

FINAL REPORT

**U.S. Department of Energy (DOE)
National Energy Technology Laboratory (NETL)**

Mark Freeman
Mark.Freeman@NETL.DOE.GOV

PROJECT TITLE

Enabling Staged Pressurized Oxy-Combustion: Improving Flexibility and Performance at Reduced Cost

WORK PERFORMED UNDER AGREEMENT

DE-FE0029087

SUBMITTED BY

Electric Power Research Institute, Inc. (EPRI)
3420 Hillview Avenue
Palo Alto, CA 94304-1338 USA
DUNS# 062511126

PRINCIPAL INVESTIGATOR AND SUBMITTING OFFICIAL

Mr. Scott Hume
Technical Leader, Principal
704-595-2978
email: shume@epri.com

Submission Date: July 31, 2019

Project Period of Performance: October 1, 2016 – April 30, 2019

CONTENTS

EXECUTIVE SUMMARY	1
Introduction and Objective	1
SPOC Concept Evolution	1
Combustion Testing	2
Full-Scale Design	3
Flexibility and Turndown	4
Economic Analysis	6
R&D Recommendations	7
1 INTRODUCTION	9
Background	9
Project Objectives	9
Report Structure	10
2 DESIGN BASIS	11
General Criteria	11
Battery Limits	12
Meteorological Data	12
Environmental Targets	12
Capacity Factor	12
Plant Design Criteria	13
Plant Scale	13
Pressurized System Conditions	13
Load Cases	13
Startup System	14
Sparing Philosophy	14
Feedstocks and Products	15
Coal Properties	15
Non-fuel Feedstocks	18
CO ₂ Product Purity	19

Air Separation Unit	19
Economic Analysis	20
3 SPOC ASSESSMENT.....	23
Introduction	23
Original Concept	24
Concept Review	26
Original SPOC Boiler Concept	26
Vessel Arrangement and Sizing	26
Burner Design.....	27
Fuel Selection and Fuel Handling.....	28
Particulate Removal.....	29
Ash Management and Ash Handling.....	29
Other Possible Risks for the Proposed SPOC Concept	30
Proposed Concept Improvements and Risk Mitigation.....	30
Layout	31
Vessel Arrangement and Sizing	32
Burner Design.....	32
Fuel Selection and Fuel Handling.....	32
Particulate Removal.....	32
Ash Management and Ash Handling.....	33
Other Identified Risks for the Proposed SPOC Concept	33
Summary	33
4 COMBUSTION TESTING.....	34
100 kWth Pilot-Scale Combustion Facility.....	34
Pilot Facility Retrofit and Upgrade.....	37
Facility Retrofit.....	37
Facility Upgrade	40
Process Safety Review	45
Testing Plan	45
Original Testing Plan.....	45
Boiler Design Workshop and Revised Testing Plan	47
Testing Results	48
Testing at Atmospheric Pressure	49

Testing at Intermediate Pressures	51
Testing at High Pressures	54
5 BASELINE DESIGN AND INTEGRATION	66
Overall Process Configuration	66
2-Pass Arrangement.....	69
Boiler Design	69
Basis of Model.....	69
Furnace Module	69
Boiler Module.....	72
Steam Turbine Modeling	84
Basis of Model.....	84
Case S12A Results	84
Resizing for SPOC Requirements.....	86
Flue Gas Heat Recovery	87
Non-condensing Stage	87
Direct-Contact Cooling	89
Compression and Purification Unit.....	91
Overall Plant Performance	92
Check Coal Case.....	95
6 FLEXIBILITY AND TURNDOWN.....	98
SPOC Boiler Turndown.....	98
Strategy	98
ASU Turndown	99
Baseline Case	99
Flexible Case Variant	104
7 ECONOMIC ANALYSIS.....	110
Site-Related Conditions	110
Coal Characteristics.....	110
Costing Methodology	110
Costs of CO ₂ Captured and Avoided.....	125
Baseline Cases and SPOC.....	126

Comparison of Cost Results	158
First-Year Power Costs and LCOE	158
Cost of CO ₂ Avoided and Captured	159
Flexibility Costs	160
8 CONCLUSIONS AND RECOMENDATIONS	161
SPOC Process	161
Pilot Plant Testing.....	161
Performance Summary	162
Flexibility and Turndown.....	162
Economic Analysis	162
R&D Recommendations	162
Appendices.....	164

LIST OF FIGURES

Figure 1 First-Year Power Costs for All Cases.....	6
Figure 2 CO ₂ Avoided and Captured Costs for All Capture Cases.....	7
Figure 3-1 Original SPOC Process Concept.....	24
Figure 3-2 Original SPOC Boiler Concept	25
Figure 3-3 Original SPOC Burner Concept	28
Figure 3-4 Alternative SPOC Boiler Concept.....	31
Figure 4-1 Schematic of the 100 kWth SPOC Pilot Testing Facility.....	35
Figure 4-2 Photo of 100 kWth Pressurized Combustor of the SPOC Pilot Testing Facility	36
Figure 4-3 Geometries of the Burners (a) Before Retrofit and (b) After Retrofit.....	38
Figure 4-4 Temperature Histories of a 50 μm -Coal Particle in the Pilot-scale Combustor and a Full-scale SPOC Combustor Predicted by CFD Simulation	39
Figure 4-5 Picture of Internals of SPOC Pilot Pressure Vessel	40
Figure 4-6 Schematic of a Two-stage Dilution Gas and Particle Sampling Probe	41
Figure 4-7 Schematic of a One-Stage Dilution Sampling Probe for Collecting Fly Ash and Gas on the Centerline of the Reactor.....	42
Figure 4-8 Sketch of the In-house Radiometer and the Setup	43
Figure 4-9 Calibration Data for the In-house Radiometer	44
Figure 4-10 Photographs of Methane Combustion at Atmospheric Pressure in the SPOC Test Facility.....	49
Figure 4-11 Photographs of Coal-Methane Combustion at Atmospheric Pressure in the SPOC Test Facility Using High-Speed Camera.....	51
Figure 4-12 Photographs of Low-Pressure Coal-Methane Combustion in the SPOC Test Facility Using High-Speed Camera.....	53
Figure 4-13 Photographs of 100% Coal Combustion in the SPOC Test Facility Using High-Speed Camera: a) 20 kWth and b) 80 kWth.....	54
Figure 4-14 SPOC Test Facility Operating Data at Design Operating Conditions: 15 bara (271 psia), 100 kWth	57
Figure 4-15 SPOC Test Facility Operator Screen Shot at Target Conditions: 15 bara (271 psia), 100 kWth	58
Figure 4-16 Radiation Measurement Port and Particle Sampling Port for Size Distribution Measurement	59

Figure 4-17 Size Distribution of Ultra-Fine Particles Measured by Scanning Mobility Particle Sizer Spectrometer	60
Figure 4-18 Thermal Input and SR During Measurement for the 120 kWth, 15 bar (271 psia) Case	61
Figure 4-19 Oxygen Mole Fraction in Oxidizer During Measurement for the 120 kWth, 15 bar (271 psia) Case	61
Figure 4-20 Oxygen and CO Concentration at the Outlet of the Combustor for the 120 kWth, 15 bar (271 psia) Case	62
Figure 4-21 Calculated Oxidation and Gasification Reaction Rates for a Char Particle at Different Temperatures and Pressures	64
Figure 5-1 SPOC Arrangement at Project Initiation	67
Figure 5-2 SPOC Alternative Arrangement with Parallel Stages	68
Figure 5-3 Revised SPOC Arrangement	68
Figure 5-4 SPOC Radiative ‘Downward-Fired’ Stage for Full-scale 550 MWe SPOC Performance	70
Figure 5-5 Combustor Vessel Geometry Prior to Optimization	71
Figure 5-6 Combustor Vessel Geometry Post Optimization	72
Figure 5-7 Test Reheater Bank Arrangement	78
Figure 5-8 Fluent CFD Reheater Model Showing Velocity Contours	79
Figure 5-9 4-Stage, 2-Pass SPOC Arrangement	80
Figure 5-10 Schematic SPOC Combustor PV and Convective PV Per Fuel Stage	81
Figure 5-11 Schematic SPOC Combustor PV and Convective PV Per Fuel Stage	83
Figure 5-12 NETL S12A Baseline Model Using EBSILON	85
Figure 5-13 SPOC Scaled Model without Heat Recovery	88
Figure 5-14 SPOC Flue Gas Cooling Curve	89
Figure 5-15 SPOC Steam Turbine Model with Heat Recovery	90
Figure 5-16 SPOC Design Case Energy Sankey Diagram	94
Figure 6-1 ASU Configuration	100
Figure 6-2 Baseline Case 2-Train ASU Arrangement	101
Figure 6-3 Flexible ASU Arrangement	104
Figure 6-4 Comparison of Baseline Case and Flexible Case Plant Efficiency	109
Figure 6-5 Comparison of Baseline Case and Flexible Case Stage Firing Rates	109
Figure 7-1 Capital Cost Levels and Their Elements	111
Figure 7-2 Chemical Engineering Plant Cost Index	115
Figure 7-3 First-Year Power Costs for All Cases	158

Figure 7-4 LCOE for All Cases	159
Figure 7-5 CO ₂ Avoided and Captured Costs for All Capture Cases	160
Figure B-1 Design Case Montana PRB 100% Load – Boiler Island – SI Units	172
Figure B-2 Design Case Montana PRB 100% Load – Steam Turbine Island – SI Units	173
Figure B-3 Design Case Montana PRB 100% Load – Boiler Island – English Units	174
Figure B-4 Design Case Montana PRB 100% Load – Steam Turbine Island – English Units.....	175
Figure B-5 Check Coal Case Illinois No. 6 100% Load – Boiler Island – SI Units	181
Figure B-6 Check Coal Case Illinois No. 6 100% Load – Turbine Island – SI Units	182
Figure B-7 Check Coal Case Illinois No. 6 100% Load – Boiler Island – English Units.....	183
Figure B-8 Check Coal Case Illinois No. 6 100% Load – Turbine Island – English Units.....	184
Figure B-9 Part-Load Case Montana PRB 75% Load – Boiler Island – SI Units	190
Figure B-10 Part-Load Case Montana PRB 75% Load – Turbine Island – SI Units.....	191
Figure B-11 Part-Load Case Montana PRB 75% Load – Boiler Island – English Units.....	192
Figure B-12 Part-Load Case Montana PRB 75% Load – Turbine Island – English Units	193
Figure B-13 Part-Load Case Montana PRB 50% Load – Boiler Island – SI Units	199
Figure B-14 Part-Load Case Montana PRB 50% Load – Turbine Island – SI Units.....	200
Figure B-15 Part-Load Case Montana PRB 50% Load – Boiler Island – English Units.....	201
Figure B-16 Part-Load Case Montana PRB 50% Load – Turbine Island – English Units	202
Figure B-17 Part-Load Case Montana PRB 25% Load – Boiler Island – SI Units	208
Figure B-18 Part-Load Case Montana PRB 25% Load – Turbine Island – SI Units.....	209
Figure B-19 Part-Load Case Montana PRB 25% Load – Boiler Island – English Units.....	210
Figure B-20 Part-Load Case Montana PRB 25% Load – Turbine Island – English Units	211
Figure B-21 Part-Load Case Montana PRB 12% Load – Boiler Island – SI Units	217
Figure B-22 Part-Load Case Montana PRB 12% Load – Turbine Island – SI Units.....	218
Figure B-23 Part-Load Case Montana PRB 12% Load – Boiler Island – English Units.....	219
Figure B-24 Part-Load Case Montana PRB 12% Load – Turbine Island – English Units	220
Figure B-25 NETL Baseline Case S12A, Montana PRB Fuel, Boiler Island, 100% Load	226
Figure B-26 NETL Baseline Case S12A, Montana PRB Fuel, Turbine Island, 100% Load.....	227
Figure B-27 NETL Baseline Case S12B, Montana PRB Fuel, Boiler Island, 100% Load.....	228
Figure B-28 NETL Baseline Case S12B, Montana PRB Fuel, Turbine Island, 100% Load.....	229
Figure B-29 NETL Baseline Case S12F, Montana PRB Fuel, Boiler Island, 100% Load	230
Figure B-30 NETL Baseline Case S12F, Montana PRB Fuel, Turbine Island, 100% Load	231

LIST OF TABLES

Table 1 Comparison of SPOC with NETL Baseline Cases	4
Table 2 SPOC Baseline Load Cases	5
Table 3 SPOC Flexible ASU Load Cases.....	5
Table 2-1 NETL Baseline Cases	11
Table 2-2 Site Characteristics	11
Table 2-3 Ambient Conditions.....	12
Table 2-4 Plant Emission Limits.....	12
Table 2-5 Pressurized Plant Design Criteria	13
Table 2-6 Load Cases and Flexibility Requirements	14
Table 2-7 Design Coal Characteristics (Montana Rosebud PRB)	15
Table 2-8 Design Coal Ash Properties (Montana Rosebud PRB)	16
Table 2-9 Check Coal Characteristics (Illinois No. 6 Bituminous)	17
Table 2-10 Check Coal Ash Properties (Illinois No. 6 Bituminous)	18
Table 2-11 Product Export Specification.....	19
Table 2-12 ASU Parameters	19
Table 2-13 Ambient Air Quality (dry basis).....	20
Table 2-14 Total Overnight Cost	21
Table 2-15 Economic Analysis Assumptions	21
Table 4-1 Diagnostic Capabilities of the SPOC Research Facility at WUSTL	37
Table 4-2 Original Proposed Test Matrix	46
Table 4-3 Measurement Strategy for Performance Tests.....	47
Table 4-4 Measurement Strategy for Model Validation	47
Table 4-5 Revised Test Matrix.....	48
Table 4-6 Intermediate Pressure Test Conditions and Summary Findings.....	52
Table 4-7 Summary of Test Conditions and Results at High Pressure without Central Oxidizer Flow.....	55

Table 4-8 Summary of Test Conditions and Results at High Pressure without Central Oxidizer Flow.....	56
Table 4-9 Procedures for TGA for Measuring Unburnt Carbon in Ash Samples.....	62
Table 4-10 Test Conditions for Determining Carbon Burnout	63
Table 4-11 Summary of Test Conditions at 15 bara (217.5 psia)	64
Table 5-1 Composition of Oxy-Combustion Flue Gas	73
Table 5-2 Influence of Fluid Properties on Convective Heat Transfer.....	74
Table 5-3 Comparative Assessment of High Excess Oxygen Flue Gas Properties	74
Table 5-4 Comparative Assessment of Low Excess Oxygen Flue Gas Properties	75
Table 5-5 Convective Heat Transfer Coefficient Uncertainty	76
Table 5-6 Convective Heat Transfer Outlet Temperature Prediction Relative Error Boundaries	76
Table 5-7 Reheater Bank Simulation Geometry	77
Table 5-8 Reheater Bank Simulation Flue Gas Boundary Conditions.....	77
Table 5-9 Convective PV Boiler Bank Details	82
Table 5-10 NETL Baseline Case S12A Model Results	86
Table 5-11 Auxiliary Power in kWe of SPOC and NETL Baseline Cases.....	91
Table 5-12 Overall Comparison of SPOC with NETL Baseline Cases	93
Table 5-13 Comparison of Design Coal and Check Coal Flue Gas.....	95
Table 5-14 Overall Heat Recovery for Design Coal and Check Coal Cases	95
Table 5-15 SPOC Design and Check Coal Performance	96
Table 6-1 SPOC Baseline Case Turndown Performance Summary	98
Table 6-2 Expected Production from the Baseline ASU	101
Table 6-3 Utility Consumption of Each Train for the Baseline ASU	103
Table 6-4 Expected Heat Transfer to BFW	104
Table 6-5 Expected Production from the Flexible ASU	105
Table 6-6 Percentage Load of Each MAC/BAC at Loads Ranging from 40 to 100%.....	106
Table 6-7 Expected Utility Consumption for Flexible ASU.....	107
Table 6-8 Expected Heat Transfer to BFW	108
Table 6-9 SPOC Flexible ASU Turndown Case Performance Summary	108
Table 7-1 AACE Class 5 Estimate Description	112
Table 7-2 Accounts for the Capital Costs	113
Table 7-3 AACE Guidelines for Process Contingency.....	116
Table 7-4 Estimation Method for Owner's Costs.....	118

Table 7-5 Maintenance as a Percentage of TPC	120
Table 7-6 Maintenance as a Percentage of Plant Account Cost.....	121
Table 7-7 Cost Data for Consumable Items	121
Table 7-8 Financial Structure for Investor Owned Utility High- and Low-Risk Projects	122
Table 7-9 Global Economic Assumptions	123
Table 7-10 Capital Costs for Base Case S12A	127
Table 7-11 Capital Costs for Base Case S12B.....	133
Table 7-12 Capital Costs for Base Case S12F	139
Table 7-13 Capital Costs for Baseline SPOC Case.....	145
Table 7-14 Capital Costs for Flexible SPOC Case	151
Table 7-15 O&M Costs for All Cases.....	157
Table 7-16 First-Year Power Cost, LCOE, TPC, TOC, TASC, and CO ₂ Captured and Avoided Cost for All Cases	157
Table A-1 SPOC Concept Review Risk Matrix.....	165
Table B-2 Design Case Montana PRB 100% Load Stream Data	176
Table B-3 Check Coal Case Illinois No. 6 100% Load Stream Data.....	185
Table B-4 Part-Load Case Montana PRB 75% Load Stream Data.....	194
Table B-5 Part-Load Case Montana PRB 50% Load Stream Data.....	203
Table B-6 Part-Load Case Montana PRB 25% Load Stream Data.....	212
Table B-7 Part-Load Case Montana PRB 12% Load Stream Data.....	221

LIST OF TERMS

Abbreviation	Meaning	Abbreviation	Meaning
AACE	Association for the Advancement of Cost Engineering International	LCOE	levelized cost of electricity
AL	Air Liquide, Inc.	LHV	lower heating value
ASME	American Society of Mechanical Engineers	LOx	liquid oxygen
ASU	air separation unit	LP	low pressure
BAC	booster air compressor	MAC	main air compressor
BEC	bare erected cost	MCR	maximum continuous rating
BFW	boiler feedwater	NETL	National Energy Technology Laboratory
BOP	balance-of-plant	NFPA	National Fire Protection Agency
CAPEX	capital expenditure	OC	operating costs (FIX – fixed, VAR – variable)
CCF	capital charge factor	O&M	operations and maintenance
CCS	carbon capture and storage	OEM	original equipment manufacturer
CEPCI	Chemical Engineering Plant Cost Index	OPEX	operational expenditure
CF	capacity factor	PC	pulverized coal
CFD	computational fluid dynamics	PCC	post-combustion capture
COE	cost of electricity	PM	particulate matter
CPU	CO ₂ compression and purification unit	PRB	Powder River Basin (sub-bituminous coal)
DCC	direct-contact cooler	PSFM	Power Systems Financial Model
DOE	Department of Energy	PV	pressure vessel
DBL	Doosan Babcock Limited	QGESS	Quality Guidelines for Energy System Studies
EAF	equipment availability factor	R&D	research and development
ELPI	Electrical Low-Pressure Impactor	SC	supercritical
EOR	enhanced oil recovery	SLPM	standard litre per minute
EPC	engineering, procurement, and construction	SMPS	Scanning Mobility Particle Sizer
EPRI	Electric Power Research Institute, Inc.	SPOC	Staged, Pressurized Oxy-combustion
FC	fixed costs	SR	stoichiometric ratio
FGR	flue gas recycle	TAG	Technical Assessment Guide
GAN	gaseous nitrogen	TASC	total as-spent capital
GOx	gaseous oxygen	TGA	thermogravimetric analysis
HHV	higher heating value	TOC	total overnight costs

Abbreviation	Meaning	Abbreviation	Meaning
HP	high pressure	TPC	total plant costs
ID	induced draft	TPD	tonnes per day
IGCC	integrated gasification combined cycle	T&S	transportation and storage
IOU	Investor-owned utility	WUSTL	Washington University in St. Louis
IP	intermediate pressure		

Units

Quantity	S.I. (cgs)	Description	English	Description
Length	m	metre	ft	foot
	mm	millimetre	in	inch
Area	m^2	square metre	ft^2	square foot
Volume	m^3	cubic metre	ft^3	cubic foot
	Nm^3	normal m^3 (at 0°C/1atm)	SCF	standard cubic foot
Temperature	°C	degrees Celsius	°F	degrees Fahrenheit
Mass	kg	kilogram	lb	pound mass
	tonne	metric tonne (1000 kg)	ton	Short tonne (2000 lb)
Pressure	bara	bar absolute (0.1 MPa)	psia	pounds force per square inch
Energy	kJ	kilojoule	Btu	British thermal unit
Energy Flow	W	Watt (Joule/second)	Btu/hr	British thermal unit per hour
	kW	1000 W	MMBtu/hr	Million Btu/hr
	MW	1000 kW		
	GJ/hr	gigajoules/hr		
Properties	kJ/kg	energy content	Btu/lb	energy content
	m^3/kg	specific volume	ft^3/lb	specific volume
	kJ/kgK	specific heat content	$Btu/lb^{\circ}F$	specific heat content
	W/mK	thermal conductivity	$Btu/hr ft^{\circ}F$	thermal conductivity
	μ Pa·s	fluid viscosity	$lbf\cdot s/ft^2$	fluid viscosity
Composition	vol %	by volume		
	wt %	by weight (mass)		

Chemical Formula

Formula	Name	Formula	Name
Ar	argon	N_2	nitrogen
CO	carbon monoxide	NOx	nitrogen oxides
CO_2	carbon dioxide	O_2	oxygen
H_2O	water/steam	SOx	sulfur oxides

EXECUTIVE SUMMARY

Introduction and Objective

The staged pressurized oxy-combustion (SPOC) process, developed by Washington University in St. Louis (WUSTL), is an oxy-combustion carbon capture technology that employs a steam power cycle to generate electricity. As with atmospheric-pressure oxy-combustion processes, carbon dioxide (CO₂) capture rates of 90% or higher can be achieved. The staged-combustion approach of the SPOC process, when operated at elevated gas pressure, allows for near elimination of flue gas recycle (FGR) and leads to significant improvements in efficiency and reduced costs.

The primary goal of this project was to investigate the potential for SPOC for flexible operation beyond the capabilities of conventional coal-fired power plants, particularly those employing carbon capture and storage (CCS). Oxy-combustion differs from conventional coal combustion in that the combustion of coal is carried out using oxygen as opposed to air. The resultant flue gas is a mixture of primarily CO₂ and water, greatly simplifying CO₂ capture. As SPOC does the oxy-combustion process under pressure, it is higher efficiency and lower cost than atmospheric oxy-combustion.

The project was led by the Electric Power Research Institute, Inc., with the assistance of WUSTL, Doosan Babcock (DBL – boiler plant original equipment manufacturer), and Air Liquide (AL – air separation experts). The specific objectives of the project were to:

- Evaluate the SPOC concept and develop a risk-based approach to the heating surface layout ensuring that performance (gas and steam side), manufacturing, transportation, and plant erection considerations were fully accounted for in the system design.
- Improve the technology to ensure its performance and cost potential are substantially better than today's baseline pulverized coal power plant with post-combustion capture (PCC) or atmospheric oxy-combustion, and show progress toward performance commensurate with projected commercial operation, including 90% or more CO₂ capture.
- Address critical technology gaps and improving overall system performance for the technology.
- Perform combustion tests at scale under commensurate pressure to the commercial operating system validate combustor and advance the SPOC combustion modeling tools that will facilitate full-scale design.

SPOC Concept Evolution

The SPOC concept has undergone significant evolution throughout the execution of this project, following review of the constructability of the SPOC boiler stages, its ability to operate at part loads, and strategies for flexible pressurized oxygen delivery. A two-pass pressure vessel (PV) arrangement for each stage allows for road transportation to be feasible at the 400 MW_{th} scale. This allows a 4-stage SPOC system to deliver 550 MWe with a high degree of modular factory

manufacture, ensuring economic efficiency in the manufacture and construction process is attainable at this scale due to lower people hours and improved quality control over onsite construction methods.

Additionally, conventional heat transfer methods have been applied to the convective stages to ensure that heat is delivered to each of the water/steam circuits in appropriate proportions throughout the load range. Allowing bypassing of stages ensures that a significant degree of turndown is achievable on the steam turbine without incurring stage combustion turndown beyond 50%. Testing of the SPOC combustion showed that ultra-low firing rates are also possible, introducing the possibility of being able to sustain stages in a warm-standby condition in readiness for rapid ramping.

Combustion Testing

The 100 kWth pilot scale combustion testing facility has undergone significant modifications to facilitate up to 15 barg pressure SPOC testing to be carried out. This system represents a single SPOC stage using synthetic FGR and a down-fired, co-axial low-mixing flow design. The system is designed to replicate the environment that coal particles would experience in the first 5 seconds of the full-scale SPOC boiler arrangement, where the main combustion reactions occur. Sampling techniques were developed to allow pressurized samples to be drawn from multiple locations in the reactor to allow for evaluation of coal particle composition throughout the combustion process and the final carbon-in-ash levels at the outlet. The sampling lines were heated to avoid moisture and acid gas condensation. The sampling allowed for comparison with the predicted computational fluid dynamic results to be verified when complete combustion was achieved.

Another requirement of the testing was to verify the heat flux generated from the SPOC flame, as this informs the full-scale design regarding boiler-tube arrangement and appropriate water-side mass fluxes needed to keep the tubes appropriately cooled. Testing was initially carried out at atmospheric pressure with methane to ensure that all systems were correctly operating.

Following this, the testing then proceeded to moderate pressure operation at 4 bara, where different stoichiometric conditions were used across an extended heat input range, showing that a stable flame could be maintained. Testing then proceeded at 10 and 15 bara where it was shown that the ignition system needed to be replaced at these operating conditions. When testing recommenced, a similar stable flame shape was achieved, without any methane support, and the full 100 kWth coal oxy-combustion was demonstrated. Heat flux measurements showed 400 kW/m² (0.126 MMBtu/hr-ft²) from the flame, within the 450 kW/m² (0.142 MMBtu/hr-ft²) preferred limit defined by DBL for the full-scale design case. Carbon monoxide and carbon-in-ash measurements showed that complete combustion was possible with ultra-low excess oxygen at 1 vol % in the product flue gas. This allowed the full-scale models to be calculated based on this level of excess oxygen, improving the performance of the system as lower feed oxygen is produced in the air separation unit (ASU), saving auxiliary power.

Full-Scale Design

The full-scale design is sized to deliver 550 MWe net electrical power output to allow direct comparison with the National Energy Technology Laboratory (NETL) baseline cases using the same Montana Powder River Basin (PRB) fuel. The cases used for direct comparison are: Case S12A (supercritical [SC] coal without CO₂ capture), Case S12B (SC coal with PCC at 90% CO₂ capture, and Case S12F (atmospheric oxy-combustion SC coal with 90% CO₂ capture). The SPOC stages were configured to be identical arrangements, allowing for a more straightforward design, construction, and control strategy. As a result, all stages were configured to deliver sufficient oxygen to match the firing rate with only a small excess oxygen level being present and the produced gases are split with the majority feeding the next stage and the balance being passed to a collection duct that gathers the exhaust from each stage. A portion of the accumulated flue gas produced is recycled to the first stage to maintain similar combustion conditions as of the other stages.

Each stage consists of two PVs, the first being the combustor PV module and the second being the convective PV module. The combustor module is the tallest vessel, with local coal feeding equipment and the burner FGR and oxygen plenums at the top and ash management at the bottom. The combustor module is effectively an open cross section with membrane tubes around the circumference – this unobstructed slender profile ensures that the relatively slower burnout mechanism needed for the low-speed turbulent mixing burner can proceed unimpeded and that molten ash will not attach to any surfaces at an angle to the predominant flue gas flow.

Upon reaching the bottom of the combustor PV module the flue gas is sufficiently cooled to below the ash initial deformation temperature that flow direction changes will only yield ash particle deposition and not solid growth. The gas can therefore be passed horizontally to the upward flowing convective PV module where cross flow heat exchange banks are located to deliver heat to the steam/water circuits. The steam turbine used in the SPOC design is essentially the same unit utilized in the atmospheric oxy-combustion case except the degree of heat recovery possible allows the low-pressure (LP) feedwater heater train to be eliminated. This is a result of being able to capture the latent heat of evaporation of the moisture produced in the combustion (normally lost to the stack). A comparison to the NETL baseline cases is shown in Table 1.

The SPOC system outperforms the NETL atmospheric oxy-combustion baseline case by 3.3% points and the PCC case by 7.5% points. This performance increase is mainly a result of the improved heat recovery possible from the product flue gas and from the reduced auxiliary power consumption from the ASU and the CO₂ compression and purification unit over the atmospheric equivalent. Another substantial saving is delivered from the reduced duty of the recycle fan (or induced draft fan) where the volume of gas being recycled in the SPOC case is substantially lower than is the case for the atmospheric oxy-combustion case. The combination of these savings in auxiliary power are added to by incremental reductions in fuel processing and cooling water systems leading to a gross power generation requirement that is 25.6 MWe lower than the atmospheric case.

Table 1
Comparison of SPOC with NETL Baseline Cases

Parameter	Case	S12A	S12B	S12F	SPOC
Total Gross Power, MWe	582.7	673.0	748.3	724.0	
CO ₂ Capture/Removal Auxiliaries, kW _e	-	22,900	94,710	124,607	
CO ₂ Compression, kW _e	-	49,000	64,740	21,774	
Balance of Plant (BOP), kW _e	32,670	51,040	38,840	27,607	
Total Auxiliaries, MWe	32.67	122,940	198.29	174.0	
Net Power, MWe	550.0	550.1	550.0	550.0	
Net Plant Efficiency, % higher heating value (HHV)	38.7	27.0	31.2	34.5	
Net Plant Heat Rate, kJ/kWh HHV	9307	13,330	11,532	10,426	
Thermal Input, MW _{th} HHV	1422.0	2036.7	1761.9	1593.0	
Boiler Efficiency, % HHV	85.7	85.8	88.7	87.5	
Heat to Steam, MW _{th}	1219.3	1748.1	1564.1	1412	
High-pressure (HP) Heat Recovery, MW _{th}	-	-	-	35.7	
LP Heat Recovery, MW _{th}	-	-	64.46	197.8	
As-Received Coal Feed, kg/hr	256,992	368,084	318,415	287,892	

A bituminous check coal, Illinois No. 6, was also applied to the SPOC baseline design. Illinois No. 6 contains significantly lower moisture content at 11.12 wt % than the design coal, Montana PRB, at 25.77 wt %, resulting in a drier flue gas produced from the SPOC stages. Although this reduced moisture mass lowers the thermal losses in the SPOC boiler system (due to a reduced latent heat from evaporation of water in the fuel), the opportunity to recover latent heat from the flue gas is subsequently reduced.

Where the low-temperature feedwater heating target temperature is fully met in the design case, the Illinois No.6 case heat recovery was reduced by 22.5%, requiring a significant increase in the deaerator heating duty. Additionally, due to an overall reduced flue gas flowrate, the HP feedwater heating duty was lower by 16.6%. The reduction of these heat recovery duties resulted in a net increase in the steam turbine heat rate of 2.2%.

The combined improvement in boiler efficiency and reduction in the steam turbine heat rate resulted in a net improvement in the overall plant efficiency by 0.61%, to 35.6% on a HHV basis. This relatively small improvement in plant efficiency between sub-bituminous and bituminous coals shows the value of useful moisture latent heat recovery offered by the SPOC system when using low rank fuels.

Flexibility and Turndown

The SPOC system has inherent high turndown capabilities because of a demonstrated high range of combustion stability and the ability to bypass stages, thereby reducing steam generation rates proportionally without altering firing rates in operating stages. ASU units do not generally offer significant turndown opportunities as they are limited by the performance of the compression plant. The baseline SPOC design has a 2-train ASU configuration, needed to be able to meet the 10,500 tonnes per day duty, that can deliver efficient turndown points between 85–100% load

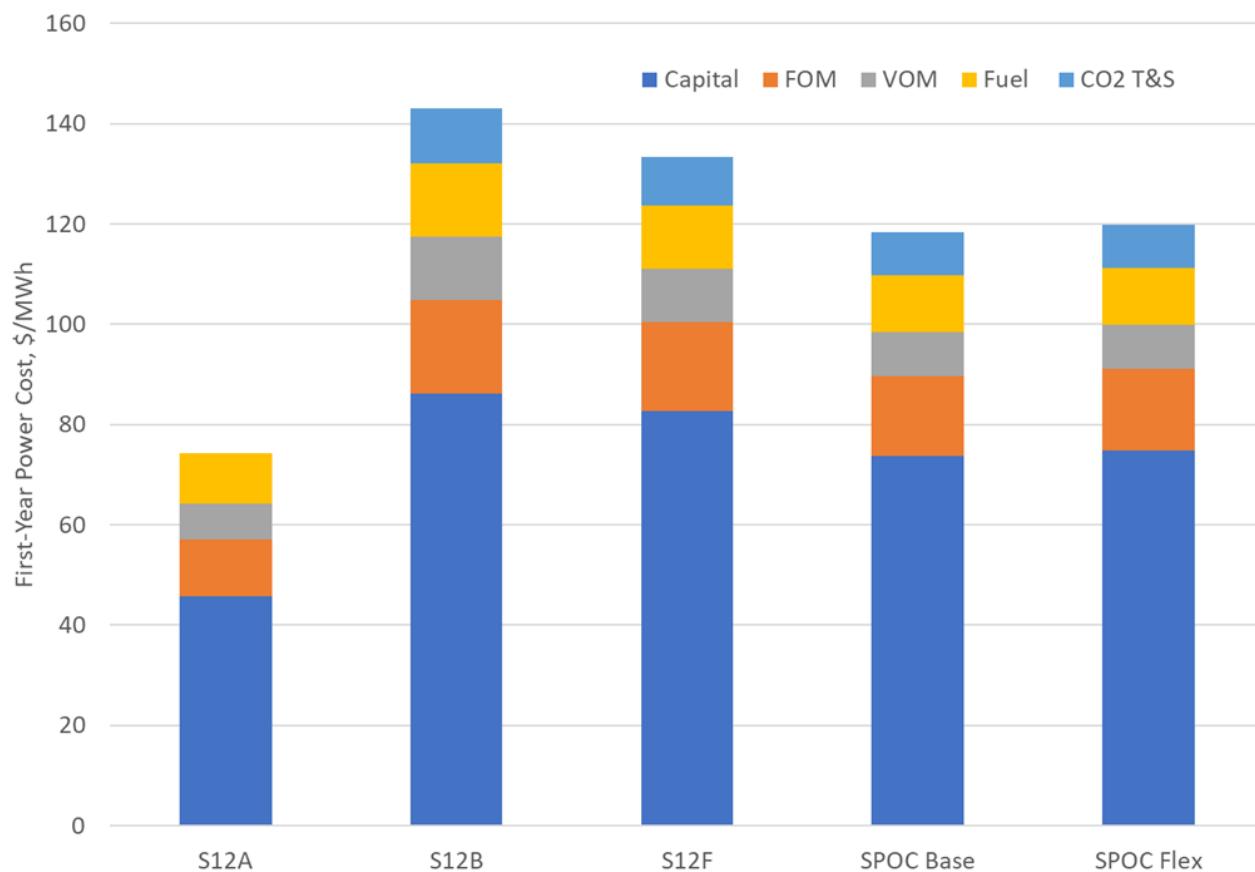
with both trains operating, and at 45–50% load with a single train operating. Outside these operating points, the flexibility and efficiency are limited and may be uncompetitive at loads below 45% as the ASU systems are unable to turndown beyond 85% for the base case and 70% for the flexible case. The ASU cold box for the flexible case was designed to operate at loads between 40–100%, below this operating range the purity of the produced oxygen cannot be guaranteed, resulting in additional load for the CPU equipment. The additional power consumption of these cases yields an uneconomic operating condition with poor efficiency when operating at low loads such as 25% and 12%, as shown in Table 2, which are typical of operating in a condition of readiness prior to an expected demand signal (when renewable generators are expected to lose generating capabilities).

Table 2
SPOC Baseline Load Cases

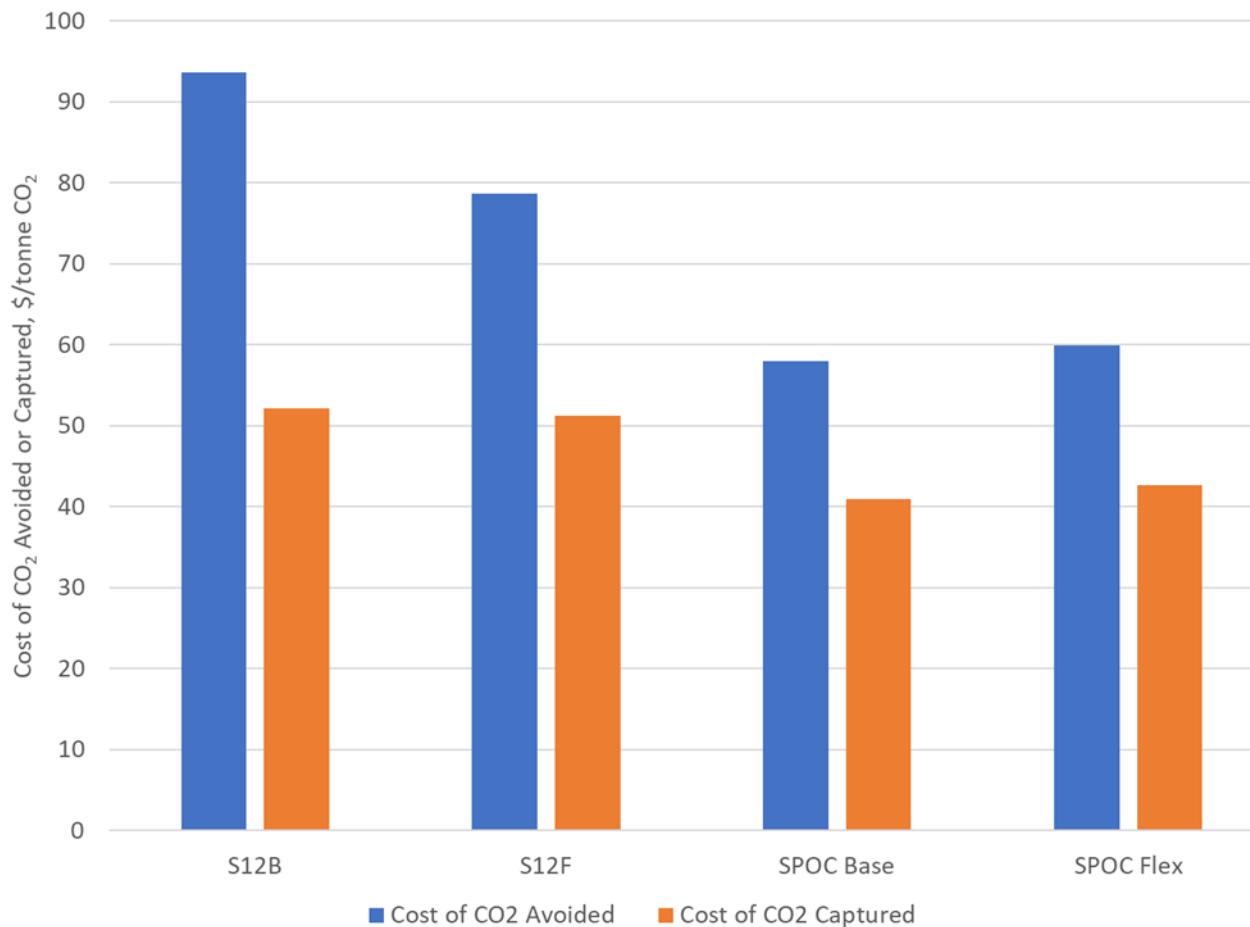
Load Case	Fuel Heat Input MWth	Heat to Steam MWth	Gross Power MWe	Net Export Power MWe	Net Efficiency % HHV
100%	1593	1412	724	550	34.53
75%	1219	1080	552	412	33.85
50%	827	731	382	275	33.24
25%	509	455	224	137	26.99
12%	354	313	153	66	18.63

To address this flexibility constraint, AL evaluated how the ASU configuration could be altered to deliver efficient oxygen supply over the load range. This involved integrating the compressor duties across both ASU trains into a shared duty arrangement with multiple compressors, strategically sized to deliver the duty required across all load ranges between 40–100% by enabling different combinations of the main air compressors and the booster air compressors. The oxygen purity cannot be guaranteed below 40% load for each train – the power consumption at 25% and 12% loads were estimated based on the multi-compressor configuration at maximum turndown as these load cases were not considered in the flexible ASU design. With a different cold box configuration, i.e. number of trains, the entire load range could be delivered within oxygen purity specifications.

Although there is a small efficiency reduction at full load, there are significant improvements in overall plant performance during low-load operation, as shown in Table 3. The exact ASU configuration needed will therefore be dependent on the expected operating profile of the unit.


Table 3
SPOC Flexible ASU Load Cases

Load Case	Fuel Heat Input MWth	Heat to Steam MWth	Gross Power MWe	Net Export Power MWe	Net Efficiency % HHV
100%	1595	1415	726	550	34.47
75%	1219	1080	552	412	33.85
50%	819	724	379	275	33.57
25%	446	396	196	137	30.83
12%	268	235	111	66	24.62


Economic Analysis

Cost estimates for the baseline and the flexible cases were developed using NETL baseline case data for common BOP items and an Association for the Advancement of Cost Engineering International Class 5 (conceptual/screening study) assessment of key components unique to the SPOC system. The capital, operating, and maintenance costs were assessed along with the first-year power cost, leveledized cost of electricity, and CO₂ captured and avoided cost for the SPOC cases were compared against the relevant NETL baseline cases in January 2019 dollars.

The first-year power costs, broken down into their components, for the NETL baseline cases and the SPOC baseline and flexible cases, are shown in Figure 1. Both SPOC cases achieve a lower cost than the alternative NETL baseline cases (with the flexible SPOC case being slightly higher than the baseline SPOC case due to the compounded impact of higher capital costs and lower efficiency at full load). Figure 2 shows the cost of CO₂ captured for all capture cases compared against NETL baseline case S12A.

Figure 1
First-Year Power Costs for All Cases

Figure 2
CO₂ Avoided and Captured Costs for All Capture Cases

The SPOC cases deliver a lower cost of CO₂ avoided than the NETL baseline cases due to greater efficiency in generating low-carbon power. However, the cost of CO₂ captured is higher because the higher efficiency of the SPOC process generates less CO₂, hence less needs to be captured, resulting in a high capital cost being shared over a reduced CO₂ quantity.

The flexible ASU adds 1.6% overall to the plant cost in comparison to the baseline case, but the efficiency improvements at loads below 50% are significant. Subsequently, depending on the plant load-profile expectation, the flexible ASU would be beneficial if the plant spends a significant portion of its operating life below 50% load.

This kind of operating profile is likely to be required for all fossil plants when more renewable electricity generators are installed on the local grid, particularly solar power that can be predicted ahead of time, allowing for appropriate pricing signals to be incorporated into the diurnal cycle.

R&D Recommendations

SPOC, while a promising technology, is a relatively recent concept and, as such, operability issues of combustor design and steam-side integration for such systems at a scale relevant to commercial deployment have not been evaluated. WUSTL has conducted extensive small pilot-scale (100 kW_{th}) research to understand and advance pressurized oxy-combustion processes,

including investigation of combustion and flame characteristics, radiative heat flux, burner operability, turn down, char burnout, ash characteristics, water-wash column operation, etc. for pressurized oxy-combustion systems. Nonetheless, at this stage in the development of the SPOC process, what is needed is a large-scale pilot plant that can serve to study pressurized oxy-combustion systems and components at a scale commensurate with the maturity of the technology.

A scale of 10 MWth, which includes steam-side integration and two stages would yield essential information with respect to heat transfer characteristics both in the radiative and convective sections of the pressure vessels, and the ability to operate the fuel staging process. In addition, while modeling results indicate that combustion and flame characteristics improve with scale, direct studies of the combustor at this scale will ensure that the models can be relied upon for scale up to commercial scale. Furthermore, a detailed analysis must be performed to understand the scaling aspects of key components and systems.

1

INTRODUCTION

Background

Coal-fired power plants are being driven to reduce greenhouse gas emissions through efficiency improvements and carbon dioxide (CO₂) abatement. Existing technologies for carbon capture and storage (CCS) are expensive and energy intensive. Thus, to ensure a stable and reliable future energy mix, second-generation technologies that can capture CO₂ at lower energy penalty and cost are critically needed. Staged pressurized oxy-combustion (SPOC), developed at the Washington University in St. Louis (WUSTL), is a promising candidate technology to address this need.

Project Objectives

The primary goal of this project is to investigate the potential for SPOC for flexible operation beyond the capabilities of conventional coal-fired power plants, particularly those employing CCS. SPOC is a form of oxy-combustion whereby coal is combusted with oxygen (produced by a cryogenic air separation unit [ASU]) and recirculated flue gas, as opposed to air. The resultant flue gas is a mixture of primarily CO₂ and water, greatly simplifying CO₂ capture. As the oxy-combustion process is conducted under pressure in the SPOC process, it has a higher efficiency and lower cost than traditional oxy-combustion, which is conducted at atmospheric pressure.

The specific objectives of the project were to:

- Evaluate the SPOC concept and develop a risk-based approach to the heating surface layout ensuring that performance (gas and steam side), manufacturing, transportation, and plant erection considerations were fully accounted for in the system design.
- Improve the technology to ensure its performance and cost potential are substantially better than today's baseline pulverized coal (PC) power plant with post-combustion capture (PCC) or atmospheric oxy-combustion, and show progress toward performance commensurate with projected commercial operation, including 90% or more CO₂ capture.
- Address critical technology gaps and improving overall system performance for the technology.
- Perform combustion tests conducted at scale under commensurate pressure to the commercial operating system to validate combustor and advance the SPOC combustion modeling tools that will facilitate full-scale design.

The ultimate outcome of this project is an economically-optimized conceptual design for a commercial-scale, pressurized oxy-combustion coal power plant that has been scrutinized by leading vendors of coal power and ASU technology.

The Electric Power Research Institute, Inc. (EPRI) is the prime contractor for this project with WUSTL, Doosan Babcock Limited (DBL), and Air Liquide (AL) as subcontractors.

In addition to project management and reporting done in Task 1, five tasks were scheduled for the project technical work:

- **Task 2** – Develop a design basis for the full-scale design and carry out an original equipment manufacturer (OEM) review of the SPOC process.
- **Task 3** – Develop the 550 MWe SPOC baseline case with full integration between the boiler system, steam turbine feedwater heating train, the ASU, and the CO₂ compression and purification unit (CPU).
- **Task 4** – Assess SPOC system flexibility and update ASU configuration to achieve efficient turndown capability.
- **Task 5** – Carry out testing at WUSTL using 100 kWth SPOC pilot plant to verify combustion performance, assess heat flux profiles and particle burnout.
- **Task 6** – Develop the cost estimate for the SPOC full-scale 550 MWe plant and compare to the existing National Energy Technology Laboratory (NETL) baseline cases in 2019 U.S. dollars.

Report Structure

The goal of this report is to summarize all the work performed in this project:

- Chapter 2 provides the design basis specifications for the SPOC system, including the selected base cases that were used for comparison.
- Chapter 3 details the OEM assessment of the SPOC system, a risk assessment of the system, and a proposed design that aims to mitigate the identified risks.
- Chapter 4 presents the testing activities, detailing the testing plan, pilot plant upgrades, instrumentation, and test execution and results.
- Chapter 5 covers the baseline 550 MWe SPOC design and the integration methodology of the SPOC boiler system, steam turbine integration, and the oxy-combustion auxiliaries heat recovery.
- Chapter 6 explores the SPOC configuration during turndown operation and the flexible oxygen supply options.
- Chapter 7 provides the methodology applied to the economic analysis and the comparison of the SPOC system against the NETL baseline cases.
- Chapter 8 summarizes the results, conclusions, and recommendations.

2 DESIGN BASIS

To allow a direct comparison with existing NETL baseline cases, the full-scale SPOC design was sized to deliver 550 MWe net with 90% CO₂ capture. The key NETL cases identified are based on firing Montana Powder River Basin (PRB) sub-bituminous coal using a conventional supercritical (SC) single reheat steam cycle, as detailed in Table 2-1.^{1,2}

Table 2-1
NETL Baseline Cases

Case	Boiler	Fuel	Steam Cycle barg/°C/°C (psig/°F/°F)	CO ₂ Separation / Purification Technology
S12A	SC PC	PRB	241/593/593 (3500/1100/1100)	None
S12B	SC PC	PRB	241/593/593 (3500/1100/1100)	PCC (Econamine)
S12F	SC Oxy-combustion	PRB	241/593/593 (3500/1100/1100)	Cryogenic Distillation

For reference, the heat-and-material flow diagrams have been included in Appendix B.

General Criteria

The plant was located on a greenfield site, and hence no existing plant infrastructure is available to be utilized. The site characteristics are given in Table 2-2.

Table 2-2
Site Characteristics

Parameter	Value
Location	Midwestern U.S.
Topology	Level
Land Available, hectares (acres)	121.4 (300) (including 0.24 km [0.15 mile] boundary)
Fuel, Ash and Utility Transportation	Rail or Highway
Ash Disposal	Offsite
Water Availability	50% Municipal / 50% Groundwater

¹ Cost and Performance Baseline for Fossil Energy Plants Volume 3b: Low Rank Coal to Electricity: Combustion Cases [DOE/NETL-2011/1463](https://www.netl.doe.gov/publications/doe-netl-2011-1463.pdf).

² Cost and Performance for Low-Rank Pulverized Coal Oxycombustion Energy Plants – Final Report [DOE/NETL-401/093010](https://www.netl.doe.gov/publications/doe-netl-401-093010.pdf).

Battery Limits

The main battery limits were defined as:

Fuel/Ash	Gatehouse where coal trucks or railcars enter / exit
Water	Municipal water inlet flange
CO ₂	High-pressure (HP) CO ₂ compressor / pump outlet flange
Electrical Power	Low-voltage side of step-up transformer to high-voltage grid connection

Meteorological Data

Table 2-3 defines the site meteorological data used for the performance calculations of the SPOC system.

Table 2-3
Ambient Conditions

Parameter	Value
Elevation, m (ft)	1036 (3400)
Barometric Pressure, bara (psia)	0.9 (13.0)
Design Ambient Temperature, Dry Bulb / Wet Bulb, °C (°F)	5.6 (42) / 2.8 (37)
Design Ambient Relative Humidity, %	62

Environmental Targets

The environmental targets applied to the NETL baseline cases comply with the New Source Performance Standards, as amended in June 2007, as shown in Table 2-4.

Table 2-4
Plant Emission Limits

Pollutant	Emission Limit	Technology (where applicable)
Particulate Matter (PM)	6 g/kJ (0.013 lb/MMBtu)	Fabric Filter / Electrostatic Precipitator
Sulfur Dioxide (SO ₂)	63 g/kJ (0.132 lb/MMBtu)	Dry Flue Gas Desulfurizer
Nitrogen Oxides (NO _x)	33 g/kJ (0.07 lb/MMBtu)	Low-NO _x Burners / Overfire Air / Selective Catalytic Reduction
Hg	0.29 g/MJ (0.6 lb/TBtu)	Co-benefit Capture / Carbon Injection

These standards are applicable to Cases 12A and 12B where flue gases are being discharged directly to the atmosphere, however they are also included for the oxy-combustion cases to account for all discharges (for example, from the inerts stack in the CPU). Mercury (Hg) emission limits are based on the facility being designated as a “dry unit,” as most of the areas in Montana receive less than 63.5 cm (25 inches) of rainfall per annum.

Capacity Factor

It is assumed that there is always a demand for power and that the product CO₂ can always be exported. The NETL baseline cases worked on the basis that they had an equivalent availability

factor (EAF) of 85%. Although unabated coal power plants might be expected to have a lower capacity factor than this due to the impact of non-dispatchable resources in the power grid, a CO₂-abated plant would potentially be able to achieve this based on both the need for low-carbon intensity power and demand for the CO₂ product.

Plant Design Criteria

Plant Scale

To allow for a direct comparison to the NETL baseline cases, the SPOC plant design target was sized to deliver 550 MWe net at maximum output. The power module is considerably larger than that for Case S12A to account for the auxiliary power requirements of the ASU, CPU, and the subsequent compression of the CO₂ to the required export pressure requirements.

The rated output is based on the design point ambient conditions and was used for the equipment sizing and plant costing.

Pressurized System Conditions

As the SPOC system operates at elevated pressure, the combustion envelope and all downstream equipment (convective heat transfer banks, acid gas removal, cooling units, and driers) need to be contained within pressure vessels (PVs) as described in Table 2-5.

