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ABSTRACT

The MPI Sessions extensions to the MPI standard have been
accepted by the MPI Forum and will be included in the
upcoming MPI 4 version of the standard. MPI Sessions has the
potential to address several limitations of MPI’s current
specification: MPI cannot be initialized within an MPI process
from different application components without a priori
knowledge or coordination; MPI cannot be initialized more than
once; and, MPI cannot be reinitialized after MPI finalization.
MPI Sessions also offers the possibility for more flexible ways
for individual components of an application to express the
capabilities they require from MPI at a finer granularity than is
presently possible.

A prototype of MPI Sessions, based on the Open MPI
implementation of the MPI standard, was developed to facilitate
acceptance of the Sessions proposal by the Forum. The initial
implementation had some limitations, one of the more
significant ones being that it was limited in its ability to fully
exploit modern network APIs such as OFI libfabric and
OpenUCX and underlying network hardware. This report
presents enhancements to the prototype implementation of MPI
Sessions that removes this restriction for the networks to be
used in the next generation of DOE exa—scale systems. Open
MPI was used as the implementation vehicle, but results here
are also relevant to other middleware stacks.

1. BACKGROUND

1.1 INTRODUCTION

STPR17/OMPIX/17-37
version 1.0

The MPI Sessions proposal specifies well-defined extensions to the MPI Standard, and has
recently been accepted for the MPI 4.0 Standard specification. A prototype has been
developed to evaluate the practicality of implementing Sessions functionality, the potential
impact on basic MPI performance characteristics, as well as the usability for existing, large-
scale MPI applications (Hjelm, et al., 2019). This work was also reported in several previous
ECP-reports: STPM13-34 , STPM13-35, and STPM13-36.

The proposed MPI Sessions extensions to the MPI API have been previously published
(Holmes, 2016). There have been some changes to the API additions since the time of that
publication, but the basic functionality of the MPI Sessions methods remain unchanged. To
help in understanding the discussions in the following sections, we briefly review the key
elements of the MPI Sessions API here.
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To use MPI Sessions, an application or component of an application must first obtain an MPI
Session handle using the MPI Session_init function. This function allows the consumer
software to specify the thread support level for MPI objects associated with this MPI Session,
as well as the default MPI error handler to use for initialization of the Session and associated
MPI objects. The MPI implementation must ensure that this method is thread-safe. Upon
successful invocation of MPI Session_init, an MPI Session handle is returned. This function
is intended to be local and light-weight. The returned MPI Session handle may be optionally
used to query the runtime for available process sets. Process sets are identified by their
corresponding process set name. An MPI implementation must support at least two process
sets: mpi.//world and mpi://self. A process may query for additional process

sets using the MPI Session _get num_psets and MPI Session _get nth_pset functions.

An MPI Group object is obtained using the MPI Group from_session pset function, which
takes as inputs an MPI Session handle and process set name. This operation is also local and
should be light-weight. The resulting MPI group can then be used as input to the

MPI Comm_Create_from_group function to obtain an MPI communicator. This call is
collective over the MPI processes in the supplied MPI Group. This sequence of steps

is illustrated in Figure 1.

Sessions can be used in applications making use of MPI [nit to initialize MPI. This allows
for gradual introduction of Sessions use into existing applications still using MPI Init or
MPI Init_thread and MPI Finalize (termed the World Process Model in the Sessions
additions to the MPI Standard).

The remainder of this paper is organized as follows: Section 2 offers background and
motivations for this work. Section 3 describes our enhancements to the prototype to

better leverage networks to be deployed as part of next generation DOE exa—scale systems.
Section 4 evaluates the prototype and our findings regarding MPI Sessions; in particular,
this section covers evaluation criteria, experimental setup and benchmark results. We offer
conclusions and outline future work in Section 5.

1.2 INTENDED AUDIENCE

This report is written for knowledgeable software professionals and designers. Thus, the
Client will not be within the intended audience for this document, which is: (a) Project Team;
(b) Project Lead; (c) ECP Auditors and Reviewers.

