicative
of a slight asymmetry in the experimental cell.
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Figure 4. a): The azimuthally averaged structure factor S(k) as a function of the modulus
k of the wavevector. b): the radially averaged structure factor S(©) as a function of the

azimuthal angle ©.

Figure 5. A temporal succession of images during the transient leading from conduction to
convection when AT was raised slightly above AT,. The field was h = 9.4. The numbers
are the elapsed time, in units of t,, since the threshold was exceeded.

It is instructive to examine the transients which lead from the conduction to the con-
vecting state. This is done in Fig. 5. Here the number in each image gives the time, in
units of t,, which has elapsed since AT was raised slightly (1%) above AT.. At t = 32.6,
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there is still no evidence of convection; but at ¢ = 36.4, there are noticeable fluctuations in
the image which correspond to hydrodynamic flow. At ¢ = 40.3, some of these fluctuations
have grown to macroscopic amplitudes, and a front of convection is invading the quiescent
fluid (t = 43.5). This creates a state of nearly-straight parallel convection rolls (¢t = 53).
However, these straight rolls turn out to be unstable to a zig-zag instability. The zig-zag
disturbance can be seen to grow at ¢ = 68.4 and 97.4. In the end, this instability leads
to the spatially and temporally disordered pattern shown for ¢ = 163 and in Fig. 3.3.
Thus, we see that a secondary instability led to a chaotic state rather than to a new time-
independent pattern. This phenomenon most likely is analogous to the one encountered in
very early experiments on spatio-temporal chaos using liquid helium?242% where ordinary
RB convection became chaotically time dependent, probably because the skewed-varicose
instability?® was crossed (one cannot be absolutely sure about this because in the early
work there was no flow visualization).
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ABSTRACT

Work under this grant involves two main areas: (i) Mixing of
Viscous Liguids, this first area comprising aggregation, fragmentation
and dispersion, and (ii) Mixing of Powders. In order to produce a
coherent self-contained picture, we report primarily on results
obtained under (i), and within this area, mostly on computational
studies of particle aggregation in regular and chaotic flows.

Numerical simulations show that the average cluster size of
compact clusters grows algebraically, while the average cluster size of
fractal clusters grows exponentially; companion mathematical
arguments are used to describe the initial growth of average cluster
size and polydispersity. It is found that when the system is well mixed
and the capture radius independent of mass, the polydispersity is
constant for long-times and the cluster size distribution is self-similar.
Furthermore, our simulations indicate that the fractal nature of the
clusters is dependent upon the mixing.

INTRODUCTION

The overall objective of our work under this grant is to produce
fundamental knowledge of viscous mixing processes involving multiphase fluids
and particulate systems. Our goal is to generate broad-based understanding relevant
to a variety of industrial applications. The motivation for such an approach is the
belief that there is a broad common denominator underlying many of the mixing
problems shared by industry.

Current problems of interest in mixing can be found in polymer processing,
chemical reaction engineering and composites, food processing/consumer products,
and the pharmaceutical industry. Work in these areas is being carried out by both
industry and universities. However, mixing-related research in all these disciplines
has developed in nearly independent fashion. Often one sees "practical" work that
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is hard to generalize and "basic” results that are hard to apply. We believe that
there is a need to generate a more fundamental understanding of mixing since, at a
fundamental level, there are strong similarities in the basic science underlying all
these applications. :

As a step towards reaching the above goals we concentrate on two main
areas: (i) Mixing of Viscous Liquids, this area involving work in aggregation,
fragmentation and dispersion, and (ii) Mixing of Powders. Work carried out under
(ii), initially perceived as an extension of on our work in suspensions, is rapidly
becoming a distinct area involving a rather different approach, and future
extensions may be carried out outside the bounds of this grant.

MIXING OF VISCOUS LIQUIDS:
AGGREGATION, FRAGMENTATION AND DISPERSION

DISPERSION

The basic goal of work in this area is to obtain basic understanding of mixing
of immiscible fluids leading to the determination of flow conditions which result
in efficient breakup and dispersion of one mass of fluid in the bulk of another.
Related issues are the prediction of the morphological structures and drop size
distribution in complex flows. This area is relatively well developed. We are
currently investigating dispersion and coalescence processes in non-homogeneous
flows.

AGGREGATION AND FRAGMENTATION

Work in this area focuses on fundamental issues in flow-driven particle
aggregation and fragmentation and dispersion of agglomerates in complex flows.
An understanding of aggregation, the reverse of breakup, complements and
enhances our studies of breakup of immiscible fluids.

On-going research investigates flow-driven aggregation in nonhomogeneous
flows. We study, by dynamic modeling, aggregation of compact and fractal
structures in model flows typifying regular and chaotic regimes. Emphasis is placed
on two-dimensional flows but three-dimensional systems are considered as well.
The goal is to put into evidence flow effects - kinetics of aggregation, cluster size
distribution and structure of aggregates - with the long range goal of manipulating
flows to tailor the structure of clusters.

Two aggregation scenarios are considered: in (i) the clusters retain a compact
geometry - forming disks and spheres - whereas in (ii) fractal structures are formed.
The primary focus of (i) is kinetics and self-similarity of size distributions, while the
main focus of (ii) is the fractal structure of the clusters and its dependence with the
flow.

Classically, irreversible aggregation is described by Smoluchowski's
coagulation equation which can be written for a continuous distribution of cluster
sizes as
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at '2JOK(" y,y)n(x - y,Hn(y,t)dy n(x,t)jOK(x,y)n(y,t)dy, M

where n(x,t) is the concentration of clusters of mass x at time t and K(x,y) is the rate
of aggregation of clusters of masses x and y. The first term, on the right-hand side,
accounts for the formation of a cluster of size x due to aggregation of two clusters of
size x-y and y, whereas the second term represents the loss of clusters of mass x.
Typically, the analysis of aggregation can be simplified by use of the scaling ansatz [1]

n(x,t) = [s(t)]'zcb(;(x—t)—], | (2)

which reduces the number of variables from two (x and t) to one (x/s(t)). The

function @ is commonly referred to as the scaling distribution.

The scaling ansatz allows predictions of the long-time behavior of
Smoluchowski's equation. However, the scaling does not address the initial
evolution of the cluster size distribution. We have shown however, that it is
possible to develop analytical estimates of this growth.

The primary goal of our work however, is to assess the effects of flow. A
preliminary study [2], which does not explicitly address the fractal nature of the
clusters, shows that islands of regularity may cause spatial variations in the rate of
aggregation, and that aggregation in "well-mixed" chaotic systems is similar
mathematically to Brownian aggregation and can be described by Smoluchowski's
equation. The effect of chaotic mixing on the fractal nature of clusters is considered
explicitly by Danielson, Muzzio and Ottino [3]. They determined the fractal
dimension of the cluster is affected by mixing [for background on mixing and chaos,
see 4]. This differs from a study by Torres et al. [5] which predicts that the flow field
does not affect the fractal nature of the resulting clusters. The variation of fractal
dimension with mixing is due to the nature of interactions of monomers and larger
clusters in different mixing schemes. If the system is not well mixed, the large
clusters do not interact with each other, the process resembles the particle-cluster
aggregation [5]. However, if the system is well mixed, then larger clusters interact
with each other and aggregation resembles cluster-cluster [5] aggregation. Thus, the
fractal dimension of a cluster is expected to decrease with better mixing.

Computational studies were carried out in the so-called journal bearing flow.
A particularly important aspect of this flow is that it can be realized experimentally
and manipulated to produce both regular and chaotic flows [6]. Also, analytic
streamfunctions, which allow for tractable computations, can be found in Wannier
[71

Our simulations mimic fast coagulation; particles seeded in the flow are
convected passively and aggregate upon contact. Brownian motion is not
considered and hydrodynamic interactions are neglected; passive particles move as
fluid elements. The flows considered are regular, chaotic, and a combination of
both. The clusters are compact (or spherical) and fractal (a typical fractal structure
from our simulations can be seen below).
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Figure 1: Typical fractal cluster from our simulations. The fractal
dimension of this cluster is 1.54+0.001, and the radius of gyration is
40 times the particle radius.

An outline of the results obtained to date is shown in the following table:

Growth of Average Cluster Size, s(t)
Flow Compact Structure Fractal
constant capture radius, o total area or volume Structure
constant
2 dimensions | 3 dimensions |2 dimensions | 3 dimensions
Regular [ for 0=0.0025 | for a=0.0067 | for p=0.1 for9=0.1 | for p=0.1
(1+0.22t)077 | (1+0.216)07 | (1+0.0065t)14 ] (1+2.7t)0.85 | (1+0.22t)0.7
R=0.999 R=0.997 R=0.997 R=0.998 R=0.999
"Poorly” | for 0=0.0025 | for 0=0.0067 | for p=0.02 | for¢=0.1 | for p=0.02
mixed | (1+0.29t)0.62 | (1+0.44t)055 | (1+0.018t)081 | (1+25t)066 | exp(0.085t)
R=0.999 R=0.998 R=0.999 R=0.997 R=0.999
for for p=0.1 -
0=0.00067 (1+0.0098t)2> efer{B 7(')9'3)'
(1+0.025t)055 R=0.988 Re0.999
R=0.999 | =027
Chaotic | for 0:=0.0025 | for 0=0.0067 | for p=0.02 for 9=0.1 | for p=0.02
(1+0.226)1 | (1+0.21t)093 | (1+0.012t)°2 | (1+7.5t)! exp(0.21t)
R=0.995 R=0.997 R=0.999 R=0.998 R=0.986
for p=0.1 for p=0.1
(1+0.06t)6-> exp(1.38t)
R=0.999 R=0.976

Table 1: the growth rate of the average cluster size in the various
studies. Here, o, p and ¢ are the capture radius, area fraction and
volume fraction of clusters, respectively.
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In general, the average cluster size and variance of the size distribution grow
faster for fractal structures than compact structures, and the variance of the size
distribution grows faster in poorly-mixed systems. Let us now consider a
breakdown of the results: When the capture radius is constant, the average cluster
size grows as s(t) =so(1+t/t)2. The cluster size distributions are self-similar for the
well mixed case and are given by :

n(x,t) = M;s(t)2e /5O, 3)

However, the scaling ansatz does not hold for the poorly-mixed system. These
results suggest that the size distribution may to some degree be controlled by the
mixing. When the clusters are area conserving, formation of a large cluster
dominates aggregation.

Significantly different kinetics are observed if fractal structure is considered;
the average cluster size grows exponentially, as opposed to algebraically as in the
case of compact structures.

Furthermore, due to the wide range of flow in the journal bearing flow, a
distribution of fractal clusters is produced. When the area fraction of clusters is 0.02,
the median fractal dimension of the clusters is dependent on the flow, similar to
the study by Danielson et al. [3]. The median fractal dimension of clusters formed
in the well-mixed system is 1.47 while the median fractal dimension of clusters
formed in the poorly-mixed case is 1.55. Furthermore, the range of fractal
dimension is higher in the well-mixed case.

The results are different when the area fraction of clusters increases. The
median fractal dimension of the clusters is independent of the flow and is
approximately 1.47. Since the fractal dimension of the clusters is closer to the
dimension of the clusters in the well mixed system with a lower area fraction of
clusters, this suggests that as the area fraction of clusters increases, the island of
regularity gets broken up by the increasing capture radius of the clusters. Thus,
aggregation in the poorly-mixed system behaves similarly to that in the well mixed
system when aggregation occurs between the two disjoint regions of the flow. A
more complete summary of these results appear in a paper under preparation [8].

MIXING OF SOLIDS

Let us consider now a few results pertaining to mixing of solids (dry
powders). Our current understanding of solids mixing can scarcely be described as
more than primitive: we can neither qualitatively nor quantitatively analyze the
effectiveness of any given mixing mechanism in advance; we do not have a widely
accepted set of equations - as in the companion case of liquid mixing - that govern.
solids mixing, and we cannot even establish whether a given set of solids will mix
or de-mix under a given stirring regimen.

Recent work [9] has demonstrated that significant inroads can be made in this
area using rather modest resources. We have shown that slow mixing processes can
be imagined as a succession of avalanches and that processes can be divided into
geometrical and dynamical parts. The geometrical aspects of the problems can be
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cast in the language of maps. In depth aspects of dynamical aspects - leading for
example to segregation effects - can be incorporated by means of molecular dynamic
simulations. Simpler ad hoc methods capture gross aspects as well. Below we show
a comparison between a experiment (left) and a computer simulation (right).
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SPATIOTEMPORAL PATTERNS IN A REACTION-DIFFUSION SYSTEM
AND IN A VIBRATED GRANULAR BED

Harry L. Swinney, K. J. Lee, W. D. McCormick, F. Melo, and P. Umbanhowar

Center for Nonlinear Dynamics and Department of Physics
The University of Texas at Austin
Austin, Texas 78712

ABSTRACT

Experiments on a quasi-two-dimensional reaction-diffusion system reveal
transitions from a uniform state to stationary hexagonal, striped, and rhombic
spatial patterns. For other reactor conditions lamellae and self-replicating spot
patterns are observed. These patterns form in continuously fed thin gel reactors
that can be maintained indefinitely in well-defined nonequilibrium states. Reaction-
diffusion models with two chemical species yield patterns similar to those
observed in the experiments. Pattern formation is also being examined in vertically
oscillated thin granular layers (typically 3-30 particle diameters deep). For small
acceleration amplitudes, a granular layer is flat, but above a well-defined critical
acceleration amplitude, spatial patterns spontaneously form. Disordered time-
dependent granular patterns are obseived as well as regular patterns of squares,
stripes, and hexagons. A one-dimensional model consisting of a completely
inelastic ball colliding with a sinusoidally oscillating platform provides a semi-
quantitative description of most of the observed bifurcations between the different
spatiotemporal regimes.

INTRODUCTION

We are examining the formation of spatiotemporal patterns in two types of far-from-
equilibrium systems that have been chosen in part because of their potential applications: (1)
reaction-diffusion systems maintained by a continuous feed of chemicals, and (2) vertically
oscillated thin layers of granular materials. Our earlier work on spatially extended chemical
reactors demonstrated that in some cases a pattern forming chemical system can be used to achieve
higher yield of certain species than can be achieved in the standard well-stirred batch or
continuous flow (CSTR) reactors [1-2].
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Shallow layers of granular materials ("vibrated beds") are used in industry because of their
good heat and mass transfer properties [3-4]. A previous study observed square patterns in a
vibrated bed [3], but the present work is the first to investigate systematically pattern formation in
these systems.

Our goal is to understand the fundamental mechanisms leading to pattern formation and to
determine the properties and parameter ranges of the different patterned regimes. Precision
computer-controlled reactors and vibrated beds have been developed for these studies, and a high
degree of reproducibility, unprecedented for these systems, is being achieved. The experiments
are complemented by studies of models that provide insight into the spatiotemporal dynamics.

REACTION-DIFFUSION PATTERNS

Turing patterns

In a classic 1952 paper, Turing predicted that patterns could spontaneously form in reaction-
diffusion systems. Turing considered systems with diffusion and chemical kinetic processes but
no convection. We have developed reactors in which patterns form in a thin gel layer — the
(essentially inert) gel prevents convection [5-11]. The gel layer is in contact on one or both sides
with continuously refreshed reservoirs of the reagents of the reaction; thus the system can be
maintained indefinitely in a well-defined nonequilibrium state.