Table 2-5
Pressurized Plant Design Criteria

Design Criteria	Standard
Maximum Allowable Working Pressure, bara (psia)	16 (232)
Vessel Construction Design Code	American Society of Mechanical Engineers (ASME) VIII (2013)
Safety Valves	Mandatory – 110% of Maximum Allowable Working Pressure; Vent to safe area, plant trip on actuation
Boiler Components	ASME Section I / II Rules for Construction of Power Boilers
Combustion Systems	National Fire Protection Agency (NFPA)-85: Boiler and Combustion Systems Hazards Code (2019)

As these PVs need to be transportable, the maximum sizes available are constrained to that of typical shipping limits. Generally, such vessels are limited to approximately 4.2 m (14 ft) diameter to allow for economic shipping by road or rail; however, vessels of 7 m (23 ft) and greater in diameter are routinely transported (although this can add significant cost). The sizing of the vessels has therefore taken into consideration both the economics and performance to establish the optimum design.

Load Cases

Plant performance data generated for the load cases are given in Table 2-6.

Table 2-6
Load Cases and Flexibility Requirements

Load	Standard
Plant Maximum Continuous Rating (MCR)	Based on generator max
Part Load – 75% MCR	
Part Load – 50% MCR	
Minimum Stable Generation	System lower limit / can be in circulating mode
Flexibility	
Startup Time (excluding ASU/CPU)	Hot (after <2 hours), warm (after 12 hours), and cold (after >36 hours)
Ramp Rate	Not determined at design basis*

* Achievable ramp rate to be determined by the boiler vendor based on conventional practice; oxygen supply system to be developed to facilitate required startup, turndown, and ramping events.

As there is potential for specific attenuation of the heat balance between superheat and reheating surfaces using the SPOC arrangement, the reheat temperature control is to be maintained to as low a load as is reasonable with minimal reheat attemperation (<1%), subject to steam turbine constraints.

Startup System

From a cold condition, the system will be started up on natural gas or light oil fuel with the combustion enclosure pressure being built by controlled throttling of the purge stream following initial light-off. All SPOC stages will be established and oxygen flow control optimized to deliver a product gas composition that is suitable for CPU admission. Prior to this, the product gases will be depressurized and vented to a safe location.

The combustion volume will be suitably vented prior to light-off or following a shutdown or plant trip as per NFPA-85 requirements.³

The steam system was designed to ensure appropriate cooling is maintained on the radiant surfaces by establishing a circulating flow (in subcritical condition) and allowing steam generation to flow through the superheater sections and pipework to ensure appropriate warming. A HP bypass valve allows this steam to also pass to the reheat circuit, providing pipework warming and reheat sections to be actively cooled. When the main steam pipework leading to the turbine stop valve is appropriately heated, steam turbine warming can commence in the usual manner, allowing the HP bypass to be closed.

Sparing Philosophy

To allow for a direct comparison with the baseline cases, the system is designed to have commensurate spare capacity for identical equipment, such as for fuel and ash handling components, electrical switchgear, and auxiliary transformers. Small pumps have 100% spare

³NFPA 85: Boiler and Combustion Systems Hazards Code [2019 edition](#)

capacity to facilitate maintenance during operations. The cooling water circulating system has 3 x 50% capacity to ensure appropriate availability is achieved.

For plant components that are unique to the SPOC process, the degree of spares required was determined by industry practice based on delivering an overall plant availability that is anticipated to exceed the baseline case EAF of 85%.

Feedstocks and Products

Coal Properties

The design coal used is Montana Rosebud PRB with characteristics taken from the NETL Coal Quality Guidelines as shown in Table 2-7 and with corresponding ash quality shown in Table 2-8.

To further explore the implications of coal quality on the SPOC design, a bituminous “check” coal was also considered (Illinois No. 6). This coal has significantly lower moisture content than the design coal, but contains elevated levels of sulfur and chlorine as shown in Table 2-9 and Table 2-10.

The work was carried out exclusively on the design coal, with the check coal being used only to show the potential design differences that would be possible if a bituminous fuel was taken as the design coal (i.e., no performance characteristics were assessed).

Table 2-7
Design Coal Characteristics (Montana Rosebud PRB)

Proximate Analysis	Dry Basis, wt %	Wet Basis, wt %
Moisture	0.00	25.77
Ash	11.04	8.19
Volatile Matter	40.87	30.34
Fixed Carbon	48.09	35.70
<i>Total</i>	100.00	100.00
Heating Value	Dry Basis	Wet Basis
Higher Heating Value (HHV), kJ/kg (Btu/lb)	26,787 (11,516)	19,920 (8564)
Lower Heating Value (LHV), kJ/kg (Btu/lb)	25,810 (11,096)	19,195 (8252)
Hardgrove Grindability Index		57
Ultimate Analysis	Dry Basis, wt %	Wet Basis, wt %
Carbon	67.45	50.07
Hydrogen	4.56	3.38
Nitrogen	0.96	0.71
Sulfur	0.98	0.73
Chlorine	0.01	0.01
Ash	11.03	8.19
Moisture	0.00	25.77
Oxygen (By Difference)	15.01	11.14
<i>Total</i>	100.00	100.00

Table 2-8
Design Coal Ash Properties (Montana Rosebud PRB)

Mineral Composition		Wt %
Silica	SiO ₂	38.09
Aluminum Oxide	Al ₂ O ₃	16.73
Iron Oxide	Fe ₂ O ₃	6.46
Titanium Oxide	TiO ₂	0.72
Calcium Oxide	CaO	16.56
Magnesium Oxide	MgO	4.25
Sodium Oxide	Na ₂ O	0.54
Potassium Oxide	K ₂ O	0.38
Sulfur Trioxide	SO ₃	15.08
Phosphorous Pentoxide	P ₂ O ₅	0.35
Barium Oxide	Ba ₂ O	0.00
Strontium Oxide	SrO	0.00
Unknown		0.84
	<i>Total</i>	100.00
Trace Components (fly ash)		ppmd
Mercury	Hg	0.081
Ash Fusion Temperatures		°C (°F)
Reducing Atmosphere	Initial Deformation	1225 (2238)
	Softening	1234 (2254)
	Hemispherical	1243 (2270)
	Fluid	1259 (2298)
Oxidizing Atmosphere	Initial Deformation	1251 (2284)
	Softening	1261 (2301)
	Hemispherical	1271 (2270)
	Fluid	1297 (2298)

Table 2-9
Check Coal Characteristics (Illinois No. 6 Bituminous)

Proximate Analysis	Dry Basis, wt %	Wet Basis, wt %
Moisture	0.00	11.12
Ash	10.91	9.70
Volatile Matter	39.37	34.99
Fixed Carbon	49.72	44.19
<i>Total</i>	100.00	100.00
Heating Value	Dry Basis	Wet Basis
HHV, kJ/kg (Btu/lb)	30,531 (13,126)	27,135 (11,666)
LHV, kJ/kg (Btu/lb)	29,447 (12,660)	26,171 (11,252)
Hardgrove Grindability Index	60	
Ultimate Analysis	Dry Basis, wt %	Wet Basis, wt %
Carbon	71.73	63.75
Hydrogen	5.06	4.50
Nitrogen	1.41	1.25
Sulfur	2.82	2.51
Chlorine	0.33	0.29
Ash	10.91	9.70
Moisture	0.00	11.12
Oxygen (By Difference)	7.74	6.88
<i>Total</i>	100.00	100.00

Table 2-10
Check Coal Ash Properties (Illinois No. 6 Bituminous)

Mineral Composition		%
Silica	SiO ₂	45.0
Aluminum Oxide	Al ₂ O ₃	18.0
Iron Oxide	Fe ₂ O ₃	20.0
Titanium Oxide	TiO ₂	1.0
Calcium Oxide	CaO	7.0
Magnesium Oxide	MgO	1.0
Sodium Oxide	Na ₂ O	0.6
Potassium Oxide	K ₂ O	1.9
Sulfur Trioxide	SO ₃	3.5
Phosphorous Pentoxide	P ₂ O ₅	0.2
Barium Oxide	Ba ₂ O	0.0
Strontium Oxide	SrO	0.0
Unknown		1.8
	<i>Total</i>	100.00
Ash Fusion Temperatures		°C (°F)
Reducing Atmosphere	Initial Deformation	1066 (1950)
	Softening	1110 (2030)
	Hemispherical	1171 (2140)
	Fluid	1177 (2150)
Oxidizing Atmosphere	Initial Deformation	1232 (2250)
	Softening	1260 (2300)
	Hemispherical	1332 (2430)
	Fluid	1343 (2450)

Non-fuel Feedstocks

When desulfurization processes are applied to flue gases, typically limestone or lime is used to react with the acid gases. As the pressurized oxy-combustion process is not anticipated to require this amount of desulfurization (only produced water neutralization), the compositions of these feedstocks are not listed here, but can be found in the NETL Quality Guidelines – Specification for Selected Feedstocks.⁴

⁴ Quality Guidelines for Energy System Studies – Specification for Selected Feedstocks, January 2012 DOE/NETL-341/011812.

CO₂ Product Purity

The CO₂ product leaving the process will meet the specification detailed in Table 2-11 for export compliance. Monitoring will be provided with provision for diversion and safe venting should these specifications not be attained (e.g., during system startup).

Table 2-11
Product Export Specification

Parameter	Limit	Requirement
Temperature	<35°C (95°F)	Transportation pipeline specification
Pressure	152 barg (2200 psig)	Transportation pipeline specification
CO ₂	>95 vol %	Minimum miscible pressure for enhanced oil recovery (EOR)
N ₂	<4 vol %	Minimum miscible pressure for EOR
H ₂ O	dew point <-40°C (-40°F)	Transportation pipeline corrosion / hydrate formation
O ₂	<40 ppmv	Transportation pipeline corrosion
CO	<0.1 vol %	Safety and corrosion

Air Separation Unit

The ASU was initially designed as a standard commercial system with no specific upgrades related to improved flexibility. Improved flexibility was subsequently determined by AL. The baseline case specifications are detailed in Table 2-12.

Table 2-12
ASU Parameters

Parameter	Requirement
Gaseous Oxygen Pressure	17 bara (247 psia)
Gaseous Oxygen Purity	95.9 O ₂ vol %
Gaseous Oxygen Flowrate	10,500 tonnes/day (TPD)
Oxygen Storage	8 hours as liquid oxygen (LOx)
Nitrogen Supply Pressure	0.95 bara (13.8 psia)
Nitrogen Purity	99.5 N ₂ vol %
Nitrogen Flowrate	Up to 17,000 TPD
Nitrogen Storage	Not required
Primary Machine Drive	Electrical
Shipping Constraints	No constraint considered
ASU Startup Time	Vendor to specify
Cooling Water Supply Temperature	14°C (57°F)
Cooling Water Temperature Rise	10°C (18°F)
Cooling Water Pressure Drop	2 bar (29 psi)
Compressed Air Export Flowrate	4000 Nm ³ /hr (2536 standard ft ³ /min)
Compressed Air Export Pressure	11.4 bara (165 psia)
Compressed Air Export Temperature	Maximum 54°C (130°F)

Ambient air purity as specified for the NETL baseline case³ is detailed in Table 2-13.

Table 2-13
Ambient Air Quality (dry basis)

Impurity	Chemical Formula	Quantity (volume basis, vapor)
Nitrogen	N ₂	78.11%
Oxygen	O ₂	20.96%
Argon	Ar	0.93%
Carbon Monoxide	CO	<0.6 ppm
Carbon Dioxide	CO ₂	<480 ppm
Methane	CH ₄	<8 ppm
Ethane	C ₂ H ₆	<0.1 ppm
Acetylene	C ₂ H ₂	<0.4 ppm
Ethylene	C ₂ H ₄	<0.2 ppm
Propylene	C ₃ H ₆	<0.2 ppm
Propane	C ₃ H ₈	<0.05 ppm
Other Hydrocarbons	C ₄ +	<0.05 ppm
Ammonia	NH ₃	<0.01 ppm
Nitrous Oxide	N ₂ O	<0.35 ppm
Nitrogen Oxides	NOx	<0.1 ppm
Ozone	O ₃	<0.1 ppm
Sulfur Dioxide	SO ₂	<0.1 ppm
Chloride	Cl	<0.1 ppm
Total Strong Acid	HCl + NHO ₃	<0.05 ppm
Dust	-	<0.2 mg/Nm ³

Economic Analysis

The NETL baseline cases used for comparison to the SPOC process were carried out on a 2007 constant-dollar value basis, which required that the previous baseline data be adjusted to account for inflation.

The 550 MWe net SPOC plant total overnight capital (TOC) estimate was carried out on the overall plant equipment using an Association for the Advancement of Cost Engineering International (AACE) Class 5 basis.⁵ This represents less than a 2% level of project definition, using a capacity factored or parametric modeling approach, and delivers a cost estimate between -50% and +100% in accuracy. The TOC can be broken down into lower-cost levels such as the total process capital (TPC) and the bare-erected cost (BEC). The items included in the development of the TOC estimate are detailed in Table 2-14 and consist of the manufacture, shipping, and labor costs to construct the plant.

⁵ Recommended Practice [18R-97](#) of the Association for the Advancement of Cost Engineering International.

Table 2-14
Total Overnight Cost

Cost Component	BEC	TPC	TOC
Process Equipment	*	*	*
Shipping and Fees (where applicable)	*	*	*
Installation Labor	*	*	*
Engineering, Procurement, and Construction (EPC) Contractor Services		*	*
Process Contingency (+20 to 35% for unproven technology to +0-10% for commercially mature)		*	*
Project Contingency (+15% to +30% of BEC, EPC fees) and Process Contingency		*	*
Pre-Production Costs (6 months operating labor, 1-month maintenance materials/non-fuel consumables/waste disposal, 25% of one month of fuel, and +2% TPC)			*
Inventory Capital ⁶ (+0.5% TPC spares, 60 days of fuel and consumables)			*
Financing Costs (+2.7% of TPC, excluding interest)			*
Other Owners Costs (any prepaid royalties +15% of TPC, accounting for the front-end engineering design study, infrastructure improvements, legal fees, permitting costs, owner's engineering, and owner's contingency)			*

The TOC value was used as the basis for the capital charge factor (CCF) that was applied to the cost of electricity (COE) calculations. The baseline cases were assessed using the assumptions in Table 2-15. The SPOC COE was assessed on an equivalent basis.

To ensure a fair comparison with baseline case S12A, all non-SPOC specific plant costs such as the air quality control system and ancillaries were scaled, where applicable, from baseline case S12A costs using the methodology outlined in NETL Capital Cost Scaling Methodology Quality Guidelines for Energy System Studies (QGESS).⁷ The scaling parameters were determined from the results of the SPOC cycle model output that achieves a 550 MWe net plant output

Table 2-15
Economic Analysis Assumptions

Parameter	Value
CCF (low-risk / high-risk Investor Owned Utility)	0.1165–0.1243
Capital Expenditure Period	5 years
Operational Period	30 years
Capital Cost Escalation during Expenditure Period	3.6% annual rate
Distribution of TOC over Expenditure Period	5-Years: 10%, 30%, 25%, 20%, 15%

⁶ Technical Assessment Guide (TAG®) Power Generation and Storage Technology Options: 2013 Topics. EPRI, Palo Alto, CA: 2014. [3002001434](#).

⁷ Quality Guidelines for Energy System Studies: Capital Cost Scaling Methodology, [DOE/NETL-341/013113](#), January 2013.

The resulting COE was calculated using the CCF and the TOC to account for the installed costs, along with the annual fixed costs (FC) and the variable costs for operations and maintenance (O&M):

$$COE(\$/\text{MW} - \text{hr}) = \frac{TOC * CCF + O\&M + FC}{CF * 8760 * MW_{net}}$$

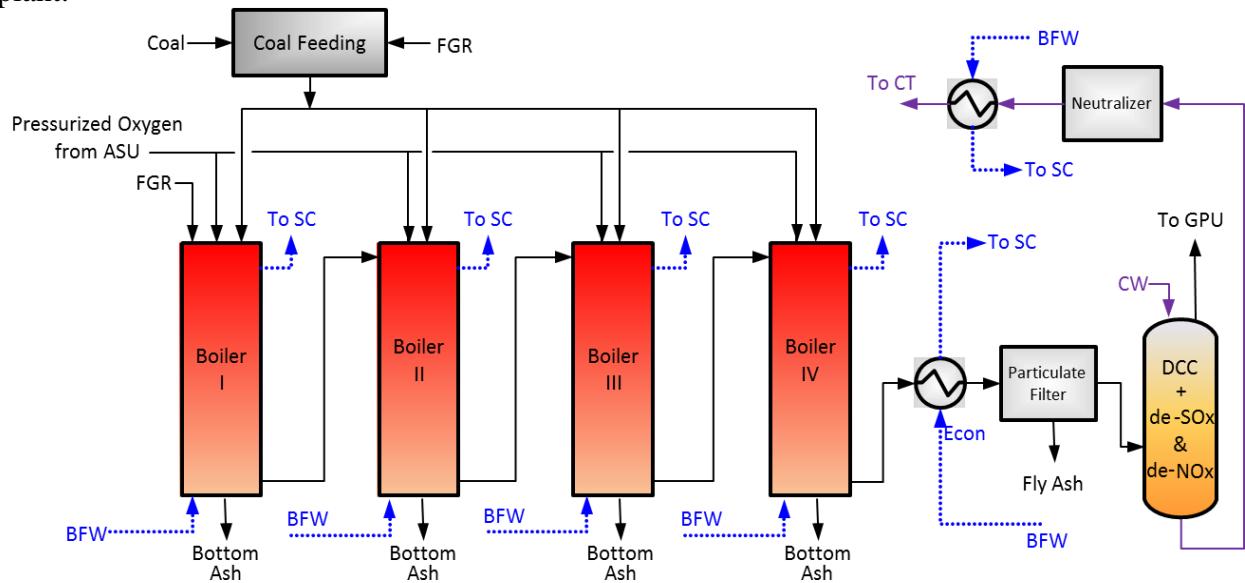
The COE was expressed in base-year dollars (2017). TOC estimates were developed for the baseline SPOC system and a flexible variant, requiring additional expenditures for the oxygen supply system. The COE for both variants was calculated; however, the value associated with achieving rapid load following was not assessed.

3

SPOC ASSESSMENT

Introduction

A review of the original modeling and conceptual design work to date by WUSTL was carried out by DBL. The main objective of the concept review was to identify key technical risks associated with the design, in terms of performance and manufacturability, and to confirm the basis of design for the 550 MWe net, once-through, SC, coal-fired SPOC process. The concept review considered the following documents produced or presented by WUSTL:


- “Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-up – Phase I Topical Report,” DE-FE0009702, June 2013.
- “Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-up – Final Technical and Economic Report,” DE-FE0009702, June 2013.
- “Process Design and Performance Analysis of a Staged, Pressurized Oxy-Combustion (SPOC) Power Plant for Carbon Capture,” *Gopan et al.* Applied Energy, 125, 179–188, 2014.
- “Effect of Operating Pressure and Fuel Moisture on Net Plant Efficiency of a Staged, Pressurize Oxy-Combustion Power Plant,” *Gopan et al.* International Journal of Greenhouse Gas Control, 39, 390–396, 2015.
- “Control of Radiative Heat Transfer in High-Temperature Environments Via Radiative Trapping – Part I: Theoretical Analysis Applied to Pressurized Oxy-Combustion,” *Xia et al.*, Fuel, 172, 81–88, 2016.
- Extract from 2016 NETL Meeting – SPOC Corrosion Test Results, DE-FE0009702.
- “Pressurized Oxy-combustion with Low Flue Gas Recycle: Computational Fluid Dynamic Simulations of Radiant Boilers,” *Xia et al.*, Fuel, 181, 1170–1178, 2016.
- “An Approach to Estimating Flame Radiation in Combustion Chambers Containing Suspended-Particles,” *Yang et al.*, Fuel, 199, 420–429, 2017.
- “Control of Radiative Heat Transfer and Ash Deposition in Staged, Pressurized Combustion Boiler,” *Yang et al.*, Presentation July 2017.
- “Control of Radiative Heat Transfer in High-Temperature Environments Via Radiative Trapping – Part II: Application in Pressurized Oxy-Combustion with Low Flue Gas Recycle,” *Xia et al.*, Draft Manuscript, 2017.

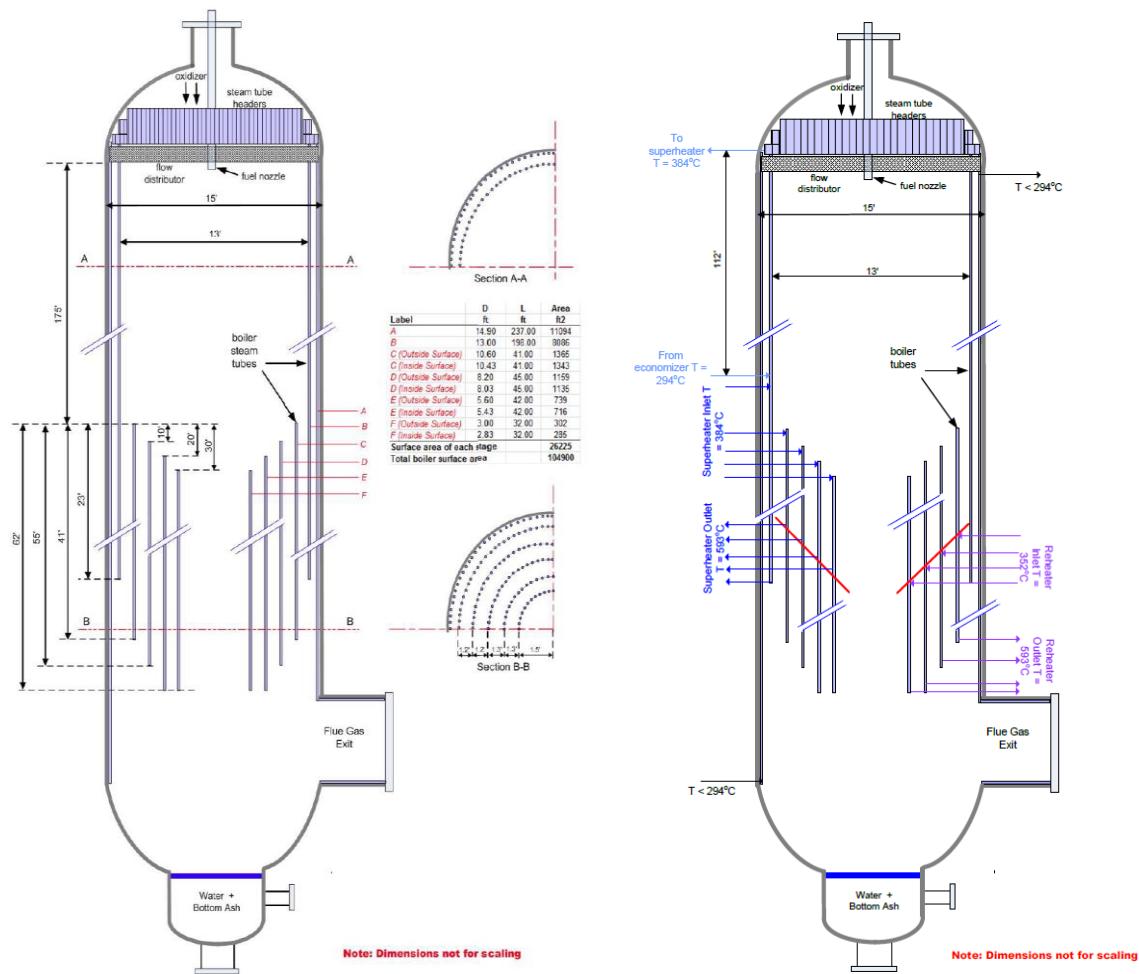
- “Staged, Pressurized Oxy-Combustion Boiler with Low Flue Gas Recycle. Part I: Burner Design and Scaling,” *Gopan et al.*, Draft Manuscript, 2017.
- “Staged, Pressurized Oxy-Combustion Boiler with Low Flue Gas Recycle. Part II: Operational Flexibility,” *Gopan et al.*, Draft Manuscript, 2017.

Original Concept

The SPOC process employs a steam power cycle to generate electricity. As with atmospheric-pressure oxy-combustion processes, CO₂ capture rates of 90% or higher can be achieved. The staged-combustion approach of the SPOC process, when operated at an elevated gas pressure of nominally 16 bara (232 psia), allows for substantial reduction of flue gas recycle (FGR) and leads to significant improvements in efficiency and reduced costs.

As shown in Figure 3-1, the concept, as initially proposed by WUSTL,⁸ is comprised of four separate downward-fired radiant furnaces connected in series in order of gas flow. Each stage has several design aspects that are like commercial radiant syngas cooler technology as applied to, for example, an integrated gasification combined cycle (IGCC) plant.

Figure 3-1
Original SPOC Process Concept


As initially proposed, PC is introduced to the combustion process at each stage, with most of the oxygen required for the entire SPOC process being introduced in the first stage, where it is only partially consumed. Each SPOC stage incorporates radiant and convective heating surfaces to raise steam and limit the exit flue gas temperature

⁸ Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-up – Phase I Topical Report, DE-FE0009702, June, 2013

progressing to the next SPOC stage, where further fuel and strategic amounts of oxygen are introduced allowing further combustion and heat release.

The fuel staging and dilution from the products of combustion as well as excess oxygen limit the gas temperatures in the SPOC process to levels comparable to those associated with atmospheric oxy-combustion. Also, HP operation leads to radiative trapping that reduces radiative heat flux to the walls. This results in a minimal need for FGR, thereby reducing both the capital and operating costs and the CO₂ capture energy penalty due to lower flue gas flow rates and blower power.

The original SPOC boiler concept, shown in Figure 3-2, consisted of a PV with internal membrane wall tubes to provide protection to the shell from incident thermal radiation. The long, narrow combustion zone was surrounded by vertical steam tubes to capture the radiative heat flux. The lower portion of the PV contained additional heating surfaces consisting of vertical steam tubes arranged in concentric circles of differing diameters.

Figure 3-2
Original SPOC Boiler Concept

Concept Review

Original SPOC Boiler Concept

The proposed SPOC boiler concept shown in Figure 3-2 presents several challenges. In particular, the arrangement of concentric heating surface would need a significant design effort to ensure the concept can be engineered to deliver structural and mechanical integrity including differential expansion and resistance to vibration. The location and number of headers and penetrations through the PV also increase the design complexity and ultimately impact cost. Although it is anticipated that these design challenges could be overcome, the solutions may require a greater capital expenditure (CAPEX) and increased technical risk compared to alternative designs that could deliver a similar performance.

The total heating surface was investigated during this project utilizing proprietary boiler OEM design tools. The tube pitching (center-to-center distance between the tubes) proposed in the boiler concept was found to be tighter than what would generally be considered acceptable for atmospheric-pressure systems, although the SPOC system operates under pressure. Also, with the proposed arrangement, the propensity for slagging and fouling of the boiler heating surface was deemed a concern. Excessive slagging and fouling would impact the effectiveness of heating surfaces and hence the amount of heating surface area required. In addition, excessive fouling and slagging could lead to significant additional gas-side pressure drops resulting in further operational issues or decreased availability and increased maintenance. It is noted that the anticipated flow regime in the SPOC boiler has been modeled with computational fluid dynamics (CFD) with the results predicting a reduced particle impact rate when compared to a conventional coal boiler plant.⁹ The CFD modeling also anticipates that the ash deposition temperatures will be below that of the ash fusion temperature. These results suggest that fouling and slagging will not be a problem. However, this modeling requires further validation to ensure the results are robust, and in the development stage it was deemed prudent to consider design changes that could reduce this risk with no envisioned impact on either CAPEX or operational expenditure (OPEX).

Vessel Arrangement and Sizing

The four stages proposed for the SPOC process concept in Figure 3-1 are capable of operating with near-zero FGR, while maintaining acceptable post-combustion temperatures. Based on the results of previous work carried out by WUSTL,¹⁰ four stages are considered as the maximum number practical due to economics and the complexity that further stages would add, with limited additional benefit. While there may be

⁹ Yang et al. Control of radiative heat transfer and ash deposition in staged, pressurized combustion boiler, Presentation July 2017

¹⁰ “Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-up – Final Technical and Economic Report,” DE-FE0009702, June 2013.

advantages to reducing the number of stages, this must be balanced against heating surface area requirements and the overall system flexibility and controllability.

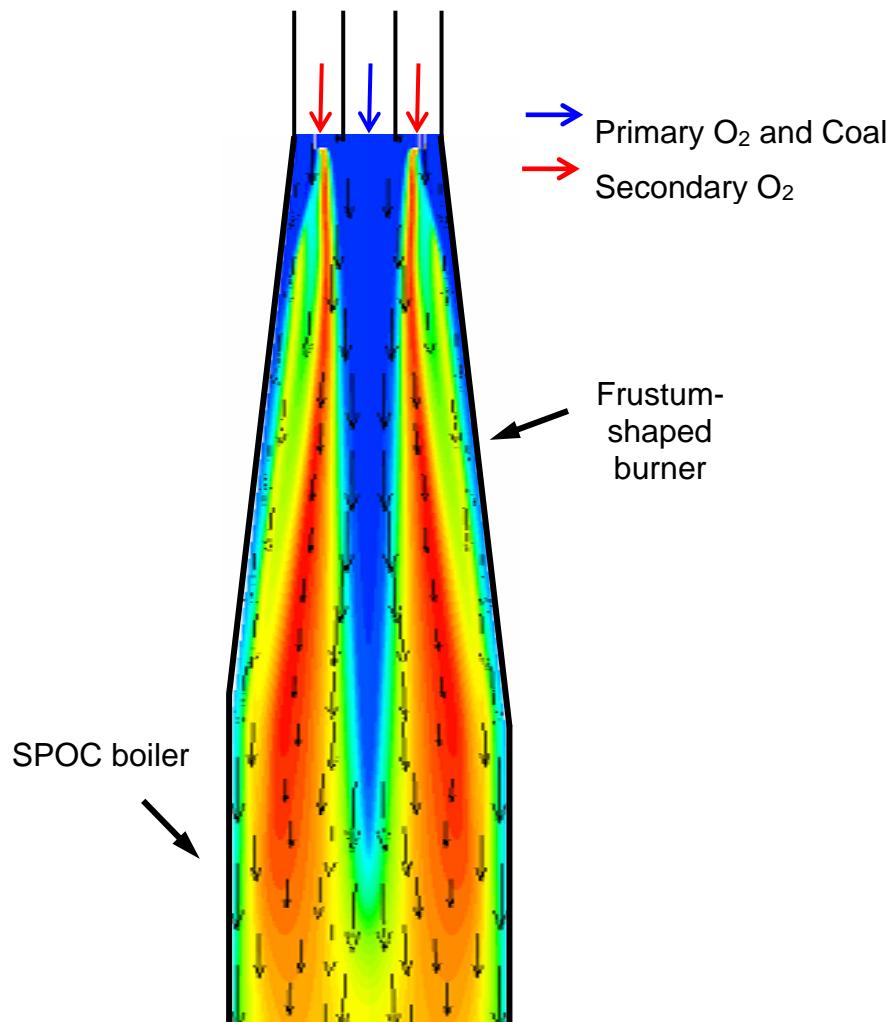
As the SPOC system operates under an elevated pressure of nominally 16 bara, the combustion envelope and all downstream equipment such as convective heat transfer banks need to be fully contained within PVs. These PVs are preferably transportable, requiring the maximum sizes to be constrained to that of typical shipping limits. Figure 3-2 shows the original SPOC boiler concept with a diameter of 4.2 m (14 ft) and height of more than 76.2 m (250 ft). Generally, vessels are limited to approximately 4.2 m (14 ft) diameter and 61 m (200 ft) in length to allow for economic shipping by road or rail.^{11,12} While it is possible to construct large vessels on site, it is likely to be more economical to manufacture vessels off-site. Shops for fabrication of large PVs are designed to accommodate the largest vessels that may be transported by rail.

From a manufacturing, sparing, and economics viewpoint, having all boiler stages within the SPOC system concept identical in terms of sizing and heating surface would be beneficial.

Burner Design

An axial-flow burner has been proposed to ensure slower mixing and a more axially-distributed heat release than a swirl-stabilized burner. While swirling flow is required for flame stabilization in air-fired and first-generation oxy-combustion systems, the SPOC system utilizes a novel burner design and elevated oxygen concentration in the oxidizer flows to ensure flame stabilization.

The proposed SPOC concept incorporates a down-fired boiler configuration primarily to avoid bottom ash hitting the burner, as would be the case in an up-fired arrangement. To minimize the impact of buoyancy, which could negatively affect flame shape and wall heat flux, the initial section of the boiler is designed as the frustum of a cone, as shown in Figure 3-3.


A concern with the original SPOC concept is that the burners for each stage must be capable of firing sufficient coal to deliver enough thermal input at the 550 MWe plant scale (approximately 375 MW_{th} per stage for a 4-stage system) but the operating conditions of each stage are different. As full-scale testing of burner performance has not been performed, there is significant uncertainty about burner performance, in particular when targeting low excess oxygen levels, desirable for reducing auxiliary power requirements.

The CFD modeling carried out to date for the SPOC combustor concept with 375 MW_{th} heat input delivers peak wall heat fluxes in the range 400–450 kW/m² (0.127–0.143 MMBtu/hr-ft²). This range is acceptable for OEM boiler design considerations.

¹¹ Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-up – Final Technical and Economic Report, DE-FE0009702, June, 2013

¹² U.S. Department of Transportation Federal Highway Administration, Federal Size Regulations for Commercial Motor Vehicles, https://ops.fhwa.dot.gov/freight/publications/size_regs_final_rpt/

Figure 3-3
Original SPOC Burner Concept

Fuel Selection and Fuel Handling

The design fuel has been selected as sub-bituminous Montana Rosebud PRB coal,¹³ which adds a degree of both technical and commercial risk compared to a higher-rank bituminous coal. The slagging and fouling characteristics of PRB are greater resulting in the need for increased tube pitch and online cleaning systems, which increase PV sizing and hence CAPEX. Additionally, the use of a lower-rank coal has a significant effect on plant sizing due to the additional fuel-firing requirement and the resultant larger flue gas

¹³ Enabling Staged Pressurized Oxy-Combustion: Improving Flexibility and Performance at Reduced Cost: Design Basis DE-FE-0029087 – Design Basis, DOE-EPRI-29087-1, May 2017.

flows required to achieve the same duty in comparison to a higher-rank coal. Compared to a bituminous coal, a plant utilizing PRB will be 7% larger from a heat input perspective alone. This results in additional CAPEX for larger equipment and increased OPEX through increased auxiliary power consumption. Therefore, the base cases selected for comparison use the same PRB fuel.^{14,15}

The SPOC fuel delivery concept requires dry-coal feeding using a lockhopper arrangement as this has been shown to yield considerably higher efficiencies than slurry feeding. While HP dry-coal pumps are being developed to deliver dry coal at up to 40 bar without the aid of motive gas, lock-hopper pneumatic dry-feeding systems are commercially available and have a history of proven operation in the gasifier industry.¹⁶ They require a small amount of motive gas for feeding the coal in dense phase. Given the proven performance of the lock-hopper systems and the lower operating pressure required by the SPOC concept compared to gasifier operation, lock-hoppers are used in this design.

The main concern with respect to the proposed SPOC fuel delivery concept is that fuel surface moisture could potentially lead to “clumping” in the feed system. To reduce this risk, the dry nitrogen waste stream from the ASU is utilized for surface drying of the fuel, thereby reducing the possibility of clumping during transport operations.

Particulate Removal

The SPOC system concept proposes the use of candle filters for PM removal. Both metal and ceramic candle filter elements have been utilized in industry but ceramic filters are susceptible to breakage, which would negatively impact performance and availability. Candle filters have been extensively used in the gasifier industry and would have an analogous application in the SPOC system. From an operational point of view, a key concern in utilizing candle filters is the high pressure drop, resulting in an increased CAPEX for compression equipment and OPEX for auxiliary power.

Ash Management and Ash Handling

The SPOC concept proposes the use of wet bottom removal for ash and slag. This process is analogous to gasifier systems where a lock-hopper system is used for removal of bottom ash and slag from pressurized to atmospheric conditions. Failure in the ash handling system would be detrimental to performance, reliability, and availability and the application of this technology to the novel SPOC concept is untested; however, using an established technology reduces the technical risk. The biggest concern in the proposed concept is that flue gas is exposed to concentrically arranged, convective heating surfaces prior to any ash removal, resulting in increased fouling, slagging, and erosion potential.

¹⁴ Cost and Performance Baseline for Fossil Energy Plants Volume 3b: Low Rank Coal to Electricity: Combustion Cases [DOE/NETL-2011/1463](https://doi.org/10.2172/1463).

¹⁵ Cost and Performance for Low-Rank Pulverized Coal Oxycombustion Energy Plants – Final Report [DOE/NETL-401/093010](https://doi.org/10.2172/1093010).

¹⁶ Gasification - Feed Systems, NETL <https://www.netl.doe.gov/research/coal/energy-systems/gasification/feed-systems>

If fouling and slagging in the boiler are considered a risk, then each SPOC boiler stage may require the use of online cleaning systems. If no online cleaning is carried out, excessive slagging and fouling would impact the effectiveness of the heating surfaces, increasing the amount of surface needed. In addition, fouling could lead to significant gas-side pressure drops resulting in operational issues that could decrease availability and increase maintenance requirements. The proposed SPOC boiler concept with concentrically arranged heating surface is not conducive to typical PC boiler online cleaning methods, such as steam-driven sootblowers. Nonetheless, pneumatic hammer wrapping systems have successfully been implemented in gasification process applications.¹⁷

Other Possible Risks for the Proposed SPOC Concept

Several other potential concept risks have been identified through the concept review as it relates to scale up of the process:

Extent of Erosion and Corrosion

The extent of anticipated erosion and corrosion through the SPOC system is not known and could have an adverse effect on both pressure parts and balance-of-plant (BOP) resulting in system performance issues, decreased availability, and increased maintenance. It is noted that some work has been carried out with respect to corrosion testing related to SPOC under a previous award.¹⁸

Validation of Boiler Performance Modelling

The 100 kWth SPOC test rig has no installed boiler heating surface with which to validate modeled boiler performance predictions. The lack of a means to validate data may result in a significant over- or under-estimate of boiler heating surface requirements.

Concept Scale Up

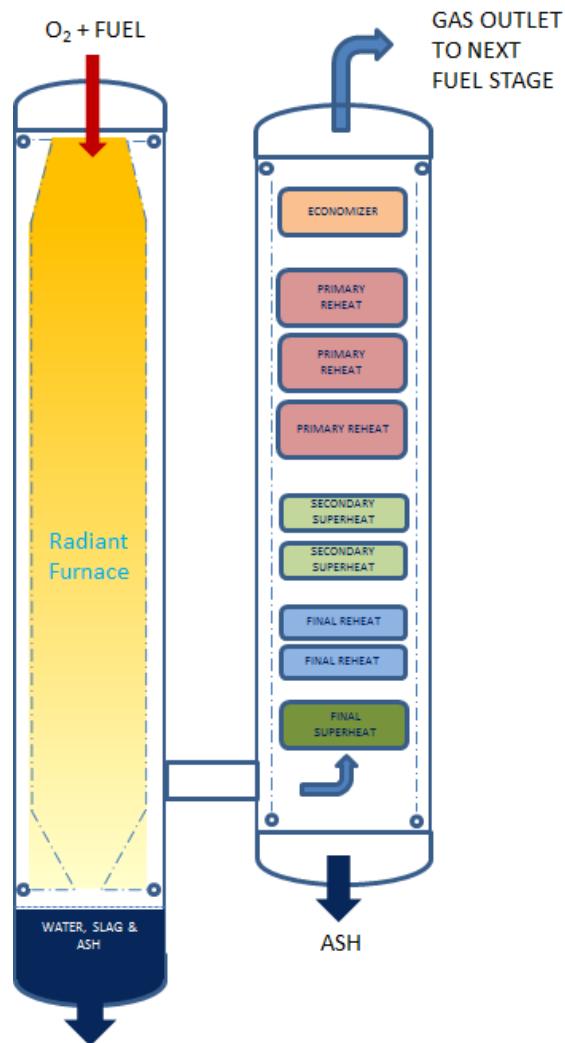
The design rules for scale up of the SPOC concept from 100 kWth to 550 MWe have not been fully established and the risk is that the design basis for scale-up is not robust enough leading to errors in system design and sizing.

Concept Plant Flexibility

At this stage of concept development, it is not possible to properly assess the pressure part scantlings in terms of maximum allowable ramp rates and allowable operational flexibility against impact on design life.

Proposed Concept Improvements and Risk Mitigation

This section represents the OEM review on proposed improvements for mitigation of technical risk. Appendix A provides a tabulated summary, in the form of a Risk Matrix,


¹⁷ Gunter Keintzel and Leszek Gawlowski, "Planung Und Aslegung Der Dampferzeuger Fur Kohle-Kombikraftwerke, VGB Special Conference Buggenum IGCC Demonstration Plant, 1993.

¹⁸ Extract from 2016 NETL meeting – SPOC Corrosion test results, DE-FE0009702

of the perceived key technical issues with suggested proposals for consideration in mitigating the risks and defining the optimized arrangement for the 550 MWe commercial-scale version of SPOC.

Layout

The key concerns with regards to the original layout are associated with the proposed concentric heating surface arrangement; particularly in terms of mechanical design requirements and propensity for fouling and slagging. The proposed mitigation is to consider an alternate SPOC furnace/boiler configuration with each SPOC stage comprising a “two-pass” downward-fired radiant vessel and upward-flow convective boiler arrangement with heating arranged in cross flow as shown in Figure 3-4.

Figure 3-4
Alternative SPOC Boiler Concept

It should be noted that the heating surface arrangement shown in Figure 3-4 is indicative and a more detailed configuration is presented in Chapter 5.

This alternative SPOC boiler arrangement also provides technical risk mitigation with respect to the potential for excessive slagging and fouling as there can be a degree of ash and slag management (momentum change at the bottom of the Combustor PV) prior to the flue gas contacting the convective heating surface. In addition, OEM design rules will be considered for tube pitching and an allowance for an amount of excess effective heat transfer surface will be made.

Vessel Arrangement and Sizing

The number of SPOC stages required will be driven by both heating surface requirements and vessel sizing economics. Although vessels are generally limited to approximately 4.2 m (14 ft) in diameter, vessels of 7 m (23 ft) and greater in diameter are routinely transported, although this can add significant cost.

In Chapter 3 it was identified that from a manufacturing, sparing, and economics viewpoint, having all boiler stages within the SPOC system concept identical in terms of sizing and heating surface would be beneficial.

Burner Design

Concerns regarding burner design identified in Chapter 3 included uncertainties in the CFD model at scale and the char burnout. The performance of the burner at scale will remain a concept risk until detailed engineering is carried out and there is a practical demonstration at significant pilot plant scale (approximately 10 MWth per stage) of the complete SPOC boiler system to ensure the basis for scale up is robust. To address concerns of combustor performance in the less-oxygenated SPOC stages, combustion testing of anticipated final SPOC stage conditions was carried out as part of this project and requirements for alternative designs were developed as discussed in Chapter 5.

Fuel Selection and Fuel Handling

The SPOC concept design was developed utilizing Montana Rosebud PRB with inference that a higher-rank coal is likely to give improved economics and process performance.

Particulate Removal

The use of candle filters is considered acceptable given their demonstration in the analogous PM removal process done in commercial IGCC units. In the Wabash River Plant IGCC, ceramic candle filters were installed but suffered from filter element breakage. The ceramic candle filters were replaced by a metallic variant that has given a candle element life of 10,000 hours. In some cases, candle filters have been paired with an upstream cyclone separator to optimize cost, removal efficiency, and equipment sizing. To minimize technical risks, the use of metallic filters is recommended for the SPOC concept to improve availability albeit at the expense of increased CAPEX. Further work, beyond the scope of this project, is required to determine the optimum solution that balances CAPEX and OPEX (e.g., auxiliary power vs. direct-contact cooler [DCC] water treatment costs, etc.) vs. removal efficiency and process requirements.

Ash Management and Ash Handling

The proposed concept for ash handling is considered robust given its implementation in the analogous IGCC process. The risk of application to the novel SPOC system concept will be mitigated further by carrying out detailed engineering design and a practical demonstration at pilot scale.

The implementation of the alternative SPOC concept utilizing a “two-pass” arrangement as per Figure 3-4 is conducive to improved ash management with a degree of ash removal prior to the flue gas contacting the convective heating surface. In addition, having the boiler heating surface arranged in a cross flow rather than concentrically allows for cavities in the heating surface to be more easily created, subject to vessel height, providing easier implementation of traditional on-line cleaning methods such as sootblowers, mechanical rapping, or shock-pulse generators.

Other Identified Risks for the Proposed SPOC Concept

Other identified technical risks will be mitigated through application of OEM knowledge and experience, design rules, and design tools to the modified concept design as far as is reasonably practicable given the available SPOC process performance data. To mitigate risks further (outside the scope of this current project), it is recommended that the developed SPOC concept undergoes detailed engineering design with practical demonstration at significant pilot-plant scale, likely in the >1 MWth size range.

Summary

A review of the original conceptual modeling and design work was undertaken, and several key concept risks and consequences were identified. Following identification, potential mitigation steps were identified with recommendations for design changes to the original SPOC boiler and system concept. The concept risks and high-level ratings and mitigations are summarized in the Risk Matrix presented in Appendix A.

At this stage of conceptual design, the SPOC system seems viable with the potential to deliver flexible performance. Several of the key concerns have been addressed, although ultimately there is still a degree of uncertainty and risk given the scale of process performance testing, lack of boiler surface for validation, and reliance on CFD and modeling. The residual risk could be further mitigated through detailed engineering design with practical demonstration at significant pilot-plant scale.

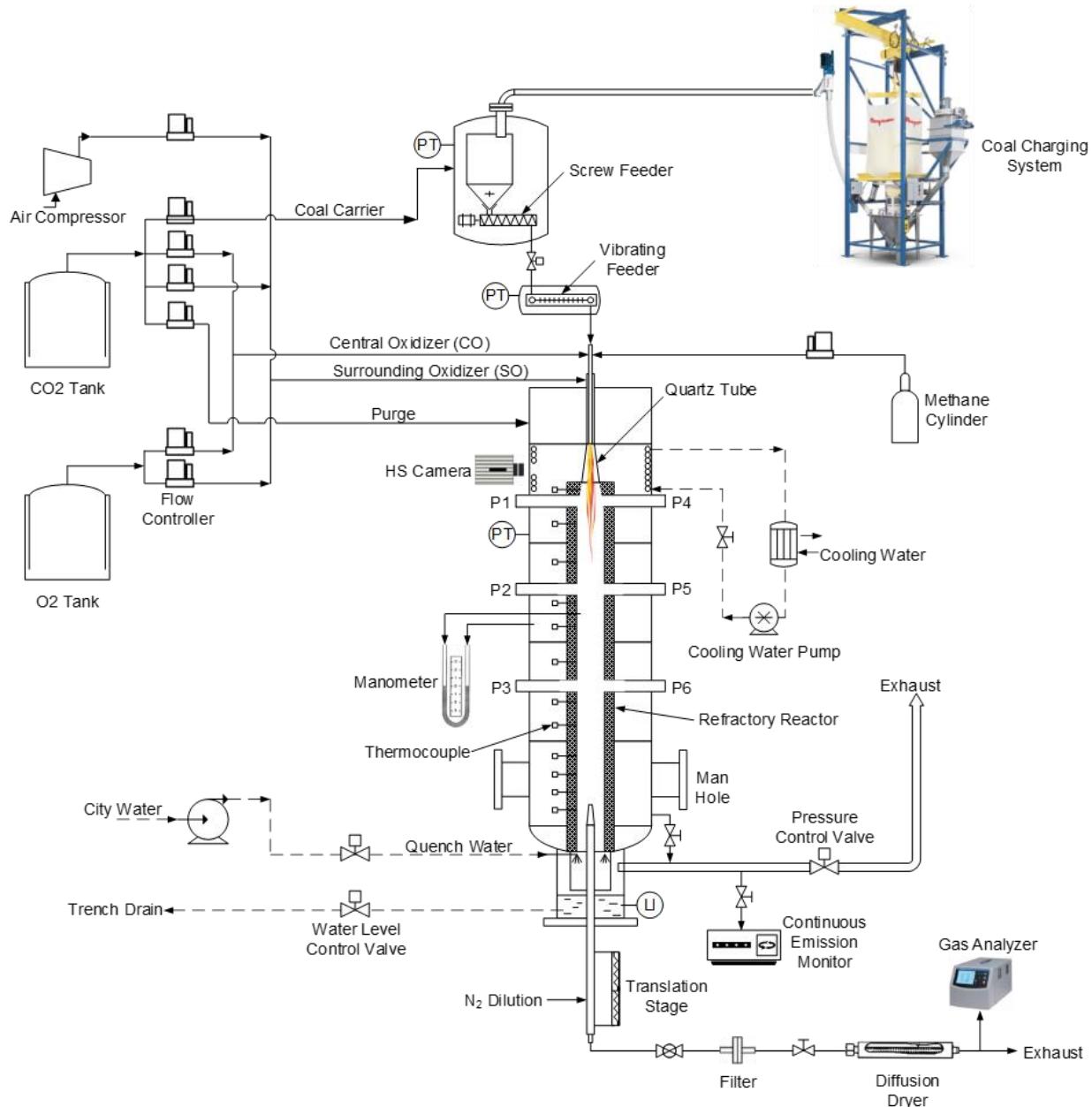
4

COMBUSTION TESTING

An essential requirement for the development of the SPOC process is a rigorous experimental test program that can validate the combustion process at a scale that is commensurate with the present level of development. This chapter provides details of the pilot-plant upgrade activities, testing objectives, the testing plan, and the testing execution.

100 kWth Pilot-Scale Combustion Facility

The pressurized combustion test facility at WUSTL has been designed to operate at up to 16 barg (232 psig) and can fire at 100 kWth input. The system represents a single SPOC stage, and it uses synthetic FGR. Figure 4-1 shows a schematic of the facility. It is comprised of pressurized combustor, gas supply system, coal feeding system, and diagnostic system.


The oxygen and CO₂ are both provided by bulk liquid tanks, from which gases are vaporized and delivered to the combustor at 21.7 bara (314.7 psia). Air is supplied by two compressors with one as backup. Methane is used as gaseous fuel for ignition and reactor preheating and is supplied by HP cylinders.

Coal feeding is designed to be a batch process to avoid a complex lock-hopper system. Before operation, coal is charged into a gravimetric screw feeder inside a coal vessel. Then the coal vessel is pressurized to the target operating pressure. During operation, coal is fed into a vibrating feeder, which is mounted inside a transfer pipe. The pressures inside the coal vessel and transfer pipe are equalized. A vibrating feeder provides uniform and steady feeding. Coal particles fall into the burner, mainly by gravity, supplied by a small stream of CO₂.

The pressurized combustor is a scaled-down version of a single-stage, commercial-scale SPOC combustor PV, as shown in Figure 4-2. The pilot combustor is approximately 6 m (19.7 ft) long and is mainly comprised of a PV, an internal reactor, a burner, and a water-quench section. The PV is rated at 20 bara (290 psia) and contains multiple sections with access ports for instrumentation. The internal reactor, placed at the center of the PV, is composed of a 0.3 m (1 ft) long, conical-shaped quartz tube at the top, and a 2.7 m (8.9 ft) long refractory tube at the bottom. The quartz tube provides full-view optical access to the flame. The refractory tube has six access ports distributed at three different heights.

Vessel walls surrounding the quartz tube region are lined with cooling water coils to prevent overheating of the walls by radiation coming from the flame. A stream of CO₂ purge gas enters the annular space between the reactor and the PV from the top of the vessel and leaves at the bottom of the vessel. The flue gas from the reactor is cooled to less than 120°C (248°F) by water sprays generated by six nozzles in the water-quench section before it goes through the pressure control valve and is vented through the exhaust line. Water level in the quench section is controlled at a fixed level during operation.

The internal reactor design features a down-fired flame and a co-axial, low-mixing flow. This unique design ensures a long and straight flame and hence more axially distributed heat release, which helps prevent excess heat flux on the wall at elevated pressure. A down-fired combustor configuration was chosen over an up-fired for several reasons, the most obvious being that an up-fired burner would be prone to bottom ash hitting the burner. Another benefit of an axisymmetric, axial-flow burner is that radial velocity components, which would cause ash deposition and slagging, are minimized.

