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ABSTRACT

The Spiking/Processing Array (SPARR) is a novel photonic focal plane that uses pixels which
generate electronic spikes autonomously and without a clock. These spikes feed into a network of
digital asynchronous processing elements or papes. By building a useful assemblage of DAPEs,
and connecting them together in the correct way, sophisticated signal processing can be
accomplished within the focal plane.

Autonomous self-resetting pixels (Asp) enable sPARR to generate electronic response with very
small signals—as little as a single photon in the case of Geiger mode avalanche photodiodes to as
few as several hundred photons for in-cmos photodetectors. These spiking pixels enable fast
detector response, but do not draw as much continuous power as synchronous clocked designs.
The spikes emitted by the pixels all have the same magnitude, the information from the scene is
effectively encoded into the rate of spikes and the time at which the spike is emitted.

The spiking pixels, having converted incident light into electronic spikes, supply the spikes to a
network of digital asynchronous processors. These are small state machines which respond to the
spikes arriving at their input ports by either remaining unchanged or updating their internal state
and possibly emitting a spike on one or more output ports.

We show a design that accomplishes the sophisticated signal processing of a Haar spatial wavelet
transform with spatial-spectral whitening. We furthermore show how this design results in a data
streams which support imaging and transient optical source detection. Two simulators support
this analysis: spice and sparrow. The cmos spice simulator Cadence provides accurate cMos
design with accounting for effects of circuit parasitics throughout layout, accurate timing, and
accurate energy consumption estimates. To more rapidly assess larger networks with more pixels,
sparrow is a custom discrete event simulator that supports the non-homogeneous Poisson
processes that lie behind photoelectric interaction. Sparrow is a photon-exact simulator that
nevertheless performs spARR system simulator for large-scale systems.
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1. INTRODUCTION

The Spiking/Processing Array (sparr) is an optical focal plane array with signal processing
embedded in the integrated circuitry. Signal processing has been embedded in focal planes at least
since Carver Mead [24] or Buchanan et al in 1994 [4]. Embedded signal processing continues to
more recent designs like MIT Lincoln Lab’s Digital Focal Plane Array [32], Sandia’s Ultra-High
Dynamic Range Focal Plane Array [30] and Hyper-Temporal Sensor [13] or the Event-Based
Sensor/Silicon Retina [6].

In its most abstract form, sPARR is an array of independent photo transducers and a net of
interconnected signal processing elements. The pixels are asynchronous (clockless) and are called
asynchronous self-resetting pixels (asps). The signal processing elements are digital though they
also operate without an external clock and are called digital asynchronous processing elements
(pAPES). Asps and DAPES are joined in a network or reticulum. The propagation of spikes from
pixels through the reticulum of papes performs signal processing. In other words, the topology of
the pAPES configures the system.

A spARR pixel has a unique and defining property: it generates an electrical spike when it has
satisfied some internal condition. The most straightforward design is the integrate and fire rate
converter. Interestingly, Louis Lapicque published on the integrate-and-reset or integrate-and-fire
model in 1907 [18], so the underlying concept is far from new. Figure 1-1 shows an idealized
integrate-and-fire circuit schematic where a photodiode delivers photoelectrons to an integrating
capacitor. The integrating capacitor’s voltage rises as more charge accumulates until the voltage
exceeds a reference. Upon exceeding the reference, the circuit emits a short-duration electrical
spike which also empties the integrating capacitor. Section 3.2 provides a more thorough
treatment of this kind of pixel.

An asp must produce a spike as a result of the incident optical signal. Beyond that, a great deal of
flexibility is possible. For example, a Geiger mode single-photon avalanche photodiode (spAD)
might produce a spike when struck by a single photon thus making spARRr a single-photon spike
processing system. At the other extreme the photocurrent could partially quench the quantum
efficiency causing the spike rate to be proportional to, for example, the logarithm of the incident
signal. Some analog processing could be performed in the pixel, such as a deliberate leakage
resistance added to the integration capacitor. With that design we get a leaky integrate and fire
response, essentially turning a spike into a high-pass filter and threshold operation. Myriad
designs are possible, but all Asps emit spikes into the processing reticulum without an external
clock. Unless otherwise specified, this report assumes that pixels are linear-response
integrate-and-fire circuits.

Spikes from asps feed pAPES. A DAPE is a digital circuit, meaning its processing elements are
bistable — representable as zeros and ones. This is important, as the sPARR design eschews analog

13



Va+ @ Threshold crossing
T empties the integration
capacitor

Spike rate depends /

on photo flux

Vref

Figure 1-1. A simple AspP can be an integrate and fire circuit, essentially
a photon flux to spike rate converter.

application-specific integrated circuit (asic) concepts to minimize fabrication variability. A DAPE
is a state machine with an arbitrary number of input and output ports. However, most of the bAPE
designs developed in this report are two-input and two-output as shown in figure 1-2. All
electrical spikes in SPARR are essentially identical, there is no concept of a positive or negative
spike defined by its electrical characteristics. Nevertheless, we assign the spike a sign or value by
its location. That is, a spike on the positive input of a pAPE is thought of as a positive spike while
one on the negative input is thought of as negative. These sign values are strictly semantic since
they are electrically indistinguishable.

Input Output

+—] L+

State

Figure 1-2. Two-input/two-output DAPE.

A DAPE state machine transitions to a different state depending on the input it receives. It may
generate an output spike as well. Figure 1-3 depicts the behavior for a three-state machine with
two inputs, and two outputs. If the DAPE is in state +1 and receives a positive spike then it will
emit a spike on its + line and maintain its internal state. Instead of returning to the initial state, an
alternative design would have the pAPE emit a spike and then go to, for example, state 0.

The pape shown by figure 1-3 performs signal processing operations related to its two input lines.
If we think of the spike rate on the positive line as r; and the rate on the negative line as r_, and the
positive and negative output rates as p; and p_ then the approximate behavior of the circuit is

ry—r- ry > r-—
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Figure 1-3. Example two-input/two-output state machine with three in-
ternal states. In state -1 or state +1 an incoming spike may cause the
DAPE to emit a spike and return to the same state.

If the two input rates are approximately equal (r, ~ r_) then the pape will emit few spikes, even if
both rates are quite high. Similarly, if one input has rate near zero the pape will essentially
forward the non-zero line (see section 2.3). The preceding argument assumes SPARR is a
rate-coded process. It is not, at least not entirely since the paPeEs depend on the exact order of the
input spikes, not just the rate. Nevertheless, the rate-coded simplification is often adequate when
upstream processing elements have no dependence on time.

Although digital, the pAPE retains one key analog characteristic: time. Because it is asynchronous,
the relative sequence of arriving spikes completely dictates its output. For example, a spike
arriving on the positive input line moments before a spike arriving on the negative line may lead
to an output spike; reversing the spike order may not. A conventional digital system would treat
those spikes sequences identically provided they occurred within a single clock cycle.
Mathematical operations are evidently possible, at least approximately, with papes. To perform
useful signal processing, though, multiple papEs and asps must cooperate. Chapter 2 discusses
signal processing operations in detail, while the design of the circuits to implement that
processing is the topic of chapter 3.

The spikes or information about them (such as a spike count from each pape) must move off the
array. We have considered several approaches, including detecting and reading out all the pApE
counts from the most active overall row in the array and the quadtree. Most of this report assumes
the quadtree readout, which minimizes the chance of spike collisions, provides unbiased readout,
and whose flow control is dynamically adjustable. The quadtree readout uses quadtree DAPES
stacked in a pyramid topology so that the base of the pyramid attaches to the output of the signal
processing layer. Each quadtree pape has four spiking inputs, one spiking output, and an
appropriate number of address lines to reflect the location in the focal plane that originated the
spike. For example, at the base of the quadtree pyramid, four spike lines enter each quadtree pDAPE
and the output of is a spike line and a two-bit address line. The second layer in the quadtree
receives the spike line and address lines from four first-layer quadtree papes. In addition to
forwarding the incoming address bits, the second layer quadtree pApE must include two additional
address bits. Once enough low level pixels and pAPEs are aggregated, the quadtree terminates at
an apex node (the tip of a pyramid). Since the Haar transform emits spikes on both positive and
negative lines, the design includes two separate quadtrees, independently throttled, one for
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negative-line outputs and another for positive-line outputs.

Mathematical operations are evidently possible, at least approximately, with papes. To perform
useful signal processing, though, multiple papEs and Asps must cooperate. Sections 2.3 discusses
signal processing operations in detail.

The apex of the quadtree emits an asynchronous sequence of addresses and an associated spike.
Each spike captures the time from a local clock at the edge of the Fpa before exiting the array.
Time stamping transitions the spike from the asynchronous electronic domain to the synchronous
(clock-driven) domain and is a precursor to conventional processing. We imagine these
asynchronous addresses are pushed into a dual port circular memory buffer that is drained by
high-speed serial lines. The fullness of the buffer is a measure of the spike rate, and if the buffer is
filling faster than it can be drained the quadtree is commanded to decimate spikes (or throttle).
Conversely, if the buffer is emptying faster than it can fill, the quadtree papes reduce throttling.
Table 1-1 shows a caricature of the sequence resulting from the quadtree readout. The amount of
throttling dictates how many pixel spikes are read out, and how many are correspondingly lost.

Table 1-1. Example data sequence from readout of a sPARR with a pos-
itive quadtree, negative quadtree, 2 GHz clock, and 1024CE1024 pixels.
A global throttle control setting is needed to interpret these results.

Tree Address (row, col) Clock (ns)

= 0428 0992 1538889.5
+ 0207 0322 1538992.0
+ 0569 0512 1539088.5

The clock frequency controls sPARR’s time resolution, but not its fastest spike rate. The fastest
spike rate is dictated by the asp and papes, which in the 90 nm complementary
metal-oxide-semiconductor (cMmos) process allows for distinct spikes separated by about 0.25 ns.
Smaller process nodes would cycle more quickly. The entire array cannot spike that fast and read
the data out, but the spike rate still justifies the coarsest precision to be about 0.5 ns. Finer
resolution may be beneficial when considering spaRR as a time encoding sensor in addition to a
rate encoding sensor. Other readout technologies are possible, such as counting each DAPE’s
spikes and then reading the counts; however, the quadtree approach has a integrated throttling and
provides very fine time resolution.

SpARR may be thought of as three technology layers assembled. A transduction layer (Asps)
converts light into spikes which feed a processing layer made of papEs to perform some kind of
signal processing, and these in turn supply a readout system which may also be composed of
DAPES. Table 1-2 shows examples from each layer, where one component would be taken from
each layer to produce a complete SPARR.

The unusual data supplied by sparr challenges detection and time-of-arrival (Toa) estimation
familiar from framing readout sensors. Although we are confident that direct operations using the
time of spikes can perform detection and Toa estimation, we have addressed the problem by first
counting spikes into time bins and then performing detection and estimation on the resulting
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Table 1-2. Some choices of sPARR technology layers. A desigh needs
to choose one from each column. Most of this report uses a linear
integrate-and-fire Asp, Haar spatial wavelet transform, and quadtree
readout. Most of this paper discusses the chosen elements highlighted
in green text.

Pixel (ASP) In-Array Processing Readout

Linear response integrate and fire in
cMmos with microlens

Linear response integrate and fire with
hybridized indium silicon detector

Hybridized alternative material, e.g. ‘'vhitened — Haar  spatial ~ Quadtree

[I-V (InSb) vl sl Maximum activity row

Unwhitened Haar spatial

Geiger-mode single photon avalanche
wavelet transform

photodiode

Linear-mode avalanche photodiode in- Spatial matched filter

tegrate and fire
Non-linear response integrate and fire

Leaky integrate and fire
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sequences. This work, the topic of section 5.1, should give the reader confidence that sPArRR can
perform the work of conventional imagers in spite of its unusual function. In fact, we believe
SPARR can perform operations that are not possible with classical framing sensors. Such capability
growth operations include spike-time exact Toa estimation, sub-frame motion compensation, and
support of spiking neuromorphic hardware for applications like autonomous vehicles.

1.1. HOW SPARR WORKS

The preceding sections have explained how the parts of sPARR work, but only loosely connected.
To connect these pieces, it is helpful to compose asps and pDAPEs together to perform a function,
and explain a little of why that function matters. The specific details are illuminated in detail later
in this report; here we use a linear integrate-and-fire Asp array, connected to a whitening Haar
spatial wavelet transform, which is subsequently connected to a quadtree readout.

Assume the sensor is viewing the image in figure 1-4, a full sunlit earth. The brighter a pixel is,
for example the clouds over South America in the center of the image, the faster its capacitor fills
with electrons causing it to spike. The dark pixels, beyond the edge of the earth, only spike
because of the eventual accumulation of dark current or scattered light.

Figure 1-4. A full sunlit earth viewed by the sensor.
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The Haar wavelet transform layer, a carefully connected network of pAPEs, converts this image to
coeflicients. It is worth exploring why we chose that process. Consider biological processes
where the human optic nerve transmits information content of about 875000 bits/s [16]. There are
6.4 million cones in the human eye — think of these as the eye’s “pixels” [17]. Each of these, on
average, has an integration interval of 100 ms [1]. If we a assume a time and amplitude precision
of about 10 bit/spike' then the retina is generating information at 6.4 x 108 bit/s. Pushing this
information down the optic nerve’s 8.75 x 10° bit/s capacity means compressing the retina’s
information about 700:1. Even allowing for considerable error in the estimate of the retina’s
information generation capacity, it is clear that the optic processing in the eye is performing
(lossy) compression.

Practical rpas also struggle with the readout bottleneck; it is readily possible to generate more
information in the focal plane than any readout can support. SPARR borrows inspiration from
biological systems and performs compression using the Haar wavelet transform. Biological
systems may use a Gabor-like transform in vision systems [23]. The Gabor transform has the
properties of emphasizing edges in multiple orientations, operating across a wide range of scales,
and executing compression [7]. Like the Gabor transform, the Haar transform emphasizes edges
with multiple orientations (horizontal, vertical, and diagonal), it works over many scales or feature
sizes, and as we show shortly, it can execute compression. The Gabor transform is not easily
implemented in digital electronics, but the Haar transform is, which is why it was chosen.

The Haar spatial wavelet transform works by applying four convolutional kernels to the image,
and then decimating the image 2:1 in both rows and columns. Figure 1-5 shows the unity
coefficients and the first level of the transform.

Inside sparRr, the wavelet transform applies spike decimation at each level so that each scale and
orientation within the scene receives the same emphasis and readout bandwidth. The left part of
figure 1-6 shows only the first level of the decomposition. Although the coefficients from the first
level of the decomposition make of 75% of the pixels, it only represents about 12% of the total
energy in the image. Kern [15] found that natural scenes tend to have a consistent power-law
spatial power spectral density. In other words, natural scenes have a predictable fraction of their
energy at each level of the 2D wavelet transform. Sparr exploits this property of natural scenes to
scale each level of the Haar wavelet transform so that the coefficients all have approximately the
same amount of energy. That is, the scene has been spectrally whitened.

As figure 1-7 shows, successive application of the transform using the c4 coefficients creates a
hierarchy. Spectral whitening by scaling each wavelet transform level in the hierarchy using spike
decimation performs a kind of lossy compression. It is lossy in the sense that decimating spikes
introduces an effective quantization error. However, the information redundancy at later levels of
the wavelet transform means that loss is of little practical consequence.

The calculated coeflicients, represented by spikes emerging from pAPEs, exist only inside the Fpa.
To be useful, the spikes must leave the array through a readout. The quadtree readout, depicted
schematically by figure 1-8, funnels the spikes to a single readout stream where they are time
tagged. At the left edge, four coeflicients’ spikes enter a quadtree element. The element forwards

't is difficult to estimate the information content in an integration interval for an eye’s cone; however the combination
of time coding and place coding in reference [16] suggests about 10 bit/spike along the optic nerve.
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Figure 1-5. Haar transform for features and orientation. Gray intensity
is scaled with the hyperbolic arcsine (arcsinh) function to reveal con-
trast. The upper right quadrant is the result of applying the cy kernel
and downsampling 2:1 in horizontal and vertical directions. The lower
left the cy kernel, lower right the cp kernel. The upper left values are
from the c4 kernel, and have been scaled by 0.05 prior to applying the
arcsinh for visibility.

the spike to its output, along with the two bit address indicating which of the four inputs spiked.
Suppose that the entering coefficients are spiking very quickly, near the maximum operational
spike rate (around 1 GHz for the 90 nm cMmos process). In this case, the output of the quadtree
element would have to spike four times as fast, a rate it cannot sustain. To keep the quadtree
aggregated spike rate manageable when the internal of the Fpa are spiking very actively, each
quadtree element can decimate its inputs by 2:1 or 4:1. In 4:1 decimation, the quadtree element
only passes every fourth input spike to its output. Each quadtree layer’s decimation is
independently controlled, and is consistent for all elements in the tree.

The quadtree coalesces all lower level spikes until they reach an apex node. Figure 1-9 shows how
spikes from sparRR’s wavelet transform layer flow into an ever smaller channel. Each quadtree
layer has one fourth as many elements as the previous layer, and two more address bits.

The linear spiking pixel, whitening Haar spatial wavelet transform, and quadtree readout is this
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Figure 1-6. The approximation coefficients are scaled by a predeter-
mined constant and passed through the Haar transform again. This is
repeated successively until the only remaining data has been through
cH, Cp, OF cy convolution, resulting in values represented by the right
figure.

report’s primary focus. Some designs considered included readout based on most-active-row first,
and spatial differentiation to emphasize point-like features in the scene. Numerous other designs
are possible, and fit under the spPARr umbrella.
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Figure 1-7. A 256 x 256 array example of the levels in the Haar trans-
form. The c,4 coefficients pass through the Haar transform again.
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Figure 1-8. Haar coefficient spikes enter the quadtree readout on the
left, four coefficients into each quadtree element. The entering spikes
exit, possibly after decimation, with the input address. This 4:1 element
aggregation occurs at multiple levels, adding two address bits until the
spike reaches the apex node, is timestamped, and read out.
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Time (us) Row Col
1.10773 48 19
1.32928 21 11
1.55082 53 17
1.77237 12 3
1.99392 25 32

Apex 4:1
16:4

 256:64

effective coefficient plane

goes to quadtree readout

Figure 1-9. Quadtree levels and example readout. The table, at left, is
a simplified representation of the stream of output produced by sPARR
from the quadtree readout process (right).
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1.2. ADVANTAGES OVER OTHER FOCAL PLANE ARRAY
DESIGNS

As with any design, there is a trade-space to iterate and optimize over. However, an ideal focal
plane would provide

* Dynamic range to accurately measure optical signals from very small values to very large
values to support a large class of signals,

* High spatial resolution to distinguish closely spaced objects or accurate measure angle to
target,

* High measurement rate to record fast-changing or short-lived signals,
* Precise time to support time-of-flight sensing,
» Data rate large enough to deliver all the measured data to a processing consumer,

* Low latency or delay between the measurements and that measurement’s availability
off-array to support fast reaction,

* Low power dissipation to facilitate low-temperature detectors and minimize impact on focal
plane hosts.

These engineering objectives are often in conflict. To read off all data, the supported readout rate
(bit/s) must exceed the product of the dynamic range (bit/sample), measurement rate
(sample/s/pixel), and spatial resolution (pixel). For example, a 1024(E1024 pixel sensor with

100 kHz sample rate and 12 bit/sample resolution produces 0.14 TiB/s. For context, a Xilinx
16-lane GTH transceiver supports 0.03 TiB/s [39]. While the specs on this hypothetical array seem
impressive, 100 kHz provides temporal resolution of 10 s and speed-of-light range precision of

3 km. While neither latency nor power dissipation are easy to assess, they are likely both poor.

To address the off-chip bottleneck, digital focal planes make trade-offs. Some common trade-offs
include

* Recording full-frame data for only a short interval instead of continuously, typically while
providing high-capacity cooling, as in the Phantom v2640 which supports 0.9 Mpx at
19690 frames/s for 15.4 s [28],

* Processing pixel time-series in the focal plane to select pixels for readout based on rapid
signal amplitude changes, or based on small command-selected regions as in the
Hyper-Temporal Sensor [13],

* Pre-processing images in the focal plane to, for example, stabilize images or remove
backgrounds thus providing useful information in a slower readout as in MIT Lincoln Lab’s
Digital Focal Plane Array [32],

* Exploiting scene redundancy to compress the data (lossy) while retaining high temporal
resolution, as in SPARR.
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As will be shown later in this report, the spatially whitened Haar transform used by spaRrRr relies
on the statistical characteristics of typical scenes to perform data compression. The whitening
Haar transform reduces the total data, as measured by spike counts, by 80% to 90% for typical
natural scenes. In cases where this compression still results in readout rates exceeding the FpaA’s
capacity, sPARR reacts by elastically throttling the spike rate through the quadtree. Throttling, or
discarding every nth spike, is an unbiased data reduction technique. The net result is that for a
range of average Asp spike rates from zero up to about five times the readout capacity there is
negligible scene measurement loss since there is no spike decimation throttling. At higher average
rates the amount of decimation throttling increases, to fit the propagated spike rate within the
readout capacity. Consequently, SPARR has elastic amplitude resolution, finer for small signals and
coarser for large. Correspondingly, its power dissipation is extremely low at low spike rates,
gradually approaching an upper limit where both maximum spike rate and maximum throttling are
occurring. This gives sPArRR a wide operational dynamic range.

Finally, sparr differs from other sensors because its output, at the edge of the array, is spikes.
These spikes are naturally adapted to spiking neuromorphic processing, with technologies like
Intel’s Loihi processor [8] or IBM’s TrueNorth [25]. We are aware of no other large-format
optical sensors that can natively provide spiking data.

1.3. POTENTIAL APPLICATIONS

No short prescription will contain every possible application of a technology. A few to keep in
mind, though, include transient detection, imaging from unstable platforms, and power-sensitive
applications.

A transient optical event’s intensity varies over time, typically it is not emitting light, starts
emitting, and then stops. How the emitter’s intensity fluctuates or modulates can be important
information for the sensor operator. A variety of natural events are optically transient, think of
lightning as an example. Lightning is challenging to observe because, most of the time, it is not
happening. Detecting such transients typically demands continuous observation; there is no way
to anticipate when the event will occur. In support of this, sPARR provides constant streaming of
data instead of a finite cache with readout. Some applications use the time of the transient directly.
For example, LIDAR uses time-of-flight to measure the range between the sensor and reflectors.
SPARR’S continuous streaming and fine time resolution are essential to these transient monitoring
applications. Section 5.1 shows example of transient detection using a sPARR with linear-response
integrate-and-fire pixels feeding spiking Haar wavelet transform which subsequently feeds a
quadtree readout.

Imaging, the taking of photos, usually depends on stability during the capture integration interval.
That is, usually users would like to assume that the scene has not changed between when the
shutter opens and when it closes. Well-lit conditions without significant platform motion satisfy
this objective; however, many sensing platforms are not stable over the integration interval.
Instability can be due to slow motion with long integration intervals for low light observation, or
bright conditions with fast moving platforms like imaging from a shaking car or aerial vehicle. A
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spike inside SPARR is conceptually similar to a single count in other digital imagers. In other
words, SPARR’S integration interval is not constant — it lasts as long as it takes to acquire a single
count. This can often be orders of magnitude faster than a typical framing sensor. Although not
explored thoroughly in this project, reconstruction of a motion-compensated image is possible
from the spike train and can effectively increase the frame rate of the sensor dramatically.

Finally, almost any optical sensor application must face the necessary evil of powering the optical
sensing device. Power supply to a sensor means its host must be sized appropriately. Whether
power is generated by motors, fuel cells, solar panels, or batteries all would grow to support more
demanding sensors. The other side of power supply is heat dissipation. The greater the heat
dissipated in the sensor, the larger the cooling capacity needed. For room-temperature sensors in
the atmosphere greater cooling may mean larger heat sinks and fans. On orbiting platforms heat
dissipation requires more careful design to balance radiators. For cryogenic temperature sensors
typical of infrared applications, like astronomy, the cryogenic thermal management efficiency
typically results in much larger and more expensive coolers. Chapter 4 shows that most of
SPARR’s power dissipation is dynamic, meaning it depends on the scene. A star field in the dark
generates few spikes, consequently the power dissipation for a 256x256 pixel array made with

90 nm cmos process is predicted to be as low as 36 mW. A larger 1024x1024 array on a bright
scene generating 6 million spikes per pixel per second may use 6.7 W.

1.4. SPARROW INTRODUCTION

1.4.1. Overview

The sparr simulator, sparrow is designed to model the spARR array to enable performance
analysis of this concept. Modeling a clockless architecture in a timely fashion is inherently difficult
since there is no basis for synchronization among the different elements. The major simulation
challenges for this design included correctly modeling photon arrival statistics, modeling the
processing elements used for the Haar transform and the quadtree readout, and ensuring that the
simulation ran fast enough that performance could be assessed in a reasonable timeframe.

This type of simulation is typically known as a discrete event simulation since the simulation state
only changes at discrete points in time and the state is constant between those points. For sPARR,
the external influences that cause a change in state are photons arriving at the sensor. Internal
states can change as spikes propagate through the system to the readout.

1.4.2. Modeling a Pixel

Typical scene simulation codes use radiometry to compute the number of photons arriving at a
pixel in a given integration period. Since SPARR uses an integrate and fire model for a pixel, this
physics model no longer works. Instead, sparrow uses a likelihood function that describes the
probability that a photon will arrive in a given period, or the time until N photons have arrived at a
pixel, where N is the number of photons that will cause a pixel to output a spike and reset.
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Multiple iterations of this process were developed and evaluated until the final solution supporting
moving, time-varying functions in a computationally tractable fashion was developed and
implemented. Pixel effects, such as non-uniformity in offset and gain can also be simulated.

1.4.3. Modeling the Haar Transform

The pixels in the array are connected to Haar processing elements following the logical Haar
transform layout that will be described elsewhere. Each Haar element models effects due to
processing delays through the element, the time it takes for an element to process another spike,
and spike collisions on the inputs.

1.4.4. Modeling the Quadtree Readout

The output from the Haar transform feeds two quadtree readout structures, one for positive spikes,
and one for negative spikes. These quadtrees also model the effects of element processing time,
reset time, and spike collisions. Each element, or level in the quadtree, is capable of apply a
single, double, or quadruple decimation to the spike output rate from that element. There is a
top-level monitor that decides whether to increase or decrease the global throttling rate for the
entire quadtree, and it adjusts the rate to try and keep the number of spikes output within an upper
and a lower bound.

1.5. HOW TO READ THIS REPORT

The introduction, so far, provided an overview of the pixel or aAsp which converts light into spikes.
These spikes supply the processing units (paPEs) which perform a Haar spatial wavelet transform.
In turn, the results of the wavelet transform supply the quadtree readout and thus takes the spikes
off the array. With this overview in mind, the organization of the remainder of the report is:

Chapter 2 uses a rigorous mathematical analysis to determine important implementation details
for the Haar transform, such as deciding how much decimation needed between transform
levels. As part of its statistical assessment, it validates the system-level sparrow simulator
used for other sPARR work with a clear picture of what must be implemented in the circuitry
of SPARR.

Chapter 3 designs circuits for the asp, including discussions of trade-offs between spectral
responsivity, interconnection capacitance, and the resulting threshold voltage effects. The
detailed specification from the previous chapter is used to define the Haar transform circuit
elements, as is the looser specification for the quadtree elements. These elements are
realized in simulated, detailed, circuit layouts. The non-ideal circuit behavior (run-length
effects) with parasitic extraction, and then spice simulation provides reset time, collision
conditions, leakage power, and per-spike energy estimates. These estimates are used in a
chapter on system power consumption.
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Chapter 4 develops a model for power consumption both from a theoretical framework and
which can be used to assess power consumption in sPARROW calculations. The model shows
how most power in sparr is dynamic (depends on spike rate) and how power scales with
both cmos process node and with spike rate. Realistic quadtree throttling is represented.
With the actual sparrR model in place, it only remains to demonstrate its utility.

Chapter 5 connects spaRR to the kinds of signal processing operations likely to be familiar to
many readers, namely detection of transient events and estimation of the Toa of those
events. Detection of signals as small as 1% of background is demonstrated, along with
negligible Toa error for signal-to-noise ratios better than about 2.

Chapter 6 discusses some of the remaining work. SPARR produces an unusual type of data and
although chapter 5 demonstrate utility, SPARR presents opportunities that have not yet been
thoughtfully considered.

Appendices provide greater detail on elements that may not be of interest to the average reader.
Some of these, like the spaARROW user’s guide represent the considerable body of work
required to actually simulate sparr. Additional background that proved exceptionally useful
to the spaRR team is included, along with an explanation of methods of signal time-series
reconstruction.

While any chapter may be read without the others, the argument for the realized creation,
fundamental performance, and application will make the most sense read sequentially.
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2. STATISTICS FOR A NOMINAL EARTH
SCENE

2.1, INTRODUCTION

The basic information that the sparRR sensor produces is spikes, and the arrival of photons on the
SPARR sensor is a probabilistic process. Therefore, if we can understand how photons arrive on the
sensor under typical conditions (i.e. no event of interest is occurring), then we can compute the
probability of spike production from all of the image processing elements since they work in
deterministic ways. Understanding the spARR output under typical conditions allows us to better
analyze what the sensor does when an event of interest does occur. Further, computing the
probability of spike production allows us to verify the results we obtain from the sparr simulator,
sparrow.

The image processing units referred to above are the actual pixels that produce the spikes, the
throttled Haar transform, and the quadtree. The pixels, of course, are the elements that actually
gather the energy deposited by the photons on the array. The throttled Haar transform is used to
throw away a lot of the unwanted information. It takes the pixel spikes and inputs them into a
series of state machines that emulate a Haar transform with the exception that the Haar
coeflicients are altered or “throttled.” Essentially, it is a spatial whitener so that anomalies or
events of interest are more apparent. Finally, the quadtree allows us to read out the throttled Haar
spikes in a single stream of data. This stream will give us the time, address, and weighting for
each Haar spike. A weighting is needed because there is a finite amount of time for the hardware
to register a spike. If all spikes were put into a single readout, depending on the photon arrival
rate, SPARR would try to register two or more spikes in too short a time interval. This would cause
us to lose all but one spike during this time period, which could severely alter the final output.
Hence, the quadtree decimates the Haar spikes in a deterministic way so that we can properly
assign a weight to a spike in the readout.

We will go through each of the image processing elements in turn, describing how they would
work under ideal conditions and the underlying probabilities for spikes to come out of each
element. These theoretical probabilities are then compared to a sparrow simulation to show how
much agreement exists between theory and practice.
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2.2, PIXEL SPIKES

Pixel spikes are driven by the photon arrivals at the sensor, the pixel capacitor size, and the
quantum efficiency. For the analysis below, we will ignore the effects of quantum efficiency,
which means we will assume all optical photons affect the system equally. Hence, we model each
pixel as an energy accumulator where the energy is stored in a capacitor. Each optical photon that
arrives at a pixel is assumed to deposit an electron in the capacitor. When a pixel’s capacitor is
full, it dumps its contents, which creates a pixel spike. We will assume an ideal capacitor without
thermal noise. That is, if the capacitor can store N electrons, we will assume it will dump its
contents when it reaches exactly N electrons. Further, we will assume it will dump all of its
charge so that it is left with O electrons immediately after an electron dump.

2.2.1. Photon Arrivals

Throughout this section, we will make much use of the Poisson distribution. The Poisson p™mF is
given by

e~ A"

f: ) =9 !