In a study of a chlorite-iodide-malonic acid reaction, we found that patterns emerge
spontaneously from an initially uniform background when critical values of the control
parameters (chemical concentrations, temperature, gel thickness) are exceeded: the primary
bifurcation leads to hexagonal patterns, as shown in Fig. 1(a) [5,7]. The wavelength A of Turing
patterns is predicted to depend not on the geometry (as in, e.g., fluid dynamic patterns), but
only on the properties of the system: A = (2rtD)1/2, where D and 1 are, respectively, a
characteristic molecular diffusion coefficient of the reacting species and a characteristic time
determined by the chemical kinetics. We have recently made direct measurements of D and t and
have confirmed the predicted dependence of A on D and 7 [6].

(a) (b)

4

e

Fig. 1. Stationary chemical patterns formed in continuously fed gel reactors: (a) hexagons [5-8],
(b) stripes [5-8], and (c) lamellae [9-10]. The gels are thin compared to the wavelength of the
patterns so the patterns are aﬁfroximately two-dimensional. Patterns (a) and (b), each 1 mm x 1
mm, were observed in a chlorite-iodide-malonic acid reaction [7]; variations in darkness
correspond to variations in concentration of triiodide. Pattern (c), 13 mm x 10 mm, was
observed in a ferrocyanide-iodate-sulfite reaction [9].
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At the onset of instability the patterns consist of regular hexagons with 60° angles between
all dots neighboring another dot [see, e.g., Fig. 1(a)], but beyond the onset of instability the
hexagons can be slightly squashed — e.g., the angles between neighboring dots can be 570,
669, 579, 579, 66°, 579; such rhombic structures have been found to be a consequence of the
translational, rotational, and reflection symmetry of continuous planar continua [8].

With further increase in control parameter, we observe a bifurcation from hexagonal to
striped patterns (cf. Fig. 1(b)) [5,7], and with yet further increase in control parameter the
patterns can become disordered in both space and time [12].

Lamellae

Experiments on a bistable ferrocyanide-iodate-sulfite reaction have revealed a new type of
spatial pattern, one in which fronts propagate at a constant speed until they reach a critical
separation (typically 0.4 mm in the experiments) and stop [9-10]. This behavior contrasts with
the behavior of waves in excitable media, where colliding fronts annihilate one another. The
front patterns develop locally and spread to fill space, resulting in a stationary asymptotic pattern
that is highly irregular, as Fig. 1(c) illustrates. The pattern forming process also contrasts with
that leading to the regular hexagonal and striped patterns (Fig. 1(a)-(b)), which emerge
spontaneously everywhere in the medium when a critical control parameter value is exceeded: the
lamellae must be initiated by a finite amplitude perturbation.

Self-replicating spots

For conditions close to those yielding lamellae, patterns of spots are observed and are found
to undergo a continuous process of birth through replication and death through overcrowding, as
Fig. 2 illustrates. The spots do not form spontaneously, but once initiated by a perturbation (UV
light or a boundary perturbation), the spot patterns are self-sustaining. These patterns are
observed for a wide parameter range in the ferrocyanide-iodate-sulfite reaction.

Models

Simulations of several different reaction-diffusion models with two chemical species have
been found to yield lamellae and self-replicating spots similar to those observed in the
experiments (see refs. in [10]). (Replicating spots were actually first found in a model [13]).
Even abstract models that could describe convection and other pattern forming systems as well as
chemical systems have been found to form lamellae like those in Fig. 2(c). Thus, while lamellae
and replicating spots have not been observed in other laboratory systems maintained far from
equilibrium, the occurrence of these patterns in several models suggests that there is nothing
remarkable about our ferrocyanide-iodate-sulfite system — lamellar and spot patterns can be
expected to form in other chemical systems and perhaps in non-chemical systems as well.

|
5

Fig. 2. Self—replicatinﬁ spots evolving in time for 24 min. The behavior continues to evolve

indefinitely as long as the reactor conditions are maintained [10-11]. Black represents the low pH
state (pH = 3); grey represents the high pH state (pH = 7). The region shown is 7 mm x 7 mm.
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PATTERNS IN VIBRATED GRANULAR BEDS

Granular materials are large assemblies of solid particles that interact mainly through nearest
neighbor contacts; this is often a good approximation for granular systems in nature and
industry, e.g., mined coal, concrete, cracking catalysts, rice, and pills. Granular materials
comprise a unique state of matter with properties common to both fluids and solids. These shared
properties make the application of statistical methods to the definition of mean quantities difficult,
and cause phenomenological coefficients, such as viscosity or elasticity, to be strongly singular.
Despite formidable challenges, the significant role of granular dynamics in industry and geology
makes the understanding of these materials an important subject for science and engineering.
Most research on granular materials has concerned static rather than dynamic properties, but in
recent years some studies have begun to examine the time-dependent properties, and vibrating
systems in particular have been found to exhibit some remarkable behavior [4, 14, 15].

The subject of our study, pattern formation in vibrated beds (shallow vertically oscillated
layers), has not been previously examined in any detail [3-4]. We have found a variety of
spatiotemporal patterns, some of which are illustrated in Fig. 3. We consider beds of particles
that are sinusoidally oscillated with dimensionless acceleration amplitudes I in the range 0-9
(maximum acceleration relative to the gravitational acceleration) [16-17]. The particles (usually
glass or bronze spheres in our experiments) have diameters in the range 0.1-1.0 mm. The layers
are typically 3-30 particle diameters deep. The driving frequency ranges from 10 to 120 Hz. The
container is 127 mm in diameter and 90 mm high. The container is evacuated to 0.1 torr, which
is a pressure low enough so that volumetric effects of the remaining gas are negligible.
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Fig. 3. Patterns observed for different dimensionless acceleration amplitudes I'in a 1.2 mm
thick layer of 0.15-0.18 mm diameter bronze sPheres [16-17]: (a) squares (I' = 2.7, f = 19 Hz),
(b) stripes (I' = 3.3, f = 67 Hz), (c) hexagons (I = 3.9, f = 67 Hz), (d) flat domains separated
by kinks (I" = 4.5, f = 37 Hz), and (e) disordered pattern. (I' = 8.5, f = 67 Hz).
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We now describe some of the patterns.

Primary instability: squares and stripes

For small drive frequency f and increasing I', the flat surface bifurcates to a square standing
wave pattern oscillating at f/2; see Fig. 3(a) {16-17]. For a drive frequency greater than a critical
value (42 Hz for a 1.2 mm deep layer of 0.17 mm bronze spheres), the pattern is in the form of a
stripes rather than squares, as Fig. 3(b) illustrates. The transition from a flat surface to squares
is definitely hysteretic, while the hysteresis is small (perhaps absent) for the transition from a flat
surface to a striped pattern.

Higher instabilities: hexagons, kinks, and disorder

As the acceleration is increased with the drive frequency fixed, we observe five successive
regimes beyond the squares or stripes oscillating at f/2 (cf. Figs. 3 and 4) [17]: (i) hexagons
(f/2); (ii) kinks (phase jumps of &) separating distinct flat domains; (iii) squares or stripes
oscillating at f/4; (iv) hexagons (f/4); and (v) patterns disordered in both space and time. These
different regimes are quite reproducible and the transitions between them are well defined.
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Fig. 4. Stability diagram showing different regimes in a granular layer (cf. Fig. 3) [17]. The
transitions to squares (at frequency f/2 and f/4) are hysteretic, as indicated, while no hysteresis
was measurable for the other transitions. The vertical dashed lines show the approximate center
of the continuous transitions between squares and stripes.
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Model

A one-dimensional model with a completely inelastic ball colliding with a sinusoidally
oscillating platform indicates that the transitions from squares or stripes to hexagons and kinks
are related to a period doubling bifurcation [17]. The model also provides insight into the higher
bifurcations, even though of course the one-dimensional model cannot describe the form of the
two-dimensional spatial patterns. ,

One goal of our study is to characterize and understand mixing in vibrated beds. Transport
properties will be determined in the experiments by direct tracking of many particles, a technique
that we have used in studying transport in quasi-geostrophic (oceanic-type) fluid flows [18]. The
measurements will be compared with transport properties computed for two-dimensional models.
This investigation should suggest ways in which the mixing properties of vibrated beds can be
enhanced.

DISCUSSION

Our experiments have revealed new types of spatiotemporal patterns in reaction-diffusion
systems and vibrated shallow granular beds. A fundamental understanding of the pattern forming
processes in these systems should provide a stepping stone toward more efficient and innovative
utilization of reaction-diffusion processes and vibrated beds.
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DEFORMATION AND CRACK GROWTH RESPONSE UNDER CYCLIC CREEP
CONDITIONS

Frederick W. Brust, Jr.

Battelle Memorial Institute
Columbus, Ohio 43201, U.S.A.

ABSTRACT

To increase energy efficiency, new plants must operate at higher and higher
temperatures. Moreover, power generation equipment continues to age and is being
used far beyond its intended original design life. Some recent failures which
unfortunately occurred with serious consequences have clearly illustrated that current
methods for insuring safety and reliability of high temperature equipment is inadequate.
Because of these concerns, an understanding of the high-temperature crack growth
process is very important and has led to the following studies of the high temperature
failure process.

This effort summarizes the results of some recent studies which investigate the
phenomenon of high temperature creep fatigue crack growth. Experimental results
which detail the process of creep fatigue, analytical studies which investigate why
current methods are ineffective, and finally, a new approach which is based on the T*-
integral and its ability to characterize the creep-fatigue crack growth process are discussed.
The potential validity of this new predictive methodology is illustrated.

INTRODUCTION

As noted by Prager [1], the executive director of the Materials Property Council (MPC),
historically equipment became obsolete, and was replaced with new designs, before the potential
creep fatigue failure time was reached. As a result, experience with creep failures under mominal
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design conditions has been limited. Some recent failures of high energy steam pipes in fossil
power plants (see Lundin, et al. [2,3] ), which were highly publicized and occurred with serious
consequences, have clearly illustrated that creep rupture failures must be prevented. From the
MPC studies (References [1] to [3]) and field experience it is now known that current
engineering methods to predict the life of components that operate in these severe environments
are ineffective. The reasons these current methods are ineffective are briefly summarized in the
following paragraphs. Thorough and detailed discussion is provided in References [4-16].

The methods currently used for predicting the life of components that must operate in an
environment where creep and creep/fatigue damage may develop are an extension of methods
developed to predict elastic-plastic fracture. For an elastic-plastic cracked body, assuming
deformation theory plasticity can adequately characterize the straining, one may show that the
strength of the asymptotic field may be characterized by a path independent integral (the J-
integral). Today, elastic plastic fracture is characterized in practice using J-integral tearing
theory. It was quickly recognized that a creep analogue to plasticity using a Norton Creep Law
(instead of deformation plasticity) leads to a path independent rate integral, C’-integral, which
characterizes the strength of the creep crack field. Following the same reasoning as that
developed for elastic-plastic fracture, as adapted for creep crack growth, a creep fracture ‘
methodology was developed. The reason that the creep fracture analogy fails while the plasticity
fracture technique works well are now clear: deformation theory plasticity can accurately
characterize plastic deformation near the high stresses which develop near the crack tip while
Norton creep cannot characterize the creep deformations near a crack tip in a creeping body.
Moreover, when cyclic loads occur, the current methods for predicting creep-fatigue lives, which
are based on Miner’s rule, completely break down. Rather than use the strength of the
asymptotic field as the creep fracture parameter, which depends on the chosen constitutive law,
we have developed an energy-based fracture parameter which is independent of the chosen
constitutive law. This method is discussed later.

CYCLIC CREEP DAMAGE

Consider a cracked body which is loaded and held at the load at a temperature which
causes creep deformation to occur. The bulk of the creep strains will develop at the crack tip and
emanate outward from the tip as time proceeds. A “creep zone” has thus developed at the crack
tip. If the load is then removed from the body, the elastic strains surrounding the creep zone are
prevented from going to zero because the inelastic creep strains prevent the body from attaining
its original configuration. Hence, a compressive zone is induced in the crack region. This
compressive zone can be quite large in size (see References [8,12,13] for calculations which
illustrate the size of this zone). Figure 1 illustrates this effect with a blow up of the region near a
crack tip produced from a detailed analysis of a 9Cr-Mo steel which experienced numerous
cycles (see Reference [12] for details). If the load is then held at a zero or a negative load (or at
any load smaller than the original load), a compressive creep zone which also emanates from the
crack tip, and also grows with time, will develop in this compressive stress zone. If the load is
then increased (positively) again, tensile stresses develop at the crack tip, a tensile creep zone re-
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Figure 1. Contour Plots of the y-component of Stress at the End of an Unload/Hold Sequence
forthe Analysis of a 9Cr-Mo Steel at 538 C. The Specimen Was Loaded and Held for 24 Hours,
Unloaded and Held for 0.1 Hour, etc. The Results Shown Here are Near the End of the Test.

Note the large size of the compressive stress zone even though the minimum load is zero.

develops, etc. It should be clear that, for any creep-fatigue situation where hold times occur, the
crack tip region constantly experiences reversing tensile and compressive creep strains.

Moreover, the creep strain rates which develop after each change in sign (ie., positive to negative
or vice-versa) are greatly increased compared to the situation where no stress reversals occur
[4,5]. This causes increased creep damage compared to the constant load case, and is the reason
that classical creep fatigue crack growth methods break down.

EXPERIMENTAL OBSERVATIONS

The effect of the above described alternating tensile and compressive creep zones that
develop near the crack tip during cyclic loading (even for R-ratios greater than zero) is increased
creep damage and reduced life. A number of different tests were performed on 316 stainless
steel at 650 C and 593 C, and on 9Cr-Mo steel at 538 C that illustrates this effect (see the cited
References). Here we summarize some general trends.

Let us first examine some of the general conclusions which can be made regarding history-
dependent loading in the time-dependent deformation regime. Figure 2 illustrates a load versus
time sequence that was applied to one of the 9 Cr-Mo compact tension specimens at 538 C. An
initial load period of 36 hours was made to ensure the development of an initial creep zone in the
specimen. The unload hold times and subsequent reload times were continually decreased until
about 90 hours, after which four-hour hold periods and one-hour unload periods were maintained
until the specimen failed. This assured a truly variable load history.

An enlargement of the displacement versus time history for this experiment between 325
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Figure 2. Load Time sequence (1st 9Cr-Mo test)

and 365 hours after beginning the test is illustrated in Figure 3. This specimen failed after about

400 hours. Another specimen was loaded to the same load level and was identical in all other

ways to the above-described specimen except for a slightly larger initial crack. However, this

specimen was held for 320 hours before unload/reload occurred, and only one cycle was applied.

Figure 4 illustrates the displacement versus time history for this test. Note that this test failed at

more than 600 hours. v '
Several important general conclusions can be drawn from these results:

u During the unload-hold period, load-point displacement recovery occurs. This is due
to the compressive stresses which develop at the crack tip during unloading. The
compressive stress zone size can be quite large, as was verified through
computational studies, even though the global load is never less than zero.

n After reload, the displacement rates increase compared to the rates during the
previous loading period. This is clearly seen in Figures 3 and 4. Note also that the
displacement just after reloading is always smaller than the corresponding value just
before unloading.

32
8Cr-Mo, 1st Test
Greater slope
28 [~ Displacernent before unioad

Displacement after reload

2.4

T

Displacement, mm

20 Displacement
End unload recovery
1.6 | ] | | ! | _
325 330 335 340 345 350 355 360 365

Time, hrs

Figure 3. Displacement Time History 1st 9CrMo Test.
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Figure 4. Displacement Time History - 2nd 9CrMo Test.

