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ABSTRACT

Significant effort is placed on tuning the internal parameters of fuzzers to explore the state space,
measured as coverage, of binaries. In this work, we investigate the effects of the external
environment on the resulting coverage after fuzzing two binaries with AFL for 24 hours. Parameters
such as scaling to multiple nodes, node saturation, and parallel file system type on HPC resources
are controlled in order to maximize coverage. It will be shown that employing a parallel file system
such as IBM's General Parallel File System offers an advantage for fuzzing operations, since it
contains enhancements for performance optimization. When combined with scaling to two and four
nodes, while simultaneously restricting the number of coordinated AFL tasks per node on the low
end (10-50% of available physical cores), coverage may be enhanced within a shorter period of time.
Thus, controlling the external environment is a useful effort.
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Figure 1. Composite plot of the coverage as a function of AFL output time for AFL Affinity
(black), Taskset Physical (red), Taskset Logical (blue), and AFL Affinity with a time delay
(lime green) for the CROMU-9 and NRFIN-78 binaries 15

Figure 2. Coverage as a function of node load (number of AFL tasks) over time for the NRFIN-
78 binary with AFL Affinity plus a fifteen second time delay. Early in wall time, the median
of the boxes trends upward until it peaks at sixteen cores (tasks). While no number of AFL
tasks is statistically preferred at any time, the median point is highest at sixteen tasks for the
first six to eight hours of fiizzing. 16

Figure 3. Coverage plots for the CROMU-9 binary on a Lustre file system. Early in time, it is
beneficial to distribute the workload from one to two nodes, so long as approximately 50%
or less of the physical cores are utilized for coordinated fuzzing. Later in time, the benefit of
scaling further to four nodes is realized. 18

Figure 4. Coverage plots for the NRFIN-78 binary on a Lustre file system. Early in time (two
hours) scaling from one to two nodes is helpful, so long as approximately 50% or less of the
physical cores are activated. However, scaling further to four nodes requires additional time
to be beneficial.  19
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Figure 5. Coverage plots for the CROMU-9 binary on a General Parallel File System. Note that
the y-axis range is reduced, when compared with Figure 3 (Lustre parallel file system). The
general trend of increased median value from one to two to four nodes is realized much
sooner in time, as compared to the Lustre file system 20

Figure 6. Coverage plots for the NRFIN-78 binary on a General Parallel File System. Compared
to the results in Figure 4 (Lustre parallel file system) the variability in coverage for almost all
data points is significantly reduced, especially early in time. 22
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ACRONYMS AND DEFINITIONS

Abbreviation Definition

AFL American Fuzzy Lop

CGC Cyber Grand Challenge

CLI command line interface

CPU central processing unit

DARPA Defense Advanced Research Projects Agency

GPFS General Parallel File System

HPC high-performance computing

I/0 input/output

OS operating system

PC program counter

SRN Sandia restricted network

VR vulnerability research
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1. INTRODUCTION

Fuzzing is an important piece of the modern vulnerability research (VR) methodology. According to
an informal survey of vulnerability researchers, fuzzing is the most historically successful technique
for finding bugs. [1] Fuzzers are an active area of security research because improvements can lead
to the discovery of new vulnerabilities in software that matters. [2]

In this work, we make use of the American Fuzzy Lop (AFL) fuzzer to investigate two binaries with
known bugs. We seek to understand the best method of running AFL on a high-performance
computing system to achieve the most coverage during 24 hours of fuzzing. We introduce three
ways to execute AFL, which differ in the way that tasks are bound to available cores. We show that
performance (i.e. coverage) can be boosted by a variety of factors, including the number of cores per
node utilized as well as the type of parallel file system employed.

Lastly, we introduce a tool for rapidly establishing a fuzzing campaign on high-performance
computing (HPC) resources. The tool is named BlueClaw and it is a Python script designed with
flexible input options. This tool is intended to serve VR researchers and analysts to orchestrate
fuzzing at scale across an HPC system.
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2. BACKROUND

2.1. American Fuzzy Lop

The most popular fuzzers today are based on an evolutionary code coverage metric. AFL is an
evolutionary fuzzer written and maintained by Michal Zalewski. [3] AFL is one of the most popular
fuzzers today and is credited with finding many previously undiscovered vulnerabilities. [2] AFL's
primary mechanism for genetic mutation is based on code coverage.

To use AFL, the target binary must be recompiled with additional instrumentation to track code
coverage. AFL will reserve an area of memory to store hit counts for each branch executed by the
program. A hash of the (source PC, destination PC) is used as an index into the area, and a
counter is incremented on every execution of each branch. Since a hash is utilized and collisions may
occur, the code coverage is lossy, but the hash calculation is faster than tracking every branch
precisely. This hit count hash table becomes the basis for the next phase of AFL, analyzing the
execution for interesting behavior.

