
U.S. Department of Energy

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under
Contract No. with the U.S. Department of Energy. The publisher by accepting the
manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others
 to do so, for United States Government purposes.

Brookhaven National Laboratory

BNL-212038-2019-JAAM

Exploratory Visual Analysis of Anomalous Runtime Behavior in Streaming
High Performance Computing Applications

C. Xie, H. Van Dam

To be published in "International Conference on Computational Science"

June 2019

Computational Science Initiative

USDOE Office of Science (SC), Advanced Scientific Computing Research (SC-21)

DE-SC0012704

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

Exploratory Visual Analysis of Anomalous
Runtime Behavior in Streaming High
Performance Computing Applications

Cong Xie1, Wonyong Jeong1, Gyorgy Matyasfalvi2, Hubertus Van Dam2,
Klaus Mueller12, Shinjae Yoo2, and Wei Xu2

1 Stony Brook University, Stony Brook NY 11790, USA
2 Brookhaven National Laboratory, Upton NY 11973, USA

Abstract. Online analysis of runtime behavior is essential for perfor-
mance tuning in streaming scientific workflows. Integration of anomaly
detection and visualization is necessary to support human-centered anal-
ysis, such as verification of candidate anomalies utilizing domain knowl-
edge. In this work, we propose an efficient and scalable visual analytics
system for online performance analysis of scientific workflows toward the
exascale scenario. Our approach uses a call stack tree representation to
encode the structural and temporal information of the function execu-
tions. Based on the call stack tree features (e.g., execution time of the
root function or vector representation of the tree structure), we employ
online anomaly detection approaches to identify candidate anomalous
function executions. We also present a set of visualization tools for veri-
fication and exploration in a level-of-detailed manner. General informa-
tion, such as distribution of execution times, are provided in an overview
visualization. The detailed structure (e.g., function invocation relations)
and the temporal information (e.g., message communication) of the ex-
ecution call stack of interest are also visualized. The usability and effi-
ciency of our methods are verified in a real-world HPC application.

Keywords: Anomaly Detection · High Performance Computing · Stream-
ing Analysis · Trace Events · Visual Analytics.

1 Introduction

Performance analysis is a critical task for the diagnosis of parallel High Per-
formance Computing (HPC) applications. In particular, domain scientists are
typically interested in detecting abnormal runtime behaviors during the execu-
tion of HPC applications. Since the supercomputer resources in use are limited
and costly, the timely identification of the causes of adverse performance events
(e.g., abnormal communication latencies) is essential. We have been working
with a group of chemists who use an HPC cluster to solve complex molecular
equations. The development of the system presented in this paper was driven by
their need to monitor and identify computation latencies at runtime.

2 C. Xie et al.

Anomalous function executions are usually identified by examining the de-
tailed traces collected in the HPC cluster. A trace is essentially a log of a se-
quence of specific events (determined by program instrumentation) that occur
in a computing core during execution (e.g. function entry, function exit, or mes-
sage passing). Fig. 1 (a) shows an example sequence of trace events inside one
execution of the main function in an HPC core. It represents the call stack infor-
mation (Fig. 1 (b)) inside the execution of the root function. Domain scientists
typically detect anomalous function executions based on the extracted tempo-
ral information [18] [2] (e.g., execution time and exit timestamps) or structural
information [22] (e.g., call relations from parent function to children) from the
trace events. While existing detection approaches achieve good performance

root function A

child function B child function C

event:entry, function:A, timestamp:200, node-id:0

| event:entry, function:B, timestamp:210

| | event:entry, function:MPI_Send, timestamp:215

| | | event:send, destination-node:2, message: ...

| | event:exit, function:MPI_Send, timestamp:216

| |

| event:exit, function:B, timestamp:280

|

| event:entry, function:C, timestamp:281

| ...

| event:entry, function:C, timestamp:380

event:exit, function:A, timestamp:400

Stack

Time

MPI_Wait

(a)

(b)

MPI_Send

(c)

Fig. 1. (a) Example trace events during an execution of main in a compute core. (b)
The call stack of the execution reconstructed from the trace events. (c) The call stack
represented as a Call Stack Tree (CSTree), which is a directed tree with vertex weights.