Load-history effects significantly decrease life compared to the nearly constant load
(only one unload) test, i.e., in this case the constant load test lasted nearly 1.5 times
longer.

ANALYSIS SUMMARY

Here we briefly show results of an asymptotic study before showing results from an
analysis of an experiment. Consider a stationary crack subjected to the following load sequence:
(i) Load with 24-hour hold period, (ii) unload (to zero load) and hold for one hour, (iii) reload
and hold for 24 hours, (iv) etc. This means that the end of the load-hold periods were 24, 49, 74,
and 99 hours. An extremely refined symmetric finite element mesh was developed with 10 rings
of six-noded isoparametric triangular elements surrounding the crack tip and eight-noded
elements elsewhere with the crack-tip element size equal to .0005 times the uncracked ligament.
This refinement is about 2.5 times more refined compared with the classical HRR field studies of
Shih and German. A classical strain-hardening (S-H) and the Murakami-Ohno (M-O) cyclic
creep law were used to model the problem. Creep properties for 9 Cr-Mo steel were used.
Figure 4 illustrates the theta component (i.e., perpendicular to the crack) of creep strain as a
function of the distance, R, ahead of, and parallel to, the crack. Note that the creep strain as
calculated using the M-O law continuously drifts away from the strains evaluated using a
classical law. This is because the creep strain rates after a change in stress direction which
occurs near the crack during global load changes become very large. This is observed both
experimentally and predicted using M-O. The S-H law cannot capture this effect. The
importance of this is that the true deformation response of the cracked body must be accounted
for in order to adequately predict the damage accumulation near the crack. Examination of
stresses also reveals that the strength of the asymptotic field also changes from cycle to cycle.
We thus conclude that current engineering methods, which are based on correlating creep-crack
growth rates to the strength of an asymptotic field assuming a classical creep law (and constant
load conditions), are not valid for variable load conditions.
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Figure 5 Asymptotic Creep Strains.

Finally, the analysis results of one of the 9 Cr-Mo tests (i.e., third test) are presented. This
specimen had a load sequence consisting of (i) load and hold for 24 hours, (ii) unload and hold
for 5 minutes, (iii) reload and hold for 24 hours, etc., (i.e., different from Figure 1 and 3). The
maximum load was 23.353 KN, and the minimum load was zero.

The finite element model was forced to follow the load-time and crack-growth history.
The constitutive law used to perform the analyses is based on the work of Murakami and Ohno.
The numerical implementation of this law and the finite element model is detailed in References
[7,13]. An implicit numerical scheme is used, crack growth is modeled in the two dimensional
problems using a node release technique, and the T*-integral is evaluated using a direct
approach. Other integral parameters are also evaluated. T* can be shown to represent the energy
release rate to a process zone near the growing crack tip per unit crack growth. Reference [16]
details the theory of T* as well as providing a number of verification examples for different
conditions. :

Load-line displacements were predicted as well as a number of integral fracture
parameters. The fracture parameters considered here are integral parameters, which have an

energetic physical interpretation. The T', Jy, (Watanabe), J,; (McClintock), J (Aoki, et al.), and
Js (Blackburn) integrals were evaluated throughout the history (please see references for detailed
discussions of these parameters). The crack initiated at about 192 hours and failure occurred
after 700 hours in the test. Note that the entire load history was modeled. ’

Figure 6 shows a comparison of the maximum displacements (at the end of the load-hold
period) and minimum displacements (at the end of the unload-hold periods). It is seen that the
predicted displacements compare quite well with the experimental results, which suggests that
the model is adequate. The predicted displacements begin to accelerate upward at about 600
hours while the experimental results begin to increase at about 650 hours, i.e., the analysis
predictions are a little conservative here. The displacement trends of displacement recovery after
unload, and displacement rates increasing after reload (of the type illustrated in Figure 3) were
also predicted reasonably well compared to the data.

Figure 7 compares all of the integral parameters as a function of time. As indicated in
Figure 7, crack growth begins at about 192 hours, after the eighth unloading. Note that, before
crack growth, all of the integrals experience a step jump after a load cycle indicating that variable
loads increase creep damage conditions as measured by these parameters. Note that the T" and
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Jw integrals attain a nearly constant value during the crack-growth phase (observe the horizontal
lines in Figure 7). This result suggests that a constant value of T" or J,, can characterize crack
growth under creep fatigue conditions. Moreover, crack initiation can be predicted. At about
628 hours the integral parameters become unstable, suggesting that crack instability is predicted.
The analysis results of the other tests also showed this same performance of the integral

parameters. Energetic parameters can characterize load history dependent fracture while
asymptotic methods must be abandoned.
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Figure 6. Displacement Comparisons for 3rd 9Cr-Mo test.
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Figure 7. Behavior of Integral Parameters for 3rd 9Cr-Mo Test.
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ADVANCED LASER DIAGNOSTICS FOR DIAMOND DEPOSITION RESEARCH

C.H. Kruger, T.G. Owano, E.H. Wahl
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ABSTRACT

Chemical Vapor Deposition (CVD) using thermal plasmas is attractive for
diamond synthesis applications due to the inherently high reactant densities and
throughput, but the associated high gas-phase collision rates in the boundary layer
above the substrate produce steep thermal and species gradients which can drive
the complex plasma chemistry away from optimal conditions. To understand and
control these environments, accurate measurements of temperature and species
concentrations within the reacting boundary layer are needed. This is challenging
in atmospheric pressure reactors due to the highly luminous environment, steep
thermal and species gradients, and small spatial scales. The applicability of
degenerate four-wave mixing (DFWM) as a spectroscopic probe of atmospheric
pressure reacting plasmas has been investigated. This powerful, nonlinear
technique has been applied to the measurement of temperature and radical species
concentrations in the boundary layer of a diamond growth substrate immersed in a
flowing atmospheric pressure plasma. In-situ measurements of CH and C,
radicals have been performed to determine spatially resolved profiles of
vibrational temperature, rotational temperature, and species concentration.
Results of these measurements are compared with the predictions of a detailed
numerical simulation. '

INTRODUCTION

Thermal plasma CVD of diamond thin films is an attractive synthesis technique due to
several inherent attributes. The high reactant densities available at atmospheric pressure can
produce high radical fluxes to the deposition surface, resulting in high growth rates. Operation at
atmospheric pressure also precludes the loading and unloading of samples to be coated from a
vacuum system, yielding a corresponding decrease in process cost and complexity. From a
modeling standpoint, the atmospheric pressure reacting flowfield is in the continuum, rather than
the molecular or transitional flow regime and is more readily simulated. These beneficial
attributes of atmospheric pressure deposition are tempered by the presence of a collision
dominated, chemically reacting boundary layer above the substrate surface in which important
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chemical species are both rapidly produced and destroyed. This aspect of atmospheric pressure
techniques is strikingly different from low pressure deposition techniques in which production
and diffusion of chemical species controls the deposition process

Previous studies of the atmospheric pressure deposition environment have yielded important
knowledge of the parameters affecting diamond formation,"™ but have been limited to mostly
post-deposition characterizations and comparisons. To further explore the nature of the
atmospheric pressure diamond deposition environment and process, it is necessary to make
accurate in-situ measurements of temperatures and species concentrations within the thin (< 1
cm) reacting boundary layer over the substrate, and compare these fundamental quantities with
detailed simulations.

It is quite difficult, for many diagndstic techniques, to provide useful and accurate
information from such a harsh and potentially nonequilibrium environment. Sensitive
measurement of temperature and trace radical concentrations within a reacting boundary layer is
a challenging problem in atmospheric pressure reactors due to the highly luminous environment,
small spatial scales, and steep thermal and concentration gradients. It is in this environment
where the application of sensitive, laser based diagnostic techniques can allow the detailed
measurement of temperature and trace radical concentrations to be made, and compared to
models of the deposition environment. The application of a powerful non-linear laser
spectroscopy, degenerate four wave mixing (DFWM), as a gas-phase optical diagnostic has
opened the door for significant advancement in the area of atmospheric pressure plasma
chemistry, since it can provide high sensitivity and spatial resolution with a coherent, phase
conjugate signal which can be readily discriminated against the plasma luminosity.>®

The DFWM technique utilizes three laser beams of a single wavelength interacting with the
plasma to produce a fourth spatially coherent, polarized signal beam that can be collected with
high efficiency, and effectively filtered from the intense plasma luminosity. This feature is
perhaps the greatest advantage of DFWM over other traditional diagnostic tools of atmospheric
pressure plasmas which are often disabled or corrupted by the intense background luminosity.
DFWM is found to be an extremely useful nonintrusive probe of the plasma, capable of
providing high spectral and spatial resolution, and permitting measurements of temperature and
relative species concentrations of trace radicals under conditions in which other spectroscopic
techniques fail. Since DFWM can be used to probe the ground state of electronic transitions, it is
much less subject to misinterpretation as a result of nonequilibrium effects’ than conventional
techniques such as optical emission spectroscopy (OES). Measurements of vibrational and
rotational temperatures, as well as relative concentration profiles for CH and C, radicals have
been measured in the thin boundary layer of a diamond-growth substrate immersed in a flowing
atmospheric pressure plasma. DFWM measurements of temperature and relative species
concentrations are compared with the results of a detailed numerical simulation'® of the reacting
plasma, and found to be in agreement.

EXPERIMENTAL FACILITY

The RF inductively coupled plasma (ICP) torch facility has been described in previous
work.'* The present experiments were conducted inside a water cooled quartz test section which
is shown in schematic cut-away along with the plasma torch head in Figure |. Open-ended laser
access ports, approximately 6.5 cm downstream of the nozzle exit, enable the DFWM pump and
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Figure 1. Schematic of RF-ICP reactor.

probe beams to enter and exit the reactor
unhindered, and to cross at a location
directly below the stagnation point of the
substrate. Substrates are supported within
the quartz test section in a stagnation point
flow geometry by means of a water cooled
holder. The substrate can be vertically
translated in-situ  to  allow  laser
measurements to be made at various points
through the boundary layer. Substrate
temperature  is monitored with a
Minolta/Land Cyclops 152 infra-red optical
pyrometer. Reactant gases (hydrogen and
methane) are premixed with the carrier gas
(argon) before passage through the RF
discharge.

The optical configuration for this
facility is shown schematically in Figure 2..
Laser beams for the DFWM experiments
are produced using a Nd:YAG pumped dye
laser system (~0.05 cm’ bandwidth). The
output of the laser is spatially filtered to

improve beam quality, and reduced in intensity with a variably rotated half-wave plate, fixed
polarizer combination. The beam is then split into three beams (of approximately equal energy at
the test section), the backward pump beam (denoted Ey), the probe beam (denoted E), and the
forward pump beam (denoted Ey). Polarization of the backward pump beam is rotated with a

half-wave  plate to be
perpendicular to the
polarization of the forward
pump and probe beams, thus
aiding signal isolation. Beam
convergence is adjusted to
produce a mild focus at the
mid-line of the test section,
producing beam waists of
approximately 300 pm
diameter. The forward and
backward pump beams are
brought coaxial and
counterpropagating  through
the test section laser ports,
and the probe beam crosses
the pump beams at a slight
angle (=2.1°) directly beneath
the stagnation region of the

P
Figure 2. Schematic of optical configuration.
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substrate. The three beams lie in a plane parallel to the substrate surface. Geometric interaction
length of the pump and probe beams is approximately 16 mm (parallel to the substrate surface).

The phase-conjugate signal beam (denoted E) is generated within the interaction region and
follows the reverse path of the probe beam out of the test section. This signal beam
counterpropagating along the probe beam line is separated by means of a beamsplitter, spatially
filtered to reject incoherent scattering, and detected with an unfiltered photomultiplier tube
(Hamamatsu Model R212). Beam energy is continuously monitored by means of two
joulemeters (Molectron J4-09) which terminate the probe and backward pump beams.

DEGENERATE FOUR-WAVE MIXING RESULTS

The applicability of in-situ DFWM to the atmospheric pressure diamond synthesis
environment has been investigated using the well controlled, atmospheric pressure ICP reactor
(Figure 1). It was desired to make in-situ measurements during normal operation of the
atmospheric pressure RF-ICP diamond synthesis reactor - with a substrate in place, and growing
diamond. The conditions chosen for these studies were indeed diamond growth conditions
(although they were not optimized for best possible growth) and all measurements reported here
were taken with the growing substrate in

place. The reactor gas feed mixture was S L A R BN
comprised of 106.5 /min Ar, 12.0 1/min 25 - CH A2A - X211 (0,0) .
H,, and 0.8% to 10% CH; (in Hy) : ;
premixed before introduction to the plasma & 20| 7
torch. Calorimetric energy balance of the & F ]
reactor indicates a net plasma enthalpy of 6 § 15 B
kW leaving the nozzle exit. The & ., E B
molybdenum substrate had a measured - .
surface temperature of 1035°C. 051 —

The CH radical was probed with in- N, L A it AL UL LB
situ DFWM measurements of the CH A2A 428 429 430 431
(—in (0,0) SyStCm near 431 nm. Figure Wavelength [nm]

3 shows a DFWM spectrum of this region Figure 3. DFWM Spectra of CH A’AXTI (0,0)
taken with approximately 10 pJ laser beam

energies. The small groups of lines to the > R
left side of Figure 3 are the grouped g 4 - oo 2?(5) V"=O1f ‘e E
components of individual rotational lines 2 C T CH AZA o X211 ]
in the R branch, while the closely spaced Z [ T =3470K ]
. . . — 3 — vib 1
lines toward the right side of the figure are 3 ]
individual lines comprising the Q branch 2 ) 2 B
(the P branch is not shown). The v’=0and = R(5) v'=1 ]
v”=1 sets of individual R branch lines are E - oe  of 1 1e 3
closely grouped (Figure 4) and permit g s [ ] 1
determination of vibrational temperatures. © [ J AN\ AN
The Q branch region allows fairly rapid RIS i oS USRS St i S
428.00 428.05 428.10 428.15

measurements of several v=0 lines, thus
permitting rotational temperature Wavelength [nm]
measurements to be made throughout the Figure 4. CH R(5) v’=0 and v”’=1 components.
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reacting boundary layer. An example of this rotational temperature determination is shown in
Figure 5 where the intensity of measured Q branch lines (from N = 6 to 20) are plotted on a
DFWM Boltzmann plot. This yields a straight line distribution (indicating rotational
equilibration) corresponding to a rotational temperature of 3135 K. The C; radical was probed
with in situ DFWM measurements of the C; d31'[g<-—a3Hu (3,1) system near 437 nm.

A stoichiometric study of the freestream concentrations of CH and C; radicals as a function
of methane to hydrogen feed gas ratio was performed to address several questions. First, since
the methane to hydrogen feed gas ratio is an important process parameter in controlling quality of
the deposited diamond, it was of interest to determine the sensitivity of DFWM measurements of
CH and C, radicals to this ratio. Secondly, an important assumption in modeling this
environment* "' is that the freestream be a known input condition; more specifically that the
freestream plasma is in chemical equilibrium at the measured freestream temperature. Although
this a priori assumption is quite reasonable since the flowtime of the plasma from the region of
excitation is chemically very long (10 ms compared to a chemical relaxation time of
approximately 1 ms), it is nonetheless a prudent idea to test its validity for these trace radicals.