2. BACKGROUND AND MOTIVATION

The MPI Sessions prototype was initially designed to use the most general-purpose
component of the point-to-point messaging framework (PML): OB1. This PML was chosen
because message handling (including tag matching) is done entirely within Open MPI,
making it relatively easy to modify to support MPI Sessions. Although the OB1 PML
component can leverage RDMA capable networks, it is not designed to take advantage of
any tag matching offload capability provided by lower levels of the network stack, including
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possible hardware-based tag matching features in the network interface. Hardware-based tag
matching allows for moving the processing of MPI messages off of the host processor and
onto the network hardware. The potential benefits of offloading MPI message processing
from host processors being used by MPI applications is well known (Marts, 2019), (Derradji,
2015). The CM PML, which is intended to leverage networks featuring tag matching offload,
has been shown to consistently outperform OB1 in terms of latency, bandwidth, and message
rates (Graham, 2007).

The CM PML makes use of the message transport layer (MTL) framework to interface to
particular network stacks. Note only one MTL component can be active within a given
instance of an MPI application. There are several MTL components to consider when
choosing one to modify for use with MPI Sessions. Of them, the OFI MTL, which utilizes
the OpenFabric Interfaces (OFI) libfabric (Grun, 2015), is the most promising. Libfabric is
hardware-agnostic and compatible with several popular high-performance fabrics and
networking hardware, which allows for more straightforward cooperation between
applications and network hardware. As such, libfabric is currently the network interface of
choice for systems designed for exascale. Libfabric will be the network API used in exascale-
era systems such as Aurora at Argonne and Frontier at Oak Ridge, both of which utilize
HPE’s Slingshot Interconnect (Sensi, 2020). Thus, extending Open MPI’s implementation of
MPI Sessions to leverage the OFI MTL will lead to the greatest potential for its use on these
DOE exa-scale systems.

(Marts, 2019)

Create a MPI| Sessions Handle

\d

Query runtime for available Process
Sets

\d

Create a MPI Group from a Process
Set

A4

Create a MPI Communicator from
the MPI Group

Figure 1. Steps to creating an MPI Communicator from a Session Handle



OMPI-X Design Document: STPR17/OMPIX/17-37
External Network Transport Implementation version 1.0

3. SESSION PROTOTYPE ENHANCEMENTS

Our prototype implementation to support MPI Sessions functionality in Open MPI involved
enhancements in three software components:

e PMIx (Castain R. H., 2017), (Castain R. H., 2018), a reference implementation of
the Process Management Interface for Exascale specification;

e PRRTE (Castain R. H., 2020), the PMIx reference runtime environment; and

e enhancements to Open MPI, an open-source MPI implementation
(Gabriel E. a., 2004).

Enhancements to the first two components have been described in a previous paper
(Hjelm, et al., 2019). This paper also described enhancements to Open MPI's OB1 PML
to support MPI Sessions.

The MPI Sessions prototype is based on the master branch of Open MPI available from the
project’s GitHub repository. To build the prototype, five major modifications and additions
were made to Open MPI:

e development and implementation of a new communicator identifier (CID)
generator to support the creation of MPI communicators not derived from
MPI_COMM_WORLD,

e update of the OB1 PML to accommodate changes to the CID generator,

e restructuring required to support invocation of MPI info, MPI error handling,
and MPI Sessions attribute functions before the invocation of MPI_Session_init(),

e restructuring of MPI resource tear-down to support the ability for MPI Sessions
to be initialized and finalized multiple times within a single application
execution instance, and

e implementation of the interface extensions proposed for the MPI Sessions API.

In this report we focus on additional changes to Open MPI to support MPI Sessions with the
OFI MTL.

While the OFI MTL has the benefit of offloading message tag matching to the network
hardware, it comes with the restriction that the tags used for matching messages must be 64
bits or smaller. Thus, in order for the OFI MTL to work with the 128-bit exCID, some
modifications to the MTL’s message delivery methods were required.

If a process only has the exCID of the peer that it wants to send a message to, it must initiate
an exchange of local CIDs that can be used for tag matching within OFI Libfabric. To do
this, the sender creates an untagged control message containing:

e the exCID of the communicator that the sender is trying to send the message on,
e the rank of the sender in that communicator, and
e the sender’s local CID.
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The sender then posts a receive buffer and waits for a response from the receiver.
Concurrently, the receiver posts a receive buffer in anticipation of receiving an untagged
control message from the sender. Once the control message has been received, the receiver
saves the sender’s local CID to an array of local CIDs associated with the current
communicator, using the sender’s rank as the index into this array. The receiver then sends
its own untagged control message containing its local CID and rank back to the sender. Once
this response message is received by the sender, the sender saves the receiver’s local CID
into its own array, and the two processes can begin communicating normally using the local
CIDs that were just exchanged.