0, otherwise

» n20 @.1)

where A is the mean number of some event per unit time. Equation (2.1) gives the probability of
some discrete event occurring n times in a time interval At. The mean and variance of f(n;A) are
both A. The Poisson cumulative mass function (cMF) is given by

F(md) = f(i:d). (2.2)
i=0

Here, we use the standard convention in statistics of using lowercase letters for pmFs and capital
letters for cmrs. Finally, it is also useful to note that the probability of some discrete event
occurring between n; and ny times with rate A is given by

jf(i;ﬂ)=F(nz;/1)—F(n1—1;/1)- (2.3)

i=}’l1

The arrivals of photons on a given pixel is assumed to be a stationary Poisson event in the absense
of an event of interest. That is, the probability of K photon arrivals in some fixed interval of time
At is given by

Pr(K photon arrivals) = f(K;A) 2.4)

where A is the mean rate in units of photons per Af time interval.
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2.2.2. Pixel Spike Probability

A pixel spikes when its capacitor contains N electrons. This can be viewed as a decimation of the
photon arrivals, that is, for every N photons that arrive one spike is emitted. The case of no
decimation would be when N = 1. Regardless, we will assume there is a one-to-one
correspondence between a photon arriving at a pixel and an electron entering its capacitor. Thus,
if one photon arrives at a pixel, the corresponding capacitor will obtain one electron. However, it

is important to note that
(K+1)N-1

Pr(K pixel spikes) = > (i) (2.5)
i=KN
because at the start of the time interval, there may already be some number of electrons in the
capacitor. In particular, there could be anywhere between 0 and N — 1 electrons already in the
capacitor. If we suppose that the number of electrons in the capacitor at the beginning of the time
interval follows a discrete uniform distribution ranging from 0 to N — 1, then the pmF for pixel
spikes is given by

N-1 (K+1)N—-j-1

Pr(K pixel spikes) = 1 Z £(@i; ) (2.6)
N j=0  i=KN-j
| V=l
=5 2 | FK+ DN =j=1:2) = F(KN =~ 1:4)| @)
Jj=0
= g(K;N, Q). 2.8)

2.2.3. Pixel Spike Count Simulation

In order to demonstrate equation (2.8), we ran a sparrow simulation with a 2 X2 rpa. We labeled
the pixels according to table 2-1 and used the parameters given in table 2-2. The mean photon
arrival rate A for a pixel is given by the product of the photon base rate, the background likelihood,
and the time interval. For example, pixel P has a mean photon arrival rate of Ap = 15.3 Hz
(photons per second). The capacitor well size is N = 5, and the simulation lasted 5 seconds. Since
the time interval was 0.001 seconds, this gives 5000 time bins over which to count the number of
pixel spikes to obtain the necessary statistics.

Table 2-1. Pixel labels for a 2 X 2 FPA.

P1Q
R[S

Equation (2.8) generated a theoretical pmF for each pixel, and the simulation yielded empirical
pMFs. The result is shown in figure 2-1, and we notice two things. The first is that there is good
agreement between the theoretical and empirical pmrs. The second is that there are many
theoretical data points corresponding to small probabilities for which there is no empirical data
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Table 2-2. Parameters used for the sparrow simulation.

photon base rate (Hz) 100000.00

background likelihoods P: 0.153, Q: 0.224, R: 0.779, S: 0.207
capacitor well size (electrons) 5

time interval (s) 1.00e-03

simulation time (s) 5.00

point. The reason for the dearth of empirical data is that the theoretical probabilities are not zero
for any K > 0, but the probabilities are so small they are not realized in our finite simulation. The
theoretical data points, of course, also are not realized for every K > 0 since there is a limit to
computer precision. Overall, however, the close agreement between the theoretical and empirical
data points shows that we can predict the pixel spike count outputs.
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Figure 2-1. The theoretical and empirical PMFs for the probability of pixel spikes.

2.3. HAAR SPIKES

The purpose of including a Haar transform in the signal processing is to spatially whiten an earth
background and minimize the decimation required by both the positive and negative quadtrees.
Whitening, in this context, means making the spatial power spectral density approximately
uniform, that is, the spectrum has the same power at all spatial frequencies and is therefore white.
The Haar transform itself is a type of discrete wavelet transform (pwT). Specifically, it is the
simplest pwt, and we make use of it because its simplicity allows us to implement it in hardware.
We use a specialized “throttled” Haar transform, which is a Haar transform where each Haar
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element is scaled (or throttled) in such a way that the mean magnitude of each element is roughly
equal. This ensures that the background spatial spectrum appears as white noise upon
reconstruction. As we will see, this Haar transform is implemented with state machines that only
approximate the actual transform, and there are positive and negative spike lines for each Haar
element. Hence, we want the number of positive spikes minus the number of negative spikes to be
roughly constant across the Haar plane. Further, in order to minimize the decimation that both the
positive and negative quadtrees perform, we would like the number of positive and negative spikes
to be as small as possible while still providing information about the scene. Ideally, this would
mean that for each element, either the positive or the negative line would not contain any spikes in
a static scene. That is, there would be no wasted spikes. For instance, if the positive line for a
Haar element contains 1000 spikes in some interval of time and the negative line contains 900
spikes, the net number of spikes is 100. This would mean there were 1800 spikes that did not
provide any further information. In this case, we would like the positive line to contain 100 spikes
and the negative line to contain 0 spikes. Of course, this is not realistic, so the goal is to minimize
the number of wasted spikes.

2.3.1. The Haar Transform in a Static Domain

In a static domain (i.e. a still image), a Haar transform is simply the application of a low-pass and
high-pass filter to each of the rows and columns of the pixel values. For a simple 2 x 2 array, this
is shown schematically in figure 2-2. Here, the pixel values are P, Q, R, and S. The
transformation formulas are given by

A:MLA[(P+Q)+(R+S)], (2.9)
H:MLH[(P+Q)—(R+S)], (2.10)
V:MLV[(P—Q)+(R—S)], (2.11)
D:MLD[(P—Q)—(R—S)]. (2.12)

The Haar coeflicients are often referred to as “approximation”, “horizontal”, “vertical”, and
“diagonal,” which is the origin of A, H, V, and D.! The 1 /M factor in each coeflicient definition
is the throttling factor. This will be discussed in more detail later in this section. Finally, figure
2-2 shows how the coefficients are arranged in the Haar plane.

For larger arrays, a Haar transform is similar, but it can be carried out further. Figure 2-3 shows a
schematic for a Haar transform on a 4 X 4 array. To explain, each contiguous 2 X 2 subarray of the
pixel array is transformed according to equations (2.9)—(2.12). The approximation coefficients are
put in the top left quadrant, the horizontal coeflicients are put in the top right quadrant, the vertical
coeflicients are put in the bottom left quadrant, and the diagonal coeflicients are put in the bottom

lTypically, the coefficients are labeled c4, cy, ¢y, and cp. For simplicity, we drop that notation here.
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Figure 2-2. Schematic of a Haar transform on a 2 X 2 array. The pixel
array values transform into the Haar coefficients.

right quadrant. To be clear, the first two blocks of figure 2-3 use

Ajp= MLA [P+ Q)+ (R +S,)], (2.13)
Hy, = MLH[(Pn‘}‘Qn)_(Rn'*“Sn)]’ (2.14)
Vi = Miv [(Pa=0n)+ (R, = S,)]. (2.15)
D, = MLD [Py = Q) = (R, = S,)] (2.16)

forn=0,1,2,3. The “1” subscript on each Haar coefficient denotes that they are in the first Haar
level. Subsequent to the first level of the transform, we can perform a similar operation on the
approximation coeflicients, which yields the second level of Haar coefficients. In figure 2-3, the
block on the right shows the second level of the Haar transform. Only the top-left 2 X 2 portion is
affected. Specifically,

Ao = E[(A1,0+A1,1)+(A1,2+A1,3)], (2.17)
1

Hyo = M—[(A1,0+A1,1)—(A1,2+A1,3)], (2.18)
H
1

Voo = M—[(Al,o—A1,1)+(Al,z—A1,3)], (2.19)
v
1

Dap=7r [(Arp— A1) = (A2 —A13)] (2.20)
D

where the “2” subscript denotes the second Haar level.

For larger arrays, this process can continue as long as there is another 2 X 2 subarray of
approximation coefficients. For a pixel array with dimensions of 2% x 2L, the total number of
possible Haar levels is L.

2.3.2. Throttling for a Typical Earth Scene

The pwT naturally puts more of the signal energy in the approximation coefficients. This is
usually a desirable feature, but within the sPARR sensor, we want to use the pwT to spatially whiten
the signal. If we were using a Fourier transform, this would imply that all Fourier coefficients
would have equal magnitude but not necessarily sign. The same is true for the pwt. Hence, we
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Figure 2-3. Schematic of a Haar transform on a 4 x4 array. The pixel
array values transform into the Haar coefficients at level 1. The approx-
imation coefficients at level 1 transform into the Haar coefficients at
level 2.

want to “throttle” the pwt coefficients so that the magnitudes of all coefficients are roughly the
same. By throttle, we mean that we want to mutliply the approximation, horizontal, vertical, and
diagonal coefficients by some number between O and 1 so that each element at every level is
roughly equal in magnitude to all others (i.e. find suitable values for M4, My, My, and Mp in
equations (2.9)—(2.12)). For sPARR, this is equivalent to decimating the Haar spike outputs. This
has the added benefits of using less power (each spike consumes a certain amount of power, so
fewer spikes results in less power) and fewer collisions between spikes in the quadtree elements.

To determine the optimal throttling factors for each Haar element, we can create random synthetic
earth scenes (see Kern [15]). For each scene, we can try different combinations of throttling
factors and compute the average Haar element magnitude at each level. As stated above, we know
that the approximation coefficients will be the largest and will need to be throttled. Hence, we
begin by trying different throttling values for the approximation coefficients only. The result of
this is shown in figure 2-4 for a 256 X 256 rpa. Each point is the mean of 1000 randomly generated
synthetic earth scenes with 95% confidence intervals. The confidence intervals are too small to
see at this scale. Different approximation throttling values are used for each plot. The throttling
values are shown in pairs where the first value is the multiplier on each approximation coefficient
as the pwt is computed. The second number is the additional apex approximation throttling,
which will be discussed shortly. The throttling values for the horizontal, vertical, and diagonal
detail coeflicients are all unity.

Figure 2-4 shows that the the approximation coefficient throttling should be 0.25, which
corresponds to a 4:1 decimation for spARrR. However, this does not exactly give us what we want
because the apex approximation coefficient is still too large. Since it is only a single coefficient, it
does not add much hardware to do an additional throttling on the apex approximation coefficient.
We performed a similar test to the one described above to determine the optimal apex throttling
value. The result of this is shown in figure 2-5. Again, each point is the mean of 1000 randomly
generated synthetic earth scenes with 95% confidence intervals, some of which are visible this
time. The approximation throttling value is held constant at 0.25, but the apex throttling is varied
(the horizonal, vertical, and diagonal throttling values are still unity). The apex throttling can be
viewed as an additional throttling on the final approximation coefficient. The multiplier on the
final approximation coefficient is the product of the normal approximation factor and the apex
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Figure 2-4. The mean coefficient magnitude for each Haar element and
pwrt level is shown for a 256256 FpPA for various approximation throt-
tling values. See the text for a complete description.

factor.

Figure 2-5 shows two things. The first is that an additional apex throttling of 0.125 (a total of
0.03125 on the final approximation coefficient) is optimal. For spPARR, this is an additional 8:1
decimation for a total of 32:1 decimation on the final approximation coeflicient (all other
approximation coeflicients only have the normal 4:1 decimation). The second thing to notice is
that there is some disparity between the diagonal coefficient mean magnitudes and the horizontal
and vertical coefficient mean magnitudes. The horizontal and vertical coefficient mean
magnitudes are roughly equal, so the throttling value used on one should be used on the other.
Another experiment was run to determine this throttling value. The results are shown in figure
2-6. We see that the optimal horizontal/vertical throttling value is 0.5. This corresponds to a 2:1
decimation for SPARR.

All of the above experiments were done assuming the Fpa was 256 X 256. To see whether this
scales to other Fpa sizes, we used the throttling values determined above (0.25 approximation
throttling, 0.125 additional apex throttling, 0.5 horizontal throttling, and 0.5 vertical throttling) on
FPAs with sizes 16 X 16, 32 x 32, 64 X 64, and 128 x 128. This is shown in figure 2-7. We see that
the optimal throttling values are invariant under these Fpa sizes.

This means that we can update the formulas for the Haar transform. For all pwT levels except for
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Figure 2-5. The mean coefficient magnitude for each Haar element and
pwT level is shown for a 256 X 256 FpPA for various apex throttling values.
See the text for a complete description.

the apex, it is given by

1

Z[(P+Q)+(R+S)], (2.21)

1

=% [(P+0)-(R+9)], (2.22)

1

=31P-0)+(R-S9)], (2.23)

1

= [(P-0)-(R-9)]. (2.24)
Hence, My =4, My = My =2, and Mp = 1. The apex level of the throttled Haar transform
contains identical formulas for the horizontal, vertical, and diagonal coefficients. The apex
approximation coefficient is given by

1
B = = [(P+Q)+(R+9)], (2.25)

which means that M gpex = 32.
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Figure 2-6. The mean coefficient magnitude for each Haar element and
pwT level is shown for a 256x256 FpA for various horizontal/vertical
throttling values.

2.3.3. The Haar Transform in a Dynamic Domain

All of the analysis thus far assumes that the throttled Haar transform used by sparRrR conforms to
the definition given above. However, we do not have a static image. Instead, each pixel outputs a
spike train that depends on the incoming rate of photons. Hence, we cannot directly apply
equations (2.21)—(2.25). Instead, we will use state machines to emulate the throttled Haar
transform for a dynamic (i.e. spike) domain.

The approximation coefficient state machine is the simplest because it does not have to treat any of
the incoming pixel spike trains as negative. That is, according to equation (2.21), four different
spike trains get aggregated into a single spike train and only every fourth spike is retained. This
results in a single spike train that contains a quarter of the number of spikes as the four input spike
trains. This is shown schematically in figure 2-8. Here, the boxes represent the current state of the
machine (in this case, it can be in state 0, 1, 2, or 3.) An input spike changes the state of the
machine according to the arrows, and if the machine is in state 3, then the state machine outputs a
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Figure 2-7. The mean coefficient magnitude for each Haar element and
pwrt level is shown for various FPA sizes. The orange (horizontal) and
blue (approximation) dots are mostly hidden beneath the green (verti-
cal) dots.

single spike before it resets to state 0. It should be clear that this machine exactly represents
equation (2.21). We also show the state machine corresponding to equation (2.25) in figure 2-9. It
is very similar except the number of states has been increased to 32 from 4.

The three detail state machines are more difficult because they involve subtraction. According to
equations (2.22)—(2.24), there are two positive input spike trains and two negative input spike
trains for each state machine. Since equations (2.22) and (2.23) are the same, the horizontal and
vertical state machines are identical. One possibility for this machine is shown in figure 2-10. The
diagram is read in much the same way as the approximation state machines. The difference is that
there are negative input spikes, which are represented by the dashed lines (the positive input spikes
are still represented with the solid lines). A similar diagram for one possibility of the diagonal
state machine is shown in figure 2-11. The diagonal state machine is the same as the horizontal
and vertical state machines except that there is no decimation. That is, whenever a spike is output
for the horizontal and vertical state machines, the state resets either up one for a negative output
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positive output

Figure 2-8. The approximation state machine for all pwT levels except the apex.

positive output

0 > 1 —_— .- —> 3) ——> 31

Figure 2-9. The approximation state machine for the apex pwr level.

spike or down one for a positive output spike whereas for the diagonal state machine, the state
stays the same upon output spikes. One last thing to point out about both figures 2-10 and 2-11 is
that there are both positive and negative output spike trains. In order to find the net number of
spikes in some interval of time, you simply subtract the number of negative spikes from the
number of positive spikes.

From our analysis in subsection 2.3.2, these state machines should spatially whiten a typical earth
background. To see this, we created the synthetic earth scene shown in figure 2-12, and ran it
through the state machines given in figures 2-8—2-11 via a sparrow simulation. The net output
throttled Haar coeflicients are given in figure 2-13. The reconstruction is shown in figure 2-14,
showing that it is qualitatively spatially whitened.

As stated earlier, whitening the reconstruction is one goal, but we also wish to minimize the
number of wasted spikes. In order to determine if this is happening, we plotted the positive and
negative throttled Haar outputs separately. These are shown in figures 2-15 and 2-16. In both
images, we see the average value is close to zero, which means the number of wasted spikes is
small. This reduces the amount of decimation necessary in both the positive and negative
quadtrees because fewer spikes need to be processed.

positive output

Figure 2-10. The horizontal and vertical state machine for all pwT levels.
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Figure 2-11. The diagonal state machine for all pwT levels.
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Figure 2-12. A synthetic earth scene based on a Kern spectrum and a
histogram for the number of spikes in a given pixel over some interval
of time. The right-hand image is in units of pixels and represents a

10241024 pixel image.

2.3.4. Haar Net Spike Probability

As explained in subsection 2.3.1, the throttled Haar transform initially deals with 2 x 2 blocks of
pixels. The transform is given by equations (2.9)—(2.12), where P, Q, R, and S are interpreted as
pixel values in some 2 X 2 block of the array. However, since we are not in a static domain, we
have to interpret them as the number of spikes out of those same pixels in some interval of time
At. Then, A, H, V, and D are interpreted as the net number of spikes out of the approximation,

horizontal, vertical, and diagonal Haar elements in the same interval of time.

These equations, however, cannot be used as is because we are dealing with probability

distributions. That is, for pixels P, Q, R, and S, equation (2.8) gives us

Pr(K pixel spikes from pixel P) = g(K; N, Ap)

= gp(K),
Pr(K pixel spikes from pixel Q) = g(K; N, Ap)
= go(K),
Pr(K pixel spikes from pixel R) = g(K; N, Ag)
= gr(K),
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Figure 2-13. The throttled Haar plane from a sparrow simulation using
the new state machines in figures 2-10 and 2-11 and a histogram for the
number of spikes in a given element over some interval of time.
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Figure 2-14. The reconstruction of figure 2-13 and a histogram for the
number of spikes in a given pixel over some interval of time.

Pr(K pixel spikes from pixel S) = g(K; N, As) (2.32)
= gs(K). (2.33)

It is well-known that if X and Y are independent random variables with pmFs fx(n) and fy(n), then
the pmF for X +7 is given by the convolution

fxvr(n) = (fx * fy)(n) (2.34)
= > fx(m)fy(n—m). (2.35)

Similarly, it is well-known that the pmr for X —Y is given by the cross-correlation?

fx-y(n) = (fy x fx)(n) (2.36)

2Equation (2.37) only holds if fx is real-valued. Since this is true in the case of pixel spikes, we will use (2.37) as
the definition of the difference of independent random variables. In general, cross-correlation uses the complex
conjugate of fx in its definition.
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Figure 2-15. Positive portion of the throttled Haar plane from a sparrow simulation.
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Figure 2-16. The negative portion of the throttled Haar plane from a sparrow simulation.

= > ftm)fm+n). (237)

m=—0o

Let the reader note the difference in symbols for convolution (x) and cross-correlation (%) as they
are easy to confuse.

In equation (2.9), the factor [(P + Q)+ (R + §)] translates to

ga(K) = ((gp*80) *(gr *&s)) (K), (2.38)

which is the probability of K approximation spikes prior to the throttling decimation. To include
the throttling, we use logic similar to what was done in section 2.2.2. We find

Ma—1 (K+1)MA = 1
Pr(K Haar approx. spikes) = Z Z ((gp*80)*(gr*gs)) (i) (2.39)
i=KMa—j
MA—I (K+1)MA—j—1

1
=— ga(i) (2.40)
My Jzzlo i=K;A—j
| Mazd
i [GA((K+1)MA—j—1) —GA(KMA—j—l)] (2.41)
=0
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= ha(K) (2.42)

where G4(K) is the cMF of g4(K) and is given by

K
Ga(K) = )" gan). (2.43)
n=0

Finding the pmFs for the horizontal, vertical, and diagonal spikes is similar to the pmr for the
approximation spikes, so we simply give the result. It is

1 My-1 (K+1)MH—j—1
Pr(K net Haar horiz. spikes) = - Z ((gr*gs) * (gp *80)) (i) (2.44)
H 55 i=KMpy—j
| Mazt o K+DMy—j-1
= D, aul) (2.45)
H i=KMp—j
| Mast
== [GH((K+1)MH—j—1)—GH(KMH—j—l)] (2.46)
H o
= hy(K), (2.47)
My—1  (K+1)My—j-1
Pr(K net Haar vert. spikes) = Z Z ((g8o * gp) *(gs * gr)) (i) (2.48)
i= KMv—]
Mv—] (K+D)My—j-1
Z D, &l (2.49)
i=KMy—j
{ Mv—l
= [GV((K+1)MV—j—1) —GV(KMV—j—l)] (2.50)
v
= hy(K), 2.51)
Mp-1 (K+1)MD—j—1
. . 1 .
Pr(K net Haar diag. spikes) = — Z Z ((gs* gr) % (g0 * gr)) (i) (2.52)
Mp =0 i=KMp—j

Mp-1  (K+D)Mp—j-1

_ MLD 3 S el (2.53)

j=0 i=KMp—j

| Mp-1
=M, ]Z:é [GD((K+1)MD_j_1)—GD(KMD—j—l)] (2.54)
= kp(K). (2.55)

Up until this point, the number of spikes has always been positive. However, a standard Haar
transform allows for negative coefficients, so we allow K to be negative in equations (2.47), (2.51),
and (2.55).
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Further levels of the pwT can be treated similarly. The only difference is that the labels P, Q, R,
and S now correspond to 2 X 2 blocks of the Haar approximation coefficients. This process can be
repeated up until the apex node where a different value of M, is needed for the final
approximation coefficient.

2.3.5. Haar Net Spike Count Simulation

In order to demonstrate the theoretical equations for the net number of Haar spikes, we counted
the Haar outputs from the sparrow simulation described in section 2.2.3. That is, equations
(2.42), (2.47), (2.51), and (2.55) were used to compute theoretical pmFs and the simulation
generated empirical pmrs. The result of doing this is shown in figure 2-17. Not only do we see
close agreement between the theoretical and empirical distributions, we also see that the net
number of spikes can be negative for some of the Haar outputs. This agreement confirms the
theory and analysis shown above.
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Figure 2-17. The theoretical and empirical pmFs for the probability of net Haar spikes.

2.3.6. Positive and Negative Haar Spike Means

The approximation state machines, shown in figures 2-8 and 2-9, only have positive output spikes.
However, the horizontal, vertical, and diagonal state machines, shown in figures 2-10 and 2-11,
have both positive and negative output spikes. Equations (2.47), (2.51), and (2.55) give the PmMFs
for the net number of output spikes during some time interval (i.e. positive minus negative), but
SPARR processes the positive and negative spikes separately in the quadtree portion of the signal
processing. Hence, we would like to have a way to compute the pmrs for the positive and negative
output spikes individually.
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This is not a simple task, though. It would be nice if we could apply Markov chain theory to the
state machines to find an answer. At first glance it may appear that we could use a continuous time
Markov chain (ctmc) to compute the pmrs. However, ctmc requires the inputs to have
exponentially distributed waiting times. For sPARR, this is only true in the case where a photon
arrival results in a pixel spike (the N = 1 case) since the photon arrivals are Poisson distributed (a
Poisson distributed process necessarily has exponentially distributed waiting times). We can,
however, make use of crmc theory if we enlarge the state space. To explain, figures 2-10 and 2-11
have four states where the inputs are pixel spikes. If we enlarge the state space by a factor of N*,
then we can use photon arrivals as inputs, which allows us to use ctmc theory.

Let us consider the simplest case of N =2 (i.e. a pixel spike occurs after two photons arrive at a
pixel). In order for a photon to cause a transition, each state shown in figures 2-10 and 2-11
(hereafter referred to as major states) enlarges to N* = 16 minor states, which gives 4N* = 64 total
states. Figure 2-18 shows the 16 states for any one of the major states. The states are labeled in
binary where the last digit corresponds to the number of P photons received, the second to last
digit to the number of Q photons, the third to last digit to the number of R photons, and the fourth
to last (i.e. the first) digit to the number of S photons. For example, suppose the figure was for
major state 3 of the horizontal state machine, and it was in minor state 0110 (call this state
(3,0110)). If the next photon was through pixel P, then the machine would transition to (3,0111).
If the next photon was instead through pixel Q, then the machine would yield a positive output
spike and transition to state (2,0100). That is, it moves to minor state 0100 within major state 2. If
the next photon was instead through pixel R, the machine would transition to state (2,0010).
Finally, if the next photon was instead through pixel S, then the machine would transition to state
(3,1110). The process can be extended to any positive N. For instance, if we set N = 3, then figure
2-18 would need to be enlared to have 81 states for each minor state, and each minor state would
be labeled in base 3 instead of base 2.

0000 0001 0010 0011
0100 0101 0110 0111
1000 1001 1010 1011
1100 1101 1110 1111

Figure 2-18. The enlarged state space for any of the major states. See
the text for a full explanation. The arrows showing transitions are not
drawn since there are four transitions out of each state, which would
clutter up the drawing.
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We can now analyze this enlarged state space with a ctmc. Start by relabeling each state. Above,
we labeled a major state of m and minor state of b (b should be converted to decimal) with (m,b).
Let the relabeled state be mN* + b. Using our above example, state (3,0110) becomes state

54 =3.2%+6 and state (2,0100) becomes state 36 = 2 - 2* + 4. With the relabeled (and ordered)
states, we can now populate a transition rate matrix T.> Since we know the photon arrival rates for

each pixel (1p, Ag, A, and Ag), we only need to determine how each state transitions to populate
T.

Let us define
, photon arrival at pixel P

, photon arrival at pixel Q (2.56)
, photon arrival at pixel R’ '

W o = O

, photon arrival at pixel S

My, horizontal state machine

M =4 My, vertical state machine , (2.57)
Mp, diagonal state machine

and
ty(k), horizontal state machine

t(k) = {ty(k), vertical state machine (2.58)
tp(k), diagonal state machine

depending on which state machine we are considering. Here,

+1, k=0,1
ty(k) = 2.59
H(k) {—1, k=23 (2.59)
+1, k=0,2
ty(k) = ’ ’ 2.60
v(k) {_1, k=13 (2.60)
+1, k=0,3
tp(k) = 2.61
p(k) {_1, k=12 (2.61)
(2.62)

in accordance with equations (2.10)—(2.12). We now note that when a photon arrives at a pixel,
one of three things happens: either the pixel does not produce a spike, the pixel does produce a
spike but the state machine does not produce a Haar spike (either positive or negative), or the pixel
produces a spike and the state machine also produces a Haar spike (either positive or negative).

The rule for a pixel spike is as follows: if the digit in the N*’s place of b in base N is less than
N —1, then no pixel spike is produced. By extension, no Haar spike is produced either. In this
case, the state advances by N¥. If, instead, the digit in the N*’s place of b in base N is equal to
N —1, then a pixel spike is produced, but we still need to determine if a Haar spike is produced.
Assuming no Haar spike is produced, the state advances by #(k)N* — (N — 1)N*. At this point, if

3The transition rate matrix is often called Q in the literature, but to avoid confusion with pixel Q, we will call it T.
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this new computed state is less than 0, then a negative Haar spike is also produced. If the new
computed state instead is greater than or equal to 4N*, then a positive Haar spike is produced.
Regardless of whether the Haar spike is positive or negative, the state now decreases by
t(k)MN*.

This is a bit confusing, so let us consider the example with the horizontal state machine and N = 2.
Let the current state be denoted Xcyrent and let this state be (3,0110) or Xcyrrent = 54 as determined
earlier. If the next photon arrival is through pixel P (k = 0), then the digit in the N* =20 = 1’s
place of b = 0110 (which is already in base N = 2) is 0. This is less than N — 1 = 1, so no pixel
spike is produced. In this case, the state advances by N k=20 =1, so the next state Xpext = 55. If
the photon had instead arrived at pixel Q (k = 1), then the digit in the N k=2l =25 place of
b=01101is 1. This is equal to N — 1 = 1, so a pixel spike is produced. If we try to advance the
state by #(k)N* —(N = 1)N¥ = +1-24 —(2-1)-2! = 14, we end up with X,x; = 68. However, this
is greater than or equal to 4N* = 64, which means we have to decrease the next state by

t(k)MN* = +1-2-2* =32, This gives Xnex; = 36. We can go through the same procedure to
determine that if the next photon arrival was instead through pixel R, then there would be a pixel
spike, but no Haar spike. The next state would be 34 in this case. Similarly, if the next photon
arrival was instead through pixel S, then there would be no pixel or Haar spike and the next state
would be 56.

Returning to the topic of populating the transition rate matrix T, let us define

Ap, k=0
Ag, k=1
A(k) = . 2.63
(k) Ae k=2 (2.63)
s, k=3

Now, if a 0-indexing scheme is used for the elements of T, then the element at row X¢yrrene and
column Xy is given by A(k). The diagonal elements are all given by —(Ap + Ag + Ag + As).
Hence, there are exactly five non-zero elements in each row of T, and the sum of each row is 0.
The algorithm for forming T is summarized in algorithm 1.

Now that the transition rate matrix is formed, we can compute the limiting probabilities a by
solving
a’T =07 subjecttoa™ =1 (2.64)

where 0 is a vector of zeros and 1 is a vector of ones. Numerically, this is equivalent to finding the
null space of TT and normalizing the result. The null space is simple to find after computing the
singular value decomposition. The limiting probabilities are the fraction of time the system
spends in each state.

Once the limiting probabilities are found, we can compute an expectation for the number of times
a positive or negative Haar spike occurs in some time interval A¢. To do this, multiply Ap by the
sum of the limiting probabilities for states that produce a positive Haar spike from a photon arrival
at pixel P. Do the analogous calculation for the other three pixels and add the results together. For
the negative Haar spikes, a similar procedure can be used. The result is the mean number of
positive and negative Haar spikes in some time interval.
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Algorithm 1 Populate the transition rate matrix.
. T=0
2: fori € [0,4N%) do

3: I; = —(/lp+/lQ+/lR+/15)

4: for k €[0,4) do

5: if (digit in the N*’s place of by) # N — 1 then
6: j=i+Nk

i else

8: j=i+t(k)N*=(N-1)N*

9: if j <0or j > 4N* then

10: j=i—(M-1Dt(k)N*— (N -1)N*
11: end if

12: end if

13: T;j= A(k)

14: end for

15: end for

It may be possible to avoid enlarging the state space by using the theory of semi-Markov processes.
This is an advanced topic in statistics, but it may provide new insight into the SPARR system if it
was understood. It may also be able to provide more than simply the mean for the positive and
negative Haar spikes. We have reason to believe that it could also provide the pmFs for the positive
and negative Haar spikes just as we can compute the net number of Haar spikes. If, in addition to
this, it can also give the probability density functions (pprs) for the waiting times between positive
and negative Haar spikes, then it could provide an alternative method for simulation within
sparrow. If the calculation could be done efficiently, the speedup could be significant. However,
this avenue has not yet been explored, so none of these claims can yet be verified.

2.3.7. Haar Positive and Negative Spike Mean Simulation

To demonstrate that the method in algorithm 1 successfully computes the Haar positive and
negative spike means, we again used the sparrow simulation described in section 2.2.3 to obtain
empirical means. To be specific, we computed the theoretical spike count means for the positive
and negative horizontal, vertical, and diagonal state machines using algorithm 1 and obtained
corresponding means from the sparrow simulation. The results are shown in table 2-3. We see
that for each Haar element and each sign, there is agreement between the theoretical mean and the
empirical mean. This, again, shows the effectiveness of the above theory in predicting spike
outputs.
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Table 2-3. The theoretical and empirical positive and negative Haar spike means.

element sign theoretical empirical
horizontal + 0.010 0.010
horizontal — 6.094 6.132
vertical + 5.040 5.091
vertical — 0.026 0.027
diagonal  + 0.000 0.000
diagonal - 12.860 12.923

2.4. QUADTREE SPIKES

The two quadtrees put the positive and negative Haar spikes into two spike trains for readout. The
quadtrees carry the address of each Haar spike to their apexes, where they add a add a time-tag so
that time and location information is not lost. Unfortunately, the quadtree spike statistics require
that we separately have the positive and negative Haar spike pmFs. Since we don’t currently have
that information, the best we can do is specify how to compute the quadtree spike count pmFs if
we did.