Figure 4-1
Schematic of the 100 kWth SPOC Pilot Testing Facility

Figure 4-2
Photo of 100 kWth Pressurized Combustor of the SPOC Pilot Testing Facility

A summary of the combustion diagnostic capabilities of the research facility is provided in Table 4-1. The flame shape and flow patterns are captured by a high-speed, high-resolution camera. The inner wall temperatures of the reactors are measured by type-K thermocouples embedded inside the wall (0.32 cm [1/8 inch] away from the inner wall surface). The flue gas composition in the exhaust line is measured continuously using a continuous emission monitor. An in-house designed pressurized sampling probe was utilized to sample flue gas and fly ash particles. It can move along the centerline of the reactor and take samples at different heights. Another in-house built sampling probe is used to sample fine particles ($<10 \mu\text{m}$). It is designed with multi-stage dilutions to prevent bias during sampling and depressurization. The sampled gas composition is continuously monitored with an Horiba multi-gas analyzer and, when needed, with Fourier-transform infrared spectroscopy. The sampled fine particles are analyzed by an Electrical Low-Pressure Impactor (ELPI) or Scanning Mobility Particle Sizer (SMPS) to determine particle size distribution. Two types of heat flux measurement can be conducted. One is total heat flux

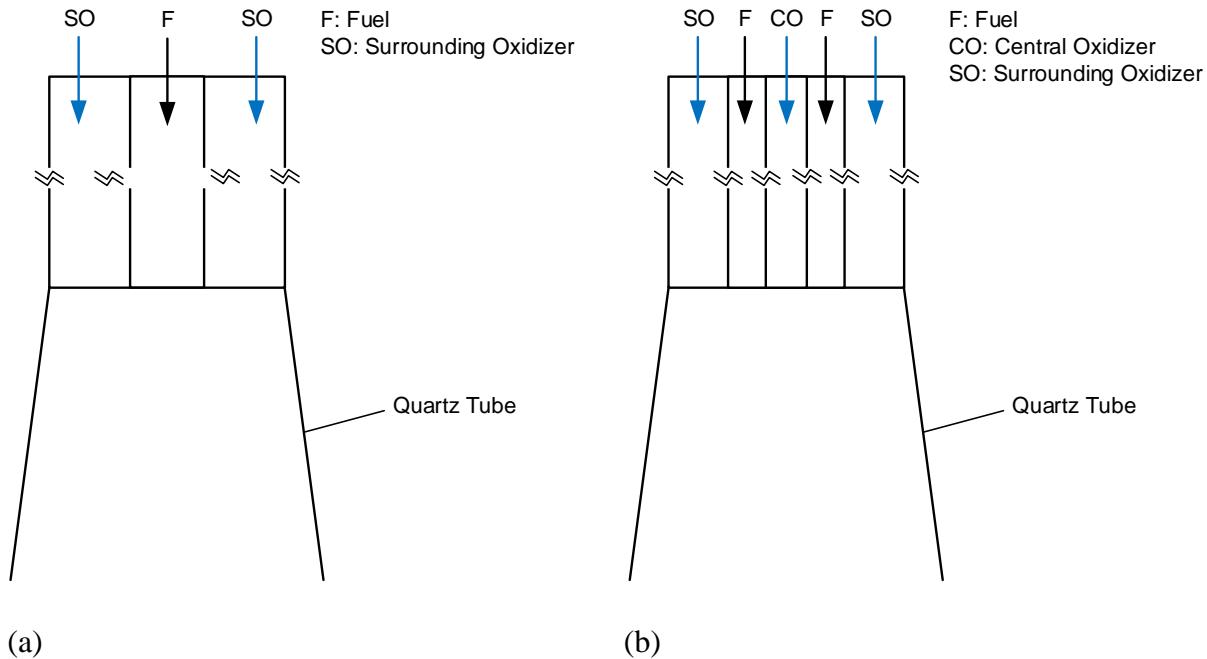
measurement with a heat flux sensor; the other is a narrow-angle radiation measurement with an in-house built narrow angle radiometer.

Table 4-1
Diagnostic Capabilities of the SPOC Research Facility at WUSTL

Measurement	Device
Visual Observation of Flames	High-resolution, high-speed camera
Wall Temperatures	Embedded thermocouples
Exhaust Gas Composition	Continuous emissions monitoring system
Gas and Particle Sampling	Translatable gas and particle sampling tube In-house built fine-particle sampling probe
Sampled Gas Composition	Horiba multi-gas analyzer Fourier-transform infrared spectroscopy
Sampled Particle Size Distribution	ELPI and SMPS
Ash Composition	Thermogravimetric analysis (TGA) system Energy-dispersive X-ray spectroscopy
Ash Morphology	Scanning electron microscope
Heat Flux	Medtherm Schmidt-Boelter heat flux sensor In-house designed narrow angle radiometer

Pilot Facility Retrofit and Upgrade

For this project, major retrofit and upgrade activities have been carried out. WUSTL also held a process safety review meeting with internal and external experts in combustion processes and oxygen safety to review the pilot facility with respect to potential safety hazards. All recommendations were addressed prior to operating the facility at high pressure. These activities ensured that the facility would operate safely and reliably at target operating conditions.


Facility Retrofit

The retrofit activities included two parts. The first part focused on improving the burner and reactor designs such that the combustor can properly simulate the environment that the coal particles would experience inside a full-scale SPOC boiler. The second part focused on improving optical and physical access for combustion diagnostics.

Figure 4-3 shows the geometries of the burner before and after retrofit. Both burners incorporate a co-axial flow design and operate in a non-premixed combustion mode. The burner before retrofit only included two reactant streams with a central fuel stream surrounded by a oxidizer stream (Figure 4-3a), while the burner after retrofit incorporates three reactant streams with a central oxidizer stream surrounded by a fuel stream in an annulus, which is further surrounded by a surrounding oxidizer stream (Figure 4-3b). This design enhances operating flexibility. The flame length can be easily controlled by adjusting the central and surrounding oxidizer. The oxygen concentration in both central and surrounding oxidizer streams can be varied between 0–100 vol %.

The new burner was tested in a separate facility (30 kWth in size), which operates at atmospheric pressure before being installed in the pressurized facility. In this separate facility, this burner was successfully fired over a wide range of operating conditions, including extreme conditions such

as 100% oxygen concentration in the oxidizer. During this testing, the burner design was shown to be very reliable and flexible.

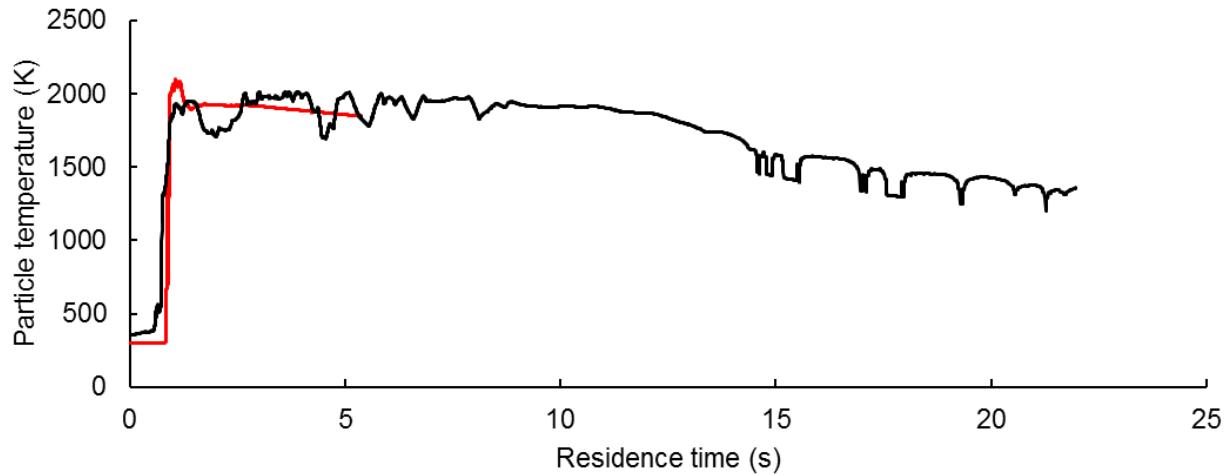
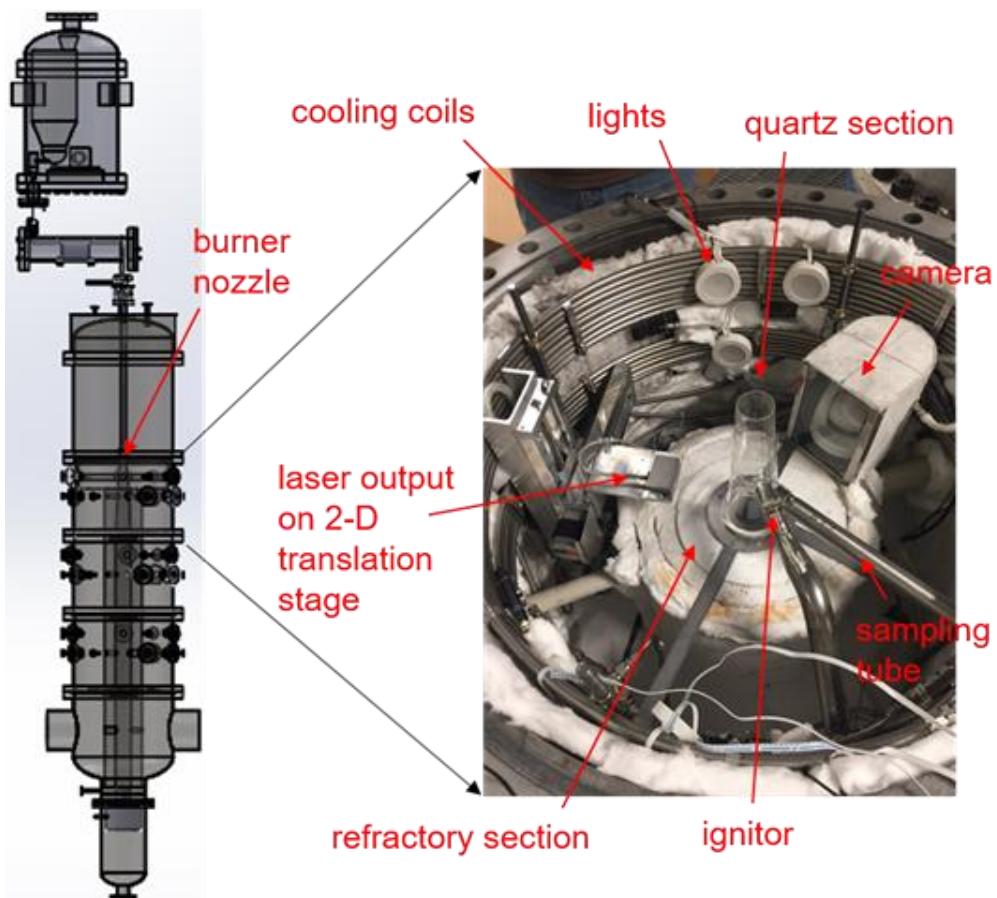


Figure 4-3
Geometries of the Burners (a) Before Retrofit and (b) After Retrofit

The reactor is composed of a conical-shaped quartz tube and a cylindrically-shaped refractory tube. Before retrofit, the maximum internal diameter of the reactor was 0.14 m (5.5 inches). Initial testing and CFD simulations both indicate that at this size an internal recirculation zone forms below the flame due to buoyancy. This internal recirculation zone can lead to excess ash deposition on the walls adjacent to this zone. After redesign using the CFD model, a new refractory tube was installed with an internal diameter of 0.127 m (5 inches). Testing results after retrofit demonstrated that the internal recirculation zone was successfully removed. The modified reactor also included additional ports for gas and particle sampling and heat-flux measurements.

One of the objectives of this project was to use the pilot-scale combustor to simulate the temperature environment that coal particles would experience in a utility-scale SPOC boiler. Since the residence time (~5 sec) of the pilot-scale combustor is smaller than that of a SPOC boiler (~22 sec), the goal is to have the pilot-scale combustor simulate the early stage (i.e., first ~5 sec) of the SPOC boiler, because this stage is where the main combustion processes occurs. After this stage, the particle burning is complete, leaving only physical processes (the heat of the flue gas is transferred to the water in the boiler walls). This goal required special consideration of the heat transfer characteristics of the reactor walls in the design such that the gas temperature profile inside the reactor can be maintained like that in a full-scale boiler. For this purpose, different types of refractory materials were adopted for different sections of the reactor. Figure 4-4 shows the temperature histories of a 50- μm coal particle in the pilot-scale combustor and a full-scale SPOC boiler predicted by CFD simulations. As shown, the particle temperature history

in the pilot-scale combustor matches reasonably well with that of the full-scale SPOC boiler in the first 5 seconds.

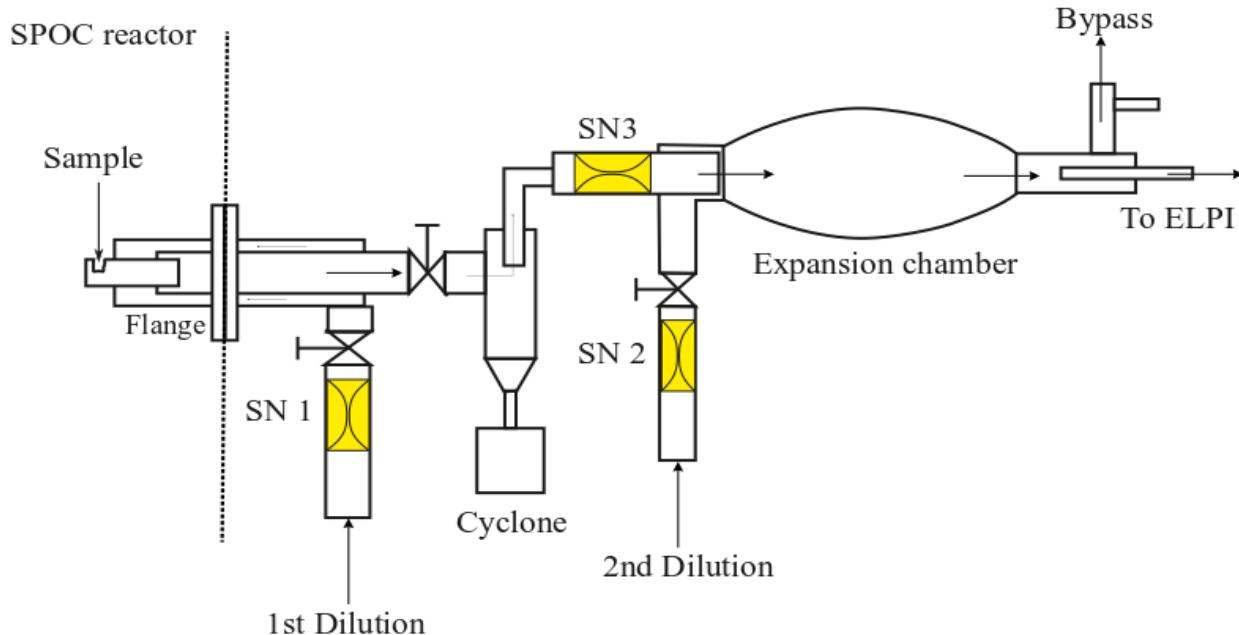

Figure 4-4

Temperature Histories of a 50 μm -Coal Particle in the Pilot-scale Combustor and a Full-scale SPOC Combustor Predicted by CFD Simulation

To improve the optical access for visually capturing flame shape and flow pattern, a larger conical-shaped quartz tube with ignition and sampling ports was installed shown in Figure 4-5.

This quartz tube served as the top part of the reactor internals and provided significantly improved visual access to the flame for cameras (including high-speed camera) and laser diagnostics. Around the quartz tube, water-cooled coils were installed to cover the internal surface of the PV to prevent overheating and to provide heat loss data from the quartz tube.

A flow control valve was also added to control the CO_2 purge flow rate leaving the PV, as shown in Figure 4-1. Since the CO_2 purge flow entering the PV is fixed, by adjusting the new added flow control valve at the outlet side, the pressure outside the reactor can be adjusted, ensuring that this pressure is equal or slightly higher than that inside the reactor. In this way, flue gas leakage to the PV can be avoided. The pressure difference between inside and outside of the reactor is measured by a pressurized manometer.


Figure 4-5
Picture of Internals of SPOC Pilot Pressure Vessel

Facility Upgrade

The facility upgrade focused on two parts: diagnosis instrumentation and system automation. The diagnosis instrumentation upgrade included measurement equipment for fluid flow visualization, gas composition, particle size and composition, and heat transfer. System automation upgrades included hardware and software upgrades.

To evaluate soot formation inside the flame, a laser diagnostic system together with multi-axis translation stages were designed and installed inside the PV along with the quartz tube. The laser diagnostic system incorporated a red-green-blue three-color laser and can provide the particle volume fraction and temperature information. A fiber optic laser output with a cylindrical lens was installed, which produced a laser sheet and was used to detect particles in the flow. This laser is mounted on a 2-D translation stage. The multi-axis translation stages allow for a two-dimensional scanning of the flame through the quartz tube.

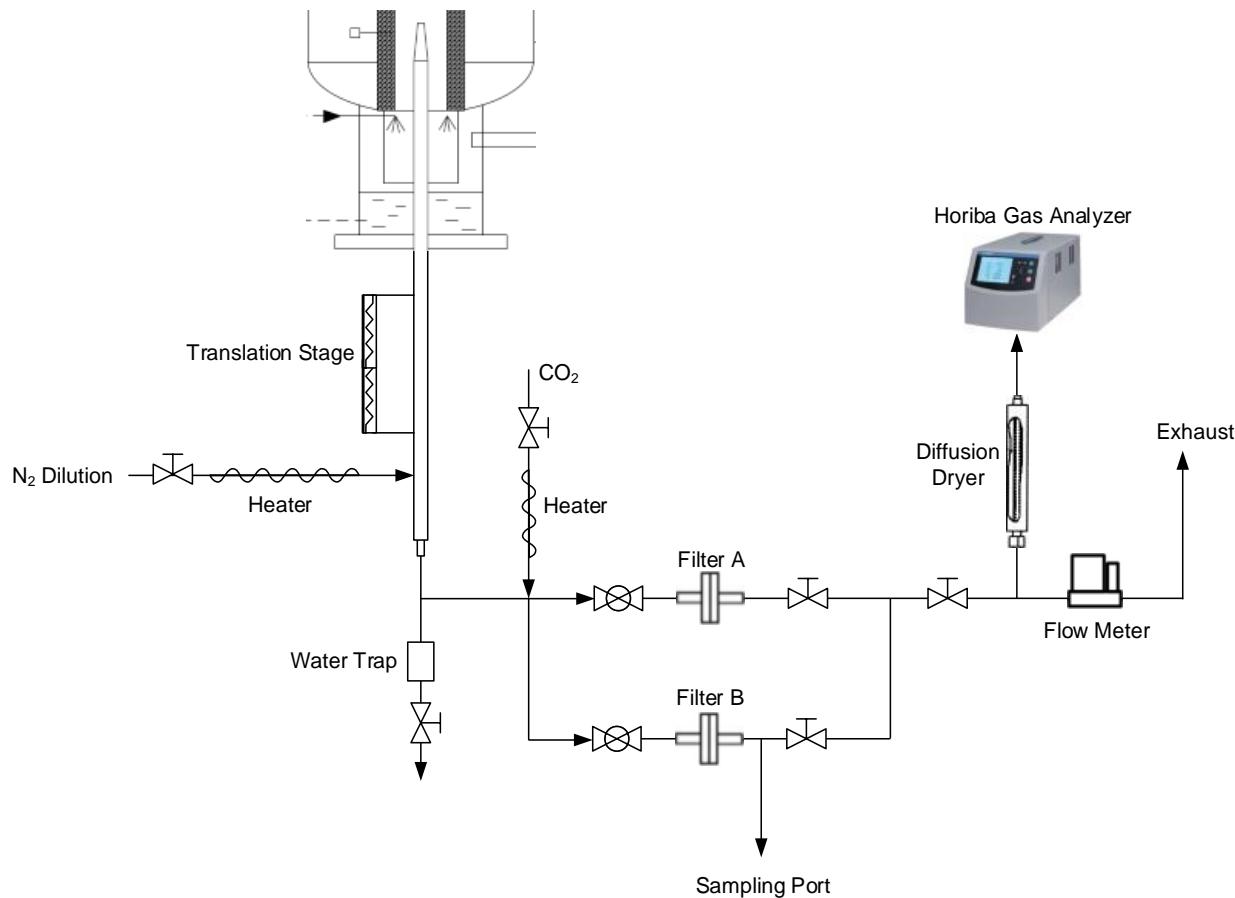

A pressurized multi-function sampling probe was designed as shown in Figure 4-6. Both gas and particles can be sampled together by the sampling probe.

Figure 4-6
Schematic of a Two-stage Dilution Gas and Particle Sampling Probe

The probe has two-stage nitrogen dilutions. The first-stage dilution is hot at the inlet of the probe, which is used to prevent particle inception and condensation. The second dilution is where the sampled stream is depressurized. It is used to avoid acid and moisture condensation and forms a shield flow around the inner surface of the expander to prevent particle impaction on the expander wall. The two-stage dilution ratios can be accurately adjusted according to the operating pressure and temperature. The coarse particles were captured by an in-house built pressurized cyclone, and the remaining fine particles were fed into a SMPS or the ELPI to measure the particle size distribution.

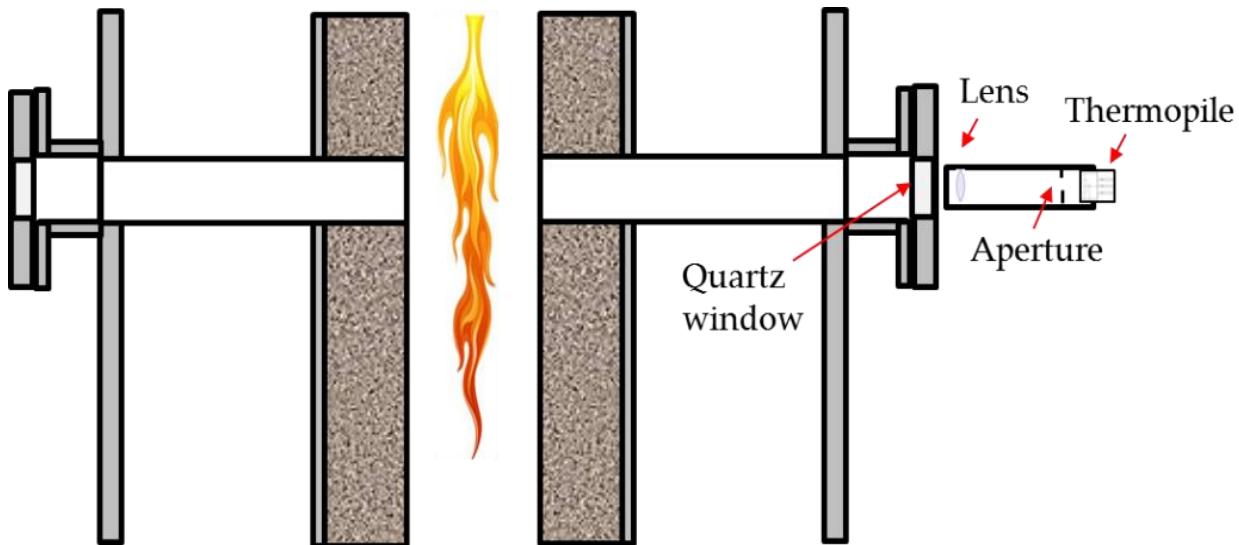

Another pressurized sampling probe was designed to collect fly-ash particles and gas along the centerline of the reactor as shown in Figure 4-7. The sampling probe draws around 30 standard litre per minute (SLPM [1.06 scfm]) flue gas. The sampled flue gas is diluted by a stream of around 30 SLPM (1.06 scfm) nitrogen. Then the mixed stream passes through a filter, which is used to collect fly-ash particles. After the filter, the stream is depressurized through a needle valve, and then a slip stream of the flue gas (0.4 SLPM [0.01 scfm]) is drawn to a diffusion dryer. After drying out the moisture, this slip stream enters the Horiba portable gas analyzer (Model PG-250), which is used to measure the composition of the dried gas stream.

Figure 4-7
Schematic of a One-Stage Dilution Sampling Probe for Collecting Fly Ash and Gas on the Centerline of the Reactor

To prevent water and acid condensation in the sampling system, the sampled probe is heated to above 300°C (572°F) using heated CO₂ flows before taking samples. The outside of the probe is also heated by heat tapes such that the temperature on the whole surface of the probe is maintained above 300°C (572°F).

Figure 4-8 shows a sketch of the radiometer design, which was built in-house by WUSTL. The radiometer comprises an optical lens, an aperture, a thermopile, and a metal housing. During measurement, the radiometer was placed at the outside of one quartz window port. The port size is 3.8-cm (1.5") inner diameter. On the opposite side of the chamber, there is another port with a cold quartz window at the end as shown in Figure 4-8. The solid angle of the radiometer was designed such that the field of view does not cover any part of the inner wall surface of the port or the hot refractory wall. Therefore, the radiometer measures the thermal radiation solely coming from the hot flue gas and the particles entrained in the gas.

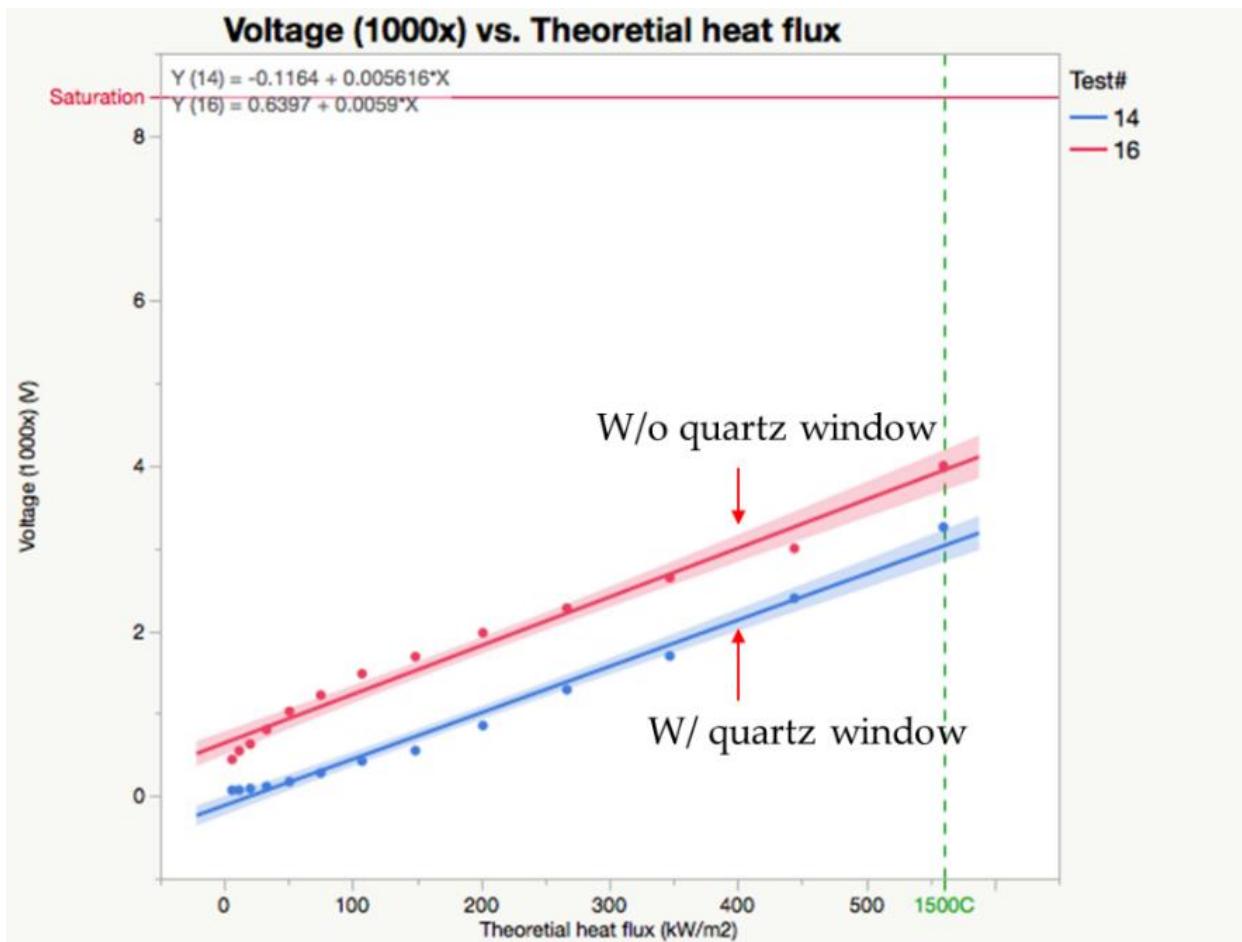


Figure 4-8
Sketch of the In-house Radiometer and the Setup

Before radiation measurements, the radiometer was calibrated against a blackbody furnace. Two calibration curves were obtained, one with a quartz window placed between the radiometer and the blackbody furnace, and the other without a quartz window, as shown in Figure 4-9. The radiation received by the radiometer without the quartz window was higher than that with the quartz window, because the window blocks part of the thermal radiation. The calibration curve with the quartz window was used in the flame measurement.

For system automation, new automated flow control valves were installed for multiple gas inputs, pressure control and quench water feeding, and water-level control. As an improvement of the safety interlock system, a methane detection sensor was installed to detect any potential fuel back flow into the pressurized-coal feeding pipe. An oxygen detection sensor was installed inside the pressurized-coal vessel to detect oxygen back flow into the coal vessel and another oxygen sensor was installed to detect flue gas leaks into the PV in different sections.

A flame safeguard system was installed and tested. This system consists of a Fireye® flame scanner, which connects to a dedicated control panel that is separate from, and redundant to, the operator control and data acquisition system. This safety system ensures safe reactor shutdown in the event of an unexpected flame out, ability for a user initiated emergency stop, or when a critical process variable is outside of its operating range.

Figure 4-9
Calibration Data for the In-house Radiometer

Due to reliability issues of the original LabVIEW-based control system, an outside professional process engineering and consultant group, EPIC Systems, Inc., was contracted to review the existing facility and to make recommendations for needed upgrades to the flow controls, user interface, and safety interlock systems. Based on the recommendations from the consultant group, a hybrid automation system that combines an industry-standard Allen-Bradley Programmable Logic Controller system and a laboratory-standard LabVIEW system was implemented into the facility. The Allen-Bradley system is used for flow controls, human-machine interface, and safety interlock systems. The LabVIEW system is used for high-resolution experimental data acquisition. Before the system automation upgrade, the pilot facility was mainly operated manually (six people were required for operation); after the upgrade, the facility is fully automated and only two people are required for standard operation.

A Flexicon powder deliver system was installed to deliver coal from the ground floor to the coal vessel on the 3rd floor, to automate coal charging.

Process Safety Review

WUSTL held several process safety review meetings for the pressurized facility with respect to potential safety hazards, and to determine any changes that might be needed prior to operating the facility at high pressure and high thermal input. WUSTL initially consulted with an expert from Commonwealth Scientific and Industrial Research Organisation in Australia, who was responsible for a pressurized gasification unit. This facility shares several similarities with WUSTL's pressurized combustor. Valuable operation experiences and safety procedures were shared with WUSTL.

Following this, WUSTL contracted the services of WHA-International, who specializes in oxygen systems safety. A consultant from WHA spent two days at WUSTL to review the test facility oxygen system for potential fire hazards and to provide input on materials selection for application in the full-scale SPOC boiler. Recommendations were provided to the team in a summary report.

Finally, WUSTL held a process safety review meeting that included experts from EPRI, Sandia, the lead engineers from EPIC Systems, Inc., and numerous personnel from WUSTL. The team reviewed facility procedures and the newly-implemented control system, including automated shutdown sequence and safety interlock and permissive.

The committee recommended that some changes be made to the control system, and that the modifications should be implemented and checked out before proceeding to pressures greater than 5 bara (72.5 psia). The modifications included additional automation of the flame-ignition sequence and additional safety interlocks.

These changes, as recommended by the safety review committee, were implemented and checked out. As this was a prerequisite for conducting combustion experiments under high pressure, the control sequences and interlocks for all gas input flows, coal vessel and reactor pressures, coal delivery, and quench water level were all tested separately for over 48 hours. The results of this test were satisfactory.

Testing Plan

Original Testing Plan

Two test campaigns were originally planned for this project, one simulating the first stage (Stage 1) of the SPOC process, the other one simulating the last stage (Stage 4). The purpose of these campaigns was to examine the stability and overall combustion performance of the designed full- and partial-load operating conditions for the these two most critical stages in the SPOC process. Another purpose was identifying the minimal load of the two stages, which is defined as the lowest thermal load before combustion becomes unstable.

In each test campaign, four thermal loads were scheduled: designed full load (100 kWth), 75% load, half load, and minimal load (as low as stable). The designed flow conditions for each test are listed in Table 4-2.

Table 4-2
Original Proposed Test Matrix

Stage 1 Designed Conditions	Test S1-100	Test S1-75	Test S1-50	Test S1-ML
15 bara (217 psia)	Full-load	Partial-load	Partial-load	Partial-load
Thermal Input, kWth	100	75	50	Minimal ^a
Stoichiometric Ratio	2.0	2.0	2.0	2.0
Overall O ₂ Concentration, vol %	50	50	50	50
Oxidizer Temperature, °C (°F)	15 (59)	15 (59)	15 (59)	15 (59)
Coal Feeding Rate, kg/hr (lb/hr)	12.7 (28.1)	9.6 (21.1)	6.4 (14.1)	-
Methane Flow Rate, SLPM (scfm) ^b	15 (0.53)	11.3 (0.4)	7.5 (0.26)	-
Coal Carrier CO ₂ Flow, SLPM (scfm)	15 (0.53)	11.3 (0.4)	7.5 (0.26)	-
Inner O ₂ Flow Rate, SLPM (scfm)	242 (0.85)	181.5 (6.41)	121 (4.27)	-
Outer O ₂ Flow Rate, SLPM (scfm)	290 (10.2)	217.5 (7.68)	145 (5.12)	-
Outer CO ₂ Flow Rate, SLPM (scfm)	538 (19.0)	403.5 (14.2)	269 (9.50)	-
Stage 4 Designed Conditions	Test S4-100	Test S4-75	Test S4-50	Test S4-ML
15 bara	Full-load	Partial-load	Partial-load	Partial-load
Thermal Input, kWth	100	75	50	Minimal ^a
Stoichiometric Ratio	1.05	1.05	1.05	1.05
Overall O ₂ Concentration, vol %	15	15	15	15
Oxidizer Temperature, °C, (°F)	300 (572)	300 (572)	300 (572)	300 (572)
Coal Feeding Rate, kg/hr (lb/hr)	12.7 (28.1)	9.6 (21.1)	6.4 (14.1)	-
Methane Flow Rate, SLPM (scfm) ^b	15 (0.53)	11.3 (0.4)	7.5 (0.26)	-
Coal Carrier CO ₂ Flow, SLPM (scfm)	15 (0.53)	11.3 (0.4)	7.5 (0.26)	-
Inner O ₂ Flow Rate, SLPM (scfm)	242 (0.85)	181.5 (6.41)	121 (4.27)	-
Outer O ₂ Flow Rate, SLPM (scfm)	84 (2.97)	63 (2.22)	42 (1.48)	-
Outer CO ₂ Flow Rate, SLPM (scfm)	1861 (65.7)	1396 (49.3)	931 (32.9)	-

^a Minimal load to be identified by gradually dropping the load until the combustion process becomes unstable.

^b Methane flow is for flame stabilization and corresponds to 10% of the total thermal input. The flow rate is subject to change based on testing. If less or no methane is required for stable combustion, the coal feeding rate increases correspondingly.

When the system is operated in turn-down (partial-load) mode, all the oxidizer flows decrease proportionally with fuel flow, such that the stoichiometric ratio (SR) and overall oxygen concentration remain the same as in full-load mode.

Examination of basic combustion characteristics at each operating condition was done by visually observing the flame through the optical access of the facility and measuring the carbon monoxide (CO) and soot concentrations in the flue gas. The visual observation involved two types of cameras: high-definition webcams, and a high-speed, high-resolution camera with a maximum frame rate of 200,000 frames/second.

The high-definition webcams were located inside the pressurized chamber, looking at the flame from 4 different angles. They provide a complete picture of the quartz reactor and cover most parts of the flame. The high-speed camera focuses on local regions of the flame and provides detailed information including the flow eddies and particle trajectories in the combustion region.

The measurement of CO and soot concentrations in the flue gas was carried out by on-line gas sampling. High CO and soot concentrations in the flue gas indicate unstable operation and incomplete combustion. Ash particles, which are sampled together with flue gas, were analyzed off-line to identify any incomplete char combustion or soot. Loss-on-ignition testing was used to analyze the ash particles. The devices used in the above measurements are listed in Table 4-3. Together, these measurements indicate the overall combustion performance at each operating condition.

Table 4-3
Measurement Strategy for Performance Tests

Measurement	Device
Visual Observation of Flame	High-speed camera and high-definition webcam
Flue Gas CO and Soot Concentration	Flue gas sampler, Horiba multi-gas analyzer, and optical particle sizer)
Ash Carbon Concentration	Flue gas sampler, cyclone, and TGA

Additional tests were performed to investigate the heat release and combustion development. The purpose of these tests was to generate a database for model validation. Measurements were taken based on the stable full-load operating conditions identified from the initial tests. The measurement techniques employed are listed in Table 4-4. The centerline gas compositions and particle size distributions were planned at three locations by moving a pressurized gas and particle sampler located at the bottom of the combustor.

Table 4-4
Measurement Strategy for Model Validation

Measurement	Device
Wall Heat Fluxes (both convective and radiative at port locations)	Medtherm Schmidt-Boelter heat flux sensor
Flue Gas Composition	Flue gas sampler and HORIBA multi-gas analyzer
Centerline Profiles of Gas Composition (i.e., CO ₂ , O ₂ , CO, and H ₂ O)	Pressurized gas and particle sampler and HORIBA multi-gas analyzer
Centerline Particle Size Distributions	Pressurized gas and particle sampler and DEKATI ELPI
Centerline Temperatures	Thermocouple

Boiler Design Workshop and Revised Testing Plan

At a team workshop held on the March 13 and 14, 2019 at Doosan Babcock's Renfrew offices in the United Kingdom, WUSTL proposed modifying the operating conditions for the SPOC process, such that a modular design can be achieved for all stages. Accordingly, the test plan for the project was modified. A summary of the updated test conditions is provided in Table 4-5. Because in the new design all stages in the process are operated at the same conditions, the second campaign to mimic the last stage of the process was removed.

The new test campaign was designed as follows:

- The thermal input will be varied substantially to assess the turndown capability of the lab-scale burner.

- Domains of stable operation will be identified based on visual observation and flue gas composition measurements.
- Measurement of CO and soot will be made to allow for identification of unstable or incomplete combustion.
- After stable modes of operation over a wide range of turndown are identified, a thorough test campaign will be conducted for the most promising burner/combustion chamber configurations.
- Wall heat flux (both convective and radiative) and combustion products will be measured.
- Centerline axial profiles of composition, particle size distribution, and temperature will be obtained.

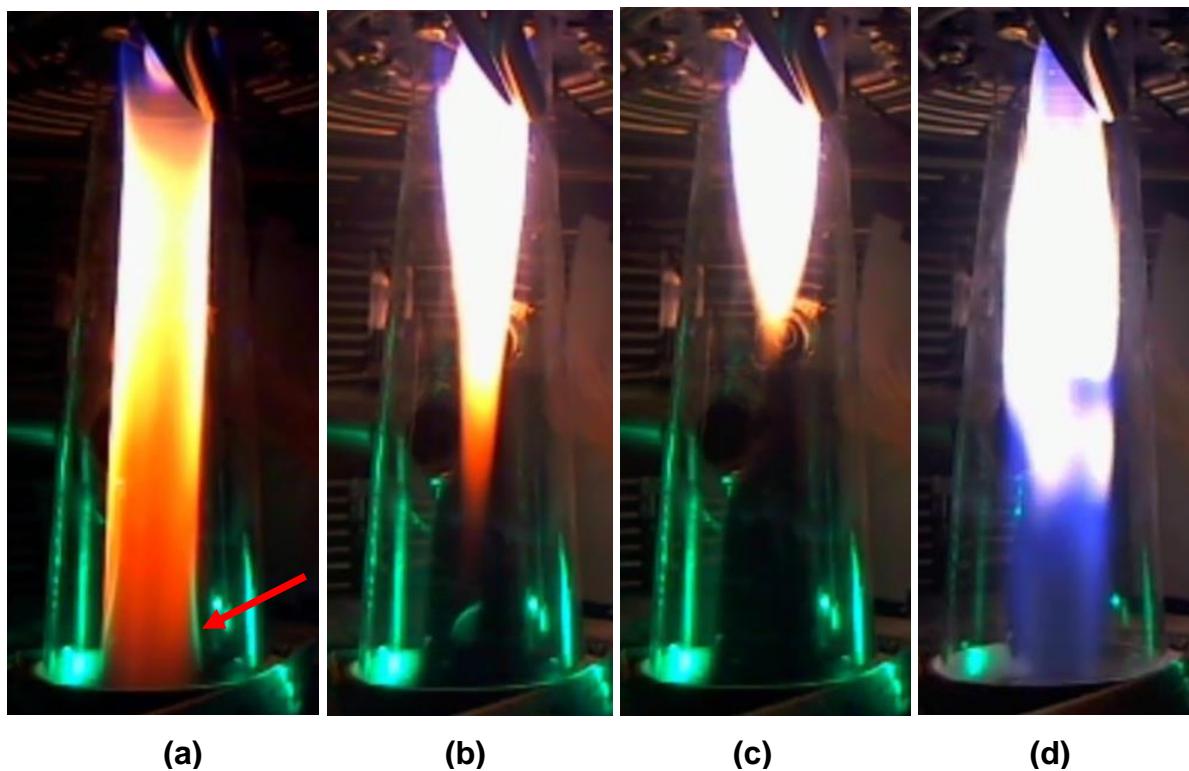
Measurements and conditions were chosen to develop a database for model validation. The expected outcomes of the testing are heat flux profile validation of CFD modeling application at scale, combustion efficiency at low excess oxygen levels, and demonstration of successful turndown operation.

Table 4-5
Revised Test Matrix

Designed conditions	Test 1	Test 2	Test 3	Test 4
15 bara (271 psia)	Full-load	Partial-load	Partial-load	Partial-load
Thermal Input, kWth	100	75	50	Minimal
Stoichiometric Ratio	1.12	1.12	1.12	1.12
Overall O ₂ Concentration, vol %	30	30	30	30
Oxidizer Temperature, °C, (°F)	15 (59)	15 (59)	15 (59)	15 (59)
Coal Feeding Rate, kg/hr (lb/hr)	14.2 (31.3)	10.6 (23.4)	7.1 (15.6)	-
Coal Carrier CO ₂ Flow, SLPM (scfm)	15 (0.53)	11.3 (0.4)	7.5 (0.26)	-
Methane Flow Rate, SLPM (scfm)	0 (0)	0 (0)	0 (0)	-
Inner O ₂ Flow Rate, SLPM (scfm)	119 (4.20)	89.2 (3.15)	59.5 (2.10)	-
Inner CO ₂ Flow Rate, SLPM (scfm)	277 (9.78)	207.7 (7.33)	138.5 (4.89)	-
Outer O ₂ Flow Rate, SLPM (scfm)	231 (8.16)	173.3 (6.12)	115.5 (4.08)	-
Outer CO ₂ Flow Rate, SLPM (scfm)	539 (19.0)	403.5 (14.2)	269 (9.50)	-

Testing Results

To ensure safe operation, the pilot facility demonstration was executed step by step: starting from atmospheric pressure with low thermal input; then at low pressures (3–5 bara [43.5–72.5 psia]) with moderate thermal input; finally, at high pressures (10–15 bar [145–217 psia]) with high thermal input. Experience was gradually gained by the WUSTL operation team during this process.


Note that all testing activities at atmospheric and low pressures and part of the activities at higher pressures were conducted before the test plan was revised during the team workshop. Therefore, all conditions at atmospheric and the lower pressures, and part of the conditions at high pressure,

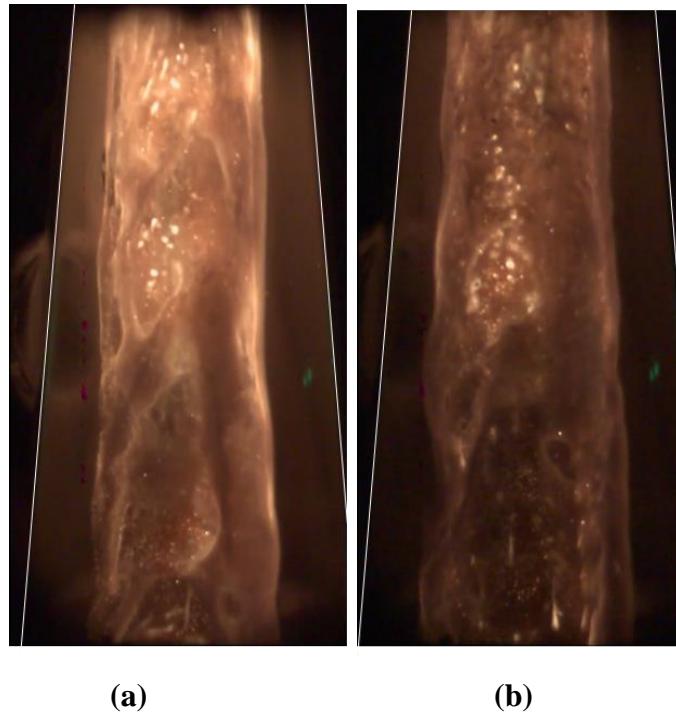
were designed to simulate Stage 1 or Stage 4 based on the original test plan. Even though the test plan was revised, these testing activities are still valuable as they demonstrated the flexibility of the new burner design and provided data with a wide range of conditions for model validation.

Testing at Atmospheric Pressure

Ignition tests were first carried out at atmospheric pressure. Various stoichiometric conditions and flow conditions were examined for the ignition tests. Results indicated that, after the retrofit, the ignition characteristics of the system remain almost the same as before. Efforts were made to identify an optimal ignition condition. Under this condition, the system can be easily ignited within a relatively short time. The ignition is repeatable and reliable and the flame after ignition is clean (i.e., non-smoking). A standard operating procedure for ignition was established after these tests.

Then combustion tests using methane were conducted to determine the operating range of the new burner, and to test the laser and imaging equipment. Some results of the combustion testing are shown in Figure 4-10 with (a) methane-air combustion at ignition conditions; (b) the resulting flame after starting of central oxygen flow; (c) the resulting flame after further increase in central oxygen flow; and (d) the resulting flame after increasing thermal input to 7 kWth.

Figure 4-10
Photographs of Methane Combustion at Atmospheric Pressure in the SPOC Test Facility


During methane/air combustion at low thermal input conditions, as shown in Figure 4-10a, the flow is laminar, and there is a large yellow/orange luminous zone indicating the formation of fine carbonaceous particles, or soot. Cold (non-luminous) particles (indicated by the red arrow), near the edges of the orange zone, are also made visible by the green laser sheet.

The presence of such particles indicates that the flame is smoking, meaning that black soot particles are being emitted from the flame without being fully oxidized. To prevent fouling downstream and to increase combustion efficiency, the emission of soot must be prevented. This issue is of interest as increasing pressure is known to enhance soot particle formation. The elimination of smoking is accomplished by using more oxygen, which is injected into the central port of the burner. The resulting flame is shown in Figure 4-10(b). The injection of oxygen improves soot burnout, as indicated by the absence of scattered green light in the post-flame region. Note that the remaining visible green light observed in Figure 4-10(b) is due to scattering from the quartz section, and not from fine particles. Further increase in the oxygen flow rate results in a shorter flame with no soot emissions, shown in Figure 4-10(c). At this condition, the SR was like what would be expected in Stage 1 of the SPOC process. The thermal input was then increased to the final condition, resulting in a more blue and turbulent flame, as shown in Figure 4-10(d). These preliminary tests demonstrated the benefits of utilizing the new burner to control soot formation.

Further testing was then carried out with coal and methane together. The testing included oxygen-enhanced combustion with 5 kWth methane and 2 kWth coal input and oxygen-enhanced combustion with 2 kWth methane and 5 kWth coal input. In the two oxy-combustion tests, the overall oxygen concentration was 50%. A high-speed camera was used to record the flame shapes in all the combustion tests.

Figure 4-11 shows the photographs of the two oxygen-enhanced coal-methane flames taken by the high-speed camera. Figure 4-11(a) is for the flame with 5 kWth methane and 2 kWth coal, and Figure 4-11(b) is for the flame with 2 kWth methane and 5 kWth coal. The white lines in the figure represent the walls of the quartz tube.

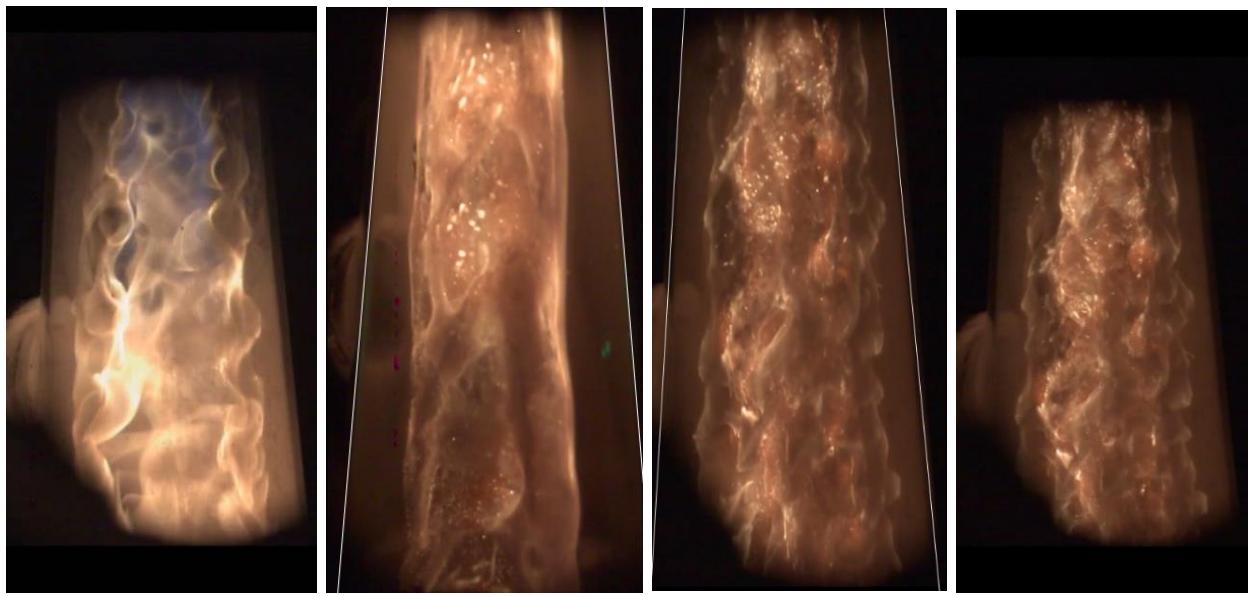
Note that although the flames in the photos look dark, the actual luminosities of the flames are very high, due to a high oxygen concentration. The high-speed camera serves as a powerful tool to improve the ability to diagnose the flame characteristics. In the high-speed videos, detailed information can be readily observed, including the flow field, particle motions, and particle burnout processes (i.e., particle ignition, volatile release and combustion, and char combustion).

Figure 4-11
Photographs of Coal-Methane Combustion at Atmospheric Pressure in the SPOC Test Facility Using High-Speed Camera

Testing at Intermediate Pressures

The test facility was operated for approximately 100 hours at pressures lower than 4 bara (58 psia). The purpose of these tests was to evaluate and improve system reliability and performance over a wide range of operating conditions at lower pressures. During these tests, the total thermal input was varied from 7–80 kWth, and both pulverized PRB coal and methane were burned. Tests were conducted with variable SR (1.2 to 3) to mimic inlet conditions that correspond to various boiler stages of the SPOC process (based on original testing plan). Results showed that below a certain burner exit gas velocity, flame oscillations occur. These oscillations are believed to be due to an unsteady pressure imbalance between the reactor and coal feed vessels. They only occur at very low flow rates and can be eliminated by operating the system at the designed operating conditions for the facility.

