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Abstract—A challenge in applying image processing algorithms
to scientific data is the variation within and across images in
a data set. This makes it difficult to select parameters for the
algorithms, especially when the data set is large and the variation
is unknown. Using the task of segmentation of retinal images, we
discuss the challenges that arise in selecting parameters for even
a relatively simple algorithm. We show that the availability of
ground truth results could make the identification of parameters
subjective and propose a simple idea that could benefit the
selection of a single parameter.

Index Terms—image segmentation, parameter selection

I. INTRODUCTION

Selecting parameters for image processing algorithms is
often done by trial and error. As algorithms become more
complex, and the number of parameters increases, finding an
optimal set of parameters is a challenge. This is exacerbated
when there is a large variation both within and across images
in a data set, and the size of the data set precludes a visual
inspection of the results. Processing a small subset of images
to generate ground-truth results for comparison can be quite
helpful, but generating such a set is often tedious and the
results are subjective. We are therefore interested in alternate
ideas for correctly processing large-scale image data sets.

We conduct our study using the public-domain, STARE data
set [1], which is a collection of 400 retinal images that were
used to develop automated methods to locate and outline blood
vessels in the images. Ground truth results are available for
twenty images, generated by two researchers, “AH” and “VK”.

Figure 1 shows two images — one normal and one diseased.
There is a large variation in intensity within each image, with
several bright and dark regions. The intensity along a blood
vessel is not always uniform and a vessel may have both bright
and faint parts. Blood vessels can be quite thin and faint, like a
filament, or wide and bright. Other nearby blood vessels may
also make it difficult to segment the image correctly.

This data set has been analyzed extensively, using methods
ranging from traditional image processing to classification
algorithms and even deep learning to directly map the image
to the associated disease. It is not our intent to generate yet
another algorithm for segmenting these images. However, the
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Fig. 1. The green band of two images, one normal (left, im0082) and one
with retinitis (right, im0044), from the STARE data set. The green channel
has the highest contrast between blood vessels and other retinal structures.
We show the negative of the images for clarity.

variation in the images, the availability of the ground truth,
and the relatively large size of the data set makes this an ideal
test bed to understand how we might select the parameters for
typical image processing algorithms.

Fig. 2. The ground truth images corresponding to the two images in Figure 1.
The top row was generated by researcher “AH” and the bottom row by
researcher “VK”. A black border has been added to each image for clarity.

Figure 2 shows the two ground truth images associated with
each image in Figure 1. The two sets of images are quite
different, as one identifies several thin blood vessels that are



not considered in the other. We also observe that humans
make assumptions in generating the ground truth, such as
identifying pixels in a faint region as vessel pixels as they
are the continuation of pixels in a vessel in a brighter region
nearby. However, such human knowledge is difficult to encode
into an algorithm, which may limit the accuracy obtained by
the algorithm. Therefore, we need to be careful in using ground
truth results to evaluate algorithms or to set parameters.

II. PROPOSED METHOD

In our study, we use a simple gradient-based algorithm to
detect the blood vessels in the images. We start by smoothing
the image using a Gaussian filter of width 7 that is applied
twice to the image. This reduces the noise in the image and
makes it easier to select parameters for subsequent steps. Next,
using the definition of gradient from the work of Horev et
al. [2], we calculate the vertical gradient at a location (x, y)
in the image I as follows:

gy(x, y) =I(x, y + 3) + I(x, y + 2) + I(x, y + 1)−
I(x, y)− I(x, y − 1)− I(x, y − 2),

and the horizontal gradient as

gx(x, y) =I(x+ 3, y) + I(x+ 2, y) + I(x+ 1, y)−
I(x, y)− I(x− 1, y)− I(x− 2, y)

Other authors have proposed calculating the gradient at several
angles [3], but we found that using just two gradients was not
only adequate, but also reduces the compute time and memory
requirements. We then observed that in the region of a blood
vessel, the vertical gradient has a low, negative value on the
top part of the vessel, and a high, positive value below, while
the horizontal gradient has a high, positive value on the left
and a low, negative value on the right. So we can identify
the location of a vessel by searching for peaks and valleys
that are adjacent, with the peak greater than a threshold, thrg ,
and the valley less than a threshold, −thrg . Typically, these
peaks and valleys were separated by a small number of pixels,
which we set to 1; this finds the skeleton of the vessel. We then
use region growing and morphological operations to identify
pixels that belong to the wider blood vessels and to smooth
their boundaries. Our approach is a much simplified version
of the one by Mendonca et al. [3] that combines detection of
centerlines with morphological region growing.

The segmentation of an image results in assigning a label
to each pixel to indicate if it is part of a blood vessel or the
background. We can then use the ground truth images to create
a confusion matrix (Table I) that counts the number of pixels
that are correctly or incorrectly identified. For example, TP
(true positive) is the number of blood vessel pixels that are
correctly identified, while FN (false negative) is the number
of blood vessel pixels identified falsely as a background pixel.