That is, suppose we had

Pr(K pos. Haar horiz. spikes) = h};(K), (2.65)
Pr(K neg. Haar horiz. spikes) = hy(K), (2.66)
Pr(K pos. Haar vert. spikes) = hy(K), (2.67)
Pr(K neg. Haar vert. spikes) = hy,(K), (2.68)
Pr(K pos. Haar diag. spikes) = h},(K), (2.69)
Pr(K neg. Haar diag. spikes) = hj,(K) (2.70)

for each level of the Haar transform instead of simply iy (K), hy(K), and hp(K) from equations
(2.47), (2.51), and (2.55). Then, for each level of each quadtree, we simply apply the
corresponding decimation M 5 ¢ Since each level of each quadtree can have its own decimation, it
is possible to have M é—" | forlevel 1, M 5’2 for level 2, and so on through level L. If we just consider
the positive quadtree, this means in general that M 5 | FM 5,2 £--EM 5 ;, With a similar statement
for the negative quadtree. Also note that generally M é’f +M oL

For each quadtree, the total decimation is

L

MG =1 | Mg, 2.71)
=1
L

Mg =] Mg, (2.72)
=1
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and applying this decimation is straightforward. Let u(K) represent any of the pMFs in equations
(2.65)—(2.70), and let U(K) be the corresponding cmr. Then,

MQ—I (K+1)MQ—j—1

Pr(K quadtree spikes) = — Z Z u(i) (2.73)
Mo =0 i=KMgo-—j
Mp-1
1
=2 |U(& + Mg - j-1) ~U(KMg - j-1) | 2.74)
o j=0

where My is either M 5 or Mé, depending on what u(K) represents. It is important to note that the
above equations assume that M) is not changing, which is not generally true. The decimation
levels dynamically change in each quadtree depending on the input spike rate. However, sparrow
only adjusts the decimation levels at a fixed period, so within any of these periods, the above
analysis holds for the current decimation factors Mé and M.

2.5. CONCLUSION

We have definitively shown how to compute the the pmrs for the number of pixel spikes per time
interval for any pixel as well as the number of net Haar spikes for any Haar element and that we
can qualitatively spatially whiten the output of the Haar layer through throttling. We showed
through simulation that these pmrs are followed very closely in practice, thus providing the
theoretical foundation for designing a sparr system. This means that we learned how to perform
signal processing asynchronously on the pixel spikes.

However, the Haar layer gives outputs on a positive line and a negative line, and computing the
pMFs for the number spikes per time interval for the individual lines rather than the net result
proved more challenging. We were able to compute the theoretical means for the number of spikes
per time interval for the first level of the Haar layer only. Further, due to limitations in computing
power and time, the pixel capacitors must be limited to N < 25 or so, which is not realistic. We
suspect that analyzing the Haar state machines as a semi-Markov process will yield the
sought-after pmFs, but this has not yet been explored.

If we somehow obtain the pmFs for the positive and negative Haar outputs, then we showed that it
is fairly straightforward to compute the pmrs for the number of spikes per time interval from the
quadtree for each Haar coefficient. The quadtree pmrs are useful for a few reasons. The first is that
it gives us a system that is statistically understood, at least in the absence of thermal noise and
spike collisions. This allows for better design and faster design iteration. The second reason is that
it allows us a way to verify that our sparrow simulations are working as expected and may allow
for certain optimizations. To be specific, in the same way that sparrow can skip generating each
photon and instead generate each pixel spike by knowing the theoretical distribution, knowing the
Haar and quadtree pmFs may allow us to directly generate those spikes and skip the pixel spike
generation processing. Some further work may be needed to statistically understand thermal noise
and spike collisions, but it would provide an optimization at least in certain circumstances.
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A third reason the quadtree pmFs are useful is that they allow us to characterize the probability of
detection and false alarm for signals of interest. That is, if we are interested in signals of a certain
brightness, we can design sPARR to have a certain probability of detection and false alarm for that
signal, but the quadtree pmFs also allow us to compute the probability of detection and false alarm
for signals of any brightness. Of course, there may be unforeseen benefits of accurate quadtree
PMFS, but the above reasons are sufficient to continue pursuing these p™mFs.
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3. CIRCUIT DESIGN

3.1. CIRCUITS INTRODUCTION

In implementing the Haar transform based Fpa, there are three main circuit elements to consider in
the signal processing chain. The first circuit is the asp which creates the spike train that will drive
the susequent signal processing elements. The asp will be described in section 3.2.

The second circuit implemented is what we call the Haar node. The Haar node will take the spikes
coming from the asp as inputs and will have several outputs that are representative of the Haar
transform of the input spikes. These output spikes will either go into another Haar node for further
processing or enter into a readout system.

The total number of spikes being output from the Haar nodes can be significantly higher than what
can actually be physically read from the Fpa. Due to this, the output will be decimated using a tree
structure which we are calling the quadtree. The quadtree is the third circuit element presented.

In section 3.3, the Haar node circuit implementation will be described, and in section 3.4 we will
show simulation results and provide a performance summary for the Haar node. For the purpose
of reducing power, we present an alternative Haar node implementation design in section 3.5. For
the quadtree, the implementation will be described in section 3.6 with simulation and performance
results in section 3.7. In section 3.8, we will discuss the full signal processing chain by combining
the Haar node and quadtree elements to implement an rpa. The layout of the array will be shown
along with simulation results which include effects due to the parasitic resistance and capacitance
introduced during the layout. Finally, in section 3.9, we will discuss how a process node can be
chosen to achieve the optimum power consumption for the design.

3.2. ASYNCHRONOUS SELF-RESETTING PIXEL

3.2.1. How the Pixel Works

The sparr concept relies on each individual pixel producing a digital spike train, the frequency of
which is proportional to the illumination intensity incident on the pixel. Each pixel operates
asynchronously from all others. This function can be achieved by integrating the photo-charge
generated by a pixel and resetting this charge when a particular threshold is reached. The reset
signal is then used as the spike output from the pixel. This concept is shown schematically in
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figure 3-1. For a given illumination flux @, the output frequency will depend upon the sensitivity
of the input cell as given by

1
= 3.1
fout Cint : Vthresh ( )
+ Treset
O ApxQE ¢

where fqy is the output frequency, Ciy is the integration capacitance, Vipresh is the comparison
voltage at which to reset the integration capacitance, Ay is the pixel area, QF is the pixel
quantum efficiency, ¢ is the electronic charge, and #. is the duration of the reset pulse.

Vbias

Vthreshold

A" "
As A Pixel

Optical Input
e A
Edge to pulse converter

Figure 3-1. asynchronous self-resetting pixel (Asp) conceptual schematic.

Spike Output

The implementation details of any particular pixel design will rely heavily on the desired
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characteristics of the Fpa. In general, the trade among a completely monolithic Fpa, either
front-side or back-side illuminated, or a hybrid Fpa configuration in which the pixel photosensitive
layer is separate from the pixel must first be determined. The hybrid Fpa could also be
implemented in one of two sub-configurations: (1) The pixel photosensitive layer and pixel asp
spike circuitry are monolithically integrated into the thinned detector layer, or (2) only the pixel
photodiodes are implemented in the detector layer — the readout integrated circuit (ic) would
implement both the asp circuitry and the spike processing circuitry. These options are shown in
schematic cross-section in figure 3-2, and the merits and drawbacks are discussed below.

$ $ $ / Micro-lens / anti reflection coating

S S Sy I |

(a) Monolithic Front-side illuminated

$ $ $ / Micro-lens / anti reflection coating

<——Thinned Active layer

Handle Layer

(b) Monolithic Back-side illuminated

<SS

ROIC

Anti-reflection coating

Thinned Detector Layer
Interconnect per pixel

(c) Hybrid Back-side illuminated

Figure 3-2. Focal plane array configurations.

3.2.2. Monolithic Front-Side llluminated FPA

Benefits

The monolithic approach is very attractive because the entire Fpa could be fabricated as a single
chip without the need for 3D integration to any other layer. A monolithic Fpa has the potential to
be the most sensitive of the configurations because the effective integration capacitance can be
kept low due to the fact that the pixel implant can be connected directly to the input comparator
directly in the first level metal of the process. If this is a deep sub-micron process, the first level
wiring can also be narrow, again minimizing capacitance. This configuration may be able to
achieve pixel capacitance as low as a few fempto-farads (fF). Assuming a 100 mV threshold to
reset, this would result in a spike output for about every 1000 integrated electrons.

Drawbacks
There are unfortunately a number of drawbacks associated with the purely monolithic
configuration. First, the spectral response of the pixel is limited to about 400 nm to 650 nm in
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wavelength for a bulk process, or 350 nm to 450 nm for a silicon-on-insulator (sor) process. The
limited spectral response range results from the relatively thin epitaxial layer (about 2 um
thickness) used in the base silicon wafer, or about 200 nm or thinner used in fully depleted so1
processes. Most process nodes at 30 nm or below are implemented on sor wafers. For a bulk
process, the pixel reverse bias will not be sufficient to fully deplete the pixel junction, resulting in
carrier diffusion as a contributor to charge transport and collection. This will result in higher pixel
cross-talk and slower response times compared with a backside illuminated pixel under high
reverse bias. Small process geometry nodes are optimal for sparr digital signal processing
because this will provide improvements in power consumption and allow us to maximize spike
rate; however, modern small process nodes are typically sor which, due to small silicon thickness,
are poor absorbers of light. This makes the small process nodes a poor choice for pixel
implementation.

The number of metal layers is likely to be 8 or greater on process nodes of 90 nm or smaller. This
is good for routing the digital spike processing layers, but it also means that for front-side
illumination, the pixel must be illuminated through about 10 pm of silicon dioxide. This can also
limit the pixel field of view (Fov) and coupling to an optically fast lens due to the presence of
metal traces well above the optically sensitive substrate. It can also result in spectral response
oscillation due to interference resulting from reflections from the top and bottom of a dielectric
that is many wavelength multiples thick.

Finally, the pixel photosensitive area must share space with Asp circuitry and sPARR spike
processing circuitry, limiting the optical fill factor of the pixel. This can be mitigated in part by
integration of micro-lenses on the front surface, although this will likely need to be done after
wafers are delivered from the silicon foundry. Most deep sub-micron processes, unless
specifically designed for imager technology, will not include a micro lens option directly from the
manufacturer.

3.2.3. Monolithic Back-Side llluminated FPA

Benefits

The benefits of the back-side illuminated monolithic Fpa are similar to the front-side illuminated
configuration discussed above, but with the addition of a higher fill factor and complete control
over the dielectric anti-reflection coating thickness and materials. The higher fill factor is a result
of no metal lines to obscure optical illumination.

Drawbacks

Back-side configurations require significant process beyond the front-side illuminated
architectures. Devices need to be bonded to a handle wafer in order to be thinned. Next,
anti-reflective coatings and micro lenses are added. Finally, the bond pads need to be revealed
from the backside.
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3.24. Hybrid FPA Configuration 1

The first hybrid configuration we will consider would implement the photosensitive pixel and
immediate Asp circuitry in a layer separate from the spike processing circuitry. The benefits and
drawbacks of this approach are discussed below.

Benefits

This approach would allow for a relatively high sensitivity pixel because as with the monolithic
configuration, the pixel capacitance can be kept small because the pixel diffusion can be connected
to the comparator circuitry using first level metallization. The process used could be an 180 nm
mixed-signal process on bulk wafers. The interface to the digital process layer would be the spike
train generated by the asp design. In this way, the digital processing layer could be implemented
in a very deep sub-micron node without compromising pixel performance. The fill factor of the
pixel could be high in that the photosensitive diffusion needs to only compete for area with the asp
circuitry; all spike processing circuitry would be implemented in the digital processing layer.

Drawbacks

Some of the drawbacks of the monolithic configuration also apply to this implementation.
Depending upon the process chosen, the bulk spectral response range of 450 nm to 650 nm may
still apply.

With process customization of this layer, it may be possible to implement a low resistivity
substrate to increase the reverse bias across the pixel. This would need careful investigation to
understand the interactions with cmos circuitry such as back-gate effect and latch-up.

Of course the complications associated with a hybrid configuration would be realized, such as the
need for indium bump or direct bond interface processes to mechanically and electrically connect
the two layers.

3.2.5. Hybrid FPA Configuration 2

The second hybrid configuration we will consider would implement the photosensitive pixel only
in the pixel hybrid layer. The pixel asp circuitry and spike processing circuitry would reside on
the digital processing layer.

Benefits

This approach allows for the best implementation of pixel photosensitivity. The pixel layer needs
only to implement the conversion of photons to electrons, so no consideration of transistor
implementation is needed. For a silicon photodiode detector, excellent response can be achieved
in the spectral band between 350 nm to 900 nm with 100% fill factor, full depletion, and low
cross-talk. Other detector materials such as III-V or II-VI compound semiconductors can be used
rather than silicon to extend spectral response into the infrared.

Drawbacks
A hybrid detector configuration’s primary drawback is low sensitivity as measured by electrons
collected per spike. This is because the parasitic capacitance associated with the metal layers
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connecting the pixel threshold circuitry to the top of the readout ic, the top metal indium pad, and
indium bump result in a combined capacitance of about 50 fF. With a 100 mV threshold
comparison to reset the pixel, about 30,000 electrons are needed. If a simple logic gate is used as
the threshold comparison, sensitivity is about 150,000 electrons per spike.

3.2.6. Example ASP Circuit

Figure 3-3 shows an example of a simple Asp circuit comprised of five inverters, a D flip-flop, and
two transistors. In a 90 nm process, the circuitry would consume about 30 um? of area. The
threshold is determined by the switching point of an inverter, nominally half the power supply
voltage (600 mV for 90 nm technology). The threshold can be lowered by increasing the
width/length gate ratio of n-channel to p-channel compared to a standard inverter. At the expense
of area, power, and maximum frequency of operation, a differential threshold comparator was
added to lower the switch point and hence decrease the electrons per spike.

Pass transistor
to remove
gates from
Photodiode  bump pad Threshold determined by

input P/N transistor size ratios
l Voo /
1
Din T {>o—|>o——|>o—|>o— out
Capacitance /w

dominated by —}fESOf

hybridization of = Q D FVoo Output Pulse Train
detector /_E
Size determined by <
reset time RN

\ Self timed reset

pulse generation

Figure 3-3. Example of a simple asynchronous self-resetting pixel (AsP) circuit.

Figure 3-4 shows the output of a simulation for 3 pA photocurrent feeding the circuit input
assuming 50 fF of detector capacitance. The sawtooth waveform displays the integration and
resetting functionality of the circuit. The voltage of the spike output is seen in the bottom trace.
Figure 3-5 shows a zoom-in of the spike signal around the reset time. The spike output is about
150 ps. The spike width can be increased by adding additional delay between the output of the
inverter and the D flip-flop reset pin.

The output frequency and power consumed as a function of input photocurrent are shown in figure
3-6. The output frequency is linear with photocurrent until about 100 MHz output frequency, then
it begins to roll over and compress high end signals.
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Figure 3-4. Circuit simulation output for the asynchronous self-
resetting pixel (Asp) with 3 pA photocurrent. The top plot shows the
capacitor voltage increasing as more current is integrated, the bottom
plot is the voltage of the spikes emitted by the Asp.

Figure 3-5. Zoom-in of the simulation of the asynchronous self-
resetting pixel (AspP) around the pixel reset time.
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Figure 3-6. Baseline pixel output frequency and power dissipation as a
function of input photocurrent.

3.2.7. Fixed Pattern Noise and Manufacturing Variability

Due to manufacturing variability across the rpa, the pulse output frequency for each pixel as a
function of illumination level will vary stochastically about a mean response. The response
variation for the circuit shown in figure 3-3 as fabricated in Global Foundries’ 90 nm process was
estimated using a Monte Carlo simulation using foundry provided across chip variations in doping
and geometry mismatch. A histogram of frequency response for 100 pixels with expected
across-chip process variations at 4 uA of photocurrent is shown in figure 3-7. The ratio of
standard deviation to mean frequency is 3.7%.

One method to reduce pixel to pixel variations is to increase the area of the critical frequency
determining components. For this design, the input inverter and its associated switching threshold
is the critical component and parameter. For the circuit shown in figure 3-3, the input inverter has
been increased to four times its original minimum size. The resulting spread in output frequencies
has been reduced to 2.4% standard deviation to mean ratio for only a 1 um? increase in area, and
an associated increase in low frequency power consumption as seen in figure 3-8 and figure 3-9.

This demonstrates that pixel to pixel output non-uniformity can be decreased by increasing
component area and power dissipation and should be implemented. The right trade for pixel
circuit complexity for a given application must consider the specific sensitivity, pixel pitch, power
requirements, and Fpa configuration.
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Number = 100
Mean = 85.5163M
Std Dev = 3.53152M
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Figure 3-7. Expected variation in output frequency for the baseline pixel
due to across-chip manufacturing variations.

Number = 100
Mean = 83.6779M
Std Dev = 2.08453M
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Figure 3-8. Pixel output pulse frequency variation with the input inverter
sized to four times the baseline design.
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Figure 3-9. Pixel output pulse frequency and power dissipation for the
input inverter sized to four times the baseline area.

3.3. HAAR NODE IMPLEMENTATION

In this design, the Haar transform is implemented by processing pixel spike data. At the lowest
level in the hierarchy, the spike inputs to the Haar node will be the spikes produced by the asp. At
higher levels in the hierarchy, the Haar nodes will take as inputs one of the outputs of the Haar
nodes from a lower level. In all cases, the Haar nodes will operate in a 2 X 2 array based
architecture. For example, the lowest level Haar node will take as its inputs the asp outputs from a
2 x 2 set of pixels. Since the input order of the 2 X 2 array matters in the implementation of the
Haar node, it is useful to have a simple nomenclature defining the 2 X 2 array. We will use the
letters P, Q, R, and S to define the inputs to any Haar node as coming from one of the four
quadrants in a 2 X 2 array as shown in table 3-1. There are four Haar transform coefficients that the
Haar nodes needs to compute. They are called the approximation, horizontal, vertical, and
diagonal coefficients and are respectively denoted c4, cg, cy, and cp. Next, we will look at each
of these coefficients individually and discuss their circuit implementations.

Table 3-1. 2x2 array orientation.

P|Q
R|S
3.3.1. Approximation Coefficient Implementation

The approximation coefficient implementation is the simplest of the four coefficients. This block
will simply take each input spike coming from the P, Q, R, and S blocks and output one spike for
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every four input spikes, giving a decimation rate of four. This can be implemented according to
the block diagram shown in figure 3-10. There are four states that the circuit can operate in: 00,
01, 10, and 11. When the rpa is powered on, a reset signal, RN, can be applied to force the
starting state to be 00. On any spike from the P, Q, R, and S inputs, the state machine will move to
the next state, following the arrows. When the state machine is in state 01, an input spike will
produce an output spike and change the state to 11.

Lll » 10— 00—>»{ 01 » C, spike

RN—T

Figure 3-10. Approximation coefficient block diagram.

The state machine operation is summarized in table 3-2. From this table, it can be derived that the
next state most significant bit (MsB) can be defined as

NSysg =CSLsp (3.2)

while the next state least significant bit (LsB) can be defined as

NSrsg = CSuss. (3.3)

Table 3-2. Approximation coefficient state machine operation.

Current State (CS) Next State (NS) Output

00 01 0
01 11 1
10 00 0
11 10 0

The circuit implementation for the c4 block is shown in figure 3-11. The four-input OR-gate takes
the P, Q, R, and S spikes as inputs. Whenever there is a spike on any of these inputs, the OR-gate
will output a spike which will be used as a clock signal to operate the state machine. The two D
flip-flops hold the current state. The left flip-flop controls the msB and the right the LsB. Their
inputs are the values needed to create the next state according to equations (3.2) and (3.3).

To create the output spike, we use the right flip-flop. When the current state is 01, the output of
the AND-gate will be a logic 1. On the next spike input, the Q output of the flip-flop will go high.
This signal is buffered and applied to the output. Meanwhile, when the Q signal goes high, the QN
signal goes low. This is passed through a delay used to define our spike width. When the output of
the delay goes low, the flip-flop is reset — Q and c4 go low and QN goes back to logic high.
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Figure 3-11. Approximation coefficient circuit implementation.

3.3.2. Horizontal and Vertical Coefficient Implementation

The horizontal and vertical coeflicients are both implemented with the same circuit topology; the
only difference between the two is the order of the inputs. Both will be described here. Figure
3-12 shows the block diagram for the cy and cy element. Unlike the c4 element, the cy and cy
cells have two outputs — a positive and negative spike. Depending on which input has a spike, the
state machine will either increment or decrement. If the state machine is in the 01 state and there
is an input spike on one of the positive inputs (up), there will be a spike on the positive output and
the state machine will then move to the 00 state. Likewise, if the state machine is in the 11 state
and there is a spike on one of the negative inputs (down or dn), there will be a spike on the
negative output, and the state machine will transition to the 10 state.

«dn «adn <d

n
-cyv spike<«— 11" [10[ .Jo0[" |01 5> +Chy spike
up”!

T up'j up
N

R

Figure 3-12. Horizontal and vertical coefficient block diagram.

The cy cell implements the spiking version of

cy = %[(P+Q)—(R+S)] (3.4)

while the cy cell implements
1
cy = 5[(P—Q)+(R—S)]. (3.5)

According to equation (3.4), the P and Q inputs will be the positive inputs for the ¢y cell which
cause the state machine to increment while the R and S inputs are the negative inputs which
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decrement the count in the state machine. Similarly, from equation (3.5), P and R increment the
cy state machine while Q and S decrement for the ¢y coeflicient.

The state machine operation is defined in table 3-3. From this table, it can be derived that the next
state MsB can be defined as

NSuysp=CSysp-CSpsp+in-CSisp (3.6)
while the next state LsB can be defined as

NSLSB :CSMSB'CSLSB'in"l’CSMSB'CSLSB'B. (37)

Table 3-3. Horizontal and vertical state machine operation.

Current State (CS) Input Next State (NS) Output

00 0 10 0

00 1 01 0

01 0 00 0

01 1 00 Positive Spike
10 0 11 0

10 1 00 0

11 0 10 Negative Spike
11 1 10 0

The circuit implementation for the ¢y and cy coefficients is more complicated than that of the c4
coeflicient, so it will be explained in smaller pieces. Figure 3-13 shows the first part of the circuit.
The OR-gates on the left add the spikes together. If there is a spike on the up OR-gate, there will
be a spike on in+. Similarly, if there is a spike on one of the down inputs, there will be a spike on
in-. These spikes will then control the SR-latch that follows the input OR-gates. If there is a spike
on in+, lat_in+ will be held to a logic high; if there is a spike on in-, lat_in+ will be a logic low.
The other output of the SR-latch, lat_in- is the logical complement of lat_in+.

The right half of figure 3-13 shows how the local clock is generated to control the state machine.
When there is a spike on in+ or in- (i.e., there’s a spike on any input), this OR-gate will create a
spike. It is then delayed to allow the state machine to process the next state logic due to lat_in+
and lat_in- potentially changing state. After the delay, there is the single-pulse clock signal, clk,
which will be applied to the state machine to load the next state.

The implementation of the state machine is shown in figure 3-14. The logic gates to the left of
each flip-flop implement the required next state logic functions given in equations (3.6) and (3.7).
The single-pulse clock signal used here, clk, is generated as previously shown in figure 3-13.

The output driver for the ¢y and cy coefficients is similar to that of the c4 coefficient except that
there are now two of them as shown in figure 3-15. For the positive output, when the current state
is 01, the left AND-gate output will be high. If the state machine is in this state, according to table
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Figure 3-13. Horizontal and vertical coefficient circuit implementation —
up/down control and clock generation.
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Figure 3-14. Horizontal and vertical coefficient circuit implementation — state machine.

3-3, there should be a positive output spike if the circuit gets a spike on one of the two up-inputs.
If this is the case, there will be a spike on in+ which will produce an output spike on out+. The
width of the spike is controlled by the delay element in the same fashion as previously described
in the c4 section. Similarly, if the state machine is in the 11 state, according to table 3-3 there will
be a negative spike either of the two down inputs spikes.

CSwise — b
CSise —

>

in+

Q

—[>—out+

dela
QN
RN

CSMSB_
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CSLSB I
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Figure 3-15. Horizontal and vertical coefficient circuit implementation — output pulse driver.



3.3.3. Diagonal Coefficient Implementation

The final element in implementing the Haar transform is the circuit for implementing the diagonal
coeflicient. The cp spike output can be approximately described by the equation

cp=(P-0)-(R-9). (3.8)

The cp implementation is similar to that of the cy and ¢y implementations, and the block diagram
of its operation is shown in figure 3-16. The difference between this implementation and that of
the cy and cy is that the state machine will stay in its current state when an output pulse is
generated.

dn «dn <dn r

-cp spike < n11‘=10‘=00‘=01

o> *cpspike

Figure 3-16. Diagonal coefficient block diagram.

The state machine operation for the cp coeflicient is defined in table 3-4. From this table, it can be
derived that the next state MsB can be defined as

NSusp=CSysp-CSpsp+in-CSisp (3.9)
while the next state LsB can be defined as

NSLSB:B'CSMSB-FHI'CSMSB. (3.10)

Table 3-4. Diagonal coefficient state machine operation.

Current State (CS) Input Next State (NS) Output

00 0 10 0

00 1 01 0

01 0 00 0

01 1 01 Positive Spike
10 0 11 0

10 1 00 0

11 0 11 Negative Spike
11 1 10 0
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Figure 3-17. Diagonal coefficient circuit implementation — up/down con-
trol and clock generation.

The circuit implementation of the ¢p element is based on that of the cy and cy elements. Figure
3-17 illustrates how the input spikes are converted to control signals similarly to how they were
done for the cy and cy elements from figure 3-13. The only difference between these two circuits
is the order of the P, Q, R, and S inputs.

The circuit implementation for the c¢p element’s state machine is shown in figure 3-18. Again, the
cp element operates similarly to that of the cy and cy state machines; the variation is in the
combinational logic prior to the flip-flop inputs.

CSLSB pa— CSMSB—

CSwmiss— Iat_in——
- D Qf—CSuss D Q— CSss
CSI_SB pa— CSMSB ]
lat_in-— ck—I>  aNp—TCom laf_ink—] ck—P>  QNP—CSis

Figure 3-18. Diagonal coefficient circuit implementation — state machine.

The final circuit element is the output driver. For the cp element, the operation is exactly the same
as that of the cy and cy element so the same circuit of figure 3-15 is used.

3.4. HAAR NODE PERFORMANCE

Performance, from a circuit perspective, is concerned that the basic function of the circuit follows
the behavior of the state tables when spikes are widely separated compared to the pulse width,
follows reasonable behavior when spikes are densely spaced in time compared to the pulse
width—colliding—and measures of energy consumption due to both quiescent non-spiking energy
leakage and due to spike-driven dynamics. Section 3.4.1 demonstrates through simulation that the
Haar node circuit elements describe the state table behaviors when spikes are not colliding.
Section 3.4.2 shows how the behavior, while not mathematically accurate, is nevertheless stable
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and avoids pathological failure in the presence of collision. Energy consumption is addressed by
section 3.4.3.

3.4.1. Haar Node Simulations in Normal Operation

The approximation coefficient element was simulated with spikes randomly distributed between
the four inputs. Sufficient time was given between spikes to ensure that there would be no issues
with overlapping spikes. Figure 3-19 shows the results of this simulation where the circuit starts
out in a middle state and there is an output spike after two spikes on the inputs. After this, the
circuit emits one spike every four input spikes. This is operating in accordance to the state
machine illustrated in figure 3-10.

0 5 10 15 20 25 30 35
Q
H |” H I H H\
0 5 10 156 20 25 30 35
R
] H IH H H l H
0 b 10 15 20 25 30 35
S
0 5 10 15 20 25 30 35
Ca
0 5 10 15 20 25 30 35
Time (ns)

Figure 3-19. Approximation coefficient simulated results. The output c4
is a 4:1 decimation of the inputs once the state settles, around 13 ns

The same set of input spikes used for the c4 element was applied to the cy element. Figure 3-20
shows a portion of these results. The cy element has two outputs, cy+ and cy— corresponding to
the block diagram in figure 3-12. For the cy element, the P and Q inputs cause the state machine
to increment while the R and S inputs cause it to decrement. The circuit starts in the 00 state. The
sequence of inputs prior to the first output cy— is R,P,R,P,R,S,P,S,S corresponding to internal state
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transitioning 00+4R— 10+P— 00+R— 10+P— 00+R— 10+S— 114P— 10+S— 114+S— 10 and
emit a negative spike; the behavior shown by figure 3-20.

0 5 10 15 20 25 30 35
Q
U " | r -|\
0 5 10 15 20 25 30 35
R
] H IH H ” | H
0 5 10 15 20 25 30 35
S
0 5 10 15 20 25 30 35
cyt
0 5 10 15 20 25 30 35
cy-
| r
0 ) 10 15 20 25 30 35
Time (ns)

Figure 3-20. Horizontal coefficient simulated results.

The cy element operating similarly to the cy element; the only difference is that the P and R inputs
cause the state machine to increment while the Q and S inputs cause the state machine to
decrement. No figure is shown for this operation, but verification was performed separately on the
cy element to ensure its operation before integrating it into a larger Fpa design.

The final block in the Haar node is the c¢p element. The simulation results for this block are shown
in figure 3-21. It also has two outputs and follows the signal flow in the state machine diagram of
figure 3-16. The P and S inputs for this block cause the state machine to increment while the R
and Q inputs cause it to decrement. The output spikes occur where expected according to state
transition table 3-4
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Figure 3-21. Diagonal coefficient simulated results.
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3.4.2. Haar Node Simulations in Saturation

The previous simulations show the operation of the circuits in a normal operation mode where
there is sufficient time between spikes for all the internal logic to operate as expected. As the spike
rate increases, or if spikes become too close together or collide, the circuits will fail to operate as
desired. This section describes how the circuit behaves in these undesired operating conditions.

Figure 3-22 shows the Haar node circuit outputs when receiving spikes simultaneously on the P
and Q inputs. For this simulation the R and S inputs are grounded and therefore not receiving any
spikes. Looking at the c4 output, it can be seen that output spike rate is half of what it should be.
In this case, the spikes on the Q input are not being detected due to the spike overlap. Referring
back to figure 3-11, the four-input OR gate needs to have a gap between spikes long enough for its
output to go low between spikes. When the spikes overlap as they do in figure 3-22, the output of
the OR gate is essentially just a single, wide pulse.

The output of the cy element is having a similar failure to that of the c4 element. The output rate is
half of what it should be. With spikes overlapping or too close to each other, the clock generation
circuit of figure 3-13 creates only a single clock pulse, not two it would ideally generate.

The outputs of the cy and cp cells are as expected. However, this is only coincidence, the circuit is
experiencing similar “blurred clock™ failure as the previous two elements. The state machine logic
is also not working correctly when the spikes are too close. In this case, the failure of the state
machine and the failure of the clock negate each other to produce the correct output. That errors
cancel to produce the correct behavior is not generally true, it occurs here by good fortune.

In general, there must be sufficient time between spikes for the logic to settle. For the current
design implemented in 90 nm cMmos, that means 200 ps between the falling edge of the first spike
and the rising edge of the second spike. For spacing closer than this, or for overlapping spikes, the
logic circuits will begin to fail and the outputs can no longer be trusted to be representative of
their inputs.

3.4.3. Haar Node Energy Consumption

One of the important concerns in this design is the power consumption. This section shows a full
analysis of the c4 element to illustrate how a block’s power consumption is determined. In our
simulation, 100 spikes were applied randomly to the four inputs. Spikes were spaced 1 ns apart to
allow all transients to fully settle.

