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ABSTRACT 

The MPI Sessions extensions to the MPI standard have been 
accepted by the MPI Forum and will be included in the 
upcoming MPI 4 version of the standard. MPI Sessions has the 
potential to address several limitations of MPI’s current 
specification: MPI cannot be initialized within an MPI process 
from different application components without a priori 
knowledge or coordination; MPI cannot be initialized more than 
once; and, MPI cannot be reinitialized after MPI finalization. 
MPI Sessions also offers the possibility for more flexible ways 
for individual components of an application to express the 
capabilities they require from MPI at a finer granularity than is 
presently possible. 

A prototype of MPI Sessions, based on the Open MPI 
implementation of the MPI standard, was developed to facilitate 
acceptance of the Sessions proposal by the Forum. The initial 
implementation had some limitations, one of the more 
significant ones being that it was limited in its ability to fully 
exploit modern network APIs such as OFI libfabric and 
OpenUCX and underlying network hardware. This report 
presents enhancements to the prototype implementation of MPI 
Sessions that removes this restriction for the networks to be 
used in the next generation of DOE exa–scale systems. Open 
MPI was used as the implementation vehicle, but results here 
are also relevant to other middleware stacks. 

 
 

1. BACKGROUND  
 
1.1 INTRODUCTION 
 
The MPI Sessions proposal specifies well-defined extensions to the MPI Standard, and has 
recently been accepted for the MPI 4.0 Standard specification. A prototype has been 
developed to evaluate the practicality of implementing Sessions functionality, the potential 
impact on basic MPI performance characteristics, as well as the usability for existing, large-
scale MPI applications (Hjelm, et al., 2019).  This work was also reported in several previous 
ECP-reports: STPM13-34 , STPM13-35, and STPM13-36.  
 
The proposed MPI Sessions extensions to the MPI API have been previously published 
(Holmes, 2016). There have been some changes to the API additions since the time of that 
publication, but the basic functionality of the MPI Sessions methods remain unchanged. To 
help in understanding the discussions in the following sections, we briefly review the key 
elements of the MPI Sessions API here. 
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To use MPI Sessions, an application or component of an application must first obtain an MPI 
Session handle using the MPI_Session_init function. This function allows the consumer 
software to specify the thread support level for MPI objects associated with this MPI Session, 
as well as the default MPI error handler to use for initialization of the Session and associated 
MPI objects. The MPI implementation must ensure that this method is thread-safe. Upon 
successful invocation of MPI_Session_init, an MPI Session handle is returned. This function 
is intended to be local and light-weight. The returned MPI Session handle may be optionally 
used to query the runtime for available process sets. Process sets are identified by their 
corresponding process set name. An MPI implementation must support at least two process 
sets: mpi://world and mpi://self. A process may query for additional process 
sets using the MPI_Session_get_num_psets and MPI_Session_get_nth_pset functions. 
An MPI Group object is obtained using the MPI_Group_from_session_pset function, which 
takes as inputs an MPI Session handle and process set name. This operation is also local and 
should be light-weight. The resulting MPI group can then be used as input to the 
MPI_Comm_Create_from_group function to obtain an MPI communicator. This call is 
collective over the MPI processes in the supplied MPI Group. This sequence of steps 
is illustrated in Figure 1. 
 
Sessions can be used in applications making use of MPI_Init to initialize MPI. This allows 
for gradual introduction of Sessions use into existing applications still using MPI_Init or 
MPI_Init_thread and MPI_Finalize (termed the World Process Model in the Sessions 
additions to the MPI Standard). 
 
The remainder of this paper is organized as follows: Section 2 offers background and 
motivations for this work. Section 3 describes our enhancements to the prototype to 
better leverage networks to be deployed as part of next generation DOE exa–scale systems. 
Section 4 evaluates the prototype and our findings regarding MPI Sessions; in particular, 
this section covers evaluation criteria, experimental setup and benchmark results. We offer 
conclusions and outline future work in Section 5. 
 

1.2 INTENDED AUDIENCE 

This report is written for knowledgeable software professionals and designers. Thus, the 
Client will not be within the intended audience for this document, which is: (a) Project Team; 
(b) Project Lead; (c) ECP Auditors and Reviewers. 
 