NOTE: Above, PC is an acronym for program counter. It is a reference to the address of the
instruction pointer.

Once the instrumented program has executed with a given input, AFL needs to determine if the
code coverage map contains any new paths. If so, the input is saved in a queue for future mutation.
To make this determination, first, the hit counts are binned into a power-of-two bucket, so that
minor differences in hit counts will be ignored. Then, the hit counts are compared against a
cumulative code coverage map, checking for new paths or new hit counts. When the input file
causes a crash or a timeout, the input is triaged against existing findings and saved in a separate
directory.

AFL continues picking an input from the queue, mutating it, checking for new coverage, and
potentially adding to the queue, until the user ends the fuzz session. AFL contains other heuristics;
for example, new test cases are trimmed to the smallest size that maintains the same code coverage
before they are mutated. For more details on the implementation of AFL, see the AFL README
file. [4-]
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3. EXPERIMENTS AND METHODS

This work is a follow-on project from the single-node fuzzing work in 2019, [5] and extends the
scope of fuzzing beyond a single node to two and four nodes. The two binaries under test in this
work are "CROMU-9" [6] and "NRFIN-78" [7] from the 2016 Defense Advanced Research
Projects Agency (DARPA) Cyber Grand Challenge [8] (CGC) set of binaries, which contain known
bugs. These binaries were fuzzed with AFL version 2.52b [3] for 24 hours. We investigate the
coverage as a function of node load (or node saturation) on a single node as well as two and four
nodes. The fuzzers are always run in a coordinated fashion, and their output written to one of two
types of shared parallel file systems: Lustre or a General Parallel File System (GPFS).

3.1. Sandia Restricted Network High Performance Computing Resources

In an effort to not distort any results from the original thrust, [5] we have performed all
computations on the same resources at Sandia National Laboratories on the Sandia Restricted
Network (SRN). The details for the platforms are thus repeated below for completeness.

The SRN HPC cluster Ghost consists of 26,640 compute cores, with each compute node having

dual sockets with eighteen cores each (2 x 2.1 GHz Intel Broadwell® E5-2695 v4) and 128 GB of
RAM. Note that the processors are hyperthreaded, each having eighteen cores and 36 threads for a
total of 36 cores and 72 threads per node. Full hardware specifications can be found at Sandia's High
Performance Computing website. [9]

Additionally, in this follow-on work we used two parallel file systems: Lustre and a GPFS. Details
extracted from the Sandia HPC resource site are given here. "GPFS1 is our implementation of the
IBM® General Parallel File System (GPFSTM). It is a high performance shared-disk file management
solution that provides fast, reliable network file system access to data from multiple nodes in a
cluster environment. It provides storage on the SRN for pre and post process files and provide an
alternative space to run jobs for users who may be having performance or other issues with the
Lustre file systems." [10]

3.2. Single-Node and Multi-Node Fuzzing

There are many active efforts to improve coverage-guided fuzzing, most of which focus on
enhancing the fuzzer itself. [11] [12] [13] [14] [15] [16] While this is unquestionably an extremely
important research focus, our work seeks to tweak the environment in which fuzzers are used. We
employ the standard off-the-shelf, or "stock", AFL fuzzer and run it under different conditions on a
high-performance computing cluster to try to identify the most optimal conditions that lead to
maximum coverage. Rather than tuning the internal parameters of the AFL fuzzer, we instead tune
the external parameters. We believe this is a useful experiment as many security and vulnerability
researchers will undoubtedly use readily available fuzzers in a standard fashion with default settings,
rather than making changes to the internals and recompiling. It is therefore important to understand
how the standard AFL fuzzer will behave under a variety of conditions in order to treat the output
in a fair manner.

13



This page left blank

14



4. SINGLE-NODE FUZZING

Our prior work [5] focused exclusively on single-node fuzzing, and we present a summary of the
results here. The two CGC binaries under test in the current work, CROMU-9 and NRFIN-78, were
also used as test cases in the prior work. For the single-node fuzzing study, only the Lustre network
parallel file system was utilized.

4.1. AFL Types

We defined three methods for pinning AFL processes to cores on a single node: (1) AFL Affinity,
(2) Taskset Physical, and (3) Taskset Logical. The AFL Affinity method simply allows AFL to assign
fuzzers to any available cores. This is the ideal way to run AFL, however it was quickly discovered
that unless sufficient time (we chose five to fifteen seconds) is provided between subsequent core
assignments, a race condition occurs between AFL and the Linux OS whereby multiple processes
are bound to a single core. In addition to the time intervention between subsequent task pinning,
another solution is to manually pin tasks to available cores using the taskset command.