It was also confirmed that the flame size can be maintained by increasing thermal input proportionally with operating pressure. Steady operating conditions were found at all pressures, and the coal feed system was proven to be reliable. The burner performance met expectations, providing stable combustion and the desired flame shape. No flame impingement or ash deposition was observed on the quartz wall. With the help of the central oxygen flow, zero CO concentration in the exhaust gas was achieved even when the SR is as low as 1.1. In addition, steady coal combustion was achieved without the assistance of a gas pilot. A summary of the test conditions and results is provided in Table 4-6.


Table 4-6
Intermediate Pressure Test Conditions and Summary Findings

Objectives	Conditions	Results
<ul style="list-style-type: none"> Test burner performance with pulverized coal at elevated pressure and thermal input Observe the effects of pressure on flame size/shape Determine combustion efficiency under conditions of reduced oxygen concentration 	<ul style="list-style-type: none"> Fuel: PC (and methane where required for stable flame) Surrounding oxidizer: O₂ and N₂ Central oxidizer: O₂ Thermal input: 3–80 kWth Fraction of coal thermal input in the total thermal input: 0–100% SR: 1.1–2.5 Central oxidizer SR 0–0.7 Pressure: 1–4 bara (14.5–58 psia) 	<ul style="list-style-type: none"> The flame size can be maintained by increasing thermal input proportionally with operating pressure. Steady operating conditions were found at all pressures. At all conditions, the flame stays at the center of the reactor, and no flame impingement or ash deposition on quartz wall were observed. Stable 20 kWth coal flames at 3 bara (43.5 psia) without methane pilot were obtained, which shows the robustness of SPOC burners. The central oxygen flow helps stabilize the flame in a co-flow burner configuration. 80 kWth coal flame was tested for more than 30 minutes. No flame impingement or ash deposition on quartz wall was observed. With the central oxygen flow, zero CO concentration in the exhaust gas was achieved when the SR is as low as 1.1.

High-speed video was taken during the above conditions, with snapshots shown in Figure 4-12 and Figure 4-13. These videos revealed the effects of flow rate on the turbulent eddy flame structure and the combustion rates of individual groups of coal particles.

Figure 4-12(a), (c), and (d) show flame shapes at 3 bara (43.5 psia) with 20 kWth methane, 20 kWth methane plus 2 kWth coal, and 2 kWth methane plus 20 kWth coal. The oxidizer flows are the same in these three conditions. As can be seen, as coal thermal input increases and methane thermal input decreases (total thermal input remains constant), the flame shape remains the same, but more and more particles can be observed inside the flame. Figure 4-12(b) shows a methane-coal flame at atmospheric pressure.

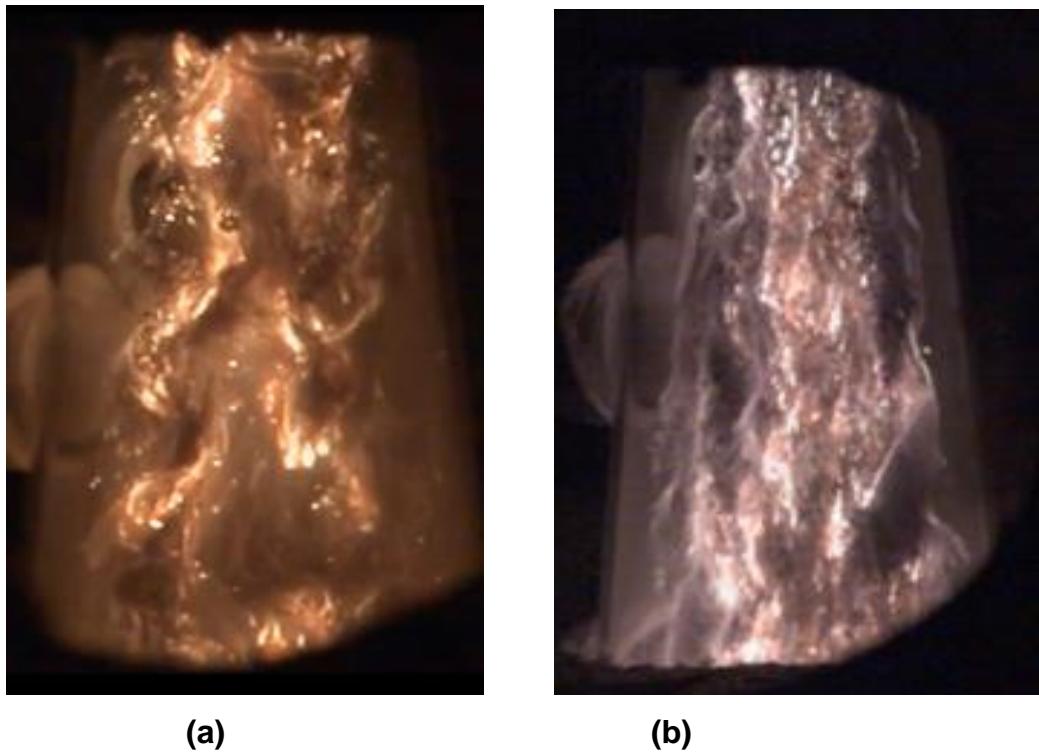

The velocities of the fuel and oxidizer streams in the condition in Figure 4-12(b) are the same as those in the condition in Figure 4-12(c) (i.e., the fuel and oxidizer streams increases proportionally with pressure). Comparing Figure 4-12(b) and Figure 4-12(c), it can be seen that with the same flow velocity, pressure has a strong impact on the flame structure. More eddies are observed at high pressure due to the stronger turbulence.

Figure 4-12
Photographs of Low-Pressure Coal-Methane Combustion in the SPOC Test Facility Using High-Speed Camera

Figure 4-13(a) shows a pure coal flame at 20 kWth and 3 bara (43.5 psia). This test demonstrated that a pure coal flame can be achieved without gaseous fuel support with the new burner. Figure 4-13(b) shows an 80 kWth flame at 3 bara (43.5 psia).

From the ports below the quartz tube section, it was observed that the flame is longer with higher thermal input, but in the quartz tube section, the top part of the flame remains like that at lower thermal input.

(a)

(b)

Figure 4-13
Photographs of 100% Coal Combustion in the SPOC Test Facility Using High-Speed Camera: a) 20 kWth and b) 80 kWth

Testing at High Pressures

Ignition at different pressures with methane was tested. A new ignitor was utilized and proved to be very effective for HP ignition. To achieve smooth ignition, the methane and oxidizer flows were increased proportionally with pressure, such that the velocities of both streams could be kept constant. Ignition becomes unstable if the flow rates were too small.

With the same thermal input/pressure ratio and the same SR, ignition time remains almost the same. Repeatable ignition was achieved, and ignition time was within 10 seconds. The overall flame length after ignition was similar, but locally, the flame is ‘wrinkled’ at higher pressure, due to the stronger turbulence intensity (higher Reynolds number).

Coal combustion tests were conducted at 10 bara (145 psia) and 15 bara (217 psia). Initially, central oxidizer stream was not used, for simplification of operation. Both air combustion and oxy-combustion modes were tested at the same SR. Smooth transition was achieved from air combustion mode to oxy-combustion mode. Stable coal combustion was achieved at both pressures.

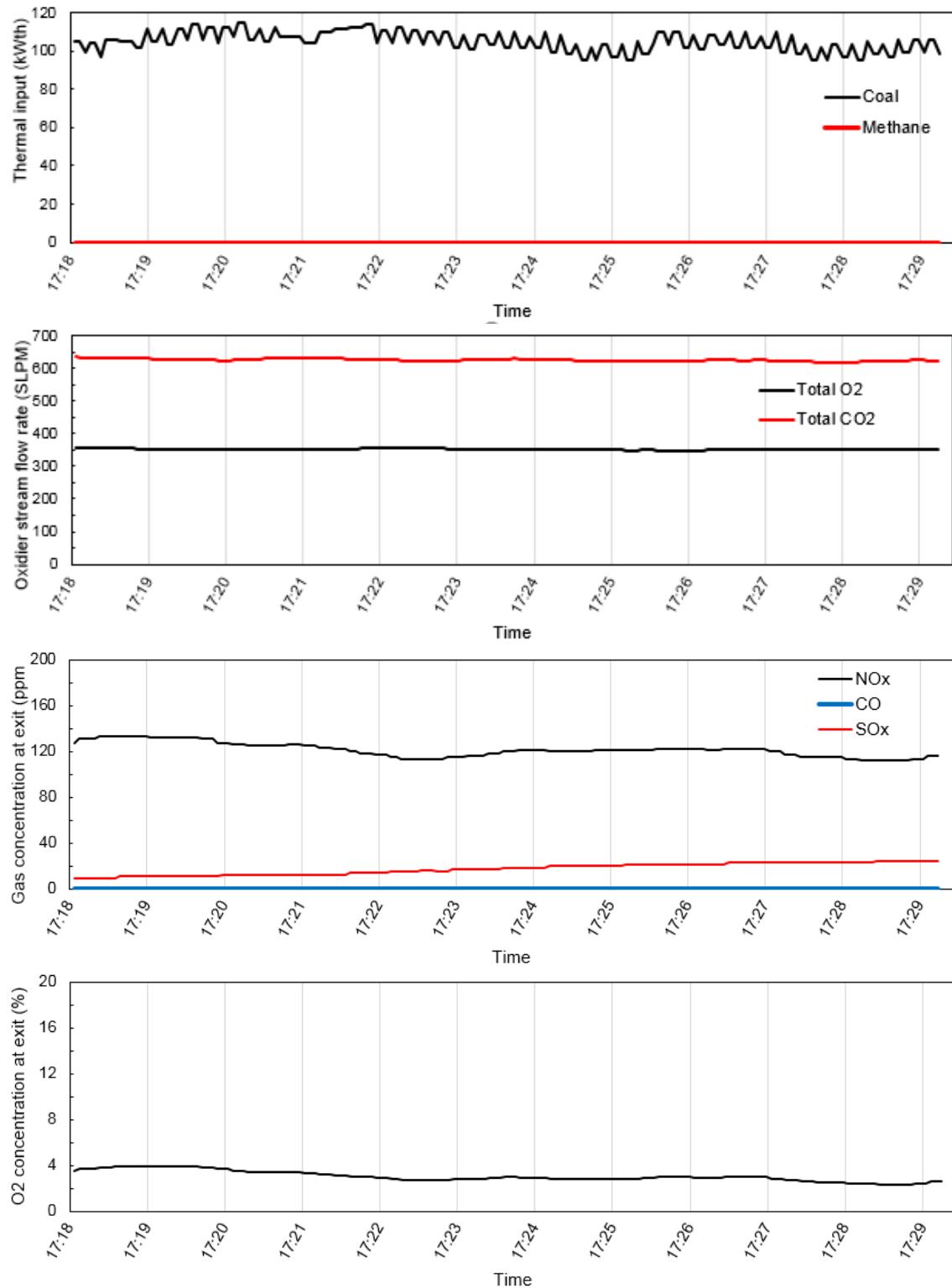
With the same thermal input/pressure ratio, the overall flame shape was very similar. Particles flow mainly in axial direction and no particle impaction was observed on the quartz wall. A summary of the test conditions and results is provided in Table 4-7.

Table 4-7**Summary of Test Conditions and Results at High Pressure without Central Oxidizer Flow**

Objectives	Conditions	Results
<ul style="list-style-type: none"> Test burner ignition at high pressure 	<ul style="list-style-type: none"> Fuel: Methane Surrounding oxidizer: O₂ and N₂ Thermal input: 10–30 kW_{th} S.R. 1.1–2 Pressure: 5, 10, and 15 bara (72.5, 145, and 217 psia) 	<ul style="list-style-type: none"> Ignition time is within 10 seconds and is repeatable. With the same thermal input/pressure ratio, similar results for ignition time and flame shape can be achieved across a wide range of pressures. The gaseous flame becomes more turbulent at higher pressure.
<ul style="list-style-type: none"> Test coal combustion at high pressure Observe the effect of pressure on coal flame 	<ul style="list-style-type: none"> Fuel: PRB and methane Surrounding oxidizer: O₂ and N₂ or (O₂ and CO₂) Thermal input: 20–50 kW_{th} SR: 1.1–2.0 Pressure: 10 and 15 bara (145 and 217 psia) 	<ul style="list-style-type: none"> Stable coal combustion can be achieved at high pressures. With the same thermal input/pressure ratio, the overall flame shape is very similar, but turbulence intensity increases significantly at high pressures. Particles flows mainly in the axial direction, with no particle impaction on the quartz wall observed.

A series of tests were then conducted at 15 bara (217 psia), with central oxidizer being used to control flame shape and soot formation. A summary of the test conditions and results is provided in Table 4-8.

First, gaseous combustion was tested with a wide range of operating conditions. The goal of this test was to identify an optimal operating condition for heating the refractory wall during cold startup. It was found that, even though a down-fired methane flame has a high-sooty tendency at elevated pressure, by choosing an optimal operating condition, soot emission can be eliminated.


A 40 kW_{th} methane flame with oxidizer-fuel equivalence ratio of 2.2 and 30 vol % overall oxygen fractions in oxidizer streams was identified as the best operating condition for preheating. After preheating, transitions from air-fired mode to oxy-fired mode and from methane flame to coal flame were tested at 15 bara (217 psia). Smooth transitions were achieved.

Target operating conditions at full load (100 kW_{th}, Figure 4-14 and Figure 4-15) and half load (50 kW_{th}) were tested. It was found that a stable coal flame can be achieved without any methane flow. Also, no soot or CO emissions were detected at the exit of the reactor even when the oxygen fraction was as low as 3 vol %. Particle samples at the exit of the reactor were analyzed using Energy-dispersive X-ray spectroscopy and zero unburnt carbon content was detected. As the energy-dispersive X-ray spectroscopy has 4% error in carbon content measurement, and the carbon and ash contents in the raw coal are 62.8 wt % and 8.4 wt %, respectively, zero detected unburnt carbon indicates over 99.5% carbon conversion rate.

Table 4-8**Summary of Test Conditions and Results at High Pressure without Central Oxidizer Flow**

Objectives	Conditions	Results
<ul style="list-style-type: none"> Identify optimal operating conditions for heating up 	<ul style="list-style-type: none"> Fuel: Methane Thermal input: 40 kW_{th} Oxidizer-fuel equivalence ratio: 1.5–3 Oxygen concentration in oxidizer: 21–40 vol % Pressure: 15 bara (217 psia) 	<ul style="list-style-type: none"> Without proper flame design, a down-fired methane flame has a very high-sooting tendency at elevated pressure. After a proper flame design, a gaseous flame without soot emission can be achieved.
<ul style="list-style-type: none"> Demonstrate air-fired mode to oxy-fired mode shifting and gas-to-coal shifting under pressurized conditions 	<ul style="list-style-type: none"> Fuel: PRB and methane Thermal input: 50 kW_{th} Oxidizer-fuel equivalence ratio: 1.12–2 Oxygen concentration in oxidizer: 30–40 vol % Pressure: 15 bara (217 psia) 	<ul style="list-style-type: none"> Smooth transitions were achieved from air-fired mode to oxy-mode with 40 kW_{th} gaseous flame, and from gaseous flame to coal flame while maintaining total thermal input of 50 kW_{th}, 15 bara (217 psia). At the same thermal input, coal flame has less sooting tendency at elevated pressure than gaseous flame.
<ul style="list-style-type: none"> Demonstrate oxy-coal combustion at half- and full-load conditions 	<ul style="list-style-type: none"> Fuel: PRB Thermal input: 50–100 kW_{th} Oxidizer-fuel equivalence ratio: 1.12–2 Oxygen concentration in oxidizer: 30–40 vol % Pressure: 15 bara (271 psia) 	<ul style="list-style-type: none"> Stable coal combustion can be achieved without gaseous flame support. No soot and CO emissions are detected at the exit of the reactor even when oxygen concentration at the exit is as low as 3%. No unburnt carbon is observed in particle samples at the exit of the reactor.

Flue gas was cooled using a direct-contact water spray. This led to low NO_x and SO_x emissions in the flue gas due to absorption in the cooling water. NO_x emissions were also limited due to the absence of N₂ and the thermal NO_x formation mechanism. At the end of the test campaign, the total thermal input was increased to 125 kW_{th} (100 kW_{th} coal and 25 kW_{th} methane) without problems.

Figure 4-14
SPOC Test Facility Operating Data at Design Operating Conditions: 15 bara (271 psia), 100 kWth

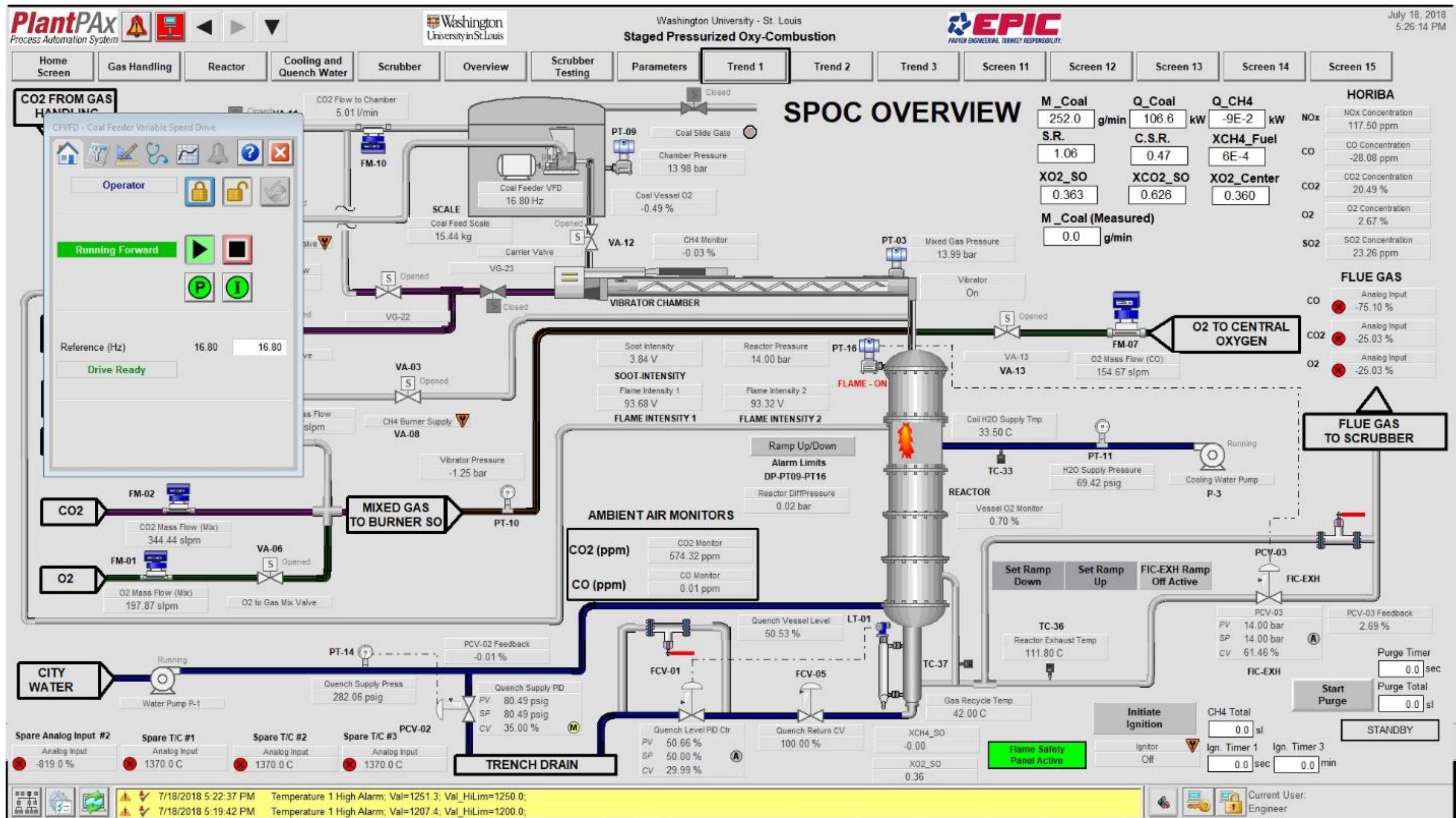
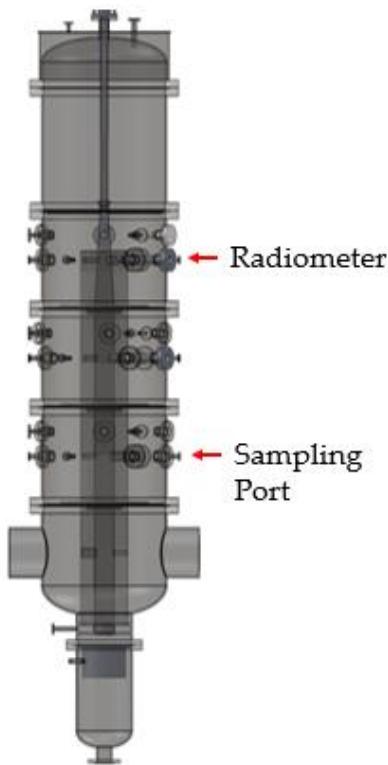



Figure 4-15
SPOC Test Facility Operator Screen Shot at Target Conditions: 15 bara (271 psia), 100 kWth

A series of measurements were taken at both half- and full-load conditions to further characterize the combustion performance in the combustor.

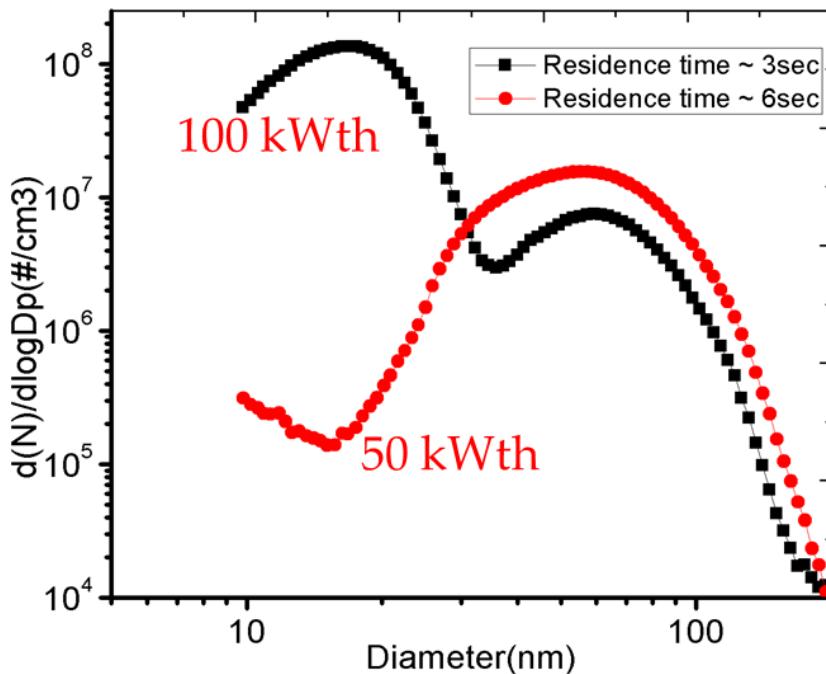
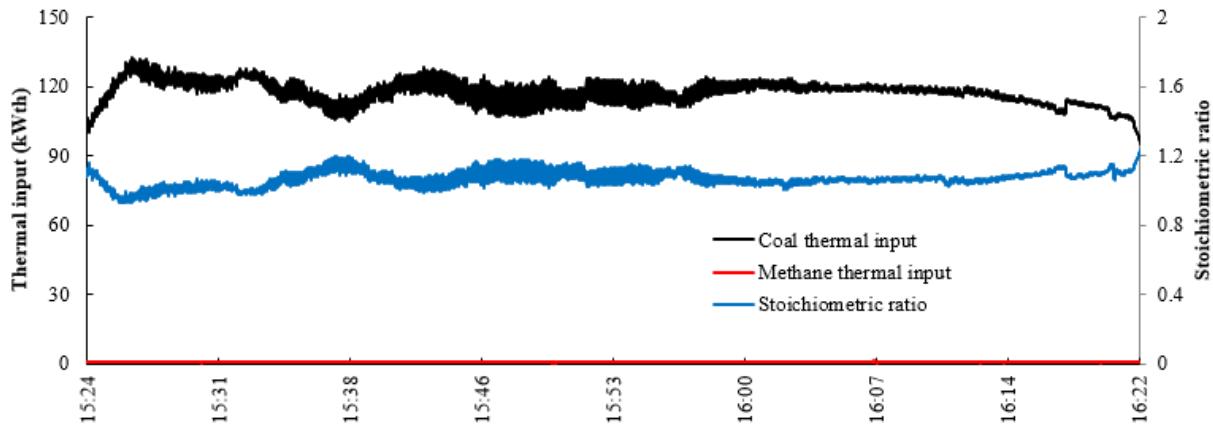

First, narrow angle radiation measurements were taken through a port 350 mm (13.8 in) away from the burner exit (as shown in Figure 4-16). During measurements, the distance between the radiometer and the quartz window was the same as that in the calibration setup. Also, during measurement, a stream of warm CO₂ was injected into the ports to purge out the hot flue gas and to avoid water condensation on the quartz windows. Note that this warm CO₂ can absorb part of the thermal radiation emitted from the flame along the path length, making the radiation measurement underestimated. At the chosen measurement location, the radiometer read an average value of 2 V, which indicates ~400 kW/m² (0.126 MMBtu/hr-ft²) heat flux, based on the calibration curve. CFD simulation results showed ~600 kW/m² (0.190 MMBtu/hr-ft²) at the same location. The difference between the two results is likely caused by multiple reasons, including the CO₂ purging inside the port, the uncertainties of the model, and the uncertainties of the radiometer.

Figure 4-16
Radiation Measurement Port and Particle Sampling Port for Size Distribution Measurement

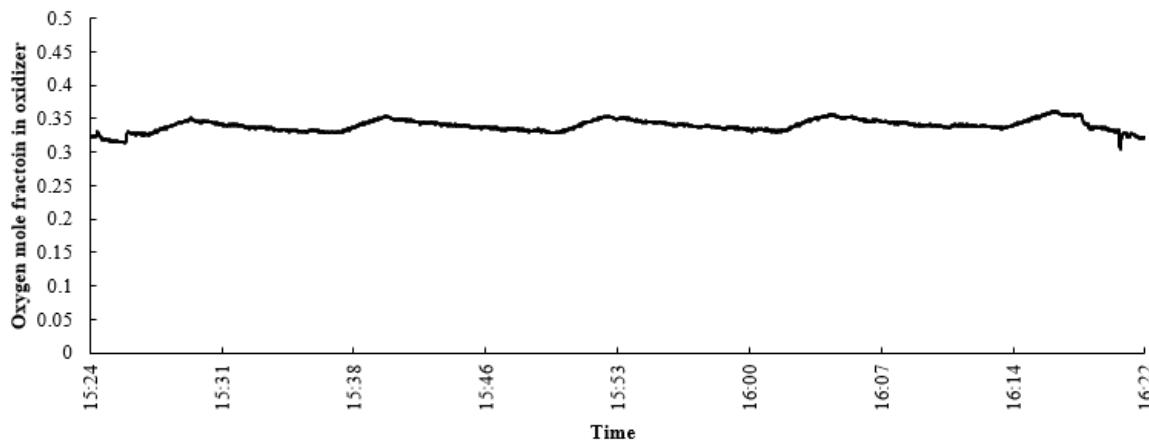
Size distributions of fine particles were also measured using the two-stage dilution in-house built pressurized sample probe. The location of the particle sampling port is shown in Figure 4-16. During this measurement, the sampling probe was positioned at the centerline of the reactor. Figure 4-17 shows the fine particle size distribution at full-load and half-load conditions. Calculations show that the sampling location corresponds to a residence time for the particles of 3 seconds at full-load and 6 seconds at half-load. It was shown that, as the residence time

increases, the number density of the smaller particles decreases and that of the larger particles increases. This shift from smaller particles to larger particles is due to particle coagulation and mineral matter vapors condensing on the existing particles.

Figure 4-17
Size Distribution of Ultra-Fine Particles Measured by Scanning Mobility Particle Sizer Spectrometer


In an atmospheric-pressure oxy-combustion power plant, the oxygen concentration in the flue gas is normally kept above a minimum value, typically 3 vol % to ensure complete coal combustion.¹⁹ However, studies have shown that coal conversion rates under pressurized conditions are higher, because char gasification rates increase significantly with pressure. Also, the gas volume in a boiler decreases proportionally with pressure, reducing velocity and increasing residence time. This further increases the coal conversion at the exit of the boiler. Accordingly, the oxygen concentration in the flue gas can likely be smaller in a pressurized oxy-combustion boiler. If so, the amount of oxygen required from the ASU can be reduced, and on the back end, less oxygen must be removed from the flue gas before sequestration, leading to increased plant efficiency and reduced COE. In this project, WUSTL examined the minimum excess oxygen required for complete coal combustion in the pilot-scale pressurized oxy-combustor.

During measurement, the operating pressure was at 15 bara (271 psia), and the thermal input was relatively steady with the average being at ~120 kWth. The fluctuation in thermal input is within



¹⁹ NETL (2008). Pulverized coal oxycombustion power plants: Bituminous coal to electricity, Vol. 1. Washington D.C., DOE/NETL-2007/1291.

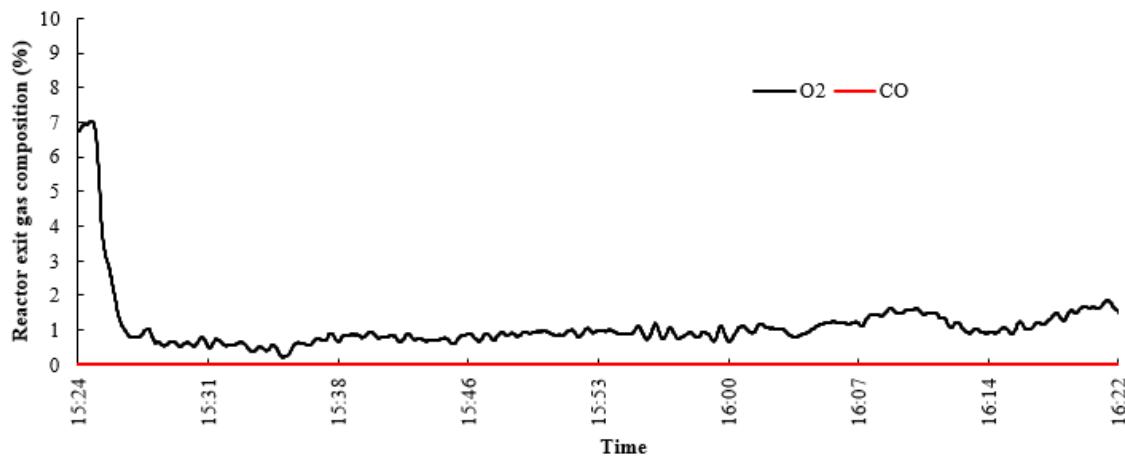

± 10 kWth, as shown in Figure 4-18. Stable coal combustion was achieved without any gaseous fuel support. The oxidizer was composed of ~ 30 vol % O₂ and ~ 70 vol % CO₂ as shown in Figure 4-19. The flue gas concentration was continuously measured by a Horiba PG-300 portable gas analyzer, as shown in Figure 4-20.

Figure 4-18
Thermal Input and SR During Measurement for the 120 kWth, 15 bar (271 psia) Case

Figure 4-19
Oxygen Mole Fraction in Oxidizer During Measurement for the 120 kWth, 15 bar (271 psia) Case

Figure 4-20
Oxygen and CO Concentration at the Outlet of the Combustor for the 120 kWth, 15 bar (271 psia) Case

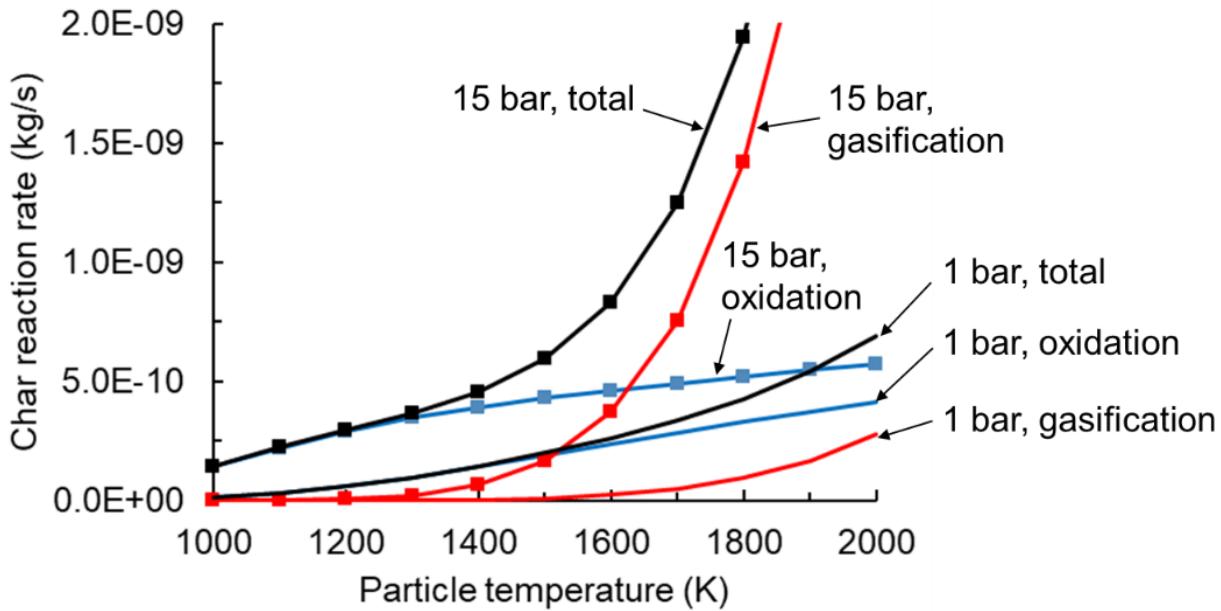
Fixed operating conditions were maintained for about an hour, during which the oxygen concentration at the outlet of the combustor was maintained at about 1 vol % most of the time. No CO was observed in the flue gas during this time, which indirectly indicates complete coal combustion.

Multiple samples of fly ash particles were taken at the exit of the reactor using a one-stage dilution, translatable pressurized sampling probe as shown in Figure 4-7. The ash samples appeared to be white/gray, indicating very low carbon content. The ash samples were then analyzed using TGA. The procedures for TGA analysis are summarized in Table 4-9. These procedures have been widely used for measuring unburnt carbon in coal fly ash.²⁰ For each TGA test, a 25 ± 5 mg (55 ± 11 mlbs) sample of fly ash was loaded into the TGA and nitrogen was introduced into the apparatus at a flow rate of 20 mL/min (0.3 gal/hr) to purge the lines of oxygen and stabilize the apparatus.

Table 4-9
Procedures for TGA for Measuring Unburnt Carbon in Ash Samples

Time	Temperature	Environment
0–9 min	Increases from 20°C (68°F) to 200°C (392°F) at a rate of 20°C/min (36°F/min)	N ₂
9–39 min	Hold at 200°C (392°F)	N ₂
39–66.5 min	Increases from 200°C (392°F) to 750°C (1382°F) at a rate of 20°C/min (36°F/min)	N ₂
66.5–126.5 min	Hold at 750°C (1382°F)	N ₂
126.5–186.5 min	Hold at 750°C (1382°F)	Air

²⁰ Fan M, Brown RC. Comparison of the Loss-on-Ignition and Thermogravimetric Analysis Techniques in Measuring Unburned Carbon in Coal Fly Ash. Energy & Fuels. 2001;15(6):1414-7.


The TGA weight loss curve for the fly ash sampled at 120 kWth with 1 vol % oxygen in the flue gas indicated that the unburnt carbon content in the fly ash sample is about 2.6 wt %. Since the carbon and ash contents in the raw coal are 62.8 wt % and 8.4 wt %, respectively, 2.6 wt % unburnt carbon content in the fly ash indicates that the carbon conversion ratio is over 99.6%, which can be considered complete combustion. Another combustion tests at 85 kWth and 75 kWth, 15 bara (271 psia), with 1 vol % oxygen concentration in the flue gas were also conducted, during which the TGA test for the fly ash sampled at the exit of the combustor also indicated about 99.6% carbon conversion.

Test conditions carried out at 15 bara (271.5 psia) are summarized in Table 4-10 for both 3% and 1% oxygen in the flue gas. Note that carbon burnout was determined by Energy-dispersive X-ray spectroscopy for tests with 3% oxygen concentration in the flue gas, and by TGA for tests with 1% oxygen concentration in the flue gas. The testing results are promising as the particle residence time in this pilot-scale combustor is much smaller than that in a full-scale combustion boiler. Therefore, the threshold oxygen concentration needed in the flue gas required for complete coal combustion in the full-scale case is likely to be even lower than 1 vol %. This could greatly benefit the economics of a pressurized oxy-combustion plant.

Table 4-10
Test Conditions for Determining Carbon Burnout

15 bara (271.5 psia)		
3% O₂ in the Flue Gas		
Thermal Input, kWth	100	50
Overall Oxygen Concentration, vol %	31	31
Carbon Burnout at Reactor Outlet, %	>99.5%	>99.5%
15 bara (271.5 psia)		
1% O₂ in the Flue Gas		
Thermal Input, kWth	120	85
Overall Oxygen Concentration, vol %	31	31
Carbon Burnout at Reactor Outlet, %	99.6%	99.6%

As discussed, two factors contribute to the enhanced coal burnout under pressurized oxy-combustion conditions. One is that the particle residence time in pressurized combustion is longer. The average particle residence time in a typical atmospheric pressure combustion boiler is around 5 seconds, but in a full-scale pressurized combustor, this residence time can be over 20 seconds. The other factor is the enhanced char gasification rates under pressure. To understand the importance of this mechanism, the theoretical reaction rates (both oxidation reactions and gasification reactions) were calculated for a 50- μm particle under atmospheric pressure and pressurized (15 bara [271 psia]) oxy-combustion conditions, as shown in Figure 4-21. The gas environment is assumed to contain 3% O₂, 6% H₂O, and 91% CO₂ by volume. As shown in the figure, at atmospheric pressure, the char conversion is dominated by oxidation reactions. But as pressure increases, the contribution of gasification reactions to total char reaction rate becomes significant, especially when particle temperature is higher than 1327°C (2420°F). As the gasification reactions do not require oxygen, the importance of oxygen concentration in the flue gas for complete char combustion is much less under pressure. Therefore, the minimal flue gas oxygen concentration required for complete combustion can be reduced as low as 1 vol %.

Figure 4-21
Calculated Oxidation and Gasification Reaction Rates for a Char Particle at Different Temperatures and Pressures

Using the translatable pressurized sampling probe, ash samples were taken at three different locations for model validating: 1) the highest location the sampling probe can reach (5 ft from the burner); 2) the outlet of the combustor (8.7 ft from the burner); 3) the middle of the first two locations (6.9 ft from the burner). The operating condition was at 85 kWth at 15 bara (271 psia) with 1 vol % O₂ concentration in the flue gas. Ash samples were analyzed in TGA and the results are summarized in Table 4-11. As expected, the carbon content in the fly ash decreases as sampling location moves away from the burner (i.e., the residence time increases).

Table 4-11
Summary of Test Conditions at 15 bara (217.5 psia)

Measurement Location	Distance from Burner, m (ft)	Carbon Burnout from TGA Analysis
Location 1	1.53 (5.0)	98.6%
Location 2	2.09 (6.9)	99.5%
Location 3 (outlet)	2.64 (8.7)	99.6%

A further effort was made to determine the minimal load of the 100 kWth pilot-scale combustor. The minimal load was tested by slowly dropping thermal input until a flame could not be sustained. This test was started with a 50 kWth pure coal flame with 1% oxygen concentration in the flue gas. The load was gradually dropped while maintaining the oxygen concentration in the flue gas (i.e., proportionally reducing both coal and oxidizer input). The flame remained stable at 25% load. Interestingly, at 25% load, it was observed that the flame started transit from turbulent to laminar due the lower flow rate. This laminarization might be the cause of flame instability as fast mixing is key to coal particle ignition.

As the Reynolds number in a utility scale SPOC boiler is ~200 times larger than that in the pilot-scale combustor, the flame in the utility scale SPOC boiler will always remain turbulent during part-load operation. Therefore, the minimal load in a utility-scale SPOC boiler can potentially be even lower than 25%. To get a sense of how flame stability is affected by the laminarization, the flow rate of the oxidizer was increased to ensure the flame is turbulent, then slowly reduced the coal input. The oxygen concentration of the oxidizer is also held constant during this test at around 32%.

The system automatically shut down when the thermal input was 8 kWth (8% of full load). After analyzing the shutdown, it was determined that the shutdown was triggered by the flame safety panel, as the flame became too small for the Fireye® flame scanner to detect, which triggered an automatic shutdown. This indicated that we can potentially even reach less than 8% load without losing flame. Note that this test result doesn't directly indicate that the minimal load of a utility-scale SPOC boiler can reach as low as 8%, because the stoichiometric ratio in the test condition is much higher than it should be. But it's promising that the minimal load of a utility-scale SPOC boiler can be at least lower than 25%.

5

BASELINE DESIGN AND INTEGRATION


Based on results from the OEM review of the SPOC concept and the 100 kWth pilot testing, the 550 MWe baseline SPOC design was formulated. This entailed the following activities:

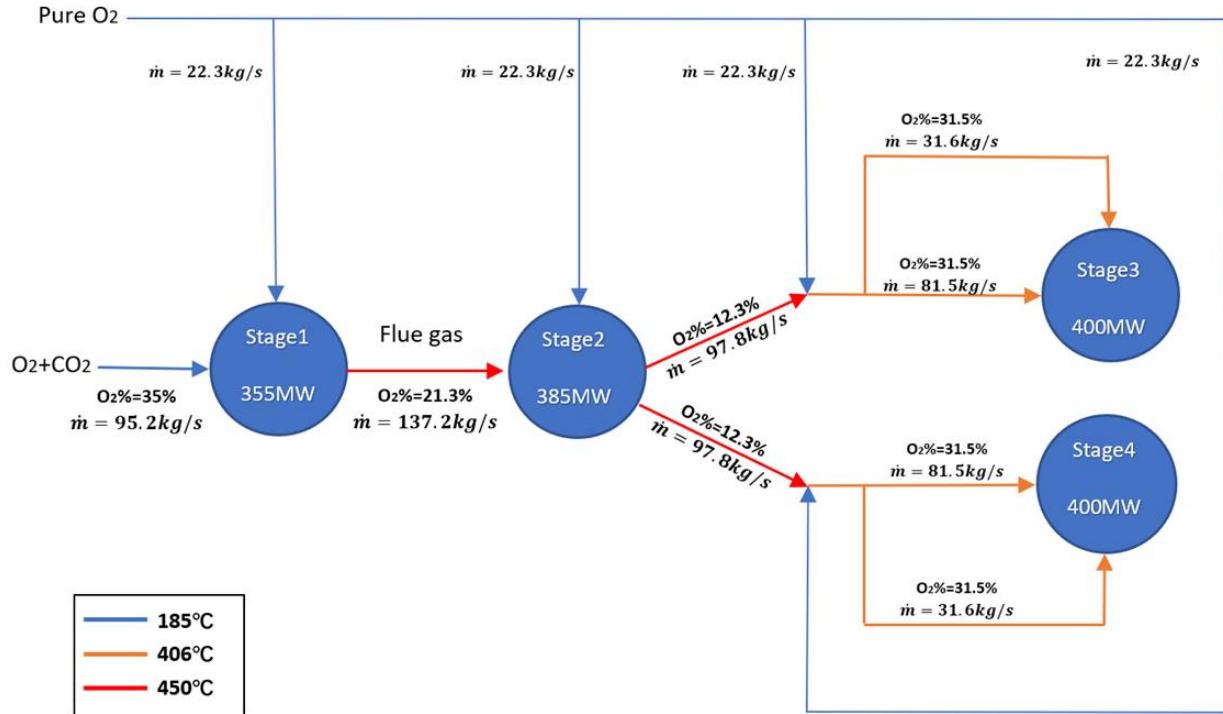
- **Defining the overall process flow diagram** – The system was configured as a four-stage arrangement with hot FGR and integrated heat recovery to the steam turbine system.
- **Boiler design of SPOC stages** – The SPOC system was modeled using boiler performance software, which required a validation step due to the pressurized operation. The heating surface was configured to deliver the required thermohydraulic performance.
- **Steam turbine modeling** – This was carried out using commercially available EBSILON® software. Initially the model was created to have the correct system flowsheet and was then calibrated to match the performance of NREL baseline case S12A. This model was then configured to represent the SPOC process by adjusting the gross power to suit the required net output of 550 MWe, while accounting for the additional auxiliary power requirements of the ASU and the CPU.
- **Flue gas heat recovery** – The heat release opportunities the flue gas exiting the SPOC stages was modeled using Aspen Plus™, including the first stage compression and product compression aftercooling.
- **ASU heat recovery** – The intercooling of the main air compressor (MAC) and aftercooling the booster air compressor (BAC) in the ASU yields additional opportunities for heat recovery.

Overall Process Configuration

At the initiation of the project, the SPOC system front-loaded oxygen and incrementally added fuel (and some additional oxygen) to each stage to ultimately consume the oxygen before exiting the final stage. This required each combustor to operate at different combustion domains with the early stages having high levels of excess oxygen, as can be seen in Figure 5-1.

Additionally, it was considered that individual SPOC stages could be configured to have dedicated heating surfaces in each stage, allowing for differential control of the superheater and reheat thermal uptake. The concept being that one stage could have exclusively superheater banks and another stage may have reheat banks, thereby making thermal delivery to each duty requirement controllable by adding more or less fuel to these specific stages. It became clear following consultation with the DBL, as boiler OEM, that having discreet stage performance requirements would be thermo-hydraulically complex and expensive to realize both from a design and manufacturing perspective.

Figure 5-1
SPOC Arrangement at Project Initiation


Because of manufacturing considerations, a standardized module was considered as this keeps the costs lower as surfaces are identical across each stage. To facilitate this, the flue gas flow entering the convective banks (gas weight) needed to be similar across all stages. The original SPOC concept had cumulative gas increased as the process proceeded through each subsequent stage as more fuel and oxygen would be added at each step. Through a brainstorming exercise, one possible arrangement for a 4-stage SPOC system was to have the final 2 stages in parallel, as shown in Figure 5-2.

Although this had closer variance between stages than the original concept, it would have required two different boiler arrangements with variable flue gas cross-sectional area between stages to ensure appropriate flue gas velocities were maintained in each section.


Additionally, the balance of heat transfer between the furnace section, consisting of evaporative surface and dominated by radiative heat transfer, and the back-end convective surface that contains superheating and reheating surfaces, would differ for each stage. Stage 2 would have more heat transfer to the superheating and reheating banks due to the higher gas flowrate and thus causing balance between individual SPOC stages on the steam side to be challenging.

Subsequently, the decision to standardize the modules ensures not only a lower-cost option from a manufacturing perspective, it also simplifies the operation and control of the unit as thermodynamic balance can be achieved across all four stages when they are operated at identical thermal input.

The optimized arrangement is therefore configured to be in-series on the gas side with hot FGR recycled from the outlet of Stage 4 used to ensure that Stage 1 is identical to the subsequent stages. The steam/water circuit is split equally across all stages with each stage being serviced by an independent water separator and circulation pump (i.e., feedwater from the steam turbine is distributed to the four circuits) and generated main steam is then combined at an outlet manifold to balance pressure across stages. Each SPOC stage is therefore an independent boiler circuit but is linked on the gas side, as shown in Figure 5-3.

Figure 5-2
SPOC Alternative Arrangement with Parallel Stages

Figure 5-3
Revised SPOC Arrangement

The aim of the design was to achieve standardization and balance across the stages while maintaining performance and flexibility where possible. Hot FGR is a challenging prospect however, given that the flue gas will contain a substantial fly-ash component, making the

mechanical design of the blower necessary to withstand erosion. A lower-risk option is to recycle flue gas after the particulate and DCC module. This however will complicate the performance characteristics of the first stage relative to the others unless a gas-gas reheater is employed.

2-Pass Arrangement

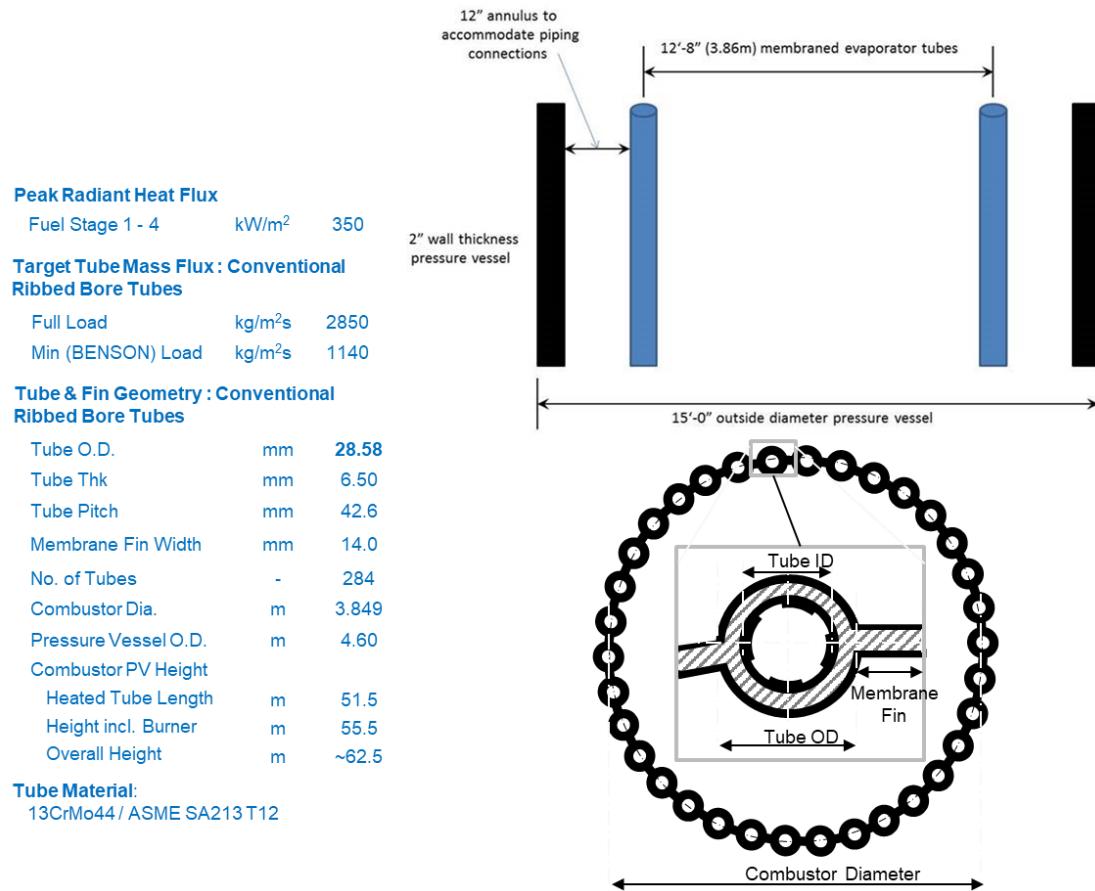
Following agreement to standardize the SPOC stages, the concept arrangement comprised of a furnace module with a downward-fired, open-pass combustion zone followed by a 2nd pass upward-flow convective module containing cross-flow heating surface was further developed. To maintain equivalent gas flowrates in each stage, a portion of the flue gas leaving each stage needed to be purged from the main stream to remove the flue gas generated from coal combustion with oxygen. As each stage incurs a pressure drop, largely from passing the flue gases through the burner section and the convective banks, the pressure of the receiving plenum will be lower than the transfer gas ducts between stages. Subsequently, contra-rotating damper arrangements will be utilized to ensure the correct flue gas quantity is released at each interstage duct. The ducting for these purge streams would be sized to carry the entire flue gas flowrate of a stage at full load to enable downstream stage bypassing that is needed for high turndown system flexibility.

The design determined that two PVs (2-off) are needed for a single SPOC stage with four SPOC stages (4-off) required for the 550 MWe net SPOC power plant.