 

2. BACKGROUND AND MOTIVATION 
 
The MPI Sessions prototype was initially designed to use the most general-purpose 
component of the point-to-point messaging framework (PML): OB1. This PML was chosen 
because message handling (including tag matching) is done entirely within Open MPI, 
making it relatively easy to modify to support MPI Sessions. Although the OB1 PML 
component can leverage RDMA capable networks, it is not designed to take advantage of 
any tag matching offload capability provided by lower levels of the network stack, including 
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possible hardware-based tag matching features in the network interface. Hardware-based tag 
matching allows for moving the processing of MPI messages off of the host processor and 
onto the network hardware. The potential benefits of offloading MPI message processing 
from host processors being used by MPI applications is well known (Marts, 2019), (Derradji, 
2015). The CM PML, which is intended to leverage networks featuring tag matching offload, 
has been shown to consistently outperform OB1 in terms of latency, bandwidth, and message 
rates (Graham, 2007). 
 
The CM PML makes use of the message transport layer (MTL) framework to interface to 
particular network stacks. Note only one MTL component can be active within a given 
instance of an MPI application. There are several MTL components to consider when 
choosing one to modify for use with MPI Sessions. Of them, the OFI MTL, which utilizes 
the OpenFabric Interfaces (OFI) libfabric (Grun, 2015), is the most promising. Libfabric is 
hardware-agnostic and compatible with several popular high-performance fabrics and 
networking hardware, which allows for more straightforward cooperation between 
applications and network hardware. As such, libfabric is currently the network interface of 
choice for systems designed for exascale. Libfabric will be the network API used in exascale-
era systems such as Aurora at Argonne and Frontier at Oak Ridge, both of which utilize 
HPE’s Slingshot Interconnect (Sensi, 2020). Thus, extending Open MPI’s implementation of 
MPI Sessions to leverage the OFI MTL will lead to the greatest potential for its use on these 
DOE exa-scale systems. 
 
(Marts, 2019) 
 

 
Figure 1.  Steps to creating an MPI Communicator from a Session Handle 
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3. SESSION PROTOTYPE ENHANCEMENTS 
 
Our prototype implementation to support MPI Sessions functionality in Open MPI involved 
enhancements in three software components: 
 

• PMIx	(Castain	R.	H.,	2017),	(Castain	R.	H.,	2018),	a	reference	implementation	of	
the	Process	Management	Interface	for	Exascale	specification;	

• PRRTE	(Castain	R.	H.,	2020),	the	PMIx	reference	runtime	environment;	and	
• enhancements	to	Open	MPI,	an	open-source	MPI	implementation		

(Gabriel	E.	a.,	2004).	
	

Enhancements	 to	 the	 first	 two	 components	 have	 been	 described	 in	 a	 previous	 paper	
(Hjelm,	et	al.,	2019).	This	paper	also	described	enhancements	to	Open	MPI’s	OB1	PML	
to	support	MPI	Sessions.	
 
The MPI Sessions prototype is based on the master branch of Open MPI available from the 
project’s GitHub repository. To build the prototype, five major modifications and additions 
were	made	to	Open	MPI:	

• development	 and	 implementation	 of	 a	 new	 communicator	 identifier	 (CID)	
generator	 to	 support	 the	 creation	 of	 MPI	 communicators	 not	 derived	 from	
MPI_COMM_WORLD,	

• update	of	the	OB1	PML	to	accommodate	changes	to	the	CID	generator,	
• restructuring	 required	 to	 support	 invocation	 of	 MPI	 info,	 MPI	 error	 handling,	

and	MPI	Sessions	attribute	functions	before	the	invocation	of	MPI_Session_init(),	
• restructuring	of	MPI	resource	tear-down	to	support	the	ability	for	MPI	Sessions	

to	 be	 initialized	 and	 finalized	 multiple	 times	 within	 a	 single	 application	
execution	instance,	and	

• implementation	of	the	interface	extensions	proposed	for	the	MPI	Sessions	API.	
 
In this report we focus on additional changes to Open MPI to support MPI Sessions with the 
OFI MTL. 
 
While the OFI MTL has the benefit of offloading message tag matching to the network 
hardware, it comes with the restriction that the tags used for matching messages must be 64 
bits or smaller. Thus, in order for the OFI MTL to work with the 128-bit exCID, some 
modifications to the MTL’s message delivery methods were required.  
 