and scalability in offline analysis, detecting abnormal runtime behavior in on-
line analysis remains challenging. One reason for this is that the complexities
of most feature extraction and anomaly detection algorithms are too high to
support online training. It would be prohibitively slow to use a standard algo-
rithm like Local Outlier Factor (LOF) [3] to update the learning result every
time a new trace event is generated. Conventional anomaly detection models
do not support continuous updates, rather they need to be re-trained in each
time window. Furthermore, in order for human experts to stay aware and gain
insights into the performance data an interactive visual interface will be most
appropriate. However, offline visual analysis tools are not designed to provide
visualizations sufficiently responsive in a streaming data environment. For exam-
ple, standard visualization algorithms such as Multidimensional Scaling (MDS)
[12] or t-Distributed Stochastic Neighbor Embedding (t-SNE) [13] are not fast
enough to plot tens of thousands of points at the rate of streaming data.

We recently devised a visual analysis approach for the detection of abnormal
HPC runtime behavior [22]. This tool, however, was designed for offline analysis
and cannot be used for online analysis of streaming data. In the current work
we build on this approach to create a new method for streaming trace event
data. Similar to our earlier work we make use of the call stack tree (CSTree)
representation we devised there (Fig. 1 (c)), but we now use it to encode the
structural as well as the temporal information inside a function execution via

Exploratory VA of Streaming Anomalous Runtime Behavior in HPC 3

a directed tree. Abnormal behavior of function execution can then be detected
by identifying abnormal trees in a call stack forest. We also modify our original
tree feature extraction process to now support online tree representation and
online anomaly detection. We propose a set of new online visualizations to assist
the scientist in the understanding and exploration of the function executions.
In particular, we visualize the feature vectors and the learned anomaly labels of
the function executions in an overview projection. The structural and temporal
information of the CSTree are visualized in a structure and timeline visualization,
respectively, capable of dealing with large amounts of data in real time.

The remainder of our paper is structured as follows. Section 2 reviews re-
lated work. Section 3 defines the problem and gives an overview of our ap-
proach. Section 4 introduces our online algorithms for vector representation and
anomaly detection of CSTrees. Section 5 describes our visual analytics approach
for anomalous CSTree exploration. Section 6 presents a case study to validate
our approach. And section 7 concludes the paper and discusses the future work.

2 Related Work

Domain scientists usually employ instrumentation and measurement tools [1] [5]
[10] [16] to generate performance data, such as trace events, and associated
metrics. Many techniques have been proposed for the evaluation and diagnosis
of these data [4]. In this paper, we focus on the most important two tasks in the
diagnosis of the HPC application performance: detection of abnormal runtime
behavior and visualization of performance.

2.1 Abnormal Runtime Behavior Detection

For anomalous runtime behavior detection, most existing approaches identify
candidates based on temporal information [7]. For example, a disproportionately
large function execution time has a very high probability of being abnormal
since it has a large negative impact on the downgraded performance. However,
diagnosis without the execution context makes it difficult to determine the source
of this major latency. For example, the cause in the delay may be triggered
by a child function or by another node in the HPC system (due to delayed
communication). Furthermore, semantics of the executions are also necessary
for the diagnosis. For example, the initialization function call may execute more
computations and communicates more than other functions and as result takes
more time to complete than other function calls. However, this phenomenon
should not be identified as abnormal runtime behavior.

In contrast, the Call Stack Tree representation (CSTree) [22] can encode
the temporal information as well as the context structure obtained from the call
stacks to identify the potential anomalous executions. The embedding vectors are
then generated from the CSTrees. Each vector encodes the structural information
from the call stack of one function execution. A conventional anomaly detection

4 C. Xie et al.

algorithm such as the One-Class Support Vector Machine (OCSVM) [15] is then
able to take the vectors and identify the anomalies.

However, both the tree representation and the anomaly detection are too
complex for online analysis. To deal with that, in this paper, we modify the
training strategy of these learning algorithms for the analysis of streaming data.

2.2 Performance Visualization

Performance visualization makes problem detection and diagnosis of HPC ap-
plications [7] [21] more transparent to domain experts. Most visualization ap-
proaches support the comprehension of different levels and aspects of the perfor-
mance data, including the trace timeline, call stack structures, and the messages.