Boiler Design

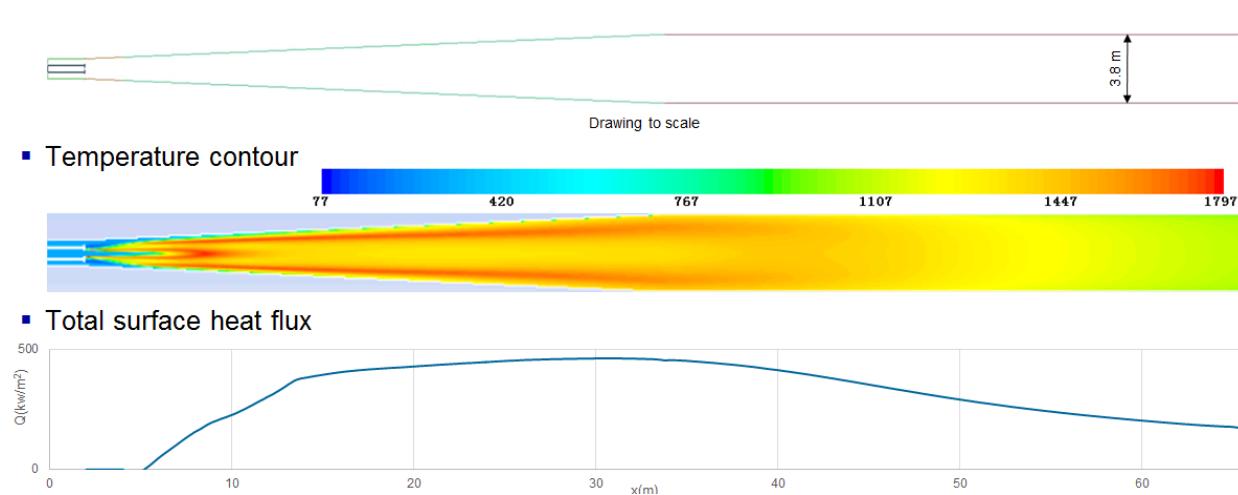
Basis of Model

Based on results from the OEM review of the SPOC concept, CFD modeling and the 100 kW_{th} pilot testing, the 550 MWe boiler performance model was configured using a peak radiant heat flux of 450 kW/m² (0.142 MMBtu/hr-ft²) as confirmed from direct heat flux measurements carried out during combustion testing.


To ensure evaporator tube cooling in all-service conditions without exceeding allowable material stress levels, consideration was given to achieve suitable tube-side water/steam mass fluxes that would ensure sufficient cooling was achievable throughout the entire furnace-circuit envelope. The mass flux can be adjusted with selection of evaporator tube diameter, wall thickness and membrane fin width, and the number of tubes. Additionally, the tubes can be internally ribbed or plain bore depending on the desired cooling characteristics needed throughout the radiant sections of the system.

Furnace Module

The furnace module was designed based on combustion progression and subsequent heat release characteristics that were validated against the combustion testing carried out at the 100 kW_{th} SPOC pilot unit. The flue gas residence time in this arrangement is substantial, allowing for effective carbon burnout with minimal excess oxygen levels. Even in the relatively short residence time of the SPOC pilot unit, successful burnout was achieved at 1 vol % oxygen concentration in the resultant flue gas. The overall height was determined based on ensuring sufficient gas cooling was possible to make certain that the particulate material is at a lower temperature than the ash initial deformation temperature for the Montana Rosebud PRB fuel.


This is a key requirement to avoid ash accumulation on surfaces when geometrical gas flow changes are applied, such as that needed to transfer the flue gas to the upward-flowing convective module.

The SPOC process uses a downward-fired arrangement for each stage with a single burner located at the center of the furnace module roof. As with every section of this design, for fabrication efficiency, the maximum diameter of the PV is limited by road transportation limits, in this case 4.5 m (15 ft) as shown in Figure 5-4.

Figure 5-4
SPOC Radiative 'Downward-Fired' Stage for Full-scale 550 MWe SPOC Performance

This arrangement included some allowance for internal pipework connections and insulation within the PV. The original concept for the combustion module was based on an ideal arrangement for the introduction of the combustant and fuel mixture, where the flow would expand in a near linear fashion as the reaction proceeds and heat release causes the gases to expand. The SPOC burner uses a weak (non-turbulent) mixing strategy that relies on a near laminar pipe flow characteristic as the gases proceed downwards through the combustion module. This allows for a more controlled heat release profile to be achieved when using limited FGR quantities. The anticipated heat release and thermal profile for this arrangement are shown in Figure 5-5.

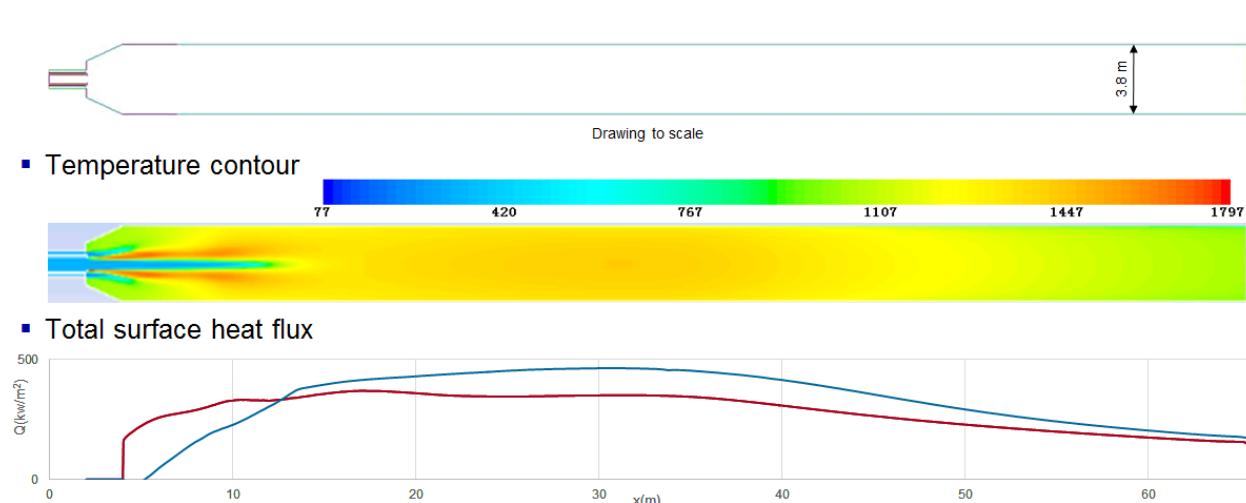


Figure 5-5
Combustor Vessel Geometry Prior to Optimization

This configuration delivers the required performance needed from the combustion module. However, it was recognized that delivering a membrane wall-cooled furnace envelope would be complex both in terms of manufacturing and in parallel-flow thermal stability. As the ring of furnace tubes begins the transition to the conical section, the membrane width would need to be reduced before some of the tubes would need to be stepped back to facilitate the smaller overall furnace diameter. As the tubes then proceed further upwards, more tubes would be stepped back as the furnace enclosure diameter reduces further. As the conical section represents almost half of the furnace height, the removed tubes would effectively have a greatly reduced heated length and the tubes that remained in direct contact with the furnace would undergo intensification of heating near the top of the unit (i.e., less tubes sharing similar heat release levels).

Although the heat flux is predicted to be far lower near the top of the furnace (where the cooling steam is already hot), the unheated tube circuits would be far cooler. During subcritical pressure operation, it would be possible for these tubes to be delivering two-phase flow, while the fully heated tubes could be delivering superheated steam to the separators. This thermohydraulic imbalance would risk undercooling of some tube elements and thermal shocking of collecting headers and the separator vessels when operating. Although some of this risk could be mitigated by substituting underheated tubes with fully heated ones at different points in the formation of the cone, differential thermal expansion would likely cause mechanical stress on the membrane elements. Manufacturing complexity would also make this a very expensive arrangement to build.

Subsequently, DBL requested that WUSTL investigate options for reducing or eliminating the conical section at the top half of the combustor vessel with the aim to maximize the height of the cylindrical section of the combustor membrane. This allows for a simplified design of the combustor pressure parts, especially with respect to the mechanical design challenges relating to differential expansion, flow imbalance, and mechanical support. To ensure that the alternative arrangement offered no detriment to the combustion performance, WUSTL optimized the design of the combustor by significantly reducing the length of the conical section while ensuring that target design combustion performance requirements remained in place. The results of this analysis are shown in Figure 5-6.

Figure 5-6
Combustor Vessel Geometry Post Optimization

To allow the heat release to be optimized for the long slender profile of the SPOC combustion module, the incoming fuel particle size distribution was adjusted to facilitate a flatter heat release profile. For clarity, the revised heat flux is plotted (red) against the original heat flux (blue) in Figure 5-5. The full membrane wall can now proceed through the entire length of the furnace module (ensuring even heating of each element is achieved) and the entire arrangement can be top supported from the PV, allowing straightforward management of the differential expansion of the heating surface and the vessel. A small 45° conical section is formed near the burner opening that may be constructed with refractory lining to ensure thermal radiation is reflected and stable combustion is maintained, as there is only a single burner in each SPOC combustion module. The CFD model shows that this adjusted geometry does not significantly alter the way the gases expand into the furnace volume and so the SPOC combustion proceeds successfully as before due to gas cushioning at the top of the furnace.

Boiler Module

As agreed during the configuration development, only a single boiler module design is needed for the SPOC system as the flue gas flowrate entering the stage is identical, regardless of which stage. The only difference between stages is the resultant operating pressure that decays from stage to stage due to pressure losses incurred in the burner and convection banks. It was estimated that the overall stage pressure drop is 167 mbar (2.4 psi). Therefore, including inter-stage pressure drop from dampers and ducting, the outlet of SPOC system is expected to operate within 1 bar (14.5 psi) of the feed pressure of Stage 1 (16 bara [242 psia]).

The boiler module consists of a cylindrical PV that has a vertically supported boiler circuit suspended within which is bounded by membrane wall circuits. This allows sub-headers to distribute and collect steam to and from heating circuit elements within the PV, thereby minimizing vessel penetrations and limiting costs.

Oxy-Combustion Flue Gas Properties

Extensive analysis was carried out on the convective heat transfer results from the DBL in-house OEM modeling tool “SteamGen” that was updated to include pressurized oxy-combustion conditions against predictions using commercially available process modeling software tools such as Thermoflex™, Aspen Plus™, and Fluent CFD™ models. The first step of this analysis was to compare the calculated properties for the pressurized oxy-combustion flue gas for a range of compositions reflecting higher and lower excess oxygen cases as shown in Table 5-1.

Table 5-1
Composition of Oxy-Combustion Flue Gas

Species	High Oxygen		Low Oxygen	
	vol %	wt %	vol %	wt %
CO ₂	33.9	45.67	55.9	74.03
SO ₂	0.0537	0.11	0.0885	0.17
O ₂	38.2	37.42	1.7	1.64
N ₂	4.65	4.01	4.01	3.40
Ar	0.0	0.0	0.0	0.0
H ₂ O	23.2	12.79	38.3	20.76

These flue gas cases were evaluated to reflect the key influencing properties for convective heat transfer for flow at a right angle to tube bundles:²¹

$$U_o = 0.33 \text{Re}^{0.7} \text{Pr}^{0.3} \frac{k}{D}$$

where:

U_o is the outside heat transfer coefficient (W/m²-K)

Re is the Reynolds number (dimensionless)

Pr is the Prandtl number (dimensionless)

k is the bulk fluid thermal conductivity (W/m-K)

D is the characteristic diameter of the tube (outside diameter, m)

This relationship can be rearranged to show the influence of each property on the outside heat transfer coefficient:

$$U_o = 0.33 \frac{GD}{\mu}^{0.7} \frac{C_p \mu}{k}^{0.3} \frac{k}{D}$$

where:

G is the bulk fluid mass flux (kg-s/m²)

μ is the bulk fluid viscosity (kg/ms)

C_p is the fluid heat capacity (J/kg-K)

²¹ Chemical Engineering – Volume 1 4th ed pg 351 Coulson and Richardson 1990

Hence the final exponents for each fluid property can be assessed such that the overall influence of each property can be assessed on the heat transfer coefficient to develop an overall relative error. Values for the equation are shown in Table 5-2.

Table 5-2
Influence of Fluid Properties on Convective Heat Transfer

Property	GD/μ	Cp-μ/k	k/D	Overall
Heat Capacity		0.3		0.3
Thermal Conductivity		-0.3	1	0.7
Viscosity	-0.7	0.3		-0.4

In addition to these key properties for heat transfer, the enthalpy and specific volume were also assessed to qualify temperature and velocity calculations, summarized in Table 5-3.

Table 5-3
Comparative Assessment of High Excess Oxygen Flue Gas Properties

Property	Temperature, °C (°F)	Doosan Steam-Gen	Thermo-flow Thermo-flex	Aspen Plus	ANSYS Fluent	Dev 2σ	95% Confidence Limits	Relative Range
Enthalpy, kJ/kg (Btu/lb)	1150–700 (2102–1292)	613.8 (263.9)	612 (263.1)	612 (263.1)	611.3 (262.8)	2.138 (0.92)	616 (265) 612 (263)	0.7%
	700–400 (1292–752)	379.1 (163.0)	377.7 (162.4)	376 (161.7)	376.8 (162.0)	2.658 (1.14)	382 (164) 376 (162)	1.4%
Specific Volume, m³/kg (ft³/lb)	1150 (2102)	0.226 (3.62)	0.226 (3.62)	0.227 (3.64)	0.226 (3.62)	0.001 (0.02)	0.227 (3.64) 0.225 (3.60)	0.9%
	700 (1292)	0.155 (2.48)	0.155 (2.48)	0.155 (2.48)	0.155 (2.48)	0.000 (0.00)	0.155 (2.48) 0.155 (2.48)	0.0%
	400 (752)	0.107 (1.71)	0.107 (1.71)	0.107 (1.71)	0.107 (1.71)	0.000 (0.00)	0.107 (1.71) 0.107 (1.71)	0.0%
Specific Heat, kJ/kg-K (Btu/lb°-F)	1150 (2102)	1.405 (0.336)	1.41 (0.337)	1.406 (0.336)	1.404 (0.335)	0.005 (0.001)	1.410 (0.337) 1.400 (0.334)	0.7%
	700 (1292)	1.312 (0.313)	1.30 (0.310)	1.304 (0.311)	1.307 (0.312)	0.010 (0.002)	1.322 (0.316) 1.302 (0.311)	1.5%
	400 (752)	1.218 (0.291)	1.21 (0.289)	1.204 (0.288)	1.199 (0.286)	0.016 (0.004)	1.234 (0.295) 1.202 (0.287)	2.7%
Conductivity, W/m-K (Btu/hr-ft°-F)	1150 (2102)	0.1108 (0.064)	-	0.092 (0.053)	0.099 (0.057)	0.019 (0.011)	0.130 (0.075) 0.092 (0.053)	34.6%
	700 (1292)	0.077 (0.044)	-	0.072 (0.041)	0.072 (0.041)	0.006 (0.003)	0.083 (0.048) 0.071 (0.041)	15.6%
	400 (752)	0.0524 (0.030)	-	0.051 (0.029)	0.051 (0.029)	0.002 (0.001)	0.054 (0.031) 0.051 (0.029)	6.7%
Viscosity, μPa-s (lbf-s/ft² * 10⁶)	1150 (2102)	56.1 (1.172)	-	55.24 (1.154)	55.0 (1.149)	1.157 (0.024)	57.26 (1.20) 54.94 (1.15)	4.1%
	700 (1292)	42.83 (0.895)	-	41.37 (0.864)	42.49 (0.887)	1.528 (0.032)	44.36 (0.93) 41.30 (0.86)	7.1%
	400 (752)	32.38 (0.676)	-	31.88 (0.666)	32.46 (0.678)	0.629 (0.013)	33.01 (0.69) 31.75 (0.66)	3.9%

As can be seen from this summary, only the thermal conductivity and viscosity showed disagreement at higher temperatures. The same assessment was conducted for the low excess oxygen flue gas, detailed in Table 5-4, showing similar results for low oxygen flue gas.

Table 5-4
Comparative Assessment of Low Excess Oxygen Flue Gas Properties

Property	Temperature, °C (°F)	Doosan Steam-Gen	Thermo-flow Thermo-flex	Aspen Plus	ANSYS Fluent	Dev 2σ	95% Confidence Limits	Relative Range
Enthalpy, kJ/kg (Btu/lb)	1150–700 (2102–1292)	682.7 (293.5)	680.2 (292.4)	679 (219.9)	679 (291.9)	3.489 (1.50)	686 (295) 679 (292)	1.0%
	700–400 (1292–752)	416.6 (179.1)	415 (178.4)	414 (178.0)	413.2 (177.6)	2.930 (1.26)	420 (180) 414 (178)	1.4%
Specific Volume, m³/kg (ft³/lb)	1150 (2102)	0.223 (3.57)	0.223 (3.57)	0.223 (3.57)	0.223 (3.57)	0.000 (0.00)	0.223 (3.572) 0.223 (3.572)	0.0%
	700 (1292)	0.152 (2.43)	0.152 (2.43)	0.157 (2.51)	0.152 (2.43)	0.005 (0.08)	0.157 (2.515) 0.147 (2.355)	6.6%
	400 (752)	0.105 (1.68)	0.105 (1.68)	0.105 (1.68)	0.105 (1.68)	0.000 (0.00)	0.105 (1.682) 0.105 (1.682)	0.0%
Specific Heat, kJ/kg-K (Btu/lb°F)	1150 (2102)	1.571 (0.375)	1.57 (0.375)	1.573 (0.376)	1.569 (0.375)	0.003 (0.001)	1.574 (0.376) 1.568 (0.374)	0.4%
	700 (1292)	1.449 (0.346)	1.44 (0.344)	1.438 (0.343)	1.440 (0.344)	0.010 (0.002)	1.459 (0.348) 1.439 (0.344)	1.4%
	400 (752)	1.335 (0.319)	1.31 (0.313)	1.316 (0.314)	1.307 (0.312)	0.025 (0.006)	1.360 (0.325) 1.310 (0.313)	3.8%
Conductivity, W/m-K (Btu/hr-ft°F)	1150 (2102)	0.1158 (0.067)	-	0.0905 (0.052)	0.108 (0.062)	0.026 (0.015)	0.141 (0.082) 0.090 (0.052)	44.3%
	700 (1292)	0.0768 (0.044)	-	0.0725 (0.042)	0.075 (0.043)	0.004 (0.003)	0.081 (0.047) 0.072 (0.042)	11.3%
	400 (752)	0.0501 (0.029)	-	0.0497 (0.029)	0.052 (0.031)	0.002 (0.001)	0.053 (0.030) 0.048 (0.028)	9.8%
Viscosity, μPa-s (lbf-s/ft² *10⁶)	1150 (2102)	52.67 (1.100)	-	50.22 (1.049)	52.46 (1.096)	2.716 (0.057)	55.39 (1.16) 49.95 (1.04)	10.3%
	700 (1292)	39.53 (0.826)	-	38.34 (0.801)	40.02 (0.836)	1.728 (0.036)	41.26 (0.86) 37.80 (0.79)	8.7%
	400 (752)	29.12 (0.608)	-	27.84 (0.581)	30.13 (0.629)	2.295 (0.048)	31.42 (0.66) 26.82 (0.56)	15.8%

The variability between models for each fluid property can be combined by quadrature (i.e., summing the square of the errors and finding the square root of the result):

$$\frac{\partial_{uo}}{u_o} = \sqrt{0.7\left(\frac{\partial_k}{k}\right)^2 + 0.4\left(\frac{\partial_\mu}{\mu}\right)^2 + 0.3\left(\frac{\partial_{Cp}}{C_p}\right)^2}$$

The uncertainties in the convective heat transfer coefficient are shown in Table 5-5.

Table 5-5
Convective Heat Transfer Coefficient Uncertainty

∂h_o	Units	High O ₂	Low O ₂
1150°C (2102°F)	W/m ² K (Btu/hr-ft ² -°F)	0.298 (0.052)	0.378 (0.067)
700°C (1292°F)	W/m ² K (Btu/hr-ft ² -°F)	0.167 (0.029)	0.139 (0.024)
400°C (752°F)	W/m ² K (Btu/hr-ft ² -°F)	0.140 (0.025)	0.192 (0.034)

As the anticipated heat transfer coefficient is expected to be in the 50 W/m²K range (8.8 Btu/hr-ft²-°F), these uncertainties are within 1%. As part of the overall bank absorption assessment, relative error on the enthalpy combines with the heat transfer coefficient to yield an overall uncertainty on final gas-temperature predictions. With a surface metal temperature of 350°C (662°F), the predicted final gas temperatures based on the highest and lowest combination of heat transfer coefficient and enthalpy assessment are shown in Table 5-6.

Table 5-6
Convective Heat Transfer Outlet Temperature Prediction Relative Error Boundaries

Flue Gas Composition	Inlet Gas Temperature, °C (°F)	Highest Outlet Temperature, °C (°F)	Lowest Outlet Temperature, °C (°F)	Relative Error, °C (°F)
High O ₂	1150 (2102)	869.9 (1597.8)	861.7 (1583.1)	7.2 (13.0)
	700 (1292)	568.9 (1056.0)	564.4 (1047.9)	4.5 (8.1)
Low O ₂	1150 (2102)	870.2 (1598.4)	860.3 (1580.5)	9.9 (17.8)
	700 (1292)	568.8 (1055.8)	564.4 (1047.9)	4.3 (7.7)

The relative error represents between 2–4% of the overall temperature drop of the bank heat transfer assessment due to property uncertainty. Note that radiative heat transfer has not been characterized in this assessment however measurements taken at the 100 kW_{th} pilot unit correlated with the CFD predictions carried out by WUSTL.

Performance Modeling

To further assess the DBL SteamGen pressurized oxy-combustion heat transfer predictions, a test case was developed using an appropriately sized reheat bank and flue gas flowrate commensurate with the 550 MWe-scale design to compare elemental heat transfer coefficients. The expected thermal duty of these reheat banks was 235 MW_{th} (split across four stages). The boundary conditions were defined from the combustion modeling and anticipated reheat steam conditions (from the base case turbine heat balance) to allow comparative modeling to be carried out. As the DBL SteamGen model is extensively validated against atmospheric-pressure heat transfer cases, this comparative test was also carried out using atmospheric-pressure oxy-combustion flue gas.

WUSTL constructed the reheat bank in a CFD model to evaluate the predicted outside tube heat transfer coefficients. The test bank used typical reheat bank geometry, as advised by DBL, as shown in Table 5-7.

Table 5-7
Reheater Bank Simulation Geometry

Item	Value
Tube Outside Diameter, mm (in)	44.5 (1.8)
Cross Pitch (across gas flow), mm (in)	230 (9.1)
Back Pitch (in line with gas flow), mm (in)	80 (3.1)
Number Wide/Deep	4 / 12
Upstream Cavity, mm (in)	1113 (43.8)
Downstream Cavity, mm (in)	2225 (87.6)

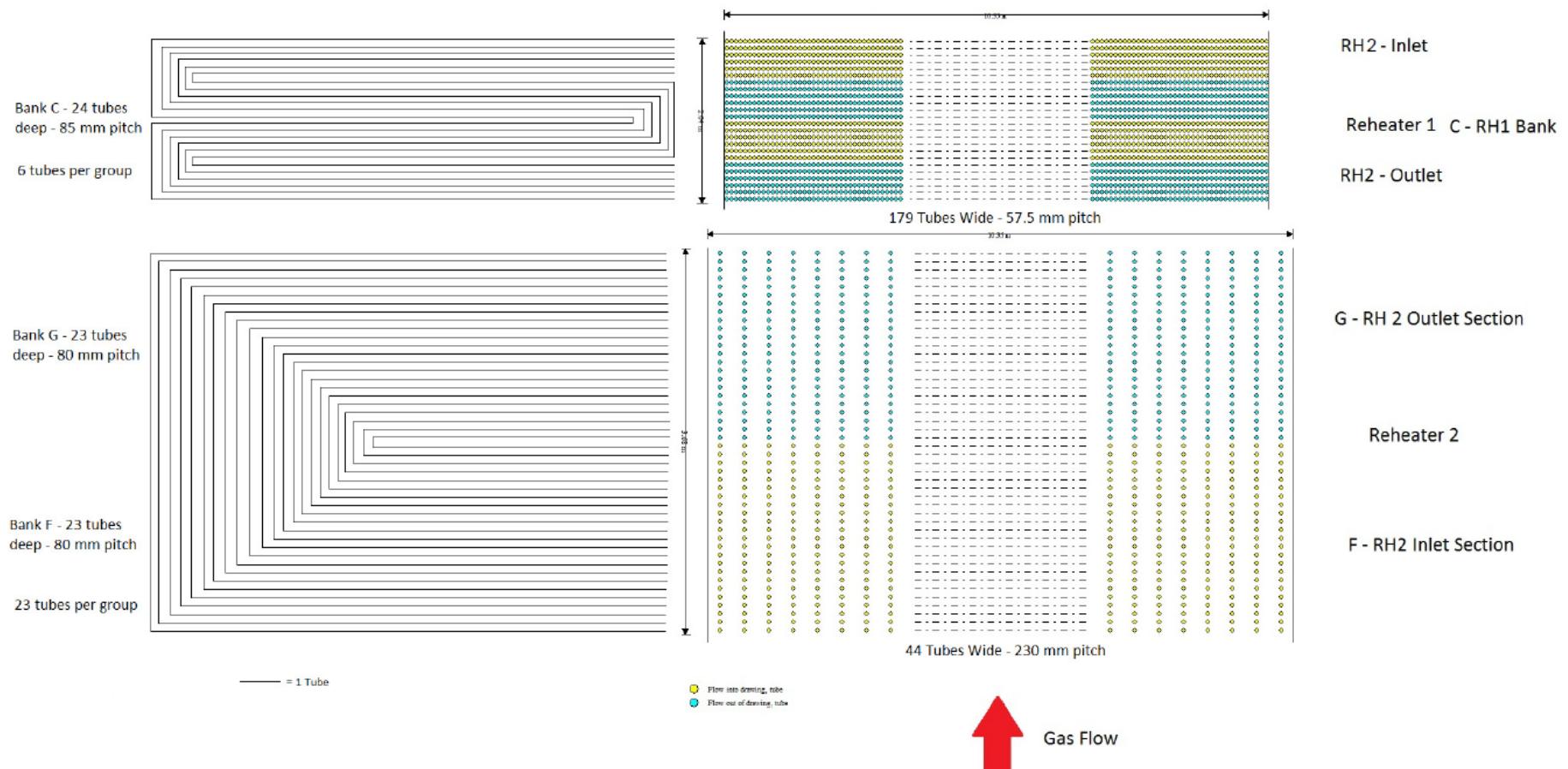
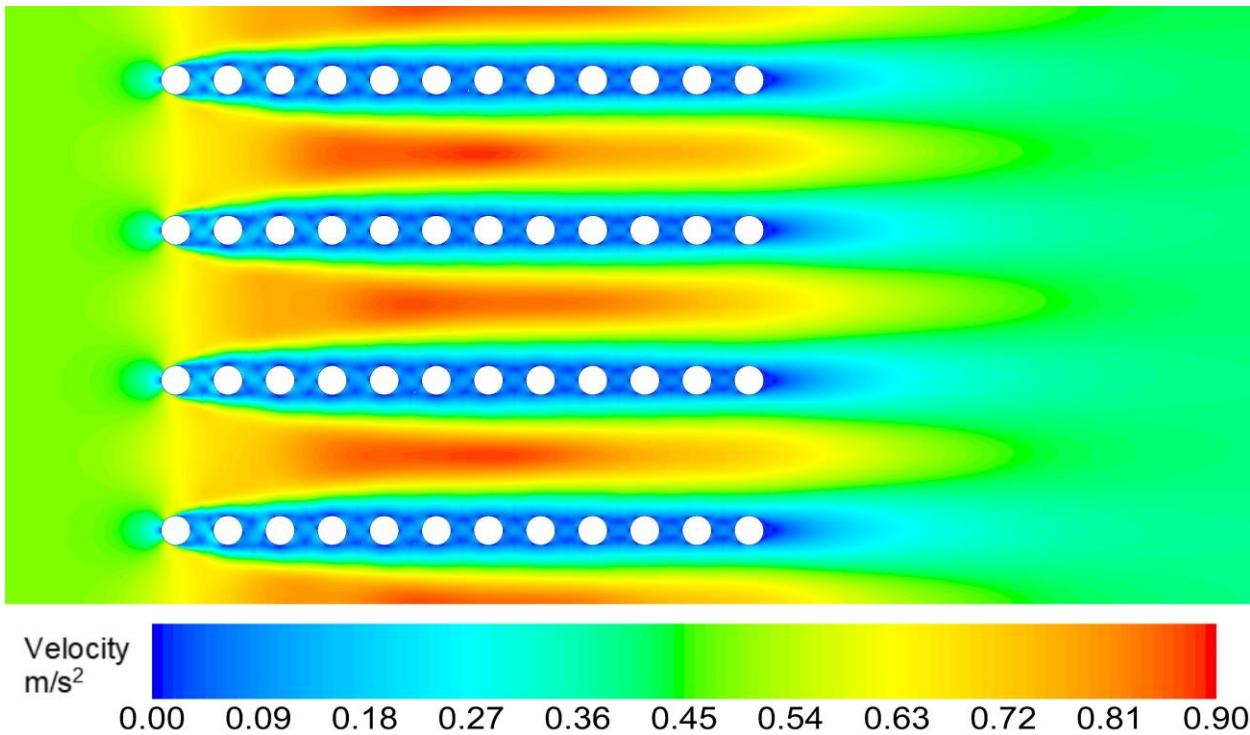

This geometry was also created by DBL in a SteamGen model to allow direct comparison. Both models were given identical flue gas composition and process boundary conditions, as detailed in Table 5-8.

Table 5-8
Reheater Bank Simulation Flue Gas Boundary Conditions


Item	Value
Temperature, °C (°F)	1200 (2192)
Pressure, bara (psia)	1.01 (14.7)
Inlet velocity, m/s (ft/s)	7.9 (25.9)
Gas Composition, wt %: CO ₂	45.67
O ₂	37.42
H ₂ O	12.79
N ₂	4.01
Ar	0.00
SO ₂	0.11

The test bank was defined to have the expected steam side mass flux of the full-scale system to ensure that inside heat transfer coefficients (and the resultant metal temperature) were commensurate with the final model conditions. Two banks were constructed to represent the primary reheater bank (cooler gas temperatures, tighter cross pitch) and the final reheater that would generally be in the more radiative sections of a boiler system (and hence have a wider cross pitch to better harness radiative heat transfer). The geometry that was modeled is shown in Figure 5-7.

The fluent CFD model was built to have an equivalent geometry with the metal temperature being defined at fixed temperature above that of the reheat steam temperature in these tubes. A representative output diagram is shown in Figure 5-8.

Figure 5-7
Test Reheater Bank Arrangement

Figure 5-8
Fluent CFD Reheater Model Showing Velocity Contours

Comparisons suggested that the DBL OEM boiler thermal design tool predictions were more conservative than the WUSTL CFD predictions and so have therefore been used as the basis for the boiler thermal design, ensuring that the resultant cost estimate will be as representative as possible. The final 4-stage SPOC arrangement is shown in Figure 5-9 and this was used to develop the boiler design.

Using appropriate steam-side mass fluxes for each bank, DBL defined a boiler geometry that would deliver both the thermal performance (heat absorption) and acceptable tube metal temperatures at every location. The conceptual SPOC convective heat transfer modules are comprised of an upward-flow gas path with appropriately configured heating surfaces, in cross-flow arrangement, of superheat, reheat (single reheat), and economizer (plain tube) pressure parts, as shown in Figure 5-10.

The water-steam circuit is parallel across the four fuel stages. Reheat steam temperature control is by means of spray attemperation and/or FGR. Within each PV, a gas-tight membrane wall steam-cooled enclosure is proposed to provide annular space to separate hot flue gas from PV and space for interconnecting pipework and headers.

Using the DBL OEM boiler thermal design tool, for a single SPOC convective stage and based on the optimized arrangement, results in a requirement for the convective boiler module to be approximately 50 meters (164 ft) long with an outside diameter of 4.5 meter (15 ft) limited by the requirement for road transportation. The convective PV concept considers a plenum at the base to aid ash drop-out. A provision is considered to introduce inert gas into the dead space between the PV and membrane enclosure (cage wall) to maintain the integrity of the PV.

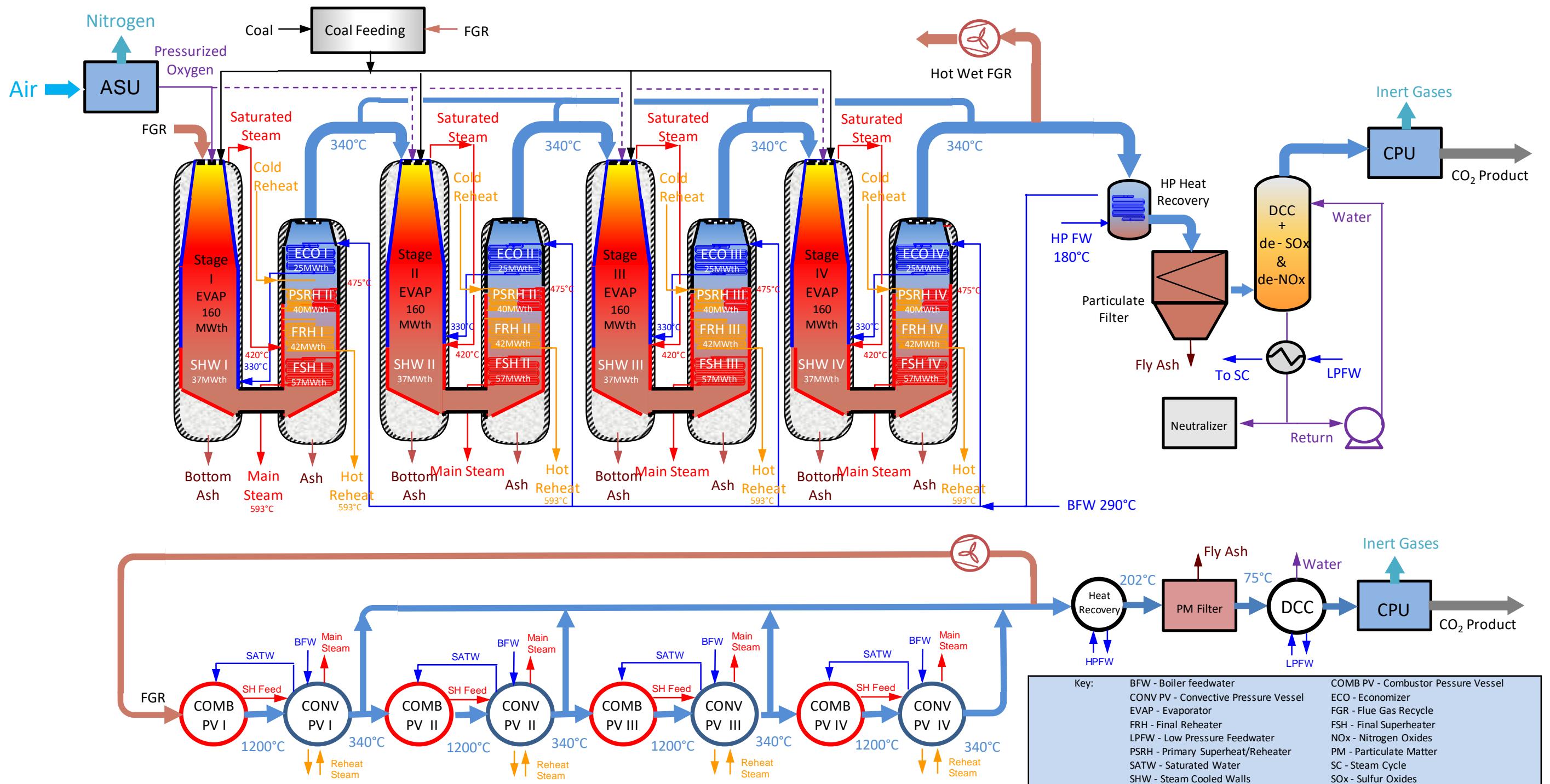
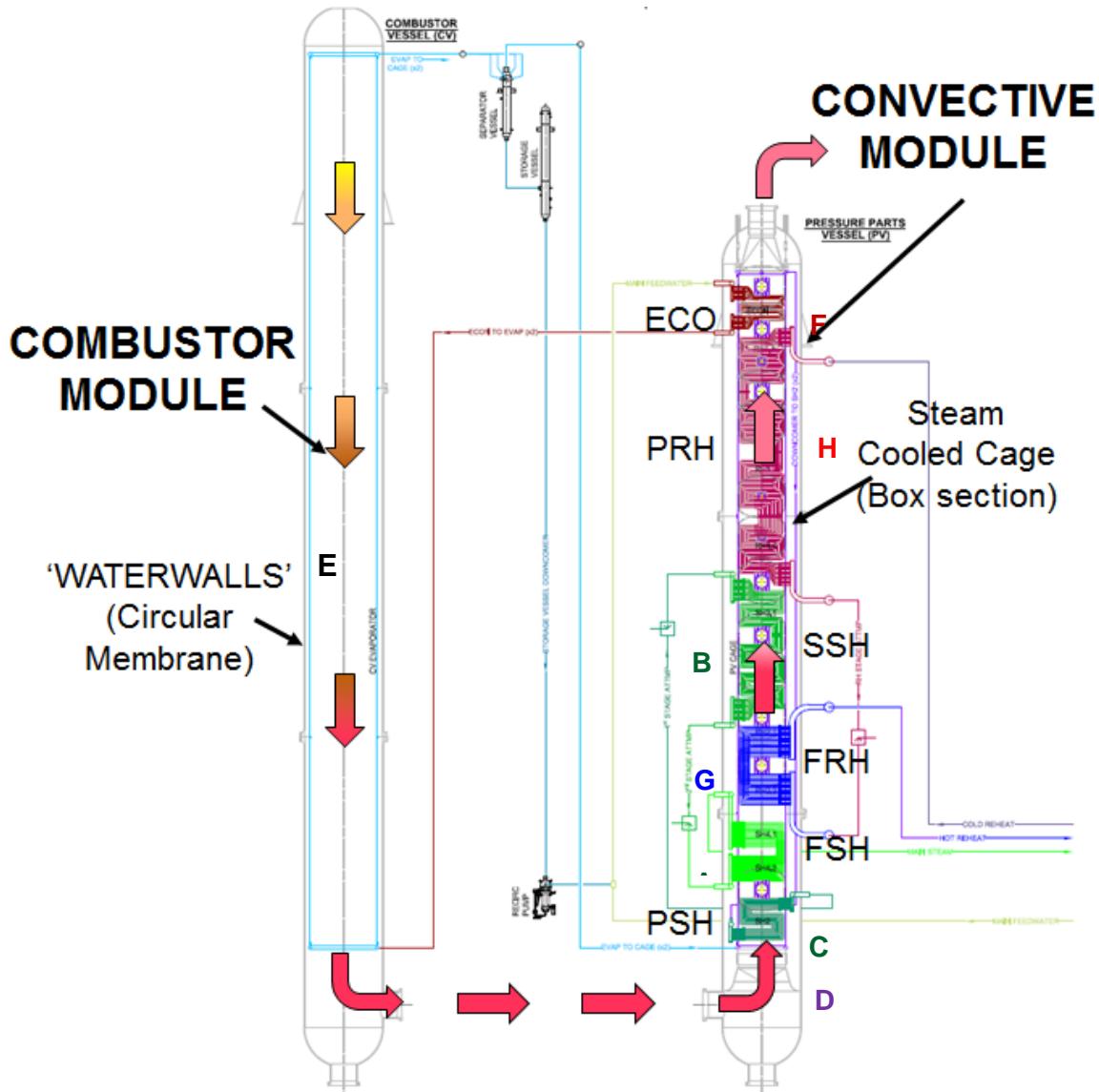



Figure 5-9
4-Stage, 2-Pass SPOC Arrangement

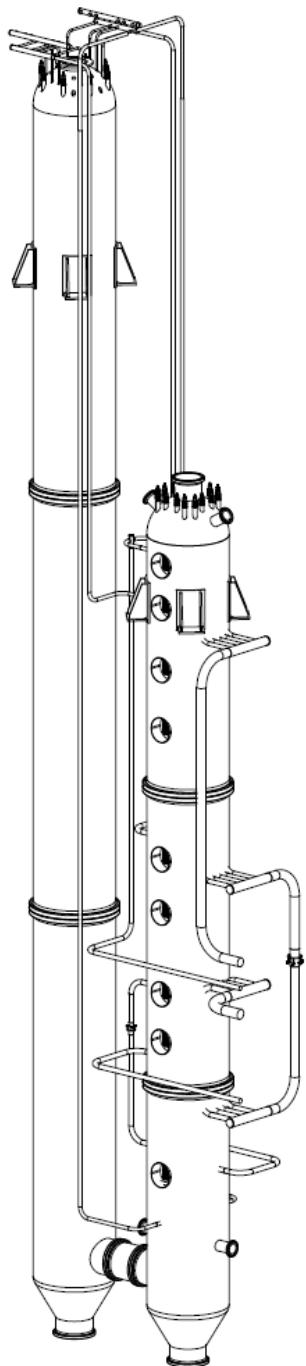
Item:

A	4th Stage Superheater	D	Convective PV Enclosure	G	Reheater 2
B	3rd Stage Superheater	E	Combustor PV Evaporator	H	Reheater 1

Figure 5-10
Schematic SPOC Combustor PV and Convective PV Per Fuel Stage

The PV has cavities included for installation of online ash cleaning such as explosive shock generators and has been split into three sections for ease of transport and assembly at site. The entire heating surface is top supported and thermal expansion will be significant. Thermal expansion is an area that would likely require further, detailed engineering to better develop the concept.

Details of the boiler bank surfaces for the convective PV stage are given in Table 5-9.


Table 5-9
Convective PV Boiler Bank Details

Item Ref.:	SPOC Boiler Heating Surface Description (per Fuel Stage)	Tube OD mm (in)	Nominal Tube Thk mm (in)	Tube Cross Pitch mm (in)	Tentative Material Selection
Convective PV					
A	4th Stage Superheater (SH4)				
	SH4.1 Outlet Leg	42.4 (1 2/3)	7.1 (0.28)	345.0 (13 1/2)	HR3C 310NbN
	SH4.2 Inlet Leg	42.4 (1 2/3)	6.3 (1/4)	345.0 (13 1/2)	HR3C 310NbN
B	3rd Stage Superheater (SH3)				
	SH3.2 Outlet Bank	42.4 (1 2/3)	6.3 (1/4)	230.0 (9)	HR3C 310NbN
	SH3.1 Inlet Bank	42.4 (1 2/3)	6.3 (1/4)	230.0 (9)	SA213 T12
C	2nd Stage Superheater (SH2)				
	SH2 Bank	42.4 (1 2/3)	6.3 (1/4)	460.0 (18)	SA213 T91
D	Convective PV Enclosure (SH1)				
	Upper Enclosure Membrane Tubes	51.0 (2)	8.0 (0.31)	115.0 (4 1/2)	SA213 T12
	Lower Enclosure Membrane Tubes	38.0 (1 1/2)	6.3 (1/4)	57.5 (2 1/4)	SA213 T12
Combustor PV					
E	Membrane Wall Evaporator				
	Evaporator (Rifled Tubes)	28.6 (1 1/6)	6.5 (0.26)	42.6 (1 2/3)	SA213 T12
Convective PV					
F	Economizer				
	Economizer Bank (Plain Tube)	44.5 (1 3/4)	5.0 (0.2)	57.5 (2 1/4)	SA210C
Convective PV					
G	Reheater Section (RH2)				
	RH2.1 Outlet leg	44.5 (1 3/4)	3.6 (0.14)	230.0 (9)	HR3C 310NbN
	RH2.2 Inlet leg	44.5 (1 3/4)	3.6 (0.14)	230.0 (9)	HR3C 310NbN
H	Reheater Section (RH1)				
	RH1.4 Outlet	51.0 (2)	4.0 (0.16)	86.25 (3 3/8)	SA213 T22
	RH1.3	51.0 (2)	4.0 (0.16)	86.25 (3 3/8)	SA213 T12
	RH1.2	51.0 (2)	4.0 (0.16)	65.7 (2 5/8)	SA213 T12
	RH1.1 Inlet	51.0 (2)	4.0 (0.16)	65.7 (2 5/8)	SA210C

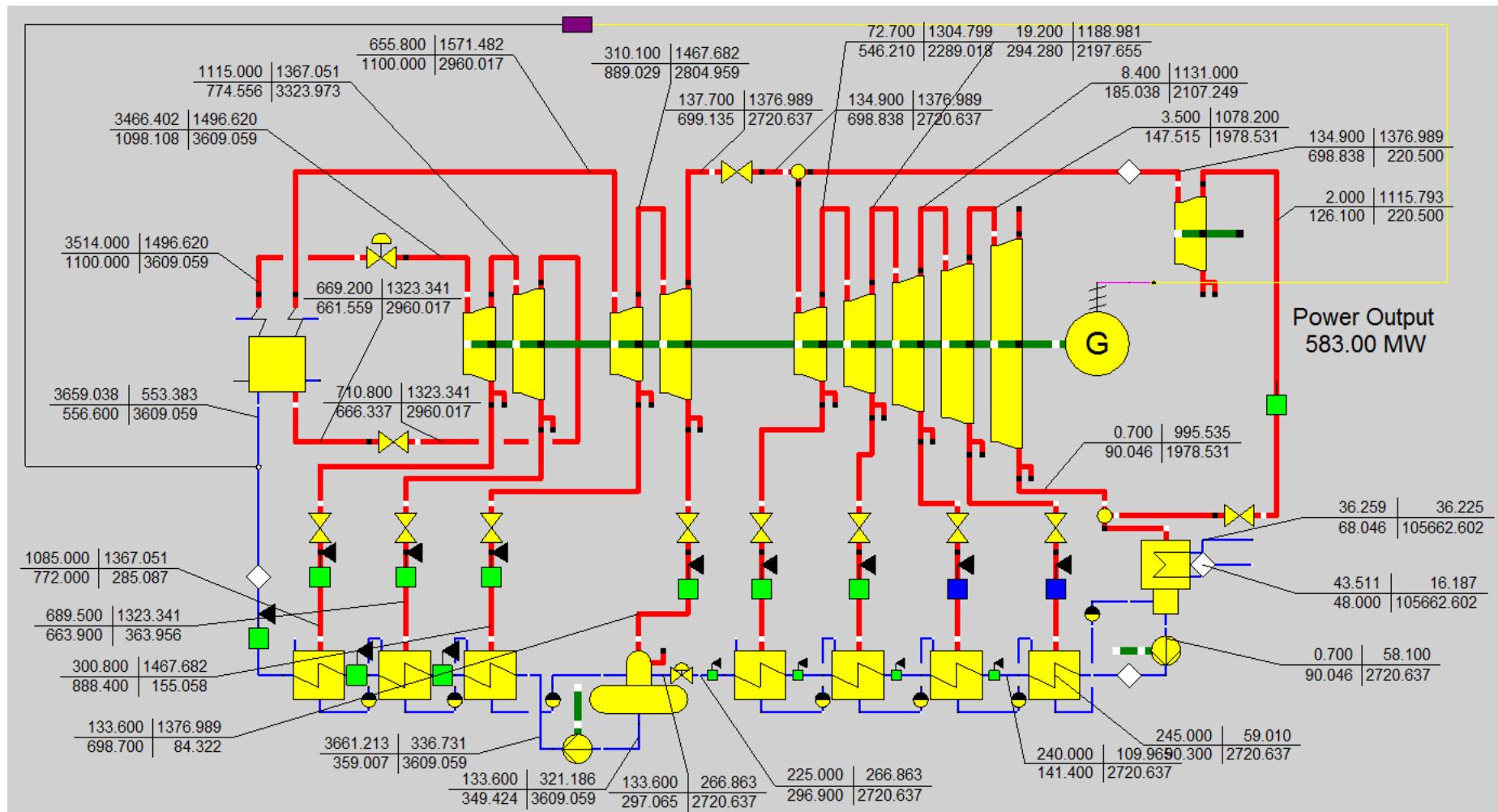
Interconnecting pipework is routed both internal and external to the PV, optimizing the use of the available space limitations within the vessel dead space. For both the combustor and convective

vessels, performance has been based on model predictions that require validation. There are still several challenges that need to be overcome through detailed engineering design and testing at significant pilot scale.

A 3-D visualization of the optimized arrangement concept for a single SPOC stage of a 550 MWe net output system with interconnecting pipework is shown in Figure 5-11.

Figure 5-11
Schematic SPOC Combustor PV and Convective PV Per Fuel Stage

Steam Turbine Modeling


Basis of Model

The steam turbine model was defined using the NETL baseline Case S12A design, which specifies:

- Boiler interfaces (turbine inlet conditions at the stop valve, expected cold reheat conditions leaving the high-pressure cylinder, reheat pressure drop, and hot reheat turbine inlet temperature)
- Overall turbine arrangement (number of feedwater heaters, turbine extraction points, bled-steam pressure loss, deaerator location, feedwater heater approach temperatures at full load, pressure drops, cooling water conditions, and effective condenser pressure).
- Turbine expansion isentropic efficiency (for each stage, based on extraction conditions)
- Boiler feedwater pump turbine location, efficiency, and power requirements

Case S12A Results

A steam cycle model based on NETL baseline Case S12A using the EBSILON steam cycle performance modeling software was developed and tuned to match the full-load performance. As the baseline S12A turbine heat balance diagram accounts for the total turbine shaft seal steam losses as flows leaving the steam seal regulator, the seal flow origin locations are not shown. As a result, the model did not explicitly consider the seal leakage flow except for the thermal contribution of the leakage flow to the relevant extraction streams for feedwater heaters 7 and 2. Despite this simplification, the initial model predicted the steam flowrate to within 0.4% of the published steam data. The model results are shown in Figure 5-12.

Figure 5-12
NETL S12A Baseline Model Using EBSILON

A direct comparison of the published S12A baseline steam data and the EBSILON model results are shown in Table 5-10.

Table 5-10
NETL Baseline Case S12A Model Results

Parameter	Units	Base Case S12A	EBSILON Model	Notes
Main Steam	Pressure	242.2 (3514)	242.2 (3514)	Defined
	Temperature	593.3 (1100)	593.3 (1100)	Defined
	Mass flowrate	456.7 (3624)	454.8 (3609)	No sprays
Feedwater	Pressure	288.7 (4186)	288.6 (4185)	HP heater dP
	Temperature	291.4 (556.6)	291.5 (556.7)	Calculated
	Mass flowrate	456.7 (3624)	454.8 (3609)	Calculated
Hot Reheat Steam	Pressure	45.2 (655.8)	45.2 (655.8)	Defined
	Temperature	593.3 (1100)	593.3 (1100)	Defined
	Mass flowrate	378.5 (3004)	373.0 (2960)	No sprays
Cold Reheat Steam	Pressure	49.0 (710.8)	49.0 (710.8)	Defined
	Temperature	354.0 (669.2)	350.5 (663.0)	Calculated
	Mass flowrate	378.5 (3004)	373.0 (2960)	Calculated
Boiler Feed Pump Turbine Steam Flow	kg/s (klb/hr)	27.8 (220.5)	27.8 (220.5)	Power match
LP Feedwater Flowrate	kg/s (klb/hr)	345.5 (2742)	342.8 (2720)	Calculated
Main Steam Duty	MWth	1002.4	998.2	Calculated
Reheat Steam Duty	MWth	216.9	217.1	Calculated
Total Heat to Steam	MWth	1219.3	1215.3	Calculated
Gross Power Output	MWe	583	583	Defined
Net Power Output	MWe	550	550	Defined

Resizing for SPOC Requirements

This model was then used as a basis for the larger steam turbine that is needed to deliver the gross power for oxy-combustion. The model was scaled up to the initial estimated SPOC gross power requirement of 729 MWe. As the model was configured to calculate the steam flow

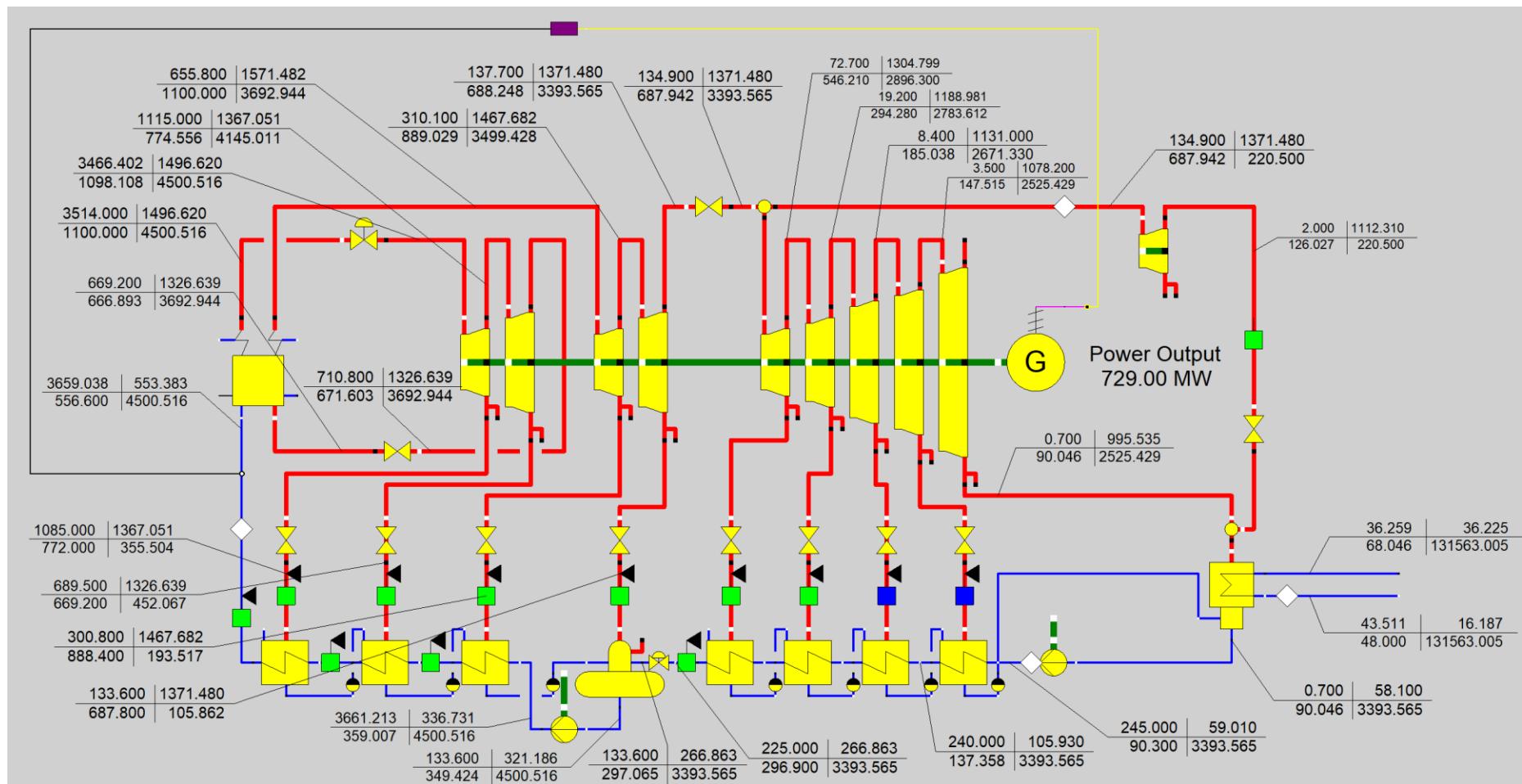
needed to meet a gross power requirement, this increased the main steam flow proportionally to 567.1 kg/s (4500 klb/hr). The EBSILON model is shown in Figure 5-13.