Figure 3-23 shows the integral of the power being consumed by the c4 block. At the 10 ns point,
the input spikes begin and the energy (integral of the power) increases with each spike. Once the
100 spikes finish, the energy curve becomes a nearly flat line since there is no switching in the
logic circuits without spiking inputs.

Although the curve appears flat after spiking has ceased, it actually has a very small slope due to
the direct current (pc) leakage current of the transistors. While the leakage is small, the
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Figure 3-22. Haar node outputs with colliding spikes.
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Figure 3-23. Integral of the approximation coefficient power consumption.

cumulative effect on a large array can be significant. Measuring the slope in the leakage region
produces m = 17.1 nW. We assume this leakage is a constant bc power.

To calculate the energy per spike, we need two data points — one just before the first spike arrives
and one immediately after the circuits settle subsequent to the last spike’s arrival. These two data
points can be read from the graph and are 197.316x 10718 J at 10 ns and 5.701 pJ at 136.8 ns.
Taking the difference between these two data points gives 5.701 pJ and 126.801 ns. During the
time difference of 126.801 ns, the circuit was also consuming power due to the leakage. The total
energy consumed due to leakage is the leakage power times the duration

Atxm=126.801x10""x17.1x 1072 =2.168 fJ (3.11)
The energy due to the spikes will thus be

5.701 pJ —2.168 1] = 5.699 pl. (3.12)

Dividing this by the number of spikes, 100, we have the c4 element consuming 57 fJ per input
spike while having a pc leakage power of 17.1 nW. The same kind of analysis for the other circuit
elements produces the results summarized in table 3-5.

3.5. HAAR NODE ALTERNATIVE IMPLEMENTATION

The Haar node implementation presented above is only one way to achieve the desired results. If
timing and saturation error tolerance are relaxed, alternative implementations can consume less
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Table 3-5. Haar node power consumption.

Element Energy Per Spike (fJ) Leakage Power (nW)
cA 57 17

cy and cy 101 31

)] 103 41

Total for Haar node 362 120

power and silicon area. This section presents our initial design which was modified to produce
more predictable saturation behavior.

3.5.1. Alternative Approximation Coefficient Implementation

Figure 3-24 shows an alternative implementation for the approximation coefficient. In this
implementation, the decimation by four is implemented using two divide by two in series (the first
two D flip-flops). The output spike is generated in the same manner that was previously discussed
and illustrated in figure 3-11.

LD Q LD Q D Q—I>_CA

aN aN aN
RN RN RN
(@]

Figure 3-24. Approximation coefficient alternative implementation.

[7-Fek-]

The primary fault with this approach is the ripple delay of having the two divide by two circuits in
series. When compared to the cy, cy, and cp coeflicients, the delay from input spike to output
spike will be approximately triple for this implementation due to the output of the first flip-flop
being the clock signal to the second flip-flop who’s output then clocks the third flip-flop. In order
to improve the delay from the input to the output, the design of figure 3-11 was used which is a
state machine based design. In this case, both flip-flops use the same clock signal which reduces
the delay from input to output. The only additional circuitry in the more tolerant design is a single
AND gate—a small increase in area and power. The chosen design is favored over this lightweight
design since timing is improved at little cost.
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3.5.2. Alternative Horizontal, Vertical, and Diagonal Coefficient
Implementation

The horizontal, vertical, and diagonal lightweight designs use the same state machine logic; the
difference is in generation of the output pulses. The left half of 3-25 shows the preferred design;
the right half shows the alternative lightweight approach.

cs<1>— >
D —| >— out+
€s<0>— a cs<1> —

dela
cs<0> — out+
> an C> o> — >D'
(@)

in+

Figure 3-25. Horizontal, vertical, and diagonal coefficient alternative implementation.

In the left half, a D flip-flop generates the spike. When the state machine is in the desired state, 01
in the example shown, an output spike is generated if the next input spike is on one of the positive
inputs. The delay element controls the width of the output spike. In the alternative approach (right
side of figure 3-25), the output spike is generated through an AND gate. For the same positive
output spike case, if the current state is 01, a spike on one of the positive inputs will create the
output spike.

The benefit of lightweight approach is that a single AND gate replaces the D flip-flop and delay
element. Figure 3-26 shows the area savings. The top half of the figure depicts the collision
tolerant approach from section 3.3 while the bottom half shows the lightweight implementation.
The lightweight implementation uses approximately half the area. The lightweight circuit reduces
the area for one output by 27.9 um?. Considering that each element has two outputs and there are
three total elements in each Haar node using this structure, the lightweight approach reduces total
circuit are by 167.4 um?. For a 35 um X 35 pym pixel, this constitutes a 13.7% reduction in pixel
area.

Figure 3-26. Horizontal, vertical, and diagonal coefficient alternative layout comparison.

The lightweight design also requires less power. The cp, cy, and cp elements in the
collision-tolerant design each consume about 100 fJ per input spike, while the lightweight
approach only uses approximately 70 fJ per input spike.
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While the area and power consumption are improved with this alternative approach, the greatest
drawback is that circuit behavior at saturating spike rates becomes more erratic. Figure 3-27 shows
the behavior of one of the outputs for an increasing spike rate. This simulation is showing the
positive cy output when the input spikes are alternating on the P and Q inputs with an even delay
between spikes. The top waveform shows the outputs when the delay between spikes is 340 ps. In
this case, the circuit is operating as desired. Reducing the time between spikes to 240 ps (second
waveform) where the cy block is saturating and there is an unexpected double-spiking behavior.
Further decreasing the time between spikes to 140 ps gives (third waveform) produces output
spikes faster than desired desired; this output rate is too high to be detected at the next level in the
hierarchy since there is not enough time between spikes. Finally, if the spike rate becomes too
high (bottom waveform), the output will saturate at a high level and no spikes will be detected.

340 nsA
T T |m H [“
T T b T | N | ™ N N
8 9 10 11 12 13 14 15 16 17 18
240 nsA
T T
| | v A | ) | AJ | AJ | IaJ v
8 9 10 1 12 13 14 15 16 17 18
140 nsA
I T | | | | 1
8 9 10 11 12 13 14 15 16 17 18
40 nsA
I | I | | | 1
T T N | L L L | | |
8 9 10 1 12 13 14 15 16 17 18
Time (ns)

Figure 3-27. The lightweight cy design output is pathological when in-
puts spikes are too close together. The top trace shows desired behav-
ior, the second shows an unwanted double-spiking, the thirds output
spike rate is too fast for downstream processing, and the bottom shows
a single continuous output voltage.
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Ultimately, we preferred the design from section 3.3. Although the chosen approach uses more
power and area, the operation in saturation is better defined and is therefore better aligned with the
sparrow simulator. By aligning the transistor-level behavior with the sparrow behavior we can
more reliably predict total Fpa operation. If the ultimate desire is to reduce the power consumption
as much as possible, the alternative approach presented in this section should be used.

3.6. QUADTREE IMPLEMENTATION

The quadtree circuit must achieve two functions: decimate a set of input spikes and provide the
address of the current pulse that is being output from the system. The quadtree implementation
consists of two blocks, each block implements one of these two functions.

3.6.1. Quadtree Decimation and Output Spike Generation

The circuit in figure 3-28 decimates the input spikes. Four input spikes on the P, Q, R, and S lines
are imposed on a four-input OR gate. In the Haar node discussion, P, Q, R, and S represented
either pixel spike inputs (at the first level of the transform) or approximation coefficient spikes (at
higher transform levels). In contrast, the inputs to the quadtree come from four Haar node output
spikes. The Haar outputs entering a quadtree element can come from any part of the Haar
transform, for example, they could be cy spikes from four different levels in the transform. We do
require, though, that the Haar node outputs have the same sign since there are two quadtrees — one
for the positive Haar outputs and one for the negative Haar outputs. The output of the OR gate acts
as a clock signal for the following circuitry which will pulse whenever there is a spike on any of
the four inputs. A set of two D flip-flops follow the OR gate. In the configuration shown, with the
QN output connected to the D input, the flip-flop acts as a divide-by-two circuit. The first flip-flop
output will toggle after two spikes on the input while the second flip-flop output will toggle after
four spikes on the input.

This system has three different outputs — the pulse coming from the OR-gate and the two flip-flop
outputs. Each of these drive a tri-state buffer. The enabled tri-state buffer selects the decimation
rate. To have decimation rates higher than four, more D flip-flops can be added to the signal chain
with a corresponding tri-state buffer driving the output line.

While the output of the OR gate from figure 3-28 is a spike, the output of the D flip-flops is not; its
output will resemble a square wave with a rising edge every other spike input on the first D
flip-flop and every four input spikes on the second flip-flop. These longer duty cycle waveforms
need to be converted to spikes and buffered to drive the next stage in the architecture. This is done
using the circuit shown in figure 3-29.

The output of the decimation circuit drives the clock input on the D flip-flop. When there is a
spike, the Q output toggles high while QN goes low. The QN line goes low, and after a delay
drives the RN terminal of the D flip-flop low which in turn resets the Q output to a low value. The
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Figure 3-28. Quadtree decimation circuit.
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Figure 3-29. Quadtree output pulse generation circuit.

spike produced at the output can be made wider by increasing the amount of delay in the delay
element.

There are two outputs shown in the figure, the main output spike which will go to the next level in
the system and a single-pulse clock signal, outClk, which is used to drive the logic in some of the
circuits discussed next.

3.6.2. Quadtree Address Output Generation

The second major piece of the quadtree element is the address generation circuit. In the address
generation circuit, the output reflects which input (P, Q, R, or S) the spike came from. The inputs
are coded as follows: P-00, Q-10, R-01, and S-11. For example, when a spike arrives on the R
input while the decimation state is allowing an output, the address generation circuit will output
01.

At higher levels in the quadtree, each element receives address bits from the lower levels. These
address bits, along with two new address bits reflecting the P, Q, R, or S input, must be pushed to
the output along with the spike marking the time.

Figure 3-30 shows the first circuit for the address generation. The left half of the circuit includes a
set of OR and NOR gates which act as a decoder. When there is a spike on one of the inputs, the
addX nodes will change to the corresponding two bit code where addX<1> is the msB and
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addX<0> is the LsB. While the address is decoded every time there is a pulse only want the
output address to change when the circuit is actually sending an output. The two D flip-flops
constrain the address change at the quadtree output to occur only when outClk (from figure 3-29)
is active. When outClIk is active the current address at the input to the D flip-flop is loaded onto
the address output buffers which hold the current address until the next output pulse.

addX<1>

addX<1>

D qff>—add1>

outClk — >

addX<0>

addX<0>

D Qf{>— add<0o>

outClk —P>

Figure 3-30. Quadtree output address generation circuit.

As previously mentioned, the quadtree element must also drive the address bits from the lower
levels in the hierarchy. The circuit of figure 3-31 receives the address bits from the lower levels in
the hierarchy and applies them to the set of tri-state buffers. The tri-state buffers corresponding to
the most recent input spike are enabled through the decoder on the left. The tri-state buffer outputs
change with every spike on the input; to control the output change we load them onto the D
flip-flop in the same manner as in the local-stage address generation circuit of figure 3-30. The
presented approach has twelve tri-state buffers in each set allowing up to six levels of address bits.
In addition to the two bits generated at the current level that allows a total of 2! or 16384 Haar
coeflicients. If there are fewer than twelve bits at the input, the unused higher msBs can be tied to a
logic low and the corresponding outputs ignored. This allows a single quadtree circuit design to
be used at different levels in the hierarchy, trading implementation simplicity for redundancy.

3.7. QUADTREE PERFORMANCE

Quadtree performance is governed by the same issues that govern Haar node performance.
Specifically, the quadtree element must decimate and calculate or forward address bits correctly, it
must behave tolerably in the presence of overlapping input spikes, and we must estimate its energy
use per input spike.
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Figure 3-31. Quadtree output address driver circuit.
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3.7.1. Quadtree Simulations in Normal Operation

The quadtree circuitry operates similarly to the approximation coefficient circuitry. Assuming the
spikes have enough separation, the quadtree will output a spike every N input spikes, where the
decimation factor N can be set to 1, 2, or 4 in the presented design. In the following simulations,
N =2, so the quadtree should output one spike for every other input spike. Unlike the c4 element,
the quadtree must also output an address bit based on which input presented the spike.

Figure 3-32 shows the output of the quadtree node in the lowest level in the hierarchy — it passes
no additional address bits to the output. There is 1 ns between spikes to allow the circuitry to
operate without collisions or spike-saturation behavior. The output consists of a spike for every
other input spike — a decimation rate of two, as expected. In addition to the output spike, there are
two address bits which change coincidently with the output spikes. The address bits refer to which
input the spike belongs to as mentioned in the previous section: P-00, Q-10, R-01, and S-11. For
higher levels in the hierarchy, the quadtree will output two additional bits per level up. In figure
3-32 the initial address state is 11; however, without a spike present on QT output it has no
meaning. The first two spikes arrive on input P, after the second one the address drops to 00
around 12 ns into the simulation, and concurrent with that drop QT output spikes.

3.7.2. Quadtree Simulation in Saturation

Referring back to figure 3-28, the spikes coming in to the quadtree are being added through an OR
gate. If the spike rate at the input to the OR gate is too high, the OR gate output cannot respond
quickly enough to go low before the next spike arrives at its input. If the output can not go low,
then there is no rising edge on the clock input of the D flip-flops after the first pulse’s rising edge.
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Figure 3-32. Quadtree simulated results for the lowest hierarchical
level. The element decimates 2:1, so there is an output for every other
input spike. The address reflects the forward input spike according to
P-00, Q-10, R-01, and S-11.

82



In this case, only the first spike is counted, so if there is decimation, the quadtree will not have any
output. Figure 3-33 shows that, when exposed to dense spiking, the quadtree element’s output
never spikes. There needs to be at least 200 ps between the falling edge of one spike and the rising
edge of the next spike for the OR gate to operate correctly. When the OR gate’s correct operation
allows the rest of the circuitry to operate as desired.
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Figure 3-33. Quadtree simulated results with saturated input.

3.7.3. Quadtree Energy Consumption

The energy consumption analysis that was presented in section 3.4.3 for the Haar node was
repeated for the quadtree. Figure 3-34 shows the integral of the quadtree dissipated power. The
steady state, after spiking has ceased, results in a leakage power is 95.2 nW. The energy per spike
(not including leakage current) is 197 {J per input spike. These results are summarized in table
3-6.
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Figure 3-34. Integral of quadtree power consumption.

Table 3-6. Quadtree power consumption.

Element Energy Per Spike (fJ) Leakage Power (nW)

Quadtree 197 95.2
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3.8. FULL SYSTEM LAYOUT AND SIMULATIONS

Layout translates the schematic circuit descriptions into the masks, metal, and exposed silicon to
realize the design in cmos. The realized circuit’s behavior will differ from the conceptual behavior
due, mainly, to conductor capacitance and resistance—the so-called parasitic properties. Complete
layout provides accurate assessment of parasitic effects on circuits, accurate power estimates, and
accurate space estimates. This section provides a complete layout in a single process node.
Section 3.9 uses these results to explain power use at different nodes, and chapter 4 extends
low-level circuit power estimates and node scaling properties to full system predictions.

3.8.1. Haar Node Layout

The Haar node layout was completed with the assumption of a 35 um x 35 um pixel area. Figure
3-35 shows the layout of the Haar node. The width of the layout is exactly 35 um tall by 21 um tall
which takes up slightly more than half of one pixel’s area.

Figure 3-35. Haar node layout.

Figure 3-36 illustrates how the Haar node is positioned in a 2 X 2 pixel layout. At the lowest level
in the hierarchy, one Haar node processes spikes coming from four pixels; this is why three of the
pixels are empty. In a complete design, the upper half of the empty pixels holds the quadtree
circuitry and Haar nodes at higher levels in the hierarchy.

The red square in each pixel (figure 3-36) is reserved for a photodiode. The vertical purple lines
provide power, ground, and control signals to the Fpa. The upper left pixel-depicted containing a
Haar node-retains approximately one-quarter of its area for the asp. After completion of the full
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Figure 3-36. 2 x 2 layout.

FPA layout, each pixel includes one photodiode, one asp circuit, and either a Haar node or quadtree
element.

3.8.2. Quadtree Layout

Figure 3-37 shows the layout of the quadtree. It is the same size as the Haar node layout, 35 um
wide and 21 um tall, so it fits in slightly more than half of one pixel’s area.

3.8.3. Haar Node and Quadtree PEX Simulations

The layouts of the Haar node and quadtree were processed with a parasitic extraction (PEX) tool.
This tool calculates the parasitic capacitance and resistance of all the metal interconnects. The
PEX circuits can then be simulated to see how these additional parasitics affect the performance of
each block.

All of the circuits in the Haar node and quadtree are digital standard cells with robust designs.
Consequently, the primary difference between the pEx simulation and the ideal schematics is the
power performance. Both of these blocks were simulated with parasitics included and the analysis
from section 3.4.3 repeated. Table 3-7 summarizes the results. All of the additional parasitics
cause the energy per spike to increase by approximately 75%, but the leakage power reduces when
including parasitics.
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Figure 3-37. Quadtree layout.

Table 3-7. Haar node and quadtree power comparison. The PEX power
numbers are consistent with the numbers in table 4-2 on page 100,
though summarized in fewer numbers here.

Element Energy Per Spike (fJ) Leakage Power (nW)
Haar node (schematic) 362 120
Haar node (PEx) 617 50
Quadtree (schematic) 197 95
Quadtree (PEX) 349 67

3.8.4. 4x4 Pixel Array Layout

Figure 3-38 shows the layout of a 4 X 4 pixel array. This array has four Haar nodes at the pixel
level in the hierarchy. The c4 outputs of each of these Haar nodes feed the inputs to a fifth Haar
node. The ¢y, cy, and ¢p outputs from the pixel level Haar nodes feed the quadtree. There are six
cH, ¢y, and cp outputs coming from each Haar node, or 24 total outputs which go to the quadtree.
Each quadtree has four inputs, so there are six quadtree unit cells to process the Haar node
outputs. The Haar node outputs go to the nearest quadtree input. There are five empty pixels that
do not contain a Haar node or quadtree cell. These empty pixels are filled, at higher levels in the
hierarchy, with more Haar nodes and quadtree cells.
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Figure 3-38. 44 pixel layout.

3.8.5. 8x8 Pixel Array Layout

Expanding on the 4 x 4 layout, to get the 8 X 8 layout of figure 3-39. This layout tiles four of the

4 x 4 layouts of figure 3-38 and adds one Haar node and six quadtree cells. The second level Haar
nodes that take the c4 outputs from the lowest level Haar nodes are feeding the new Haar node—the
level three Haar node. The cy, cy, and cp outputs from the level two Haar node feed six new
quadtree cells, added in the unoccupied pixel areas. The 24 quadtree cells from the 4 x 4 tiles
(four tiles with six quadtrees each) have their output pulses and address bits passed to an
additional six quadtree cells. These quadtree cells output four address bits.

Figure 3-39. 8 X § layout.

3.8.6. 16x16 Pixel Array Layout

The 16 x 16 pixel array layout in figure 3-40 consists of four 8 X 8 pixel array cells tiled into a

16 x 16 array. One additional Haar node processes the outputs of the third level Haar nodes. There
are eighteen additional quadtree cells added. Six of the quadtree cells receive input from the cp,
¢y, and cp outputs from the third level Haar nodes. The other twelve quadtree cells are
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aggregating the lower level quadtrees. Six of these quadtrees output one spike and four address
bits while the other six output one spike and six address bits.

Figure 3-40. 1616 layout.

3.8.7. Concerns With Layout Feasibility

The layout of the 16 X 16 pixel array was not completed. Approximately half of the interconnects
were added. As the array size grows larger, the number of interconnections increases. At each
level up in the hierarchy, the number of quadtree cells increases. As the number of quadtree cells
increases, the number of additional address bits to route increases. It is simply not feasible to
manually lay out larger arrays. For future work in developing a SPARR FPa, it is recommended that
a digital 1c designer convert the design to their design flow so that the layout can be produced
through automatic place-and-route (APR).
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Using an apr approach is likely the only way to complete the layout in a reasonable amount of
time for larger, practical array sizes. Using a digital design approach will also be beneficial in
improving signal timing which can be a concern for the larger array sizes since the Haar node and
quadtree outputs must be routed long distances. Additional buffering can be added automatically
where needed.

Another issue that may arise with this design is known as the antenna effect. In fabrication, an
electric charge can build up on the metal lines that are being used to route the signals. As the line
length increases, the charge increases. This accumulated charge can discharge into transistor gates
causing transistor failure reducing yield during manufacturing. To fix antenna issues, diodes are
placed in the layout to absorb the unwanted charge and prevent damage to each transistor’s gate
oxide. Since the layout of sPARR will consist of many long signal wires, care will be needed to
eliminate antenna effects. Digital design approaches, like this in APR, can add antenna effect
prevention diodes automatically.

3.9. POWER SCALING

The circuits presented in this document were designed for the Global Foundries 90 nm cmos. The
baseline design implemented in the 90 nm technology node requires a 35 um X 35 um pixel to
hold the digital circuitry for the Haar transform and quadtree while maintaining some space for
the asp and photodiode in a monolithic implementation.

SPARR circuitry can be implemented in smaller area and lower power as the cmos technology node
advances. In general, each technology node decreases minimum feature size by a factor of about
0.7, that is, each smaller node’s feature size about 70% of the larger. The area required by the
circuit decreases by about 50% for each technology node.

Under the assumption that total rpa area will scale with technology node as above, and that
frequency of operation will remain constant (i.e. similar pixel transfer functions), dynamic power
ideally reduces by a factor of two for each technology node. In practice, one cannot realize this
much improvement, primarily because the power supply voltages do not scale linearly with
process nodes. Dynamic power will likely scale by a factor of about 1.5-1.8 reduction per
technology node for the same circuit, assuming the frequency of operation stays the same, while
occupying one half the area of the previous technology generation.

Another factor that must be considered is the increase in static power due to both transistor
off-state leakage current and gate tunneling current at smaller technology nodes. There is no
direct rule of thumb for the increase, but circuits that operate at relatively low frequency (in the
SPARR architecture, those circuits that are functionally further from the pixel after decimation)
may actually increase in power consumption due to an increase in static power dissipation.

Figure 3-41 illustrates how the power and pixel pitch may change with process node, assuming a
1.8 reduction factor in power per process node and a 70% pixel pitch reduction. In this figure, the
power consumption for the 90 nm is our baseline and normalized to 1. To maximize the power
reduction, the pixel pitch must be reduced at the 70% rate. If the pixel pitch is not reduced, the
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logic circuitry that implements the Haar node and quadtree will still use less power, but the buffers
that drive the signals from the output of these circuits to those at the next level in the hierarchy will
not reduce in power. If the node size is decreased enough, the buffers become the dominant power
consumer, so there is no further advantage in choosing a smaller (and more expensive) node size.
Again referring to figure 3-41, if, for example, we plan to not implement a pixel with less than a
20 um pitch, 45 nm would be the optimum technology when considering power consumption.
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Figure 3-41. Power and pixel pitch scaling.
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4. POWER ESTIMATES

4.1. ANALYSIS

Estimated power consumption for the sPARR sensor derives from quiescent draw (leakage current),
photocurrent, and the spike-driven power consumption. Quiescent draw or leakage current is the
power expended by the integrated circuit when it is doing nothing. Both photocurrent and spike
processing are dynamic; the amount of power consumed in photocurrent depends on the light
incident on the array while the amount of power consumed by spike processing depends on the
frequency and pattern of spikes. The key items are the power consumed by the photodiodes Ppp,
the power consumed in the spike processing in the Haar layer Py, and the power consumed in the
quadtree readout Pgr. Assembled, the total system power is

P = PpD+PH+PQT
=P PD-spike T Ppp.jeak + P PD-photo (4.1)
+ P, H-spike t Py leak .

+ PQT-spike + PQT-leak -

The architecture of the Haar and quadtree design involves the asps feeding spikes into the Haar
layer, and then the Haar-layer outputs feeding spikes into the quadtrees, where the data is read out.
Figure 4-1 shows how these interconnect logically, pixels feeding the Haar transform layers, which
in turn feed the quadtree read-out.

4.1.1. Leakage Power

With the preceding definitions, we can immediately define the power consumed by leakage, which
depends principally on the number of pixels and the leakage per pixel. If the leakage power per
pixel is Ppx.leak» then the entire photodiode array’s leakage power is

Ppp_jeak = npxP px-leak 4.2)
where npy is the number of pixels in the array.

For the Haar network, the four different element types have a different power consumption, so we
must count the number of times we compute each type of coefficient. We call this the number of
nodes np04e, Which is the same for all four Haar element types. Each node in the Haar network’s

input (level 1) receives spikes from four pixels. Therefore, the first level has npy /4 nodes for each
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Figure 4-1. Depiction of pixels, Haar, and quadtree levels and structure.
The diagram shows the logical layout; the physical layout of the circuits
differ. The quadtree readout would typically connect spatially nearby
coefficients, rather than the logically adjacent Haar coefficients.

Haar element, the second level has npy /16 nodes, and so on. If npx = 2L % 2L then there are L
levels possible for both the Haar network and the quadtree. Therefore,
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Since the horizontal and vertical Haar elements are identical, they consume the same amount of
power per node. If the leakage power per Haar horizontal/vertical node is Py.jeak-Hv, the leakage
power per diagonal node is Py.jeak-p, and the leakage power per approximation node is Pp.jeak-A»
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then the entire array’s Haar leakage power is

PH.leak = Nnode (2P H-leak-HV *+ PH-leak-D + P H—leak—A) . 4.4)

Similar to the Haar network, each node in the quadtree input receives spikes from four inputs. The
inputs are the Haar plane for the first quadtree level and previous quadtree levels for each
subsequent quadtree level. Since the Haar network can produce positive and negative outputs,
there is a positive quadtree and a negative quadtree. It can be shown that the number of nodes for
the quadtree is the same as the number of nodes for each Haar element type ny04.. Hence, if the
leakage power per quadtree node is PQT-node-leak, then the total quadtree leakage power is

3 QT-leak = 2nnode P QT-node-leak - 4.5)

4.1.2. Scene-Induced or Spike Power

To define the active spike-caused power consumption, we first need to express the rate of spikes
coming from the pixels. We define the array-wide pixel spike rate as ry, which we estimate with

) A\ (QEW)
= (EeAapT%) (T) (4.6)

where E, is the incident irradiance at the aperature, A, is the aperture area, T is the optics system
transmission factor, A is the photon wavelength, / is Planck’s constant, ¢ is the speed of light,
QE(A) is the quantum efficiency as a function of wavelength, and N is the number of electrons
each pixel capacitor can hold. The first factor on the right-hand-side of equation (4.6) is the rate
that photons reach the photodiode layer. The second term is the conversion factor from photons to
spikes.

As mentioned above, each pixel has an electron accumulation well or capacitor. Upon filling its
well, the pixel will spike and reset. The pixel accumulates charge as photoelectrons flow across
the photodiode junction, which is typically reverse-biased, and the energy expended by the flow of
photoelectrons is just voltage times current. Reverse biasing a diode places a voltage on the diode
opposite its notional direction of conduction, thus causing conduction to occur only when photons
liberate electrons. Since each pixel can hold N electrons before spiking and the diode junction is
biased to Vpp volts, the power expended in photocurrent is

PPD-photo = NrsqVpp 4.7)

where g is the elementary charge 1.6021766208 x 10~!° C. Typically, Vpp is of order 1 or 10!, N
is of order 103 to 10%, and r, is of order 10'2, so the total photocurrent power may be about 1 W.
For many systems or scenes it will often be much less than 1 W.

The pixel electronics that emit the spike once the well is filled expend energy equal to Wx_spike
each time the pixel spikes. These terms combine to form the spike-induced or scene-induced
photodetector layer power consumption

PPD—spike = rstx—spike- (4.8)
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The processing of the pixel spikes occurs in the Haar transform layer. Each pixel spike feeds one
Haar processing node, and each node calculates four coefficients, diagonal, horizontal, vertical,
and approximation or cp, cy, cy, c4 respectively. The horizontal and vertical nodes are identical
and each consume an average energy of Wgy per input spike. The diagonal node consumes Wp
energy per input spike, and the approximation node uses W4 energy per input spike. The total
power consumed in level 1 of the Haar transform is then

Ph_spike,l = Is(2Why + Wp + Wy). 4.9)

The inter-stage spike decimation rate is configured so that the per-element spike rate out of the
first stage is the same as the per-pixel spike rate into the first layer. The second layer, however, has
only one fourth the elements of the first layer, so the power it consumes is only one fourth the first
layer’s. The third layer again consumes one fourth the power of the second layer and so on. This
can be written

P H-spike = P, H-spike,1 P H-spike2 + -+ & H-spike,L
1 1
:PH—spike,l (1+Z+"'+F)
L-1 1
=P, H-spike,1 Z 47
k=0
(1m0
= L"H-spike,1 1— (1/4)
44 1
3 4L
4 Npx — 1
=P, H-spike,1 n_px 3

4n di
= PH-spike,l % (410)

px
4
~ gPH—spike,l for Npx > 1. “4.11)

=B H-spike,1

It is somewhat more complex to estimate the power consumed by the quadtree. The first step is to
estimate the spike rate coming into the quadtree from the Haar transform. Because the Haar
transform performs spatial whitening, the spike rate into the quadtree will be essentially uniform
across the entire quadtree input. The rate spikes enter the quadtree is the pixel spike rate scaled by
the whitening factor f,,. The whitening factor depends on the viewed scene, but assuming the
scene has the same spatial spectrum that the whitener was designed for, the average spike rate per
coefficient will be the same across the entire wavelet transform tree. Therefore we can find the
reduction factor by finding the ratio of the average per-coeflicient spike rate at level one to the
input average spike rate per pixel. The spike rate is proportional to the optical power, so the
brightness of the image is proportional to the spike rate. Furthermore, because a spike on a
positive line uses as much power as a spike on a negative line, the magnitude sum is used. The
first level of the Haar transform represents three quarters of all the coefficients. The assumption
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that the whitening and the spatial spectrum match means that all coefficients’ spike rates can be
accounted for by multiplying the total spike rate across the three quadrants provided by the first
level of the Haar transform by 4/3. Putting this together, we have

4 Semi|+ Zeval + Zepa]
- 5 k]

F 3 s

(4.12)

where cp 1, cv1, and cp are the (signed) spike rates on the horizontal, vertical, and detail
coefficient lines from level 1 of the Haar transform and the summation notation means to add the
spike rate over all the coefficients in the H, V or C sets. The fraction f,, tells us what portion of
the whitened scene comes out of the Haar transform, noting that the c4 portion goes into the next
level of the Haar transform and therefore does not enter the quadtree at all.

The quadtree can be thought of as layers, with each layer having one fourth as many nodes and
each layer adding two address bits to the layer below. The energy consumed per spike within a
quadtree layer is constant. However, the added address bits for nodes closer to the read-out apex
means those nodes use more energy per spike than nodes in the layer below. We assume the
energy consumption in layer k is f, times the energy consumption in layer k — 1.

At the same time the power per spike is increasing, the number of spikes may be decreasing
because of decimation within the quadtree node. Nodes can be configured to decimate 1:1 (no
decimation), 2:1, 4:1, or more as designed. The decimation is described as a factor, f;, which can
be controlled by quadtree level. In a typical design, the quadtree reduction factor or spike rate
throttling is not uniform from level to level up the tree. Assuming a quadtree element supports
1:1, 2:1, or 4:1 decimation, then the system would be configured to maximize decimation at the
lowest level. For example, it would be preferable to set level 1 to 4:1 and level 2 to 1:1, rather than
setting level 1 and level 2 to 2:1, though both configurations would produce the same final
readout, at least if we ignore collisions. Using 4:1 in the first level reduces the chance of collisions
at the second level, and may result in more accurate overall measurements coming from the array.
Because quadtree elements nearer the apex use more power per spike (they drive more address
lines) power is minimized by decimating at the lowest possible level.