For the trace events, a common practice is to visualize the events along a
time axis, as is done in Vampir [9] and Jumpshot [23]. Most existing temporal
visualizations provide level-of-detail explorations. Users can zoom into different
time window granularities to see detailed events [21]. Other temporal visualiza-
tions are also capable of presenting the relationships between threads, such as
SyncTrace [8].

Call path visualization (e.g., the call relationship between parent and children
functions) is critical for understanding the behavior of the runtime execution.
Existing approaches employ a directed tree or graph to present the structure
in a call stack, such as Vampir [9]. These visualizations usually use the visual
properties of the tree to encode detailed information from the call path. For
example, CSTree [22] utilizes the color and size of a tree node to encode the
type and the execution duration of a function.

Communication delay is usually the main reason for application latency. A
straightforward approach to encode the message passing is to draw a directed
line between the sending and receiving functions, which is adopted in the Jump-
shot [23] implementation. Since the messages can also be regarded as directed
edges, the communication between threads or processes can also be summarized
in terms of an adjacency matrix [9].

One major issue with the existing visualizations is their limited capability for
online performance evaluation. Some offline analysis tools focus on the complete
event or message passing structure which is available only when the communica-
tion is finished. In addition, most visualization paradigms, such as MDS are too
complex for real time streaming data. On the other hand, we also need to deal
with online data reduction and sampling to prevent overdraw. In our approach,
we adjust the common projection, timeline, and tree visualizations for streaming
to facilitate incremental updates and data visualizations.

3 Problem Formulation and Approach Overview

We focus on the following problem: Given a set of functions of interest (FOIs)
{A} and all of their invoked executions in an HPC cluster, determine which ex-
ecutions are associated with anomalous runtime behavior. An FOI A is usually

Exploratory VA of Streaming Anomalous Runtime Behavior in HPC 5

a key function for computation or communication, which is specified by domain
experts. An anomalous runtime behavior is then in most cases indicated by tem-
poral or structural features. For example, a deadlock will cause large execution
time and an infinite loop will generate unexpected call path structure.

3.1 Call Stack Tree Representation and Problem Formulation

As mentioned in Section 2, the Call Stack Tree (CSTree) (Fig. 1 (c)) represen-
tation provides a comprehensive way to encode the execution of an FOI A since
it takes advantage of the execution’s context information. Each execution of A
is converted to a CSTree T where a vertex in T is a function invoked in the call
stack and a directed edge represents the call from the parent to the child func-
tion. All executions of A collectively give rise to a forest T = {Ti} where each
tree T represents a single execution of A. The runtime behavior can be observed
directly from the features of a CSTree. For example, if the volume of a vertex in
the CSTree is proportional to the execution time of that function, then a very
large vertex in the tree can represent a delayed function execution. Furthermore,
a large set of child vertices of the same function type indicates that the parent
function invokes the child function multiple times in a loop.

Given this representation the detection of anomalous behavior is then formu-
lated as the problem of finding anomalous tree structures in the call stack forest.
Our visual interface exposes the candidate anomalies, which are those CSTrees
whose structures differ most.

3.2 Approach Overview and System Architecture

Based on the CSTree representation, our online visual analytics approach for
detecting anomalous CSTrees uses the following four steps with the architecture3

in Fig. 2:
Step 1 Data processing: First, the data analysis server (Fig. 2 (b)) pairs

and orders trace events (Fig. 2 (a)) generated during the execution of an HPC
application by their type (i.e., message or function event). Second, given a set
of functions of interest {A}, the data analysis server can also generate the call
stack trees rooted at A and insert them into the call stack forest T = {Ti}.

Step 2 Tree feature extraction and anomaly detection: Each new
CSTree in the forest is converted into a feature vector. For this paper the feature
vector consists of the temporal features of the root functions (i.e. total duration
of execution). However, other options for feature extraction, such as the graph
kernel, are also provided in the code. Anomaly detection is then performed based
on these features, resulting in a set of candidate anomalous CSTrees.

Step 3 Overview visualization: An overview projection is calculated by
the visualization server (Fig. 2 (c)). The visualization platform is the web browser
(Fig. 2 (d)) showing the feature vector distribution and their learned labels.