Implementing this algorithm required modifications at both the MTL and PML levels. On the
MTL level, several functions were added to facilitate the sending, receiving, and processing
of untagged messages. Sending an untagged message is relatively straightforward because
the destination rank is passed down from the send operation in the application. Receiving, on

the other hand, is more difficult because MPI ANY SOURCE can be used instead of
specifying a specific source rank. For this reason, all processes keep a receive buffer posted
to receive untagged control messages. This addition guarantees progress and prevents
deadlocks that might have occurred in communication patterns where all processes perform
blocking send operations before posting receive buffers.

The modified prototype was tested with the PSM2, sockets, ofi rxm;verbs, and GNI
providers. This turned out to be important as different providers tend to behave differently,
particularly for providers sensitive to the libfabric endpoint capabilities requested. Because
the original sending and receiving algorithms are left intact, the modified PML and MTL
avoid use of this local CID exchange mechanism when using the World Process Model and
global CIDs.

The prototype is available for download at https://github.com/hpc/ompi/tree/sessions_new.
The code examples from the Sessions Proposals plus a more extensive test case are available
at https://github.com/hppritcha/mpi_sessions_tests. Instructions on how to build and run the
test cases are included in the repo’s README. Note the special instructions for running the
tests on Cray XC systems.

4. EVALUATION OF THE EXTENDED PROTOTYPE

In this section, we evaluate the performance of the modified OFI MTL in the MPI Sessions
prototype using microbenchmarks. Our results show that the modifications introduced to
support MPI Sessions functionality do not impose a performance penalty over our baseline
for MPI startup and MPI communicator construction. For the latter, the prototype shows
improved performance for MPI communicator construction. However, we do observe a
performance impact on latency and message throughput for communicators created

via Sessions when using some libfabric providers.



OMPI-X Design Document: STPR17/OMPIX/17-37
External Network Transport Implementation version 1.0

4.1 EVALUATION CRITERIA

Several of the changes made in the MPI Sessions prototype could potentially affect Open
MPI’s performance. Large modifications to the constructor and destructor methods for
multiple Open MPI subsystems could impact MPI initialization. Likewise, the changes made
to MPI Communicator construction to support MPI Comm_create from_group could add
overhead to creating MPI Communicators. The exCID-based tag-matching process outlined
in (Hjelm, et al., 2019) also has a possibility of adding overhead, even though the exchange
of local CIDs only has to occur once. Additionally, the process of generating MPI
Communicators using PMIx could also incur a performance penalty.

Table 1. Hardware and software used for this evaluation.

Grizzly Oneseventeen
Model | Penguin Tundra ES Dell R730
OS | Redhat 7.8 Redhat 7.2
CPU | 2x18-core Intel E5-2695v4 2x12-core Intel E5-2650v4
@ 2.10 GHz @ 2.20 Ghz
RAM | 128 GB 128 GB
Network | Intel Omni-Path 100 EDR Infiniband
Compiler | GCC 9.3 GCC 10.2
Resource Manager | SLURM 2.0.3 OGS Grid Engin 2011.11pl

4.2 EXPERIMENTAL SETUP

Performance results were gathered from the systems detailed in Table 1. Data were collected
during regular operating hours, so the systems were servicing other workloads alongside
but in isolation from our performance evaluation runs.

4.3 MPI BENCHMARK RESULTS

The results reported in this section were obtained using the Sessions prototype (Hjelm N. P.,
n.d.). For the baseline Open MPI, the master branch at Git SHA ¢17968c7 was used.
Libfabric 1.10.1 was used for all runs unless otherwise noted. PSM2 version 11.2.78 was
used on the Grizzly cluster.

4.3.1 MPI Startup Overhead

MPI initialization times using MPI Init were measured with the OSU osu_init

benchmark (The Ohio State University MVAPICH Benchmarks, 2019). Version 1.5.6 of the
OSU benchmark suite was used in this evaluation. The benchmark was subsequently
modified to time the MPI Session_init, MPI Group from_session pset, and

MPI Comm_create from_group sequence used to

create a communicator equivalent to MPI COMM_WORLD as depicted in Figure 1. These
modified OSU MPI benchmarks and others described in this section are available on
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GitHub (https://github.com/hppritcha/osu-microbenchmarks-sessions, 2019).