The lowest level of the quadtree receives input from the Haar coeflicient outputs. There are npx
Haar output elements. The spike rate into level 1 of the quadtree is r, f,,. The output rate from that
level (and input rate to the next) depends only on the decimation factor in level 1. Therefore, the
input rate to level 2 is ry f,, fz.1. Similarly, the input rate to the third layer is s f,, f41 fa2, and so
on. The spiking power consumed in the quadtrees is

PQt-spike = WQT 75 fiw (1 + fa 1 fq + faa fd,zfq2 Fosadh Ly fap = fd,L—]qu_l)

L-1 i
=Warrs fu| D | £ [ i |].
0 =1

i= J

(4.13)

where Wqr is the base-level quadtree element’s energy per input spike.

When all the quadtree levels are configured to be non-decimating (1:1) or maximum decimating
(4:1), then the levels all have the same decimation factor. When all the levels have the same
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decimation factor, that is, f;1 = f42 = --- = f4 the power equation simplifies to

Pqr-spike = WQr s fu (1 + fafq + fff; + . )
L-1

:WQTrswa(fdfq)i (414)

i=0

1= (fafy)"
L— fdfq

= WQTrsfw(

where fyf, # 1.

This spiking treatment does not separate the positive and negative spike lines. Empirically the
agreement between the model and a simulation is quite good (see section 4.1.3). Although not
proven, we argue that if two lines being differenced by a Haar node are nearly balanced then its
output may include both positive and negative spikes but would only produce spikes at a low rate.
Therefore, assuming spikes are strictly on either a positive or negative line causes only a small
error in the total power model estimate.

4.1.3. Estimating the Haar Spike Rate Reduction f,,

The reduction in spike rate is defined in equation (4.12). This factor can be found by assuming an
individual pixel’s spike rate is proportional to the intensity on it, and that the spike rate out of the
Haar transform is proportional to the magnitude of the value that would come from performing a
static Haar transform on an image as opposed to a spiking process. We are inferring the spiking
system’s behavior by performing static image analysis using a two dimensional Haar image
transform.

Figure 4-2 shows the input scene in reverse grayscale—black corresponds to faster spiking than
white. The right side of the figure shows the magnitude |cy|, |cy|, and |cp| coefficients. The sum
of the transformed magnitude coefficients divided by the sum of the input scene (all non-zero)
produces the estimated fraction of spikes f,,.

The calculation of f,, across the entire array, from sparrow, shows f,, = 0.113 using the same
input scene, accounting for spikes on both the positive and negative Haar outputs. In other words,
the whitening factor estimated from a flat image (0.159) is very close to the whitening factor
calculated by counting spikes with sparrow (0.113). The power model uses only the first level of
transform; the image processing version (0.119) is close to the spike count estimate form sparrow
(0.081) as well. The Haar image transform approach produces a slightly higher estimate for this
scene. Analysis of several fully-illuminated earth scenes shows modest variation in the calculated
Jw term, but all are approximately equal. Although other non-earth scenes will vary, provided the
spatial power spectrum is similar the array will exhibit similar whitening factors.
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Figure 4-2. Estimation of f,, from a scene.

4.1.4. Scaling Power by Process Node

Integrated circuit production process nodes are usually identified by their smallest feature size in
nanometers. For example, a 90 nm process node will produce circuits with physical features as
small as 90 nm. Process nodes are usually available at steps of factors of V2, see table 4-1 [35].
For example, the next smaller process node from 90 nm would be about 90/V2 ~ 65 nm.
According to Dennard scaling [9], each step in process node size would typically reduce power
consumption by a factor of two, assuming operating frequencies remain the same and assuming
the total circuit size contracts proportional to the process node scale reduction. In spaRrR, the
physical dimensions may not contract due to the pixel pitch remaining constant. When the circuit
does not contract according to the process node there will be additional power lost in transmission
at the relatively longer run lengths. In this case, we assume the power is also reduced by V2 for
each reduction in process node size.

Using the process node power scaling coeflicient s, we can rewrite equation (4.1) dependent on
this scaling as,

P = Ppp+ Py + Por
= 5 (PpD-spike + PH-spike + PQT-spike)
+ Ppp.teak + PPD-photo (4.15)
+ Pileak
+ P QT-leak -
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Table 4-1. Cmos process nodes between 5 and 150 nm.

Node Size Reduction | Size Reduction
nm Factor nm Factor
150 0.83 32 038
130 0.87 28 0.88
110 0.85 22 0.79

90 0.82 20 091
80 0.89 16 0.8
65 0.81 14 0.88
55 0.85 10 0.71
45 0.82 7 0.7
40 0.89 5 0.71

In other words, the power scales by
se [2Steps, 25teps/2 ) (4.16)

where the number of steps going from node size a to size b is

logb—loga

steps = ——————.
log V2

4.17)

Steps are really representing the number of factors of V2 there are between two process sizes,
whether increasing or decreasing the node size. Increasing node sizes (b > a) results in positive
steps while decreasing nodes (a > b) results in negative steps. For example, if, as in the example
in section 4.1.5, we use a reference power at 90 nm and then ask about the power performance at a
notional 32 nm process size, we find steps= —2.98 and therefore that the spiking power scales
like

s €[0.13,0.36]. (4.18)

4.1.5. Power Analysis of an Example

This section defines values for all the key terms in the equations in the power model, and then
calculates the expected power. In addition, the detailed sparrow simulation was configured to
process the same inputs, using the same system configuration, and that provided an estimate of the
spike counts in a duration.

It may seem that the pixel spike rate r; can be arbitarily large, but spikes arriving at a DAPE nearly
simultaneously will collide, often resulting in no state change in the pape. Because the quadtree
aggregates spikes as the spikes approach the apex, collision tends to be worse nearer the apex.
Decimation, or throttling, in the quadtree nodes mitigates collision, and for the following
calculation and simulation the throttling was experimentally determined to be 4:1, 4:1, then 2:1 in
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Table 4-2. Notional parameters for analysis, from 90 nm process node.
The Haar and quadtree power values are consistent with the PEx power

numbers from table 3-7 on page 87.

Variable Value Note

Npx 1.05x10° number of pixels (1024?%)

process node 90 nm process node feature size for estimates of W

rs 5.47x10'? /s  pixel spike rate (whole array)

N 800 e number of electrons per spike

VeD 3 V  Photodiode bias voltage

P e 5 x1077 W pixel leakage power

PH.leak-HV 1.35x 1078 W  Haar H and V element leakage power

Py_ieakD 3.10x 1078 W Haar D element leakage power

PH.jeak-A 3.59%x107° W  Haar A element leakage power

PQT-node-leak 4.87%x1078 W  quadtree node leakage power

WpD_spike 1 x10713 J  energy per spike expended by pixel

Wry 1.68x 10713 J Haar H or V node energy per input spike

Wp 1.65x 10713 J Haar D node energy per input spike

Wa 8.89x 1014 J Haar approximation node energy per input spike
Waor 3.66x 10713 J  Lowest-level quadtree energy per input spike

T 0.165 whitening Haar spike-rate reduction factor

fa 4:1, 4:1, 4:1, 2:1, 1:1, ... quadtree decimation factors

Jq 1.16 quadtree energy per spike growth factor per layer

100



Table 4-3. Calculated results using table 4-2. The leakage results for the
sparrow case are assumed to be identical, because sparrow does not
calculate leakage.

Variable Value Note

Model sparrow
L 10 10 number of quadtree or Haar levels

Photodetector

Ppp 1.07 1.07 W Total photodetector power
Ppp_jeak 0.524 0.524 W Photodetector leakage power
PpD_spike 0.547 0.547 W Photodetector spike power
PpD-photo 2.10 x107 2.10 %107 W Photocurrent power

Haar Transform

Py 4.32 4.31 W Total Haar transform power
PH.leak 0.0215 0.0215 W Haar leakage power
Py_spike 4.30 4.29 W Haar spike power
Quadtree
Pqr 0.522 0.374 W Total Quadtree power
PQT-leak 0.0340 0.0340 W Quadtree leakage power
PQr_spike 0.489 0.340 W Quadtree spike power
Total Power 3.92 376 W
Spike-Only 5.34 5.18 W Total power without leakage
Leakage-Only 0.580 0.580 W Total power without spikes
Total Power (32 nm low) 0.13 0.13 W  Process node scaled low estimate
Total Power (32 nm high) 1.26 1.24 W Process node scaled high estimate

the first three levels, and 1:1 in all subsequent levels. Both sparrow and the analytical power
model used the same configuration.

Table 4-3 shows the results from the included power model, along with calculations based on the
spike counts from sparrow.

This section’s calculations show that, except for leakage, all power use is dynamic. Consequently
the question “how much power does sPARR use?” has an irritating answer: “it depends on what
SPARR is seeing!” To try to find a useful answer, assume that SPARR is viewing an earth scene so
that the Haar spike rate reduction statistics apply (is in figure 4-2). With that assumption the entire
power consumption can be summarized as the static (leakage) power plus a dynamic power
consumption which depends only on the average pixel spike rate. Figure 4-3 shows how power
use varies with that average spike rate, from less than half a Watt with few spikes to 10 W near
peak supportable spike rates. Where a sPARR implementation fits into a total optical system
depends on the asp capacitance, the telescope, and of course the scene it is viewing. The sPARR
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Figure 4-3. Power use as a function of the average pixel spike rate, us-
ing the 90 nm process node. Throttling increases as needed from no
quadtree throttling at the left, to all layers using 4:1 decimation at the
right. A 10241024 array is assumed, with earth-scene Haar properties.
Scaling to a 32 nm node results in a range of power use shown by the
shaded blue region; variation is due to unspecified run lengths (pixel
pitch).

focal plane design must fit within its target system.

A new rpaA development effort would probably not use the Global Foundries 90 nm process node,
and instead use something newer—reaping power savings in the process. Assuming the same
vigorous average pixel spike rate and fully-lit earth scene used for table 4-3, figure 4-4 shows how
the predicted power scales for different design points. The blue region on the left reflects the range
of power consumption due to buffer drivers and longer run lengths.
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Figure 4-4. Power use as a function of the cmos process node. Calcula-
tion is using a 1024x1024 pixel full earth scene with throttling 4:1, 4:1,
2:1, and then 1:1 for remaining quadtree levels.
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5. USES FOR SPARR

This chapter discusses several uses of the sPArRR sensor which cover only some of sPARR’s possible
uses. Nevertheless, the topics show that conventional functions like imaging and change detection
work with a spiking output. Section 5.1 discusses change detection and time-of-onset estimation
for transient optical signals, section 5.2 discusses tracking objects as they move across the focal
plane. Finally, section 5.3 discusses using sPARR as an imager—analogous to a conventional
camera. Together, these uses show major modes of operation all cooperating with the same spike
detection and spike processing sensor.

5.1. SIGNAL DETECTION AND RECONSTRUCTION

5.1.1. Introduction

The goal of detection for the sPARR sensor is to be able to differentiate a small, fast-rising transient
signal from the background, spatially locate it on the array, and temporally identify the onset and
duration of the event. We define “small” as having an intensity significantly smaller than the
average intensity of the background. For example, an event that has a peak intensity of 1% of the
background would be considered small. Brighter events could also be considered small, but we
will make 1% our goal. Very small signals such as these have a very low signal-to-noise

ratio (sNR). Since snr is defined as the intensity function of the signal divided by the intensity
function of the noise, an event with maximum intensity of 1% of the background corresponds to
—20 dB of snr.

5.1.2. Data

Any event detection comes from the output of the quadtrees. Each quadtree output gives
{S0,S1,--- }, where S, refers to spike n and is defined by its output location, time-tag, and
magnitude. We say output location here, rather than pixel location, because the quadtrees’ output
is from the Haar coefficients rather than directly from the pixels. The output location actually
refers to a Haar coeflicient location, as opposed to an input pixel location.
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5.1.2.1. Preprocessing

We preprocess the spike stream into a time series for processing further in the pipeline. Given an
integration frequency f, we define non-overlapping time windows of length 7 = 1/f. For each
time window, we sum the total number of spikes in each output location that occurs during that
time window, including the signs and magnitudes of each spike. This results in the time series xfj,
which is the number of summed spikes for output Haar location (i, j) in time bin n.

An example of this preprocessing for one output coefficient can be seen in figure 5-1. The plot on
the left shows spikes with different magnitudes occurring at different times during the data stream
on both the positive and negative spike lines for a given Haar coefficient. We create a time series
from this by summing over all spikes during a given time interval. Here, we bin in intervals of 0.5
s (2 Hz integration frequency). The dotted lines on the left plot indicate the time windows.
Binning in this way results in the time series to the right.

Spikes Spikes per time bin
ST H I ; !
! ! I I I 1\ I
3 o 1 3 I
P || . iy
& 20 01l e 3 4 H
] I I | | I 1 I
c 1 1 1 I I I “,
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Figure 5-1. Preprocessing spikes to a time series. We sum the total
number of spikes (on both the positive and negative spike lines) seen
on the left over a given time interval (0.5 s) to get the resulting time
series seen on the right.

We use this binned time series for detection for the remainder of this chapter. It is interesting to
note that this binning process can also act as a rough signal reconstruction mechanism. Under the
assumption of a piecewise linear signal, we can divide the time series by the window length to
obtain a mean estimate of the rate of the signal at that time bin. If we reconstruct in this manner
and then take the inverse Haar transform per time sample, we would get a whitened version of the
input image.
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5.1.2.2. Rationale

Due to the spatial nature of the Haar processing on-array, the output of the quadtrees represents an
intertwining of spike streams from multiple pixels. Furthermore, the Haar transform also
introduces a sign term, as there can be both positive and negative spikes as a result of the
transform.

While the inter-arrival times between spikes at the pixel level are well-understood and follow a
gamma distribution, the distribution of inter-arrival times between spikes out of the Haar transform
and the quadtrees are much more difficult to characterize. This is due to the intertwining of
neighboring pixels as a result of the Haar transform. We estimated the distribution of inter-arrival
times after the Haar transform with simulation, but the distributions are complicated and involve a
mixture of a uniform distribution with multiple approximately Gaussian distributions. We found
no symbolic representation that could be used for rigorous statistical analysis.

In contrast, by employing the central limit theorem, we conclude that the we can approximate
(with small error) the summation of spikes in a given time interval (including signs and
magnitudes) as a Gaussian distribution with unknown mean and variance. Figure 5-2 shows a
histogram of the number of spikes per time interval from a sparrow simulation, as well as the
Gaussian fit to the data. As can be seen, the Gaussian distribution describes the random process
reasonably well, with the note that the preprocessed data is discrete in nature (integer spike
counts). The Gaussian fit does not enforce this, although we could enforce this by integration of
the continuous distribution in the future.
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Figure 5-2. Distribution of spikes per 25 kHz from one Haar coefficient
output. As can be seen, the distribution is accurately modeled by a
normal distribution.
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5.1.3. Algorithm Overview

We formulate the problem of detecting a fast-rising transient event as a change detection problem.
We create a time-varying estimate of the statistical distribution of the background per Haar
coefficient. We then compare all new data coming in to this background distribution, and if the
new data is sufficiently different such that it is most likely not generated from the background
distribution, we declare the presence of an event. This indicates that the distribution of the data
has changed.

As described above, for each Haar coefficient we can model the distribution of spikes per time bin
out of the quadtrees as a Gaussian random variable. We can create an estimate of the mean and
variance describing the background, or noise, that our sensor observes. We model events in an
additive fashion (i.e. xl.”j = s+ w;‘/, where s7. is the portion of the received data due to the signal of
interest at Haar location (i, js and time bin n, and wi. is white noise at the same location and time
bin. An event results in a data stream described by a Gaussian random variable with a higher
mean, and potentially a different variance as well, although empirical evidence indicates a fairly
constant variance, at least for small signals. We analyze the data stream to search for a change in

the underlying distribution.

Signal Distributions

Figure 5-3. Change detection logic. We compare distributions between
the background and new data coming in. If they come from different
distributions, as is displayed with the green distribution, then a detec-
tion is declared. If they are very similar, as with the yellow distribution,
no detection is declared.

Figure 5-3 outlines the change detection logic at a high level. The plot on the left shows the
preprocessed quadtree outputs as a function of time. The yellow portion signifies the absence of a
signal while the green portion signifies the presence of a signal. The abrupt shift in the
preprocessed data also shows this change. The plot on the right shows three different distributions.
The black distribution describes the running estimate of the background. This is the distribution
against which we compare new data. The yellow distribution describes the data prior to the onset
of the event (corresponding to the yellow highlight on the left plot). The green distribution
describes the data after the onset of the event (corresponding to the green highlight on the left
plot). Notice how similar the yellow distribution is to the background distribution. This is because
the incoming data described by the yellow distribution is indeed from the background. No event is
declared when analyzing the yellow data. In contrast, notice the difference in distributions
between the green distribution and that of the background. This difference is indicative of the
onset of an event.
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5.1.4. Hypotheses

We define some notation here. As mentioned above, we maintain a running estimate of the
background distribution. The notation x ~ \ (1, 02) means that variable x is distributed according
to the normal distribution with mean y and variance 2. The background for a particular Haar
coeflicient out of the quadtrees, wfj is modeled as a normal distribution according to

er; ~ N (,ubg,ij,o-gg’ij) . (51)

Likewise, we have a buffer of incoming data. This buffer, xlf?j, is described by

x,n, ~N (/lbuff,ij’o-]fufﬁij) . (5.2)

Note that according to empirical evidence through numerous experiments, we make the
assumption that ofg i = o i = 0'5.. For the purpose of readability, we will drop the spacial
subscripts ij and move the temporal superscript n to a subscript where necessary.

We formulate the distribution comparison in the form of a hypothesis test. More formally, we have
two hypotheses, Hy and H;. The null hypothesis, Hp, is that no event occurs. This hypothesis
states that the distribution describing the buffer is the same as the distribution describing the
background, which means that upe = ppus. The alternate hypothesis, i, is that an event did
occur, and ppg < ppu. More formally,

Ho:x, ~N (,ubg,az) Vn € buffer, (5.3)
Hy : xy~ N ( Mbuff,az) Vi € buffer. (5.4)
We reject the null hypothesis if
L(H)
>T, (D}
L(Ho)

where the left-hand-side of the equation is the likelihood ratio and the right-hand-side is a
threshold. If the null hypothesis is rejected, a detection is declared.

5.1.5. Parameter Estimation

The parameters pyg, ppufr, and o2 are not known and must be estimated. As such, we denote the
parameters in equations (5.3) and (5.4) as fipg, fipuf, and &2, respectively. This adds uncertainty to
the hypothesis test. In this section, we discuss how these parameters are estimated, as well as the
uncertainty in the estimators.
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5.1.5.1. Buffer Parameter Estimation

The only data we can observe is the buffer, and all parameter estimations come from observing it.
The buffer has length N and is updated each time step. The new data is shifted into the buffer, and
the oldest data (located at the N — 1 memory address) is shifted out. We estimate the mean of the
buffer with

=
foutt = N nzzo Xn- (5.6)
Since x, ~ N (tbuff, 072,
o2
fpust ~ N (Nbuﬂ%ﬁ) - (5.7)

This means that the parameter fipf is, itself, a Gaussian random variable. It is unbiased, with a
variance that decreases with N. There is, therefore, a trade-off for the size of the buffer. A larger
buffer leads to a smaller-variance estimate of the mean of the buffer. However, it also requires that
a change in distribution be present for a longer duration for the mean to change significantly.
Hence, a larger N means it takes more time to determine the presence of an event, which may be
problematic for time-sensitive missions.

To compute the variance of the buffer, we use

. = o

o =v1 nzz(:) (X0 — Abufr)” - (5.8)
Using equation (5.7) and x, ~ N ( ﬂbuff,O'Z) , we can compute that

(5.9)

where k is the shape parameter of the gamma distribution and 6 is the scale parameter. The
estimator for 6- described in (5.8) is a modified version of the maximum likelihood estimate. The
estimator results in an unbiased estimate described by a gamma random variable with variance
k6% = 2(0-?)?/N. This estimator, like fipus, reduces variance with an increase in buffer size.

5.1.5.2. Background Parameter Estimation

All background parameter estimation stems directly from buffer estimations. In the absence of an
event, the buffer is the background. However, in order to have a lower-variance estimate of the
background, as well as to keep small events from bleeding into the background until detected, we
maintain background estimates as running averages of the buffer estimates for each parameter,
updated at a reduced rate. We have two additional buffers of length M, one containing the
computed buffer means (referred to as m-buff) and one containing the computed buffer variances
(referred to as v-buff). These are updated every K time steps. This slower update rate is to reduce
computational complexity of the system while allowing a slowly varying background.
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The parameter fip, is simply the mean of the mean buffer. As such,

1 M-1
/jbg = M ,am-buff,m (5.10)
m=0
0.2
NN(/Jbg,W), (511)

since the sum of random Gaussian variables results in another random Gaussian variable.

It is important to note that there is some settling time required, where pp, must be equal to ppe.
More specifically, when we start the system, we must wait N time samples before the data buffer is
filled and outputs a valid mean estimate, and another KM time samples before the mean buffer is
filled with valid data and thus produces a valid estimate of the mean of the background. During
this time, there must only be background present in the received data, so that upuf = ppg. Only
after this settling time has occurred can we begin to look for possible detections.

The parameter 62 is simply the mean of the variance buffer. As such,
| M=l
o= 7 B boion (5.12)
m=0
NM ,  20°
~Tlhk=—0="+]. 5.13
( 2 MN ) 215

The same settling restrictions as for /iy, are present. The sum of random gamma variables results
in another random gamma variable only if the added variables are independent. As such, this is
only the true distribution if the &ry.puf.m estimates are independent (assuming we update &> only
when the buffer contains all new data from the last update). Therefore, K must be larger than N.
Also note that the variance of both fi,, and &2 reduce by MN. As such, we can increase M
independently from N to reduce variance in our background estimations. However, the larger the
M, the slower the background can vary before our background estimation falls behind.

5.1.6. Detection Computation
5.1.6.1. Log-Likelihood Ratio

The likelihood function of a Gaussian random variable described by y and o2 for a data vector x

of length N is
1 \N2 1 V=l
2 = . —u)?
L(X’ﬂ90_ ) - (27_‘_0_2) eXp(20_2 ;)(xn ,Ll) ) . (514)
Equation (5.5), after substituting in the estimated parameters, becomes

R 2 | oN- X
L(H) L% aum67) (2762) " exp (ﬁ o (= ,Ubuff)z)
L(ﬂO) - L (X;ﬁbg,ﬁ'z) B (27r&2) -N/2

_N/

>T (5.15)

=R (2}12 nNz_o1 (xn - ﬁbg) 2)
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We now take the logarithm of both sides and simply to get
N

— (ftour = fing)? > 2log (). (5.16)

5.1.6.2. Threshold

We can choose log(7) in multiple ways, and we present three of them below.

Neyman-Pearson
A traditional way to compute the threshold is using the Neyman-Pearson method. This method
sets a threshold for a constant false-alarm rate by solving

PFA = PI‘((]'{1|7'(0) (517)

N . . N
=Pr ?(ﬂbuﬁ_ﬂbg)z > 21og(7) | fibuft = ﬂbg) (5.18)

for log(7). However, this requires being able to accurately characterize the distribution of the
left-hand-side of Equation (5.16). In this case, it is difficult to characterize that distribution. There
is no simple closed-form solution, so we will not consider it further.

Bayes Risk

A different manner to compute the threshold is using a method called Bayes Risk. With this
method, we assign a cost to each type of error (either a false positive or a false negative). We
define a cost matrix C, where C;; is the cost if our algorithm selects H; when H; is true—in other
words the cost of a mistake. Typically, the diagonal of C is 0, and we can define the other costs
however we would like, either equivalently (such that it is equally bad to have a false positive as a
false negative) or weighted to penalize one type of error more heavily.

Bayes Risk is the expected cost of the binary decision:

R =E(C) = Coy Pr(Ho|9H;) Pr(H,) + Cyo Pr(H; |Ho) Pr(Ho). (5.19)

We seek to select a threshold for detection that minimizes R. In order to do that, we set

L(H) . (C1o — Coo) Pr(Ho) _
L(Ho)  (Cor = Ci1)Pr(Hy)

log(7), (5.20)

where 7 can be inserted into (5.16) [14].

Pr(H;) is called a prior. A prior outlines ones belief in a hypothesis before any data is received.
This method assumes an accurate prior for both hypotheses. Since this is typically not feasible for
detection applications, particularly anomaly detection, we do not implement this method in the
system.

Heuristics
The final method for threshold computation is via heuristics. As mentioned in the previous
paragraphs, there are more ideal ways to compute the desired threshold, but they tend to be
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unsolvable either because the distribution is not closed-form or because we do not have good
priors for the different hypotheses. As such, we have selected thresholds based off heuristics found
by numerous simulations across a variety of scenarios.

5.1.7. Time-of-Arrival Estimation

As will be shown in section 5.1.9, the detection algorithm does well at detecting events. However,
it does a poor job of estimating the onset of certain small events, at least as-is. This is because we
use a buffer for estimation — while the use of the buffer facilitates detection of very small events, it
also often requires multiple time steps of the event to be registered in the buffer before the mean
estimation of the buffer changes enough to cause an event detection. Along the same lines, we also
require multiple threshold crossings in a row before we declare an event was detected. As such,
when the algorithm declares an event, we are often multiple time steps after the event occurred.
Figure 5-4 displays the buffer of a pixel as an event is declared by our detection algorithm. As can
be seen, the event starts around time sample 70, 30 time samples before the event is declared by
our algorithm (which occurs at time step 100 in the figure, at the end of the buffer).
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Figure 5-4. Buffer at time of event detection. As can be seen, the buffer
has several time samples from the event before the event is declared.
As such, if we were to time-tag the onset of an event at the time sam-
ple the event is detected, it would be late. Therefore, we use the log-
likelihood ratio to better-inform our time-of-arrival estimate.

Since we have the buffer, we can do much better on our Toa estimation with a Bayesian update
step. This step is another change detection algorithm, almost identical to the first, for only the
values in the buffer. We now know that an event occurred. As such, we would like to isolate
exactly where in the buffer the event occurred, or which time step the distribution changes.
Therefore, we would like to find the time sample ng where

| 2 N (tbg,?) , Vn < ng
L (X, Mbg> Hevts O ) {N (/levt’o-z) ,Vn>np’
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The time-of-arrival is thus ng = argmax,, £ (X; fbefore, Hafter), Where fpefore i the mean of all time

samples before ng in the buffer and fiafe, is the mean of all time samples including and after ng in
the buffer. A scaled log-likelihood computation is shown in figure 5-4. As can be seen, we select
the time index with the peak log-likelihood as the Toa, which greatly reduces the Toa error.

5.1.8. Implementation Details
5.1.8.1. Mathematical Updates

We need to update the estimates for the buffer parameters (mean and variance) at every time
sample. We also would like the algorithm to be able to handle real-time streaming data. As such,
we need these updates to be fast. In this subsection, we address the methods we have employed to
reduce computational complexity and increase speed in these estimates.

Given an estimate for fip,g from the last time sample (fius,1), it is simple to update the estimate
for this time sample ({pufr0) given new data. In the simplest case, we would like
fouff,0 = Mbuff,1 + fAupdate- The mean estimate for the incoming data in the buffer is updated by

/:zupdate = ﬂbuff,O - ﬁbuff,l

1
= N(x—l"‘xN—l)’ (3.22)

where x_; indicates the incoming time sample (not stored in the buffer yet for the mean estimate),
and xy_; is the value in the last slot of the buffer (the oldest value in the buffer, which will be
rotated out when the most recent data is stored into the buffer). It is important to note that we
compute the mean estimate before adding the newest data to the buffer, as this is the only way we
have the oldest data still stored in memory. The estimate fi, is similarly updated, but instead of
using data from the data buffer, we use the newest estimate and the oldest stored values from the
[Avus buffer. These, however, are only updated every K time steps, as already discussed.

The estimate &2 is only slightly more complicated. We use

~D A ")
Oupdate = Touff,0 ~ Tbuff,1 (5.23)
_ 1 2 2 _ag 24
“N_1 XZ| — Xy — £Mbuft,0X-1 T 2Ubuff,1 XN-1
N-2
. . ) ~
= 2(fabufr,0 — Abuft,1) Z Xn + Nﬂbufﬂo - Nlubuﬂ,l (5.24)
n=0

This is the only parameter we update in this manner, as the rest are averages (either of the data or
the different buffer parameters).
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5.1.8.2. Detection Logic

Previously, we have stated that a “detection” occurs when the right-hand-side of equation (5.16) is
greater than the left-hand-side. From a system perspective, this is not quite true. To reduce false
alarms, we require that an event be present for multiple time samples in a row before an official
detection is declared. A “detection” occurs when the right-hand-side of Equation (5.16) is greater
than the left-hand-side for L time samples in a row for a given Haar coefficient, where L is
typically somewhere between 2 and 5. It is important to note, though, that the time of the very first
threshold crossing is marked as the time of arrival, as opposed to the L™ threshold crossing, as
this provides an estimate of time-of-crossing with relatively little impact from the delays in the
change detector.

5.1.8.3. Update Decision Logic

There is a nontrivial decision process as to when to update the various parameter estimations in
the system. We get new incoming data on each time step. This data, representing the total number
of spikes over the time interval, is used to update fip,g and &2 each time step (see equations (5.22)
and (5.23)). Likewise, the internal data buffer is updated with the new data, shifting out the oldest
data at each time step.

We do not update the estimates for the background parameters (i, and &) at each time step. We
update them at most every K time steps, which is a user-specified parameter. We do not update
every time sample since we are assuming the background is slowly varying and thus does not
require an update every time sample. However, there are times when we do not update the
background, even at the K time sample. As soon as any event is detected, we freeze the
background until the event is released. This means that, if there is an event being tracked
anywhere on the array, we do not update the background anywhere on the array. We allow the
background to begin updating as soon as all events are removed.

After the buffer parameters are estimated as described above, we compute equation (5.16),
comparing the left-hand-side to the right-hand-side. If there is no detection, and we are not
tracking an event that previously occurred on the array, then we do not freeze the array and it is
free to update the background parameters every K time samples. However, if the right-hand-side
is greater than the threshold, meaning a detection, or an event has previously occurred somewhere
on the array and is currently being tracked by the system, then the array is frozen, and even if it is
the K™ time sample, the background parameters and buffers are not updated.

5.1.8.4. Event Removal

Once a Haar coefficient achieves the L threshold crossings in a row to constitute an official
detection, an event is created. This event is tracked by the system going forward. The event is only
removed once the Haar coefficient no longer achieves threshold crossings for P time samples in a
row, typically 10. Once the Haar coefficient has become sufficiently close to the background that
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it is no longer distinguishable for P time samples in a row, the event is released. If no events are
present, the background is able to start updating again.

5.1.8.5. Array Detection

To save computation, we do not run the algorithm over all of the Haar coefficients. Instead, we
focus on just the coefficients most sensitive to change — the cp coefficients in the lowest layer.
While we acknowledge that the lowest cy and cy coeflicients are also sensitive to change, we
refrain from using these quadrants for detection at this time so that we do not need to mitigate the
fact that we could have multiple detections from the same event (at least one in each quadrant).

While our algorithm works well (see section 5.1.9), we throw away a lot of usable data by only
using the lowest cp coeflicients, as well as degrade our centroid-estimation ability. It is also
possible take the inverse Haar wavelet transform and reconstruct the preprocessed time-series, and
then run the detection algorithm on this new time series. We have found that if we reconstruct the
signal with only the lowest level of the Haar coefficients (cg, cy, and c¢p) and zero out all other
coefficients, we get better results. While we have not done a deep-dive into why this is the case,
we hypothesize that, by only reconstructing using the lowest level of the Haar coeflicients, we are
essentially removing the background noise induced at the higher levels of the transform. In this
way, we can focus on only the high-frequency variations of the signal, which is what we really
care about for our change detection. In this case, we run our detection algorithm over the entire
array instead of just a quarter of the array.