In Figure 6, the results of this stoichiometric study are shown for methane to hydrogen feed
gas ratios ranging from approximately 0.8% to 10%, with measured freestream temperature

0 ~r—r————r——T————————r— Constant at 3500 K. The closed and open
- 1 circles correspond to the CH and C, relative
2F CH A2A - X211 (0,0) - mole fractions measured using DFWM, and
« F {the solid lines represent equilibrium
T a4k - chemical composition for the plasma
& [ 4 mixture at 3500 K. (The CH and C; DFWM
“5 o / T relative concentration data sets have been
E F 3135 K { normalized to the equilibrium composition
8k lines for comparison). The agreement
- 1 between the equilibrium calculation and the
ol v v v L v v 4w w1, 1 measured relative mole fractions of CH and
0 5000 10000 15000 C, as a function of methane to hydrogen
2E/k [K] feed gas ratio is a very good indication that
Figure 5. DFWM rotational Boltzmann plot ~ the freestream is indeed in chemical

— T T equilibrium. ,
i } Temperature and concentration profiles
102 within the reacting boundary layer itself

were also probed using DFWM. A
comparison of measured CH vibrational and
rotational temperatures along the stagnation
line of the substrate with values from the
computational simulation is shown in Figure
7. Boundary conditions for the simulation
are the measured freestream temperature of
3900 K, an estimated freestream velocity of
8 mfs, and the measured substrate
temperature of 1035°C. We can see in

T l|||||l
Il lllllll

:

Species Mole Fraction [ppm)]

10

%CH, in H,
Figure 6. Freestream stoichiometric study.
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Figure 7 the predicted thermal boundary
layer (=6mm thick) with a steep fall off in
temperature very close to the substrate.
The measured CH vibrational
temperatures are in close agreement with
the predictions, although the loss in signal
of the v=1 transitions in the cooler region

very near the substrate prevents accurate Temperature (Simulation)
vibrational temperature measurement for s o ;gﬁ:f:;‘;:;:;;ﬁf
distances < 2Zmm. Rotational temperatures ,
measurements from the CH v=0 lines, qooole—s e oo b v b e be o
which remain strong enough for accurate 0 02 04 06 08
measurement closer to the substrate are in . Distance from Substrate [cm]

good agreement with both the measured  Figure 7. Boundary layer temperature profiles.
vibrational  temperatures and  the 60 T~ 5000
computational simulation. It is possible to 3
make rotational temperature measurements
even closer to the substrate than shown in
Figure 7, but for these experimental
conditions the CH concentration in that
region has dropped below approximately 2
ppm, which is our current detection limit.
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Measurements of the relative CH and A S N R R
C, mole fractions within the substrate 0.2 04 0.6 0.8 1.0
boundary layer are compared to results of Distance from Substrate [cm]
the computational simulation in Figures 8 Figure 8. CH concentration profile.
and 9. In Figure 8, the CH mole fraction is
approximately 20 ppm in the freestream
(4100 K) and is predicted to first rise
within the . approximately 6 mm thick
boundary layer (due to production) as the
plasma cools toward approximately 3700
K, reaching a peak of approximately 55
ppm at 2 mm from the substrate surface,
then to be destroyed as the plasma cools ——, (Simulation)
further on its approach to the substrate G Egm:\:ﬁl\:ﬁ)asuremem
surface. In Figure 9, we see a similar s T T L e 13
behavior for the C, concentration profile 02 04 08 08 10
with a much higher peak concentration ) h .
(~300 ppm). We can see that the DFWM Figure 9. C, concentration profile.
measurements of relative CH and C, mole fraction (which have been scaled to the peak of the
predicted curve, and are in agreement with the calibrated equilibrium freestream) correspond
closely to the predicted concentration in both trend and magnitude, accurately reflecting the
production and destruction of the radicals within the boundary layer and demonstrating the ability
of DFWM to probe this small, harsh reaction zone.
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CAVITY RING-DOWN SPECTROSCOPY RESULTS

Cavity ring-down spectroscopy is another emerging technique that also offers extremely
sensitive, spatially resolved information from plasma environments via cavity-coupled laser
absorption. By measuring the ring-down time of a laser pulse injected into an optical cavity
which surrounds the plasma of interest, CRDS enables a very sensitive, absolute determination of
the line-of-sight absorptivity of the plasma. Since this technique measures the ring-down time of
the cavity, rather than the fractional absorbance (Iiansmitted/Tincident), the measurement becomes
insensitive to the intensity if the incident pulse which can be a major source of uncertainty in
ordinary absorption (and multi-pass absorption) techniques. In this manner, plasma absorbance
as small as one part in 10° (per cavity round-trip) can be accurately measured, thus yielding very
sensitive measurements of absolute species concentrations.

0.0018 d T T T LI S T d T
0.0017 - -
E ooote} ./'/_\' A
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© 00015 | / N
+ ﬁ ~ n
® 00014k _
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Ring-Down Cavity Distance from Filament [mm]
Figure 10. Schematic of CRDS system. Figure 1. Spatial profile of methyl absorbance.

In the past year, we have been successful in applying cavity ring-down spectroscopy to the
measurement of absolute concentration of methyl radicals in a hot filament reactor. The
experimental schematic of these experiments is shown in Figure 10. Although this technique
produces a line of sight averaged quantity, it provides high spatial resolution in the one spatial
dimension of interest within this system, and more importantly provides absolute concentration
measurements at single pass absorbances as low as 1x10”. Using this technique, spatial profiles
of methyl radical concentrations have been measured between the excitation filament and the
deposition substrate, as a function of process variables such as flow direction, pressure, filament
temperature, and substrate temperature. These preliminary investigations have provided
evidence of the independence of flow direction within these reactors. CRDS measurements have
also shown clear indications that for certain conditions, the methyl concentration peaks
approximately 4 mm away from the filament surface, which is contrary to the currently accepted
mechanism of methyl formation from excited hydrogen atoms close to the filament, but in
agreement with more recent REMPI measurements of other investigators. A spatial distribution
of methyl absorbance at 216.4 nm under typical hot-filamnet reactor operating conditions is
shown in Figure 11. Many investigators are currently working to understand and model the
complex plasma and surface chemistry within these systems, and CRDS appears to be a
promising technique to experimentally validate those efforts.
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CONCLUSIONS

Degenerate four-wave mixing has been demonstrated as a sensitive, spatially resolved
diagnostic of boundary layer chemistry in thermal plasma CVD of diamond. The coherent,
phase-conjugate signal produced in this technique enables the rejection of intense plasma
luminosity, and allows the accurate interrogation of temperature and trace (ppm level) radical
concentrations within the reacting plasma. In-sitt measurements of vibrational and rotational
temperatures, as well as relative CH and C, radical concentrations in the reacting boundary layer
of a diamond growth substrate are found to be in good agreement with model predictions.
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Physical Models of
Polarization Mode Dispersion

C. R. Menyuk and P. K. A. Wai

Department of Electrical Engineering, University of Maryland
Baltimore, MD 21228-5398

ABSTRACT

The effect of randomly varying birefringence on light propagation in optical
fibers is studied theoretically in the parameter regime that will be used for
long-distance communications. In this regime, the birefringence is large and
varies very rapidly in comparison to the nonlinear and dispersive scale lengths.
We determine the polarization mode dispersion, and we show that physically
realistic models yield the same result for polarization mode dispersion as earlier
heuristic models that were introduced by Poole. We also prove an ergodic
theorem.

1. INTRODUCTION

There are two distinct data formats that are being actively studied for possible use in
long-distance communication systems. The first data format uses solitons as 1-bits in
the communication system. By balancing nonlinearity and dispersion, solitons avoid the
bad effects that either phenomenon would lead to on its own. From a strict mathematical -
standpoint, the optical fiber does not support solitons—merely soliton-like pulses—because
the equations that describe real-world fibers are not integrable. Nonetheless, the equations
are closely related to the nonlinear Schrédinger equation, and there is ample theoretical and
experimental evidence that solitons are robust in the sense that the soliton-like pulses that .
actually propagate in fibers have virtually all the properties of true solitons on the length
scale over which experiments are done.! Soliton pulses are referred to in the vernacular of
communication systems as RZ (return-to-zero) pulses. As shown in the top half of Fig. 1,
the energy of the solitons is concentrated in the middle of the timing window, and the
amplitude is always zero at the edge of the window. The second format is shown in the
bottom half of Fig. 1 and is referred to as NRZ (non-return-to-zero). In this format, the
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O Soliton

FIGURE 1. Intensity variation of a 10110 bit stream in both soliton and NRZ commu-
nications.

energy of a 1-bit is spread nearly evenly throughout the timing window. This format is
the one that has been traditionally used in long-distance communications. Until a year
ago, it was thought that solitons would eventually replace NRZ communications because of
the demonstrated capability to do wavelength division multiplexing (WDM) with solitons.
It was supposed that it would not be possible to do WDM with NRZ communications.

However, it has recently been demonstrated that in fact WDM is possible with NRZ, and,
while solitons are promising, NRZ systems remain a step ahead.? Thus, the future for
solitons is unclear.

This situation is both an enigma and an enormous challenge to the theorist. Histor-
ically, NRZ communication systems came into vogue because in communication systems
based on microwave RU-232 cable, signal distortion was dominated by dispersion and so
it was desirable to minimize the bandwidth of the signal-—something that NRZ signals
accomplish quite well. For this reason, there has been a tendency to think of NRZ prop-
agation as linear propagation, but that is simply not true! From a nonlinear standpoint,
the behavior of soliton systems is not too hard too analyze because there is a well-defined
sense in which a soliton is a pure mode of the nonlinear system.! By contrast, there is
no sense in which NRZ pulses are modes, and, as a consequence, these systems are very
difficult to study, and the theoretical work to date has had little predictive capability. Be-
cause neighboring NRZ bits interact, one must keep long strings of bits in the simulations
which seriously slows down numerical calculations. The enigma and the challenge is to
understand why these systems work as well as they do and to predict their ultimate limits.

-It is already apparent that the large and rapidly varying birefringence that occurs
in communication fibers plays a critical role in the distortion of NRZ pulses and in the
ultimate bit error rates that can be achieved. Thus, understanding the impact of these
variations is a crucial first step toward achieving an understanding of NRZ systems—not
to mention that they play a vital role in soliton systems as well!




It is important to understand precisely what is meant when we describe the birefrin-
gence as large. Single mode optical fibers have one propagating mode that is referred to as
the HE;; mode, but this mode is doubly degenerate. Doping and core anisotropies break
the degeneracy, leading to birefringence, but typical values of An/n are 10~7-10~%. While
one might be tempted to think that this value is small, it implies a beat length that is on
the order of 10 m, while nonlinear and dispersive effects occur on a length scale of 100-1000
km. Thus, it is actually very large! At the same time, one can infer from measurements to
be described shortly that the fiber correlation length is on the order of 30-100 m, so that
the birefringence is also rapidly varying. Thus, it makes sense to use multiple length scale
techniques in which we first determine the evolution on the rapidly varying length scale of
the randomly varying birefringence and then use the results to determine the evolution on
the much longer dispersive and nonlinear length scales. Not only is this approach sensible
from a conceptual standpoint, as it allows us to distinguish the phenomena occurring on
the different length scales, but it will also allow us to create simulation codes that are
significantly more efficient and accurate than those that are presently in use.

In this article, we will be concentrating on the rapidly varying length scale, and we
will discuss its impact on the nonlinear evolution briefly at the end. We have actually
only just begun to attack the full evolution, taking advantage of what we have learned
on the rapidly varying length scale. The behavior on the rapidly varying length scale is
linear but random, with the randomness being the major complication. At the end of
the article, we will mention briefly some of the consequences of our calculations for the
nonlinear evolution.

2. DIFFERENTIAL TIME DELAY

Experimentally, one finds that the randomly varying birefringence leads to a frequency-
dependent differential time delay that in turn leads to pulse spreading.? One of the ways in
which this delay manifests itself is that if the light from a multi-mode laser is injected into
an optical fiber, it maps into a circle on the Poincaré sphere after propagating some length
into the fiber. That implies that there are two orthogonal states, referred to as principal
states, that to first order would not be spread on the Poincaré sphere by propagation
through the fiber. The delay between these two states is the differential time delay because
any other state is a combination of these two states and will arrive at some intermediate
time. We begin by demonstrating the existence of the principal states and calculating the
differential time delay. We then determine the expected distribution of the differential
time delay as a function of distance along the fiber.

Taking a fixed set of axes, labeled 1 and 2, we may write the complex amplitudes of
the two polarizations as a column vector E = (E1, E»)t, where E; and E» are functions of
distance along the fiber z and frequency w. The evolution of this column vector is governed
by the linear equation

9B{w, 2) = 1K(w, 2)E(w, 2), (1)
Oz
where
K = kol 4+ K101 + K202 + K303, (2)

235




and the o; are the usual Pauli matrices. We first note that if there is no polarization-
dependent loss, then all the k; must be real. While, in fact, there is some polarization-
dependent loss in the real systems, this loss occurs at the amplifiers, which are located
30-100 km apart, and its effect is small, although not unimportant. We will not consider it
in this article. We include polarization-independent loss in the system by allowing ko to be
complex, but it enters into the problem in a fairly trivial way. Making the transformation

A=Eexp [—i /0 " kol(2') dz’} , 3)

we find that ko disappears from the evolution equation. Noting that optical fibers are
linearly birefringent so that k2 = 0, we find that the evolution equation for A is

A
982 _ 0w, AW, 2), @
0z
where
© = K101 + k303 = bsinf oy + beosb o3, (5)

and b corresponds to the normalized birefringence strength while 6 corresponds to the
orientation of the birefringent axes. Since © is a traceless, Hermitian matrix at every w,
it follows that it generates a unitary transformation at every w. Assuming now that this
transformation matrix is sufficiently smooth as a function of w, there must be at any 2
some traceless, Hermitian matrix F that satisfies

%i:- = iF(w, 2) A(w, 2). (6)
Since this matrix F is traceless and Hermitian, its eigenvalues are real and have the same
absolute values with opposite signs while its eigenvectors are orthogonal. Writing the
eigenvectors as 7p/2, it is not difficult to see that the eigenvalues correspond to +one-
half the differential time delay while the eigenvectors correspond to the principal states.
Solving Eq. (6), and writing the eigenvectors as S, and Sy, we find that

Sp(w, 2) =_vSp(0, z) exp(iTpw/2), Sp (w, 2) = Spr (w, 0) exp(—iTpw/2). (7)

When we use the Fourier transform to return to the time domain, it follows that an initial
pulse that consists strictly of the initial state that transforms via Eq. (4) into S, will have
a time delay of 7p/2, and, similarly, an initial pulse that transforms into S, will have
a time delay —7p/2. This result was obtained earlier by Poole and Wagner,* but their
derivation was considerably more elaborate because they did not make use of the known
properties of Hermitian matrices.