Next, using the values in the confusion matrix, we can
generate various metrics [4] that indicate the quality of seg-
mentation as defined in Table II. For example, accuracy reflects
the fraction of pixels correctly identified as either blood vessel
pixels or background pixels, while sensitivity or recall is the

TABLE I
CONFUSION MATRIX USED TO GENERATE METRICS FOR SEGMENTATION

QUALITY

Predicted positive Predicted negative
Actual positive True positive (TP) False negative (FN)
Actual negative False positive (TP) True negative (tN)

fraction of the blood vessel pixels that were correctly identified
as such, and precision is the fraction of true blood vessel pixels
among those labeled as such in the segmentation.

TABLE II
SEGMENTATION QUALITY METRICS

Metric Formula
Accuracy (TP+TN)/(TP+TN+FN+FP)

Error (FP+FN)/(TP+TN+FN+FP)
Sensitivity (= Recall REC) TP/(TP+FN)

Specificity TN/(TN+FP)
False positive rate (FPR) FP/(TN+FP)

False discovery rate (FDR) FP/(TP+FP)
Precision (PREC) TP/(TP+FP)

Matthews Corr. Coeff. (TP*TN-FP*FN)/
((TP+FP)(TP+FN)(TN+FP)(TN+FN))0.5

F0.5 1.5 * PREC * REC /(0.25 * PREC + REC)
F1 2.0 * PREC * REC /(PREC + REC)
F2 5.0 * PREC * REC /(4.0 * PREC + REC)

Note that a metric reflects a specific aspect of the quality
of segmentation and we may need more than one metric to
evaluate the quality of segmentation for a given value of thrg .
For example, we want to correctly identify the blood vessel
pixels (=TP), but also want to reduce the number of pixels
incorrectly identified as blood-vessel pixels (=FP). Further, it
is well known that for unbalanced data sets, such as ours, with
far more background pixels than blood-vessel pixels, some
error metrics, such as accuracy can give misleading results.

In our problem, we need to determine one parameter, the
gradient threshold, thrg , for segmenting the 20 test images.
Each test image has two associated ground truth images. We
want to address three questions:

• Which metric, derived from the ground truth, should we
use to determine thrg?

• Does the subjectivity in the two ground truth images have
an effect on the choice of thrg?

• Is there any other metric we can use to determine thrg?
To address the last question, we observed that the gradient

threshold, thrg , determines which pixels in the image are
considered to be blood vessel pixels as they have a high
contrast or gradient with the background. When thrg is very
small, many objects, that is, connected pixels that meet the
threshold criterion, are created. Some of these objects reflect
the noise in the images. As thrg is increased, the number of
objects reduces, until just the brightest blood vessels, with
the highest contrast, are detected. Since we also want to
detect the fainter blood vessels, a moderate threshold seemed



appropriate. This prompted us to consider the number of
objects detected in the image as another metric for selecting
thrg . Note that this metric does not depend on the availability
of the ground truth images.

III. EXPERIMENTAL DATA AND RESULTS

To address the three questions posed in Section II, we first
segmented the 20 test images using a set of thresholds in
the range [0.0001,0.009]. Figure 3 shows the segmentation
corresponding to the test images in Figure 1 for three different
thresholds — 0.0001 (the smallest threshold), the optimal
threshold for each image (identified later in this section), and
0.009 (the largest threshold). We observe that the very small
threshold identifies several spurious blood vessels outside the
retina, while the very large threshold misses several obvious
blood vessels. This confirms that we have selected a reason-
ably large range of threshold values for our experimentation.

Fig. 3. The blood vessels identified in the two images in Figure 1 — im0082
(left) and im0044 (right) — as a function of three different gradient thresholds.
Top: 0.0001; middle: 0.0025 (left) and 0.002 (right); bottom: 0.009.

We then compared the segmented images with the two
ground truth images (“AH” and “VK”) and generated the
metrics in Table II, which are presented in Figure 4 for the
first ten test images. For comparison, the range of values of
sensitivity, specificity, and accuracy from previous studies is
[0.67,0.75], [0.96,0.98] and [0.90,0.96], respectively, across all
20 images in the data set [5]. We make two observations:

• First, the results with the two ground truth images tend to
be similar, in terms of the shapes of the curves, though the

values of the metrics obtained for each are different. One
difference we note is with the accuracy plots (panels (e))
where the black dotted curve for image 139 has a different
shape between the two ground truth images. This suggests
that even though the two sets of ground truth images are
clearly different, they are not different enough for many
of the images to change the shape of the curves. That is,
the fine structures identified in the “VK” images appear
not to influence the choice of threshold.

• Second, it is unclear from these plots how we should
select the optimal threshold to use for an image. For
example, the accuracy appears to increase with increasing
thrg , when only the very bright blood-vessel pixels are
detected. In fact, it is the resulting increase in the large
number of background pixels that improves the accuracy
rather than the correct detection of the blood vessels.
Further, for the three F-scores, the values are sometimes
nearly constant over a range of thresholds, making it
unclear which threshold value is optimal.