If a process only has the exCID of the peer that it wants to send a message to, it must initiate 
an exchange of local CIDs that can be used for tag matching within OFI Libfabric. To do 
this, the sender creates an untagged control message containing: 
 

• the	exCID	of	the	communicator	that	the	sender	is	trying	to	send	the	message	on,	
• the	rank	of	the	sender	in	that	communicator,	and	
• the	sender’s	local	CID.	
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The sender then posts a receive buffer and waits for a response from the receiver. 
Concurrently, the receiver posts a receive buffer in anticipation of receiving an untagged 
control message from the sender. Once the control message has been received, the receiver 
saves the sender’s local CID to an array of local CIDs associated with the current 
communicator, using the sender’s rank as the index into this array. The receiver then sends 
its own untagged control message containing its local CID and rank back to the sender. Once 
this response message is received by the sender, the sender saves the receiver’s local CID 
into its own array, and the two processes can begin communicating normally using the local 
CIDs that were just exchanged. 
 
Implementing this algorithm required modifications at both the MTL and PML levels. On the 
MTL level, several functions were added to facilitate the sending, receiving, and processing 
of untagged messages. Sending an untagged message is relatively straightforward because 
the destination rank is passed down from the send operation in the application. Receiving, on 
the other hand, is more difficult because MPI_ANY_SOURCE can be used instead of 
specifying a specific source rank. For this reason, all processes keep a receive buffer posted 
to receive untagged control messages. This addition guarantees progress and prevents 
deadlocks that might have occurred in communication patterns where all processes perform 
blocking send operations before posting receive buffers. 
 
The modified prototype was tested with the PSM2, sockets, ofi rxm;verbs, and GNI 
providers. This turned out to be important as different providers tend to behave differently, 
particularly for providers sensitive to the libfabric endpoint capabilities requested. Because 
the original sending and receiving algorithms are left intact, the modified PML and MTL 
avoid use of this local CID exchange mechanism when using the World Process Model and 
global CIDs. 
 
 
The prototype is available for download at https://github.com/hpc/ompi/tree/sessions_new.  
The code examples from the Sessions Proposals plus a more extensive test case are available 
at https://github.com/hppritcha/mpi_sessions_tests.  Instructions on how to build and run the 
test cases are included in the repo’s README.  Note the special instructions for running the 
tests on Cray XC systems. 
 

4. EVALUATION OF THE EXTENDED PROTOTYPE 
 
 

In this section, we evaluate the performance of the modified OFI MTL in the MPI Sessions 
prototype using microbenchmarks. Our results show that the modifications introduced to 
support MPI Sessions functionality do not impose a performance penalty over our baseline 
for MPI startup and MPI communicator construction. For the latter, the prototype shows 
improved performance for MPI communicator construction. However, we do observe a 
performance impact on latency and message throughput for communicators created 
via Sessions when using some libfabric providers. 
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4.1 EVALUATION CRITERIA  
 

Several of the changes made in the MPI Sessions prototype could potentially affect Open 
MPI’s performance. Large modifications to the constructor and destructor methods for 
multiple Open MPI subsystems could impact MPI initialization. Likewise, the changes made 
to MPI Communicator construction to support MPI_Comm_create_from_group could add 
overhead to creating MPI Communicators. The exCID-based tag-matching process outlined 
in (Hjelm, et al., 2019) also has a possibility of adding overhead, even though the exchange 
of local CIDs only has to occur once. Additionally, the process of generating MPI 
Communicators using PMIx could also incur a performance penalty. 
 

Table 1.  Hardware and software used for this evaluation. 
 Grizzly Oneseventeen 

Model Penguin Tundra ES Dell R730 
OS Redhat 7.8 Redhat 7.2 

CPU 2x18-core Intel E5-2695v4 
@ 2.10 GHz 

2x12-core Intel E5-2650v4 
@ 2.20 Ghz 

RAM 128 GB 128 GB 
Network Intel Omni-Path 100 EDR Infiniband 

Compiler GCC 9.3 GCC 10.2 
Resource Manager SLURM 2.0.3 OGS Grid Engin 2011.11p1 

 
 
 
4.2 EXPERIMENTAL SETUP 
 
Performance results were gathered from the systems detailed in Table 1. Data were collected 
during regular operating hours, so the systems were servicing other workloads alongside 
but in isolation from our performance evaluation runs. 
 