Because of the pressurized operating condition of the SPOC process, substantial heat recovery opportunities are available from the product flue gas prior to CO₂ purification and compression. The bulk of the heat available is due to the latent heat content of the moisture generated in the combustion.

Flue Gas Heat Recovery

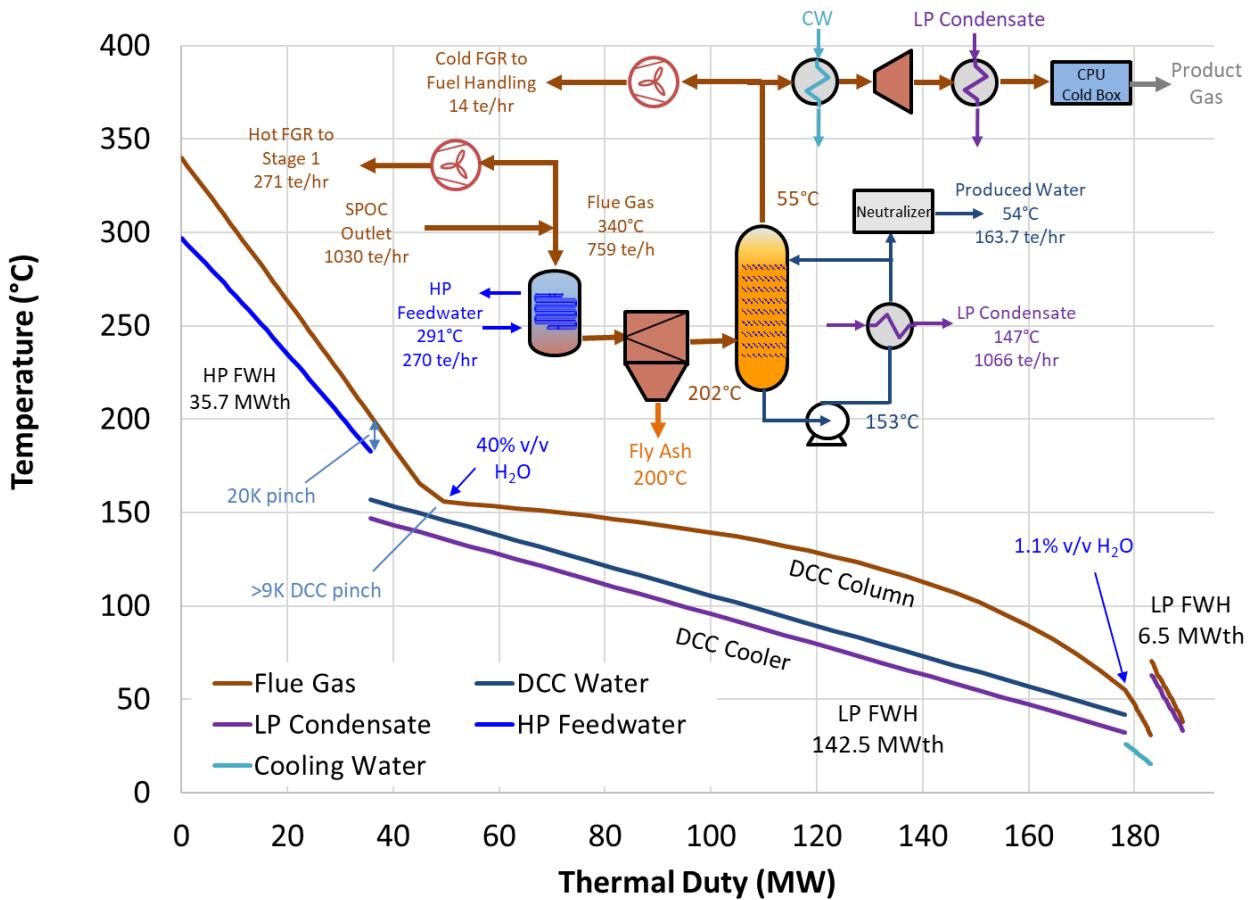
A heat recovery assessment was carried out on the SPOC flue gases leaving the last combustion stage as they are passed through the particulate removal system and ultimately entering the DCC section. Because of the elevated pressure of the SPOC system, this heat recovery can be achieved at higher temperatures than would be available from atmospheric flue gas systems, making the heat more useful in feedwater applications.

Non-condensing Stage


The flue gas heat recovery was carried out in two main sections – the first section is a high-temperature heat exchanger that cools the flue gas using HP feedwater. The second section is a lower-temperature heat recovery that indirectly extracts the heat from the DCC circulating fluid using LP feedwater.

Because of the high-temperature FGR, the flue gas exits the SPOC boiler island at an elevated temperature. This heat can be recovered into the HP feedwater heater circuit as the temperature is sufficient to raise the cooling water to the nominal economizer inlet temperature.

Two options are available for the location of this cooler:


- 1) Prior to particulate removal, using plane tube or a sparse fin pitch (like the economizer surface) making the flue gas cooler for particulate removal.
- 2) After particulate removal, allowing for easier application of finned tubing with a tighter fin pitch (and hence smaller surface requirement) as the ash loading is substantially reduced.

To avoid the need for high-temperature dust removal, the non-condensing heat recovery is carried out by a dedicated economizer-type bank that is like the final surfaces of the convective PV modules as this location remains a high-dust environment. Only a portion of the HP feedwater is heated in this way (14.2%), with the remainder being heated using the HP feedwater heating train as before. The degree of cooling applied at this bank is currently set above the moisture dew point. However, further assessment is recommended to identify if the acid dew point is reached prior to the particulate removal step, as if so the degree of cooling applied will need to be reduced (thereby reducing the higher-temperature contribution to the steam turbine island).

Figure 5-13
SPOC Scaled Model without Heat Recovery

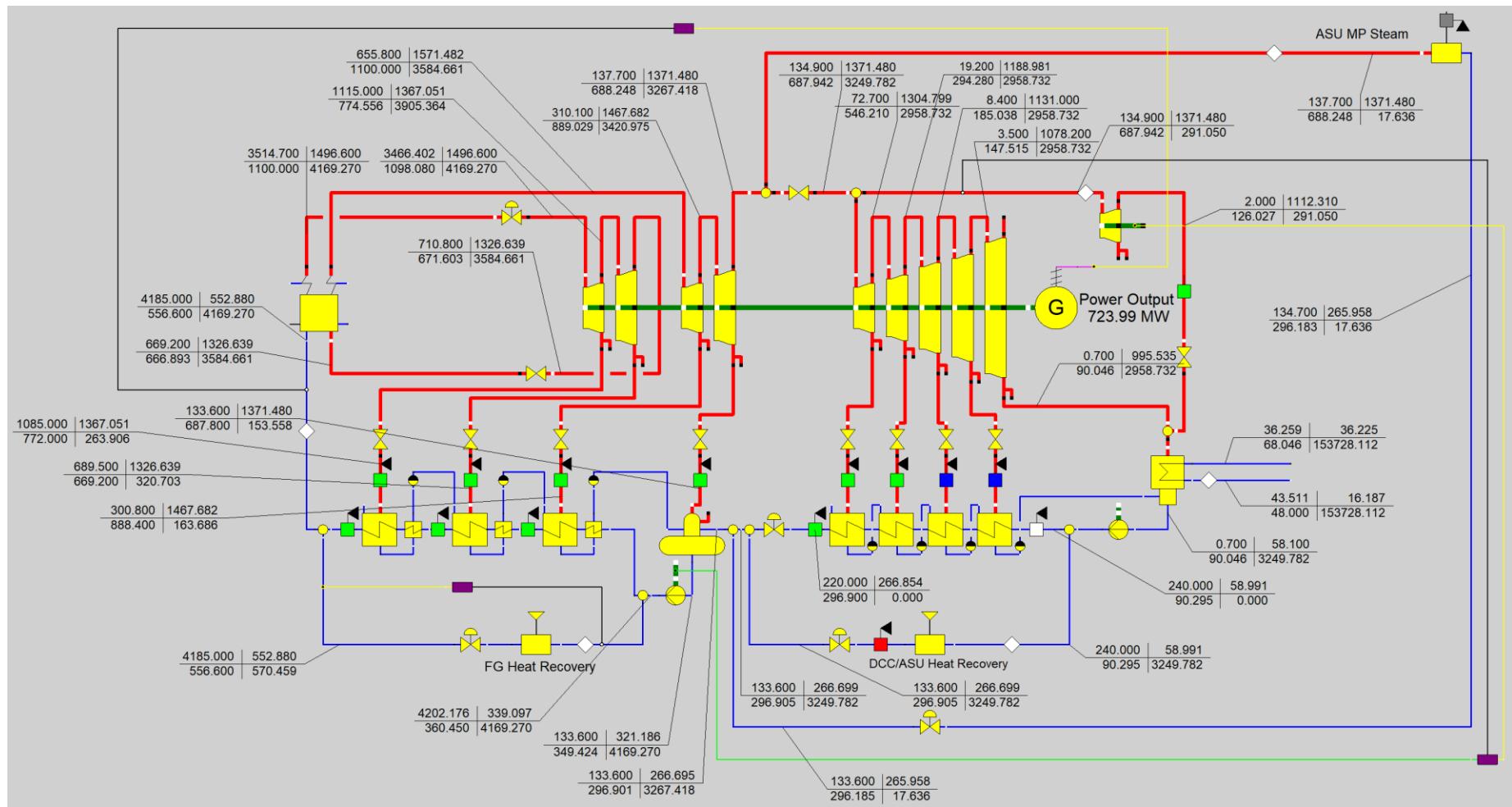

The cooling and condensation process was modeled using Aspen Plus v10 software. The cooling curve for the flue gases and the heating curves for the different streams being heated are shown in Figure 5-14.

Figure 5-14
SPOC Flue Gas Cooling Curve

Direct-Contact Cooling

Following the high-temperature heat recovery stage and dust removal, the flue gas is passed to a DCC module. The DCC heat recovery is a two-stage system with direct flue gas cooling using the circulating fluid (exposed to the flue gas and thus containing dissolved acid gases and trace solids) and then a DCC cooler heat exchanger that transfers heat from the circulating water to the clean LP feedwater stream.

Figure 5-15
SPOC Steam Turbine Model with Heat Recovery

Compression and Purification Unit

Although the flue gas heat recovery represents most of the low-grade heat available, additional heat recovery opportunities are also available from other sources in this process such as the ASU and the CO₂ compression system.

When the low-temperature thermal energy is recovered from the DCC, the MAC, the BAC, and the CO₂ compressor systems – the entire low-temperature feedwater heating requirements can be achieved. It follows that the low-temperature feedwater heater units would not be needed and would therefore not be installed in an SPOC steam turbine system, saving capital costs.

When the heat recovery was added to the 729 MWe gross power model, the main steam flow needed was reduced to 532.2 kg/s (4223 klb/hr), a 6% reduction in steam generation in comparison to having no heat recovery due to the improved effective turbine heat rate.

The reduced heat-to-steam requirement results in a smaller boiler being needed, proportionally reducing auxiliary load related to the fuel processing systems, as shown in Table 5-11.

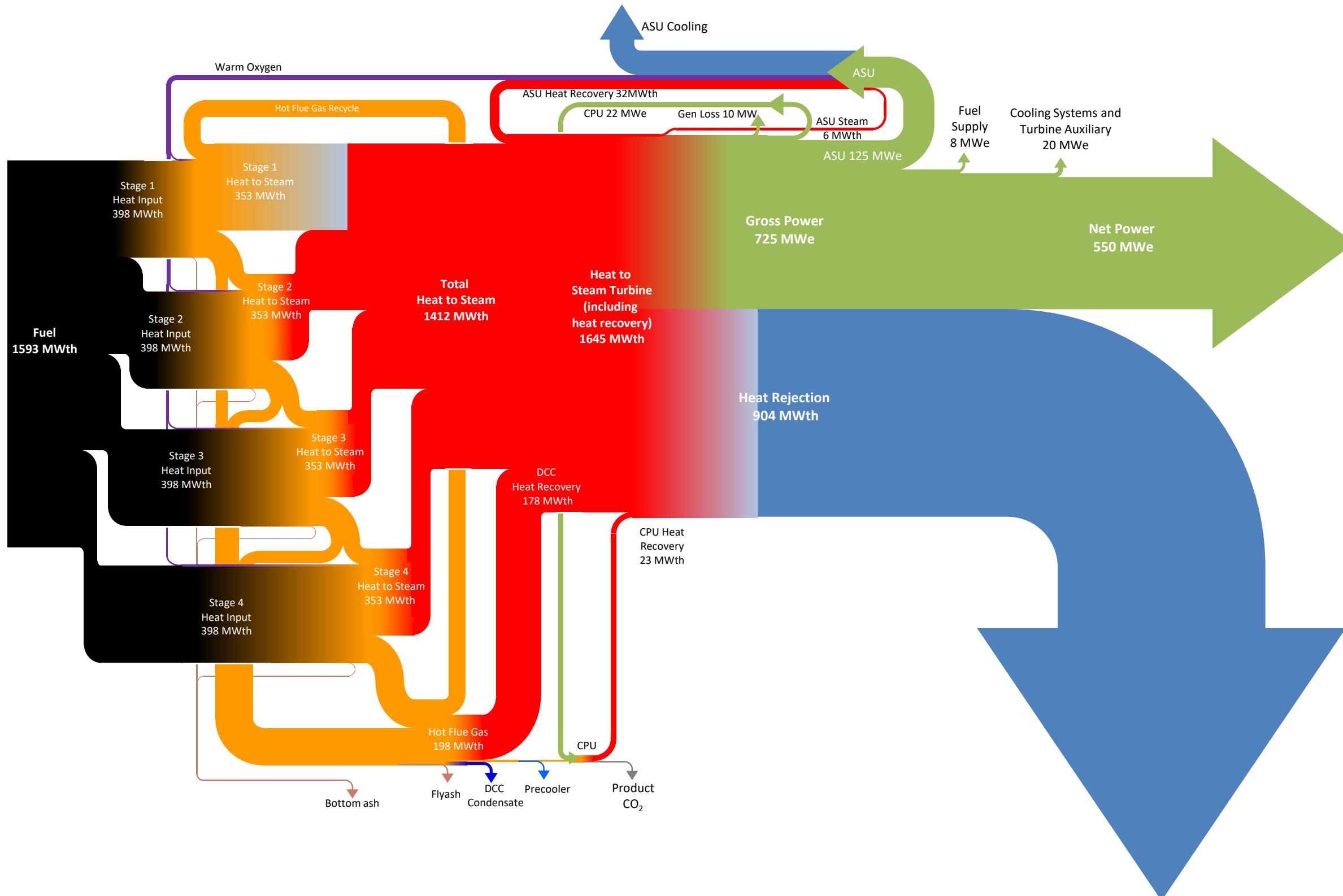
Table 5-11
Auxiliary Power in kWe of SPOC and NETL Baseline Cases

Parameter	Case	S12A	S12B	S12F	SPOC
Coal Handling and Conveying	510	630	570	512	
Pulverizers	3850	5520	4770	4282	
Sorbent Handling and Reagent Preparation	170	240	180	162	
Ash Handling	860	1220	1070	960	
Fuel Delivery - Primary Air Fans or Lock-hopper	2490	3550	2240	2227	
Combustant Delivery – Forced Draft Fans or O ₂ Feed	1460	2090	880	0	
Induced Draft Fans or Recycle	6730	9620	7280	1047	
Main Air Compressor and ASU Auxiliaries	-	-	94,710	124,607	
Economine	-	22,900	-	-	
Baghouse	120	170	150	150	
Spray-Dryer Flue Gas Desulfurization / DCC	2240	3200	2910	150	
Selective Catalytic Reduction / Compression CPU	10	49,020	64,740	21,774	
Miscellaneous BOP	2000	2000	2000	2000	
Steam Turbine Auxiliaries	400	400	400	400	
Condensate Pumps	800	550	990	958	
Circulating Water Pumps	2400	9140	3280	3141	
Ground Water Pumps	250	690	320	320	
Cooling Tower Fans	1560	5970	2110	2020	
Air-Cooled Condenser Fans	4990	3680	6910	6617	
Transformer Losses	1830	2350	2780	2662	
Total Auxiliary Power	32,670	122,940	198,290	173,988	
Gross Power Required	582,670	673,000	748,290	723,988	

The overall gross power needed to deliver 550 MWe net was therefore reduced further to 724 MWe following the inclusion of the heat recovery, resulting in a main steam flow 7.3% lower than the initial case with no integration.

Overall Plant Performance

The overall plant performance is summarized against the three NETL baseline cases for comparison in Table 5-12. As can be seen from the results, early-stage CO₂ compression is avoided with the SPOC process as the flue gas enters the CPU at an elevated pressure in comparison to Case S12F. However, the need to feed pressurized oxygen into the process consumes a significant portion of the power saved.


The main differentiator is the ability to recover far greater quantities of heat from the process for use in the steam turbine island. As a result, the SPOC process outperforms the NETL baseline Case S12F by 3.3% points on an HHV basis at the same 90% CO₂ capture rate.

This performance is only 4% points lower than the unabated Case S12A, using the same fuel and steam turbine technology level. Another point to note is that both oxy-combustion cases achieve a higher boiler efficiency than the conventional air-fired cases. The condenser duty in Case S12B is far lower than what would be expected for the gross power generated due to the large extraction steam flow taken for solvent regeneration. The reverse is true for the SPOC case, where heat recovery serves to keep more of the extraction steam in the turbine, increasing the thermal duty on the condenser unit.

A summary of the energy flows for the SPOC design case is presented in Figure 5-16. The oxy-combustion cases outperform the PCC case on CO₂ emission intensity due to overall efficiency (i.e., Case S12B needs to burn more fuel to deliver 550 MWe net), hence with 90% capture a greater quantity of CO₂ is emitted. The SPOC case has the lowest CO₂ intensity at under 95 g/kWh (0.21 lb/kWh), which is 3-4 times lower than a typical natural-gas combined cycle unit.

Table 5-12
Overall Comparison of SPOC with NETL Baseline Cases

Parameter	Case	S12A	S12B	S12F	SPOC
Total Gross Power, MWe		582.7	673.0	748.3	724.0
CO ₂ Capture/Removal Auxiliaries, kW _e	-	22,900	94,710	124,607	
CO ₂ Compression, kW _e	-	49.000	64,740	21,774	
BOP, kW _e	32,670	51,040	38,840	27,607	
Total Auxiliaries, MWe	32.67	122,940	198.29	174.0	
Net Power, MWe	550.0	550.1	550.0	550.0	
HHV Plant Efficiency, %	38.7	27.0	31.2	34.5	
HHV Net Plant Heat Rate, kJ/kWh (Btu/kWh)	9307 (8822)	13,330 (12,635)	11,532 (10,931)	10,427 (9883)	
LHV Plant Efficiency, %	40.1	28.1	32.39	35.83	
LHV Net Plant Heat Rate, kJ/kWh (Btu/kWh)	8908 (8444)	12,834 (12,165)	11,115 (10,536)	10,047 (9523)	
HHV Thermal Input, MWth	1422.0	2036.7	1761.9	1593.0	
LHV Thermal Input, MWth	1370.3	1962.6	1697.8	1535.0	
Boiler Efficiency, % HHV	85.7	85.8	88.7	87.5	
Heat to Steam, MWth	1219.3	1748.1	1564.1	1412	
HP Heat Recovery, MWth	-	-	0	35.7	
LP Heat Recovery, MWth	-	-	64.46	197.8	
Condenser Duty, GJ/hr (MMBtu/hr)	2227 (2111)	1636 (1551)	3075 (2915)	3250 (3080)	
As-Received Coal Feed, kg/hr (klb/hr)	256,992 (566.7)	368,084 (811.5)	318,415 (702.0)	287,892 (634.7)	
CO ₂ Generated, kg/hr (klb/hr)	472,497 (1041.7)	675,276 (1488.7)	583,371 (1286.1)	527,564 (1163.1)	
CO ₂ Captured, kg/hr (klb/hr)	0 (0)	607,619 (1339.6)	530,219 (1168.9)	475,287 (1047.8)	
CO ₂ Emitted, kg/hr (klb/hr)	472,497 (1041.7)	67,657 (149.2)	53,152 (117.2)	52,177 (115.0)	
CO ₂ Emission Intensity, kg/MW-hr (lb/MW-hr)	859 (1894)	123 (271)	96.6 (213)	94.9 (209)	

Figure 5-16
SPOC Design Case Energy Sankey Diagram

Check Coal Case

The check coal, Illinois No. 6, was also modeled to investigate the performance impact on the SPOC system design (noting that no changes to the design-case equipment is included as this is a check case only). Using this bituminous coal in the SPOC system leads to one significant difference to that of the PRB case regarding the level of heat recovery possible from the flue gas. As Illinois No. 6 coal has 11.12 wt % moisture in comparison to the Montana PRB fuel at 25.77 wt % moisture, this yields a flue gas that is significantly drier than the design case. Table 5-13 shows the implication of this on the resulting flue gas generated from the SPOC system.

Table 5-13
Comparison of Design Coal and Check Coal Flue Gas

Component			Design Case	Check Coal	Change
Gas Weight (entering heat recovery)		kg/hr (klb/hr)	754,798 (1664)	659,349 (1454)	-12.6%
Carbon Dioxide	CO ₂	wt % (wet)	73.19	76.93	
Moisture	H ₂ O	wt % (wet)	21.79	16.45	-5.3%
Nitrogen	N ₂	wt % (wet)	0.56	0.71	
Oxygen	O ₂	wt % (wet)	1.02	0.99	
Sulphur Dioxide	SO ₂	wt % (wet)	0.58	1.64	+1.06%
Argon	Ar	wt % (wet)	2.85	3.15	
Hydrogen Chloride	HCl	wt % (wet)	0.00	0.10	
Sulphur Trioxide	SO ₃	wt % (wet)	0.00	0.01	
Nitrogen Oxide	NO	wt % (wet)	0.01	0.01	
Nitrogen Dioxide	NO ₂	wt % (wet)	0.00	0.00	

As the flue gas leaving the process is both lower in mass flow and lower in moisture content, the quantity of latent heat available from the condensing moisture in the DCC unit is substantially reduced, as can be seen in Table 5-14.

Table 5-14
Overall Heat Recovery for Design Coal and Check Coal Cases

Component			Design Case	Check Coal	Change
HP Heat Recovery		MWth	35.7	29.8	-16.6%
LP Heat Recovery		MWth	197.8	153.3	-22.5%
Gross Turbine Heat Rate		kJ/kWh (Btu/kWh)	7014 (6648)	7166 (6792)	+2.2%

The net reduction in heat recovery possible with the check coal increases the turbine heat rate by over 2%. As this is a check case, and the design case has no LP feedwater heaters installed (all LP heating is achieved by heat recovery), the temperature entering the deaerator is lower than the

targeted value of 147°C (297°F) by 22°C (41°F). This reduction in incoming heat will require an increased steam turbine extraction to the deaerator from the intermediate-pressure (IP) turbine exhaust – in this case by as much as 78%. Hence, if the fuel diet for the system included a significant range of moisture content in the fuel, design consideration would need to be considered for the sizing of the deaerator unit and the steam extraction line feeding it.

The overall performance of the Illinois No. 6 check coal case is shown in Table 5-15 along with the design coal case using Montana Rosebud PRB.

Table 5-15
SPOC Design and Check Coal Performance

Parameter	Case	Design	Check
Total Gross Power, MWe	724.0	717.4	
CO ₂ Capture/Removal Auxiliaries, kW _e	124,607	120,437	
CO ₂ Compression, kW _e	21,774	19,995	
Balance of Plant, kW _e	27,607	26,944	
Total Auxiliaries, MWe	174.0	167.4	
Net Power, MWe	550.0	550.0	
HHV Plant Efficiency, %	34.53	35.14	
HHV Net Plant Heat Rate, kJ/kWh (Btu/kWh)	10,427 (9883)	10,244 (9710)	
LHV Plant Efficiency, %	35.83	36.44	
LHV Net Plant Heat Rate, kJ/kWh (Btu/kWh)	10,047 (9523)	9880 (9364)	
HHV Thermal Input, MW _{th}	1593.0	1565.0	
LHV Thermal Input, MW _{th}	1535.0	1509.5	
Boiler Efficiency, % HHV	87.53	90.22	
Heat to Steam, MW _{th}	1412	1428	
HP Heat Recovery, MW _{th}	35.7	29.8	
LP Heat Recovery, MW _{th}	197.8	153.3	
Condenser Duty, GJ/hr (MMBtu/hr)	3250 (3080)	3156 (2991)	
As-Received Coal Feed, kg/hr (klb/hr)	287,892 (634.7)	207,628 (457.7)	
CO ₂ Generated, kg/hr (klb/hr)	527,564 (1163.1)	484,254 (1067.6)	
CO ₂ Captured, kg/hr (klb/hr)	475,287 (1047.8)	436,029 (961.3)	
CO ₂ Emitted, kg/hr (klb/hr)	52,177 (115.0)	48,164 (106.2)	
CO ₂ Emission Intensity, kg/MW-hr (lb/MW-hr)	94.9 (209.2)	87.6 (193.1)	

Although the turbine heat rate increases, the boiler efficiency improves by a greater degree, thereby more than canceling out the overall impact and yielding an improved overall plant efficiency of 0.61% HHV.

This relatively small improvement in plant efficiency between sub-bituminous and bituminous coals shows the value of useful moisture latent heat recovery offered by the SPOC system when using lower-rank fuels.

As there is a lower CO₂ generation rate for the Illinois No. 6 fuel, this reduces the auxiliary power requirements on the CPU and the ASU, and hence the total heat input to the system is lower than the design case, yielding an improved CO₂ emission intensity. Process flow diagrams of the design and check coal cases are included in Appendix B, reported in both SI and English units for reference.

6

FLEXIBILITY AND TURNDOWN

The flexibility of the SPOC system is driven by the ability to bypass individual combustion stages and hence can maintain stable combustion and heat transfer in the remaining modules. The main constraint to flexibility is the oxygen supply system and the CPU as both units contain compressors that operate efficiency within a tight operating window.

SPOC Boiler Turndown

Strategy

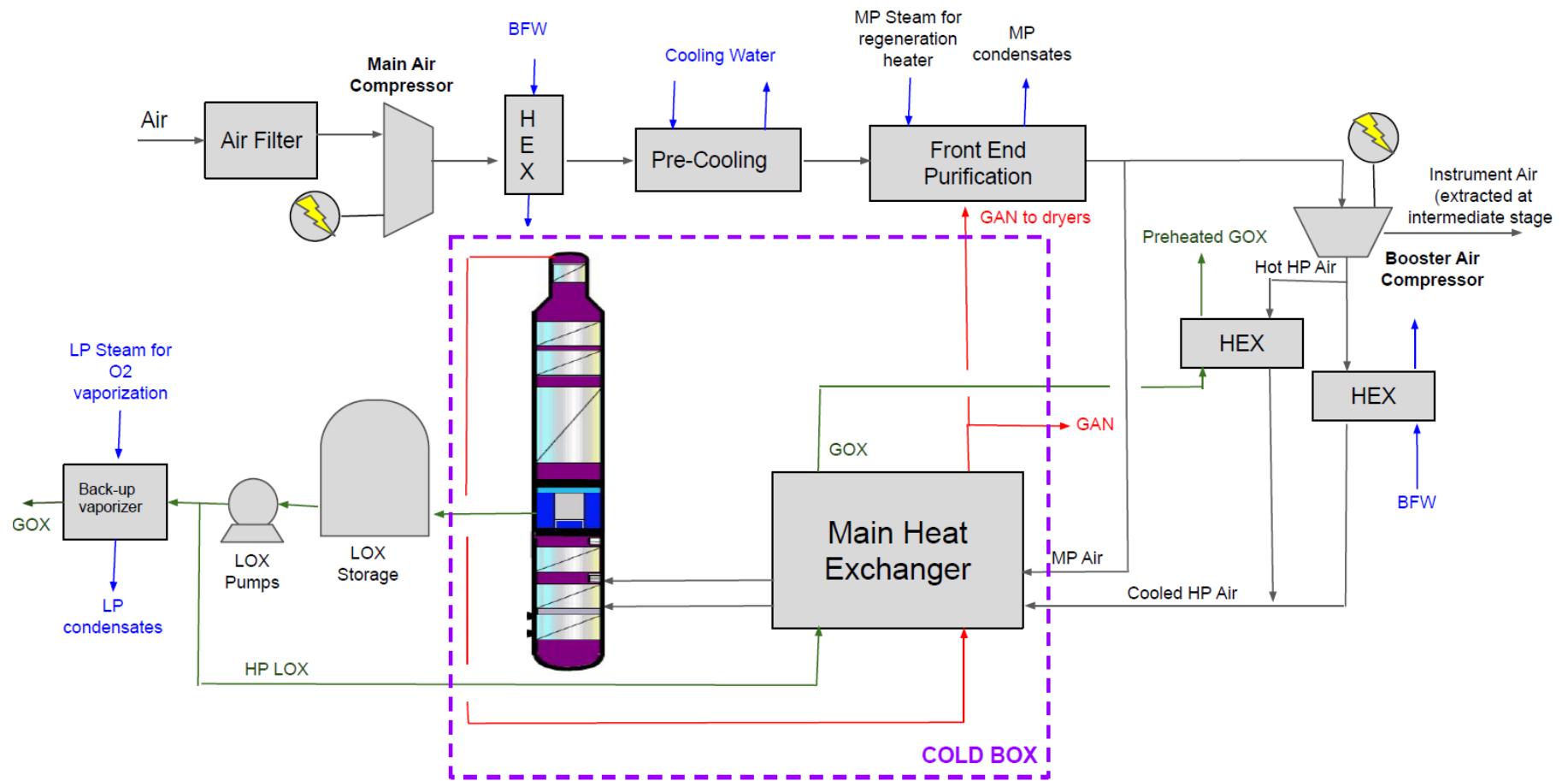
The SPOC process has been evaluated at part-load cases down to 12% net TMCR load. These cases are summarized in Table 6-1. The steam turbine is configured to operate in sliding-pressure mode from full load down to the boiler design Benson load; the Benson load being the lowest load at which the boiler is designed to maintain once-through operation. At loads below the Benson load constant pressure operation is maintained with the boilers operating in forced circulation mode. The design Benson load has been proposed as 40% BMCR (nominally 40% TMCR). Below this overall plant load, main steam is throttled at the turbine stop valve to ensure the boiler circuits do not operate at too low of a pressure to maintain stable furnace thermo-hydraulic performance.

Table 6-1
SPOC Baseline Case Turndown Performance Summary

Parameter	Load (% TMCR)	100%	75%	50%	25%	12%
SPOC Modules in Service		4	4	4	2	1
Module Firing Load, %		100	76.5	51.9	64.0	89.0
Main Steam Pressure, bara (psia)		242.4 (3515)	180.4 (2616)	118.5 (1718)	113.7 (1649)	112.9 (1638)
Cold Reheat Pressure, bara (psia)		45.2 (655.8)	33.9 (491.0)	22.3 (323.7)	13.6 (197.0)	9.3 (135.4)
Thermal Input, MWth		1593	1219	827.4	509.4	354.3
Boiler Efficiency, % HHV		87.53	87.61	87.38	87.56	87.21
Heat-to-Steam, MWth		1412	1080	731.4	455.5	313.1
HP Heat Recovery, MWth		35.7	27.47	18.83	11.38	7.96
LP Heat Recovery, MWth		197.8	159.0	106.5	53.69	38.46
Gross Power, MWe		724.0	552.1	382.3	225.4	152.9
Auxiliary Load, MWe		174.0	139.6	107.3	87.9	86.9
Net Power, MWe		550.0	412.5	275.0	137.5	66.0
Net Plant Efficiency, % HHV		34.53	33.85	33.24	26.99	18.63

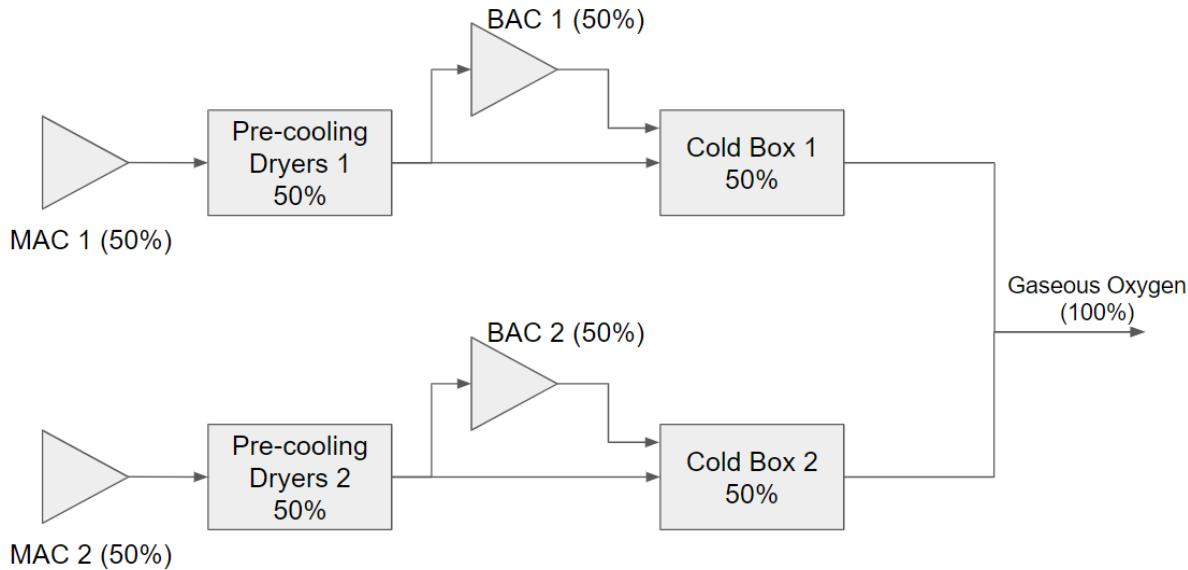
For low load operation and to achieve significant plant turndown, the SPOC system can uniquely remove combustion stages, e.g. 4-off for 50% TMCR down to 2-off for 25% TMCR, by maintaining the combustor stage firing load in the stages remaining in operation.

If the system permitted full sliding-pressure operation, the prospect of operating at a high individual stage firing rate with ultra-low back pressure from the steam turbine operating at very low loads would be introduced. Very low pressure yields much larger density differences between water and steam at the point of boiling, normally requiring larger bore tubes to accommodate this flow without incurring excessive internal steam velocities. Throttling the steam turbine at reduced load also helps to maintain the system in a better state of readiness for rapid load ramping as the throttle valve can be opened immediately, while coordinating with bringing “hot standby” stages back into service.


The minimum individual stage firing rate is just over 50% of full firing rate with all 4 stages in service at the 50% net output case. WUSTL has demonstrated stable combustion down to as low as 8% fuel heat input in the 100 kWth pilot facility, suggesting boiler loads would only be limited by the steam turbine system ability to maintain synchronization on the grid. The main overall loss in efficiency at reduced-load operation centers around the ASU and CPU equipment. These compressor-based units can only turndown to 85% load before requiring recycle flow (thereby consuming more specific power). The CPU is a single-train arrangement, this will consume significantly more specific power at all loads below 85%. The extreme case here is that 12% net load consumes 22% fuel input to maintain these auxiliary power requirements.

ASU Turndown

Baseline Case


The ASU consists of two identical trains that supply 5250 TPD of pure gaseous oxygen each. Depending on the transport limitations, the number of trains and/or process solution can be modified. The scheme in Figure 6-1 shows the design flow considered for the two ASU trains, with 100% corresponding to the full flow requirement (10,500 TPD of pure gaseous oxygen).

As shown in Figure 6-1, PM is removed from the incoming air with an air filter and compressed in a MAC. Heat produced in the MAC is utilized for heating boiler feedwater (BFW). After pre-cooling and front-end purification, a part of the air is further compressed in a BAC, while the remaining air is directly sent to the main heat exchanger. Instrument air is extracted at the intermediate stage of the BAC. Heat produced at the BAC is utilized for pre-heating BFW and gaseous oxygen (GOx). The air is cooled and liquefied in the cold box to produce LOx and gaseous nitrogen (GAN). GAN is supplied to the driers and for coal drying. LOx is stored in a storage tank and pumped to required pressure using LOx pump. LOx is vaporized in the main heat exchanger to GOx, and then pre-heated using heat available from the BAC.

Figure 6-1
ASU Configuration

Because of the scale of the oxygen production needed, two ASU trains are required to generate the full 10,500 TPD duty. The oxygen is produced at a pressure commensurate with the feed to the SPOC combustor system. The two trains are largely independent except for the oxygen product manifold as shown in Figure 6-2.

Figure 6-2
Baseline Case 2-Train ASU Arrangement

Depending on the transport limitations, the number of trains and/or process solution might be modified. The ASU, under steady conditions with the utilities available at battery limit, is expected to deliver products as indicated in Table 6-2.

Table 6-2
Expected Production from the Baseline ASU

Production	Item	Design Conditions
GOx	Mass flow, TPD	10,500
	Pressure, bara (psia)	≥ 17 (246.6)
	Temperature, °C (°F)	≥ 150 (302)
	O ₂ content, vol %	≥ 95.9
LP GAN	Mass flow, TPD	17,000
	Pressure, bara (psia)	≥ 0.950 (13.8)
	Temperature	ambient
	N ₂ content, vol %	≥ 99.5
Instrument Air	Molar flow, Nm ³ /hr (sft ³ /hr)	4000 (152,160)
	Pressure, bara (psia)	≥ 11 (159.5)
	Temperature	ambient
	Dew point, °C (°F)	< -40 (-40)

As mentioned previously, the ASU produces 10,500 TPD of oxygen, expressed as pure O₂ at a pressure of 17 bara (246.6 psia) and temperature of 150°C (302°F). The composition of GOx produced is 95.9 vol % oxygen, 3.6 vol % argon, and 0.5 vol % nitrogen. Similarly, the ASU produces 17,000 TPD of nitrogen, expressed as gross flow at pressure of 0.95 bara (13.8 psia) and ambient temperature. This is used in the SPOC process as a drying gas for the incoming fuel during the pulverizing process and for any sealing or inerting applications as needed.

The composition of GAN is 99.75 vol % N₂, 0.09 vol % O₂, and 0.16 vol % argon. Additionally, 4000 Nm³/hr (152,160 sft³/hr) of instrument air is supplied at pressure of 11 bara (159.5) and has a dew point of -40°C (-40°F) for use in the SPOC system.

LOx Production

Each train can produce up to 2% of LOx (~105 TPD per train or 210 TPD total). In this case, the GOx production will be reduced accordingly. The LOx production allows the refill the storage completely in around 17 days – allowing for rapid startup following a short outage.

Expected Power and Utility Consumption

Each ASU train, under steady conditions and ambient site conditions, requires the following utilities at the battery limit:

- Electricity: 13.8 kV and 480 V and 60 Hz at terminals
- Cooling water at the respective user flanges
- Boiler feedwater at the respective user flanges
- Instrument air connection point to the header flange (for startup and stand-by)
- Nitrogen connection to N₂ header flange (for startup and stand-by for seal gas and inerting)
- Medium-pressure steam connection to header (10 bara [145 psia] saturated steam available)
- LP steam connection to header (6 bara [87 psia] saturated steam available)

Each ASU train, under steady conditions and ambient site conditions, is expected to consume the average utilities as shown in Table 6-3. IP steam is used by the regeneration heater of the adsorbers during the heating phase, and saturated steam at 10 bara (145 psia) is used. The steam condensate from regeneration heater is returned at 9 bara (130.5 psia). As the overall required production of 10,500 TPD is being supplied by two ASU trains, therefore the indicated full scale should be doubled to get the consumption for 10,500 TPD GOx supply.

Table 6-3
Utility Consumption of Each Train for the Baseline ASU

Item	Unit	Value
Expected Electrical Power (at motor terminals)	MW	62.2
Expected IP Steam Consumption: - Average - Peak (during heating phase of regeneration)	kg/hr (lb/hr)	8000 (17,637) 22,300 (49,163)
Expected Condensate Return: - Average - Peak (during heating phase of regeneration)	kg/hr (lb/hr)	8000 (17,637) 22,300 (49,163)
Expected Cooling Water Supply	m ³ /hr (ft ³ /hr)	1800 (63,566)
Expected Cooling Water Return	m ³ /hr (ft ³ /hr)	1800 (63,566)

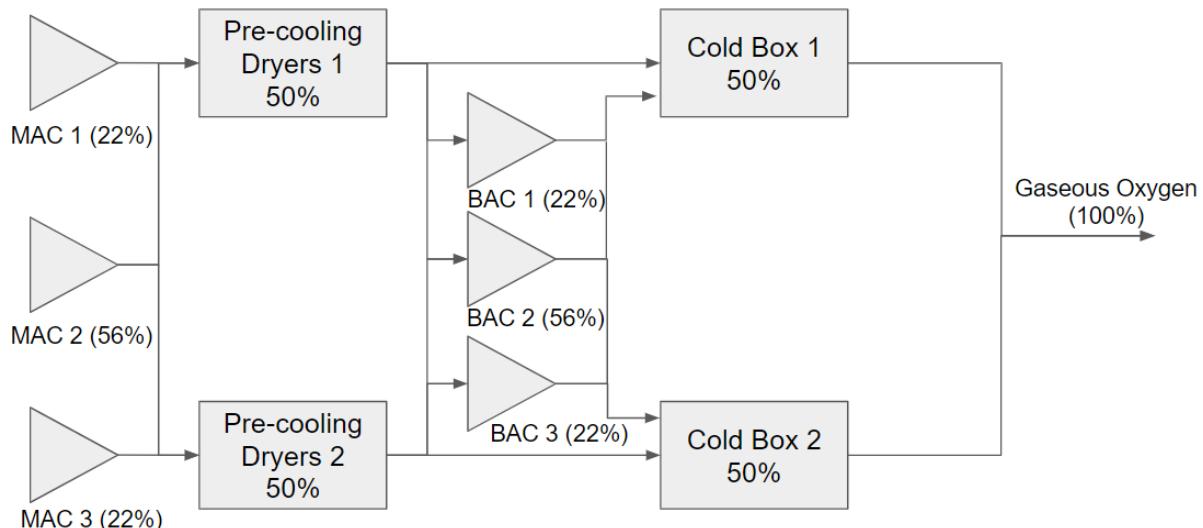
The power and utilities consumption figure includes the following consumers:

- BAC
- Cooling water pump to send cooling water to the air/water tower
- Dryers regeneration heater
- Expansion turbines
- IP LOx pumps (combined with back up pumps)
- MAC

When the supply of 5250 TPD of GOx by vaporization of LOx is needed (via the back-up system), the expected associated LP steam consumption is 40,300 kg/hr (88,846 lb/hr). Saturated steam at 6 bara (87 psia) is considered for this duty, extracted from the steam turbine island. In this case, the GOx temperature will be 60°C (140°F), but 150°C (302°F) can be reached with an additional heat exchanger using IP steam. The condensate is sent back to the steam turbine island to the deaerator.

BFW Preheating by ASU

During normal operation, each ASU, under steady conditions and ambient site conditions, is expected to transfer the heat quantities to BFW as shown in Table 6-4. The duty for BAC BFW pre-heater is the net heat available from the BAC for the steam cycle as GOx is heated internally in the ASU.


Table 6-4
Expected Heat Transfer to BFW

Item	Units	Design Condition
BFW Inlet Temperature	°C (°F)	33.2 (91.8)
Duty for MAC BFW Preheater	kWe	29,700
Maximum MAC BFW Outlet Temperature	°C (°F)	147 (297)
Duty for BAC BFW Preheater	kWe	2600
Maximum BAC BFW Outlet Temperature	°C (°F)	155 (311)

Flexible Case Variant

Description

As shown in Figure 6-3, the flexible ASU consists of two cold boxes and pre-cooling/dryers sized for 50% of the overall flow requirement.

Figure 6-3
Flexible ASU Arrangement

Because of the required flexibility and possibility to operate efficiently without venting between 40% and 100% of the overall flow (except during the ramp-up and ramp-down transition phases that might require some venting because of the dynamics of the system), the first approach was to consider the following for the sizing of the MAC and BAC:

- One common machine sized for 56% of the overall flow
- Two common machines sized for 22% of the overall flow

This allows coverage of the full flow range between 40% and 100%, but some other machine configurations could be studied if required for future cases. For the 40% case, only the 56% machine is required in turndown mode. The turndown of each cold box is 40% (equivalent to

20% of the overall flow) and is operated in parallel during the overall turndown case. The ASU power consumption for the 25% and 12% load cases was estimated based on the multi-compressor configuration with a maximum turndown to 85% of full load as these loads were not considered in the baseline ASU design.

Again, depending on the transport limitations, the number of trains and/or process solution might be modified. To reach an expected 6%/min ramp-up and ramp-down, some liquid retention capacities are added in the cold box compared to the baseline case. The dynamics of the system should be studied during the ramp-up and the ramp-down phases (integration with the power plant, impact of the purity of the GOx to the power plant, startup and shutdown sequence of the MAC and BAC, etc.).

The ASU, under steady conditions with the utilities available at the battery limit, is expected to deliver the products as indicated in Table 6-5. The baseline case is also included as a reference.

Table 6-5
Expected Production from the Flexible ASU

Production	Parameter	100% Baseline Case	100% Flexible Case	40% Flexible Case
GOx	Mass flow, TPD	10,500	10,500	4,200
	Pressure, bara	≥ 17 (246.5)	≥ 17 (246.5)	≥ 17 (246.5)
	Temperature, °C (°F)	≥ 150 (302)	≥ 150 (302)	≥ 150 (302)
	O ₂ content, %vol	≥ 95.9	≥ 95.9	≥ 95.9
LP GAN	Mass flow, TPD	17,000	17,000	6800
	Pressure, bara (psia)	≥ 0.950 (13.8)	≥ 0.950 (13.8)	≥ 0.950 (13.8)
	Temperature,	ambient	ambient	ambient
	N ₂ content, %vol	≥ 99.5	≥ 99.5	≥ 99.5
Instrument Air	Molar flow, Nm ³ /hr (sft ³ /hr)	4000 (152,160)	4000 (152,160)	1600 (60,864)
	Pressure, bara (psia)	≥ 11 (159.5)	≥ 11 (159.5)	≥ 11 (159.5)
	Temperature,	ambient	ambient	ambient
	Dew point, °C (°F)	< -40 (-40)	< -40 (-40)	< -40 (-40)

As in the baseline case, the ASU produces 10,500 TPD of oxygen at full load, expressed as pure O₂ at a pressure of 17 bara (246.6 psia) and temperature of 150°C (302°F). The composition of GOx is 95.9 vol. % oxygen, 3.6 vol. % argon, and 0.5 vol. % nitrogen.

Similarly, the ASU produces 17,000 TPD of nitrogen at full load, expressed as gross flow at a pressure of 0.95 bara, (13.8 psia) and ambient temperature. The composition of GAN is 99.75 vol. % N₂, 0.09 vol. % O₂, and 0.16 vol. % argon. 4000 Nm³/hr (152,160 sft³/hr) of instrument air is also supplied at a pressure of 11 bara (159.5 psia) and has a dew point of -40°C (-40°F).

The ranges for MAC and BAC covering 100%, 75%, 50%, and 40% loads are included in Table 6-6.

Table 6-6
Percentage Load of Each MAC/BAC at Loads Ranging from 40 to 100%

ASU Load Case	100% Load	75% Load	50% Load	40% Load
MAC/BAC 1 (22%)	100%	0%	0%	0%
MAC/BAC 2 (56%)	100%	95%	90%	72%
MAC/BAC 3 (22%)	100%	100%	0%	0%
Total GOx, TPD	10,500	7875	5250	4200
Number of Cold Boxes in Operation	2	2	2	2
Expected Power Consumption, MWe	63.3	47.05	30.8	24.3

Expected LOx Production

As with the baseline case, for the flexible ASU arrangement at 100% load, each train can produce up to 2% of LOx (~105 TPD per train). In this case, the GOx production will be reduced accordingly. The LOx production provides the ability to refill the storage completely in around 17 days for the baseline case.

Expected ASU Power and Utilities Consumption

Like the baseline ASU, the flexible ASU train under steady conditions and ambient site conditions will require the following utilities at the battery limit:

- Electricity: 13.8 kV and 480 V and 60 Hz at terminals
- Cooling water at the respective user flanges
- BFW at the respective user flanges
- Instrument air connection point to the header flange (for startup and stand-by)
- Nitrogen to N₂ header flange (for startup and stand-by for seal gas and inerting)
- IP steam connection to header (10 bara [145 psia] saturated steam available)
- LP steam connection to header (6 bara [87 psia] saturated steam available)

Each ASU train, under steady conditions and ambient site conditions, is expected to consume the utilities as indicated in Table 6-7. The baseline case is also included in the table for reference. As in the baseline case, IP steam is used by the regeneration heater of the adsorbers during the heating phase, and saturated steam at 10 bara (156 psia) is used for this purpose. The steam condensate from regeneration heater is returned at 9 bara (130.5 psia).

Note that the overall required production of 10,500 TPD is be supplied by two ASU trains, and therefore the indicated full-scale system should be doubled to get the consumption for 10,500 TPD GOx supply. Power for the combined 3 MACs and 3 BACs is shared proportionally between the two ASUs.

Table 6-7
Expected Utility Consumption for Flexible ASU

Expected Utility	Units	100% Baseline Case	100% Flexible Case	40% Flexible Case
Expected Electrical Power (at motor terminals)	MW	62.2	63.3	24.3
Expected IP Steam Consumption: - Average - Peak (during heating phase of regeneration)	kg/hr (lb/hr)	8000 (17,637)	8000 (17,637)	3200 (7055)
	kg/hr (lb/hr)	22,300 (49,163)	22,300 (49,163)	8900 (19,621)
Expected Condensate Return: - Average - Peak (during heating phase of regeneration)	kg/hr (lb/hr)	8000 (17,637)	8000 (17,637)	3200 (7055)
	kg/hr (lb/hr)	22,300 (49,163)	22,300 (49,163)	8900 (19,621)
Expected Cooling Water Supply	m ³ /hr (ft ³ /hr)	1800 (63,566)	1850 (65,332)	1850 (65,332)*
Expected Cooling Water Return	m ³ /hr (ft ³ /hr)	1800 (63,566)	1850 (65,332)	1850 (65,332)*

* Cooling water flow not restricted during part-load operation.