We next considered two commonly used curves to determine
the optimal threshold - the precision-recall curve and the
ROC curve that relates sensitivity to the FPR, which is
(1.0-specificity). Though ROC curves are frequently used to
determine thresholds, they are considered to be less accurate
for unbalanced data sets, such as our test images [4]. Figure 5
shows these curves for all twenty test images, in two sets of ten
each, for the two ground truth images. Typically, the threshold
is selected as the knee of these curves as we want both a high
precision and a high recall, if using the precision-recall curve,
or a high true positive rate with a low false positive rate, if
using the ROC curve.

Figure 6 shows our proposed metric, the number of objects
detected in the images, as a function of the gradient threshold.
The values of the threshold at the knee of the curves in Fig-
ures 5 and 6 are summarized in Table III. This table indicates
that there is little difference between the thrg values derived
from the two ground truth images. One data point that stands
out is im0005, where the ROC curve gives different optimal
threshold values (0.004 and 0.006). The ground truth images
for this test image (Figure 7) are quite different as “VK”
identifies large blood vessels near the center of the image,
while “AH” does not. Interestingly, the precision-recall curve
does not seem affected by this difference, though the identical
threshold value of 0.006 may be a chance coincidence.

More interestingly, when we examine the results for im0005
at the the three different optimal values of thrg — 0.0025,
0.004, and 0.006 — identified in Table III, we find that the
images are very similar. This suggests that there is a range
of gradient threshold values over which the segmentation
does not change by a large amount. We also observe that
the threshold at the knee of the number of objects curve is
nearly the same across the different images, though the images
themselves are quite different. This suggests that our algorithm
for segmenting the retinal images is robust to the choice of
the gradient threshold, which can be chosen independent of
the ground truth images and the variation in the images.
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Fig. 4. Quality metrics for the first ten test images as the gradient threshold is varied. Rows 1 and 3 are with the “AH” image and rows 2 and 4 are with
the “VK” image. Rows 1 and 2, from left to right: F0.5, F1, F2, and MCC. Rows 3 and 4, from left to right, accuracy, FDR, sensitivity, and specificity.

(a) (b) (c) (d)

Fig. 5. The precision-recall curves ((a) and (b)) and the ROC curves ((c) and (d)) for all twenty test images, in two groups of ten each, using ground truth
“AH” (top row) and “VK” (bottom row) images.



Fig. 6. The variation in number of objects detected in the vertical and
horizontal gradient images for the first ten images (left) and next ten images
(right).

TABLE III
OPTIMAL THRESHOLD IDENTIFIED AS THE KNEE OF VARIOUS CURVES.

Image ROC-AH ROC-VK PR-AH PR-VK NumObjs
im0001 0.002 0.002 0.002 0.002 0.002
im0002 0.0025 0.0025 0.0025 0.0025 0.002
im0003 0.003 0.003 0.0045 0.005 0.0025
im0004 0.0035 0.003 0.0035 0.0045 0.001
im0005 0.006 0.004 0.006 0.006 0.0025
im0044 0.002 0.002 0.002 0.002 0.002
im0077 0.003 0.003 0.003 0.003 0.0015
im0081 0.0025 0.0025 0.001 0.0025 0.002
im0082 0.0025 0.0025 0.0025 0.0025 0.0025
im0139 0.003 0.002 0.0035 0.003 0.0025
im0162 0.004 0.0025 0.004 0.004 0.0025
im0163 0.0035 0.002 0.0035 0.0035 0.002
im0235 0.003 0.003 0.003 0.003 0.003
im0236 0.004 0.003 0.004 0.004 0.002
im0239 0.0045 0.0045 0.0045 0.0045 0.0025
im0240 0.001 0.001 0.001 0.001 0.0025
im0255 0.002 0.002 0.002 0.002 0.002
im0291 0.0025 0.0025 0.0025 0.0025 0.0025
im0319 0.0025 0.0025 0.005 0.0025 0.0025
im0324 0.002 0.0035 0.002 0.0035 0.002

(a) (b) (c)

(d) (e) (f)

Fig. 7. The blood vessels identified in image im0005. (a) original image (b)
ground truth “AH”, (c) ground truth “VK” that includes large blood vessels
near the center, (d) thrg = 0.0025, (e) thrg = 0.004, and (f) thrg = 0.006.
The gradient thresholds are the optimal values from Table III.

IV. CONCLUSION

In this paper, we considered the problem of selecting
parameters for an image segmentation algorithm. Using a test
bed of twenty retinal images and two ground truth images for
each, we investigated different metrics we could use to select
one parameter, a gradient threshold, used in our segmentation
algorithm. We found that even though the different metrics
and ground truth images gave different values for the optimal
threshold, these values were close enough and in a region
where the algorithm was relatively insensitive to the value of
the threshold. For this specific test bed, it appears that the
subjective differences in the ground truth images has little
influence on the choice of the parameter we were varying.
A simple metric that is independent of ground truth images
also gave good results, though we expect that designing an
algorithm robust to the choice of parameters is more important.
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