To ensure that AFL does not bind its tasks to cores, the bind to_free_ou0 function call in afl-fuzz.c
must first be commented out. One should then recompile AFL before executing it. There are two
methods of using taskset; one requesting only physical cores, and another requesting a combination
of physical and virtual cores, if available. Taskset Physical refers to only requesting physical cores for
binding tasks, while Taskset Logical requests a pair of physical and virtual cores. Given our
configuration on the SRN HPC resource Ghost, the nodes we are utilizing consist of 36 physical
cores and 36 logical cores. For our specific hardware, cores #0-35 are physical and cores #36-71 are
logical.

When comparing the resulting coverage as a function of time for the three methods above using a
set of seven samples for each, the AFL Affinity method with a fifteen second time delay in addition
to only saturating a node to half capacity was the clear winner (especially early in time). These results
are presented in Figure 1. Note that there is no time delay introduced when manually pinning tasks
to cores via taskset.
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Figure 1. Composite plot of the coverage as a function of AFL output time for AFL Affinity (black),
Taskset Physical (red), Taskset Logical (blue), and AFL Affinity with a time delay (lime green) for

the CROMU-9 and NRFIN-78 binaries.

15



4.2. Effect of Node Saturation

Restricted to the NRFIN-78 binary only, the effect of node load was investigated to determine if
there is an optimal number of cores to activate for fuzzing on a single node. These results will be
shown again in the Multi-Node Fuzzing section.

Running AFL via AFL Affinity mode with a fifteen second time delay between subsequent tasks and
allowing each fuzzing instance to run in a coordinated fashion (i.e. share progress), we progressively
saturate a single node with tasks and observe the trend of coverage as a function of node load. Each
fuzzing campaign employed twenty samples and was allowed to fuzz the NRFIN-78 binary for 24
hours. The box and whisker plots below show the coverage at a particular time slice over the 24-
hour period. These results are presented in Figure 2, but will be discussed in detail in the Multi-
Node Fuzzing section.
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Figure 2. Coverage as a function of node load (number of AFL tasks) over time for the NRFIN-78
binary with AFL Affinity plus a fifteen second time delay. Early in wall time, the median of the
boxes trends upward until it peaks at sixteen cores (tasks). While no number of AFL tasks is

statistically preferred at any time, the median point is highest at sixteen tasks for the first six to
eight hours of fuzzing.
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5. MULTI-NODE FUZZING

When scaling fuzzing campaigns to multiple nodes, we adopt similar principles to those utilized in
the single-node case study, namely, using AFL Affinity mode with a time delay between concurrent
instances (though we reduce the time to a five second wait period), and running tasks in a
coordinated fashion so each fuzzing instance can share its progress. We investigate the performance
of a fuzzing campaign by measuring the coverage over time as a function of node saturation. Recall
that each node has 36 physical cores in our configuration. In these studies, we compare the coverage
for campaigns utilizing one, two, and four nodes on two different parallel network file systems:
Lustre and GPFS. As in our prior work each campaign consists of twenty samples per data point,
for the purpose of constructing the box and whisker plots displayed below.

5.1. Lustre Parallel File System

The results presented in this subsection are those obtained from I/0 operations on a network
shared Lustre parallel file system. This file system is designed to be scalable and is widely
implemented on clusters with HPC applications. According to the official website, "early adopters of
Lustre were the Department of Energy National Laboratories including Lawrence Livermore,
Sandia, Oak Ridge and, more recently, Los Alamos' Cielo supercomputer is supported by the Lustre
file system." [17] This showcases the sustained interest and acceptance of the file system.

5.1.1. CROMU-9

The coverage plots in Figure 3 are presented on a node normalized basis. That is, the total number
of AFL tasks are normalized to a single node which is 36 cores on our architecture. This allows for
comparison of results across varying number of nodes.

NOTE: In an attempt to declutter the box and whisker plots, we present each x-axis value as
boxes staggered side by side as opposed to overlapping one another. This can create
the illusion that there are different x-values for neighboring black, red, and blue
boxes, which is not the case. Each "clustee' is a set composed of one unique colored
box and has the same x-value for each item in the set.

Very early in time, at the two-hour mark (Figure 3a), it is difficult to decipher the best node/task
count combination that would result in the most coverage. The binary simply has not been under
test long enough for AFL to make considerable progress. However, it does immediately seem that
more progress can be made initially by selecting a lower task count per node.