The next step is to determine the probability distribution of the differential time delay
7p. Poole® has described an approach that applies in the limit in which there is a large
and nearly fixed birefringence and in which there is a weak mode coupling. In this model
cosf ~ 1 and sinf ~ § in Eq. (4) so that Eq. (4) becomes

JA
-67 = 0oy + b0'3, (8)
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Short distances:
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Long distances:
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FIGURE 2. Variance of the differential time delay as a function of position along the
fiber. ‘

This limit is not really valid for communication fibers; however, we recently showed that
a model that allows the birefringence orientation to vary randomly will yield the same
results.® To obtain this result, it is useful to attempt to solve Eq. (5) through repeated
diagonalization. Ignoring the variation of # as a function of z, we could solve Eq. (4) by
making the transformation By = Uj A where

U1 = cos(8/2) | + isin(6/2) o3, (9)
We then find that

OB
0z

auy!
3z

=1 =1 (U19U1 U1 ) B1 = i\IIIBl, (10)

where Ul_1 is the inverse of U; and W, can be written explictly as

1d6
‘Ul = §~d~—'0'2 + b0'3 . (11)

This equation is essentially the same as Eq. (8). The appearance of oy rather than o
makes no diffrence in the polarization mode dispersion. The only significant difference is
that whereas Poole assumed that @ varies rapidly compared to the beat length, we must
assume that df/dz varies rapidly compared to the beat length. In either case, one finds
that the mean of the differential time delay is zero, and its variance is given by

(r3)1? = /2R [exp(—2z/h) — 1 + z/k) ',

(12)
where b = db/dw is the derivative of the birefringence and h is a characteristic decorrelation
length.

In the case of Poole’s model, h corresponds to the length scale over which the po-
larizations mix. In the case of our model, it corresponds to the length over which the
polarizations mix when measured in the frame that rotates with the local polarization
axes. We note that in our model, h = hgper, where hgper is the correlation length for the
optical fiber itself. Of course, in Poole’s model, hgper = 00 so that there is no relation
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between h and hfser- Since one cannot directly measure the orientation of the polarization
axes as a function of position along the fiber, it might appear at first that both models
are equally plausible, but in fact, one can infer from the existence of solitons that the
orientation must be randomly varying. Solitons tend to propagate naturally in a single po-
larization state,” and unless the orientation is randomly varying, solitons will be observed
to split, and there is no evidence of that. Thus, we can use solitons to probe the structure
of the fiber! We note that one can infer h from measurements of the differential time delay
which is how it is measured in practice. Equation (12) is physically sensible. When z is
small compared to the decorrelation length, then the two polarizations separate linearly
in z. When z is large compared to the decorrelation length, then the two polarizations
undergo a random walk and their separation is proportional to z!/2.

To derive Eq. (12), we will present here an approach first described by Poole® and
later modified by us so that it could be used to prove an ergodic theorem.® We have shown
more recently that Eq. (12) can be derived more simply using the methods of stochastic
differential equations; however, these results are still unpublished and cover a group of
models that is less broad. Our starting point is to note that Eq. (10) that governs the
evolution of B; as a function of z is complemented by the equation

9B1 _ By, (13)
Ow
that governs the evolution of B; as a function of w, where F; is a traceless, Hermitian ma-
trix. It then follows that 73 = —4det F; = 4det(8T/6w), where B1(z,w) = T1(z,w)Bj 0.
Defining now S = exp[—i¢(2)os]| T1, where ¢(2) = fo b(2") d2', we obtain

8S 0 30. exp(—2i¢)
8z (—%9, exp(2i¢) ’ 0 ) > (14)

where 6, = df/dz. It now follows that
73 = 4det(S’ + i03¢’S), (15)

where the primes indicate derivatives with respect to w.
Writing the components of S explicitly so that

(% 2); @
and taking the first derivative of 75, we obtain
67-12) Yy 3/ /% I
B 8b'¢’ + 8ib (3151 + $253), (17)

where we assume that the elements of S are slowly varying so that we can neglect their
variation with z. The key assumption is that the 8, are small compared to b but vary
rapidly so that their derivatives are large. Similarly, we find

82 "rf)

022

/
=4(v")? + 4¢'%b; — 4ib'0, (5155 — s]s5) exp(2ig) + c.c. (18)
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Although S is slowly varying, its z derivative varies rapidly, and we can use this fact to
replace s; in Eq. (18) with the integral expression

51(2) =~ 51(¢) — / "8 -2t a, C(9)

where z — ( is a length that is long compared with the variation of §, and short compared
~ with the variations of s; and s3. The assumed existence of this intermediate length scale
plays an important role in our argument. Similar results can be obtained for sy(z), si(2),
and s5(z). Defining

H(z) =Re [ / ’ -9-45)4&@ exp[2ig(z) — 2i¢(2")] dz’
L[ o) 0
o -/—-—oo %— exp[2i¢(2) — 2i¢(2")] d’,

where we have used the assumed rapid variation of 8, to extend the integral to —oo, we
may now rewrite Eq. (18) in the form ‘

2.2
3 TD
822

S
= 8(b')2 + 8¢'—sz — 320/ ¢ H(z) — 32ib"H(2)(ss7" + s2s5), (21)

where we have dropped both small terms and rapidly varying terms that will not contribute
on the length scale z — (.

In order to obtain an ergodic theorem, our goal is to replace Poole’s ensemble average
over “a collection of statistically equivalent fibers” with an appropriate spatial average.>®
Since both b and 8 change slowly by assumption, we may beplace ¢(z)—¢(z’) with the local
relationship b(z—2’). In general b and 6? are correlated; the latter is larger when the former
is smaller. Consequently, b and H will be correlated. By contrast, we may assume that ¢
and s;87 + sps5° are uncorrelated with b and H since these quantities are determined by
integration from the origin and, over sufficiently long lengths, will be nearly independent
of the local values of b and H. Physically, this length corresponds to the length over which
the electric field samples the entire Poincaré sphere. Defining an ensemble average

x@ -1 [ x@)a (22)
wherc L is this averaging length, we find, letting ()’ H) = r(b')}(H), that
\2
(7123) = %—;—5 [exp(—4r(H)z) - 14 41'(H)z]. (23)

From the preceeding discussion, it should be apparent that this result is only meaningful
in the limit z > h, where h = 1/4r(H).
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Given (73), the next task is to calculate the entire distribution function for 3. While
this task has yet to be accomplished in general, it has been argued on physical grounds
and verified in simulations that the actual distribution is given by

2712)
V7 ((r3)/3)**

corresponding to a random walk on the Poincaré result. Determining the full evolution of
the distribution function remains an important open problem.

3. DISCUSSION AND CONCLUSIONS

We showed in early work that in the limit of large but rapidly and randomly varying
birefringence, the evolution of the field in the optical fiber is described by the Manakov
equation,’

f(rp) = exp (=375 /{7D)) , (24)

18%°U
i ===+ (UP+|VPF)U =0,
62 2 Bt (25)
OU  18%U 9 0

where U and V correspond physically to the state that a linear, cw wave at the pulse’s
central frequency would occupy and its orthogonal complement. We now have models for
the polarization mode dispersion that we know are physically correct. The next stage of this
work is to combine the two effects to obtain a complete description of wave propagation
through the fiber. This task is very important because large computational savings in
modeling the fibers as well as an increase in understanding appear to be obtainable.

We expect to report progress along those lines in the very near future!
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CONDITIONS FOR SYNCHRONIZATION
IN JOSEPHSON-JUNCTION ARRAYS

A.A.Chernikov & G. Schmidt

Stevens Institute of Technology, Hoboken , NJ 07030

ABSTRACT

An effective perturbation theoretical method has been developed to study the dynamics of
Josephson junction series arrays. It is shown that the inclusion of junction capacitances, olien
ignored, has a significant impact on synchronization. Comparison of anaiytic with
computational results over a wide range of parameters shows excellent agreement.

INTRODUCTION

Josephson junctions are known to produce very high frequency oscillations and can be
used to generate submillimeter range radiation [1-3]. The difticulty is the low power output of
individual junctions. This could be remedied by the use of many synchronized coupled
Junctions. Fig.1 shows a sketch of N junctions in series, fed by a constant dc current source
and shunted by a load of impedance Z. The junctions have an internal resistance as well as a
capacitance. :

In normalized units this circuit is described by

B + o + sin (@) + I =1 O

where ¢, represents the phase difference of the wave function across the k-th junction,
corresponds to the capacitance of the junction, I is the load current. Without the load, the
system can be visualized as a point particle of mass § sliding down an incline of steepness 1.
sinusoidally modulated, with air resistance represented by &, To maintain the motion and
oscillations it is necessary that [ > 1.

The load current depends on the voltage across-the array, proportional to Z(bj . For
instance for a load made up of an inductance, capacitance and resistance in scries one wriles
in normalized units

LI, + RI, K1/C) fILdt (1/N)Z‘,<{>j (2)
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1. Sketch of thf: circt'xit‘investigated. Constant current I feeds the system, the junctions form
an 1D array with resistive and capacitive characteristics, coupled to an impedance Z.

0.4 0.8

2. Computed dividing line between stable and unstable regions in § - N parameter space of
capacitively loaded arrays.




These equations are clearly nonlinear and no analytic solutions are available.

Recently several authors {4-9] investigated analytically a simplified version of thesc
equations. The load capacitance has been ignored ( § ~ 0 ) and the coupling to the load ( [},
has been assumed to be small, so perturbation theory could be used. Under these conditions
it was shown that for a purely resistive load the equations are integrable [7] . The present
authors have shown [9] that if a slight difference between the individual junction parameters
is introduced, integrability fails and chaotic behavior follows. Quite recently Wiesenfeld and
Swift [8] studied analytically the simplified equations of identical junctions with 3 = 0 in the
weak coupling limit, and found that the synchronous solutions are stable if the load is
predominantly inductive, and unstable if it is capacitive. The dividing line is at resonance
when the Josephson junction frequency equals the resonant frequency of the load (L.C)™2

Computed solutions of the equations show however that the junction capacitance has a
significant effect on the stability of synchronized solutions, even for p « 1. Here a powerful
perturbation theoretical method is developed where 3 as well as the coupling strength can be
arbitrarily large, and excellent agreement is found with computer generated solutions.

CAPACITIVE LOAD; COMPUTATION
First we rewrite Eqs.(1) and (2), by dividing (1) by I, and rescaling time, 1t > t, and I3 -> £,
to get
Bo, + @ + bsin (@) +J = 1 (3)
w3+ pd + JIdt = aoe, )

where J = [ /I, b =T, p, = LCI%, u,=RCI, a = IC/N. For a purely capacitive load
#, = u, = 0, and these equations reduce to

B oyt @ + bsin(p,) + QZ(P;' =1 {

W
—

In order to study the linear stability of the synchronous solution, one expand
@\ Qo + O, where ¢, satisfies the

B, + @, + bsin (¢y) + Nag, =1 (6)

equation, while for d¢, one has

B 89, + 59, + bCOS(P)0, + a2p, =0 (7)
Subtracting the k-th from I-th equation gives |5]
B ALt Ayt beos(pd, 0 | ()
where A, = 3¢, - d¢,. Linear stability implies that A, asymptotically tends to zcro. One
solves Hyq.(6) on the computer, for given parameters {3, & and Na, and the computed

function @, in Eq.(8) to determine, the long time behavior of A, Since [ > 1, the paramcter
b 1s always less than onc.
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b 1s always less than one.

Fig.2 shows the P - Na curve constructed for b = 0.5, b = 0.25 and b = 0.1. Two
important conclusions follow,

1., The three curves practically coincide, the differences are within the width of the line.

2., While for B = 0, the synchronous state is always linearly unstable, as expected [8] , for
large coupling even the addition of small junction capacitance can stabilize the state. For
example when Na =10, > 0.1 gives stability. When B > 1 stability persists for any valuc of
the coupling.

The first condition suggest an analytic method. Since the solution is essentially
independent of b, one can carry out an analytic calculation based on a small 4 expansion.
Since b is the coefficient of the only nonlinear term, the expansion can be reduced to the
solution of set of linear equations.

CAPACITIVE LOAD; ANALYSIS

To the lowest order in the expansion in b, Eq.(5) gives ¢, = t +6,. First order terms arc

po 'Jf'q.)k(l) + OLZZF;,'(’I) + bsin (t +0) =0 - (9

giving second order linear inhomogeneous equations, with oscillating solutions

oY = A, sin(t) + B, cos(t)

where coefficients are determined from

BA, + B, + A - b coso, = 0,
A~ BB - a2 + b sind= 0.

Summation over all junctions gives

(B+N a) ZAj +2Bj - b Zcos()j = (),
-(B+N G)ZBj +ZA, + b Zsinej =)

with the solution
2A BT (BN @[ 1 N a)2cose, - 2sind|
2B = bl LB+ N aPT'[(B+ N a)ising, + 2cost)]
Substituting these expressions into Eqs.(11) and (12) gives
A, =51+ BZ)"(-sin()k + B cosB) + ho(l + P 1 +(B + aNI?!

[(1 - B - BaN) 2ocos6, + (2B + aN) 2. sind]
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B, = b(1 + B '(cos O, + B sind) + ba(l + Y1 + (B + aN !
[(1- B - BaN) 2sin®, - (2 + aN) 2. cos)] - (18)

The second order expansion of Eq.(5) gives
BE2 +¢.@ + a2 3@ + beos(t +0)9,D =0 (19)

where ¢, is given by Egs.(10), (17) and (18). The driving term in Eq. (19) contains second
harmonics as well as time independent terms. Synchronization as well as desynchronization 1s
due to long time behavior, compared to the oscillation time scale. It is useful thercfore to
consider the time averaged term

( beos(t +8)0, )y = (B/2XB,cos ©, - A, sin®,) = (h72X1 + pY' +
a( B2+ B 1+ (B + oN YT [(1 - B - BaN) 2sin(6;- 6) - (2P + aN) 2cos(8- 0,)]
(20)
So from Egs. (19) and (20)

0,2 ~ - ( beos(t +6, )0 Nt + second harmonic terms (2n

One may think of the ©@,-s as points moving on the unit circle. To lowest order they
move with unit phase velocity separated by angles 0;- 6, . The first order solutions of
Eq.(10) add oscillatory motion, while to second order, second harmonics of the oscillatory
motion appear as well as a change in the time average velocity. The first term in FEq.(20)
describes a slowing of all points to 1 - (6%2)(1 + p?Y'. The other two terms arise [rom the
interaction of difterent points. Synchronization ( or desynchronization) is described by the first
of these terms. When B = O the angle differences 6,- 6, grow toward a splay state. Past a
threshold value of  the angle ditferences contract untill synchronization is achieved. This
threshold is given by the equation

1-p*-PpaN =0 (22)
This is an excellent fit to the curve in Fig.2.

Finally the last term in Eq.(20) describes the increase of phase velocities of points as they
approach each other to the synchronous state, or the decrease of velocities as a splay state 18
approached.

ANALYSIS OF SYSTEM WITH RLC LOAD

A similar analysis can be carried out for the more general case described by Tigs. (3) and
(4). Thas calculation is rather lengthy and here the detailes [ 10] are omitted, resulting in the
synchronization condition '

(1= B9 (1- ) - B2, 1 aN) <0 (23)

245




Various limiting cases lollow. When the load is purely capacitive p;, — n, ~ 0 and Eq.(22) 15
recovered.
When P = 0, the synchronization condition is

1-p,=1-LCE <0 (24)
In our units the condition obtained by Wiesenfeld and Swift [8] is LC(I* - 1) > 1. For b «
1, I » 1 the two conditions agree.
When p, = 1, the system is in resonance and the synchronous state is always stable tor
B>0. '
Finally when driving current I is very large u, » 1, the condition becomes approximately

(- PHLI+B(2R + D >0 (25)

independent of C.