5.1.9. Results

We are interested in analyzing the performance of our detection algorithm against very
low-intensity events. As such, in this section we discuss an experiment we designed, executed, and
analyzed to determine our probability of detection and false alarm against very small signals.

5.1.9.1. Experiment Overview

We are interested in characterizing the performance of our system in terms of probability of
detection and false alarm versus event sNrR. Do determine this, we define a constant background
on a 16X 16 sparRr array. Then, we subdivide between 1% and 6% of this background in 100
linear steps. For each step, we randomly generate 20 runs each with one event of that amplitude,
located in the center of the array. Because some of our algorithm parameters exceeded 1% of
background, we added additional runs below the 1% mark to ensure we captured the algorithm
down to the failing point.

Every simulation was 0.6 seconds with the event starting at 0.3 seconds and ending at 0.5 seconds.
The start and end of the event were set to be step functions. For all simulations, a pixel spike
occurs after 7500 photon arrivals for each pixel. The remainder of the algorithm parameters can
be found in tables 5-1 and 5-2.
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Table 5-1. Thresholds used for each algorithm.
Algorithm Threshold (21og(7))

Inverse Haar 25 kHz 73
Inverse Haar 50 kHz 105
cp 25 kHz 50
cp 50 kHz 50

Table 5-2. Algorithm parameters.

Frequency Number of Buffer Mean Minimum Minimum

(kHz) detections  size buffer settling skips before
in a row size time new event
(scans) (scans)
25 5 100 40 2000 2000
50 5 100 40 4000 4000

5.1.9.2. Experimental Results

Since it is possible for the algorithm to declare a detection on the wrong pixel or during the wrong
times, we define a true detection as one which occurred on the correct pixel between 0.3 and 0.5
seconds. We define a false detection as one which has a detection on any pixel outside the
specified time window of 0.3 to 0.5 seconds or on any incorrect pixel during that time window.
However, due to the point spread function (psF) of the optics, it is possible for energy to smear
onto neighboring pixels. As such, we do not penalize for detections on the pixels immediately
surrounding the pixel on which the event is centered. Those detections are treated neither as false
alarms nor true detections in our computation.

In this experiment, we explored detecting at 25 kHz and 50 kHz in the Haar domain (lowest cp),
as well as 25 kHz and 50 kHz in the reconstructed domain. The results are shown in figure 5-5.
As a general trend, performance is better in the reconstructed domain, as well as when we use a
lower frequency. We benefit if we take the computational time to invert the Haar transform and
operate over the entire array. It is important to note that the thresholds used to generate this figure
were heuristically chosen such that there were zero false alarms. As such, we could select
different thresholds to improve detection performance at the expense of more false alarms.

Finally, we analyze our time-of-arrival accuracy, or our ability to time-tag the start of an event.
Figure 5-6 shows the error (in psec) of the Toa estimation compared to the true start time of the
event for detection in the inverse Haar plane at 25 kHz. As can be seen, for events 2% of
background and larger, we have almost no error in estimating the time-of-arrival of an event (this
is limited to the 25 kHz resolution). For targets between 1.5% and 2% of background, we appear
to have some spread in the time-of-arrival error, and this spread tends to be negative, meaning that
we estimate that the event starts before it actually does.
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Figure 5-5. Probability of detection given different parameters for the
detection algorithm. As can be seen, we perform best when we take
the time to invert the Haar transform. Generally, detection performance
decreases as the time bin frequency increases.

This is due to the Bayesian time estimation step. The overall change detection algorithm observes
distributions that are fit from large amounts of data (the parameters are estimated using M N
samples for the background, and N samples for the buffer), which results in low-variance
estimates. As such, the detection algorithm can tell the distribution has changed for small
changes. However, the Bayesian time estimation step only sees the current buffer. Furthermore, it
must fit two distributions from the buffer, meaning that it is using (potentially significantly) less
data points than N to estimate these parameters. As such, it struggles to identify the change point
in the buffer. For this reason, for small signatures, where the distribution on one side of the event
to the other is not significant, our time estimation is roughly a uniform random variable across the
buffer length. Since the start of the event is towards the tail end of the buffer (we do not need to
populate the entire buffer with time samples including the event to change the distribution
significantly enough for the change detection algorithm to detect it), this biases the time
estimation to estimate a Toa before the actual event occurs.

An example of this can be seen in figure 5-7. This figure shows the buffer for a particular pixel at
the time sample when an event at that pixel occurs, the computed log-likelihood ratio across the
buffer, the estimated start time of the event, and the true start time of the event. The start time of
the event is not immediately obvious. Furthermore, we zero out the log-likelihood ratio
computation at the beginning and the end of the buffer due to too few time samples to accurately
estimate the distributions. As can be seen, there does seem to be a peak in the log-likelihood ratio
at the time of the true Toa. However, this peak is below 0, so it is not registered as the maximum
in the system. We could solve this problem by reducing the value of the “invalid” time samples.
However, this default value is essentially a threshold for how confident we must be in order to
declare a Toa. Another solution would be to default report the time of the end of the buffer, rather
than the beginning of the buffer. This would reduce the number of signals that are time-tagged
before the event, changing them to be time-tagged after the event. However, we felt that it is best
to estimate early, rather than late.
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Figure 5-6. ToA estimation error (in psec). As can be seen, for targets
above about 2% of background, we have almost no error (due to the Toa
Bayesian update step). However, for targets in the 1.5%-2% of back-
ground, the algorithm tends to time-tag the arrival early. Finally, for
signatures smaller than 1.5% of background, we have large errors in
the time-tag. This primarily occurs because, for these small signatures,
the algorithm actually detects the end of the event (the falling edge) as
opposed to the start of the event.

For signatures below about 1.5% of background, we tend to have much larger Toa errors. The
reason for this is simple: we are triggering on the removal of the event, rather than the start. As
can be seen in figure 5-8, the log-likelihood ratio of the rising edge is not enough such that a
“detection” occurs at the onset of the event. The event then bleeds into the background throughout
the event’s life. Finally, when the event is removed, we detect the offset of the event. Therefore,
we detect the event, but we time-tag the event as occurring at the end of the event, rather than the
beginning.

The top pane of figure 5-8 shows the background and buffer mean estimates across time. The
middle pane shows the log-likelihood ratio across time, as well as when a detection occurred. The
bottom pane shows the processed signal across time.

5.1.10. Future Detection and ToA Algorithm Work

The algorithms presented here perform well; however computing detection on a per-spike basis,
rather than binning the data across time and then computing detections may offer better
performance where the Gaussian approximation is not good. That would include very low spike
rates or other in-array signal processing. Per-spike calculations are difficult to implement because
of the non-trivial statistics of the inter-arrival times of spikes after the Haar transform and the
quadtree readout. A mixture model and its associated computational framework would address
the non-Gaussian character of the spike intervals.
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Figure 5-7. Toa estimation for a signal that is 1.5% of background. Here
we see the data in the buffer when the change detection occurs, as well
as the log-likelihood ratio, the estimated time-of-arrival, and the true
time-of-arrival. As can be seen, the log-likelihood ratio never surpasses
0, so we do not accurately detect the start of the event.

Another improvement would modify the Bayesian time estimation step to operate on a per-spike
basis, rather than a per time sample basis. At the cost of greater computational resources, the ToA
error could be reduced.

Currently, the algorithm uses only the Haar coefficients from the first level of the transform to
reconstruct the signal prior to detection. Events occupying larger areas—perhaps due to optical
ghosts or scatter—may be better detected using more, or different, levels of the transform in
reconstruction.

The algorithms used here do not account overtly for background changes due to scene motion.
Incorporating space-time change, as opposed to just per-pixel time, would benefit practical
applications of the sensor. Space-time change detection, and background subtraction, would
benefit sub-pixel centroid estimation, useful for improved angles of incidence estimation.

5.2. OBJECT TRACKING

This chapter explores the application of a multi-target tracking algorithm to sPARR’s output.

The best detection and tracking would follow a “track-before-detect” approach — treat every spike
from the array as a “detection” and allow a tracking algorithm to determine where the relevant
tracks are. However, spike speeds in the MHz to GHz range per pixel, along with potentially
millions of pixels, would overtax current implementations of modern algorithms, such as multiple
hypothesis tracker (MuT). The MHT algorithm, although essentially off-the-shelf, is a state-of-the
art tracker and is too computationally expensive to operate on each spike.
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Figure 5-8. An example of tail trigger. The algorithm missed the onset
of the event, instead triggering on the end of the event.

To ameliorate the computational burden, first run the detection algorithm described in Section 5.1
and feed those detections to the tracker. The detection algorithm is quite flexible; it can be
configured to generate detections frequently with low thresholds which permits highly granular
tracking.

The reader should consult the extensive literature on MHT for a deeper understanding. MHT is well
documented in, for example Blackman[3]. Our tracking work models a sky-viewing telescope
moving along a known path centered on a satellite, causing the background stars to pass linearly
across the field of view. To apply the mHaT algorithm, section 5.2.1, describes the experimental
simulation environment, then sections 5.2.2 and 5.2.3 show the results of applying detection and
tracking algorithms on the resulting sparr data. Finally, section 5.2.4 outlines suggested future
work for object tracking with SPARR.

5.2.1. Experiment

In the simulation, sPARR acts as a ground-based sensor following a satellite in the sky. Throughout
the simulation, the followed satellite remains fixed near the center of the rpa. Stars streak through
the sensor’s field of view during the simulation.

Figure 5-9 shows the paths of different objects over time. The blue square represents sPARR. The
sensor is simulated as a 256x256 pixel array. Each red circle indicates where the star is located at
the beginning of the simulation; all stars begin on the left edge of the field of view. The red streaks
show the stars’ simulated trajectories, while the size of the red circle corresponds to the optical
intensity (apparent magnitude) of each star. Each star’s motion is linear throughout the five second
simulation.
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Figure 5-9. Star paths cross the sensor. The blue square is the sensor,
the black circle near the middle of the square is the satellite being fol-
lowed, and the red circles/streaks are stars that travel in (and out) of
the field of view of SPARR.

5.2.2. Detection

The change detection algorithm described in section 5.1 is configured to detect, per time-step, if
something of interest is located in any particular pixel rather than to detect and estimate Toa for
fast-rising transients. The first modification declares a detection whenever a threshold crossing
occurs rather than requiring multiple consecutive detections. Second, we reduced the size of the
buffer to five samples, and the averaging buffer to only three samples because staring into the
night sky generates uniformly dark background, at least as far as this simulation is concerned.
With a dark background, almost any spikes are important and the background is almost uniformly
unimportant, so we can reduce the complexity of background estimation. Furthermore, the
tracking algorithms act to reduce the number of false detections that become objects of interest.
Associating detections together with other detections or with existing tracks while ignoring false
alarms is the tracking algorithm’s work, not the detection algorithm’s. Think of the detection
algorithm as reducing the amount of data for the tracker — rather than tracking on every spike.

Figure 5-10 shows a three-dimensional representation of the detection algorithm’s output. The x
and y axes refer to the location of the detections on the spaRR array, while the vertical (z) axis
refers to the time index of the detection. The detection algorithm’s relaxed configuration
frequently generates exceedances, as desired. The tracked satellite in the center of the focal plane
is obvious as a dark cylinder down the middle of the image. The stars streaking through the rpa
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Figure 5-10. Output from the detection processing that feeds the tracking algorithm.

are also visible as dark cylinders. We employ MHT to convert these messy detections into
exploitable tracks, as well as to reduce the background noise.

5.2.3. Multiple Hypothesis Tracker

The detection data visualized in figure 5-10 passes through an muT algorithm to produce the
results in figure 5-11. The figure displays the spARR array, with a black circle on the plot marking
each time step.

The satellite is obvious as a black mass of detected points near the array’s center. Since the
satellite is not moving relative to the array during the simulation, the mass of detections is
expected. The circumference of the cloud is indicative of measurement error combined with error
due to Kalman filter propagation when no measurement was available.

The stars streaking through the simulation appear as black streaks across the figure. The MHT
algorithm connects events together to extract the path of each star and almost completely
eliminates false detections—there are no false tracks output from the algorithm. Furthermore, the
tracker reproduces the trajectory of each star, each track follows a linear path across the sensor in
the simulation, matching the stars. In a few cases, the star locations at a given time sample
proposed by the mHT appear as deviations from the linear path. These deviations are due to
Kalman filter motion propagation errors; however, they are quickly corrected.
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Figure 5-11. Output from mHT. The frequent detections associate with
the stars and the followed object in the center. Additional noisy detec-
tions appear as random markers throughout the volume.

5.2.4. Future Tracking Work

While applying an off-the-shelf tracking algorithm to sPARR output certainly has its appeal,
projecting sPARR into the world of “detect-then-track” and framing the data does not take
advantage of the spiking output from sparr. Future work should revolve around developing
tracking algorithms that use the native asynchronous sparRR output, pre-detection.

Finite-Set Statistics-based trackers are one promising technology. These trackers, such as
Bernoulli filters[29], explicitly model the appearance and disappearance of targets. We believe
leveraging this capability could help track on a per-spike basis.

Spiking artificial neural networks offer another promising technology. There are limited mature
methods for training spiking neural networks, and methods will be needed to learn and model
complex, high-speed dynamic systems like those required to track on a per-spike basis from sparr.
However, this technology should allow processing spikes directly, without framing in time.
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5.3. IMAGING WITH SPARR

Like many sensors with an FpaA, images can be created using the spArRr outputs. That is, the spikes
representing the translation, throttled Haar transform, and quadtree readout of an image can be
transformed back into an image. Of course, the spikes that were lost in the interactions in the Haar
state machines and the decimated spikes in the quadtrees cannot be exactly recovered, but the
inversion is still possible in a statistical sense. That is, the Haar throttling and quadtree decimation
are known, so they can be accounted for in the inversion process by appropriately weighting
individual spikes. There are two caveats. The first is that enough spikes must be used for the
resulting image to accurately reflect the optical image. As more spikes arrive at the sPARR readout,
the reconstructed image quality will improve. The second caveat is that spike collisions lose
information. Spike collisions are something like the dead time in energetic particle counters. It
may be possible to perform a statistical correction for that dead time, though particle arrivals are
Poisson whereas spikes from sparr follow more complicated distributions. We must rely on the
pixel capacitor well sizes, the quadtree decimations, and an intelligent hardware layout to
minimize spike collisions.!

It would be possible to reverse the Haar transform with spike-based processing, either inside
SPARR (before the quadtree) or in spike-based off-array hardware. This approach would add
significant complexity and we did not consider it in any detail. Instead, we assume the quadtree
readout spikes are transmitted to an off-array system that collects spikes for some amount of time
and uses that collection of spikes to create an image. We will show with an example how the error
for the image reconstruction improves as more spikes are collected from the readout, and we will
show the effect of decimation on the reconstruction.

5.3.1. Imaging Example

To demonstrate sPARR’s ability to create an image, we will use the image of the earth shown in
figure 5-12. This image is 512 X512 and is normalized so that the brightest pixel has a value of
unity. In this way, each image pixel represents the likelihood a photo-electron will arrive in a
specific interval in an asp inside sparrow’s model. We set the base rate of photon arrivals to 10°
photons per second and the pixel electron well size to 5000 electrons, then ran the simulation for
0.05 seconds to generate the final result. This simulation was repeated eight times where each
simulation used a constant, but different, amount of decimation in the quadtrees. We used
decimations of 1:1 (i.e., no decimation), 2:1, 4:1, and so on until 128:1. The random number seed
was constant across all simulations so that the same pixel spike times were used in every
simulation.

'The hardware layout is important because each pixel spike and approximation Haar spike (except for the apex Haar
node) is fed into four different state machines. It is possible for two or more of these state machines to output a
Haar spike at nearly the same time, which are then input to a quadtree node. If the spikes at nearly identical times
enter the same quadtree node, there will be a collision leading to at least one lost spike no matter how well the
remainder of the system is designed.
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Figure 5-12. Image of the earth.

Figure 5-13 shows the percent error of the various reconstructions as a function of the number of
spikes used in the reconstructions. Here, we have defined percent error as

I - %]

F
x 100 (5.25)
1 X1l F

where || - ||z denotes the Frobenius norm, which is defined by

percent error =

IXlle=_[> > X2 (5.26)
i

This is sometimes called the percent root-mean-square difference (prRD) and can be considered an
extension of the usual Euclidean norm for vectors. In figure 5-13, we see that the error generally
decreases as the number of spikes increases. The trend is not monotonic because the distribution
of spikes at the readout is only approximately the true distribution. That is, spikes that make up a
dim pixel could arrive before spikes that make up a bright pixel, which would momentarily
decrease the contrast between those two pixels in the reconstruction. If the scene did not change,
however, the distribution of spikes would approach the true distribution as time approached
infinity.

Figure 5-13 also shows that number of spikes is more important than the decimation level for
determining the percent error. The exception to this is the error for the simulation with no
decimation decreases faster than the other simulations as the number of spikes increases. This
may also be true for higher decimations, but the figure is inconclusive on this (viz., the 2:1
decimation line may be starting to fall off faster than the higher decimations, but not enough
spikes were generated to know for sure).

This figure shows that the percent error can be made small as long as enough readout spikes are
given, which is exactly what we would expect. Although time is not shown in figure 5-13, all eight
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Figure 5-13. Percent error for each decimation as a function of spike count.

simulations were for 0.05 seconds, and we see that the lines for higher decimations end sooner
than lines for lower decimations. This means that if the quadtrees are using large decimations,
more time is required to obtain an image of some desired quality than if less decimation was used.
If the image is static or close to static for the time it takes to collect the spikes, then more time is
not an issue. This is akin to shutter speed for an ordinary camera where a higher decimation
corresponds to a slower shutter speed. Too much movement in the time this process takes will
result in a blurry image.

To see the quality of the reconstructed images, we show the resulting image from the end of each
simulation (i.e., 0.05 seconds). The reconstructions and the computed percent errors for the 1:1,
2:1,4:1, and 8:1 decimations are shown in figure 5-14, and the reconstructions for the 16:1, 32:1,
64:1, and 128:1 decimations are shown in figure 5-15. The number of quadtree spikes used in
these reconstructions is shown in table 5-3 along with the number of spikes per pixel.
Qualitatively, there is no meaningful difference between the 1:1 decimation reconstruction and
figure 5-12, and there is very little difference with the 2:1 decimation reconstruction. A few small
errors become visible for the 4:1 decimation reconstruction, but more serious errors appear in the
8:1 and 16:1 decimation reconstructions. However, the visual artifacts are still minimal and likely
would not affect any application of the image. Table 5-3 shows that this requires about 17 spikes
per pixel, which is much better than the 273 spikes per pixel required for the 0.1% error
reconstruction. The reconstructions for the 32:1 and higher decimations show much more serious
artifacts, but even these may be tolerable for some applications. If 30% error is tolerable, then
table 5-3 shows that only two spikes per pixel are necessary for a reconstruction.
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Figure 5-14. Image reconstructions for the 1:1, 2:1, 4:1, and 8:1 decima-
tions at 0.05 seconds.

5.3.2. Conclusion

We have demonstrated that SPARR can be used to generate usable images in spite of the signal
processing present in the throttled Haar transform and the decimation present in the quadtrees. As
long as spike collisions are minimized, usable images are available for as low as 2 spikes per pixel.
For our example, this resulted in about 30% error, but if this is intolerable, more spikes can be
collected at the quadtree readout until the desired error is achieved. The only additional
requirement is that the time period is not so long that the background appreciably changes, which
would cause blur. The future work (section 6) discusses performing image reconstruction
differently at different coefficient levels; high levels of the Haar transform represent large areas,
which typically will not move appreciably in a short time. Improved reconstruction or
estimation—rather than just weighted spike counting—would certainly improve the image
reconstruction. However, this is true of any imaging camera, so it is not an unusual requirement. It
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16:1 -17.7% error 32:1-27.1% error

64:1 - 33.6% error 128:1 - 30.8% error

Figure 5-15. Image reconstructions for the 16:1, 32:1, 64:1, and 128:1
decimations at 0.05 seconds.

is similar to shutter speed requirements on a camera or clocking requirements on a camcorder.
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Table 5-3. Number of spikes used for the image reconstructions.

Decimation Number of Spikes Spikes per Pixel
1:1 71571428 273.0
2:1 35785736 136.5
4:1 17892893 68.3
8:1 8946471 34.1
16:1 4473264 17.1
32:1 2236661 8.5
64:1 1118355 4.3
128:1 559203 2.1
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6. FUTURE WORK

SPARR is an unusual sensor; not directly producing framed or row-by-row data. It offers time
resolution as fine as the switching time of the circuits, typically around one nanosecond. However,
data is not available from every pixel at that rate. SPARR has sparse but highly precise time
resolution. We are aware of no other sensor that can stream data continuously with high spatial
resolution, low latency, and precise time accuracy.

A consequence of its unusual place among sensors is a dearth of processing that takes advantage
of its unusual characteristics. During this research we defined detection by change to the
time-binned spikes coming from a pixel or from a coefficient (see section 5.1), but this ignored the
fine time resolution. In essence, integrating spikes over time windows treats the sensor as a rate
encoder. Reincorporating timing into the processing suggests two distinct signal processing paths:
neuromorphic computing and subframe image reconstruction.

Neuromorphic, meaning brain shaped, is an elastic term of art. Used here, neuromorphic
computing means the use of spikes to communicate between small dynamic processing elements
(neurons). A spike represents a short pulse or single bit transmitted from one neuron to typically
many other neurons. The relative timing can encode a great deal of information. For example, see
[33, 12]. Conventional neural networks have been converted to spiking neural networks with tools
like Whetstone [31], though currently neuromorphic process training is immature [2].
Nevertheless, we followed the ideas of VanRullen [33, 34] and implemented an image
reconstruction based on a function of the time of the first spike per coeflicient to come from
readout. Each coefficient is associated with a positive line and a negative line. Let #;; be the time
of the first spike on either line for the coefficient at address (i, ), and let s;; be the corresponding
sign of the quadtree line (i.e., +1 for the positive quadtree and —1 for the negative quadtree). If
coefficient (i, /) does not spike during some specified interval of time, encode its time as f;; = co.
Then, we can reconstruct the coeflicients with

= 2, ©.1)
lij
The two dimensional array x represents the coefficient plane at a snapshot some instance from a
reference time. As time passes, X has fewer and fewer zero values, and consequently better
information. Figure 6-1 shows a sequence of images reconstructed at fixed intervals after the focal
plane pixel integration capacitors have been reset.

All of this is to show that completely ignoring the average rate of coefficient spiking nevertheless
produces a usable image output. Furthermore the reconstruction available very shortly after reset
is already revealing the actionable information from the focal plane. This suggests:

130



56 us, 16384 spikes 72 us, 32769 spikes

90 us, 49154 spikes 111 us, 65539 spikes 141 us, 81924 spikes

172 us, 98309 spikes 207 ps, 114694 spikes 243 ps, 131079 spikes

Figure 6-1. Evolution of reconstructed image as time passes and more
coefficients acquire nonzero values.
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information from the focal plane is likely to be actionable with very low latency and
correspondingly enables wide-bandwidth control loops,

information encoded in spike times offers significant value and that while we have shown
rate encoding is effective for transient detection the combination should be more powerful,

a system capable of processing both time and number of spikes should be able to perform
imaging functions and be reactive, in other words a neuromorphic processing system is a
natural partner to SPARR.

SPARR presents a second opportunity to benefit from the continuous stream of data at fine time
resolution. Specifically, compensation for motion experienced by the sensor is possible at the
spike resolution. The exact time resolution of the sensor depends the brightness of features in the
scene and on the size of the integration capacitor. In many scenarios motion compensation may be
possible at microsecond resolution. Such fast compensation make it possible to build images
without motion blur, even from unstable platforms and even without motion compensating

optics.

The research opportunities and needs are summarized:

Couple sparr to neuromorphic computing systems to exploit the unique time information
the sensor provides.

Develop per-spike motion compensation, and possibly motion detection, capability to
enable high-resolution operation on unstable platforms.

Develop a rigorous interpretation of the spike timing statistics for multi-electron
integration. Small systems of four pixels and processing elements, along with a modest
photo-electron integrating capacity of a few hundred electrons have been analyzed as
Markov processes and used to validate the sparrow simulator. The implemented Markov
models have been built with sparse arrays to minimize memory use, but they can grow very
little within the memory and processing capacities of all available computers.

Treat the existing processing as spatial-temporal, rather than strictly spatial. The pAPEs have
memory, but that memory cannot be translated to a fixed amount of time since it depends on
the exact sequence of spikes arriving. Nevertheless, time is integral to the behavior of the
system.

Add overt time processing to the array. Many systems, both constructed and biological,
have a background suppression function and can only respond to change. SPARR mostly
assumes a static behavior; the only exceptions are the small memory behavior of papes and
the throttle control in the quad-tree readout.
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APPENDIX A. ACRONYMS

APR

ASIC

ASP

CDF

CMF

CMOS

CRLB

CTMC

DAPE

DC

DWT

FOV

FPA

IAF

IC

IID

LSB

MHT

MLE

MSB

PDF

PEX

PMF

PRD

automatic place-and-route
application-specific integrated circuit
asynchronous self-resetting pixel
cumulative density function
cumulative mass function
complementary metal-oxide-semiconductor
Cramér-Rao lower bound

continuous time Markov chain

digital asynchronous processing element
direct current

discrete wavelet transform

field of view

focal plane array

integrate-and-fire

integrated circuit

independent and identically distributed
least significant bit

multiple hypothesis tracker

maximum likelihood estimator

most significant bit

probability density function

parasitic extraction

probability mass function

percent root-mean-square difference
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PSF

SNR

SOOI

SPAD

SPARR

TDM

TEM

TOA

point spread function
signal-to-noise ratio
silicon-on-insulator

single-photon avalanche photodiode
Spiking/Processing Array

time decoding machine

time encoding machine

time-of-arrival
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APPENDIX B. SPARROW USER’S GUIDE

B.1. EXECUTIVE SUMMARY

The sparrow simulator is a discrete event simulator utilizing the ADEVS package [26] from Oak
Ridge National Laboratory and is designed to model the signal processing present on the proposed
SPARR FPA. It uses a YAML formatted input deck and outputs an HDFS output file. This document
assumes knowledge of the sPARR Fpa and the signal processing it performs.

B.2. INPUT FILE

B.2.1. Input YAML File

Sparrow utilizes a YAML formatted input file.
* output — Contains keys related to the simulation output file.
— filename — Name of the output file.
— interval — Amount of time in seconds to save accumulated image outputs.

— variables — List of the groups to save to the output file. There are four different
kinds of outputs: spike list outputs, framed image outputs, spike count outputs, and
throttling outputs. The data structures for all output types are fully described in
section B.3.

The spike list outputs give a list of output spike times in seconds and the
corresponding locations, decimations, and signs. The spike list outputs are:
* pixelSpikes — Saved every time each pixel generates a spike.

* outputHaar — Saved every time each Haar element (positive or negative)
produces a spike.

% output — Saved every time the apex quadtree element (positive or negative)
produces a spike.

% outputSpatialSummation — If spatial summation and differencing is enabled,
outputs spikes from the spatial summation layer.
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*

outputSpatialContrast — If spatial summation and differencing is enabled,
outputs spikes from the spatial contrast layer.

The framed image outputs give accumulations of spikes into image frames according
to the interval input. The framed image outputs are:

*

*

pixelSpikesImage — Accumulated number of spikes produced by each pixel.

outputHaarImageP — Accumulated number of positive spikes output by each
element in the Haar decomposition.

outputHaarImageN — Accumulated number of negative spikes output by each
element in the Haar decomposition.

outputHaarImage — Accumulated output by each element in the Haar
decomposition. This image subtracts the negative spikes from the positive spikes.

outputImageP — Accumulated number of positive spikes on a pixel basis output
from the quadtree readout.

outputImageN — Accumulated number of negative spikes on a pixel basis output
from the quadtree readout.

outputImage — Accumulated spikes from the quadtree readout where each spike
is weighted according to its quadtree decimation. This image subtracts the
negative spikes from the positive spikes.

outputSpatialSummationImage — If spatial summation and differencing is
enabled, this outputs an accumulated image output from the summation layer.

outputSpatialContrastImage — If spatial summation and differencing is
enabled, this outputs the spatial difference image output from the contrast layer.

The spike count outputs are simply the total number of processed spikes, and are
always output. The spike count outputs are:

*

pixelSpikeCounts — Number pixel spikes processed over the duration of the
simulation.

haarCAPSpikeCounts — Number of positive output spikes from the Haar c4
nodes over all levels of the transform.

haarCANSpikeCounts — Number of negative output spikes from the Haar cy4
nodes over all levels of the transform.

haarCHPSpikeCounts — Number of positive output spikes from the Haar cy
nodes over all levels of the transform.

haarCHNSpikeCounts — Number of negative output spikes from the Haar cy
nodes over all levels of the transform.
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* haarCVPSpikeCounts — Number of positive output spikes from the Haar cy
nodes over all levels of the transform.

* haarCVNSpikeCounts — Number of negative output spikes from the Haar cy
nodes over all levels of the transform.

* haarCDPSpikeCounts — Number of positive output spikes from the Haar cp
nodes over all levels of the transform.

# haarCDNSpikeCounts — Number of negative output spikes from the Haar cp
nodes over all levels of the transform.

* quadTreePCounts — Number of spikes generated over all nodes in the positive
quadtree output.

* quadTreeNCounts — Number of spikes generated over all nodes in the negative
quadtree output.

+ quadTreeLevelCounts — Number of spikes input to each level of the quadtree.
There is one output per level, with the first entry being the level and the second
entry being the number of spikes that entered that level.

# quadTreeCounts — If spatial summation and differencing is enabled, this
outputs the number of spikes generated over all nodes in the quadtree.

* decimatorSpikeCounts — If spatial summation and differencing is enabled, this
outputs the number of spikes generated by the decimator levels used for spatial
summation.

* spatialSummationCounts — If spatial summation and differencing is enabled,
this outputs the number of spikes generated by the spatial summation.

* spatialContrastCounts — If spatial summation and differencing is enabled,
this outputs the number of spikes generated by the spatial differencing.
The throttling outputs give the current and new throttling levels. The throttling

outputs are:

* throttling — Output when using spatial sum/differencing with a single
quadtree.

* throttlingPositive — Output when using Haar decomposition. Throttling
level of positive quadtree.

# throttlingNegative — Output when using Haar decomposition. Throttling
level of negative quadtree.

* terminateTime — Simulation time in seconds at which to end the simulation. The
startTime under array specifies the starting time in seconds of the simulation.

* input — Contains keys related to the simulation input file.
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— filename — HDFS filename that contains a per pixel spike list, the background
likelihood image, or a series of background likelihood images and times depending on
the arrayType input.

* array — Contains keys related to the array and the event specification.
— seed — Random number seed to use for generating pixel spikes.
— startTime — Starting time for the simulation in seconds.

— arrayType — Use 0 if each pixel is given a predetermined spike list in the input HDF5
file. Use 1 if each pixel determines its spike times based on the background
likelihoods in the input HDFS file and an event specification described later. The
thinning algorithm is used to sample the event [27]. Use 2 if you sample the event’s
background likelihoods in the input HDFS file and an event specification described
later. The algorithm described in [5] is used to sample the event, which can be helpful
for speeding up the sampling. Use 3 if the background likelihoods are changing
accoding the input HDFS5 file.

— pixelResetTime — Time in seconds that it takes for a pixel to reset. This means that
if another spike is generated during this reset time, that spike will be ignored and the
reset time will be extended to the reset time after the second, dropped spike. The
result is that a pixel in saturation will not spike.