3 Please visit https://github.com/CODARcode/ChimbukoVisualization to see the
project page and the source code.

6 C. Xie et al.

Step 4 Detailed visual exploration: The detailed visualizations enable
the user to investigate the execution’s context and make a decision whether a
candidate anomalous CSTree is truly anomalous. In specific, the user can select
a feature vector from the overview to view the associated CSTree structure and
communication patterns (both provided by the visualization server) to under-
stand the execution’s context.

Steps 3 and 4 can be performed repeatedly for better insights into the
anomaly detection results.

Overview

(a) Streaming

Data

Detailed Visualization

Main entry
| MPI_Send entry
| |
| MPI_Send exit
|
compute exit,

...

Feature Extraction

(b) Data Analysis

Server
(c) Visualization

Server (d) Front End

Data Processing

Anomaly Detection
CSTree Generation

Layout Calculation

Trace

Events

Trace Events

& Anomalies

CSTr
ee

 o
f

in
te

re
st

Fig. 2. Our system architecture for online anomalous CSTree detection. (a) The
streaming trace events. (b) Feature vectors of the new CSTrees are generated in the
data analysis server. Then the anomaly labels (normal or abnormal) of the CSTrees are
learned online based on their feature vectors. (c) The visualization server calculates the
layout of the overview and generates the CSTree of interest for detailed exploration.
(d) On the browser end, the user is allowed to interact with the overview of the tree
distribution in a 2D view. The candidates of interest in the overview can be further
investigated via the detailed visualizations provided by the server.

4 Online Anomaly Detection of Call Stack Trees

Our approach begins with updating the call stack forest in the data server. For
a FOI A, a new CSTree is generated and inserted into the call stack forest when
an exit event of A is received in the trace stream. Since the user will focus on
the recent data, the CSTrees older than a given threshold (e.g., 1 hour) will be
removed from the forest. Then the feature extraction and anomaly detection are
performed for the updated call stack forest in the data analysis server.

4.1 Feature Vector Representation

Our approach provides different options for temporal and structural feature ex-
traction from the CSTree for anomaly detection, including time-based and tree-
based extraction methods.

Time-Based Representation A straightforward way to represent runtime be-
havior is to utilize the information from the root function of the CSTrees. The
domain expert is able to customize the specific set of features to be extracted,
such as the execution duration, message frequency, and the exit time of the exe-
cution. With this pre-designed feature set, a vector of each CSTree is constructed
and used as the input for anomaly detection.

Exploratory VA of Streaming Anomalous Runtime Behavior in HPC 7

Tree-Based Representation Thus far there is no contextual information in
the above temporal feature construction, however, structural representation is
critical for the diagnosis of the runtime behavior. To provide an option for struc-
tural feature extraction, we follow the Graph Kernel [22] approach for the vector
representation, which uses an analogy to document analysis. A tree is analogous
to a document while the subtrees are analogous to the words in a document. The
subtrees (Fig.3 (b)) are extracted using Weisfeiler-Lehman Graph Kernels [17].
In the initialization of the algorithm, each node is considered as a subtree of
depth 0 (e.g., A - E in Fig. 3 (b)). Then in the following iteration, each subtree is
expanded towards the children to find sub-structures of larger depths, such as F -
J in Fig. 3 (b). At last, the CSTree (Fig.3 (a)) is represented as a bag-of-subtrees
(Fig.3 (c)). The duration of each subtree in a CSTree is synonymous to “word
frequency” in a document.

A= B= C= D= E=

F=(A,BC)= G=(B,C)= H=(C,DE)=

I =(F,GH)= J =(G,H)=

1ms 1ms

1ms 2ms
3ms

5ms4ms

10ms

A B C D E F G H I J

10 4 8 2 3 10 4 8 10 4

Subtree s:

Weight w(s):
Execution durations of
functions in a CSTree

(a)

(b)

(c)

Fig. 3. (a) An example CSTree with the function execution time of the vertices. (b) An
example of the result substructure generated from a CSTree using Weisfeiler-Lehman
Graph Kernels. (c) The bag-of-subtree representation of the CSTree.