After six hours, the two-node data (red shaded boxes) begins to outperform the one-node data for
all but very high task counts. At the twelve-hour mark, the four-node data is in line with (and in
some cases exceeds) the two-node data up to about 24 tasks per node. At the limit of 24 hours, the
median value of the boxes for the four-node cases often exceeds that of the one- and two-node
cases. While these data do not represent statistically unique values (that is, there is vertical overlap
between neighboring boxes), it suggests that distributing the workload to multiple nodes can be an
effective procedure for increasing coverage. In all cases, it is prudent to restrict the number of AFL
tasks per node to some value less than approximately 75-80% of the available physical cores.
Performance beyond this range is degrative.
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Figure 3. Coverage plots for the CROMU-9 binary on a Lustre file system. Early in time, it is
beneficial to distribute the workload from one to two nodes, so long as approximately 50% or less

of the physical cores are utilized for coordinated fuzzing. Later in time, the benefit of scaling
further to four nodes is realized.

The trend of the four-node boxes for 32 and 36 AFL tasks per node is interesting and could

potentially reach or exceed the median values of the one- and two-node data if allowed to continue
beyond 24 hours.

5.1.2. NRFIN-78

For the NRFIN-78 binary we have prior results from the Single-Node Fuzzing work (see Figure 2,
above). This data is repeated below in Figure 4 for consistency and is colored identically (black
shaded boxes).

Similar to the CROMU-9 results after two hours, the boxes and whiskers tend to span a relatively
large range for all node counts. In line with the generally accepted practices in the fuzzing
community, it is recommended to fuzz for a longer period of time. After six hours of fuzzing, it
appears that an upper bound of 1.54% is being reached by several data points. Keeping focus on the
short end of the tasks per node scale (four to twelve), we start to see somewhat of a trend emerge in
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favor of higher node count. It does not fully hold over this range, but it seemingly suggests that it is
possible to increase coverage in a short time span by increasing the total number of AFL tasks while
simultaneously distributing them across more nodes. Thus, taking the first (left-most) cluster into
consideration in Figure 4b, the black box represents four total tasks across a single node, while the
red and blue boxes represent eight total tasks across two nodes and sixteen total tasks across four
nodes, respectively. Clearly, the variability among twenty samples diminishes as more tasks are
included in a distributed fashion. Interestingly, this is also the case when activating all sixteen tasks
isolated to a single node. While that holds true in this case, it does not hold in an absolute sense for
all binaries under test and in all conditions.
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Figure 4. Coverage plots for the NRFIN-78 binary on a Lustre file system. Early in time (two hours)
scaling from one to two nodes is helpful, so long as approximately 50% or less of the physical

cores are activated. However, scaling further to four nodes requires additional time to be
beneficial.

After twelve hours a few of the boxes have fully collapsed, and at the limit of 24 hours the majority
of boxes have collapsed to the 1.54% value. We now turn our attention to comparing the above
results with those using the GPFS file system. That is, we repeat the exact experiments but on a
different type of parallel file system.
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5.2. General Parallel File System

The results presented in this subsection are those obtained from I/0 operations on a network
shared General Parallel File System (GPFS). As noted above in the Sandia Restricted Network High
Performance Computing Resources subsection, the GPFS-based scratch space at Sandia provides an
alternative space to run jobs for users who may be having performance or other issues with the
Lustre file systems. The GPFS has some inherent performance optimization features (from a
caching and metadata viewpoint) [18] that may bode well for an application such as fuzzing, which
performs substantial I/0 on small files.

5.2.1. CROMU-9

The results depicted below in Figure 5 are comparable to those presented in Figure 3, which utilized
the Lustre parallel file system. Note, however, that the scale of the y-axis in Figure 5 differs. This
reduction in scope was made to increase data clarity.
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Figure 5. Coverage plots for the CROMU-9 binary on a General Parallel File System. Note that the
y-axis range is reduced, when compared with Figure 3 (Lustre parallel file system). The general

trend of increased median value from one to two to four nodes is realized much sooner in time, as
compared to the Lustre file system.
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The most obvious observation occurs at the two-hour interval (Figure 5a), where the data is very
tightly bound in bitmap percentage. This is a stark contrast to what is observed in Figure 3a. We also
immediately observe the dominance of the median value for the four node dataset (blue boxes) up
to sixteen tasks per node, a trend not realized until the twelve hour mark when the Lustre parallel
file system is utilized (Figure 3c). The general shift upward of boxes and median values for the two-
node and four-node datasets continues over time.