— startPixelAtZero — If set to 1, then it will cause all pixel electron wells to be
initialized to the reset level, nominally zero. If set to O or not present, then pixels will
be randomly initialized between the reset level and the full level.

— numberElectrons — Mean number of electrons it takes a pixel to spike. The number
of electrons to spike is recomputed for each spike based on a Gaussian distribution.

— numberElectronsStdDev — Standard deviation of the number of electrons it takes a
pixel to spike. The number of electrons to spike is recomputed for each spike based on
a Gaussian distribution.

— resetLevel — Mean number of electrons for a pixel electron well to reset to after a
spike. The reset level is recomputed each spike based on a Gaussian distribution.

— resetLevelStdDev — Standard deviation of the number of electrons for a pixel
electron well to reset to after a spike. The reset level is recomputed each spike based
on a Gaussian distribution.

— readoutMethod — Use 0 for quadtree readout. Use 1 for array accumulator readout
(not typically used).

— processingMethod — Use 0 for spatial sum/difference (not typically used). Use 1 for
the Haar transform.
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— spikesToPrecompute — In order to facilitate generating spikes in parallel, pixels
maintain a buffer of this many spikes up to the termination time of the simulation.
When any pixel empties this buffer, all pixels are requested to fill their buffers to this
level. The larger this value, the greater the amount of parallelism at the expense of
up-front time computing the spikes.

— pixelsPerSecond — The number of times per second the array accumulator outputs a
pixel. For array accumulator readout only.

— throttleInterval — How often in seconds the quadtree checks its throttling
settings. For quadtree readout only.

— increateRateThreshold — If the quadtree receives more spikes per
throttleInterval than this value, it increases the amount of throttling performed.
For quadtree readout only.

— decreateRateThreshold — If the quadtree receives less spikes per
throttleInterval than this value, it decreases the amount of throttling performed.
For quadtree readout only.

— initialThrottleLevel — Initial throttling level to use. The quadtree decimation is
2 to this input’s power. For quadtree readout only.

— baseRate — This is the base electron rate to use for generating pixel spikes. A
likelihood of 1 means a pixel will accumulate electrons on average at this rate.

— psfSigma — Specifies the psF of the optical system using a simple Gaussian model.
Only used for events specified below.

— sampling — Contains keys related to sampling the likelihood function of each pixel.
This sampling is necessary if using arrayType 2 or 3.

* type — Sampling type can be either 1inear or adaptive.
# interval — Time interval in seconds between samples. For linear sampling only.

+* minInterval — Minimum time interval between samples. For adaptive sampling
only.

# maxInterval — Maximum time interval between samples. For adaptive
sampling only.

* tolerance — Relative error tolerance for testing sample points. For adaptive
sampling only.

* numTests — Number of testing points per interval. For adaptive sampling only.

— events — List of events to use for the simulation. Each event must be modeled as a
moving cosine or using polynomials to describe the motion and intensity. In both
cases, the following inputs are used:

* startTime — Starting time in seconds of the event. The event will be O intensity
before this time.
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stopTime — Stopping time in seconds of the event. The event will be O intensity
after this time.

psfType — Either gaussian or lorentzian. If not specified, gaussian is used.

psfSigma — For gaussian psfType, this input is the variance of the Gaussian.
For lorentzian psfType, this input is the gamma parameter of the Lorentzian.
In either case, this input is the scale parameter of the distribution.

For a cosine signal, the event likelihood is given by

L(t) = Lo+ Acos(wt + ¢),

and the following inputs must be used:

*

*

xLoc — Column location of the event in pixels at = 0.

yLoc — Row location of the event in pixels at # = 0.

deltaX — Linear column velocity of the event in pixels per second.

deltaY — Linear row velocity of the event in pixels per second.

amplitude — Amplitude of the cosine curve. Given by A in the above equation.
offset — Constant offset of the event. Given by L in the above equation.

angleRate — Angular frequency of the cosine curve. Given by w in the above
equation.

phase — Phase of the cosine curve. Given by ¢ in the above equation.

constantIntensity — Boolean stating if the event changes intensity or not. In
this case, the event’s likelihood is L(z) = Ly + A. Although the same could be
acheived using w = 0 and ¢ = 0, this option allows for code optimizations.

For the polynomial type event, arbitrary order polynomials are used to describe the
column motion, the row motion, and the event likelihood. In this case, the following
inputs are used:

*

xPolynomial — List of coefficients of the polynomial x(¢) describing the column
motion where the lowest order coeflicient is first. Time ¢ is relative to the start of
the event, not the simulation.

yPolynomial — List of coefficients of the polynomial y(¢) describing the row
motion where the lowest order coeflicient is first. Time ¢ is relative to the start of
the event, not the simulation.

intensityPolynomial — List of coefficients of the polynomial L(z) describing
the event likelihood where the lowest order coefficient is first. Time ¢ is relative to
the start of the event, not the simulation.
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— resetTimes — Contains keys that specify the amount of time in seconds it takes for
the given item to reset. If the item receives a spike during the reset time, the spike is
ignored and the reset time is recomputed to the time of last input spike plus the reset
time. This behavior means that if the input is saturated all input spikes are ignored
until the element goes the full reset time without an input spike.

* decimator — Decimator DAPE.

% aggregator — Aggregator DAPE.

% differentiator — Differentiator DAPE.
* quadTree — Quadtree DAPE

* haarAA — c4 Haar element DAPE.

% haarDA — cy Haar element DAPE.

% haarAD — cy Haar element DAPE.

% haarDD — cp Haar element DAPE.

— outputDelays — Contains keys that specify the time in seconds it takes from when an
input spike arrives that triggers an output until the output spike is generated.

* decimator — Decimator DAPE.

% aggregator — Aggregator DAPE.

% differentiator — Differentiator DAPE.
% quadTree — Quadtree DAPE

* haarAA — c4 Haar element DAPE.

% haarDA — cy Haar element DAPE.

% haarAD — cy Haar element DAPE.

% haarDD — cp Haar element DAPE.

— haarNumStates — Contains keys that control the number of states used in the Haar
transform state machines.

% cATop — Apex c4 node.

% cAOther — All other c4 nodes.
% cH— All cyg nodes.

* cV — All ¢y nodes.

% ¢D — All ¢p nodes.

— haarResetDifferential — Contains keys that control the decimation of the Haar
transform state machines. For example, a value of 2 gives a 2:1 decimation level.
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* cATop — Apex c4 node.

# cAOther — All other ¢4 nodes.
% cH— All cyg nodes.

% cV— All ¢y nodes.

% cD — All cp nodes.

B.2.2. Input HDF5 File

If the array is in the precomputed spikes input mode (arrayType is 0), the input HDFS5 file must
contain a /data group that contains a [height, width, numSpikes] array where each pixel
has a list of spikes. If the number of spikes is different for each pixel, then NaN can be used to pad
the array to a rectangular size.

For simulations where the spike times are computed by the simulation (arrayType is 1 or 2), the
input file must contain a /background_likelihood group which has a [height, width]
array that holds the likelihood that each pixel will spike between 0 and 1. A pixel with a
likelihood of 1 will spike on average at the baseRate specified in the input YAML file.

For simulations where a series of background likelihoods are specified (arrayType is 3), the
input file must contain a /times group which has a list of times for the background likelihoods
and a /data group that contains a [height, width, numTimes] array that holds the
background likelihoods for each pixel at all simulation times.

B.3. OUTPUT FILE

The output HDFS5 file contains 3 main types of outputs, individual spike outputs, image outputs,
and spike counts.

Spike outputs save 6 items for each spike: time, x location, y location, spike weight through the
Haar transform, spike weight through quadtree readout, and spike sign. The spike weights are
equivalent to the amount of decimation performed on each spike.

Image outputs save [frame, height, width] as a 3D dataset. The number of images saved

is
total simulation time

output interval

where [-] denotes the ceiling function.

Spike counts are saved in an array of 6 elements where the first entry contains the spike count, and
all other elements are 0. This may seem strange, but it allows us to reuse much of the HDF5
output code with only a slight increase in memory.
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B.4. IMPLEMENTATION DETAILS

B.4.1. Performance Improvements to Likelihood Computation

A significant portion of the sparrow simulation time is spent computing when a pixel will spike.
Due to the nature of photon arrival times, it was initially necessary to simulate the arrival of every
photon in each pixel using the thinning algorithm [27].

The first performance improvement came when the photon arrival likelihood was normalized by
the peak likelihood that a pixel could see over the duration of the simulation. See section B.4.2 for
more details.

The second performance improvement only applied to pixels with a constant likelihood. This
allowed replacement of the per-photon simulation with a single per-spike computation [11].

The third spike determination performance improvement performed a piecewise linear fit to the
time-varying likelihood function which allowed a single function evaluation to determine the time
of the next spike [37], [38].

B.4.2. Likelihood Normalization

In order to reduce computation time, the likelihood used on a per-pixel basis is normalized by the
peak likelihood of each pixel over the duration of the simulation. This requires being able to
compute the minimum distance between the pixel and the path of the event, and the maximum
intensity of an event over the duration. If we let

u ~ Uniform(0, 1),
then we can compute the next time with

= Nast — IOg(M)
(base rate)(per pixel gain)Lpeak

We then use the likelihood function to evaluate Lyex((f) = L(fo +¢,x,y, Lyg) Where Ly is the

background likelihood and compute
L(l) — Lnext(t) )
Lpeak

If a uniformly distributed random number v < L(¢), then the value of u is accepted as a
contributing electron. The per-pixel offset is added to Ly prior to the computation above.
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B.4.3. Parallelizing Sparrow

Due to the asynchronous nature of photon arrival times, a discrete event simulation framework is
required. The basic nature of a discrete event simulation is that a given processing node can either
generate discrete events, or spikes, based on an internal process or based on receiving an external
spike. In cases where spikes are generated completely internally, the computations can happen in
parallel; one output spike is not dependent on another output spike.

Once a node is introduced that accepts external spikes as input and produces output spikes based
on that external stimulus, the resulting data dependency requires that the spikes be processed
sequentially. Spikes processed out of order result in future events influencing the past, or acausal
behavior [10].

Within the sparrow simulation, computation of pixel spike times is a wholly internal spiking
process. As such, the spike times can be computed in parallel. sparrow makes use of this by
maintaining a buffer of the next N spikes for each pixel, and when any single pixel exhausts its list
of precomputed spikes, all pixels are refilled in parallel to N spikes. Subsequent to the pixel
spikes, the spARrRr architecture is tightly connected via the Haar wavelet transform and the quadtree
readout, which makes parallelization of these layers very difficult. If a multi-die approach to
SPARR were pursued, then simulation could be performed on each die independently.

The simulation framework currently being used does support multithreading; however, when that
option was enabled for spPARR simulations, the performance decreased significantly over the
single-threaded version. There are other performance improvements that could be investigated,
but those would likely require understanding and rewriting significant portions of the discrete
event simulation framework currently being used, which was outside the scope of this effort.

B.5. CODE STRUCTURE

B.5.1. ADEVS

The ADEVS discrete event simulation framework is based on the idea of an atomic model. This
model can either be triggered internally (delta_int()), in which case, it must provide a ta()
function that specifies the time until next trigger, or it can be triggered in response to an external
stimulus (delta_ext()). In the latter case, the ta() function should return the maximum
possible value until the model receives that external stimulus at which point it should return the
time to next trigger.

B.5.2. Pixel Types

Sparrow supports three different types of pixels. The first pixel type has a precomputed list of
spikes that is read from an input HDFS5 file. This is contained in the PixelAtTimes class. Given
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the simulations performed, these sequences of spikes quickly grow large enough that it’s faster to
generate them in memory than it is to read them off disk.

The second pixel type, PixelPoisson, computes spikes internally based on a likelihood function.
The likelihood function itself is based on the psF of the optics, and the change in position and
intensity of the event over time. This class simulates each photon to compute when a pixel will
spike. Pixels further than six times the psr spread value will not include contributions from an
event.

PixelPoisson maintains a list of the next n spikes, and when any pixel runs out of spikes, all
pixels replenish their spike list to n spikes, or to the spike after the simulation termination time.
The likelihood calculation used by PixelPoisson includes the option to add per-pixel bias (added
to the background likelihood) and gain corruption (multiplicative with the base rate), as well as
pixels not resetting to O electrons, and not triggering exactly at the requested trigger level.

The third pixel type, PixelPoissonSampled, is a subclass of PixelPoisson and generates a
piecewise-linear representation of the likelihood function from PixelPoisson to improve
performance.

The latter two pixel types are included in the PixelPoissonArray class, which handles notifying
all the pixels to generate spikes, when one pixel runs out of spikes. This enables the parallel
speedup discussed in section B.4.3.

In support of events changing intensity and location over time, there is an EventStructure class
that stores the data and provides the methods necessary to model the intensity or location function
and use it to compute the pixel trigger times. The standard EventStructure has a cosine curve
for the intensity and a linear velocity vector. EventStructurePolynomial replaces this with an
n™ order polynomial fit for both the intensity and the position as a function of time.

B.5.3. Processing Layers

Sparrow contains two processing layers. The first is a spatial summation filter followed by a
spatial difference filter. Notionally this sums the energy in the psF, then it applies an edge
detection filter to find point-like features. Since the filtering is being performed in the spike
domain, there’s no concept of a fractional spike. Instead, the spike rate is used to encode intensity,
so spike decimation is used to multiply the rate by a number between zero and one.

Sparrow contains a Decimator class that is capable of performing this decimation. For ease of
circuit implementation, the decimator always represents a factor of 1/ since this just means pass
every n'" spike.

The spatial filtering is handled by the WeightedCombiner class. This class takes a 2D array of
integer filter weights in a region around the target pixel. When a spike arrives from a pixel, the
weight at that location is added to the current total weight, and when that reaches a threshold, a
spike is output. Since the weights can be both positive and negative, this allows creation of both
the spatial summation, and spatial difference filters. There is a simpler version of
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WeightedCombiner called Aggregator, which simply outputs all the input spikes it receives.
It’s akin to an OR gate in the actual hardware.

The Haar wavelet decomposition is handled by the DifferentialNode class [36]. It uses
differential signaling through a positive and negative spike line to represent the sign of the data.
The state machine has a user-specifiable number of states and the decimation is controlled by the
state the machine transitions upon output.

All of the classes above handle reset times and output delays. Reset times force the element to
ignore spikes until the reset time has elapsed, with a spike arriving during the reset time causing
the reset time to extend. Output delays cause appropriate latencies in spikes between when they
should be output and when they actually are output. Both of these behaviors were intended to
mimic the performance of actual hardware.

B.5.4. Readout Methods

Sparrow contains two readout methods. The first readout method, contained in
ArrayAccumulator, attempts to readout the pixel with the most spikes since the last readout. It
accomplishes this by keeping track of the number of times any pixel in each row spiked. Then
during readout, it selects the row with the most spikes, finds the pixel in that row with the most
spikes, and reads it off. Finally, it subtracts the number of spikes read out from the row sum. This
method had issue with spike collisions since any spike in a pixel within the row tries to increment
the same counter.

The second readout method, contained in QuadTreeNode, connects all the outputs in a 2D
quadtree, with each node accepting inputs from a 2 X 2 grid of nodes below it. When a node
receives a spike, that node passes along the spike as well as 2 address bits that specify which input
caused the spike. The address bits are propagated up the tree, growing by 2 bits at every level,
until the final node is reached.

This method is capable of outputting every spike along with its location as long as the spike rate is
low. When the spike rate increases, it can quickly become saturated. Each layer is capable of
independently providing a 2:1 or 4:1 decimation if commanded to do so by the
QuadTreeTrafficControl. Under decimation, only every other or every fourth spike is passed
at each level. This results in the same statistical distribution of spikes at the output as at the input,
but with some quantization loss.

The QuadTreeTrafficControl monitors the number of output spikes and increases the
throttling rate if it receives more than a set number of spikes in a given time interval, and
decreases the throttling rate if it receives less than a set number of spikes. All of these parameters
are configurable in the input file. When the throttling rate is changed, it is set for all nodes at a
given level. A single level will never have a mix of throtting across its nodes.
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B.5.5. Data Output

Data is output in HDFS5 format files by the HDF5Writer class. There is a helper class,
ObserverHDF5 that can be connected to other ADEVS primitives and logs any spikes received to
a specified HDF5 output variable. These observers can log both the individual spikes, or images
containing the number of times a spike was received for each pixel. In addition, positive and
negative spikes are logged individually as well as in summation.
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APPENDIX C. ALTERNATIVE SIGNAL
PROCESSING

C.1. ALTERNATIVE SIGNAL PROCESSING

The goal of signal processing within the SPARR FPA is to remove most of the unneeded
information, enabling achievable data read-out rates. The throttled Haar transform as described in
section 2.3 represents only one possibility for accomplishing this goal. Another idea is to try to
maximize the sNr and subtract the background, which is the topic here. We perform both
operations via filters; a matched filter maximizes signal, and a spatial differentiator subtracts
background . Combined, these filters both maximize sNr and reduce the total data needed.

C.1.1. Matched Filter Spikes

Many designs are possible for a matched filter. For sPArRR, we approximated an optical point
spread function psF that overfills a single pixel with a 3 X 3 pixel filter that decimates each pixel’s
spike train according to figure C-1. That is, for each pixel, the eight surrounding pixel spike
outputs are decimated according to figure C-1 and then those spike trains are added together.
Pixels on the edge of the Fpa have fewer than eight neighboring pixels (either three or five), but we
simply treat the nonexisting pixels as zeros. If we index the 3 X 3 array of pixels in row-major
order (i.e., according to figure C-2), then we can let g(’”)(K ) for m =0,1,...,8 be the pmF for the
number of pixel spikes for the pixel at index m, which comes directly from equation (2.8), and

then apply the corresponding decimation Dl(;l'? to get

D=1  (K+1)DIP—j1
1
Pr(K spikes after decimation) = o Z g(m)(i) (C.1)
D =0 i=kD™—j
| D1
_ m (m) . m (m) .
-~ D [G( (K +1)D™ = j 1) -G (kD™ —1—1)]
mf Jj=0
(C.2)
= ¢ (K). (C.3)
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Finally, the pmF for the number of matched filter spikes comes directly from equation (2.35). We
find

Pr(K matched filter spikes) = (gg)) * gg) ook ggg)) (K) (C.4)
= n(K). (C.5)

4:1 | 2:1 1 4:1

2:1 ] 1:1 | 2:1

4:1 | 2:1 | 4:1

Figure C-1. A 3 X 3 matched filter decimation scheme.

0] 1]2
31415
6|78

Figure C-2. Row-major indexing scheme for the 3 x 3 matched filter.

C.1.2. Differentiator Spikes

The differentiating filter is only slightly more complicated. We again use a 3 x 3 filter and
decimate according to figure C-3. We also use figure C-2 for the indexing so that the matched
filter pmEs are A"(K) for m = 0,1,...,8. Although most of the decimations are now negative, we
still apply the decimation as if they are positive. That is we decimate according to

DI -1 (K+1)|DY|-j-1

1 diff
i imation) = m)(;
Pr(K spikes after decimation) = 5 (’")| Z Z R () (C.6)
diff!  j=0 i:K|D((1Vi';r)|_j
q IDE)-1
) D] Z [H(m)((K+ DIDgitl = j=1) =H™ (K| Diig| = j - 1)]
diffl  j=0
(C.7)
= W (K). (C.8)

—-12:1 | =6:1 | —12:1
-6:1 1:1 -6:1
-12:1 | —-6:1 | —12:1

Figure C-3. A 3 x 3 differentiator decimation scheme.
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Clearly, there will be a positive and negative spike train for each pixel. Unlike with the Haar
transform, it is fairly simple to obtain the pmrs for the number of positive and negative spikes from
the differentiator. The positive output is simply

Pr(K pos. differentiator spikes) = h(DA') (K) (C.9
= h'(K) (C.10)
= u*(K). (C.11)

The negative output uses equation (2.35) to obtain

Pr(K neg. differentiator spikes) = (hg) ook hg) * hg) oo hg)) (K) (C.12)
= u (K). (C.13)

Equations (C.11) and (C.13) can be used directly for the quadtree PMF outputs given in equation
(2.75). Finally, if the pmr for the number of net differentiator spikes is desired, we can use
equation (2.37) to get

Pr(K net differentiator spikes) = (u~ xu*) (K) (C.14)
= u(K). (C.15)

The spatial matched-filter then differentiator concept was evaluated with the sparrow simulator
and through Cadence simulation. However, a weakness of the matched filter is that it increases the
spike rate local to the pixel by the magnitude sum of the coefficients. For this analysis, the sum of
matched filter coeflicients is four, so the spike rate out of the matched filter would be four times
the spike rate from a single pixel, with unfortunate effects on dynamic range. However, for some
applications similar functional realizations could be realized without the spike rate amplification
effect, e.g., placing the differentiator first and following it with a signed matched filter. Our main
reason for pursuing the Haar transform approach is its applications to imaging and multiscale
spatial processing—features unavailable in the local differentiator design.
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APPENDIX D. SIGNAL-TO-NOISE RATIO

We model the arrival of photons on the sensor as realizations of a nonhomogeneous Poisson point
process. X(¢) is the random signal signifying the number of photons the sensor receives at a given
time. That is

X(t) ~ Poiss(A(1)) (D.1)

where A(¢) is the time-dependent rate function, representing the average instantaneous number of
photon arrivals per unit time.

We model X(¢) as a summation of two inherent signals, S(#), representing the important signal
component of the received data, and N(¢), representing noise and background. Both S(¢) and N(¢)
are nonhomogeneous Poisson point processes as well, since the sum of two Poisson random
variables results in a Poisson random variable. Hence,

X(t)=S(t)+N(r) (D.2)
where
S(t) ~ Poiss(As(1)), (D.3a)
N(t) ~ Poiss(An (1)), (D.3b)
and
A(t) = As(t) + An(2). (D.4)

The instantaneous sNR is the ratio of the instantaneous power of the signal component compared
with that of the noise component:

instantaneous power of S(t)
SNR = - . D.5)
instantaneous power of N(z)

The instantaneous energy of an optical signal such as X(¢) is & f A(ty,t) where £ is the Planck
constant, f is the photon frequency, and

t
A(to,t) = / A(r)dr (D.6)
fo
is the number of photons incident on the sensor between times 7o and z. Since power is energy per
time,
. hfA(0,1)
P(t) = lim ———= D.7
® = lim =% @7
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where P(t) is the instantaneous power of the signal and Ar =7 —1.

With this, the instantaneous signal-to-noise ratio is

s = im (5100 [ (M)
AS(IO’I) (D9)

a0 An(fo,1)

where Ag(fo,t) is the number of photons incident on the sensor due to the signal component
during the interval Az, and Ay(to,t) is the number of photons incident on the sensor due to the
noise component during the interval A¢. Therefore,

[as(rydr
SNR(?) = lim ——— (D.10)
=h [ An(o)de
d t
< " As(r)dt
= lim Z’—f";— (D.11)
=& An(@)dr
As(1)
= D.12
An(1) ( )

where we used L’Hospital’s rule to evaluate the limit. We now have that the signal-to-noise ratio
of the signal incident on the sensor is the ratio of the rate function of the signal component to that
of the noise component.
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APPENDIX E. SPIKE INTENSITY
RECONSTRUCTION VIA THE
GAMMA DISTRIBUTION

E.1. SIGNAL MODEL

The sparr sensor has been designed so that the background appears spatially white for a nominal
earth scene. When some event of interest occurs, the background will no longer appear to be
spatially white in the neighborhood of the event. In this case, we would like to be able to take the
output spikes from the positive and negative quadtrees and reconstruct the signal time series for
identification purposes. All signals are transient by definition, so the arrival of photons from the
event could be accurately modeled as a nonstationary Poisson process. This is simply a Poisson
process whose rate is a function of time (1 = A(¢)). However, the analysis is greatly simplified by
using a stationary Poisson process. Therefore, we will assume that given a sufficiently small time
window, we can model the arrival of photons from the event of interest as a stationary Poisson
process. This means that if a pixel spikes after receiving N photons, then the arrival times of pixel
spikes follows a gamma distribution with shape parameter N and rate A.

However, the pixel spikes are propagated through a series of state machines that approximate a
Haar discrete wavelet transform and then through two quadtrees for a double spike-train readout.
Two quadtrees are needed because the Haar transform produces positive and negative output
spikes, and we keep each line separate (i.e., there is a quadtree for the positive spikes and one for
the negative spikes). The presense of the Haar transform significantly complicates the statistics, so
as a first try, we will assume it is not present. This means that the pixel spikes go immediately
through a single quadtree for the readout.

The quadtree only slightly complicates the statistics. It performs decimation so that spike
collisions are infrequent. The amount of decimation is known, so a quadtree spike has a factor D
associated with it. Hence, for a given pixel address, each quadtree spike represents D pixel spikes,
which in turn each represent N photon arrivals. This means each quadtree spike represents

M = DN photon arrivals. We should note that D is known for each spike, but is not constant.
SpARR applies more decimation in the quadtree as the rate of input spikes increases, but reduces
the decimation when the input spike rate decreases. The decimation can be viewed as a source of
quantization error, so less decimation means more information is being preserved.
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If we let At be the interval of time between two quadtree spikes, then this waiting time follows a
gamma distribution with shape parameter M and rate A. That is, At ~ I'(M, 1), which has a pDF

AMA M-1_—-AAt
F(ALM, Q) = ﬁ (E.1)

where I'(-) is the gamma function defined by

I'(s) = / ) #=15 gy (E.2)
0

Let us assume in some interval of time we receive K + 1 quadtree spikes for some pixel, and the
spike times are given by ¢; fori = 0,1,...,K. Then, each At; =t; —t;_; is an independent and
identically distributed (11p) sample from a gamma distribution with shape parameter M; and rate A
fori=1,2,...,K. If we define T = (At},Ats,...,Atg) and M = (M, M>,...,Mk), then we can define
the likelihood of a rate A given T and M to be

K-1
L(ATM) = H F(M) . (E.3)

E.2. MAXIMUM LIKELIHOOD ESTIMATOR

We would like to estimate the rate A from an observed train of quadtree spikes. One way to do this
is to maximize the likelihood function (E.3) with respect to 4. Due to the monotinicity of the
logarithm function, we will actually maximize the log-likelihood, which is given by

K
(@AITM) =3 [M,- log(A) + (M; — 1)log(At;) — AAt; — log (r(M,-))] . (E4)

i=1
Taking the partial derivative of equation (E.4) with respect to A, we find

K
(ATM) _ 3 (% _Ati) . (E.5)

0A , A
i=1

The MmLE for the rate of photon arrivals is found by setting this expression equal to zero. We get

i= 1 M (E.6)
o1 A '
NYK D,
= @)

which means that the MLE for the rate of photon arrivals is the number of photon arrivals divided
by the time interval.
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Although the MLE is generally not unbiased or efficient (meaning that the variance is equal to the
Cramér-Rao lower bound (crLB)), it becomes unbiased and efficient as K — oo. This means

A~N (1,1—1(1)) (E.8)

as K — oo where I(1) = —E(0%€/0A?) is the Fisher information and E(-) denotes the expected
value. To show this, let us first compute the expected value of A. This is given by

E(/l) :E( EIZ) (E.9)

(ol

_ (Z}M) E(%) (E11)

where Y = Z,-K: | At ~ F(ZiKz | M;, ), which follows from the fact that each At; ~ I'(M;,4) and the
sum of gamma distributed variables is also gamma distributed.

Ifwenowlet Z=1/Y ~ IG(ZZKZ | M;, A) where IG(-) is the inverse gamma distribution, then we

have
K
(2):(2 )E(Z) (E.12)
"
Bt
:ﬂ (E.14)
K Mi—1 '

where we have used the fact that if X ~ 1G(a,b), then E(X) = b/(a—1) so long as a > 1. For
SPARR, this means Z,'K: | M; > 1, which is almost always true. The only case where it is not true is if
the capacitor well size was N = 1, there is no decimation in the quadtree (i.e., D; = 1), and we are
only considering one time interval (i.e., K = 1), which are not restrictive assumptions. Equation
(E.14) shows that the MLE given by equation (E.7) is indeed biased. However, our claim that it
becomes unbiased as K — oo is also clearly seen to be true.

To test whether the MLE is efficient, we start by computing the variance of A. This is given by

K
Var(i) _ ar | ZiztMi (E.15)
K 2
= M;| Var (E.16)
K
; i=1 Ati)




K 2
= (Z Mi) Var(Z) (E.17)
2

—

(g | E
= M; .
=1 ( {ilMi_l)z( szljwi_z)

2
_ ( {;Mi) 22 (E.19)

( zK:lMi_l)z( iKlei_z)

1

where we have used the fact that if X ~ IG(a,b), then Var(X) = b*/((a—1)*(a - 2)) so long as
a > 2. For sPARR, this is slightly more restrictive, but not at all prohibitive. Now, the crLB is given
by

crLB = I71(Q) (E.20)
= - ! (E.21)
(825(/1|T,M) )
E —_ &
FYE
_ K_l (E.22)
M;
(%)
1 2
= 7. (E.23)
szl M;

The crLB is the number such that crLB < Var(1). We now see that the MLE given by equation
(E.7) is not efficient, but our earlier claim that it becomes efficient as K — oo can now be seen to
be true.

E.3. MODIFIED ESTIMATOR

We propose to modify the MLE to remove the bias shown in equation (E.7). We propose

1= iK:lMi_1 (E.24)
NYK, D;i-1

= Z’;. (E.25)

Itk — 1o

Now if we compute the expected value of A’, we find

N S Mi—-1
E(V) =B Zo—— (E.26)

( 1 A
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= 1
(Z M; - ) ( ) (B.27)
i= i=1 Atl

1

(iMl )( S 1) (529

i=1
=4, (E.29)

which shows that A’ is an unbiased estimator.

Although equation (E.25) is unbiased, it is still not efficient. Computing the variance of A’, we
find

A~ lI<:1 Ml - 1
Var(/l ) Var | 251 (E.30)
K A
K 2
= M;—1| Var (E.31)
; zKlA[l)

2
:(ZK:M,—I) ( i - (E32)
= i~ 1 M=

=— A°. E.33
{;Mi_z ( :

Comparing equation (E.33) with (E.23), we clearly see our new estimator is not efficient, but we
still have the property that it becomes efficient as K — co. However, comparing equation (E.33)
with (E.19), we see that Var(1’) < Var(1).

We should note here that although we have an improvement in both the expected value and
variance of our new MLE, the improvement is marginal. The reason is that each M; = ND; is large
due to the fact that N is large. Specifically, N is typically on the order of 10° or larger, so
subtracting 1 or 2 has a negligible difference even for small K.

E.4. PERFORMANCE OF THE ESTIMATORS

In order to show that these formulas hold in practice, we ran a Monte Carlo simulation where we
defined a true photon arrival rate of 2 = 1x 107 and a capacitor well size of N = 800. For
simplicity, we let D; = 1 for all i. Using these parameters, we generated anywhere between 2 and
500 random draws from a gamma distribution, computed photon rate estimates using equations
(E.7) and (E.25), and then computed the sample means and variances. These means and variance
were compared to the theoretical expected values found in equations (E.14) and (E.29) and
theoretical variances found in equations (E.19) and (E.33). The variances were also compared to
the crLB found in equation (E.23).
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Figure E-1 shows the theoretical and Monte Carlo estimated means of the estimators. As can be
seen, both the original and modified estimators are close to the true photon arrival rate. For small
K, the modified estimate is closer, which is to be expected, but the difference is small.

le7
—— MLE MC Exp
1.0010 - MLE TH Exp
~ = Mod MLE MC Exp
1.0005 - |, —— Mod MLE TH Exp
<A ]
= 1.0000 - -
0.9995 - :
0.9990 -
| | | | | |
0 100 200 300 400 500

K

Figure E-1. Mean of the estimators. Here we include lines for the mean
of the mLE estimator and the modified estimator. For comparison, we
have also included lines for the theoretical expectation of these estima-
tors. MC stands for Monte Carlo, and TH stands for theoretical. As can
be seen, the MLE is biased at low NV, while the modified estimator is not.