4.2 Online Anomaly Detection

The extracted feature vectors of the CSTrees are used as the input of the anomaly
detection. Conventional algorithms such as Local Outlier Factor can be too com-
plex for online training. For better online performance in the presence of a very
large amount of streaming data we chose a fairly straightforward statistical ap-
proach. Using a Gaussian distribution to model the feature vector distribution
of the CSTrees, we calculate the rolling mean (µ) and standard deviation (σ)
of the feature vectors in the call stack forest using Welford’s method [14]. We
then label all CSTrees at 3σ (i.e., 0.003%) of the data distribution as anomaly
candidates. In our own experiments we found this to be a good threshold, but
the confidence level can be user-adjusted based on the estimated percentage of
anomalies in the dataset.

5 Visual Exploration of Anomalous Call Stack Trees

It is necessary that human experts can verify the learning results to make sure the
identified candidates are true anomalies. In addition, exploration of the temporal

8 C. Xie et al.

and structural patterns of the candidates also helps the user understand why
they are potentially anomalous. In this section, we describe our level-of-detail
visualization system designed for the exploration and verification of the CSTrees
in different granularities.

5.1 Overview Visualization

The overview visualization is generated by the visualization server and displayed
in a browser-based interface. The overview shows the general distribution of the
feature vectors of CSTrees. As noted above, the most common approach available
for this purpose is a low-dimensional embedding method such as MDS. However,
after some experimentation we determined, as we also mentioned above, that
these methods are not sufficiently fast and scalable for large streaming datasets.

To deal with this problem, we resorted to a standard bivariate projective
scatterplot approach. In this visualization the x and y positions are calculated
by the basic attributes of the CSTrees specified the user. For example, in Fig. 4
(a), the CSTrees are visualized as points in the scatter plot. They are projected
by the execution time and exit time of their root functions. The color of each
points represent the FOI type. The points highlighted with thick borders are
candidate anomalies which are detected in the previous step.

a

b

Fig. 4. (a) The CSTrees are projected by the execution durations and the entry times-
tamps of their root functions. The user can specify other axis-encoding schema for
projection. Filtering and negative down sampling are supported to reduce visual clut-
ter. (b) The heatmap visualizes the temporal distribution of all the history data.

Exploratory VA of Streaming Anomalous Runtime Behavior in HPC 9

Display scalability can still be a problem when the data volume is massive.
After discussing this with a domain expert we decided to adopt a negative down
sampling strategy to reduce the data that are displayed. Since users are typically
mainly interested in the candidate anomalies, they can set a down sampling rate
(see the dashed box in Fig. 4 (a)) to keep only a portion of the normal points
in the projection. At the extreme, when the down sampling rate is set to 0, the
projection will only visualize the candidate anomalies. In addition, users can also
filter the displayed data by FOI type. This helps users to put more focus on a
subset of more important FOIs.

In an online analysis, as opposed to a postmortem analysis, users will usually
want to focus on the latest trace data. Hence, the visualization server will only
maintain a subset of the data, namely those collected within a given time period
(e.g., 1 hour). The scatter plot will also be updated whenever new CSTrees
are processed and generated from the server end. On the other hand, even in
online analysis, keeping a historical perspective is desirable. We provide this
view by visualizing the distribution of all history data in form of a heatmap (see
Fig. 4 (b)). In this map the user is free to specify the color encoding used for
highlighting the number of anomalies or trace events.

Further, the user can specify the points of interest in the scatter plot, which
will send requests to the visualization server for more detail on these selections.
The structure and timeline visualizations will then provide the corresponding
CSTree structures and events sequences for further exploration.

5.2 Structure Visualization

The details of the selected CSTree are visualized in the Structure Visualization,
as shown in Fig. 5 (a). The tree vertex size and color respectively represent the
execution time and function name of the corresponding tree node. The directed
edge shows the call relationship from a parent to a child function. Force-directed
Layout [11] is employed to calculate the position of the tree vertices. For clearer
representation, we set a maximum depth to only keep important parent functions
which influence the tree the most. This reduces the visual clutter, which is helpful
especially for CSTrees with a large number of descendant functions. On the
other hand, in order to provide complete anomaly information, the abnormal
substructures are preserved in the visualization even if they are beyond the
maximum depth limit.

