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Abstract—Short term load forecasting (STLF) is a fundamental
component of demand response programs in smart grids. Recent
literature has focused on complex neural networks and deep
learning models for solving STLF. While these models work well
for load forecasting with complex non-linear relationships, they
have been shown to be less effective than simpler univariate
models for STLF problems with under a 6 hours horizon. Given
the lack of multivariate data (such as temperature) in many
practical datasets, we need better univariate prediction models
for STLF. By partitioning the dataset by temporal features, we
develop a novel ensemble learning method that exploits daily
seasonality in electricity consumption data to improve accuracy
of popular univariate models. We train an ensemble of models
from the dataset partitions. We develop a variety of methods,
including Ridge Regression, to increase the robustness of the
ensemble prediction.

To show the effectiveness of our approach, we perform detailed
evaluation using an aggregated user electricity consumption
dataset collected by the Los Angeles Department of Water and
Power (LADWP). We select four popular prediction algorithms
in literature for our experiments, including Kernel Regression
(KR), Support Vector Regression (SVR) and neural network
approaches. We compare the performance of these algorithms
applying our ensemble approach to training only one single
model. Our approach leads to an 11.2% decrease in mean
absolute percentage error (MAPE) and 21.3% decrease in root
mean squared error (RMSE) over the single model approach
for KR, and a 30% and 32.4% decrease in MAPE and RMSE
respectively for SVR. These ensemble models also outperform
the neural network approaches.
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Learning; Ensemble Learning;

I. INTRODUCTION

Accurate short term load forecasting (STLF) is essential for
the successful implementation of smart grids. In particular,
it plays an important role in facilitating demand response
programs [1]. Demand response programs bring many benefits
to smart grids, including reduction in electricity prices and
reducing the risks of power outages by balancing power
demand and supply in the market. In order to make appropriate
demand side management decisions like curtailment strategies,
accurate predictions of demand over short horizons are needed

[2].
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STLF is very well studied and many models have been
proposed for accurate load predictions [3]. One class of
models used for STLF are univariate methods, where only the
consumption time series is used as input for predicting future
load consumption. Such models are studied because non-load
data can be missing for various reasons, for example, in [4],
their dataset from Brazil has no weather information due to
difficulty in acquiring such data.

In recent years, advancements in processor computational
power facilitated the rise of deep learning techniques. These
complex models have the capacity to model highly non-linear
dependencies. Researchers have attempted to bring deep neural
network methods into load forecasting and acquired promising
results [5] [6]. However, such methods usually require large
amount of training data and long training time as a tradeoff
for being able to learn the complex relationships between the
inputs and outputs. In [7], it is also shown that neural network
models may not work too well if the problem is not complex
enough (prediction horizon is under 6 hours) to require the
high non-linearity of such models. STLF is one such case,
especially when the data is an aggregation dataset where the
time series is an aggregation of the load of many customers.
The aggregation process smooths the data and reduces the
effects of noise. Therefore, for improving the accuracy of this
problem, developing more complex models may not be a good
direction to proceed. Instead, we believe ensemble learning
is a better way to enhance the accuracy of existing models.
Ensemble learning [8] is the use of multiple models, typically
simple ones, to model one hypothesis. It is especially effective
in the case where there is great diversity among the models.

We propose a novel ensemble learning method that parti-
tions the dataset by temporal features. We call this Temporal
Ensemble Learning (TEL). Due to the lack of non-load data,
we utilize the only exogenous information available - the
temporal dimension. The motive for this approach is the high
daily seasonality in customer consumption patterns, e.g. load
peaks at similar daily times. To exploit this information, we
partition the data temporally and develop sub-problems of
forecasting at specific time ranges per day. Each sub-problem
is then trained on datasets with lower variance, allowing it
to find a better fit. Our model differs from popular ensemble
models like Random Forest [9] in that there is no randomness
in the partitioning of the dataset. Instead, we exploit the inherit



temporality of the dataset by choosing time of day as the
partitioning feature and vary the threshold for partitioning as
a hyperparameter. The models may become less robust due to
each model seeing a smaller amount of data. We overcome
this problem by combining the results of the ensemble with
three different methods, which will be detailed in Section IV.

Our paper makes the following novel contributions:

1) We develop a novel ensemble learning method partition-
ing with temporal features that significantly improves the
accuracy of existing prediction models for STLF.

2) We develop a novel method for combining results of
the models in the ensemble through ridge regression
that overcomes the challenge of training with smaller
partitioned datasets.

3) We show high accuracy prediction results on a real-life
electricity consumption dataset from Los Angeles with
our approach.