Figure 2 presents the timing data using both approaches obtained on the Grizzly cluster using
the PSM2 OFT libfabric provider. Results for the case of one MPI process per node and 32
MPI processes per node is shown. The performance difference between using the MPI
Sessions approach verses MPI [nit to initialize MPI shows some variation, especially

as the number of MPI processes per node increases. The main difference between the two
approaches to initialization MPI is how the two paths use PMIx for synchronization. In the
case of MPI Init, the PMIx_ fence method is used, while for MPI Sessions the

PMIx_Group construct method is used.

650 we VP |nit (1ppn) ===Sessions (1ppn)

600 MPI1_Init(32ppn) =—=Sessions (32ppn)
550
500
450
400
350

300 (== : e —

250

MPI startup time (msecs)

1 3 5 7 9 11 13 15

Number of Nodes

Figure 2. MPI Initialization time using MPI Init and MPI Sessions methods. Results
obtained on the Grizzly cluster using the PSM2 OFI provider.

4.3.2 MPI Communicator Creation Overhead

Another area where support for MPI Sessions could potentially impact MPI performance is
in overhead for MPI Communicator construction. One of the most commonly used MPI
Communicator constructors is MPI Comm_dup. Timing overhead for this operation was
measured. For these measurements, the osu_init benchmark was modified to measure the cost
of MPI Comm_dup using both MPI Init and the equivalent set of operations when using
MPI sessions. Figure 3 compares the time for the communicator duplication operation when
using the two approaches to MPI initialization when run on the Grizzly cluster using the
PSM2 libfabric provider. Note the times reported are per iteration, not the time reported in
the benchmark output. The data indicate that on this platform, the exCID algorithm out
performs the existing CID consensus algorithm. As described in (Hjelm, et al., 2019), the
new algorithm avoids the need to use a sequence of MPI Allreduce operations to most of the
duplicates of an existing communicator. Figure 4 shows the results obtained using the

10
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oneseventeen cluster. Note problems using the Open Grid scheduler with Open MPI
prevented running the benchmark across nodes. Even on a single node, there is considerable
scatter in timing data using the baseline Open MPI.

= N
vl O
o O

100

o))
o

e VIP|_Init ===Sessions

o

MPI_Comm_dup time (usecs)

1 3 5 7 9 11 13 15

Number of Nodes

Figure 3. MPI Comm_dup overhead obtained on the Grizzly cluster using the PSM2 OFI1
provider and 32ppn.

200
150 e IP|_|Nit ==—Sessions

/

1 3 5 7 9 11 13 15 17 19 21 23

Number of Processes

100

Ul
o

MPI_Comm_dup time (usecs)

o

Figure 4. MPI Comm_dup overhead obtained on the oneseventeen cluster using the
RXM/verbs OFI provider.
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4.3.3 MPI Message Latency and Message Rate

The OSU osu_latency and osu_mbw_mr message rate benchmarks were also modified to use
MPI Sessions for MPI initialization. These tests were carried out on single nodes of the two
systems (Table 1), as on-node message latency and message rate are often more sensitive to
changes in the code path because the overhead for data exchange between processes

using shared-memory approaches is much lower than the overhead involved for inter-node
data exchange. Note not all OFI libfabric providers make use of shared memory for intranode
data exchange.

Figure 5 presents relative MPI latency and Figure 6 presenting message throughput when
using MPI Init and MPI Session_init to initialize MPI. As discussed in (Hjelm, et al., 2019),
the use of exCIDs and local CIDs could have a performance impact on the handling of MPI
messages at both the sender and receiver. For the PSM2 provider, which does make use of
shared memory be default for intra-node messages, the introduction of the exCID code does
impact short message latency and hence message throughput rate. On the Grizzly cluster, an
8-byte message latency of a little under 400 nanoseconds is obtained using the OFI MTL
with the PSM2 provider. Measurements indicate that the exCID code adds about 50-100
nanoseconds into the code path, even after the local CID information has been exchanged.
An 8-byte message throughput rate of 3.1x10° messages/second is measured using the
baseline Open MPI, while the corresponding rate measured with the prototype is 2.8x10°. In
contrast, for the OFI RXM/verbs provider, which does not have an optimized, shared
memory path for intra-node messages, the overhead introduced by the exCID path is
negligible.