5.3 Timeline Visualization

While the structure visualization is effective, the message communication be-
tween different HPC cores is not visualized. To deal with this problem, we pro-
pose the Timeline Visualization (Fig. 5 (b)), which basically follows the visual
design of Vampir [9] and Jumpshot [23]. Our visualization shows the event se-
quence as well as the message passing in a stack timeline. The x and y axes of the
timeline encode the timestamp and the growing direction of the call stack. Since
communication is one of the main reasons for HPC application delays, messages

10 C. Xie et al.

b

a

Fig. 5. (a) The call stack tree structure visualization shows the tree at a limited depth
except for abnormal substructures. (b) The timeline visualize the event sequence and
message communications. (c) The timeline can be zoomed in for detailed exploration.

are also visualized, via lines between different cores, as indicated in Fig. 5 (b).
Users can zoom in and out of the x-axis (see red box in Fig. 5 (b)) and so explore
the detailed call stack in different time ranges, as shown in Fig. 5 (c).

6 Case Study

We conducted a case study4 with an NWChem [19] developer at Brookhaven
National Laboratory (BNL). NWChem is a massively-parallel computational
chemistry application deployed on BNL’s HPC cluster. Our performance analysis
study presented here focuses on analyzing NWChem’s the molecular dynamics
functions.

6.1 Experiment Settings and Online Performance Evaluation

Our participant is a chemist and not an expert in visualization or machine learn-
ing and sought to use our system to find anomalous runtime behaviors in the
function executions. In the onset, we had a number of thorough discussions with
this domain scientist to learn about functions of interest and possible anoma-
lous behavior patterns. We also held a short training session to introduce our
visualization system.

4 Please see our video demo here and case study design details here.

https://drive.google.com/open?id=1niuI4YB3uF0WNe2y9OtkJQUpTdRSOnL2
https://drive.google.com/file/d/1cGXeXwgAkIkXD61OaJIre-W542E7a1dK/view

Exploratory VA of Streaming Anomalous Runtime Behavior in HPC 11

We applied the temporal feature extraction described in Section 4.1 since it
was faster for large scale datasets. We also employed the anomaly detection by
standard deviation described in Section 4.2. After studying the dataset in our
interface, the participant set the significance level defining a candidate anomaly
to be roughly 3σ (i.e., 0.003%) to reduce false positives.

The online analysis will not affect the HPC application execution since it
only takes the trace events output. The streaming trace events of NWChem
were generated by SOSFlow [20] and ADIOS [6] in real time. We tested differ-
ent NWChem application settings with different molecular system sizes (small
and large in the first columns of Table 1) as well as the scalability in different
HPC settings (the second columns of Table 1). The details for the six datasets
are shown in Table 1. We found that our feature extraction and anomaly detec-
tion algorithms did not cause significant delays for the streaming analysis. The
throughput of our system was acceptable according to our user.

NWChem
Setting

Number of
HPC cores

Number of trace
events

Number of trace
events per second

Number of
anomalies

Throughput
(MBps)

small 2 393, 542 58.5k 350 5.2

small 4 1, 201, 533 128.1k 445 11.5

small 8 4, 024, 651 224.2k 2235 20.5

large 2 784, 122 52.9k 818 4.7

large 4 2, 386, 634 101.0k 1121 9.1

large 8 7, 972, 872 172.9k 3683 15.8
Table 1. Summary of experiment datasets and the throughput.

6.2 Case 1: Delay of Communication

During the online analysis, our participant first examined the overview distri-
bution of the CSTrees. He was interested in the SP_BALANC function, which was
designed to redistribute the work over the processors to minimize the time spend
waiting in communication functions. He suggested that it was a critical factor
to the overall performance of the code. In the scatter plot, he noticed that most
of the points in the projection were normal. To put more focus on the potential
abnormal CSTrees, he reduced the negative sampling rate (Fig. 4 (a)). He no-
ticed an abnormal point, which was execution #31517 of the Thread #0 in Rank
#0 of the program #0, as shown in the upper left of Fig. 5 (a).

From the Structure Visualization, he found that there was a big green func-
tion of comex_barrier which spent the majority of the time in SP_BALANC.
comex_barrier was a function responsible for the communication between dif-
ferent HPC cores. He made an assumption that the barrier function was the
major reason for the latency of this execution.