II. PROBLEM DEFINITION

In this paper, the problem of short term load forecast-
ing (STLF) is studied. Given a time series with 7' values
X ={X;, Xo, X3, ..., X1}, the goal is to solve the multi step
ahead prediction problem. With values of the time series up
to time ¢, we would like to predict the values of the following
W intervals. We take the approach of multi-step forecasting
instead of one-step ahead in this paper, i.e., W > 1.

Denote X,.;, as the values of the time series from interval
a to b. The prediction problem is then formally written as
finding the prediction function f where

Xirrtow = f(Xa:t) (D

such that the error function F(Xyy 11w, Xep1qiw) is
minimized.

The training and testing dataset is formed by shifting a
sliding window across the full time series. Size of the window
S determines the history size to take per data point, i.e., the
number of intervals before the prediction is made to take as
input. Each shift of the window creates a data point, where
the S values inside the window is taken as input, and the W
values following it are the target values to predict.

The accuracy of the prediction is evaluated by Mean Ab-
solute Percentage Error (MAPE) and Root Mean Squared
Error (RMSE), which are two commonly used evaluation
measures for STLF problems. We denote W as the number
of intervals to predict and N as the number of testing data
points. X? = {Xi, X4 Xi, ..., Xi,} for i = 1..N denotes
the predicted values and X° = {X{, X& Xi .. X} for
1 = 1..N denotes the actual values.

N W (Xi_Xi
MAPE:ZZ< JXl._ ]> le )
i=1 j=1 J
N w ‘' i 2
RMSE — | =L (% -x) 3)

NW

MAPE computes the mean percentage errors of all the
predicted values from its actual values. This measure of
evaluation normalizes the results such that the magnitude of
error is not affected by how large the values of the outputs
are. RMSE on the other hand is greatly affected by the actual
values of the outputs, however, it is more sensitive to outliers
because the squared of the deviation between the prediction
and actual value is taken.

III. BACKGROUND
A. Related Work

Popular approaches for STLF include the use of statistical
methods for modelling time series, e.g. ARIMA [10]. Tradi-
tional machine learning models like Support Vector Regression
[11] are also suitable for solving STLF.

Artificial Neural Networks are also popular for their ability
to model any function with no assumptions on the data struc-
ture. Multi-layer Perceptron networks are widely used for their
simplicity [12]. Other kinds of neural networks are also used
for performing dimension reduction on time series data, for
example, self organizing maps [13]. Recently, deep learning
techniques are gaining popularity, and researchers have tried
various deep network models to improve the accuracy of STLF
models [5], [6].

Our proposed approach draws inspiration from ensemble
methods like Random Forest [9]. However, unlike these tech-
niques, we do not randomize our partitioning step.

We are not the first work to propose the use of temporal
dimension for STLF. [14] defines one step ahead prediction
models for each timestep in a day. [15] solves the hour ahead
prediction problem by defining 12 models, one for each hour
of the day. Our work is unique in that we define models that
contain overlaps in their prediction horizon. We also discover
similar models via ridge regression so that their knowledge
can be shared. We show that combining the results of multiple
models can improve accuracy of the predictions.

B. Baselines

In our experiments, we used the following algorithms as
baselines for fitting the prediction model. We picked machine
learning based techniques that have been shown to work well
for the STLF problem, and experimented with using TEL on
these algorithms.

1) Kernel Regression (KR): Linear regression is the most
simple kind of regression, where we try to find a weight vector
W such that it the multiplication of it with the input data X,
that is, WX is as close to the output Y as possible.

However, this only captures linear relationships, so it is
often kernelized [16] to allow non-linear dependencies to be
modeled. We use RBF kernels in our experiments.

2) Support Vector Regression (SVR): SVR [17] is an ap-
plication of the popular idea of support vectors in machine
learning for solving the regression problem. Similar to KR,
we use RBF kernels [18] to allow it to capture non-linear
dependancies.



3) Multi-layer Perceptron (MLP): MLP is the most basic
kind of neural networks. [19] It is composed of perceptrons
that take a weighted average of the inputs, pass it through an
activation function, and output it. Its output would usually be
used as the input for the next layer of perceptrons, creating
multiple layers that can model complex functions.

4) Recurrent Neural Networks (RNN): RNN is a kind of
neural network that specializes in capturing sequential rela-
tionships. Each iteration takes both input features and weights
from the previous iteration as the input. Long Short Term
Memory (LSTM) [20] is a variation of RNN which makes use
of LSTM nodes that can retain values through many iterations
by using gates to control when and how much to “forget” old
values. This overcomes the problem with traditional RNNs
where it is difficult to capture long term dependencies. We
use LSTM networks for our experiments.

IV. METHODOLOGY

Electricity load consumption time series show great daily
seasonality. Load usually rise and drop in similar times of the
days. This can be seen in the actual load plot of Fig. 2 and
3. We want to capture this information in a prediction model
without making it more complex by increasing its number of
inputs. To do so, we propose the Temporal Ensemble Learning
(TEL) model, which is to partition the dataset by the prediction
time of the day, and train models for each partition.