At the limit of 24 hours of fuzzing (Figure 5d), the data is similar to that in Figure 3d but with some
higher box tops and whiskers. The lower bound of whiskers is similar. It is interesting to observe the
trend of the right-most cluster at 36 tasks per node versus the Luster case. With GPFS, the trend of
increased median values from one to two to four nodes is observed. This was postulated as possible
in the case of the Lustre file system, if it had additional time to fuzz.

5.2.2. NRFIN-78

Similar to the observation above for CROMU-9, the reduction in variability of bitmap percentage
for NRFIN-78 on GPFS versus Lustre after two hours also occurs (see Figure 6a). The scale of the
y-axis in Figure 6 below is kept consistent with Figure 4 for a direct comparison between the two.

After only six hours of fuzzing (Figure 6b), and certainly after twelve hours (Figure 6c), the results
are nearly representative of the data after a full 24 hours of fuzzing on the Lustre parallel file system
(Figure 4d). In some cases, the coverage is increased within a fraction of the time as compared with
the Lustre data. While it still remains a generally accepted best practice to fuzz binaries for no less
than 24 hours, being able to tune external parameters and conditions to potentially boost coverage is
powerful knowledge to have in the event that fuzzing under a deadline becomes necessary.

5.3. Best Practice Recommendations

For both the CROMU-9 and NRFIN-78 binary, greater coverage was achieved in less time when a
fuzzing campaign was performed on a GPFS versus a Lustre parallel file system. The GPFS has
more performance optimization features than Lustre, which could, in theory, lead to better fuzzing
performance since fuzzers tend to perform a lot of I/O. Therefore, if fuzzing on an HPC, it is
suggested to employ a GPFS. In general, however, it is wise to be mindful of the file systems
available and to select one with the most performance optimization features.

In terms of node count and saturation, our studies reveal that fuzzing on more than 50% of
available physical cores does not lead to enhanced coverage. In general, activating —10-50% of
physical cores (with one AFL task per core) is a best practice. Further, if more than one node is
available, it may be advantageous to distribute the 50% over many nodes such that only —10-25% of
physical cores on each node is used. This practice can be considered wasteful from a CPU sharing
perspective, as most of the cores on a node will be idle and off-limits to other users for the duration
of the fuzzing session but may be necessary if fuzzing under a tight deadline.

Although we have observed these trends in the course of our experiments, actual performance may
be affected by employing different hardware, network interconnects, system load, and even other
binaries. There are many external parameters that can affect a fuzzing campaign, and we have done
our best to remain consistent and generate reliable data.
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Figure 6. Coverage plots for the NRFIN-78 binary on a General Parallel File System. Compared to
the results in Figure 4 (Lustre parallel file system) the variability in coverage for almost all data

points is significantly reduced, especially early in time.
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6. BLUECLAW.PY TESTBED GENERATOR

BlueClaw is a tool aimed at rapid establishment of a fuzzing campaign at scale. It is written in
Python and is designed for use on HPC systems. It is a command line interface (CLI) tool with
several switches available for precise tailoring of a campaign. The original version was published in a
prior SAND report [5], and has since been updated to include additional features and performance
enhancements.

The tool is available on Sandia's Restricted Network. Please contact Sandia National Laboratories
for access. Here, we present the README for the latest version, v1.2, which details usage and
features available.

6.1. README.md

Automating the Workflow with BlueClaw

We wrote a Python script called BlueClaw which enables both HPC gurus and newbies alike to
rapidly establish a testbed for fuzzing with AFL. The inclusion of command line options makes it
very flexible and robust, tailoring the functionality to a user's wants and requirements. The initial
release was Version 1.0, while the current release is Version 1.2 as of March 2020. Please contact
Sandia National Laboratories for access.

Usage

usage: blueclaw.py [-h] [-A ACCOUNT] [-a AFL] [-e EMAIL] [-i INSTANCES] [-j JOBNAME] [-1]
[-n INSTANCESPERNODE] [-p] [-s SAMPLES] [-t WALLCLOCK] [--version] binDir mode

positional arguments:

• binDir Specify the directory where the binary (or binaries) you seek to fuzz exist. Note that
this specified path MUST be a relative path.

• mode Set the execution mode. 'SS' = Serial execution on a single binary, 'PS' = Parallel
execution; single binary, 'SM' = Serial execution; multiple binaries

optional arguments:

• -h, --help show this help message and exit

• -A ACCOUNT, --account ACCOUNT Specify the WCID account number to use for HPC
accounting.

• -a AFL, --afl AFL Specify the path to the afl-fuzz binary you wish to use for execution.
Default is simply 'afl-fuzz', which assumes the default installed version of AFL is contained
in ones $PATH. Specified path may be absolute or relative.