The power and utilities consumption figure includes the following consumers:

- BAC
- Cooling water pump to send cooling water to the air/water tower
- Dryers regeneration heater
- Expansion turbines
- IP LOx pumps (combined with back-up pumps)
- MAC

When the supply of 5250 TPD of GOx by vaporization of LOx is needed (via the back-up system), the expected associated LP steam consumption is 40,300 kg/hr (88,846 lb/hr). Saturated steam at 6 bara (87 psia) is used for this duty. In this case, the GOx temperature will be 60°C (140°F), but 150°C (302°F) can be reached with an additional heat exchanger using IP steam. Condensate will be sent back to the steam turbine island at the deaerator.

Transient phases such as the transition between normal and back-up mode will need to be studied in a later stage of the project.

BFW Preheating by ASU

During normal operation, each ASU, under steady conditions and ambient site conditions, is expected to transfer the heat quantities to the BFW as indicated in Table 6-8.

Table 6-8
Expected Heat Transfer to BFW

Utility	Units	100% Baseline Case	100% Flexible Case	40% Flexible Case
BFW Inlet Temperature	°C (°F)	33.2 (91.8)	33.2 (91.8)	33.2 (91.8)
Duty for MAC BFW Preheater	kWth	29,700	30,500	10,400
Maximum MAC BFW Outlet Temperature	°C (°F)	147 (296.6)	150 (302)	133 (271.4)
Duty for BAC BFW Preheater	kWth	2600	2800	1300
Maximum BAC BFW Outlet Temperature	°C (°F)	155 (311)	157 (14.6)	166 (330.8)

The duty for BAC BFW pre-heater is the net heat available from the BAC for the steam cycle as the GOx is heated internally in the ASU.

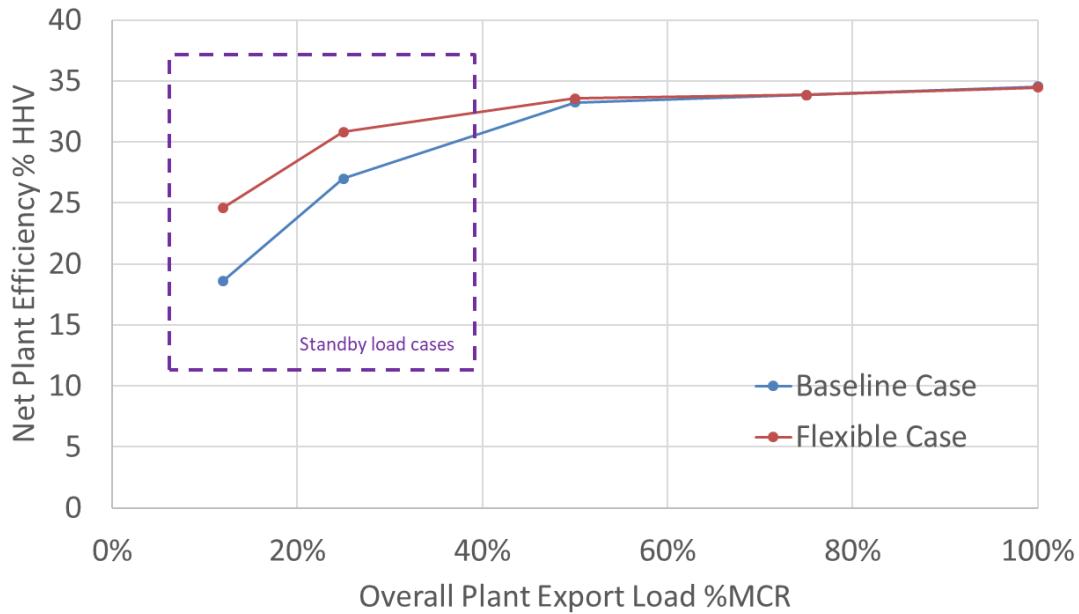
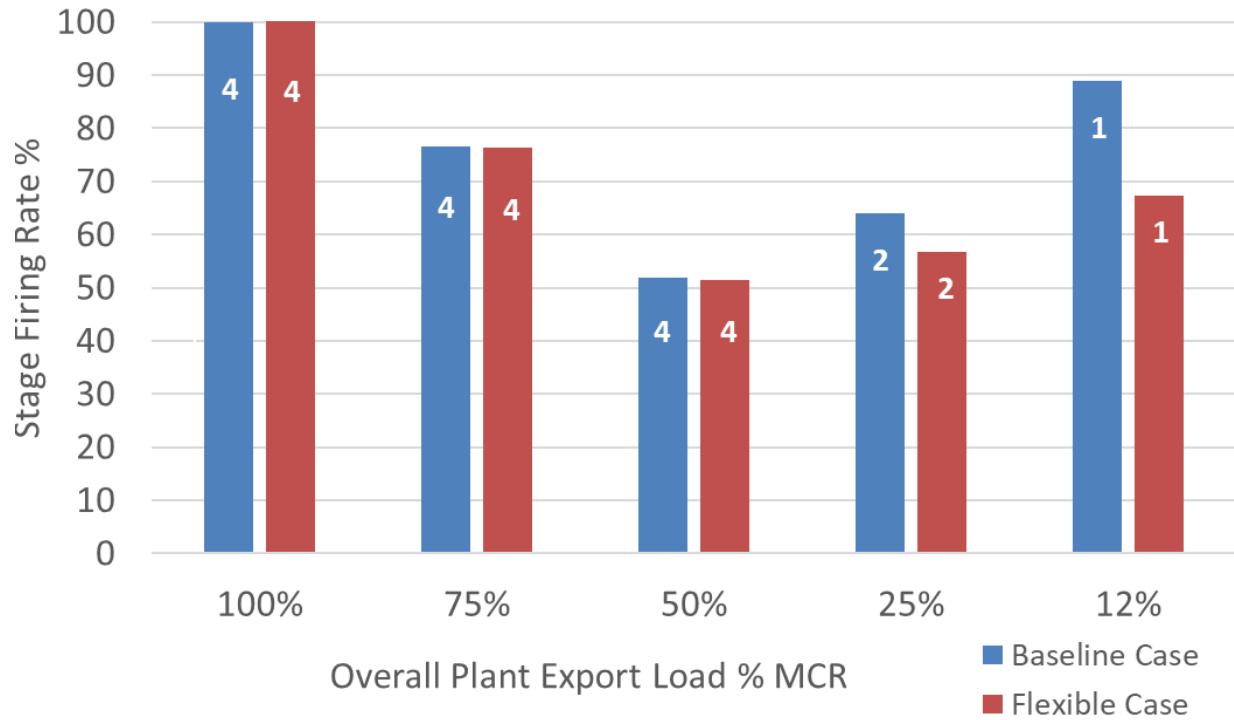

The flexible ASU reduces the auxiliary power consumption, particularly during low-load operation, as shown in Table 6-9.

Table 6-9
SPOC Flexible ASU Turndown Case Performance Summary

Parameter	Load	100%	75%	50%	25%	12%
SPOC Modules in Service	4	4	4	2	1	
Module Firing Load, % baseline	100.1	76.3	51.4	56.7	67.3	
Main Steam Pressure, bara (psia)	242.8 (3521)	179.9 (2609)	118.4 (1716)	113.4 (1547)	112.6 (1633)	
Cold Reheat Pressure, bara (psia)	49.2 (713.2)	36.7 (531.5)	24.0 (348.0)	12.9 (187.0)	7.6 (109.6)	
Thermal Input, MWth	1595	1219	819.1	446.0	268.1	
Boiler Efficiency, % HHV	87.69	87.61	87.36	87.64	86.56	
Heat-to-Steam, MWth	1415	1080	723.8	395.6	235.1	
HP Heat Recovery, MWth	35.8	27.47	18.64	10.10	6.05	
LP Heat Recovery, MWth	198.0	159.0	109.5	47.27	25.64	
Gross Power, MWe	726.3	552.1	379.2	195.8	111.3	
Auxiliary Load, MWe	176.3	139.6	104.2	58.3	45.3	
Net Power, MWe	550.0	412.5	275.0	137.5	66.0	
Net Plant Efficiency, % HHV	34.47	33.85	33.57	30.83	24.62	


The ASU power consumption for the 25% and 12% load cases was estimated based on the multi-compressor configuration with a maximum turndown to 70% of full load for each compressor as these loads were not considered in the flexible ASU design.

The flexible case is less efficient at full load because of an additional 1 MWe of auxiliary power consumption from the compressors. However, as shown in Figure 6-4, the benefits of the flexible ASU are seen below 50% load where the smaller compressors can be used when oxygen demand is low, which saves significant power and hence improves efficiency.

Figure 6-4
Comparison of Baseline Case and Flexible Case Plant Efficiency

All SPOC stages are operating down to 50% load, as shown in Figure 6-5, however alternative configurations could allow single stage to be bypassed at higher loads if required, i.e. 3 stages could operate in the load range 50-70%.

Figure 6-5
Comparison of Baseline Case and Flexible Case Stage Firing Rates

7

ECONOMIC ANALYSIS

This chapter provides details on how the specific capital and operating costs were estimated for the SPOC case, highlighting key components that the team focused on developing unique cost estimates for, such as the pressurized oxy-combustor. These descriptions are then followed by the presentation of the capital and O&M costs, along with the first-year power cost, levelized cost of electricity (LCOE), and CO₂ captured and avoided cost for the SPOC case and relevant NETL baseline cases.

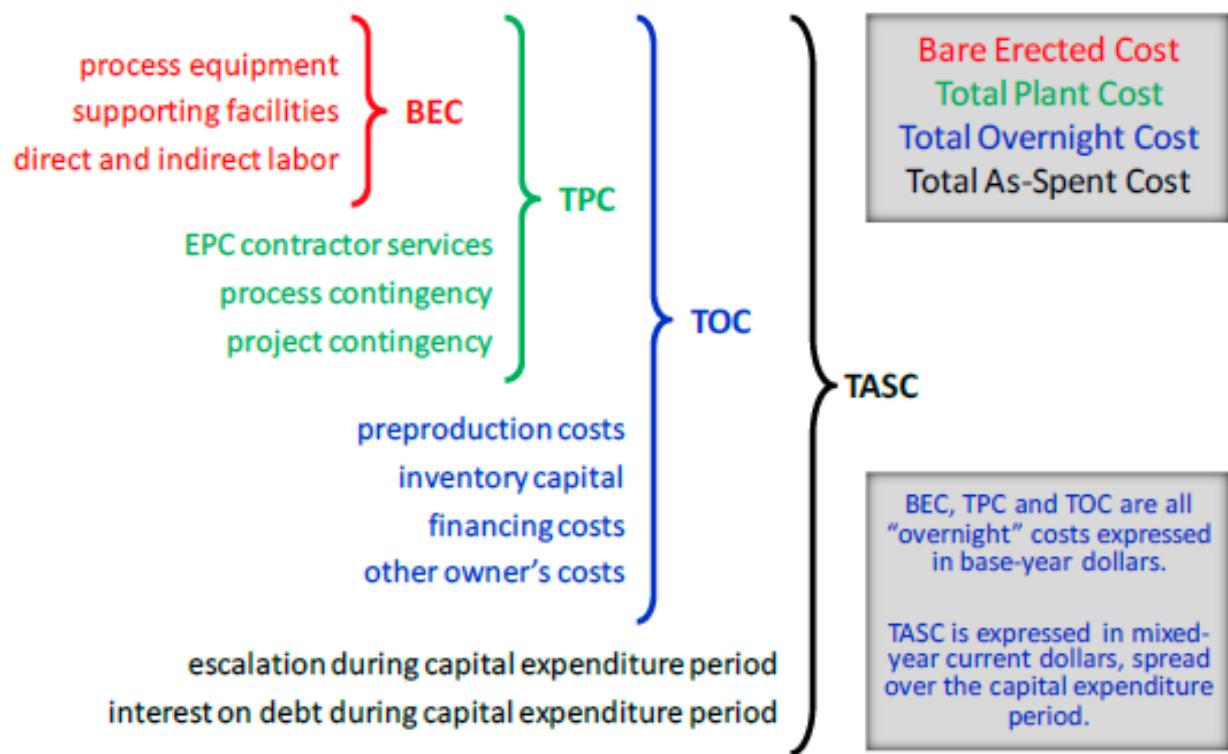
Site-Related Conditions

The SPOC plant is located at a generic plant site in Montana, which was a Midwest site selected to be consistent with the NETL baseline cases. The site is typical of western power generation facilities and has access to water and rail transportation. The site is in Seismic Zone 1, at an elevation of 1036 meters (3399 ft) above sea level and is relatively level with no special requirements related to hazardous materials, archeological artifacts, or excessive rock. A raw water supply is available within 10 km (6.2 miles) of the site. The design is based on indoor construction.

Coal Characteristics

The design fuel used for the SPOC case (Montana Rosebud PRB) is identical to that used in the corresponding NETL Baseline cases. The proximate, ultimate, and HHV data for the design fuel were included in Chapter 2. The cost of PRB sub-bituminous coal delivered to the Montana site is \$1.21/GJ HHV.

Costing Methodology


Capital Cost Estimating Basis

Capital costs are reported in January 2019 dollars (base-year dollars) to put them on a consistent and up-to-date basis. Construction costs at the reference site were based on non-union labor as is typically assumed in NETL techno-economic studies. For cost-estimating purposes, the SPOC plant in this study was generally assumed to be “mature”, meaning that no extra equipment or costs are included to account for unit malfunction or extra equipment outages. Costs associated with extra facilities needed for demonstration of first commercial plants are not normally reflected in the cost estimates.

As illustrated in Figure 7-1, this study will report capital cost at four levels: BEC, TPC, TOC, and Total As-spent Capital (TASC). BEC, TPC, and TOC are “overnight” costs and are expressed in “base-year” dollars. The base year is the first year of capital expenditure, which for

this study is 2019. TASC is expressed in mixed-year, current-year dollars over the entire capital expenditure period, which is assumed to last five years for coal plants (2019 to 2023). BEC comprises the cost of delivered process equipment, on-site facilities, and infrastructure that support the plant (e.g., shops, offices, labs, road), and the direct and indirect labor required for its construction and/or installation. The cost of EPC services and contingencies are not included in the BEC. BEC is an overnight cost expressed in base-year dollars.

TPC comprises the BEC plus the cost of services provided by the EPC contractor and project and process contingencies. EPC services include: detailed design, contractor permitting (i.e., permits that individual contractors must obtain to perform their scopes of work, as opposed to project permitting, which is not included), and project/construction management costs. TPC is an overnight cost expressed in base-year dollars.

Figure 7-1
Capital Cost Levels and Their Elements

TOC comprises the TPC plus owner's costs. TOC is an “overnight” cost, expressed in base-year dollars and as such does not include escalation during construction or interest during construction. TOC is calculated using a simple multiplier on TPC. The multiplier used for this study was 1.23. TASC is the sum of all CAPEX as they are incurred during the CAPEX period including their escalation. TASC also includes interest during construction. Accordingly, TASC is expressed in mixed, current-year dollars over the CAPEX period. TASC is also calculated using a simple multiplier, this time on TOC. The multiplier used for this study was taken from NREL guidelines for high-risk investor-owned utility (IOU) projects as 1.14.

Cost Estimate Classification

Recommended Practice 18R-97 of the AACE describes a Cost Estimate Classification System as applied in EPC for the process industries. The capital cost estimate done for this study is classified as an AACE Class 5 Conceptual/Screening Study. Typical accuracy ranges for AACE Class 5 estimates are -20% to -50% on the low side, and +30% to +100% on the high side.

Table 7-1 describes the characteristics of an AACE Class 5 Cost Estimate.²²

Table 7-1
AACE Class 5 Estimate Description

CLASS 5 ESTIMATE	
<p>Description: Class 5 estimates are generally prepared based on very limited information, and subsequently have wide accuracy ranges. As such, some companies and organizations have elected to determine that due to the inherent inaccuracies, such estimates cannot be classified in a conventional and systematic manner. Class 5 estimates, due to the requirements of end use, may be prepared within a very limited amount of time and with little effort expended—sometimes requiring less than an hour to prepare. Often, little more than proposed plant type, location, and capacity are known at the time of estimate preparation.</p> <p>Maturity Level of Project Definition Deliverables: Key deliverable and target status: Block flow diagram agreed by key stakeholders. 0% to 2% of full project definition.</p> <p>End Usage: Class 5 estimates are prepared for any number of strategic business planning purposes, such as but not limited to market studies, assessment of initial viability, evaluation of alternate schemes, project screening, project location studies, evaluation of resource needs and budgeting, long-range capital planning, etc.</p>	<p>Estimating Methodology: Class 5 estimates generally use stochastic estimating methods such as cost/capacity curves and factors, scale of operations factors, Lang factors, Hand factors, Chilton factors, Peters-Timmerhaus factors, Guthrie factors, and other parametric and modeling techniques.</p> <p>Expected Accuracy Range: Typical accuracy ranges for Class 5 estimates are -20% to -50% on the low side, and +30% to +100% on the high side, depending on the technological complexity of the project, appropriate reference information and other risks (after inclusion of an appropriate contingency determination). Ranges could exceed those shown if there are unusual risks.</p> <p>Alternate Estimate Names, Terms, Expressions, Synonyms: Ratio, ballpark, blue sky, seat-of-pants, ROM, idea study, prospect estimate, concession license estimate, guesstimate, rule-of-thumb.</p>

System Code of Accounts

The costs are grouped according to a process/system-oriented code of accounts. Consistent with other NETL techno-economic studies, 14 accounts are used as shown in Table 7-2. This type of code-of-account structure has the advantage of grouping all reasonably allocable components together so they are included in the specific system account. In addition, costs for each code of account are further broken down into equipment, material, and labor cost. Labor cost includes both direct and indirect costs.

²² "Cost Estimate Classification System – As Applied In Engineering, Procurement, and Construction for the Process Industries," AACE International Recommended Practice No. 18R-97.

Table 7-2
Accounts for the Capital Costs

1 COAL & SORBENT HANDLING	5 FLUE GAS CLEANUP	11 ACCESSORY ELECTRIC PLANT
1.1 Coal Receive & Unload 1.2 Coal Stackout & Reclaim 1.3 Coal Conveyors 1.4 Other Coal Handling 1.5 Sorbent Receive & Unload 1.6 Sorbent Stackout & Reclaim 1.7 Sorbent Conveyors 1.8 Other Sorbent Handling 1.9 Coal & Sorbent Hnd. Foundations	5.1 Absorber Vessels & Accessories 5.2 Other FGD 5.3 Bag House & Accessories 5.4 Other Particulate Removal Materials 5.5 Gypsum Dewatering System 5.6 Mercury Removal System	11.1 Generator Equipment 11.2 Station Service Equipment 11.3 Switchgear & Motor Control 11.4 Conduit & Cable Tray 11.5 Wire & Cable 11.6 Protective Equipment 11.7 Standby Equipment 11.8 Main Power Transformers 11.9 Electrical Foundations
2 COAL & SORBENT PREP & FEED	5B CO₂ REMOVAL & COMPRESSION	12 INSTRUMENTATION & CONTROL
2.1 Coal Crushing & Drying 2.2 Coal Conveyor to Storage 2.3 Coal Injection System 2.4 Misc. Coal Prep & Feed 2.5 Sorbent Prep Equipment 2.6 Sorbent Storage & Feed 2.7 Sorbent Injection System 2.8 Booster Air Supply System 2.9 Coal & Sorbent Feed Foundation	5B.1 CO ₂ Condensing Heat Exchanger 5B.2 CO ₂ Compression & Drying	12.1 PC Control Equipment 12.2 Combustion Turbine Control 12.3 Steam Turbine Control 12.4 Other Major Component Control 12.5 Signal Processing Equipment 12.6 Control Boards, Panels, & Racks 12.7 Distributed Control System Equipment 12.8 Instrument Wiring & Tubing 12.9 Other I & C Equipment
3 FEEDWATER & MISC. BALANCE-OF-PLANT (BOP) SYSTEMS	6 COMBUSTION TURBINE/ACCESSORIES	13 IMPROVEMENTS TO SITE
3.1 Feedwater System 3.2 Water Makeup & Pretreating 3.3 Other Feedwater Subsystems 3.4 Service Water Systems 3.5 Other Boiler Plant Systems 3.6 FO Supply Sys & Nat Gas 3.7 Waste Treatment Equipment 3.8 Misc. Equip. (Cranes, Air Comp., Comm.)	7 HRSG 7.1 Flue Gas Recycle Heat Exchanger 7.2 SCR System 7.3 Ductwork 7.4 Stack 7.9 HRSG, Duct & Stack Foundations	13.1 Site Preparation 13.2 Site Improvements 13.3 Site Facilities
4 PC BOILER & ACCESSORIES	8 STEAM TURBINE GENERATOR	14 BUILDINGS & STRUCTURES
4.1 PC Boiler 4.2 ASU/Oxidant Compression 4.4 Boiler BOP (w/ ID Fans) 4.5 Primary Air System 4.6 Secondary Air System 4.8 Major Component Rigging 4.9 PC Foundations	8.1 Steam TG & Accessories 8.2 Turbine Plant Auxiliaries 8.3 Condenser & Auxiliaries 8.4 Steam Piping 8.9 TG Foundations	14.1 Boiler Building 14.2 Turbine Building 14.3 Administration Building 14.4 Circulation Water Pumphouse 14.5 Water Treatment Buildings 14.6 Machine Shop 14.7 Warehouse 14.8 Other Buildings & Structures 14.9 Waste Treating Building & Str.
	9 COOLING WATER SYSTEM	
	9.1 Cooling Towers 9.2 Circulating Water Pumps 9.3 Circ. Water System Auxiliaries 9.4 Circ. Water Piping 9.5 Make-up Water System 9.6 Component Cooling Water System 9.9 Circ. Water System Foundations	
	10 ASH/SPENT SORBENT HANDLING SYS	
	10.1 Ash Coolers 10.2 Cyclone Ash Letdown 10.3 HGU Ash Letdown 10.4 High Temperature Ash Piping 10.5 Other Ash Recovery System 10.6 Ash Storage Silos 10.7 Ash Transport & Feed Equipment 10.8 Misc. Ash Handling Equipment 10.9 Ash/Spent Sorbent Foundation	

Plant Maturity

Cost estimates in this report reflect the cost of the next commercial offering for plants that include technologies that are not yet fully mature and/or which have not yet been deployed in a commercial context. These cost estimates for next commercial offerings do not include the unique cost premiums associated with first-of-a-kind plants that must demonstrate emerging technologies and resolve the cost and performance challenges associated with initial iterations. However, these estimates do utilize currently available cost bases for emerging technologies. Process contingencies applied to the appropriate subsystem levels were derived from the base case studies performed by NETL.

Cost estimates for all the plants and components, regardless of technology maturity, are based on design assumptions that affect costs, including the use of a favorable site with no unusual characteristics. The primary value of this report lies not in the absolute accuracy of cost estimates

for the individual cases, but in the fact that all cases were evaluated using a common methodology with an internally consistent set of technical and economic assumptions. This consistency of approach allows meaningful comparisons of relative costs among the cases evaluated.

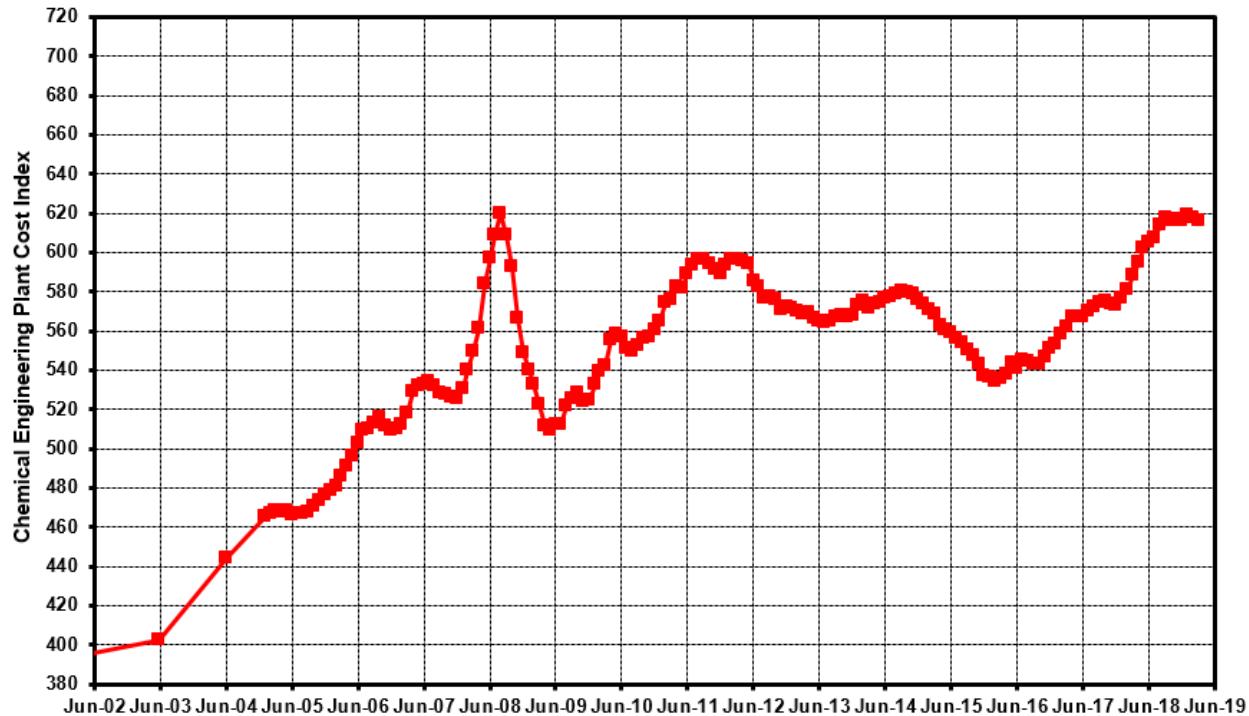
Contracting Strategy

The estimates were based on an EPC approach utilizing multiple subcontracts. This approach provides the owner with greater control of the project, while minimizing, if not eliminating, most of the risk premiums typically included in an EPC contract price.

In a traditional lump-sum EPC contract, the contractor assumes all risk for performance, schedule, and cost. However, because of current market conditions, EPC contractors appear more reluctant to assume that overall level of risk. Rather, the current trend appears to be a modified EPC approach, where much of the risk remains with the owner. Where contractors are willing to accept the risk in EPC-type, lump-sum arrangements, it is reflected in the project cost. In today's market, contractor premiums for accepting these risks, particularly performance risk, can be substantial and increase the overall project costs dramatically.

This approach is anticipated to be the most cost-effective approach for the owner. While the owner retains the risks, the risks become reduced with time, as there is better scope definition at the time of contract award(s).

Battery Limits for Capital Cost Estimate


The estimates represent a complete power plant facility on a generic site. The plant boundary or "battery" limit is defined as the total plant facility within the "fence line" including coal receiving and water supply system, but terminating at the high-voltage side of the main power transformers. Coal transportation cost is not included in the reported capital or O&M costs (storage and coal handling maintenance are, however). The cost of transporting, storing, and monitoring CO₂ is also not included in the costs for the cases that capture CO₂, but is treated separately and added to the COE by adding \$10/tonne-CO₂.

Time Escalation of Costs

For this study, the cost basis is in January 2019 dollars. Prior-year costs for the relevant NETL baseline cases were escalated to June 2018 dollars by an EPRI engineering contractor in a recent techno-economic study. The Chemical Engineering Plant Cost Index (CEPCI) was then used to escalate these June 2018 costs to January 2019 dollars. Figure 7-2 shows the CEPCI from June 2002 to June 2019.

Chemical Engineering Plant Cost Index

(Source: Chemical Engineering Magazine, June 2019)

Figure 7-2
Chemical Engineering Plant Cost Index

Labor Rates

The all-in union construction craft labor rate for the Montana site was assumed to be \$62.87/hour. The craft labor rate is based on a competitive bidding environment with adequate skilled craft labor available locally. Labor is based on a 50-hour work week (five x 10-hour days).

Exclusions

The capital cost estimate includes all anticipated costs for equipment and materials, installation labor, professional services (engineering and construction management), and contingency. The following items are excluded from the capital costs:

- All taxes except for payroll and property
- Site specific considerations – including, but not limited to, seismic zone, accessibility, local regulatory requirements, excessive rock, piles, laydown space, etc.
- Labor incentives
- Additional premiums associated with an EPC contracting approach

Contingency

Process and project contingencies are included in estimates to account for unknown costs that are omitted or unforeseen due to a lack of complete project definition and engineering.

Contingencies are added because experience has shown that such costs are expected to be incurred even though they cannot be explicitly determined at the time the estimate is prepared. Capital cost contingencies do not cover uncertainties or risks associated with:

- Scope changes
- Changes in labor availability or productivity
- Delays in equipment deliveries
- Changes in regulatory requirements
- Unexpected cost escalation
- Performance of the plant after startup (e.g., availability, efficiency)

Process Contingency

Process contingency is intended to compensate for uncertainty in costs caused by performance uncertainties associated with the development status of a technology. Process contingency is applied to each component based on its current technology status.

As shown in Table 7-3, AACE International Recommended Practice 16R-90 provides guidelines for estimating process contingencies.

Table 7-3
AACE Guidelines for Process Contingency

Technology Status	Process Contingency (% of Associated Process Capital)
New Concept with Limited Data	40+
Concept with Bench-Scale Data	30–70
Small Pilot Plant Data	20–35
Full-sized Modules Have Been Operated	5–20
Process is Used Commercially	0–10

Project Contingency

The project contingency is a capital cost contingency factor covering the cost of additional equipment or other costs that would result from a more detailed design of a definitive project at an actual site. AACE 16R-90 states that project contingency for a “budget-type” estimate (AACE Class 5) should be 15 to 30% of the sum of BEC, EPC fees, and process contingency.

Owner's Costs

Owner's costs include:

- Prepaid royalties or license fees

- Preproduction (or startup) costs
- Inventory capital (fuel storage, consumables, etc.)
- Initial cost for catalyst and chemicals
- Land

Royalty charges or license fees may apply to some portions of generating units incorporating new technologies. If known, royalty charges must be included in the capital requirement.

Preproduction costs cover operator training, equipment checkout, major changes in unit equipment, extra maintenance, and inefficient use of fuel and other materials during startup. For this project's purposes, preproduction costs were estimated as follows:

- One month fixed operating costs (O&M labor, administrative and support labor, and maintenance materials). In some cases, this could be as high as two years of fixed operating costs due to new staff being hired two years before commissioning the plant.
- One to three months of variable operating costs (consumables) at full capacity, excluding fuel. (These variable operating costs include chemicals, water, and other consumables plus waste disposal charges.)
- 25% of full-capacity fuel cost for one month. This charge covers inefficient operation that occurs during the startup period.
- 2% of TPC. This charge covers expected changes and modifications to equipment that will be needed to bring the unit up to full capacity.

The following should be included:

- Value of inventories of fuels, consumables, and by-products was capitalized
- An allowance for spare parts of 0.5% of the total plant cost
- The initial cost of any catalyst or chemicals contained in the process equipment (but not in storage, which is covered in inventory capital)
- A nominal cost of \$7413/hectare (\$3000/acre) for land

Table 7-4 summarizes the procedure for estimating owner's costs. The methodology is defined by the DOE Cost Estimation Methodology²³ and mostly follows the guidelines from Sections 12.4.7 to 12.4.12 of AACE International Recommended Practice No. 16R-90.²⁴

²³ "Cost Estimation Methodology for NETL Assessments of Power Plant Performance," DOE/NETL-2011/1455, April 2011.

²⁴ "Conducting Technical and Economic Evaluations – As Applied for the Process and Utility Industries," AACE International Recommended Practice No. 16R-90.

Table 7-4
Estimation Method for Owner's Costs

Owner's Cost	Estimate Basis
Prepaid Royalties	Any technology royalties are assumed to be included in the associated equipment cost, and thus are not included as an owner's cost.
Preproduction (Start-Up) Costs	<ul style="list-style-type: none"> • 6 months operating labor • 1-month maintenance materials at full capacity • 1-month non-fuel consumables at full capacity • 1-month waste disposal • 25% of one month's fuel cost at full capacity • 2% of TPC <p>Compared to AACE 16R-90, this includes additional costs for operating labor (6 months versus 1 month) to cover the cost of training the plant operators, including their participation in startup, and involving them occasionally during the design and construction. AACE 16R-90 and EPRI Technical Assessment Guide (TAG)[®] differ on the amount of fuel cost to include; this estimate follows EPRI.</p>
Working Capital	Although inventory capital (see below) is accounted for, no additional costs are included for working capital.
Inventory Capital	<ul style="list-style-type: none"> • 0.5% of TPC for spare parts • 60-day supply (at full capacity) of fuel. Not applicable for natural gas. • 60-day supply (at full capacity) of non-fuel consumables (e.g., chemicals and catalysts) that are stored on site. Does not include catalysts and adsorbents that are batch replacements such as selective catalytic reduction catalysts and activated carbon. <p>AACE 16R-90 does not include an inventory cost for fuel, but EPRI TAG[®] does.</p>
Land	(\$7413/hectare) (\$3000/acre) (121.4 hectares [300 acres] for IGCC and PC)
Financing Cost	<ul style="list-style-type: none"> • 2.7% of TPC <p>This financing cost (not included by AACE 16R-90) covers the cost of securing financing, including fees and closing costs but not including interest during construction. The "rule of thumb" estimate (2.7% of TPC) is based on a 2008 private communication with a capital services firm.</p>

Owner's Cost	Estimate Basis
Other Owners Costs	<ul style="list-style-type: none"> • 15% of TPC <p>This additional lumped cost is not included by AACE 16R-90 or EPRI TAG®. The “rule of thumb” estimate (15% of TPC) is based on a 2009 private communication with Worley-Parsons. The lumped cost includes:</p> <ul style="list-style-type: none"> ○ Preliminary feasibility studies, including a front-end engineering design study ○ Economic development (costs for incentivizing local collaboration and support) ○ Construction and/or improvement of roads and/or railroad spurs outside of site boundary ○ Legal fees ○ Permitting costs ○ Owner's engineering (staff paid by owner to give third-party advice and to help the owner oversee/evaluate the work of the EPC contractor and other contractors) ○ Owner's contingency (sometimes called “management reserve”, these are funds to cover costs relating to delayed startup, fluctuations in equipment costs, and unplanned labor incentives more than a five-day/ten-hour-per-day work week. Owner's contingency is NOT a part of project contingency.) <p>This lumped cost does NOT include:</p> <ul style="list-style-type: none"> ○ EPC risk premiums (costs estimates are based on an EPC management approach utilizing multiple subcontracts, in which the owner assumes project risks for performance, schedule, and cost) ○ Transmission interconnection: the cost of interconnecting with power transmission infrastructure beyond the plant busbar. ○ Taxes on capital costs: all capital costs are assumed to be exempt from state and local taxes. ○ Unusual site improvements: normal costs associated with improvements to the plant site are included in the BEC, if the site is level and requires no environmental remediation. Unusual costs associated with the following design parameters are excluded: flood plain considerations, existing soil/site conditions, water discharges and reuse, rainfall/snowfall criteria, seismic design, buildings/enclosures, fire protection, local code height requirements, and noise regulations.

O&M Costs

O&M costs are to be estimated for a year of normal operation and presented in the base-year dollars. O&M costs for a generating unit are generally allocated as fixed and variable O&M costs.

Fixed O&M costs are essentially independent of actual capacity factor, number of hours of operation, or the number of kilowatts produced, and are expressed in \$/kW-year. Fixed O&M costs are composed of the following components:

- Operating labor
- Total maintenance costs (may also have a variable component)
- Overhead charges

Taxes and insurance are considered as fixed O&M costs and are estimated as 2% of the total plant cost.

Variable O&M costs and consumables are directly proportional to the number of kilowatts produced. They are generally in mills/kW-hour.

The estimation of these cost components is discussed below.

Operating Labor

Operating labor is based on the number of personnel required to operate the plant per shift. The total operating cost is based on the labor rate, supervision, and overhead.

Total Maintenance Costs

Annual maintenance costs for new technologies were estimated as a percentage of the installed capital cost of the facilities. The percentage varies widely, depending on the nature of the processing conditions and the type of design. The ranges shown in Table 7-5 are representative.

Table 7-5
Maintenance as a Percentage of TPC

Type of Processing Conditions	Maintenance % of Total Plant Capital Cost/Year*
Corrosive and Abrasive Slurries	5–10+
Severe (Solids, High-Pressure, and Temperature)	3–6+
Clean (Liquids and Gases Only)	1.5–4
General Facilities and Steam Electrical Systems	1–3

* Minimum capital cost plants will generally experience maintenance costs at the high end of the range.

Maintenance cost estimates can be developed separately for different sections of the plant. Estimates should be separately expressed as maintenance labor and maintenance materials. A maintenance labor-to-materials ratio of 40:60 was used for this breakdown if other information is not available.

Table 7-6 shows the percentages that were used for each Account area in the plant.

Table 7-6
Maintenance as a Percentage of Plant Account Cost

Account Description	% Maintenance	Account No.
Solid Handling and Storage	2.5%	1, 2, 10
Feedwater and Miscellaneous BOP Systems	2.0%	3
Boiler and Flue Gas Cleanup	2.5%	4, 5
CO ₂ Condensing and Compression	1.5%	5B
Heat Recovery Steam Generator	2.0%	7
Power Cycle	2.0%	8
Cooling Water	2.0%	9
BOP	1.5%	11, 12, 13, 14

The percentage approach described above is recommended for use when vendor-specific O&M data are not available.

Overhead Charges

The only overhead charge to be included in power plant studies is a charge for administrative and support labor, which is taken as 30% of the O&M labor.

Consumables

Consumables are the principal components of variable O&M costs. These include water, catalysts, chemicals, solid waste disposal, and other materials that are consumed in proportion to energy output. Costs for consumable items are shown in Table 7-7.

Table 7-7
Cost Data for Consumable Items

Consumables and Variable Cost Items	Unit Cost
H₂O and Chemicals	
Raw Water, \$/1000 liters	0.45
Ammonia (aqueous 29.4 wt %), \$/tonne	194
Sorbent (Delivered)	
Lime, \$/tonne	155
Limestone, \$/tonne	45
Dry Disposal	
Bottom and Fly Ash, \$/tonne	15
Other	
Activated Carbon, \$/tonne	1455
Urea, \$/tonne	454

Financial Structure Selection

The financial structure for this study was based on an IOU financial structure with a 5-year capital expenditure period, as specified in the DOE Cost Estimation Methodology report.²⁵ The financial structure for both low- and high-risk cases is shown in Table 7-8.

Table 7-8
Financial Structure for Investor Owned Utility High- and Low-Risk Projects

Type of Security	% of Total	Current (Nominal) Dollar Cost	Weighted Current (Nominal) Cost	After Tax Weighted Cost of Capital
LOW RISK				
Debt	50	4.50%	2.25%	
Equity	50	12%	6%	
Total			8.25%	7.39%
HIGH RISK				
Debt	45	5.50%	2.48%	
Equity	55	12%	6.60%	
Total			9.08%	8.13%

Global Economic Assumptions

Table 7-9 summarizes the global economic assumptions that were used for evaluating the economic performances of the cases in this study. The assumptions are specified in the DOE Cost Estimation Methodology.

²⁵ "Cost Estimation Methodology for NETL Assessments of Power Plant Performance," DOE/NETL-2011/1455, April 2011.

Table 7-9
Global Economic Assumptions

Parameter	Value
TAXES	
Income Tax Rate	38% Effective (34% Federal, 6% State)
Capital Depreciation	20 years, 150% declining balance
Investment Tax Credit	0%
Tax Holiday	0 years
CONTRACTING AND FINANCING TERMS	
Contracting Strategy	Engineering Procurement Construction Management (owner assumes project risks for performance, schedule and cost)
Type of Debt Financing	Non-Recourse (collateral that secures debt is limited to the real assets of the project)
Repayment Term of Debt	15 years
Grace Period on Debt Repayment	0 years
Debt Reserve Fund	None
ANALYSIS TIME PERIODS	
Capital Expenditure Period	5 Years
Operational Period	30 years
Economic Analysis Period (used for IRROE)	35 Years (capital expenditure period plus operational period)
TREATMENT OF CAPITAL COSTS	
Capital Cost Escalation During Capital Expenditure Period (nominal annual rate)	3.6% ¹
Distribution of Total Overnight Capital over the Capital Expenditure Period (before escalation)	5-Year Period: 10%, 30%, 25%, 20%, 15%
Working Capital	zero for all parameters
% of Total Overnight Capital that is Depreciated	100% (this assumption introduces a very small error even if a substantial amount of TOC is actually non-depreciable)
ESCALATION OF OPERATING REVENUES AND COSTS	
Escalation of COE (revenue), O&M Costs, Fuel Costs (nominal annual rate)	3.0% ²

¹ A nominal average annual rate of 3.6% is assumed for escalation of capital costs during construction. This rate is equivalent to the nominal average annual escalation rate for process plant construction costs between 1947 and 2008 according to the Chemical Engineering Plant Cost Index.

² An average annual inflation rate of 3.0% is assumed. This rate is equivalent to the average annual escalation rate between 1947 and 2008 for the U.S. Department of Labor's Producer Price Index for Finished Goods, the so-called "headline" index of the various Producer Price Indices. (The Producer Price Index for the Electric Power Generation Industry may be more applicable, but that data does not provide a long-term historical perspective since it only dates back to December 2003.)

Cost of Electricity

The first-year COE (or power cost) is the revenue received by the generator per net MW-hr during the first year of operation assuming that the COE escalates at a nominal annual rate equal to the general inflation rate (i.e., remains constant in real terms over the operational period of the plant). The LCOE is the revenue received by the generator per net MW-hr during the first year of operation assuming that the first year of operation COE escalates at a nominal annual rate of 0% (i.e., remains constant in nominal terms over the operation period of the plant). NETL's Power Systems Financial Model (PSFM) provides a reference for COE calculations. The model accepts all of the economic assumptions outlined in Table 7-8 and Table 7-9, along with specific information on the capital cost and fixed/variable O&M costs.

The approaches used to calculate both first-year power costs and LCOE are described below.

First-Year Power Cost

A simplified method provided in the DOE Financial Model User's Guide was used to calculate the first-year power cost.²⁶ A first-year capital charge factor (CCF) can be used to calculate the COE with this simplified equation:

$$\text{COE} = [(\text{CCF})(\text{TOC}) + \text{OC}_{\text{FIX}} + (\text{CF}) \text{ OC}_{\text{VAR}}] / (\text{CF}) (\text{MW-hr})$$

where:

- COE = revenue received by the generator (\$/MW-hr) during the power plant's first year of operation (expressed in 2019 dollars), assuming that the COE escalates at a nominal annual rate equal to the general inflation rate; i.e., that it remains constant in real terms over the operational period of the power plant
- CCF = is the first-year CCF that matches the applicable finance structure and capital expenditure period
- TOC = Total Overnight Capital in 2019 dollars
- OC_{FIX} = the sum of all fixed annual operating costs in 2019 dollars
- OC_{VAR} = the sum of all variable annual operating costs, including fuel at 100% capacity factor, in 2019 dollars
- CF = plant capacity factor, assumed to be constant over the operational period
- MW-hr = annual net megawatt-hours of power generated at 100% capacity factor

Based on the economic factors specified by the DOE, the CCF for a low-risk IOU and five-year capital expenditure period is 0.116 (such as a commercial project like a supercritical pulverized coal plant without CO₂ capture). The CCF for a high-risk IOU and five-year capital expenditure

²⁶ "Power Systems Financial Model Version 6.6 User's Guide," DOE/NETL-2011/1492, May 2011.

period is 0.124 (such as a novel system like post-combustion CO₂ capture, atmospheric oxy-combustion, or SPOC).

LCOE

The PSFM provides the LCOE on a current-dollar basis over a levelization period equal to the plants operational life; i.e., the LCOE is constant in current dollars over this period. The model provides a levelization factor that can be multiplied by the COE to give the LCOE in base-year dollars. The levelization factor for NETL-defined economic inputs is 1.268.

Costs of CO₂ Captured and Avoided

The cost of CO₂ captured was calculated both from the standpoint of the cost of CO₂ removed and the cost of CO₂ avoided.

The cost of CO₂ captured or removed in \$/tonne is given by:

$$\text{Cost of CO}_2 \text{ Captured} = (\text{COE}_{\text{with removal}} - \text{COE}_{\text{w/o removal}}) / (\text{CO}_2 \text{ Captured})$$

where:

- COE = cost of electricity (\$/MW-hr_{net})
- CO₂ Captured = CO₂ captured for case (tonnes/MW-hr_{net} or tons/MW-hr_{net})

Note that for cost of CO₂ captured, the COE does not include the cost of CO₂ transportation and storage (T&S).

The equation used to calculate the cost of CO₂ avoided in \$/tonne is given by:

$$\text{Cost of CO}_2 \text{ Avoided} = (\text{COE}_{\text{with removal}} - \text{COE}_{\text{w/o removal}}) / (\text{CO}_2_{\text{w/o removal}} - \text{CO}_2_{\text{with removal}})$$

where:

- COE = cost of electricity (\$/MW-hr_{net})
- CO₂ = CO₂ emissions for case (tonnes/MW-hr_{net} or tons/MW-hr_{net}).

Costs of CO₂ Transport and Storage

The cost of CO₂ T&S is included in the COE to derive the complete cost of capturing and storing CO₂. The updated DOE Baseline Report²⁷ specified the conditions and T&S costs to be used for DOE system studies. The costs are based on transporting high-pressure (151.7 bara [2200 psia]) CO₂ from the power plant through a 100-km (62.1 mile) pipeline to the sequestration or EOR site. The CO₂ leaves the pipeline at a pressure of 82.7 bara (1200 psia) still in a SC state. For the Montana plant location used for this study, the T&S value specified by DOE is \$10/tonne-CO₂.

²⁷ "Updated Costs (June 2011 Basis) for Selection Bituminous Baseline Cases," DOE/NETL-341/082312, August 2012.

Baseline Cases and SPOC

This section provides details on how the specific costs were estimated for the baseline and the SPOC cases (baseline and flexible). These descriptions are then followed by the presentation of the capital and O&M costs for each case along with the first-year power cost, LCOE, and CO₂ captured and avoided cost.

SPOC Baseline Case

NETL Low-Rank Coal Baseline Case S12F (Oxy-Fuel Supercritical PC w/CO₂ Capture) provided the basis for developing factored cost estimates for many of the SPOC plant systems. The S12F costs were factored based on the capacity of the given SPOC system relative to the capacity of the S12F system. Scaling exponents from the January 2013 NETL QGESS Capital Cost Scaling Methodology report were used.

Costs for the SPOC coal preparation, pressurization (lock-hopper system), and feeding system were factored from NETL Baseline Case S1B (Shell Gasification IGCC w/CCS). The cost for the SPOC HP ASU was developed by AL however the costs have been combined into Account 4.1.

The SPOC boiler equipment and installation labor costs were provided by DBL. The cost for SPOC boiler foundations were also included in the DBL costs.

The SPOC base case was consistent with the NETL Low-Rank Coal Baseline cases in applying percentage factors for the home office engineering and procurement services as well as field construction management cost estimates.

SPOC Flexible Case

The SPOC flexible case is identical to the baseline case for the boiler, turbine, and BOP equipment as these components are capable of a high degree of turndown and a 6% per minute ramping rate. The principal difference is in the ASU system, where smaller compressor units and additional associated interconnecting pipework and manifolds are needed to deliver the flexibility required to match the SPOC boilers.