[t is clear that similar calculations can be carried out for an arbitrary load impedance 7,
(both for one-dimensional and two-dimensional arrays), leading to well detined conditions for
synchronization or desynchronization. The growth rates of the instabilities leading to the final
state are given by the coefficient of the sin(0; - 0,) term.
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MODELING ELECTRONEGATIVE PLASMA DISCHARGE

A. J. Lichtenberg and M. A. Lieberman
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ABSTRACT

Macroscopic analytic models for a three-component electronegative gas dis-
charge are developed. Assuming the negative ions to be in Boltzmann equilib-
rium, a positive ion ambipolar diffusion equation is derived. The discharge con-
sists of an electronegative core and electropositive edges. The electron density
in the core is nearly uniform, allowing a parabolic approximation to the plasma
profile to be employed. The resulting equilibrium equations are solved analyti-
cally and matched to a constant mobility transport model of an electropositive
edge plasma. The solutions are compared to a simulation of a parallel-plane r.f.
driven oxygen plasma for p = 50 mTorr and 7., = 2.4 x 10!> m~3. The ratio
ag of central negative ion density to electron density, and the electron temper-
ature T, found in the simulation, are in reasonable agreement with the values
calculated from the model. The model is extended to: (1) low pressures, where
a variable mobility model is used in the electropositive edge region; and (2) high
o in which the edge region disappears. The inclusion of a second positive ion
species, which can be very important in describing electronegative discharges
used for materials processing, is a possible extension of the model.

I. INTRODUCTION

Considerable effort has gone into the development of equilibrium discharge models for elec-
tropositive plasmas. These include particle-in-cell (PIC) codes (1,2, 3], fluid codes {4], and analytic
approximations [5,6,7]. Plasma processing, however, usually involves electronegative gases and gas
mixtures. The work presented here is based on and extends two models developed in our group to
determine the behavior of oxygen discharges [8,9]. Oxygen is chosen both because of its usefulness
in processing and because the reaction rates are relatively well known. In one study [8] a volume
averaged two-dimensional model is developed, particularly for high plasma density (high power) low
pressure discharges, which can be obtained, for example, in electron cyclotron resonance (ECR) and
RF inductive sources. In a second study a theory is developed to treat an electronegative plasma
with a planar spatial variation, at sufficiently high pressure that a constant mobility ion transport
model is adequate, and when only a single positive ion species is important [9]. This situation
applies to an oxygen discharge at low density and high pressure, in which dissociation of Oj is
not important. It was shown that the plasma is divided into a core electronegative region and an
edge electropositive region, each with constant (but different) ambipolar diffusion coefficients [9].
Here, in addition to presenting some of the previous work, we develop a comprehensive, analytic,
global model that is applicable over a wide range of pressures and powers. The model includes the
relevant reaction rates appropriate to all of the significant ion and neutral species, as given in Ref.
[8], which includes the presence of a second positive ion species. It also explicitly includes a core
electronegative region with a surrounding electropositive region, but in a manner such that either
region can essentially vanish in some parameter ranges. A Bohm condition for the particle flux at
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the plasma-sheath edge, which is valid over the entire range of electronegativities, is used.

II. PHYSICS BASIS
A. - Global Equilibrium

We previously considered the set of collisional reaction processes for an oxygen discharge as
given in Table 1 [8]. :

Table 1. Model Reaction Set

Reaction Rate Coefficients

e+ 0, Of +2e ky = 9.0 x 107107 2¢~126/T ¢mp3.g-1

e+ 0, OCP) + O(’D) + e ky = 5.0 x 10~8e~84/T cm3.s~1

e+ 0, 0(31)) + 0~ k3 = 4.6 x lo—lle(2.9l/T ~12.6/T +6.92/T )cm3_s—1
e + O(°P) Ot + 2% kg = 9.0 x 1079727e~136/T c3.5-1

0~ + 07 _ O(*P) + 0, ks = 1.4 x 10~ "cm3-s™! :

0~ + ot O(®P) + O(’P) ke = 2.7 x 10~ "cm3-5~!

e+ 0O~ O(SP) + 2 k=173 x 10——7e(—5.67/T +7.3/T -3.48/T )cma_s-l
e+ 0 OCP)+ O(’P) + e ks = 4.23 x 10~ %¢3-36/T ¢m3.s?

e + OC°P) O('D) + e kg = 4.47 x 10~%¢~2-286/T ¢p3_5-1

O('D) + 0, O(°P) + O k1o = 4.1 x 107 cm3-s71

O('D) + O(°P) O(*P) + O(°P) ki = 8.1 x 1072cm3-57!

0('D) =D o¢Pp) kiy = Dog/A% 57!

e+ O('D) — Ot + 2e ki3 = 9.0 x 10797%7e~11.6/T ¢m3.s~!

o+ ™% oep) kig = 212.3T05(2nr2 hy, + 27752, hR) 57!

of (wall) 0. kis = 149.9T25(2rr2 by + 27728, hR) 5™}

T. [=] eV; p [=] mTorr.

Using these reactions for the creation and destruction of the various species, the simplest set
of volume averaged global equilibrium equations assumes that the species densities are essentially
constant in the bulk with density n, falling rapidly to a density n, at the plasma-sheath edge.
Keeping only the most important rate coefficients from Table 1, this yields the following equations:
Neutral (O and O;) particle balance:

2 Kgisshenog = Keno 3 K, = S/V, (2.1)

G = Kyissnenoz + Krnos (22)

Positive ion (0% and OF) particle balance:
Kizneng = Krecyn-nyy + nsluBl(Aloss/V) (2.3)

Kianengs = I"’reczn—-n2+ + ns2uB2(Aloss/V) (24)

Negative ion (O~) particle balance:

Kognenos = I(recln—nl-{— + I\’rec2n—n2+ (25)
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Power balance: )
Pabs Z(I‘ izlnenogcl + I(izZnenO2gc2)V

(2.6)
+ (nsl up1 + ns2uB2)(€ew +‘giw)Aloss )

Charge neutrality:
' iy + N2y = 0.+ n_ = n(l + @) (2.7)

Here the densities ny4 and ny4 are the positive ion densities of O* and 0'2*', n. is the density
of O~, S is the pumping speed, G is the O, source flow per unit volume, £, and &. are the
collisional energy losses per ionization [8], &, and £;,, are the electron and ion energies lost per
electron-ion pair lost to the wall, and V and A4,,,, are the plasma volume and plasma area for losses,
respectively, and up; 2 are the Bohm velocities of Ot and 0;’. For ease of recognition we have
renamed the reaction rates in Table 1: Ky;ss = ks, Kiz1 = k4, Kizo = k1, Kree1 = ke, Kree2 = ks,
and K, = k3. Reactions and rate coefficients omitted from the equations are of lesser importance,
and excited states are ignored except in contributions to £,; and &.,. For the neutral dynamics we
assume a low fractional ionization and a low recombination coefficient at the walls for production
of Oy from O. :

For a high power (high plasma density), low pressure (low neutral density) oxygen plasma
discharge, as analyzed in Ref. [8], the neutral oxygen is nearly fully dissociated, the ratio a =
n_/n. < 1, and the collisional regime is such that the variable mobility one dimensional solutions,
as analyzed by Godyak and associates [5], are relative flat, except near the sheath edge. In this
regime the set of equations (2.1)—(2.7) can be directly analyzed to obtain a reasonably accurate
description of the plasma equilibrium.

B. Spatially-Varying Three-Species Equilibrium

In this model [9], we consider a subset (OF, O~, e) of charged particle species in a 1D (slab)
geometry, and determine the spatially varying profiles of the species. We find that the discharge
generally consists of an electronegative core, surrounded by electropositive edge regions in which
n_ x 0. Depending on the parameters, the electropositive or electronegative regions can essentially
vanish.

To determine the spatial variations, as in electropositive plasmas, for each charged species we
write a flux equation

I'i=-DiVn; £ nju; E;, : (2.8)

where D; = kT;/m;v;, p; = |q;|/m;v;, with v; the total momentum transfer collision frequency and
the + corresponds to positive and negative carriers, respectively. In equilibrium the sum of the
currents must balance,

N
ZQiri = 0. (2.9)
i=1
If we make the additional assumption that both negative ion species are in Boltzmann equilibrium,
Y- _ Y0 (210
n. Te

where v = T,/T; (T; is the temperature of both ionic species), then, using charge neutrality and
the Einstein relations, together with (2.8)-(2.10), we obtain an approximate ambipolar diffusion
coefficient for the positive ions

(2.11)

The structure of D,y is easily seen from (2.11). For a > 1, ¥ cancels such that D,y =~ 2D,.
When o decreases below 1, but ya > 1, D,y = D,/a such that D, increases inversely with
decreasing a. For ya < 1, D,y =~ 7Dy, which is the usual ambipolar diffusion without negative -
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ions. For plasmas in which a > 1 at the plasma center the entire transition region takes place over
a small range of 1/y < a < 1, such that the simpler value of D,y = 2D, holds over most of the
electronegative plasma core, except near n_ ~ 0.

Consider now the positive ion diffusion equation, keeping only the dominant reaction rate
constants, with only OF present. In plane-parallel geometry we have

—d_(i: ( a+(a)dn+) = Ki;no2ne — Krecnyn_, (2.12)

where no2 is the neutral gas den51ty We eliminate n, (through charge neutrality) and n_ (through
a), to obtain

d dn
4z ( at(n4)—— +) = Ki;noane(nt) — Krecnyn-(ny) (2.13)

where D, (n4) given by (2.11) is a complicated function of n4 and three constants ag = n_g/neo
the ratio of n_ to n. at the plasma center, n., and T.. To determine the three constants we use:

positive ion particle balance,

¢ ¢
Dy —— dny = / K;,noyn.dz — / K eenyn_(ny)dz; (2.14)
dz o 0
negative ion particle balance,
¢ ¢ ‘
/ Kaunoanedz —/ Krecngn_(ng)de = 0; (2.15)
0 0 '
and energy balance,
¢
P = 2&:/ K. noan.dz + 2Ewn+(£p)u3 (216)
0

where £.(T,), the collisional energy lost per electron-positive ion pair created, is a known function of
Te, and 2&,,n4 (€,)up is the kinetic energy lost to the wall. Given the plasma length 2, and power
P,ss, the three equations can be simultaneously solved for the three unknowns T, ag, and n4g.
However, the plasma edge £, is not exactly known, but is dependent on the Bohm flux condition

dn+

~Dav 5~

= n+(£P)u‘B(Te, 1, a)v (217)

z={£

which indicates where the sheath begins. Here a = a({,) = n_({,)/n.(€,). Since negative ions
may be present when (2.17) is satisfied, the Bohm velocity may have the more general form [10]

[ eTe(1 + @) 172

which reduces to the usual expression ug = (eT./M,)'/? when a = 0. For @ > 1/7, the negative
ions significantly reduce the Bohm velocity.

There are three different electronegative discharge equilibrium regimes depending on neutral
pressure and applied power. (1) At low pressure and high power, ag is small. The negative ion
density becomes quite small well within the plasma volume, such that the plasma can be treated as if
it is essentially electropositive. (2) In the opposite limit of high pressure and low power, o > 1 and
a significant density of negative ions may exist, which, from (2.18), gives a significantly depressed
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Bohm velocity with essentially no electropositive edge regions. (3) An intermediate regime can
exist where the central o may be quite large but a significant edge region has « near zero, allowing
the usual Bohm velocity to be used at the plasma edge.

III. APPROXIMATE SOLUTIONS
A. Three Component Model with Electronegative and FElectropositive Regions

Consider, as in previous work [9], that a central region of the discharge exists in which a is
sufficiently large that D,y = 2D, but that the effect of positive-negative ion recombination can
be neglected in determining the spatial distribution. The diffusion equation (2.13) then takes the
simple form

d’n .
_2D+d_2+ = Ki;n02ne0,

where (2.10) with v > 1 allows us to set n, &~ n.. In this approxxmatlon n4(z) has a simple
parabolic solution of the form

ny 2
—=——+1=a0(1———-— +1, (3-1)
Neo Neo

where £ is the nominal position where a = 0 (see Fig. 1). The a > 1 solution is matched to
an o = 0 electropositive edge solution, which in turn determines the position of the plasma edge
satisfying (2.17). The analysis is simplified by assuming that n.y is known. The absorbed power
Py is then obtained a posteriori from (2.16). If P,;, is specified rather than n.o, then n.o can be
obtained iteratively, as is done for T,, as described below.

In the development that follows we use the parabolic profile. However to allow the results to
be used at small op, we use an average value of the diffusion coefficient obtained by substituting

an average @ = &, where a = %ao in the parabolic approximation.

Substituting this averaged D,y in (2.14) and (2.15) and 1ntegrat1ng, we obtain, respectively,

. 8 2 2D, 40
Ki;nol = Krechep (1500 + 300) {4+ __"azt' 0 s (32)
- . 8 2 .
K attn02£p = Krecneo 15(10 + 300 l, : (33)

where in (3.2) the integration is only over the strongly electronegative plasma. At « = ¢ this
electronegative solution is matched to an electropositive edge solution. The electropositive solution
could be a sinusoidal profile, at higher pressures, a more nearly constant profile, at lower pressures,
or a profile intermediate between the two. In previous work a parabolic profile was assumed in the
electropositive region also, and the fluxes matched at the interface between the regions, to solve
for the ratio £/, [9]. Here, in order to accommodate the flatter profile at lower pressures, we use
a somewhat more general approach.
First, assuming ¢/¢, is known, we solve (3.3) to obtain

5 5 2 15 K att NO2 If
=_2 2 . 3.4
%0 8+\/(8) T S Ko oo £ (34)
Since £/£, is near unity for large ag, the weak dependence on £,/¢ is not significant; once a complete
solution is found, the value of oy can be improved by iteration. For large g (3.4) exhibits the

important scaling ap o (no2/n)'/%. To obtain a relatively simple overall solution we also make
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the assumption that the density in the electropositive solution is relatively constant, except very
near the sheath, such that n. can be set equal to ne in the integral term in (2.14). In this
approximation particle conservation in the electropositive region yields

Mﬁg + I\"iz'nogneo(fp - f) = neohsup, (35)
where hy = n,/ne can be obtained in various approximations. As in previous work [9], the
temperature sensitive term K, can be eliminated by substituting K;, from (3.2) into (3.5) to
obtain
- ¢, 8 , 2

2Da+aoﬁ + Koyecnieo (—l—gao + §ao (fp - f) = hyup. (36)
which is valid provided £/¢, < 1. Equations (3.4), (3.6), and (3.2) can be solved simultaneously for
ag, £/L,, and T,, given n. as the independent parameter. Alternatively, a useful analytic method
is to iteratively solve (3.4) and (3.6), which are not very sensitive to T, with an assumed 7, and
then use (3.2) to iteratively improve the estimate of T,. The procedure converges rapidly [9]. The
power absorbed is then obtained from (2.16).

We give a comparison of the results of PIC simulation with the model, in Fig. 1, for a
higher p case in which the constant mobility ion transport model for the electropositive edge is
reasonable. The results indicate that the parabolic approximation is good in the electronegative
region. Computing an effective electron temperature from 7, = %(E' ) we find T, = 2eV in the PIC
simulation and T, = 2.05eV from the model, an excellent agreement. In Fig. 1 the central model
density is normalized to that of the PIC simulation to compare the profiles. An ag = 11, obtained
from the model, is 30 percent larger than the oy = 8 obtained from the simulation.

207 < T =
—— Simulation
--- Theory -
Q'E ”
=
< |
K
V —
Q
3
3 -
¥
< -
£
& 026 S _
0.0 , ' —
0.0 0.01125 0.0225
x [m]

Figure 1. Comparison of analytic solution with simulation; n.q and ¢, (at u; = ug) in
the analytic solution are matched to the simulation; p = 50 mTorr and n. = 2.4 - 10%°
m~3; constant mobility model is used in the electropositive region.