4.3 MPI BENCHMARK RESULTS 
 
The results reported in this section were obtained using the Sessions prototype (Hjelm N. P., 
n.d.). For the baseline Open MPI, the master branch at Git SHA c17968c7 was used. 
Libfabric 1.10.1 was used for all runs unless otherwise noted. PSM2 version 11.2.78 was 
used on the Grizzly cluster. 
 
4.3.1 MPI Startup Overhead 
 
MPI initialization times using MPI_Init were measured with the OSU osu_init 
benchmark  (The Ohio State University MVAPICH Benchmarks, 2019). Version 1.5.6 of the 
OSU benchmark suite was used in this evaluation. The benchmark was subsequently 
modified to time the MPI_Session_init, MPI_Group_from_session_pset, and 
MPI_Comm_create_from_group sequence used to 
create a communicator equivalent to MPI_COMM_WORLD as depicted in Figure 1. These 
modified OSU MPI benchmarks and others described in this section are available on 
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GitHub (https://github.com/hppritcha/osu-microbenchmarks-sessions, 2019). 
 
Figure 2 presents the timing data using both approaches obtained on the Grizzly cluster using 
the PSM2 OFI libfabric provider. Results for the case of one MPI process per node and 32 
MPI processes per node is shown. The performance difference between using the MPI 
Sessions approach verses MPI_Init to initialize MPI shows some variation, especially 
as the number of MPI processes per node increases. The main difference between the two 
approaches to initialization MPI is how the two paths use PMIx for synchronization. In the 
case of MPI_Init, the PMIx_fence method is used, while for MPI Sessions the 
PMIx_Group_construct method is used. 

 
Figure 2.  MPI Initialization time using MPI_Init and MPI Sessions methods.  Results 
obtained on the Grizzly cluster using the PSM2 OFI provider. 
 
4.3.2 MPI Communicator Creation Overhead 
 
Another area where support for MPI Sessions could potentially impact MPI performance is 
in overhead for MPI Communicator construction. One of the most commonly used MPI 
Communicator constructors is MPI_Comm_dup. Timing overhead for this operation was 
measured. For these measurements, the osu_init benchmark was modified to measure the cost 
of MPI_Comm_dup using both MPI_Init and the equivalent set of operations when using 
MPI sessions. Figure 3 compares the time for the communicator duplication operation when 
using the two approaches to MPI initialization when run on the Grizzly cluster using the 
PSM2 libfabric provider. Note the times reported are per iteration, not the time reported in 
the benchmark output. The data indicate that on this platform, the exCID algorithm out 
performs the existing CID consensus algorithm. As described in (Hjelm, et al., 2019), the 
new algorithm avoids the need to use a sequence of MPI_Allreduce operations to most of the 
duplicates of an existing communicator. Figure 4 shows the results obtained using the 
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oneseventeen cluster. Note problems using the Open Grid scheduler with Open MPI 
prevented running the benchmark across nodes. Even on a single node, there is considerable 
scatter in timing data using the baseline Open MPI. 
 

 
Figure 3. MPI_Comm_dup overhead obtained on the Grizzly cluster using the PSM2 OFI 
provider and 32ppn. 
 

 
Figure 4.  MPI_Comm_dup overhead obtained on the oneseventeen cluster using the 
RXM/verbs OFI provider. 
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4.3.3 MPI Message Latency and Message Rate 
 
The OSU osu_latency and osu_mbw_mr message rate benchmarks were also modified to use 
MPI Sessions for MPI initialization. These tests were carried out on single nodes of the two 
systems (Table 1), as on-node message latency and message rate are often more sensitive to 
changes in the code path because the overhead for data exchange between processes 
using shared-memory approaches is much lower than the overhead involved for inter-node 
data exchange. Note not all OFI libfabric providers make use of shared memory for intranode 
data exchange. 
 