• -e EMAIL, --email EMAIL Provide your email address if you would like an email to be sent
when the current job has completed.

• -i INSTANCES, --instances INSTANCES Specify the total number of AFL instances
needed. This option is specific for parallel execution, and thus is used only in Mode PS.

• -j JOBNAME, --jobname JOBNAME Specify a unique name for a job. Can be helpful when
many jobs are concurrent and paired with the --email option for bookkeeping purposes.
Default is 'BlueClaw'.
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• -1, --logical Set the flag to implement a combination of physical and logical cores (if
available). Only valid for parallel fuzzing.

• -n INSTANCESPERNODE, --instances_per_node INSTANCESPERNODE Set the total
(maximum) number of instances (active AFL coordinated fuzzers) for each node. This is
only valid for multi-node campaigns, thus mode 'PS'. It is recommended to set this variable,
so as to not overload a node with AFL fuzzers. Initial research recommends setting this as
'>= NUM_PHYSICAL_CORES_PER_NODE / 2.0'.

• -p, --physical Set the flag to implement taskset physical mode, where AFL fuzzers are pinned
to specific physical cores.

• -s SAMPLES, --samples SAMPLES Optionally specify the number of samples to collect for
statistics purposes. While 1 is the default, our research made use of 20 samples per fuzzing
campaign.

• -t WALLCLOCK, --time WALLCLOCK Set the time (wallclock limit) for the AFL job, in
hours. 48 hours is the default and is also the max time allowed for most clusters. 1 hour is
the minimum allowed.

• --version show program's version number and exit

Overview & Setup

The standard method of running BlueClaw is:

blueclaw.py <OPTIONS> BinDir Mode

The full list of available options is detailed with the --help option. BinDir is the path to the directory
where the binary you wish to fuzz is located, and Mode is the desired mode to run the script in.
There are currently three supported modes: SS (Serial execution against a Single binary), PS (Parallel
execution against a Single binary), and SM (Serial execution against Multiple binaries). Note that the
most functionality will come from the PS mode, where development has been focused to support
scalable fuzzing across multiple nodes. Also note that mode SM is largely experimental at this time.

The suggested process for creating a brand-new fuzzing campaign with BlueClaw is as follows:

1. Create a directory where all fuzzing jobs will run. Descend into it.

2. Copy the binary under test here. The current version of BlueClaw requires that you have a
local copy of the binary to be fuzzed in the current directory.

3. Create a directory called "inpue' and fill it with any initial seeds specific for the binary under
investigation. It is necessary to label this directory "input".

4. Up to this point it is assumed that no prior fuzzing campaign has been run. If that is the
case, you may now run BlueClaw. If, however, you wish to continue a previous campaign
using a particular output as input, then simply create a directory called "outpue' and place
the previously generated output in here.

Once this setup is complete, you are now ready to run BlueClaw. We recommend that the tool itself
(blueclaw.py) exist outside of the directory where the fuzzing campaign will run. In the examples
that follow, it will reside in a user's home directory.
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Samples

BlueClaw is designed to generate N samples each time the tool is run. This number defaults to one
(1), but can be specified with the flag, as:

—/blueclaw.py [OPTIONS] -s 20 . 1

Any positive integer from 1 to 100 is allowed. Our published research has made use of 20 samples
per campaign in order to generate meaningful statistics.

When BlueClaw is run successfully, N " sample_XV directories will be created in the current
directory where the tool was executed. Even if only one sample is requested, the resulting
"sample_00" folder will be created and populated with all of the necessary files needed for AFL to
begin fuzzing. Note: The numerical identifier for samples is zero-based.

Syncing

Syncing of output among coordinated fuzzers within a campaign is currently unsupported in
BlueClaw. To be clear, coordinated fuzzers are inherently in sync when the output is written to a
networked file system (as was the case in our published research). However, this is not an ideal
practice due to potential lagging and I/0 bottlenecks. Therefore, we intend to build support for
corpus syncing in subsequent versions.

Runtime

BlueClaw supports programmatically setting the total time you wish to run AFL against your binary
under investigation. This is achieved with the presence of the -t flag. One point to note here is that
one extra hour will be added to the requested HPC walltime to account for overhead and the
presence of embedded sleep commands in the resulting submit.sh file that BlueClaw generates. So, if
you are limited by a maximum 48-hour walltime request on the HPC system, your upper limit
request with the -1 flag should therefore be 47. BlueClaw will accept any integer, but the HPC
scheduler will inevitably deny your request if you exceed system limits.

