
UCRTFJC-127501
PREPRINT

A Production Code Control System for Hydrodynamics
Simulations

D. M. Slone

This paper was prepared for submittal to
The O’Reilly Perl Conference

San Jose, CA
August 19-21,1997

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

A Production Code Control System for Hydrodynamics
Simulations

Dale M Slonel

Introduction
We describe how the Production Code Control System (pCCS), written in Perl, has been used to control and
monitor the execution of a large hydrodynamics simulation code in a production environment.We have been able to
integrate new, disparate, and often independen~ applications into the PCCS thmework without the need to modify

any of our existing application codes. Both users and code developers see a consistent inttxface to the simulation
code and associated applications regardless of the physical platfom whether an MPP, SMP, server, or &sktop
workstation. We will also describe our use of Perl to develop a configuration management system for the simulation
code+as well as a code usage database and report generator.

We used Perl to write a backplane that allows us plug in preprocewm the hydrocde, postprocessors, visualization
tools, persistent storage requests, and other codes. We need only teach PCCS a minimal amount about any new tool
or code to essentially plug it in and make it usable to the hydrocode. P(XS has made it easier to link together
disparate codes, since using Perl has removed the need to learn the idiosyncrasies of system or RPC programming.
The text handling in Perl makes it easy to teach PCCS about new codes, or changtx to existing codes.

Hydrodynamics
Ina basic description, hydrodynamics codes compute material properties such as velocity, density, pressure, or
temperature as a fnnction of time and space in response to external forces. Such codes first create a grid or mesh
that approximates the geometry of interest. The grid is initialized at either the grid points or cells (a cell is created

1. Computer Scientist, Scientific Computing Applications Division, Lawrence Livermore National Labora-
tory, Livermore, CL 94551. slone3 @llnLgov

‘Ms work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore
National Laboratory under the contract number W-7405-Eng-48

Page 1

by joining adjacent &id pointa) with the appropriate mataial proper’ties. The figure below ahow a typical grid. At

each stepof the simulation, approximations to the differential equationa that describe conservation of maaa,
momentum, and energy are solved. Tkrese solutions allow the matezial to respond to the external forces. The only
other piece of the ayatem is something that dcacribea the change in density and internal energy (or volmne and
temperature) with pressure. This is known ax an equation of state. We know from experience with water in ita other

two main forms (icc9 docxn’t count,) that material propades can change quite dramatically over even a small
temperature range.

Aa an example of problems that we might run with a hydrocodq the figure below ahow a aesies of anapahots from a
shock jet simulation. The pictures are a slice through a cylinder that contains explosives (to the right of the rotated
V in the upper left) and metal (to the left of the explosives). The colors represent the speed of the material, with
blue being slowcxt and red faatwt). Time proceeds left to right and top to bottom.

Page 2

some flavor of Unix. In addition, B division has a few SGI R1OOOOworkstations that can also run the code. TIE
platform situation is quite dynamic. The CS2 is less than four years old, and except for the YMP, it is the oldest of
the machines at the center. The DEC is not quite a year old; the center is in the process of installing a cluster of five
more DECS. The SP2 is also less than a year old. It is part of the ASCI program that is building teraflop computers.
Each new platform requires a pm of the entire code and all of the libraries, which is getting easkx now that we’ve
done a few.

We use a Perl tool called cave to handle all of the configuration management issues associated with a long-lived
code with many developers. Cave sits on top of RCS and allows developers to keep separate workspaces and then
merge their resulting changes. We are in the process of adding regression testing to cave.

Pees
An individual run can last as long as two weeks on a Cray-YMP - continuously! The machines are tuned to provide
the best system response for just such long-lived jobs. A batch queue system is used to keep the machines running
near their tuned optimization. In addition, there are interactive CPUlimits (ss little as ten minutes) to prevent users
and developers horn degrading performance with interactive jobs that could be better run on local workstations.
Unfortunately, a problem that runs two weeks may need to notify the user of something important. The Production
Code Control System (PCCS) was written in Perl to facilitate running long batch jobs.

PCCS works by scanning a user’s input deck for syntactical errors, stopping the run and pointing out the error
before the job is started in the batch queue (this is very important when users are charged by CPUcycles.) PCCS
then fm off the job in the batch queue using forks to be able to communicate with the running job. Messages from
the code are captured by PCCS and relayed to the user if necessary. The users may talk to the code at any time to
get status information. PCCS understands the messages given by the code and reacts as m.quired (or as the user
would in an interactive session.) PCCS will start a graphics session if desire4 or link a mesh created elsewhere with
the code, or
switch running modes for the hydrocde itself.

PCCS has been instrumental in allowing long-lived problems to run without interference from the user even as the
operating system gets bogged down or even hiccup. Because the hydrocode is so big, and users want to run as iarge
a problem as possible, we can quickly fill up disk space (on some machines, each user has only a small allowed
partition of memory andlor disk space to work with.) A typical dump, which contains all the information needed to
restart the problem, might be 25Mbytes large. PCCS watches the user’s space quota and moves intermediate restart
fiks to a tape storage system behind the user’s back. The user can specify how many files to keep on dislGbut most
let PCCS deal with the whole issue. In addition. PCCS can force the hydrocode to make a restart file if it catches a
signal from the system that tells users to save their nmning job if possible. PCCS has allowed many users to have a
running job come Monday morning when the machine had to be restarted sometime over the weekend.

PCCS also is used to run parallel jobs on the MPPs without the user having to understand the subtleties involved
without getting a job running on the different parallel schedulers.

Adding capability
One of the first capabilities that we added to PCCS was an interface to a portable visualization tool call MeshTV.
Before MeshTV, visualization was performed on the Crays with a tool that was designed for this code to run only
on the Crays and display on only one type of terminal in the user’s office. With the advent of powerfid workstations
and X-terminals, anew tool was developed that used a common data formaL rather than one specifically for our
code. We changed the hydrocode to use the common data format for graphics files but then added routines in PCCS
to talk to MeshTV in the same manner as hydrocode. We now control the viaualixation from within PCCS; users
can execute different sets of graphics commands at different times during the simulation by specifying to PCCS
what is to be done when. PCCS uses the current cycle or time to decide what graphics to be performed.
There are other graphics codes that PCCS can run by executing posl#mceiwrs and starting up the other graphics
codes. This too is specified by the user in the input deck. As new graphics capabilities have been developed, we
have needed only to teach PCCS about them, the hydrocode hasn’t need to be changed since we started writing in a

Page 4