To learn about the temporal pattern and message communication, our par-
ticipant examined the Timeline Visualization. He found that barrier function

12 C. Xie et al.

invoked some communications, as shown in the message passing visualizations
with Rank #1 in Fig. 4 (c). After comparing with other regular executions of
SP_BALANC, he concluded that this execution waited for a long time for the re-
sponse of Rank #1. As a result, the communication delay to other computing
cores made this execution a candidate anomaly. He concluded that our system
helped him understand one of the reasons for the performance fluctuation of
SP_BALANC, which provided insights of how to optimize the source code to im-
prove the overall program performance.

6.3 Case 2: Delay of Computation

Our participant continued to explore other functions of interest. In the scatter
plot, he only visualized CF_CENMAS function, which computed the center of mass
coordinates of individual molecules in the NWChem simulation. He located an-
other candidate anomaly and showed its detailed structure and timeline. From
the structure visualization (Fig. 6 (a)) he learned that it was abnormal since the
root node in the CSTree was very huge. He zoomed into the timeline (Fig. 6 (b))
and found that all of the child functions were executed as expected; however,
they were invoked after waiting a long time for CF_CENMAS.

a

b

Fig. 6. (a) The CSTree structure of the CF CENMAS function. (b)The user zoomed in
the timeline to see the detailed temporal sequence at the beginning of the execution,
as shown in the gray range in the time axis.

He expressed that this could happen when the computation in CF_CENMAS

took a long time. The descendant functions (e.g., comex_barrier) had to wait
for the computation to finish to communicate with other HPC cores. Our expert
noted that the visual exploration our system provided was a critically important
supplement to the learned labels (i.e., normal or abnormal) of the automatic
algorithm. He stated that our system provided the much needed comprehensive
analysis support for understanding and diagnosing the runtime behavior.

Exploratory VA of Streaming Anomalous Runtime Behavior in HPC 13

6.4 Feedback and Discussion

After the case study with the chemist, we invited additional 5 scientists from
BNL to use our system. We conducted an interview session where we asked them
to rate our system and give feedback. Their average ratings were 4.8 for usability
(1=not useful, 5=very useful) and 4.7 for learning cost (1=hard to learn, 5=easy
to learn). One participant mentioned that the visualizations were easy to under-
stand since they are also commonly used by the existing performance analysis
tools [7] [4]. He also compared our system with the commonly available tools in
his community. He indicated that with current tools such as Jumpshot [23] he
would only be able to learn about the executions after a lengthy session with the
system. He would first manually locate the time window of an anomaly candi-
date and then look at a detailed view on the respective call paths and messages.
Conversely, he said that our interface was more intuitive, enabling him to quickly
discover the anomaly and succinctly explain it by using the three linked views.

7 Conclusion and Future Work

We described a visual analytics approach for the online detection of anomalous
function executions in HPC clusters and their visual exploration. Our approach
is based on the CSTree representation. It provides effective anomaly detection
and visualization tools that address challenges with streaming performance eval-
uation for parallel computation at scale. We demonstrated our approach with a
real world NWChem application.

In the case study, we learned that our bag-of-subtree vector can be too sparse
since the subtree corpus will be massive. To cope with this problem, a Stack2vec
embedding [22] can be a viable option to generate the embedding vectors from
the sparse bag-of-subtree vector. We also plan to integrate machine log analysis
and source code examination into our system which will provide more insights
into the execution scheduling and code design optimization.

Acknowledgments

This research was partially supported by NSF grant IIS 1527200, BNL LDRD
grant 16-041 and 18-009, ECP CODAR project 17-SC-20-SC, and the MSIP
(Ministry of Science, ICT and Future Planning), Korea, under “IT Consilience
Creative Program (ITCCP)” supervised by NIPA.