B. One Region Solution for Large Electronegativity

For sufficiently large ag the electropositive edge region disappears. Assuming that the parabolic
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solution is still a reasonable approximation for the negative ions

2

z
N_ = Neply (1— —Z-z-) , T <{p,

but with £ > £, then the particle balance equation for positive ions is
202 14 12
K;.no2ne0l, =Krecn§0 {agl,’p (1 - §£—; + g—ﬁ +oplp | 1 - Ee—;’
e2
+ neo |0 —22’3) +1| up

where up is given by (2.18) with
2
a=og ( - K_;) . | (3.8)

(3.7)

The negative ion particle balance is

I(attnOZneoep = I('recnzo { * } ) (39)

with the { - } repeated from (3.7). The third equation to complete the set is matching the positive
ion edge flux

B ¢ £
2Da+a0neoe—§ = e [ao (1 - Z—g) + 1] uB. (3.10)
For o > 1, keeping only the terms quadratic in aq in (3.9), we obtain
- 1/2 22 24 -1/2
oo = (ngttno2) 1— 2_;2: + l__ig ) (3.11)
Kirecneo 3¢ 5¢
From (3.10) )
2D,
e % (u Z+ + 1)
~ = Bp : (3.12)
f% Qo + 1

Using these equations we have been able to explore the transition from a two region regime to
a one region regime as the electronegativity ap increases. This is shown in Fig. 2, where the solid
line for £/¢, < 1 (two region regime) is to be compared with the diamonds for £/£, > 1 (entire
plasma electronegative). The jump in £/£, is caused by a jump in Bohm velocity in the somewhat
idealized treatment. However, there is a hidden restriction, that has not been taken account in
the two region model, which is that the ion flow cannot exceed the ion sound velocity. When this
restriction is imposed (slightly modifying the theoretical treatment), the solid dots are obtained,
giving an essentially continuous solution.

C. Ezxtensions to Multi-Component Plasmas and to Better Approzimations
The analysis presented above can be extended to additional plasma components. For oxygen,

as described in Sec. II, O and Ot must also be included if the analysis is to be applicable to a wide
range of pressure and power. A set of equations have been obtained for two positive ion species
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(four total species) using the same approximations as in sections A and B. We are in the process
of determining the solutions to these equations over various ranges of pressure and power. We are
also exploring better approximations to treat both the electronegative region at large a, and the
electropositive edges at intermediate-to-low a.

1.3
gooooOO °
11} ]
a
ﬁ 0.9
0.7 -
0.5 :
0.10 1.00 10.00 100.00

alpha0

Figure 2. Analytic results of £/£, is g as n.g is varied; p = 50 mTorr; variable mobility
model is used in the electropositive region.
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PLASMA CHARACTERIZATION STUDIES FOR MATERIALS PROCESSING

E. Pfender and J. Heberlein

University of Minnesota
Minneapolis, MN 55455

ABSTRACT

New applications for plasma processing of materials require a more detailed understanding
of the fundamental processes occurring in the processing reactors. We have developed reactors
offering specific advantages for materials processing, and we are using modeling and diagnostic
techniques for the characterization of these reactors. The emphasis is in part set by the interest
shown by industry pursuing specific plasma processing applications. In this paper we report on the
modeling of radio frequency plasma reactors for use in materials synthesis, and on the
characterization of the high rate diamond deposition process using liquid precursors. In the radio
frequency plasma torch model, the influence of specific design changes such as the location of the
excitation coil on the enthalpy flow distribution is investigated for oxygen and air as plasma gases.
The diamond deposition with liquid precursors has identified the efficient mass transport in form of
liquid droplets into the boundary layer as responsible for high growth, and the chemical properties
of the liquid for the film morphology.

INTRODUCTION

Plasma processing of materials continues to be a growing area, with specific applications
ranging from plasma spray coatings to synthesis of ultrafine particles, from high rate deposition of
diamond films using a thermal plasma CVD process to destruction of hazardous wastes. The
increasing importance of this technical area is demonstrated by the fact that industry is increasingly
making use of basic results obtained under this program, and providing additional funding thus
leveraging the DOE funded effort.

In previous characterization efforts we had shown that many diagnostic techniques relying
on line-of-sight or on time averaged measurements have limited value for characterizing plasma
reactors with highly turbulent and reacting flows [1,2]. To improve our capability for describing
plasma reactors used for materials processing, we have chosen (a) new diagnostic approaches
relying on locally and/or temporally resolved measurement techniques, and (b) new modeling
approaches. Two new diagnostic methods are being employed, the first being a high speed laser
strobe video system, the second being based on laser scattering techniques developed at the Idaho
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National Engineering Laboratory [3]. The new models have addressed issues of practical
importance to materials processing reactors, such as radio frequency induction (RFI) plasma
reactors with unusual geometries and different processing gases, and of d.c. arc jets either highly
turbulent as used for atmospheric pressure plasma spraying, or possessing supersonic velocities
with gases used for the deposition of diamond films. In this paper we will focus on two major
efforts: (a) the description of the modeling approach and results of the RFI plasma reactor model,
and (b) the experimental characterization of the novel method for diamond film deposition at ultra-
high rates using liquid precursors. It should be noted that three additional efforts have been
initiated for characterizing processing plasmas which cannot be discussed here due to space
limitations: (1) the set-up and initial results of the laser scattering system for characterization of
non-uniform, flowing plasmas, (2) the modeling of the diamond deposition process with liquid
precursors, and (3) the application of the thermal plasma CVD process to the deposition of dense
yttria stabilized zirconia films as they are used as electrolyte in solid oxide fuel cells.

MODELING OF HIGH-FREQUENCY (RF) PLASMA REACTORS

The application of RF plasma reactors for the synthesis of fine particles, for thermal plasma
chemical vapor deposition (TPCVD), and for toxic waste destruction has been attracting increasing
interest in recent years. RF plasmas are particularly suited for the synthesis of fine particles and for
TPCVD if purity of the product is a primary concern, because electrode contamination is avoided.
Toxic waste destruction with RF plasmas, on the other hand, offers the advantage of compatibility
even with corrosive substances, since there are no electrodes in contact with the plasma.

For a better understanding of the characteristic features and for potential scale-up of such
reactors, extensive modeling work has been conducted over the past two years. This work has laid
the basis for additional funding from industry leveraging the DOE support.

Although modeling of RF plasma reactors has been previously reported, mainly with argon
as working gas[1,2], in this modeling work, two different configurations and working gases have
been considered, guided by potential applications. In case 1 our efforts focused on the conditions
within the reactor itself with oxygen as working gas. In case 2, the plasma tail flame emanating
from the reactor was of particular interest with air as the working gas. Because of space
limitations, only the most important findings will be discussed in this paper.

Since the basic equations are the same for both cases, these equations will be briefly
discussed in this paper.

Apuy , 13prv) _
Jdz r or
where p, u, v are the density, axial velocity and radial velocity respectively.

Continuity:

Z-momentum:
Ju v dP d duy 10 ou ov
U+ PU— = ——— - 2 — +—— —+—||+pg+F 2
P P = o 92( &)r&r['(&r &):’pg' @
where P is the pressure, F; is the body force in the z-direction, and He = [f + Mt (1] : laminar
viscosity, U turbulent viscosity)

T-momentum:
dv OJP 20 v o dv ou)| 2uv  puw?
+ — -+ —+F
¢ r&r(#‘rc?r) 32[ ‘(az &)] EEAEEA
where w is the tangential velocity and F; is the body force in the r-direction.
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6-momentum:

Arw), Arw)_9(, drw)),10(, drw)) 22, |
P P o .‘az(“' % )+r&(”=’ o ) 7 ar ) @

where w is the tangential velocity.

Energy: , A
oh oh J|Aoh) 12| A Ooh
pu—a—+p E'E(c 32J+rar[c 8 ]+q, T ©)

where h 1is the gas enthalpy, Cp is the specific heat, gy is the Joule heating term, and gr are the
radiative heat losses.

Vector potential equations (see Ref. 3): '
4, 10 aA,,) Ag %A, 1 a( OA, )
+ 24 A, =0 Ly - —+ COA =0 6
57 rar(r = | Hoowd, Fr R L HoO (6

where AR and Ay are the real and the imaginary parts of the vector potcnual Ag. The electric and
the magnetic ﬁelds are related to thc vector potential by the following:

; d ‘
E, =—iwA, HoH, —‘_(rAa) HoH, = 3Z(Aa) o Q)

The radial and axial body forces acting on the plasma F;, F;, and the volumetric heat generation
due to the Joule heating qj are: _

1 . 1 . 1 .
F = EpoaReal[EeH,] F,= —EyoaReal[EaH,] q, =—2-0'[E,E,] ©)
where * denotes complex conjugate quantities.

Turbulent kinetic energy, k:

dk dk d ok} 120 u, ok |
- o B i - 10
puaz+pvar [(u,-&» Jaz) rar[{# + ,,)ar]J’G pE | (10}

where
2 2 2 2 2
R BRI 6 K T
oz or. r or\r or 0z Jz
Dissipation rate of turbulent kinetic energy, €: |

de_de I de) 19 de| ¢
— PV e = e —_—— aad B - ~C 12
P P o az((“‘+ ]a:]ﬁai (" e )8r] k(C“f“G af aPe) (12

€
where Cyy, Ce1, Ce2, Oh, Ok and O¢ are empirical constants of the k-€ turbulence model [4,5]:
Cy Csl Cez O',, Gk ae .

0.09 192 144 09 1.0 13
and the corrections fg] and fg2 in the € equations are given by

fa=1+ (0}05 ] fe=1- exp(—Rf) |

i
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The Lam-Bremhorst form of the Low-Reynolds-Number k-€ model is given by:

o "T"z where fu= [1 —exp(-0.0165R, ) ] (1 + -2%-5-J

t

K=C

I

2
pky and R, = Pk~

with R, =
#: Aul

Results - Case 1:

A computer program has been developed to model the temperature and flow fields inside an
RF plasma reactor for oxygen plasmas. - This program is based on the SIMPLER algorithm [6].
The program solves the equations of conservation of mass (continuity), conservation of
momentum and conservation of energy simultaneously. The source terms of the momentum and
energy equations are supplied by the solutions from the vector potential equations (partial
differential equations) of the electromagnetic field. In addition, a low Reynolds number, k-¢
model is employed to model the turbulence in the plasma. The diffusive term of the momentum
equations (effective viscosity) are supplied by solving the turbulent kinetic energy equations (k)
and the turbulent kinetic energy dissipation rate equations (€). The strong intercoupling between
the partial differential equations makes modeling of RF plasmas a complex task.

A schematic of the RF plasma torch with the computational domain and gcometry is shown
in Figure 1. Based on the assumption of rotational symmetry, steady flow, local thermodynamic
equilibrium (LTE), and optically thin conditions, solutions of the conservation equations have been
obtained in terms of temperature and flow fields. Plasma properties and plasma compositions are
calculated using the PLASMA code developed at the High Temperature Laboratory at the
University of Minnesota.

As an example, Fig. 2 shows temperature and flow profiles at power levels from 10 to 30
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Fig. 1: Schematic of the RF plasma Fig. 2: Temperature and flow fields of
torch (Case 1) oxygen plasmas at two power levels




kW and a gas flow rate of 50 sim. The maximum temperature in the plasma (approximately
12,000 K) remains almost the same as the power dissipation in the plasma increases, but the
volume of hot plasma expands downstream. This behavior is typical for thermal RF plasmas.

Results - Case 2:

The same approach and essentially the same assumptions have been used to model
temperature and flow fields for the RF plasma reactor configuration shown in Fig. 3, but in this
case for air as the working gas (1 atm). It is obvious from the schematic of Fig. 3 that the
emphasis for this calculation is on the tail flame of the RF plasma.

As an example, Fig. 4 shows temperature and flow fields for a plasma power of 25 kW.
As the power level increases, the maximum temperature (approximately 11,000 K) remains almost
the same as in case 1, but again, the hot plasma expands somewhat farther downstream and, at the
same time, the velocity in the tail flame increases substantially as shown in Fig. 5. This leads to a
substantial increase of the enthalpy far dewnstream from the exit-nozzle (see Fig. 6).
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DIAMOND DEPOSITION EXPERIMENTS WITH LIQUID PRECURSORS.

We have previously reported results of experiments in which very high growth rates of diamond
films have been obtained by injecting liquids in form of an atomized jet in a counterflow
arrangement into a plasma jet [10]. Liquids used in these studies included a variety of organics
including PCB contaminated oils. We had demonstrated that jet fluctuations could lead to film non-
uniformities. In order to obtain a better understanding of this deposition process, controlled
experiments were performed in which the effect of mass transport was investigated. These
investigations included (a) determination of the droplet size for different liquids using our
atomizing nozzle in a particle size diagnostics wind tunnel, (b) an analysis of the evaporation
behavior of the different liquid droplets used, and (c) observation of the droplet trajectories in the
reactor for counterflow injection and for injection from the side parallel to the substrate. The
specific liquids investigated were acetone, ethanol and toluene. It was found that differences in the
physical characteristics of these liquids did not influence the mass transport to the substrate. The
droplet trajectories were observed with the laser strobe video system. A new reactor had to be
designed for this purpose with windows which would allow laser beam access and observation of
the reflected signal without disturbing the flow pattern in the reactor. Fig. 7 shows schematically
the set-up of the laser strobe video system. The electronic shutter of the CCD video head opens for
50 ns during which the nitrogen laser delivers a pulse. The light reflected by the droplets passes
through a narrow line filter to block out background radiation and is captured by the video head.
The images are recorded on tape and are then processed by computerized image analysis. Fig. 8
shows a computer enhanced image of droplets injected from the side 5 mm above the substrate
interacting with the plasma jet coming from the top of the picture. It is apparent that droplets nearly
reach the substrate providing efficient mass transport. We have found a dependence of growth rate
on the plasma torch power, indicating that the diamond film growth may be limited by the amount
of atomic hydrogen provided by the plasma jet. One observation which we cannot explain at
present is that the diamond crystal size is quite different when different precursors are used. Fig. 9
shows SEM photos of films obtained with acetone and with ethanol, indicating the larger crystal
size obtained with ethanol.

In order to guide further diagnostic experiments, we have initiated the modeling effort
which includes description of the droplet formation, droplet - jet interaction, and the surface
chemistry.

Top view Side view
S—————————

Torch

lmm Jot

injection
R CCD
Sidemnjection &P Camera

l Substrate I
@ Laser Beam (Into page)

Controlier

Computer

Fig. 7. Schematic of liquid droplet injection reactor and of laser strobe video set-up.
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Fig. 8: Computer enhanced video image of plasma jet (center top) and of liquid droplets (injected
from the left). The dark region in the center is a reflection from the substrate.
Injection probe position: 3 mm above the substrate;
Liquid: ethanol; atomizing gas: hydrogen;
Torch power: 10.5 kW.

Al 0608
ethanol

acetone

Fig. 9: Scanning Electron Micrographs of diamond films obtained from acetone and from ethanol
with side injection for identical torch operating conditions.
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CONCLUSIONS

Modeling of inductively-coupled RF plasmas indicates that with oxygen or air as the
working gas, the maximum temperature in the plasma remains almost the same (around 11,000 K),
regardless of the power input to the plasma. The hot plasma, however, extends farther
downstream as the power input increases and, at the same time, the velocity in the plasma tail flame
increases for the same mass flow rate. The quantitative description of the process details allow the
derivation of scaling laws for process reactor design.