Figure 5 presents relative MPI latency and Figure 6 presenting message throughput  when 
using MPI_Init and MPI_Session_init to initialize MPI. As discussed in (Hjelm, et al., 2019), 
the use of exCIDs and local CIDs could have a performance impact on the handling of MPI 
messages at both the sender and receiver. For the PSM2 provider, which does make use of 
shared memory be default for intra-node messages, the introduction of the exCID code does 
impact short message latency and hence message throughput rate. On the Grizzly cluster, an 
8-byte message latency of a little under 400 nanoseconds is obtained using the OFI MTL 
with the PSM2 provider. Measurements indicate that the exCID code adds about 50-100 
nanoseconds into the code path, even after the local CID information has been exchanged. 
An 8-byte message throughput rate of 3.1x106 messages/second is measured using the 
baseline Open MPI, while the corresponding rate measured with the prototype is 2.8x106. In 
contrast, for the OFI RXM/verbs provider, which does not have an optimized, shared 
memory path for intra-node messages, the overhead introduced by the exCID path is 
negligible. 
 
 

 
Figure 5.  Comparison of MPI Latency using MPI_Init and MPI_Session_init using the 
PSM2 and rxm/verbs OFI providers. 
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Figure 6.  Comparison of MPI message rate using MPI_Init and MPI_Session_init using the 
PSM2 and rxm/verbs OFI providers. 
 
4.3.4 HPC Challenge 
 
The High Performance Computing Challenge (HPCC) benchmark (Juszczek, 2005) has a 
bandwidth and latency test which gives information about MPI latency when used in a more 
complex communication pattern than the OSU benchmarks. For this evaluation, we are 
particularly interested in the 8-byte Random and Natural order ring measurements. The 
observed latencies could be impacted by the exCID/local CID approach to MPI tag matching 
when using MPI Communicators derived from MPI Sessions. 
 
Version 1.5.0 of the HPCC benchmark was modified to use MPI Sessions. Rather than 
replace the existing MPI_Init and MPI_Finalize usage in the benchmark’s main function, the 
main_bench_lat_bw routine was modified to create its own MPI Session and use the 
resulting MPI Communicator for the bandwidth and latency component of the test. This 
serves to demonstrate the compartmentalization and backwards-compatible aspects of the 
MPI Sessions proposal. The rest of the benchmark could be left unmodified, yet still 
demonstrate the use of MPI Sessions within a subcomponent of the application. 
 
Figure 7 and  Figure 8 present MPI 8-byte latencies for the random and natural order rings, 
respectively. The results reported for the modified HPC challenge uses MPI Sessions for the 
bandwidth and latency component of the benchmark. The baseline Open MPI was used with 
the unmodified application. As expected from the osu_latency results, the Sessions prototype 
yields somewhat higher latencies (20-30%), particularly at higher node counts. The very 
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peculiar behavior observed using both the OFI MTL with an underlying PSM2 provider and 
the PSM2 MTL directly is not exhibited by the prototype. A cross check of the baseline Open 
MPI using the GNI libfabric provider on a different cluster also does not show this unusual 
behavior. 

 
Figure 7. HPCC random order ring 8-byte latency results obtained on the Grizzly cluster 
using the PSM2 OFI libfabric provider and 32 ppn. 

 
Figure 8.  HPCC natural order ring 8-byte latency results obtained on the Grizzly cluster 
using the PSM2 OFI libfabric provider and 32 ppn. 
 

5. CONCLUSIONS AND FUTURE WORK 
 

We have presented a prototype of the MPI Sessions proposal and evaluated its performance 
against a baseline Open MPI release. This evaluation shows that support for MPI Sessions 
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currently provides the similar or better performance for MPI initialization and communicator 
construction than the baseline, but in contrast to results found using the OB1 PML, there 
is some impact on MPI latency or message throughput performance when using optimized 
OFI libfabric providers. The prototype also demonstrates the compartmentalization feature 
of MPI Sessions via its use in the HPC Challenge benchmark. 
 
Future work includes investigating ways to reduce the overhead of the exCID support code in 
the critical path for short messages, and algorithms to further optimize the process of 
exchanging local CID information. For example, when creating an MPI Sessions using a 
small process set, it may be possible to force all processes within the Session to use 
the same CID, similar to the current World Process Model. It may also be possible to use a 
global CID opportunistically if all processes within the Session can agree on a single CID 
to use. Other optimizations could include performing an allreduce operation once a 
communicator has been formed from a Session to ensure that all processes have the CID of 
all other processes, eliminating the need for an initial exchange of control messages. Other 
future work includes extending the MPI Sessions prototype to be compatible with Open UCX 
by enhancements to the UCX PML in Open MPI. 
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