Cores Per Node

BlueClaw was built on, and designed exclusively for, execution on Sandia National Laboratories'
Sandia Restricted Network (SRN, unclassified) HPC systems. It therefore has built-in logic and
hardcoded parameters for the number of cores per node for particular resources. To extend the
support for additional systems outside this range, you must edit the GetCoresPerNode() function of
the script.

AFL Path

BlueClaw assumes that the "afl-fuzz" command is in one's path. Should it not be, or you desire to
use a specific version of AFL, this can be achieved through the -a flag, as:

blueclaw.py [OPTIONS] -a ../afl-2.52b-comment/afl-fuzz

NOTE: The path to AFL, as specified by the -a option, may be either relative or
absolute, but the path to the directory where the target binary/binaries under test are
located must be a relative path.

Restarts

BlueClaw supports restarting prior fuzzing campaigns via an auto-detect mechanism. That is, if there
is a directory labeled "outpue' in the current directory where BlueClaw is executed, and it is
populated with data of any kind, BlueClaw will treat that data as output from a prior AFL session

25



and use it as input to the upcoming campaign. It will be copied redundantly into all N "sample_XX"
directories as well.

There is currently no override switch for restarting a prior fuzzing campaign, so it is the user's
responsibility to ensure that no directory labeled "output" exists in the directory where BlueClaw is
run.

Examples

The following examples demonstrate how to run BlueClaw in PS and AFL Affinity mode, where
AFL is allowed to pin tasks to cores using its own logic. BlueClaw does support manually pinning
tasks to cores with Taskset Physical and Taskset Logical modes, but we do not go into detail here.
Please see the published SAND paper (2019) for further details.

Specifying Total Instances for a Single Node

To run coordinated fuzzers (which we refer to as "paraller — it is parallel in the sense of more than
a single fuzzing instance sharing a corpus and focused on a common binary) on a single node, make
sure that your instances request (I flag) does not exceed the total number of physical cores available
on your compute node. Instances are the total number of fuzzers that will be active against a
common binary under investigation. If you are not careful, you can accidentally request more
instances than available number of cores on a node. We will demonstrate this shortly. However, in
this example we request 16 coordinated AFL instances (and thus 16 cores, as no more than one
fuzzing instance will be bound to a single core) on a single node for 24 hours against a binary that
we have a local copy of in the current directory.

—/blueclaw.py -t 24 -i 16 -j BlueClaw ./ PS

The -j option allows you to specify the job's name. It is "BlueClaw" by default, but we specify it here
to showcase the feature. Note that the BinDir is ./. It does not require a trailing forward slash, and
thus can simply be I if desired.

Specifying Instances per Node for a Multi-Node Campaign

Running BlueClaw with the intention of fuzzing across multiple nodes is similar to the above
example. What you should specify are the total number of instances as well as the number of
instances per node. Our research indicates that completely saturating a node with fuzzing instances
is not ideal for maximizing coverage within a limited time frame, and so we offer the option to
specify how many cores per node should be activated.

—/blueclaw.py -t 12 -i 32 -n 16 . PS

The above command requests 32 total coordinated AFL instances while only activating 16 cores per
node. It will only run for 12 hours, as specified with the -t switch. As above, if we assume our
compute nodes have 36 cores per node, then two nodes will be requested from the HPC scheduler
and each node will have slightly less than half of its physical cores activated. Our preliminary
research shows that this is near the optimal range of cores to activate for the best fuzzing
performance, especially if only fuzzing for short periods of time (less than 12-16 hours).

Specifying Total Instances in Excess of a Single Node

In the current version of BlueClaw, if you request a total number of instances that happens to
exceed the available number of cores per node but do not concurrently specify the number of
instances per node desired, then the default behavior is to calculate the instances per node via
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"NUM_TOTAL_INSTANCES / NUM_NODES". As an example, if you have compute nodes
with 36 cores per node, and issue the following command:

—/blueclaw.py -i 46 . PS

then BlueClaw will understand that 10 fuzzing instances must spill over onto a second node (46 total
instances minus 36 cores per node), and thus request 2 nodes. Again, the default behavior at this
time is to divide the workload among each node by the total number of nodes needed for a
particular job. In this instance, there would be two total nodes with 23 (46 / 2) cores activated on
each node. We recommend specifying the desired instances per node, but nonetheless have
attempted to build in a failsafe.

6.2. Suggested Usage

There are various modes and switches available in BlueClaw to tailor it for a particular desired setup.
This flexibility makes it a powerful tool for rapidly establishing, or even continuing, a fuzzing
campaign. The suggested process for generating a brand-new fuzzing campaign is briefly outlined in
the README, but we will expand on it here.