For a better understanding of the unusually high growth rates (up to mmv/hr) of diamond
films observed with liquid precursors injected into a thermal plasma jet, droplet visualization tests
have been made, using a laser strobe system. The results show that the plasma jet accelerates the
droplets towards the substrate, and some of the droplets almost reach the substrate surface,
providing an efficient transport of chemically active species to the surface. The availability of
atomic hydrogen seems to be a limiting factor for diamond growth in this case. The size of the
well-faceted diamond crystals varies with different precursor materials (acetone, ethanol, benzene,
etc.), an observation which remains unexplained at this point. Modeling of this process is
necessary to enhance our understanding of the process details and to allow us to make full use of
the high diamond film growth rates.
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HYDRODYNAMIC THEORY OF DIFFUSION IN TWO-TEMPERATURE
MULTICOMPONENT PLASMAS

J. D. Ramshaw and C. H. Chang

Idaho National Engineering Laboratory
Idaho Falls, ID 83415

ABSTRACT

Detailed numerical simulations of multicomponent plasmas require tractable ex-

pressions for species diffusion fluxes, which must be consistent with the given

plasma current density J, to preserve local charge neutrality. The common sit-

uation in which J, = 0 is referred to as ambipolar diffusion. The use of formal
kinetic theory in this context leads to results of formidable complexity. We derive

simple tractable approximations for the diffusion fluxes in two-temperature multi-

component plasmas by means of a generalization of the hydrodynamical approach.
used by Maxwell, Stefan, Furry, and Williams. The resulting diffusion fluxes obey

generalized Stefan-Maxwell equations that contain driving forces corresponding to

ordinary, forced, pressure, and thermal diffusion. The ordinary diffusion fluxes are

driven by gradients in pressure fractions rather than mole fractions. Simplifications

due to the small electron mass are systematically exploited and lead to a general

expression for the ambipolar electric field in the limit of infinite electrical conduc-

tivity. We present a self-consistent effective binary diffusion approximation for the

diffusion fluxes. This approximation is well suited to numerical implementation

and is currently in use in our LAVA computer code for simulating multicomponent

thermal plasmas. Applications to date include a successful simulation of demixing

effects in an argon-helium plasma jet, for which selected computational results are

presented. Generalizations of the diffusion theory to finite electrical conductivity

and nonzero magnetic field are currently in progress.

INTRODUCTION

There is a growing interest in the use of thermal plasmas for materials processing and
synthesis applications. This has stimulated a parallel interest in the development and applica-
tion of physical models and numerical methods for performing detailed space- and time-resolved
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simulations of such plasmas [1,2]. Thermal plasmas are inherently multicomponent systems, so
constitutive relations for the diffusional mass fluxes in the plasma are an essential ingredient in
such models. Forced diffusion due to the electric field E is in turn an essential contribution to the
diffusion fluxes. Even in the absence of an external electric field, an internal field spontaneously
arises to preserve local charge neutrality, which would otherwise be disrupted by the natural ten-
dency of the very light electrons to rapidly diffuse away from the much heavier ions and neutral
atoms. The electric field is the mechanism by which the diffusion fluxes are constrained to produce
an electrical current density J, which preserves local charge neutrality. This implies V-J, = 0 at
a minimum, but in many cases the stronger condition J, = 0 is satisfied. Diffusion in this latter
situation is referred to as ambipolar diffusion [3].

Ambipolar diffusion in simple situations is treated in textbooks, but the resulting expres-
sions are inadequate to deal with the arbitrary multicomponent mixtures of present concern. The
required general expressions could in principle be derived from the kinetic theory of gases, but
this theory is usually developed under the assumption that all the species or components share a
common translational temperature. This assumption is frequently violated in thermal plasmas,
where a variety of nonequilibrium effects can cause the electron temperature 7, to be significantly
different from the heavy-particle temperature T [2]. This complication presents formidable diffi-
culties in the kinetic theory, and is a serious obstacle to the development of simple and tractable
approximations for the diffusion fluxes. We have therefore pursued an alternative hydrodynamic
approach [4] which captures the essential physics within a much simpler and more transparent
framework, and permits the derivation of a simple multitemperature ambipolar diffusion formu-
lation [5] suitable for practical calculations and numerical implementation.

The hydrodynamic theory of diffusion has a distinguished history dating back to Maxwell

and Stefan [6,7], and has been further elaborated in more recent times by Furry [8], Williams [9],
and Ramshaw [4]. This theory has largely been superseded by the more accurate treatment made
_possible by the general kinetic theory of gases [6,10], but the latter theory has the disadvantage
of being much more intricate and complex. For this reason, the hydrodynamic theory still retains
value as a simple and physically transparent approach which leads to essentially correct results in
a very straightforward manner. Indeed, the results of the hydrodynamic theory are surprisingly
accurate; in the special case when 7, = T, they are in precise agreement with first-order Chapman-

Enskog theory [4].

THE MULTITEMPERATURE STEFAN-MAXWELL EQUATIONS

The starting point of the hydrodynamic theory of diffusion is a conventional multifluid
description with separate continuity and momentum equations for each of the N species in the
mixture. These momentum equations contain frictional terms proportional to species velocity
differences and thermophoretic force terms proportional to temperature gradients [4]. A reduction
of the multifluid description to a diffusional description results when the friction coefficients are
large, so that the slip velocities between species are reduced to very small values. The separate
species accelerations then become very nearly equal to the mean acceleration of the plasma as a
whole, whereupon the species momentum equations reduce to Stefan-Maxwell equations of the
form [4]

D;; P

St -w=n- (2)e 0
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where 2; = p;/p, p; is the partial pressure of species ¢, p = }; p; is the total pressure, D;; is
the binary diffusion coefficient for the pair (¢, j) (which depends on an effective pair temperature
Ti; = (miT; + m;T;)/(m; + m;), where T; and m; are respectively the temperature and molecular
mass of species ¢ [4]), u; is the specific velocity of species ¢, H; = Vz; + (z; — %:)VInp + K;, p;
and g; are respectively the partial mass density and charge per unit mass of species i, ¥ = p;/p,
p = X ; pi is the total mass density, K; represents thermophoretic force terms proportional to
temperature gradients [4], and we have assumed that the only external forces present are those
of gravity (which cancels out) and the electric field. It is noteworthy that Eqs. (1) have the same
form as the usual single-temperature Stefan-Maxwell equations [10], but with the mole fractions z;
replaced by the corresponding pressure fractions z;. In the present context, all the heavy species
have the same common temperature T, so that T; = T for ¢ # e, while T; = T, for i = e.

Ounly N — 1 of Eqs. (1) are linearly independent, as their sum over i yields 0 = 0. These
equations contain N + 1 unknowns, namely the u; and E. The two additional equations needed
to close the system are

2_piwi = pu (2)
Zpiqiui =J, (3)

where u is the mass-averaged plasma velocity determined by the mean momentum equation, and
J; = 0 in the ambipolar case. Equations (1)-(3) constitute a system of IV 4 1 linear equations
for the u; and E, which must in general be solved at each point in space and time. The resulting
u; then determine the species diffusion fluxes J; = p;(u; — u), which in turn determine the time
evolution of the p; via the species continuity equations [4].

SIMPLIFICATIONS DUE TO SMALL ELECTRON MASS

The diffusion coefficients D;; are of order p,-'j” %, where p;; = mym;/(m; + m;). Since
m, € m; (j # e), it follows that u,; = m, and D.; ~ m;'/%2. The entire left member of Eq.
(1) for i = e is therefore of order m!/2, which is very small and may ordinarily be neglected. We
thereby obtain »

E o H, (4)
which is a general expression for the ambipolar electric field in an arbitrary two-temperature
multicomponent plasma. It may now be used to eliminate E from Eq. (1) for 7 # e, in which the
term j = e may now be omitted from the summation as it is also of order m!/2, The i = e term in
Eq. (2) may be omitted a fortiori, as it is of order m.. When all this is done, Egs. (1) (for i # €)
and (2) no longer involve u., and only N — 2 of Eqgs. (1) for ¢ # e remain linearly independent.
These equations, together with Eq. (2), then constitute a linear system of ¥ — 1 equations for the
N — 1 unknowns u; with ¢ # e. The final unknown u, is then determined by Eq. (3).

The electrical conductivity of the plasma is of order m_'/2 [6], so the resistivity is of order
m!/?. By neglecting terms of order m!/2, we have effectively approximated the resistivity by zero;
i.e., the plasma has been approximated as a perfect conductor. Indeed, Eq. (4) for E may be

interpreted as the generalized Ohm’s law for the plasma in the limit of infinite conductivity.
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THE SELF-CONSISTENT EFFECTIVE BINARY DIFFUSION APPROXIMATION

Self-consistent effective binary diffusion approximations are frequently used to avoid solving
the linear system of Egs. (1)-(3). A rational basis for such approximations has recently been
presented [11] and applied in the present context [3-5]. In the limit of small electron mass, the
resulting expressions for the J; (i # e) take the form [5]

Y, =X -y ZJ? (5)
j#e

where

1]

‘ m;D.-
I = ~ T (pH; — pig;E) (6)

where kp is Boltzmann’s constant. These equations provide explicit approximate expressions for
the diffusion fluxes of the heavy species. The diffusion flux for the electrons is then determined by
Eq. (3). Notice that Egs. (5) and (6) involve the effective binary diffusivities D; [11] and temper-
ature T for the heavy species only. They are therefore well suited for numerical implementation,
where the very large value of D, might otherwise have given rise to unacceptably restrictive sta-
bility and/or accuracy restrictions. These equations are currently in use in our LAVA computer
code for simulating nonequilibrium thermal plasma processes [1,2]. Some illustrative computa-
tional results are presented in the next section.

DEMIXING IN ARGON-HELIUM PLASMA JETS

Demixing effects in plasma torches [12] provide a particularly interesting example of mul-

ticomponent diffusive phenomena in thermal plasmas. For example, in an argon-helium plasma
jet discharging into quiescent air, the helium mole fraction in the jet core at the torch exit is sub-
stantially enhanced relative to the premixed feed gas due to diffusive demixing in the discharge
region [12]. This effect results from an interplay between diffusion and ionization. The ionization
potential of argon (15.8 eV) is considerably lower than that of helium (24.6 eV), so the argon
is preferentially ionized near the torch centerline where the temperature is highest. This creates
radial concentration gradients in both argon ions and electrons, resulting in radial outward am-
bipolar diffusion of argon ions. In addition, each ionization event produces two particles from one,
which reduces the helium mole fractions near the centerline. This causes helium to diffuse radially
inward, resulting in an enrichment of helium near the centerline and a corresponding depletion
near the torch wall. The degree of demixing is primarily determined in the discharge region, but
the diffusional separation process continues to operate for some distance downstream of the nozzle
exit. Eventually, however, recombination occurs as temperatures drop and the argon and helium
remix to regenerate the initial mixture ratio.

A suitable formulation for multicomponent ambipolar diffusion is essential to an accurate
physical description of this and similar effects involving coupling between concentrations and
diffusion fluxes of individual ionized and neutral species. Previous simplified approaches, such
as those in which the plasma is approximated as a two-component mixture of the plasma gas
and air [13,14], are fundamentally incapable of capturing such effects, as they neglect individual
species diffusion fluxes as well as interactions between the multiple dissociation and ionization
reactions occurring in the plasma. For example, ionization of argon is suppressed by the electrons
produced by ionization of other species. Ionization processes are highly energetic and strongly
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temperature dependent, so interaction effects of this type are essential to a quantitative description
of multicomponent thermal plasmas.

The present ambipolar diffusion formulation, as implemented in the LAVA code [1,2], has
been used to perform detailed numerical simulations of demixing in argon-helium plasma jets
and comparisons with corresponding experimental data [12]. LAVA is a fluid-dynamical model
which represents the plasma as an ideal gas mixture with temperature-dependent specific heats
and transport properties. The equations solved consist of the mixture momentum equation for
the plasma, separate thermal internal energy equations for the mixture and electrons, continuity
equations for each component of the mixture, ideal-gas state relations, chemical kinetic rate
expressions, and transport equations for turbulence parameters. The numbers of components and
chemical reactions are arbitrary. Detailed descriptions of the theoretical model and numerical
scheme are available elsewhere [1,2].

The present simulations were performed in two-dimensional cylindrical coordinates, as the
plasma torch is presumed to be axisymmetric. Gravity and swirl were neglected, and complete
local thermodynamic equilibrium (LTE) was assumed. This implies both chemical and thermal
equilibrium, so the electron and heavy-particle temperatures were taken to be equal. Eleven
species were included in the calculations, namely Ar, Art, e~, He, He*, Ny, N, N*, O,, O, and
O*. The formation of NO, is neglected due to the fact that negligible amounts were observed
experimentally. The following six chemical reactions were included: The chemical reactions are

Ar = Art 4e”
He = Het+e™
N, = 2N
0, = 20
N = Nt4e
0 = Ot+4e

all of which are assumed to be in equilibrium.

The geometry and operating conditions of the plasma torch are typical of a commercial unit
(Miller SG-100). This torch has an 8 mm nozzle exit diameter and was operated subsonically.
Torch operating conditions for the data presented are 800 A at 37 V, for a total power input of
29.6 kW, approximately 2/3 of which is deposited in the torch gas. The argon and helium flow
rates were 3200 £/hr and 1331 £/hr respectively, resulting in a premixed [Ar]/[He] mixture ratio
of 2.4. The inflow profiles of Ar and He concentrations, velocity, and temperature at the torch
exit were obtained from the experimental data 0.5 cm from the nozzle exit [12].

Figure 1 shows the computed and experimental argon/helium cold mole fraction ratios along
the centerline. The experimental results were obtained by enthalpy probe measurements using a
differentially pumped quadrapole mass spectrometer system to determine species concentrations
[12]. The cold mole fraction of argon is defined by

- | [Ar] +[Ar*]
477 [Ar] + [Ar*] + [He] + [He*] + [No] + [02] + 3 ([N] + [N*] +[0] + [0#])
where [X] is the molar concentration of species X in the plasma. This is the argon mole fraction

measured by sampling the plasma and cooling it to room temperature at constant elemental
composition. The cold mole fractions of helium and air are given by analogous expressions.

(M
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Figure 1. Calculated and Experimental Argon to Helium Cold Mole Fraction Ratio Along the
Centerline.

Figure 1 shows that the centerline argon/helium cold mole fraction ratio is approximately
1.2 at the 0.5 cm axial location. This ratio is 2.4 for the premixed plasma gas, so the diffusive
demixing effect is quite dramatic. The experimental data show a slight further decrease in this
ratio between 0.5 cm and 1.0 cm, indicative of continued diffusive demixing in this region. Note
that the simulation also captures this effect. Beyond 1.0 cm, the plasma rapidly cools and remixing
again begins to occur, as discussed above.

Figure 2 shows radial plots of the Ar-He cold mole fraction ratio at axial locations of 0.5 cm
(inflow condition), 2.0 cm, and 5.0 cm. After the shear layer surrounding the jet encroaches into
the centerline (which occurs at about 1.0 cm [12]), turbulent mixing overcomes diffusive demixing
and the Ar-He ratio begins to increase again. By 5.0 cm, the profile of Ar-He mole fraction ratio
has been flattened by the mixing process and is approaching a value of about 2.0 on the centerline.
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