Figure E-2 displays the absolute percent error as K increases. The trend matches that displayed in
figure E-1: the two estimators perform about the same, and their performance increases as K
increases.

Figure E-3 plots the variance of the estimators as K increases. As expected, the performance
increases as K increases, and the variances are indistinguishable from the crLB.

E.5. DETECTION

The estimators found above allows us to estimate the rate of photon arrivals A. This rate is
specifically the rate of photon arrivals from the background (i.e., no signal of interest present). We
will hereafter refer to this as the noise rate Ay. If a signal of interest is present, we would like to
determine a criterion for specifying a signal detection. We would also like to determine the
probability of detection, but there is a tradeoft between signal detection and false alarms. That is,
we have to set a threshold where if the threshold is set too low, we will likely capture all signals of
interest, but also have an unacceptably high false alarm rate. Conversely, if the threshold is set too
high, we will have very few false alarms, but we will also miss too many signals of interest
depending on the brightness of the signal. Hence, the detection criterion, the probability of false
alarm, and the probability of detection will depend on a chosen probability of false alarm for some
specified signal brightness. That is, we choose an acceptable probability of false alarm for a signal
that has a defined brightness in order to define a detection threshold. Then, for a signal of any
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Figure E-2. Percent error of the estimators. The percent errors gener-
ally decrease as K increases.

== MLE MC Var
= MLE TH Var
== Mod MLE MC Var
= Mod MLE TH Var

10° -

| | |
0 100 200 300
K

—— CRLB

| |
400 500

Figure E-3. Variances of the mLEs. All variances are very close to the cRLB.
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brightness, we can compute the probability of false alarm and detection given that threshold.
Further, we can determine in real time whether a given pixel is witnessing an event of interest
using the detection criterion.

To show this, we define Ag to be the rate of photon arrivals when a signal is present. Here,

As > Ay because a signal must make the background brighter. In order to define a signal detection
criterion, we will use the likelihood ratio test. Specifically, the null hypothesis Hj is that no signal
is present. The alternative hypothesis H|, by contrast, is that a signal is present. Both hypotheses
have a likelihood associated with them. They are

Atl.]‘/li_l e—/lNAl‘i

LOnTM = [
i=1
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i=1

['(M;)

1=

The likelihood ratio test states that in order to reject the null hypothesis (i.e., a signal is present),
the ratio of the null likelihood to the alternative likelihood must be less than some threshold. That
is

’ L(Ay|T,M)
L(As|T,M)
where LR is the likelihood ratio and 7 is the threshold. If we substitute equations (E.34) and
(E.35) into (E.36), simplify, and take a logarithm, we find

LR= (E.36)

K

Z [(as — An)At; —log (j—;) M,-] < log(7), (E.37)

i=1
which is our detection criterion in terms of a chosen threshold .

As stated above, we would like to define our detection criterion in terms of a chosen probability of
false alarm and signal brightness. To do this, we start by rearranging equation (E.37). We find

K
;At,-</1$_ [log(r)+log( )ZM} (E.38)

The probability of a false alarm is the probability of equation (E.38) being true while the null
hypothesis is also true. Mathematically, we can write

iMl] ﬂfﬂo) (E.39)

1

?‘I%‘

K
1
Ppa=Pr At; < log(7)+1o (
FA (; P [ g g

K r % )
= W As
=Pr (; At < yr— log(7) +1log (/l ) ;Ml 740) Pr(Ho) (E.40)
K . - N P
=Pr (; At < p—, log(7) +1og (—) ;M, 7{0) (E.41)

where Pr4 is the probability of false alarm. The last equality above comes from the fact that if no
signal is present, Pr(Hp) = 1. Since the sum of waiting times is gamma distributed, we can write
Yy = Zf: | A~ F(Zf: | M;,An) where we use Ay because no signal is present. With this, we have

Pra= Pr(YN 83— ! [log(r)+log( ) ZM]) (E.42)

Py (IZK;M [log(T)HOg( )ZM D (E43)

where P,(-,-) is the regularized, lower, incomplete gamma function and is defined by

1 X
Py(s,x)zm /O e dt. (E.44)
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This comes from the fact that the cumulative density function (cpF) of X ~ I'(a,b) is P,(a,bx).

If we now let P, I(.,-) be the inverse in the second argument of the regularized, lower, incomplete
gamma function such that P, I(s, Py(s5,x)) = x and Py (s, P, I(s5,x)) = x, with some algebra we find

that
A
log(t) = S/l—NN (Z M, pFA) —log( ) ZM (E45)

As stated earlier, we need to choose an acceptable probability of false alarm for some signal
brightness in order to fully define our threshold. That is, we let Prs = P}, and

As = A5 = An(1 +a*). Here, a* > 0 is the fraction above the background brightness on which to
define an acceptable probability of false alarm. With this, our threshold is fully defined with

K
~log(1 + a*)Z M. (E.46)

K
log(r) = a*P;1 (2 M;, Py,
i=1

We are now able to define our detection criterion. If we set Ay = Ay and Ag = A in equation
(E.38), we find

(- 1y) Z At; < log(7) +log ( ) Z M;. (E.47)
i=1

The idea here is that we have an estimate for Ay based off of previous spike rates (a running

average of some sort). For every time bin, we compute a new photon rate estimate A, which is then

used in equation (E.47) to determine if the pixel detected an event of interest. If the criterion is not

met, we can simply use A to update Ay.

We can now compute a probability of false alarm for any change in brightness. In equation (E.43),
we can let Ag = Ay(1 + @). We should note that for a false alarm there is no real signal. Hence, in
this case, a represents an increase in the instantaneous photon arrival rate although the long term
rate Ay remains constant. With this substitution, we find

K K
Ppa=P, (Z Mi,é [log(T) +log(1 + @) Z M,-] ) ; (E.48)
i=1

i=1
Equation (E.48) is more useful from a theoretical point of view. That is, it tells you the probability
of false alarm supposing that « is known. Since @ here represents an instantaneous fractional
increase in the photon arrival rate, it cannot be exactly known in practice. However, from a
theoretical point of view, equation (E.48) can help us choose suitable values for Py, and a*. After
all, we may find Pr4 to be intolerable for certain values of @ even if some P; 4 and a* by
themselves appear tolerable.

Now concerning the probability of signal detection, we assume both the alternative hypothesis
and equation (E.38) are true. If we perform a similar analysis as was done to arrive at equations
(E.43) and (E.48), we will find

Pr=P, (Z M, —— [10g(7’)+10g(1 +a/)ZM ) (E.49)

i=1
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Again, this equation is useful from a theoretical perspective and can be used in tandem with
equation (E.48) to adjust the parameters P, and a".

E.6. DETECTION EXAMPLES

To show how this works in practice, let us assume that there are M; = 800 photon arrivals for every
quadtree spike and we wait to receive 35 quadtree spikes (K = 34) for a given pixel. We will also
specify a probability of false alarm of Py, = 1x 107° for a yet to be determined background level
a”. To determine this background level, we need to know the probability of detection if @ = ™. If
the probability of detection is too low, we either need to choose a different Py, , or a different a*.
In figure E-4, we show Pp from equation (E.49) using @ = a*. We see that for the chosen P ,, we
have a high probability of detection (about 0.95) for ™ > 0.04. Hence, in what follows, we will
choose a* = 0.04, which means that we want our probability of false alarm to be 1 x 107° for a

signal that is a factor 1.04 brighter than the nominal background.
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0.4 -

0.2 -

0.0 B | | | | |
0.01 002 003 004 005
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Figure E-4. Probability of detection as a function of signal level assum-
ing @ = @*. This plot was made with the choice P, , = 1X 107% and

K M; = 27200. We can see that choosing a* > 0.04 will result in a
high probability of detection.

We would now like to see how the probability of false alarm and detection perform with a* = 0.04
for other signal levels. As such, we plot equations (E.48) and (E.49) in figures E-5 and E-6,
respectively. Figure E-5 is similar to figure E-4, and still has high probability of detection for

a > 0.04. Figure E-6 shows the probability of false alarm increases over 1 x 1076 for

0.0189 < @ < 0.04, which is not unexpected since we are only requiring that Pr, = 1 x 107° for

a =0.04.

We would now like to know if we can reliably detect a signal that is 1% of the background (i.e.
a = 0.01). It should be clear from figure E-5 that we cannot unless if we wait for more photons.
To determine the number of photons, we plotted equation (E.49) with P, = 1 X 107, o* = 0.04,
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Figure E-5. Probability of detection as a function of signal level. This
plot was made assuming P, , = 1 X 107, @* = 0.04, and Z,.K:I M; =27200.

and @ = 0.01 for various values of Z,K: 1 M;. This is shown in figure E-7. If we define a reliable
detection to be the point where Pp = 0.9, we find we need to wait for 59949 photons (or 75
quadtree spikes), which is a little over twice as many as the 27200 we were using before. This
means that if the background rate was Ay = 1 x 10° photon arrivals per second, we could reliably
detect a signal that is 1% of the background at a granularity of 16.68 kHz.

If we relax the requirement on the probability of false alarm, we can decrease the number of
photon arrivals to reliably detect a signal that is 1% of the background. To show this, we set

P;‘; 4= 1X 1072, but keep a* = 0.04, and @ = 0.01. Similar to before, if we plot equation (E.49) for
various Z,-K: | M;, we find we only need 16357 photon arrivals or 21 quadtree spikes for a reliable
detection, which corresponds to 61.14 kHz. This is shown in figure E-8.

Suppose, instead, that we only wanted to consider time intervals at 38 kHz. Then, varying ZiK: \ M;
corresponds to varying Ay since Zfil M; = Ay/38000. If we set Py, = 1 X 1076 and let @ = o*,
then we can vary Ay so that we can choose an appropriate a* based on the probability of
detection. We show the result of doing this in figure E-9. Clearly, a larger background rate is
necessary for smaller values of a*, which is not surprising. The point here is to show that if we
define our time interval and reference probability of false alarm, we can determine what the
background rate needs to be for any reference signal strength.

Although there may be ways to prevent certain photon wavelengths from entering the sensor, we
can’t actually choose Ay since it is depends on the brightness of the background object. However,
figure E-9 would still be useful as a comparison to an existing, conventional sensor. That is, if
there was a sensor with a frame rate of 38 000 kHz, then we could compare it with the sPARR
sensor using the above method.
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Figure E-6. Probability of false alarm as a function of signal level. This
plot was made assuming P, , = 1 X 107%, * = 0.04, and ZiK:l M; = 27200.

E.7. RECONSTRUCTION ALGORITHM

We are now able to define a reconstruction algorithm. As photons arrive at a pixel, we can bin the
quadtree spikes according to a reconstruction frequency. Then for each bin, we can use equation
(E.25) to estimate the photon arrival rate A in that time bin. Further, we can overlap each time bin
to make a smoother photon rate curve. When there is no event of interest, the computed photon
rate is Ay, which is updated every time bin with a running mean over K time bins. For each time
bin, we can use equation (E.47) using some chosen Fj,, and a” to determine if a signal is present.
If a signal is determined to be present, the previous photon rate Ay is held constant so that
equation (E.47) can use the correct background rate. Once the system no longer detects a signal of
interest for a long enough period of time, the background rate is no longer held constant and each
time bin starts updating Ay again.

E.8. PERFORMANCE SIMULATION

In order to simulate this algorithm, we ran three scenarios in sparrow. In all scenarios, the true
background photon rate was Ay = 1 x 10'°/11 ~ 9.091 x 10 Hz, the capacitor well size was

N = 800 electrons, the quadtree decimation was D; = 1 (which corresponds to no decimation) for
each time bin, and a cosine signal was input between times 0.1 and 0.4 seconds. The
reconstruction frequency was always 38 kHz with Py, = 1X 1076 for @* = 0.04. The amplitude of
the cosine varied between scenarios.

In the first scenario, the amplitude was ten times the background rate, which gives
Ag=1x10'"/11~9.091 x 10° Hz at the peak of the cosine signal. The signal reconstruction is
shown in figure E-10. Here, we see that the reconstruction is very close to the input signal
everywhere, and the algorithm detects the signal almost everywhere. The detection criterion fails
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Figure E-7. Probability of detection vs. the number of photon arrivals in
the interval assuming P}, = 1x 1075, a* =0.04, and « = 0.01. As can be
seen, if we wait to receive 59949 photons in an interval, we will detect
the signal 90% of the time.

when the signal approaches zero, making the photon rate almost equal to the background rate.
Mitigating this behavior would not be difficult. We could simply force the system to continue
monitoring a pixel that has a detection for some period of time. That is, if we expect all signals of
interest to be shorter than some period of time, we can force the system to save all data from a pixel
that detected for that period of time independent of whether it continues to make a detection.

In the second scenario, the amplitude was equal to the background rate, which gives

As =2x10'/11 ~ 1.812x 10° Hz at the peak of the cosine signal. The reconstruction for this
scenario is shown in figure E-11. We can see that the reconstruction algorithm again does well
both in reproducing the signal and registering a detection. We also notice, however, that there is
more uncertainty in the reconstruction as evidenced by the broader blue line as compared to the
previous scenario. Also, the time during which the detection criterion is not met is longer.
However, this is mitigated using the same strategy as before.

In the final scenario, the amplitude was set to 0.04 times the background rate, which gives

As =1.04x10'9/11 ~ 9.4545 x 10® Hz at the peak of the cosine signal. This reconstruction is
shown in figure E-12. We see that the uncertainty has increased considerably, but more
importantly, we do not register a detection until about 0.033 seconds after the signal begins.
Again, the failure of the detection criterion toward the end of the signal can be compensated for
with the correction mentioned earlier. The failure at the beginning of the signal is not as simple. If
we keep the P, and a" set to their current values, there is likely not much to be done about
missing the beginning of the signal. After all, missing detections is the tradeoff for having a low
probability of false alarm. If, however, we can tolerate more false alarms, then we can relax either
Py, or a” so that the threshold computed by equation (E.46) results in more detections.
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Figure E-8. Probability of detection vs. the number of photon arrivals in
the interval assuming P, , = 1 X 1072, @* = 0.04,and @ = 0.01. As can be
seen, if we wait to receive 16357 photons in an interval, we will detect
the signal 90% of the time.
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Figure E-9. Probability of detection vs. background photon arrival rate
assuming Py, = 1 X 1075, @ = o*, and Z,-IilAti = 1/38000. As can be
seen, increasing o results in a greater P, for a given Ay.
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Figure E-10. Signal reconstruction and detection on a target signal with
peak magnitude ten times the background.
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Figure E-11. Signal reconstruction and detection on a target signal with
peak magnitude at parity with the background.
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Figure E-12. Signal reconstruction and detection on a target signal with
peak magnitude at 4% of the background.
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APPENDIX F. TIME DECODING MACHINE
FOR RECONSTRUCTING THE
INPUT SIGNAL

To create low-power circuitry designs, engineers have begun exploring time encoding

machines (TEMs) and time decoding machines (tpms). TEwMs are a way to encode incoming signals
as spike trains, which use less power. The complement of time encoding, TpMms are circuits that
reconstruct the spike trains into the original waveform. Many such TEMm circuits exist, including
asynchronous sigma-delta modulators, frequency modulation, 1AF neurons, and others [22].

Lazar [21] discusses how to use an 1AF model as a TEmM. His model, as shown in figure F-1, imposes
a continuous signal x(7) on a 1AF neuron. The signal x(¢) is bandlimited to [-€, Q] (in radians per
second), and |x(¢)| < ¢ for some constant c. Furthermore, there is a constant bias signal » > 0 in
the system with ¢ < b. The sum of the incident signal and the bias is divided by a constant « and
then integrated. When the result of this surpasses a threshold ¢, a spike occurs. The 1aF model
may include a refractory period, where the neuron is not integrating while it is dumping charge.

Reset with absolute refractory period A

g A
b //\\1 1 y(t) g ;
_’<Z—>—/(h‘—><2)—>——>—'—>
+ 7 |k, i N’ :(t)
Integrator T a »
. Comparator
x(t) 0 ’ /
()] < ¢ < b [
t
f -
ty tr1

Figure F-1. An IAF neuron. This figure was taken reference [22].

The 1aF model discussed needs some modifications to work with sparr. Begin with
i(t) = x(t) + b(t), (E.1)

where i(¢) is the continuous signal incident on a pixel, x() is the signal of interest we care to
reconstruct, and b(¢) is the background signal. Since these are all measurements of incident light,
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x(t) =20, b(t) > 0, and thus i(r) > 0. x(¢) must be bandlimited to [-Q,Q]. For ease of computing
theoretical bounds, we assert that x(¢) is bounded, that is there exists some constant ¢ such that
x(t) < c. Finally, we will let k = 1 and ¢ be the number of integrated electrons required to cause
the capacitor to dump its charge by spiking. Our system has a refractory period after a spike as
well, so will leave the nomenclature of A for this.

F.1. AN OVERVIEW OF TDMS

Tpwms rely on irregular sampling theory and frame theory. While we attempt to give the reader
enough working knowledge in this section, [19] provides a more in-depth analysis of the topic.

Given a chronologically sorted spike train produced by a TEMm, a possible representation for x(z)
is
x(0) = exgt—my), (F.2)

keZ

where g(t) = sin(Qr)/(nxt) is a low-pass filter with ideal cutoff Q, the c¢’s are the reconstruction
coeflicients, and each my is associated with spike k, but not necessarily the time-stamp of spike k.
This is the standard sinc reconstruction for irregular sampling.

For perfect reconstruction with Tpms, k must span all integers, which is not a realistic
requirement. Relax this condition and let kK =0,1,2,...,K — 1 for some K > 20 or so. In practice,
this causes inaccuracies (Gibb’s phenomenon) in the reconstruction close to the
boundaries—typically within two or three samples—of sharp signal amplitude changes. Considering
K spikes, the reconstruction can is trustworthy from time sy, to sx_j—p where 2 < M < K.

Now, write both sides of equation (F.2) at times ¢; for j =0,1,...,J, and reformulate the equation
to be

x = Gec, (F.3)

where x € R/, xj=x(t),Ge R/*K Gjr=g(tj—my),and c e RX is the unknown coefficient
vector. To solve for ¢, we use

c=G'x, (F.4)

where G is the pseudo-inverse of G. If G is square (i.e., J = K) and invertible, then G =G
Each 7; can be an arbitrary time (i.e., not associated with any spike time sy ), although in practice
t; often describes a regular series of times.

Figure F-2 shows the process for signal reconstruction. A continuous time signal x(¢) is run
through a generic TEm, which results in a monotonically increasing series of spike times. These
spike times are used to compute the coefficients for a weighted time series. This weighted time
series passes through a low-pass filter with ideal cutoff Q2. The output of this low-pass filter is the
reconstructed signal x(7).
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Figure F-2. Tom reconstruction. This figure was taken from reference [22].

F.2. INTEGRATE AND FIRE RECONSTRUCTION

Our model integrates i(¢) until a spike occurs. We denote the time of spike ¢ as s, for
£=0,1,2,...,K —1. Mathematically, we write

Se+1
5:/ i(t)dt
se+A

= / ) + b)), (F5)

{+A

where ¢ is the constant integrated amount of signal i(¢) between the end of the ¢’s refractory
period (s;+ A) and the time of the next spike (s¢+1). In most of our applications, the background is
a slowly varying signal b(¢) and can be treated as piecewise constant. The background
contributing to spike ¢ is b,. For notational convenience, we will drop the subscript here and
assume a constant background across all times. It is trivial later on to allow for a slowly moving
background. With this simplifying assumption, equation (F.5) reduces to

/ ) dt = 6= b(spe1 —5p—A). (F.6)

r+A

To solve for x(¢) given the spike train from our 1AF TEM, substitute equation (F.2) into (F.6), and

manipulate to get
K-1

2,4
k=0

where my = (s + sg+1)/2 is the midpoint between spikes. Interchanging summation and
integration in this case is allowable because the both the integral and summation converge under
our constraints. (F.7) then becomes

Se+1
/ g(t—mp)dt = 6 = b(s¢s1 —s¢— D), (E7)
S,

r+A

% = Ge, (F.8)



where X € RK, )’55 =0— b(s€+1 —8Sg— A), G S RKXK, G[k = /s
for ¢ and substituting the result into equation (F.3) finds

x=GG g, (F.9)

ji:A] g(t —my)dt, and ¢ € RK. Solving

which is our reconstructed signal.

Equation (F.9) is only a good reconstruction of x(z) under certain Nyquist-like constraints. Lazar
derives this Nyquist-like constraint in [21], and we will not rederive it here. However, we have
modified his derivation for our system. Equation (F.9) is a perfect reconstruction of x(t) if
0 l-en
—+A< —
b 1+eQ
where €2 = A(b+c¢)/(6 + A(b+c)). Another way of thinking about this is that the maximum
bandwidth the system can reconstruct is directly related to the background. We can rearrange

equation (F.10) to be
1-€ b
< (1+e) (5+Ab)"’ E1D

which means that to maximize the system’s signal bandwidth, we should minimize the refractory
period and minimize the number of electrons per spike. Both of these result in a greater pixel
spike frequency, allowing for a shorter average inter-arrival time, and thus more information.

(F.10)

F.3. MODIFICATIONS FOR REAL-TIME

Section F.1 tells us the reconstruction only perfectly recovers x(z) if G and x have infinite
dimensions, though equation (F.9) produces a good approximation to x(z) for finite matrices given
the Nyquist-like constraint of equation (F.10). However, so far the methods have violated causality
— we have all of the spike times, s¢, before attempting to reconstruct. To use this algorithm for
(near) real-time applications, we introduce a mechanism to adapt Lazar’s work for a streaming
system [20].

To deal with streaming data, we update the nomenclature slightly. We window the streaming data
into sections each containing L spikes, starting at spike m. As such, we define

S = [SmsSm+15---»Sm+L—1]. With this nomenclature, we compute X,, 7 and Gm,L as used in equation
(F.8) to create the reconstruction X, ;. using equation (F.9). The resulting reconstruction is
imperfect, but nevertheless good except at times near the boundaries of s. In other words, the
resulting reconstruction is good over a reduced range [+, Sm+-» | for some M > 2 [20]). We
address this issue by building overlapping consecutive windows of spikes and blending the
reconstructions from these overlapped regions.

We formalize the idea of a window, w = w,(t,K,M,0), where K is the number of spikes in a
window, M is the number of spike times around the edge of a window judged to be poorly
reconstructed, and O is the number of spikes used for overlapping consecutive windows. For
convenience, we define variables (see [20])

R=K-2M-0
176



Tn = SnR+M

On = SuR+M+0>

where R represents the number of spikes used exclusively for reconstruction of only one window
(i.e. the number of spikes that do not overlap with any other window and are not within the region
around the edge of the window), 7, is the spike time of the beginning of the n™ window, and o, is
the spike time of the first non-overlapping spike in the n' window. Now, we reconstruct x(z) for
particular choices of K, M, and O by creating a weighted sum of all contributing windows (see
[201)

Xk o(t) = )" walt, K, M, 0)xnr k (1). (F.12)

nez
We restrict the windowing function w,, to have the form (see again [20])

0 ift ¢ (Tn,o_n+l],
(1) if (T o )s
1 if (o, Tt 11,
1=0p11(t)  if (Tp11,0041]

wa(t,K,M,0) = (F.13)

This windowed-and-stitched reconstruction method can produce xg 37 0(¢) with bandwidth in
excess of Q, the bandwidth of x(¢). For example, let the Fourier transform of w,(¢,K,M,0) be
W, (t,K,M,0), which is 0 outside of £Q,,. The bandwidth of x,z x(t) is bounded by Q. However,
the bandwidth product of x,g x(¢) X w,(t,K,M,0) in equation (F.12) is Q + Q,,, where Q,, is the
bandwidth of the windowing function w. We choose 6,(¢) to minimize €,,. One standard choice
recommended by Lazar [20] is

0,(t) = sin’ (E : t_—T”) . (F.14)

2 i—T

Increasing K increases both the accuracy per reconstruction, as well as broadens w;, (), resulting
in areduced Q,,. However, this also increases the computational complexity of the inverse of Gm,L
in equation (F.9), as (A}m,L is larger.

Passing xx a0(t) through a low-pass filter with a cutoff frequency of Q will restore the original
bandwidth of the signal. If required, the samples xx s 0(nTs) for Ty < n/(Q+Q,,) can be low-pass
filtered with digital cutoff frequency 7 /(1 + Q,,/Q) [20]. With the finite overlapping windows and
filtering, we can obtain near real-time reconstruction of the input signal.

F.4. DECIMATION IN TIME DECODING MACHINE ALGORITHM

SPARR is a decimating system — the processing in the Haar transform and potential decimation in
the quadtree spikes reduces the readout complexity, collisions, and power consumption of the
system. Commonly, each spike coming from spARR represents several aAsp spikes. The decimation
is deterministic if no collisions occur, so a weight can be assigned to each read-out spike. For
example, if a spike train of four successive spikes passes through 2:1 decimation, then only the
second and the fourth spike would be output. Each of these spikes would be associated with a
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weight of 2. Weighting, done off-array, represents the internal information while also reducing the
rate of readout. For the purposes of the Tpm algorithm, quantization-and-weight can be treated as
quantization noise. The resulting reconstruction has larger errors and narrower bandwidth since it
reduces the available Nyquist rate by throwing away spikes. The equations require some
modification to make use of the spike weight, or amplitude.

Define the amplitude of spike k as A;. Equation (F.6) then becomes
Se+1
/ x(t)dt =6 —b(s¢s1 —5¢— AA). (F.15)
se+ArA

Note that we integrate from s, — A¢A instead of s, — A to accommodate for the added refractory
periods lost with the decimation of a spike. While this codifies the integration of the proper
duration of time, it does not codify the correct exact time of x(z). We would prefer

Sdecimated Sk+1
/ x(t)dt + / x(t)dt. (F.16)
se+A Sdecimated TA

However, we no longer know Sgecimated> SO We approximate this with equation (F.15). In practice,
A is usually small enough that the resulting error is small. With these modifications, we can
update

Se+1
Gg,k = / g(t - Sk)dl‘ (F.17)
Se+ArA
and
XA[ = Ag(s = b(Sg.H —Sg— AgA) (F 18)

and use equation (F.9) to recover x(t).

The total number of encoded spikes is correctly accounted for, but the time of the discarded spikes
is not. Our approach has effectively placed all the decimated spikes on top of the next available
spike, which is mathematically and computationally straightforward but also implausible since the
refractory period prevents overlapping spikes. In short, there are probably optimizations that
would induce less average error at the expense of greater computational effort.
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APPENDIX G. PIECEWISE CONSTANT
RATE APPROXIMATION

G.1. RECONSTRUCTION

G.1.1. Estimation

We can model the arrival times of photons on a given pixel of the detector as realizations of a
nonhomogeneous Poisson process with a rate function A(7). As such, the probability that K
photons are received starting at some initial time #; and ending at a final time 77 is

UL [A(tl,tF)]K

X , (G.1)

Pr(K photon arrivals) =

where A(t7,1r) is the expected number of photon arrivals between #; and 7z. This is calculated
via

A(t,,tF):/F/l(t)dt. (G.2)

Suppose that photons arrive on a given pixel at times #; fori =0,1,...,K — 1. If we approximate
the rate function A(¢) to be a piecewise constant, we can write

K-1
Aty= D A[H(t=ti0)~ H(t-1)] (G3)

i=0

where H(-) is the Heaviside step function and each 4; is an unknown constant. If we compute
A(tp,tx—-1) using equations (G.2) and (G.3), we find

k-1
A(to,tx—1) = / A(t)dt (G4)
To
te_q K=1
:/ A[H(t—tio) - H(t—1)] dt (G.5)
lo i=0
K-1 tk-1
= Z/l,-/ [H(t—t;-1)— H(t—1;)] dt (G.6)
i=0 f
K-1
= i(ti—t1). (G.7)
i=0

179



If we instead consider the interval (¢;_1,t;), we find

K-1

Atj_1.47) = Z Al —t-1)85 (G.8)
i=0

= /lj(tj —tj_l) (G.9)

- A (G.10)

where 6;; is the Kronecker delta.

We can now use a MLE to compute each 4;. Due to the piecewise constant model as well as the
independence of the arrival times of the photons, we can maximize the joint likelihood by
maximizing the likelihood of each individual piecewise approximation. As such,

e MY
LA |tj-1,t,N) = = L (G.11)
where N is the number of photons received in order to generate a spike. This leads to a
log-likelihood of
€(A;|tj-1,1;,N) = —=A; + Nlog(A;) —log(N!) (G.12)
= —;(tj—tj-1)+ N[ log(4;) +log(t; —t;-1)] —log(N!) (G.13)

In order to find the MLE, we take the derivative of equation (G.13) with respect to A; and set the
result equation to zero. Solving for A;, we find

x N
4; = : (G.14)
ti—tj—1

which is exactly what we would expect. If all we know is two pixel spike times and the size of the
electron well, we would estimate the photon arrival rate with equation (G.14). Hence, the best
approach is to solve for each A; between spike times to estimate A(z).

We can extend this estimator to “average” over the data to have a smoother estimate of the signal.
Since the estimator itself is not dependent on the specific arrival times of the spikes, but rather the
difference between the arrival times (i.e., the time over which the photons have been collected by
the detector), we can “downsample” and “average” the data. Rather than estimate the photon rate
for every spike, we could estimate the rate over every M spikes. The denominator of G.14 would
change to the time it took to collect M spikes, and the numerator would change to M N. This
would result in a reduction of estimated coefficients A; by a factor of M. Also, as we will see in
the next section, this reduces the variance of the estimator by a factor of M.

G.1.2. Performance

In order to characterize the performance of the above MLE, we will compute the crLB. This is
given by

1
CRLB= —————— (G.15)

. (025(1 ,-))
6/112.
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A2
_ _E(__J) (G.16)

i (G.17)

Since the crLB is a lower bound on the variance of the MLE, we have

A2
Var(;lj) > NJ (G.18)

This implies that the uncertainty in the MLE increases with the square of the rate of photon
arrivals. We can decrease the variance by averaging over multiple spikes as suggested earlier. This
results in
A
Var(4;) > UN" (G.19)
This gives a smaller variance at the cost of a more crude rate function.

If instead of measuring the point-wise variance, we can measure the variance of the estimated rate
as a whole. The joint likelihood for this is given by

K-1 —A; AN
e ’Ai
L@Jto.tg1N) = [ |7 (G20)
i=0
which yields a joint log-likelihood of
K-1 K-1
€] totx-1,N) = — Z A;i+N Z log(A;) —log(KN!) (G.21)
i=0 i=0
K-1 K-1
== Z Ai(ti—ti_))+ N Z [ log(A;) +log(t; — ti—1)| —log(KN!). (G.22)
i=0 i=0

If we take two derivatives with respect to A;, we again find the crLB is given by equation (G.18).

G.1.3. Implementation

The estimation algorithm derived above is a very simple algorithm and can be implemented in
silicon very easily. Everything can be done based off of the time of the spikes of a particular pixel.
Since we know the value of N, the only thing required are the spike times. Hence, if we have an
on-chip clock reference, then each pixel spike can be time-stamped. Any pixels that have an
unusually high number of spikes for a period of time can then be transmitted to a processor for
further analysis.

If we wanted to perform signal reconstruction on-chip as well, each pixel could contain a counter,
a resettable clock at some fine resolution, and a divider. The clock starts at time 0. Each time M
spikes occur (assuming we are using the averaging estimator outlined earlier), the clock latches,
the estimate for that time is set to M N /At, and the clock is reset. These estimates, time-stamped at
the center of the interval, could be run through a matched filter on-chip for signal-of-interest
detection.
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