Suppose we were to partition the dataset into G groups.
We first split the time of a day into G consecutive periods of
equal length. For example, if G = 3, we can split the day into
periods 12am-8am, 8am-4pm, and 4pm-12am. The data points
of the training and testing dataset is then partitioned into the
corresponding period if the starting prediction time is in the
period. In the previous example, a data point for predicting
the values from 2pm would be grouped into period 8am-4pm.
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Fig. 1. Combining results by taking weighted average output from all models.

By doing this partitioning, we expect data points within
each cluster to have lower variance and less outliers. This
allows each model to be trained to find a better fit for its
partition of data. However, with more than one model for
making predictions, there needs to be a way to combine the
results of all models to give a final result. We develop three
distinct methods that differ in the way the model weights are
allocated.

1) Take the result from the model that was trained on
samples in the same group. To predict the load at 4pm,
use the model with 4pm in its period of time of the day.

2) Take a weighted average of the outputs of all models.
The weights are determined arbitrarily. In our experi-
ments, we take the weight 0.5 for the model of the same
group, and the remaining weight spread evenly among
the rest of the models.

3) Take a weighted average of the outputs of all models,
with the weights trained by the ridge regression defined
below.

Denote X as the W actual values of the i-th data point in
the dataset, where W is the prediction horizon and D is the
number of models, then X is the W x D matrix with the
predicted values given by the models for the ¢-th data point.
The ridge regression for method 3 can then be written as

2.

i€{training}
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where w is the vector of weights we are training for.

We train a set of weights for data points belonging to
each partition. Given the training set of data points belonging
to one partition, we find the prediction that is outputted by
each model, then find the weights by optimizing the objective
function in Equation (4). The intuition behind this is that there
may be models that are similar, thus we can place higher
confidence on the outputs of these models and give their
outputs a higher weight. As an example, the data points from
2am and 6am may follow similar patterns, thus the regression
can learn to take higher weight from the model for 6am when
predicting for 2am.

Figure 1 illustrates the process of combining outputs of the
models. Considering an incoming input ¢ that is in the same
partition as data points model #i trained on. For method 1,
the weights have values 0 except for w; with value 1. For
method 2, the weights are arbitrarily determined as described
previously. For method 3, the weights are trained by ridge
regression as defined above.

V. EXPERIMENTAL RESULTS
A. Dataset

Our experiments are carried out on electricity consumption
data collected by LADWP from May 21st 2015 to October
21st 2015. The data is an aggregation of 50k customers’ data
and gives the aggregated power consumption in 15 minute
intervals. This gives us a total of 154 days of data with 96
values per day. We divide the data into 3 groups: the first 70%
of the days for training, the following 15% for validation, and
the last 15% for testing.

12 intervals contain values of 0. Data points containing these
values are discarded as they are invalid.

B. Experimental Setup and Hyperparameters

We investigated the problem of forecasting 1 hour of load
into the future, i.e., number of prediction intervals W = 4.

Our experiments are performed on a Ubuntu 14.04.4 LTS
system with 32 cores, 128 GB RAM and a clock speed of 2.6
GHz. The GPU used was Nvidia Tesla K40C.



For input features, we experimented with taking {4, 16, 32}
intervals’ values before the intervals to be predicted, we call
this the history size. Also, the values of the intervals {0, 1,2}
day(s) before at the same time of the day and the history
on that day are taken as inputs. For example, if we take a
history size of 4 and number of days in the past as 1, the
input would consist of a total of 12 values - 4 values from
before the prediction time on the prediction day and 4 more
for that of the previous day, plus 4 more values which are
the values in the prediction period but on the previous day. A
binary value indicating whether the time of prediction is on a
weekday or weekend is also included. Temperature data was
not used because geographical location of the customers were
not provided in the dataset.

For TEL, information regarding the time of prediction is
already embedded in the method itself, so we do not include
input features that specify such information. We use training a
single model as a baseline. For the single model case, a binary
vector is used to indicate which partition the data point would
have been categorized if TEL is used. This provides the time
of day information for the model. For both methods, we vary
the number of partitions as a hyperparameter.

For MLP and RNN models, besides the hyperparameters
that relates to the input features, we vary other hyperparam-
eters, like the number of hidden layers and units, and use a
validation dataset to determine the optimal hyperparamters by
grid searching.

C. Results

TABLE I
SUMMARY OF STLF RESULTS FOR VARIOUS MODELS AND METHODS.