6.2.1. Pre-Execution

As noted previously, BlueClaw is designed to be used in an HPC environment. More specifically, it
is custom built for Sandia's production environment. There will be some slight modifications
required before it will function properly, most notably in the GetCoresPerNode() function, where
you must specify the hardware environment for the platform it will be run on. This is necessary for
the resulting job submission script to contain accurate information, which will ultimately be
processed by the scheduler.

6.2.2. Execution

The procedural steps for initiating a fuzzing campaign are listed in the README. It is
recommended to create a new, empty directory for each fuzzing campaign.

$ mkdir Campaign_1

It is then necessary to copy the binary under test along with any input files (initial seeds) into this
directory.

$ cd Campaign_1 && cp —/bin/bin_under_test.afl.out .

$ cp -r —/bin/input_files ./input

The initial seeds should be in a directory titled "input". This is a vital step, as BlueClaw looks for a
directory with that name.

If this campaign happens to be a restart of a prior campaign, copy the previously generated output
files into this directory in a subdirectory titled "outpue'. Otherwise, BlueClaw can now be executed.
There are three different examples of how to execute BlueClaw in the README above, and it is
worth emphasizing that the most power will come from the PS mode, where a single binary under
test is run in parallel (which is another way of saying there will be multiple fuzzers running in
parallel). The latest version of BlueClaw supports coordinated fuzzing at scale via the PS mode.

After BlueClaw executes successfully, there will be a number of "sample_X)C directories created in
the current directory, depending on how many samples were requested with the I switch. Each one

27



of these "sample_XY' subdirectories is a fully contained fuzzing space. In order to initiate the
campaign, simple descend into each sample subdirectory and issue the sbatch command on the job
submission file. For example, assuming twenty samples were requested:

$ for i in {00..19}; do cd sample_${i} && sbatch submit.sh && cd ..; done

6.2.3. Post-Execution

The jobs submitted to the scheduler will timeout on their own. The length of time they will run for
is determined by the -t switch. If no value is specified, they will default to run for 48 hours. If an
email is provided during execution, a message will be sent to your inbox from the HPC system when
each job has completed. To check in on a currently running job, the squeue command can be issued
to see if a job has already started running or is pending to get started.
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7. CONCLUSION

In this follow-on work we expand our fuzzing campaigns on HPC resources from a single node [5]
to multiple nodes, up to four nodes. Two CGC binaries, CROMU-9 and NRFIN-78, were selected
for investigation and fuzzed with AFL version 2.52b for 24 hours on two different parallel file
systems: Lustre and GPFS. The hardware employed consists of 36 physicals cores per node and
resides on the SRN HPC cluster Ghost.

Each fuzzing campaign consists of a set of 20 samples, in order to generate statistical box and
whisker plots. We progressively saturate nodes with coordinated AFL tasks and measure the
resulting coverage (bitmap percentage) over the course of 24 hours. Varying the degree of node load
along with parallel file system type, we seek to understand how to best tune the environmental
variables so as to maximize the coverage for a given binary under test.

It is a generally accepted practice to fuzz a binary for no less than 24 hours, however we have
identified ways to accelerate coverage should time be a constraint. While the results may differ for a
particular binary under test, we have observed increased coverage in a shorter time period for both
the CROMU-9 and NRFIN-78 binaries when conducting fuzzing operations on a GPFS parallel file
system as compared to Lustre. Lustre is a widely used and robust parallel file system designed for
HPC applications, however GPFS contains additional performance enhancement features which are
advantageous for applications performing substantial I/0 operations, such as fuzzing.

Establishing a testbed for a fuzzing campaign, which in this case consisted of 20 samples per
campaign, is a time-consuming task within itself. For our work, one campaign is equal to one box
and whisker data point on the coverage plots presented above in the Single-Node Fuzzing and
Multi-Node Fuzzing sections. Given two binaries under test, three node counts (one, two, and four
nodes), and nine unique numbers of AFL tasks per node, we created 54 campaigns (each composed
of 20 samples, for a grand total of 1,080 fuzzing experiments) in the scope of this work. In order to
simplify the process and reduce the time required to build a campaign, we created a Python tool to
automate the process. The resulting tool is called BlueClaw, and it is designed to operate exclusively
on HPC systems. That is, it contains logic to seamlessly scale a fuzzing campaign to as many nodes
as desired. It is a command line interface (CLI) driven application that offers significant flexibility
and tuning of parameters to suit almost any need. To that end, it supports generating testbeds from
scratch as well as continuing previously run fuzzing experiments. The tool is available internally on
the SRN network at Sandia. Please contact Sandia National Laboratories for access.
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