References

1. Adhianto, L., et al.: Hpctoolkit: Tools for performance analysis of optimized par-
allel programs. Concurrency and Computation: Practice and Experience 22(6),
685–701 (2010)

2. Arnold, D.C., Ahn, D.H., De Supinski, B.R., Lee, G.L., Miller, B.P., Schulz, M.:
Stack trace analysis for large scale debugging. In: IPDPS. pp. 1–10. IEEE (2007)

14 C. Xie et al.

3. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying density-based
local outliers. In: ACM SIGMOD. vol. 29, pp. 93–104 (2000)

4. Ezzati-Jivan, N., Dagenais, M.R.: Multi-scale navigation of large trace data: A
survey. Concurrency and Computation: Practice and Experience 29(10) (2017)

5. Geimer, M., Wolf, F., et al.: The scalasca performance toolset architecture. Con-
currency and Computation: Practice and Experience 22(6), 702–719 (2010)

6. Gu, J., Klasky, S., Podhorszki, N., Qiang, J., Wu, K.: Querying large scientific data
sets with adaptable io system adios. In: Yokota, R., Wu, W. (eds.) Supercomputing
Frontiers. pp. 51–69. Springer International Publishing, Cham (2018)

7. Isaacs, K.E., Giménez, A., Jusufi, I., Gamblin, T., Bhatele, A., Schulz, M., Hamann,
B., Bremer, P.T.: State of the art of performance visualization. EuroVis 2014 (2014)

8. Karran, B., Trumper, J., Dollner, J.: Synctrace: Visual thread-interplay analysis.
VISSOFT 2013 00, 1–10 (2013)

9. Knüpfer, A., Brunst, H., Doleschal, J., et al.: The vampir performance analysis
tool-set. In: Tools for High Performance Computing, pp. 139–155. Springer (2008)

10. Knüpfer, A., et al.: Score-p: A joint performance measurement run-time infras-
tructure for periscope, scalasca, tau, and vampir. In: Tools for High Performance
Computing 2011, pp. 79–91. Springer (2012)

11. Kobourov, S.G.: Spring embedders and force directed graph drawing algorithms.
arXiv preprint arXiv:1201.3011 (2012)

12. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a non-
metric hypothesis. Psychometrika 29(1), 1–27 (1964)

13. Maaten, L.v.d., Hinton, G.: Visualizing data using t-sne. Journal of machine learn-
ing research 9(Nov), 2579–2605 (2008)

14. Salonen, J.: (2013), http://jonisalonen.com/2013/

deriving-welfords-method-for-computing-variance/
15. Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., Platt, J.: Support

vector method for novelty detection. In: NIPS. pp. 582–588 (2000)
16. Shende, S.S., Malony, A.D.: The tau parallel performance system. Int. J. High

Perform. Comput. Appl. 20(2), 287–311 (2006), http://dx.doi.org/10.1177/

1094342006064482
17. Shervashidze, N., Schweitzer, P., Leeuwen, E.J.v., Mehlhorn, K., Borgwardt, K.M.:

Weisfeiler-lehman graph kernels. Journal of Machine Learning Research 12(Sep),
2539–2561 (2011)

18. Sigovan, C., et al.: A visual network analysis method for large-scale parallel i/o
systems. In: IEEE IPDPS. pp. 308–319 (2013)

19. Valiev, M., et al.: Nwchem: a comprehensive and scalable open-source solution
for large scale molecular simulations. Computer Physics Communications 181(9),
1477–1489 (2010)

20. Wood, C., Sane, S., Ellsworth, D., Gimenez, A., Huck, K., Gamblin, T., Malony,
A.: A scalable observation system for introspection and in situ analytics. In: Pro-
ceedings of the 5th Workshop on Extreme-Scale Programming Tools. pp. 42–49.
ESPT ’16, IEEE Press, Piscataway, NJ, USA (2016)

21. Xie, C., Xu, W., Ha, S., et al.: Performance visualization for tau instrumented
scientific workflows. In: VISIGRAPP (3: IVAPP). pp. 333–340. SciTePress (2018)

22. Xie, C., Xu, W., Mueller, K.: A visual analytics framework for the detection of
anomalous call stack trees in high performance computing applications. IEEE
transactions on visualization and computer graphics (2018)

23. Zaki, O., Lusk, E., Gropp, W., Swider, D.: Toward scalable performance visual-
ization with jumpshot. Int. J. High Perform. Comput. Appl. 13(3), 277–288 (Aug
1999), http://dx.doi.org/10.1177/109434209901300310

http://jonisalonen.com/2013/deriving-welfords-method-for-computing-variance/
http://jonisalonen.com/2013/deriving-welfords-method-for-computing-variance/
http://dx.doi.org/10.1177/1094342006064482
http://dx.doi.org/10.1177/1094342006064482
http://dx.doi.org/10.1177/109434209901300310