TEL Single Model
MAPE(%) | RMSE | MAPE(%) | RMSE
KR 1.03 124.41 1.16 158.13
SVR 1.05 126.41 1.50 186.97
MLP 2.63 292.52 1.56 181.10
RNN 2.58 266.75 1.56 200.54
TABLE II

SUMMARY OF BEST HYPERPARAMETERS CHOSEN FOR EACH METHOD.

History | No. of | No. of days | Method of
size Groups | into past combination
KR (TEL) 4 96 1 Method 3
KR (Single) 16 24 1 N/A
SVR (TEL) 4 96 1 Method 3
SVR (Single) | 16 1 1 N/A
MLP (TEL) 32 16 0 Method 1
MLP (Single) | 32 1 2 N/A
RNN (TEL) 32 16 2 Method 1
RNN (Single) | 32 1 0 N/A

Results of the experiments are summarized in Table I. It
shows the MAPE and RMSE for the combination of each
algorithm and TEL or single model approach. Figure 2 and
3 plots the one hour ahead predictions made by KR and SVR
on the testing dataset in 5 days to illustrate its accuracy.
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Fig. 2. One hour ahead predictions in 5 days made by KR with the testing
dataset.
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Fig. 3. One hour ahead predictions in 5 days made by SVR with the testing
dataset.

The hyperparameters which gave the best model for each
algorithm is shown in Table II. History size is the number
of intervals to take as input before the prediction. Number
of groups is the number of partitions. Number of days into
past is the number of past days data to take as input. Method
of combination is the method out of the three described in
Section IV chosen to be used for combining results of the
multiple models.

D. Discussion

From the results shown in Table I, we can see TEL
performed better than single model for KR and SVR. The
best performance was given by Kernel Regression, and using
TEL over single model improved the RMSE by 21.3% and
the MAPE by 11.2%. The decrease in error was even greater
for SVR, with RMSE dropping by 32.4% and MAPE by 30%.
This shows that multiple simpler models lead to more accurate
models than trying to model the behavior with one model for
a high complexity problem. The opposite holds true for MLP
and RNN, where TEL performed worse than single model.
Overall, TEL for KR and SVR outperformed single model for
MLP and RNN. We draw a similar conclusion as [7] where
neural network approaches does not perform well for STLF
compared to simpler models. This may be due to the problem
being simple enough for KR and SVR to easily be trained
to capture the patterns, while neural networks are harder to
train comparatively due to its greater number of weights and
hyperparameters. For the same reason, KR and SVR benefits
from using TEL while neural network approaches performed



worse, since each model in TEL solves a further simplified
STLF problem than the single model approach.

Observing the hyperparameters that gave the best perform-
ing models in Table II, we can see how some of the design
intuitions led to a better performing model. For all models, we
can see that using at least 1 previous day of data for the same
interval gave better results than using only current day data in
the validation step. For the simpler models like KR and SVR,
96 groups gave the best results. Since these models are unable
to capture complex relationships between the input features
compared to neural network approaches, they perform better
when the prediction task is as simplified as possible. This
statement is further supported by the fact that KR and SVR
chose 4 as the history size, indicating that the most important
features for predicting 1 hour ahead is the hour before it and
also the values of the data for the hour of prediction in the
previous day.

Finally, for the best performing models KR (TEL) and SVR
(TEL), method 3 is chosen for the method of combining results
over the other two methods. This shows that allowing models
in the ensemble to make use of knowledge learned in models
with similar characteristics improved results.

VI. FUTURE WORK

We will explore how the results hold when the prediction
horizon is extended. As the problem gets more complex, it is
possible that neural network models will perform better than
KR due to their high modeling capability. We will investigate
the results for 6 and 24 hours ahead prediction horizon.

Aside from splitting the dataset by time of day, other
features should also be looked into. The most relevant one
is training separate models for similar users. Aggregation
of users with similar characteristics [22] is a popular topic.
Performing STLF on a more local level [23] is also gaining
interest. By grouping similar users to train models, it can
improve results for local level STLF, as information learned
by the model can be shared among similar users to overcome
the challenge of higher noise.

We will investigate the application of TEL to statistical
methods like ARIMA [10] and see how it compares to
machine learning approaches. The performance of the model
can also be compared to other ensemble learning methods
like Random Forest [9] to highlight the benefits of utilizing
temporal features for the partitioning.

VII. CONCLUSION

In this paper, we investigated the STLF problem for electric-
ity load consumption prediction. We proposed the Temporal
Ensemble Learning approach which partitions the dataset by
temporal features to create an ensemble of univariate models.
For 1 hour prediction horizon, this method was shown to
improve accuracy for simpler machine learning models like
Kernel Regression and Support Vector Regression, while the
relatively more complex neural network models did not work
well. One reason for this was the simpler models suffice for
the 1 hour ahead STLF problem. Partitioning the dataset also

reduced the number of data points for the training of each
model, making it more difficult to train neural networks than
simpler models.
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