= MPI_Init PSM2 ==Sessions PSM2
MPI Init RXM e==Sessions XM

e —

N

Vi = 1N U W

Jd

O = AN < 0 W N < o
HMKDC‘::

ot

MPI latency (usecs)
=

o

256
512
1024

Message Length (bytes)

Figure 5. Comparison of MPI Latency using MPI Init and MPI Session_init using the
PSM?2 and rxm/verbs OFI providers.

12
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Figure 6. Comparison of MPI message rate using MPI Init and MPI Session_init using the
PSM?2 and rxm/verbs OFI providers.

4.3.4 HPC Challenge

The High Performance Computing Challenge (HPCC) benchmark (Juszczek, 2005) has a
bandwidth and latency test which gives information about MPI latency when used in a more
complex communication pattern than the OSU benchmarks. For this evaluation, we are
particularly interested in the 8-byte Random and Natural order ring measurements. The
observed latencies could be impacted by the exCID/local CID approach to MPI tag matching
when using MPI Communicators derived from MPI Sessions.

Version 1.5.0 of the HPCC benchmark was modified to use MPI Sessions. Rather than
replace the existing MPI Init and MPI Finalize usage in the benchmark’s main function, the
main_bench_lat _bw routine was modified to create its own MPI Session and use the
resulting MPI Communicator for the bandwidth and latency component of the test. This
serves to demonstrate the compartmentalization and backwards-compatible aspects of the
MPI Sessions proposal. The rest of the benchmark could be left unmodified, yet still
demonstrate the use of MPI Sessions within a subcomponent of the application.

Figure 7 and Figure 8 present MPI 8-byte latencies for the random and natural order rings,
respectively. The results reported for the modified HPC challenge uses MPI Sessions for the
bandwidth and latency component of the benchmark. The baseline Open MPI was used with
the unmodified application. As expected from the osu_latency results, the Sessions prototype
yields somewhat higher latencies (20-30%), particularly at higher node counts. The very

13
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peculiar behavior observed using both the OFI MTL with an underlying PSM2 provider and
the PSM2 MTL directly is not exhibited by the prototype. A cross check of the baseline Open
MPI using the GNI libfabric provider on a different cluster also does not show this unusual

behavior.

10 , ,
=—=MPI|_|nit —Sessions

Time (usecs)

O N B OO X®

1 3 5 7 9 11 13 15
Number of Nodes

Figure 7. HPCC random order ring 8-byte latency results obtained on the Grizzly cluster
using the PSM?2 OFI libfabric provider and 32 ppn.
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w
o

Figure 8. HPCC natural order ring 8-byte latency results obtained on the Grizzly cluster
using the PSM?2 OFI libfabric provider and 32 ppn.

5. CONCLUSIONS AND FUTURE WORK

We have presented a prototype of the MPI Sessions proposal and evaluated its performance
against a baseline Open MPI release. This evaluation shows that support for MPI Sessions

14
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currently provides the similar or better performance for MPI initialization and communicator
construction than the baseline, but in contrast to results found using the OB1 PML, there

1s some impact on MPI latency or message throughput performance when using optimized
OFT libfabric providers. The prototype also demonstrates the compartmentalization feature
of MPI Sessions via its use in the HPC Challenge benchmark.

Future work includes investigating ways to reduce the overhead of the exCID support code in
the critical path for short messages, and algorithms to further optimize the process of
exchanging local CID information. For example, when creating an MPI Sessions using a
small process set, it may be possible to force all processes within the Session to use

the same CID, similar to the current World Process Model. It may also be possible to use a
global CID opportunistically if all processes within the Session can agree on a single CID

to use. Other optimizations could include performing an allreduce operation once a
communicator has been formed from a Session to ensure that all processes have the CID of
all other processes, eliminating the need for an initial exchange of control messages. Other
future work includes extending the MPI Sessions prototype to be compatible with Open UCX
by enhancements to the UCX PML in Open MPI.
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