Table 7-10
Capital Costs for Base Case S12A

Project: Montana Rosebud PRB Coal TOTAL PLANT COST SUMMARY Case: S12A Air-Fired Supercritical PC w/o CO ₂ Capture Plant Size: 550 MWnet Cost Base: January 2019 (\$x1000)													
Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O.& Fee		Process Contingency		Project Contingency		CASE S12A TOTAL PLANT Cost	Case S12A COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
1 COAL & SORBENT HANDLING													
1.1 Coal Receive & Unload	\$5,285.67	\$0	\$2,381	\$0	\$7,666	10%	\$767	0%	\$0	15%	\$1,265	\$9,698	18
1.2 Coal Stackout & Reclaim	\$6,831	\$0	\$1,527	\$0	\$8,358	10%	\$836	0%	\$0	15%	\$1,379	\$10,574	19
1.3 Coal Conveyors	\$6,352	\$0	\$1,510	\$0	\$7,861	10%	\$786	0%	\$0	15%	\$1,297	\$9,945	18
1.4 Other Coal Handling	\$1,661	\$0	\$349	\$0	\$2,010	10%	\$201	0%	\$0	15%	\$332	\$2,543	5
1.5 Sorbent Receive & Unload	\$64	\$0	\$19	\$0	\$83	10%	\$8	0%	\$0	15%	\$14	\$105	0
1.6 Sorbent Stackout & Reclaim	\$1,039	\$0	\$187	\$0	\$1,227	10%	\$123	0%	\$0	15%	\$202	\$1,552	3
1.7 Sorbent Conveyors	\$371	\$81	\$90	\$0	\$542	10%	\$54	0%	\$0	15%	\$89	\$686	1
1.8 Other Sorbent Handling	\$225	\$53	\$116	\$0	\$394	10%	\$39	0%	\$0	15%	\$65	\$498	1
1.9 Coal & Sorbent Hnd. Foundations	\$0	\$6,126	\$8,076	\$0	\$14,202	10%	\$1,420	0%	\$0	15%	\$2,343	\$17,966	33
SUBTOTAL 1.	\$21,829	\$6,260	\$14,255	\$0	\$42,344	10%	\$4,234	0%	\$0	15%	\$6,987	\$53,567	97
2 COAL & SORBENT PREP & FEED													
2.1 Coal Crushing & Drying	\$3,066	\$0	\$590	\$0	\$3,656	10%	\$366	0%	\$0	15%	\$603	\$4,625	8
2.2 Coal Conveyor to Storage	\$7,852	\$0	\$1,692	\$0	\$9,544	10%	\$954	0%	\$0	15%	\$1,575	\$12,073	22
2.3 Coal Injection System	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
2.4 Misc. Coal Prep & Feed	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
2.5 Sorbent Prep Equipment	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0.0%	0	\$0	0
2.6 Sorbent Storage & Feed	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0.0%	0	\$0	0
2.7 Sorbent Injection System	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
2.8 Booster Air Supply System	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
2.9 Coal & Sorbent Feed Foundation	\$0	\$827	\$727	\$0	\$1,553	10%	\$155	0%	\$0	15%	\$256	\$1,965	4
SUBTOTAL 2.	\$10,919	\$827	\$3,008	\$0	\$14,754	10%	\$1,475	0%	\$0	15%	\$2,434	\$18,664	34

Project: Montana Rosebud PRB Coal													
TOTAL PLANT COST SUMMARY													
Case: S12A Air-Fired Supercritical PC w/o CO ₂ Capture													
Plant Size: 550 MWnet													
Cost Base: January 2019 (\$x1000)													
Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O.& Fee		Process Contingency		Project Contingency		CASE S12A TOTAL PLANT Cost	Case S12A COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
3 FEEDWATER & MISC. BOP SYSTEMS													
3.1 Feedwater System	\$23,433	\$0	\$7,555	\$0	\$30,988	10%	\$3,099	0%	\$0	15%	\$5,113	\$39,200	71
3.2 Water Makeup & Pretreating	\$3,528	\$0	\$1,116	\$0	\$4,644	10%	\$464	0%	\$0	20%	\$1,022	\$6,131	11
3.3 Other Feedwater Subsystems	\$7,372	\$0	\$3,027	\$0	\$10,398	10%	\$1,040	0%	\$0	15%	\$1,716	\$13,154	24
3.4 Service Water Systems	\$707	\$0	\$369	\$0	\$1,076	10%	\$108	0%	\$0	20%	\$237	\$1,420	3
3.5 Other Boiler Plant Systems	\$9,336	\$0	\$8,825	\$0	\$18,161	10%	\$1,816	0%	\$0	15%	\$2,997	\$22,974	42
3.6 FO Supply Sys & Nat Gas	\$347	\$0	\$405	\$0	\$752	10%	\$75	0%	\$0	15%	\$124	\$952	2
3.7 Waste Treatment Equipment	\$2,314	\$0	\$1,339	\$0	\$3,654	10%	\$365	0%	\$0	20%	\$804	\$4,823	9
3.8 Misc. Equip. (Cranes, Air Comp., Comm.)	\$3,394	\$0	\$1,049	\$0	\$4,443	10%	\$444	0%	\$0	20%	\$977	\$5,865	11
SUBTOTAL 3.	\$50,430	\$0	\$23,686	\$0	\$74,117	10%	\$7,412	0%	\$0	16%	\$12,989	\$94,520	172
4 PC BOILER & ACCESSORIES													
4.1 PC Boiler	\$233,166	\$0	\$115,987	\$0	\$349,153	10%	\$34,915	0%	\$0	10%	\$38,407	\$422,475	768
4.2 Open	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
4.3 Open	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
4.4 Boiler BOP (w/ ID Fans)	w/4.1	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
4.5 Primary Air System	w/4.1	\$0	w/4.1	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
4.6 Secondary Air System	w/4.1	\$0	w/4.1	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
4.8 Major Component Rigging	\$0	w/4.1	w/4.1	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
4.9 PC Foundations	\$0	w/14.1	w/14.1	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
SUBTOTAL 4.	\$233,166	\$0	\$115,987	\$0	\$349,153	10%	\$34,915	0%	\$0	10%	\$38,407	\$422,475	768
5 FLUE GAS CLEANUP													
5.1 Absorber Vessels & Accessories	\$101,981	\$0	\$27,590	\$0	\$129,571		\$12,957		\$0		\$14,253	\$156,781	285
5.2 Other FGD	\$1,316	\$0	\$848	\$0	\$2,164		\$216		\$0		\$238	\$2,619	5

Project: Montana Rosebud PRB Coal

TOTAL PLANT COST SUMMARY

Case: S12A Air-Fired Supercritical PC w/o CO₂ Capture

Plant Size: 550 MWnet

Cost Base: January 2019 (\$x1000)

Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O.& Fee		Process Contingency		Project Contingency		CASE S12A TOTAL PLANT Cost	Case S12A COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
5.3 Bag House & Accessories	\$0	\$0	\$0	\$0	\$0		\$0		\$0		\$0	\$0	0
5.4 Other Particulate Removal Materials	\$24,365	\$0	\$16,508	\$0	\$40,873		\$4,087		\$0		\$4,496	\$49,456	90
5.5 Gypsum Dewatering System	\$0	\$0	\$0	\$0	\$0		\$0		\$0		\$0	\$0	0
5.6 Mercury Removal System	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	10%	0	\$0	0
5.9 Open	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	10%	0	\$0	0
SUBTOTAL 5.	\$127,662	\$0	\$44,946	\$0	\$172,608		\$17,261		\$0		\$18,987	\$208,856	380
5B CO₂ REMOVAL & COMPRESSION													
5B.1 CO ₂ Condensing Heat Exchanger	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
5B.2 CO ₂ Compression & Drying	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
SUBTOTAL 5B.	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
6 COMBUSTION TURBINE/ACCESSORIES													
SUBTOTAL 6.	\$0	\$0	\$0	\$0	\$0		\$0		\$0		\$0	\$0	0
7 HRSG													
7.1 Flue Gas Recycle Heat Exchanger	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
7.2 SCR System	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	15%	0	\$0	0
7.3 Ductwork	\$13,311	\$0	\$8,401	\$0	\$21,713	10%	\$2,171	0%	\$0	15%	\$3,583	\$27,467	50
7.4 Stack	\$13,236	\$0	\$7,694	\$0	\$20,930	10%	\$2,093	0%	\$0	10%	\$2,302	\$25,325	46
7.9 HRSG, Duct & Stack Foundations	\$0	\$1,443	\$1,713	\$0	\$3,156	10%	\$316	0%	\$0	20%	\$694	\$4,166	8
SUBTOTAL 7.	\$26,548	\$1,443	\$17,808	\$0	\$45,799	10%	\$4,580	0%	\$0	13%	\$6,579	\$56,958	104
8 STEAM TURBINE GENERATOR													
8.1 Steam TG & Accessories	\$70,602	\$0	\$8,711	\$0	\$79,313	10%	\$7,931	0%	\$0	10%	\$8,724	\$95,969	174
8.2 Turbine Plant Auxiliaries	\$444	\$0	\$944	\$0	\$1,388	10%	\$139	0%	\$0	10%	\$153	\$1,679	3
8.3a Condenser & Auxiliaries	\$5,142	\$0	\$2,906	\$0	\$8,048	10%	\$805	0%	\$0	10%	\$885	\$9,738	18

Project: Montana Rosebud PRB Coal

TOTAL PLANT COST SUMMARY

Case: S12A Air-Fired Supercritical PC w/o CO₂ Capture

Plant Size: 550 MWnet

Cost Base: January 2019 (\$x1000)

Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O.& Fee		Process Contingency		Project Contingency		CASE S12A TOTAL PLANT Cost	Case S12A COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
8.3b Air Cooled Condenser	\$47,123	\$0	\$9,385	\$0	\$56,508	10%	\$5,651	0%	\$0	20%	\$12,432	\$74,591	136
8.4 Steam Piping	\$23,996	\$0	\$10,662	\$0	\$34,657	10%	\$3,466	0%	\$0	15%	\$5,718	\$43,842	80
8.9 TG Foundations	\$0	\$1,323	\$2,184	\$0	\$3,507	10%	\$351	0%	\$0	20%	\$772	\$4,630	8
SUBTOTAL 8.	\$147,306	\$1,323	\$34,792	\$0	\$183,421	10%	\$18,342	0%	\$0	14%	\$28,684	\$230,449	419
9 COOLING WATER SYSTEM													
9.1 Cooling Towers	\$7,187	\$0	\$2,223	\$0	\$9,409	10%	\$941	0%	\$0	10%	\$1,035	\$11,385	21
9.2 Circulating Water Pumps	\$1,447	\$0	\$74	\$0	\$1,521	10%	\$152	0%	\$0	10%	\$167	\$1,841	3
9.3 Circ. Water System Auxiliaries	\$425	\$0	\$56	\$0	\$481	10%	\$48	0%	\$0	10%	\$53	\$582	1
9.4 Circ. Water Piping	\$0	\$3,582	\$3,243	\$0	\$6,825	10%	\$683	0%	\$0	15%	\$1,126	\$8,634	16
9.5 Make-up Water System	\$382	\$0	\$491	\$0	\$873	10%	\$87	0%	\$0	15%	\$144	\$1,104	2
9.6 Component Cooling Water System	\$346	\$0	\$266	\$0	\$612	10%	\$61	0%	\$0	15%	\$101	\$775	1
9.9 Circ. Water System Foundations	\$0	\$1,888	\$3,135	\$0	\$5,024	10%	\$502	0%	\$0	20%	\$1,105	\$6,631	12
SUBTOTAL 9.	\$9,786	\$5,470	\$9,489	\$0	\$24,745	10%	\$2,475	0%	\$0	14%	\$3,732	\$30,953	56
10 ASH/SPENT SORBENT HANDLING SYS													
10.1 Ash Coolers	N/A	\$0	N/A	\$0	\$0	0.0%	\$0	0%	\$0	10%	0	\$0	0
10.2 Cyclone Ash Letdown	N/A	\$0	N/A	\$0	\$0	0.0%	\$0	0%	\$0	10%	0	\$0	0
10.3 HGCU Ash Letdown	N/A	\$0	N/A	\$0	\$0	0.0%	\$0	0%	\$0	10%	0	\$0	0
10.4 High Temperature Ash Piping	N/A	\$0	N/A	\$0	\$0	0.0%	\$0	0%	\$0	10%	0	\$0	0
10.5 Other Ash Recovery System	N/A	\$0	N/A	\$0	\$0	0.0%	\$0	0%	\$0	10%	0	\$0	0
10.6 Ash Storage Silos	\$979	\$0	\$2,994	\$0	\$3,973	10%	\$397	0%	\$0	10%	\$437	\$4,807	9
10.7 Ash Transport & Feed Equipment	\$6,501	\$0	\$6,445	\$0	\$12,947	10%	\$1,295	0%	\$0	10%	\$1,424	\$15,666	28
10.8 Misc. Ash Handling Equipment	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0

Project: Montana Rosebud PRB Coal													
TOTAL PLANT COST SUMMARY													
Case: S12A Air-Fired Supercritical PC w/o CO ₂ Capture													
Plant Size: 550 MWnet													
Cost Base: January 2019 (\$x1000)													
Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O.& Fee		Process Contingency		Project Contingency		CASE S12A TOTAL PLANT Cost	Case S12A COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
10.9 Ash/Spent Sorbent Foundation	\$0	\$221	\$272	\$0	\$492	10%	\$49	0%	\$0	20%	\$108	\$650	1
SUBTOTAL 10.	\$7,480	\$221	\$9,711	\$0	\$17,412	10%	\$1,741	0%	\$0	10%	\$1,969	\$21,123	38
11 ACCESSORY ELECTRIC PLANT													
11.1 Generator Equipment	\$2,059	\$0	\$329	\$0	\$2,389	10%	\$239	0%	\$0	8%	\$210	\$2,838	5
11.2 Station Service Equipment	\$3,607	\$0	\$1,210	\$0	\$4,817	10%	\$482	0%	\$0	8%	\$424	\$5,723	10
11.3 Switchgear & Motor Control	\$4,141	\$0	\$719	\$0	\$4,860	10%	\$486	0%	\$0	10%	\$535	\$5,881	11
11.4 Conduit & Cable Tray	\$0	\$2,839	\$9,175	\$0	\$12,015	10%	\$1,201	0%	\$0	15%	\$1,982	\$15,199	28
11.5 Wire & Cable	\$0	\$5,407	\$9,666	\$0	\$15,073	10%	\$1,507	0%	\$0	15%	\$2,487	\$19,068	35
11.6 Protective Equipment	\$335	\$0	\$1,166	\$0	\$1,502	10%	\$150	0%	\$0	10%	\$165	\$1,817	3
11.7 Standby Equipment	\$1,586	\$0	\$37	\$0	\$1,623	10%	\$162	0%	\$0	10%	\$179	\$1,964	4
11.8 Main Power Transformers	\$11,090	\$0	\$218	\$0	\$11,307	10%	\$1,131	0%	\$0	10%	\$1,244	\$13,682	25
11.9 Electrical Foundations	\$0	\$380	\$968	\$0	\$1,348	10%	\$135	0%	\$0	20%	\$297	\$1,780	3
SUBTOTAL 11.	\$22,819	\$8,627	\$23,488	\$0	\$54,934	10%	\$5,493	0%	\$0	12%	\$7,522	\$67,952	124
12 INSTRUMENTATION & CONTROL													
12.1 PC Control Equipment	w/12.7	\$0	w/12.7	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
12.2 Combustion Turbine Control	N/A	\$0	N/A	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
12.3 Steam Turbine Control	w/8.1	\$0	w/8.1	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
12.4 Other Major Component Control	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
12.5 Signal Processing Equipment	w/12.7	\$0	w/12.7	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
12.6 Control Boards, Panels, & Racks	\$558	\$0	\$340	\$0	\$898	10%	\$90	0%	\$0	15%	\$148	\$1,137	2
12.7 Distributed Control System Equipment	\$5,630	\$0	\$1,004	\$0	\$6,634	10%	\$663	0%	\$0	10%	\$730	\$8,027	15
12.8 Instrument Wiring & Tubing	\$3,394	\$0	\$6,176	\$0	\$9,569	10%	\$957	0%	\$0	15%	\$1,579	\$12,106	22
12.9 Other I & C Equipment	\$1,590	\$0	\$3,683	\$0	\$5,273	10%	\$527	0%	\$0	10%	\$580	\$6,381	12

Project: Montana Rosebud PRB Coal

TOTAL PLANT COST SUMMARY

Case: S12A Air-Fired Supercritical PC w/o CO₂ Capture

Plant Size: 550 MWnet

Cost Base: January 2019 (\$x1000)

Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O.& Fee		Process Contingency		Project Contingency		CASE S12A TOTAL PLANT Cost	Case S12A COST \$/kW	
		Cost	Direct	Indirect		%	Total	%	Total	%	Total			
SUBTOTAL 12.	\$11,171	\$0	\$11,203	\$0	\$22,375	10%	\$2,237	0%	\$0	12%	\$3,037	\$27,650	50	
13 IMPROVEMENTS TO SITE														
13.1 Site Preparation		\$0	\$59	\$1,266	\$0	\$1,325	10%	\$133	0%	\$0	20%	\$292	\$1,749	3
13.2 Site Improvements		\$0	\$1,975	\$2,610	\$0	\$4,585	10%	\$458	0%	\$0	20%	\$1,009	\$6,052	11
13.3 Site Facilities		\$3,540	\$0	\$3,714	\$0	\$7,254	10%	\$725	0%	\$0	20%	\$1,596	\$9,575	17
SUBTOTAL 13.		\$3,540	\$2,034	\$7,590	\$0	\$13,164	10%	\$1,316	0%	\$0	20%	\$2,896	\$17,377	32
14 BUILDINGS & STRUCTURES														
14.1 Boiler Building		\$0	\$11,558	\$10,156	\$0	\$21,714	10%	\$2,171	0%	\$0	15%	\$3,583	\$27,469	50
14.2 Turbine Building		\$0	\$15,011	\$13,980	\$0	\$28,991	10%	\$2,899	0%	\$0	15%	\$4,784	\$36,674	67
14.3 Administration Building		\$0	\$744	\$786	\$0	\$1,530	10%	\$153	0%	\$0	15%	\$252	\$1,936	4
14.4 Circulation Water Pumphouse		\$0	\$212	\$170	\$0	\$382	10%	\$38	0%	\$0	15%	\$63	\$483	1
14.5 Water Treatment Buildings		\$0	\$440	\$401	\$0	\$841	10%	\$84	0%	\$0	15%	\$139	\$1,064	2
14.6 Machine Shop		\$0	\$498	\$334	\$0	\$831	10%	\$83	0%	\$0	15%	\$137	\$1,052	2
14.7 Warehouse		\$0	\$336	\$338	\$0	\$674	10%	\$67	0%	\$0	15%	\$111	\$853	2
14.8 Other Buildings & Structures		\$0	\$275	\$234	\$0	\$509	10%	\$51	0%	\$0	15%	\$84	\$644	1
14.9 Waste Treating Building & Str.		\$0	\$527	\$1,599	\$0	\$2,126	10%	\$213	0%	\$0	15%	\$351	\$2,689	5
SUBTOTAL 14.		\$0	\$29,601	\$27,997	\$0	\$57,598	10%	\$5,760	0%	\$0	15%	\$9,504	\$72,864	132
TOTAL COST	\$672,655	\$55,805	\$343,961	\$0	\$1,072,422	10%	\$107,242	0%	\$0	12%	\$143,727	\$1,323,408	2,406	

Table 7-11
Capital Costs for Base Case S12B

Project: Montana Rosebud PRB Coal TOTAL PLANT COST SUMMARY Case: S12B Air-Fired Supercritical PC with Econamine-Based CO ₂ Capture Plant Size: 550 MWnet Cost Base: January 2019 (\$x1000)													
Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O.& Fee		Process Contingency		Project Contingency		CASE S12B TOTAL PLANT Cost	Case S12B COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
1 COAL & SORBENT HANDLING													
1.1 Coal Receive & Unload	\$6,608.69	\$0	\$2,977	\$0	\$9,586	10%	\$959	0%	\$0	15%	\$1,582	\$12,126	22
1.2 Coal Stackout & Reclaim	\$8,542	\$0	\$1,909	\$0	\$10,452	10%	\$1,045	0%	\$0	15%	\$1,725	\$13,221	24
1.3 Coal Conveyors	\$7,942	\$0	\$1,888	\$0	\$9,830	10%	\$983	0%	\$0	15%	\$1,622	\$12,435	23
1.4 Other Coal Handling	\$2,077	\$0	\$436	\$0	\$2,513	10%	\$251	0%	\$0	15%	\$415	\$3,179	6
1.5 Sorbent Receive & Unload	\$80	\$0	\$24	\$0	\$104	10%	\$10	0%	\$0	15%	\$17	\$131	0
1.6 Sorbent Stackout & Reclaim	\$1,293	\$0	\$234	\$0	\$1,527	10%	\$153	0%	\$0	15%	\$252	\$1,932	4
1.7 Sorbent Conveyors	\$462	\$101	\$112	\$0	\$674	10%	\$67	0%	\$0	15%	\$111	\$853	2
1.8 Other Sorbent Handling	\$278	\$66	\$144	\$0	\$488	10%	\$49	0%	\$0	15%	\$81	\$618	1
1.9 Coal & Sorbent Hnd. Foundations	\$0	\$7,660	\$10,099	\$0	\$17,759	10%	\$1,776	0%	\$0	15%	\$2,930	\$22,465	41
SUBTOTAL 1.	\$27,283	\$7,827	\$17,823	\$0	\$52,932	10%	\$5,293	0%	\$0	15%	\$8,734	\$66,959	122
2 COAL & SORBENT PREP & FEED													
2.1 Coal Crushing & Drying	\$3,890	\$0	\$748	\$0	\$4,638	10%	\$464	0%	\$0	15%	\$765	\$5,867	11
2.2 Coal Conveyor to Storage	\$9,961	\$0	\$2,145	\$0	\$12,106	10%	\$1,211	0%	\$0	15%	\$1,997	\$15,314	28
2.3 Coal Injection System	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
2.4 Misc. Coal Prep & Feed	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
2.5 Sorbent Prep Equipment	\$0	\$0	\$0	\$0	\$0	8.7%	\$0	0%	\$0	15%	0	\$0	0
2.6 Sorbent Storage & Feed	\$0	\$0	\$0	\$0	\$0	8.9%	\$0	0%	\$0	15%	0	\$0	0
2.7 Sorbent Injection System	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
2.8 Booster Air Supply System	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
2.9 Coal & Sorbent Feed Foundation	\$0	\$1,050	\$921	\$0	\$1,971	10%	\$197	0%	\$0	15%	\$325	\$2,493	5
SUBTOTAL 2.	\$13,851	\$1,050	\$3,815	\$0	\$18,715	10%	\$1,871	0%	\$0	15%	\$3,088	\$23,674	43

Project: Montana Rosebud PRB Coal													
TOTAL PLANT COST SUMMARY													
Case: S12B Air-Fired Supercritical PC with Econamine-Based CO ₂ Capture													
Plant Size: 550 MWnet													
Cost Base: January 2019 (\$x1000)													
Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O.& Fee		Process Contingency		Project Contingency		CASE S12B TOTAL PLANT Cost	Case S12B COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
3 FEEDWATER & MISC. BOP SYSTEMS													
3.1 Feedwater System	\$29,382	\$0	\$9,474	\$0	\$38,855	10%	\$3,886	0%	\$0	15%	\$6,411	\$49,152	89
3.2 Water Makeup & Pretreating	\$8,120	\$0	\$2,568	\$0	\$10,688	10%	\$1,069	0%	\$0	20%	\$2,351	\$14,109	26
3.3 Other Feedwater Subsystems	\$9,243	\$0	\$3,795	\$0	\$13,038	10%	\$1,304	0%	\$0	15%	\$2,151	\$16,493	30
3.4 Service Water Systems	\$1,626	\$0	\$850	\$0	\$2,476	10%	\$248	0%	\$0	20%	\$545	\$3,268	6
3.5 Other Boiler Plant Systems	\$12,231	\$0	\$11,565	\$0	\$23,796	10%	\$2,380	0%	\$0	15%	\$3,926	\$30,102	55
3.6 FO Supply Sys & Nat Gas	\$378	\$0	\$440	\$0	\$819	10%	\$82	0%	\$0	15%	\$135	\$1,036	2
3.7 Waste Treatment Equipment	\$5,327	\$0	\$3,084	\$0	\$8,411	10%	\$841	0%	\$0	20%	\$1,850	\$11,102	20
3.8 Misc. Equip. (Cranes, Air Comp., Comm.)	\$3,696	\$0	\$1,143	\$0	\$4,839	10%	\$484	0%	\$0	20%	\$1,065	\$6,388	12
SUBTOTAL 3.	\$70,003	\$0	\$32,919	\$0	\$102,922	10%	\$10,292	0%	\$0	16%	\$18,435	\$131,649	239
4 PC BOILER & ACCESSORIES													
4.1 PC Boiler	\$297,084	\$0	\$147,781	\$0	\$444,865	10%	\$44,487	0%	\$0	10%	\$48,935	\$538,287	979
4.2 Open	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
4.3 Open	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
4.4 Boiler BOP (w/ ID Fans)	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
4.5 Primary Air System	w/4.1	\$0	w/4.1	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
4.6 Secondary Air System	w/4.1	\$0	w/4.1	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
4.8 Major Component Rigging	\$0	w/4.1	w/4.1	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
4.9 PC Foundations	\$0	w/14.1	w/14.1	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
SUBTOTAL 4.	\$297,084	\$0	\$147,781	\$0	\$444,865	10%	\$44,487	0%	\$0	10%	\$48,935	\$538,287	979
5 FLUE GAS CLEANUP													
5.1 Absorber Vessels & Accessories	\$130,907	\$0	\$35,415	\$0	\$166,322	10%	\$16,632	0%	\$0	10%	\$18,295	\$201,250	366

Project: Montana Rosebud PRB Coal

TOTAL PLANT COST SUMMARY

Case: S12B Air-Fired Supercritical PC with Econamine-Based CO₂ Capture

Plant Size: 550 MWnet

Cost Base: January 2019 (\$x1000)

Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O.& Fee		Process Contingency		Project Contingency		CASE S12B TOTAL PLANT Cost	Case S12B COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
5.2 Other FGD	\$1,690	\$0	\$1,089	\$0	\$2,778	10%	\$278	0%	\$0	10%	\$306	\$3,362	6
5.3 Bag House & Accessories	w/5.1	\$0	w/5.1	\$0	\$0		\$0		\$0		\$0	\$0	0
5.4 Other Particulate Removal Materials	\$31,276	\$0	\$21,189	\$0	\$52,465	10%	\$5,247	0%	\$0	10%	\$5,771	\$63,483	115
5.5 Gypsum Dewatering System	\$0	\$0	\$0	\$0	\$0		\$0		\$0		\$0	\$0	0
5.6 Mercury Removal System	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	10%	0	\$0	0
5.9 Open	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	10%	0	\$0	0
SUBTOTAL 5.	\$163,873	\$0	\$57,693	\$0	\$221,566	10%	\$22,157	0%	\$0	10%	\$24,372	\$268,095	487
5B CO2 REMOVAL & COMPRESSION													
5B.1 CO2 Removal System	\$282,586	\$0	\$85,154	\$0	\$367,740	10%	\$36,774	20%	\$72,813	24%	\$95,465	\$572,792	1,041
5B.2 CO2 Compression & Drying	\$54,911	\$0	\$20,398	\$0	\$75,309	10%	\$7,531	0%	\$0	20%	\$16,568	\$99,408	181
SUBTOTAL 5B.	\$337,496	\$0	\$105,553	\$0	\$443,049	10%	\$44,305	16%	\$72,813	23%	\$112,033	\$672,200	1,222
6 COMBUSTION TURBINE/ACCESSORIES													
SUBTOTAL 6.	\$0	\$0	\$0	\$0	\$0		\$0		\$0		\$0	\$0	0
7 HRSG													
7.1 Flue Gas Recycle Heat Exchanger	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
7.2 SCR System	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
7.3 Ductwork	\$13,335	\$0	\$8,416	\$0	\$21,751	10%	\$2,175	0%	\$0	15%	\$3,589	\$27,515	50
7.4 Stack	\$12,055	\$0	\$7,006	\$0	\$19,061	10%	\$1,906	0%	\$0	10%	\$2,097	\$23,064	42
7.9 HRSG, Duct & Stack Foundations	\$0	\$1,314	\$1,560	\$0	\$2,875	10%	\$287	0%	\$0	20%	\$632	\$3,794	7
SUBTOTAL 7.	\$25,389	\$1,314	\$16,983	\$0	\$43,687	10%	\$4,369	0%	\$0	13%	\$6,318	\$54,373	99
8 STEAM TURBINE GENERATOR													
8.1 Steam TG & Accessories	\$78,297	\$0	\$9,645	\$0	\$87,942	10%	\$8,794	0%	\$0	10%	\$9,674	\$106,410	193

Project: Montana Rosebud PRB Coal

TOTAL PLANT COST SUMMARY

Case: S12B Air-Fired Supercritical PC with Econamine-Based CO₂ Capture

Plant Size: 550 MWnet

Cost Base: January 2019 (\$x1000)

Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O.& Fee		Process Contingency		Project Contingency		CASE S12B TOTAL PLANT Cost	Case S12B COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
8.2 Turbine Plant Auxiliaries	\$493	\$0	\$1,049	\$0	\$1,542	10%	\$154	0%	\$0	10%	\$170	\$1,866	3
8.3a Condenser & Auxiliaries	\$4,137	\$0	\$2,600	\$0	\$6,737	10%	\$674	0%	\$0	10%	\$741	\$8,152	15
8.3b Air Cooled Condenser	\$37,905	\$0	\$7,549	\$0	\$45,454	10%	\$4,545	0%	\$0	20%	\$10,000	\$60,000	109
8.4 Steam Piping	\$30,575	\$0	\$13,585	\$0	\$44,160	10%	\$4,416	0%	\$0	15%	\$7,286	\$55,862	102
8.9 TG Foundations	\$0	\$1,471	\$2,427	\$0	\$3,898	10%	\$390	0%	\$0	20%	\$858	\$5,146	9
SUBTOTAL 8.	\$151,407	\$1,471	\$36,856	\$0	\$189,734	10%	\$18,973	0%	\$0	14%	\$28,728	\$237,436	432
9 COOLING WATER SYSTEM													
9.1 Cooling Towers	\$18,360	\$0	\$5,678	\$0	\$24,038	10%	\$2,404	0%	\$0	10%	\$2,644	\$29,086	53
9.2 Circulating Water Pumps	\$3,683	\$0	\$284	\$0	\$3,967	10%	\$397	0%	\$0	10%	\$436	\$4,800	9
9.3 Circ. Water System Auxiliaries	\$948	\$0	\$126	\$0	\$1,074	10%	\$107	0%	\$0	10%	\$118	\$1,299	2
9.4 Circ. Water Piping	\$0	\$7,974	\$7,222	\$0	\$15,196	10%	\$1,520	0%	\$0	15%	\$2,507	\$19,223	35
9.5 Make-up Water System	\$772	\$0	\$993	\$0	\$1,765	10%	\$177	0%	\$0	15%	\$291	\$2,233	4
9.6 Component Cooling Water System	\$771	\$0	\$592	\$0	\$1,364	10%	\$136	0%	\$0	15%	\$225	\$1,725	3
9.9 Circ. Water System Foundations	\$0	\$4,218	\$7,005	\$0	\$11,223	10%	\$1,122	0%	\$0	20%	\$2,469	\$14,815	27
SUBTOTAL 9.	\$24,534	\$12,192	\$21,901	\$0	\$58,626	10%	\$5,863	0%	\$0	13%	\$8,691	\$73,180	133
10 ASH/SPENT SORBENT HANDLING SYS													
10.1 Ash Coolers	N/A	\$0	N/A	\$0	\$0	0.0%	\$0	0%	\$0	10%	0	\$0	0
10.2 Cyclone Ash Letdown	N/A	\$0	N/A	\$0	\$0	0.0%	\$0	0%	\$0	10%	0	\$0	0
10.3 HGCU Ash Letdown	N/A	\$0	N/A	\$0	\$0	0.0%	\$0	0%	\$0	10%	0	\$0	0
10.4 High Temperature Ash Piping	N/A	\$0	N/A	\$0	\$0	0.0%	\$0	0%	\$0	10%	0	\$0	0
10.5 Other Ash Recovery System	N/A	\$0	N/A	\$0	\$0	0.0%	\$0	0%	\$0	10%	0	\$0	0
10.6 Ash Storage Silos	\$1,194	\$0	\$3,654	\$0	\$4,848	10%	\$485	0%	\$0	10%	\$533	\$5,866	11

Project: Montana Rosebud PRB Coal													
TOTAL PLANT COST SUMMARY													
Case: S12B Air-Fired Supercritical PC with Econamine-Based CO ₂ Capture													
Plant Size: 550 MWnet													
Cost Base: January 2019 (\$x1000)													
Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O.& Fee		Process Contingency		Project Contingency		CASE S12B TOTAL PLANT Cost	Case S12B COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
10.7 Ash Transport & Feed Equipment	\$7,934	\$0	\$7,864	\$0	\$15,798	10%	\$1,580	0%	\$0	10%	\$1,738	\$19,115	35
10.8 Misc. Ash Handling Equipment	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	10%	0	\$0	0
10.9 Ash/Spent Sorbent Foundation	\$0	\$270	\$331	\$0	\$602	10%	\$60	0%	\$0	20%	\$132	\$794	1
SUBTOTAL 10.	\$9,127	\$270	\$11,849	\$0	\$21,247	10%	\$2,125	0%	\$0	10%	\$2,403	\$25,775	47
11 ACCESSORY ELECTRIC PLANT													
11.1 Generator Equipment	\$2,241	\$0	\$358	\$0	\$2,599	10%	\$260	0%	\$0	7%	\$200	\$3,059	6
11.2 Station Service Equipment	\$6,399	\$0	\$2,145	\$0	\$8,544	10%	\$854	0%	\$0	7%	\$658	\$10,056	18
11.3 Switchgear & Motor Control	\$7,343	\$0	\$1,276	\$0	\$8,619	10%	\$862	0%	\$0	10%	\$948	\$10,429	19
11.4 Conduit & Cable Tray	\$0	\$5,037	\$16,272	\$0	\$21,309	10%	\$2,131	0%	\$0	15%	\$3,516	\$26,956	49
11.5 Wire & Cable	\$0	\$9,590	\$17,143	\$0	\$26,733	10%	\$2,673	0%	\$0	15%	\$4,411	\$33,817	61
11.6 Protective Equipment	\$335	\$0	\$1,166	\$0	\$1,502	10%	\$150	0%	\$0	10%	\$165	\$1,817	3
11.7 Standby Equipment	\$1,699	\$0	\$39	\$0	\$1,739	10%	\$174	0%	\$0	10%	\$191	\$2,104	4
11.8 Main Power Transformers	\$15,157	\$0	\$242	\$0	\$15,398	10%	\$1,540	0%	\$0	10%	\$1,694	\$18,632	34
11.9 Electrical Foundations	\$0	\$421	\$1,072	\$0	\$1,492	10%	\$149	0%	\$0	20%	\$328	\$1,970	4
SUBTOTAL 11.	\$33,174	\$15,047	\$39,713	\$0	\$87,935	10%	\$8,793	0%	\$0	13%	\$12,112	\$108,840	198
12 INSTRUMENTATION & CONTROL													
12.1 PC Control Equipment	w/12.7	\$0	w/12.7	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
12.2 Combustion Turbine Control	N/A	\$0	N/A	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
12.3 Steam Turbine Control	w/8.1	\$0	w/8.1	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
12.4 Other Major Component Control	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
12.5 Signal Processing Equipment	W/12.7	\$0	w/12.7	\$0	\$0	0.0%	\$0	0%	\$0	0%	0	\$0	0
12.6 Control Boards, Panels, & Racks	\$637	\$0	\$390	\$0	\$1,027	10%	\$103	6%	\$56	16%	\$178	\$1,364	2

Project: Montana Rosebud PRB Coal													
TOTAL PLANT COST SUMMARY													
Case: S12B Air-Fired Supercritical PC with Econamine-Based CO ₂ Capture													
Plant Size: 550 MWnet													
Cost Base: January 2019 (\$x1000)													
Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O.& Fee		Process Contingency		Project Contingency		CASE S12B TOTAL PLANT Cost	Case S12B COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
12.7 Distributed Control System Equipment	\$6,443	\$0	\$1,150	\$0	\$7,593	10%	\$759	6%	\$418	11%	\$877	\$9,647	18
12.8 Instrument Wiring & Tubing	\$3,884	\$0	\$7,068	\$0	\$10,951	10%	\$1,095	6%	\$602	16%	\$1,897	\$14,546	26
12.9 Other I & C Equipment	\$1,821	\$0	\$4,215	\$0	\$6,035	10%	\$604	6%	\$332	11%	\$697	\$7,668	14
SUBTOTAL 12.	\$12,785	\$0	\$12,822	\$0	\$25,607	10%	\$2,561	6%	\$1,408	13%	\$3,649	\$33,226	60
13 IMPROVEMENTS TO SITE													
13.1 Site Preparation	\$0	\$66	\$1,424	\$0	\$1,490	10%	\$149	0%	\$0	20%	\$328	\$1,967	4
13.2 Site Improvements	\$0	\$2,221	\$2,935	\$0	\$5,157	10%	\$516	0%	\$0	20%	\$1,134	\$6,807	12
13.3 Site Facilities	\$3,980	\$0	\$4,176	\$0	\$8,156	10%	\$816	0%	\$0	20%	\$1,794	\$10,766	20
SUBTOTAL 13.	\$3,980	\$2,288	\$8,535	\$0	\$14,803	10%	\$1,480	0%	\$0	20%	\$3,257	\$19,540	36
14 BUILDINGS & STRUCTURES													
14.1 Boiler Building	\$0	\$12,426	\$10,920	\$0	\$23,345	10%	\$2,335	0%	\$0	15%	\$3,852	\$29,532	54
14.2 Turbine Building	\$0	\$16,370	\$15,247	\$0	\$31,617	10%	\$3,162	0%	\$0	15%	\$5,217	\$39,996	73
14.3 Administration Building	\$0	\$820	\$866	\$0	\$1,686	10%	\$169	0%	\$0	15%	\$278	\$2,133	4
14.4 Circulation Water Pumphouse	\$0	\$375	\$299	\$0	\$674	10%	\$67	0%	\$0	15%	\$111	\$853	2
14.5 Water Treatment Buildings	\$0	\$1,013	\$923	\$0	\$1,936	10%	\$194	0%	\$0	15%	\$320	\$2,450	4
14.6 Machine Shop	\$0	\$547	\$368	\$0	\$915	10%	\$91	0%	\$0	15%	\$151	\$1,157	2
14.7 Warehouse	\$0	\$370	\$372	\$0	\$742	10%	\$74	0%	\$0	15%	\$122	\$939	2
14.8 Other Buildings & Structures	\$0	\$303	\$258	\$0	\$561	10%	\$56	0%	\$0	15%	\$92	\$709	1
14.9 Waste Treating Building & Str.	\$0	\$581	\$1,761	\$0	\$2,342	10%	\$234	0%	\$0	15%	\$386	\$2,963	5
SUBTOTAL 14.	\$0	\$32,807	\$31,012	\$0	\$63,819	10%	\$6,382	0%	\$0	15%	\$10,530	\$80,731	147
TOTAL COST	\$1,169,987	\$74,265	\$545,255	\$0	\$1,789,507	10%	\$178,951	4%	\$74,221	15%	\$291,286	\$2,333,965	4,243

Table 7-12
Capital Costs for Base Case S12F

Project: Montana Rosebud PRB TOTAL PLANT COST SUMMARY Case: S12F Oxy-Fuel Supercritical PC w/CO ₂ Capture Plant Size: 550 MWnet Cost Base: January 2019 (\$x1000)													
Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O.& Fee		Process Contingency		Project Contingency		CASE S12F TOTAL PLANT Cost	Case S12F COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
1 COAL & SORBENT HANDLING													
1.1 Coal Receive & Unload	6,247		2,853		9,100	9%	813	0%		15%	1,487	11,401	21
1.2 Coal Stackout & Reclaim	8,074		1,830		9,904	9%	867	0%		15%	1,616	12,387	23
1.3 Coal Conveyors	7,507		1,810		9,317	9%	817	0%		15%	1,520	11,655	21
1.4 Other Coal Handling	1,963		419		2,383	9%	209	0%		15%	389	2,980	5
1.5 Sorbent Receive & Unload	78		24		102	9%	9	0%		15%	17	128	0
1.6 Sorbent Stackout & Reclaim	1,259		230		1,489	9%	130	0%		15%	243	1,862	3
1.7 Sorbent Conveyors	450	97	110		656	9%	57	0%		15%	107	820	1
1.8 Other Sorbent Handling	271	63	143		477	9%	42	0%		15%	78	598	1
1.9 Coal & Sorbent Hnd. Foundations	0	7,676	9,683		17,360	9%	1,622	0%		15%	2,848	21,830	40
SUBTOTAL 1.	25,849	7,836	17,102	0	50,788	9%	4,567	0%	0	15%	8,306	63,663	116
2 COAL & SORBENT PREP & FEED													
2.1 Coal Crushing & Drying	3,646		710		4,357	9%	380	0%		15%	710	5,447	10
2.2 Coal Conveyor to Storage	9,337		2,038		11,375	9%	995	0%		15%	1,855	14,225	26
2.3 Coal Injection System	\$0	\$0	\$0	\$0	\$0	9%	\$0	0%	\$0	0%	\$0	\$0	0
2.4 Misc. Coal Prep & Feed	\$0	\$0	\$0	\$0	\$0	9%	\$0	0%	\$0	0%	\$0	\$0	0
2.5 Sorbent Prep Equipment	\$0	\$0	\$0	\$0	\$0	9%	\$0	0%	\$0	0%	\$0	\$0	0
2.6 Sorbent Storage & Feed	\$0	\$0	\$0	\$0	\$0	9%	\$0	0%	\$0	0%	\$0	\$0	0
2.7 Sorbent Injection System	\$0	\$0	\$0	\$0	\$0	9%	\$0	0%	\$0	0%	\$0	\$0	0
2.8 Booster Air Supply System	\$0	\$0	\$0	\$0	\$0	9%	\$0	0%	\$0	0%	\$0	\$0	0
2.9 Coal & Sorbent Feed Foundation	0	1,047	878		1,925	9%	177	0%		15%	315	2,416	4
SUBTOTAL 2.	12,983	1,047	3,626	0	17,656	9%	1,551	0%	0	15%	2,880	22,088	40

Project: Montana Rosebud PRB

TOTAL PLANT COST SUMMARY

Case: S12F Oxy-Fuel Supercritical PC w/CO₂ Capture

Plant Size: 550 MWnet

Cost Base: January 2019 (\$x1000)

Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O.& Fee		Process Contingency		Project Contingency		CASE S12F TOTAL PLANT Cost	Case S12F COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
3 FEEDWATER & MISC. BOP SYSTEMS													
3.1 Feedwater System	29,613		9,566		39,179	9%	3,431	0%		15%	6,391	49,001	89
3.2 Water Makeup & Pretreating	5,978		1,924		7,902	9%	741	0%		20%	1,728	10,372	19
3.3 Other Feedwater Subsystems	9,066		3,831		12,897	9%	1,150	0%		15%	2,107	16,154	29
3.4 Service Water Systems	1,172		637		1,809	9%	168	0%		20%	395	2,373	4
3.5 Other Boiler Plant Systems	11,761		11,610		23,371	9%	2,192	0%		15%	3,834	29,397	53
3.6 FO Supply Sys & Nat Gas	368		459		827	9%	77	0%		15%	135	1,039	2
3.7 Waste Treatment Equipment	0		0		0		0				0	0	0
3.8 Misc. Equip. (Cranes, Air Comp., Comm.)	3,905		1,192		5,097	10%	490	0%		20%	1,117	6,704	12
SUBTOTAL 3.	61,862	0	29,220	0	91,082	9%	8,248	0%	0	16%	15,708	115,040	209
4 PC BOILER & ACCESSORIES													
4.1 PC Oxy-Boiler/ Accessories	286,917		140,011		426,928	10%	41,353	15%	64,039	11%	53,232	585,552	1,065
4.2 ASU/O2 Compress	214,651		175,624		390,275	10%	37,802	0%		10%	42,808	470,885	856
4.3 Open	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	\$0	\$0	0
4.4 Open	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	\$0	\$0	0
4.5 Primary Air System	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	\$0	\$0	0
4.6 Secondary Air System	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	\$0	\$0	0
4.8 Major Component Rigging	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	\$0	\$0	0
4.9 Boiler Foundations					0								0
SUBTOTAL 4.	501,569	0	315,635	0	817,204	10%	79,155	8%	64,039	11%	96,039	1,056,437	1,921
5 FLUE GAS CLEANUP													
5.1 FGD System	85,700		14,415		100,115	9%	9,475	0%		10%	10,960	120,550	219
5.2 Other FGD	1,364		546		1,911	10%	184	0%		10%	209	2,304	4

Project: Montana Rosebud PRB													
TOTAL PLANT COST SUMMARY													
Case: S12F Oxy-Fuel Supercritical PC w/CO ₂ Capture													
Plant Size: 550 MWnet													
Cost Base: January 2019 (\$x1000)													
Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O.& Fee		Process Contingency		Project Contingency		CASE S12F TOTAL PLANT Cost	Case S12F COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
5.3 Baghouse & Accessories					0							0	0
5.4 Other Particulate Removal Materials	24,699		10,406		35,105	10%	3,379	0%		10%	3,848	42,333	77
5.5 Gypsum Dewatering					0							0	0
5.6 Mercury Removal					0							0	0
SUBTOTAL 5.	111,763	0	25,368	0	137,131	10%	13,039	0%	0	10%	15,017	165,187	300
5B CO ₂ REMOVAL & COMPRESSION													
5B.1 CO ₂ Condensing Heat Exchanger	7,758		648		8,406	10%	841	0%		15%	1,387	10,635	19
5B.2 CO ₂ Compression & Drying	84,523		69,156		153,679	10%	15,369	0%		20%	33,809	202,857	369
SUBTOTAL 5B.	92,281	0	69,804	0	162,086	10%	16,210	0%	0	20%	35,195	213,492	388
6 COMBUSTION TURBINE/ACCESSORIES													
SUBTOTAL 6.	\$0	\$0	\$0	\$0	\$0		\$0		\$0		\$0	\$0	0
7 HRSG													
7.1 Flue Gas Recycle Heat Exchanger	51,205		4,276		55,481	10%	5,548	0%		15%	9,154	70,184	128
7.2 HRSG Accessories					0							0	0
7.3 Ductwork	11,385		7,314		18,699	9%	1,633	0%		15%	3,050	23,383	43
7.4 Stack	1,820		1,065		2,885	10%	276	0%		10%	316	3,477	6
7.9 Duct & Stack Foundations		987	1,120		2,107	9%	196	0%		20%	461	2,764	5
SUBTOTAL 7.	64,411	987	13,776	0	79,173	10%	7,653	0%	0	15%	12,981	99,808	181
8 STEAM TURBINE GENERATOR													
8.1 Steam TG & Accessories	89,043		11,826		100,869	10%	9,658	0%		10%	11,052	121,580	221
8.2 Turbine Plant Auxiliaries	601		1,287		1,888	10%	183	0%		10%	207	2,278	4
8.3a Condenser & Auxiliaries	7,454		4,497		11,951	9%	1,135	0%		10%	1,309	14,396	26
8.3b Air Cooled Condenser					0							0	0

Project: Montana Rosebud PRB													
TOTAL PLANT COST SUMMARY													
Case: S12F Oxy-Fuel Supercritical PC w/CO ₂ Capture													
Plant Size: 550 MWnet													
Cost Base: January 2019 (\$x1000)													
Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O.& Fee		Process Contingency		Project Contingency		CASE S12F TOTAL PLANT Cost	Case S12F COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
8.4 Steam Piping	35,222		17,367		52,589	8%	4,389	0%		15%	8,547	65,525	119
8.9 TG Foundations		1,881	2,970		4,851	9%	456	0%		20%	1,061	6,369	12
SUBTOTAL 8.	132,320	1,881	37,947	0	172,147	9%	15,821	0%	0	12%	22,177	210,146	382
9 COOLING WATER SYSTEM													
9.1 Cooling Towers	11,033		3,436		14,468	9%	1,373	0%		10%	1,584	17,425	32
9.2 Circulating Water Pumps	3,237		308		3,545	9%	304	0%		10%	385	4,234	8
9.3 Circ. Water System Auxiliaries	907		122		1,029	9%	97	0%		10%	112	1,239	2
9.4 Circ. Water Piping		7,198	6,976		14,174	9%	1,306	0%		15%	2,322	17,803	32
9.5 Make-up Water System	715		954		1,669	10%	159	0%		15%	274	2,102	4
9.6 Component Cooling Water Sys	718		572		1,290	9%	122	0%		15%	211	1,623	3
9.9 Circ. Water System Foundations & Structures		4,272	6,788		11,060	9%	1,041	0%		20%	2,420	14,523	26
SUBTOTAL 9.	16,610	11,470	19,155	0	47,235	9%	4,402	0%	0	14%	7,309	58,947	107
10 ASH/SPENT SORBENT HANDLING SYS													
10.1 Ash Coolers	N/A	\$0	N/A	\$0	\$0	0.0%	\$0	0%	\$0	10%	0	\$0	0
10.2 Cyclone Ash Letdown	N/A	\$0	N/A	\$0	\$0	0.0%	\$0	0%	\$0	10%	0	\$0	0
10.3 HGCU Ash Letdown	N/A	\$0	N/A	\$0	\$0	0.0%	\$0	0%	\$0	10%	0	\$0	0
10.4 High Temperature Ash Piping	N/A	\$0	N/A	\$0	\$0	0.0%	\$0	0%	\$0	10%	0	\$0	0
10.5 Other Ash Recovery System	N/A	\$0	N/A	\$0	\$0	0.0%	\$0	0%	\$0	10%	0	\$0	0
10.6 Ash Storage Silos	1,155		3,557		4,712	10%	458	0%		10%	517	5,687	10
10.7 Ash Transport & Feed Equipment	7,472		7,653		15,125	9%	1,431	0%		10%	1,656	18,212	33
10.8 Misc. Ash Handling Equipment		\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	10%	0	\$0	0
10.9 Ash/Spent Sorbent Foundation		275	322		597	9%	55	0%		20%	131	784	1

Project: Montana Rosebud PRB

TOTAL PLANT COST SUMMARY

Case: S12F Oxy-Fuel Supercritical PC w/CO₂ Capture

Plant Size: 550 MWnet

Cost Base: January 2019 (\$x1000)

Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O.& Fee		Process Contingency		Project Contingency		CASE S12F TOTAL PLANT Cost	Case S12F COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
SUBTOTAL 10.	8,627	275	11,532	0	20,434	10%	1,945	0%	0	10%	2,303	24,683	45
11 ACCESSORY ELECTRIC PLANT													
11.1 Generator Equipment	442		72		514	9%	48	0%		7%	42	604	1
11.2 Station Service Equipment	7,477		2,457		9,933	10%	950	0%		7%	816	11,700	21
11.3 Switchgear & Motor Control	8,596		1,461		10,057	9%	931	0%		10%	1,098	12,086	22
11.4 Conduit & Cable Tray		5,389	18,634		24,023	10%	2,299	0%		15%	3,949	30,271	55
11.5 Wire & Cable		10,169	19,631		29,800	8%	2,511	0%		15%	4,847	37,159	68
11.6 Protective Equipment	313		1,068		1,382	10%	135	0%		10%	152	1,669	3
11.7 Standby Equipment	457		10		468	9%	44	0%		10%	51	563	1
11.8 Main Power Transformers	1,098		34		1,132	8%	86	0%		10%	122	1,340	2
11.9 Electrical Foundations		62	150		211	9%	20	0%		20%	46	278	1
SUBTOTAL 11.	18,384	15,620	43,516	0	77,521	9%	7,023	0%	0	13%	11,123	95,669	174
12 INSTRUMENTATION & CONTROL													
12.1 PC Control Equipment	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
12.2 Combustion Turbine Control	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
12.3 Steam Turbine Control	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
12.4 Other Major Component Control	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
12.5 Signal Processing Equipment	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
12.6 Control Boards, Panels, & Racks	694		416		1,110	10%	106	0%		15%	182	1,399	3
12.7 Distributed Control System Equipment	7,012		1,225		8,237	10%	785	0%		10%	903	9,925	18
12.8 Instrument Wiring & Tubing	3,802		7,542		11,343	9%	966	0%		15%	1,846	14,155	26
12.9 Other I & C Equipment	1,981		4,496		6,477	10%	631	0%		10%	711	7,819	14
SUBTOTAL 12.	13,489	0	13,679	0	27,167	9%	2,488	0%	0	12%	3,641	33,298	61

Project: Montana Rosebud PRB													
TOTAL PLANT COST SUMMARY													
Case: S12F Oxy-Fuel Supercritical PC w/CO ₂ Capture													
Plant Size: 550 MWnet													
Cost Base: January 2019 (\$x1000)													
Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O.& Fee		Process Contingency		Project Contingency		CASE S12F TOTAL PLANT Cost	Case S12F COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
13 IMPROVEMENTS TO SITE													
13.1 Site Preparation		64	1,286		1,350	10%	133	0%		20%	297	1,780	3
13.2 Site Improvements		2,135	2,651		4,786	10%	470	0%		20%	1,051	6,307	11
13.3 Site Facilities	3,826		3,773		7,599	10%	746	0%		20%	1,668	10,014	18
SUBTOTAL 13.	3,826	2,199	7,710	0	13,735	10%	1,349	0%	0	20%	3,016	18,100	33
14 BUILDINGS & STRUCTURES													
14.1 Boiler Building		10,986	9,662		20,648	9%	1,854	0%		15%	3,376	25,878	47
14.2 Turbine Building		14,469	13,486		27,955	9%	2,518	0%		15%	4,570	35,043	64
14.3 Administration Building		724	765		1,489	9%	134	0%		15%	243	1,867	3
14.4 Circulation Water Pumphouse		239	189		428	9%	38	0%		15%	69	536	1
14.5 Water Treatment Buildings		666	548		1,213	9%	109	0%		15%	198	1,521	3
14.6 Machine Shop		484	325		809	9%	72	0%		15%	132	1,013	2
14.7 Warehouse		328	329		658	9%	59	0%		15%	108	825	1
14.8 Other Buildings & Structures		268	229		496	9%	45	0%		15%	81	622	1
14.9 Waste Treating Building & Str.		495	1,504		1,999	9%	189	0%		15%	328	2,517	5
SUBTOTAL 14.	0	28,659	27,036	0	55,695	9%	5,018	0%	0	15%	9,106	69,822	127
TOTAL COST	1,063,973	69,973	635,107	0	1,769,053	10%	168,469	4%	64,039	13%	244,802	2,246,379	4,084

Table 7-13
Capital Costs for Baseline SPOC Case

Project: Montana Rosebud PRB TOTAL PLANT COST SUMMARY Case: SPOC Base Case Plant Size: 550 MWnet Cost Base: January 2019 (\$x1000)													
Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O. & Fee		Process Contingency		Project Contingency		TOTAL BASE SPOC PLANT Cost	BASE SPOC COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
1 COAL & SORBENT HANDLING													
1.1 Coal Receive & Unload	5,842		2,668		8,511	9%	760	0%		15%	1,391	10,663	19
1.2 Coal Stackout & Reclaim	7,551		1,711		9,263	9%	811	0%		15%	1,511	11,585	21
1.3 Coal Conveyors	7,021		1,693		8,714	9%	764	0%		15%	1,422	10,900	20
1.4 Other Coal Handling	1,836		392		2,228	9%	195	0%		15%	364	2,787	5
1.5 Sorbent Receive & Unload	73		22		95	9%	9	0%		15%	16	120	0
1.6 Sorbent Stackout & Reclaim	1,175		215		1,389	9%	121	0%		15%	227	1,737	3
1.7 Sorbent Conveyors	420	90	102		612	9%	53	0%		15%	100	765	1
1.8 Other Sorbent Handling	253	59	133		445	9%	39	0%		15%	73	558	1
1.9 Coal & Sorbent Hnd. Foundations	0	7,179	9,056		16,235	9%	1,517	0%		15%	2,663	20,416	37
SUBTOTAL 1.	24,171	7,328	15,993	0	47,492	9%	4,270	0%	0	15%	7,767	59,532	108
2 COAL & SORBENT PREP & FEED													
2.1 Coal Crushing & Drying	65,655	3,945	9,539		79,139	9%	6,831	0%		20%	17,199	103,169	188
2.2 Coal Storage & Feed	97,427	2,998	12,801		113,226	9%	9,789	0%		20%	24,602	147,618	268
2.3 Coal Injection System	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
2.4 Misc. Coal Prep & Feed	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
2.5 Sorbent Prep Equipment	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
2.6 Sorbent Storage & Feed	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
2.7 Sorbent Injection System	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
2.8 Booster Air Supply System	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
2.9 Coal & Sorbent Feed Foundation	0	6,647	5,457		12,104	9%	1,121	0%		20%	2,645	15,870	29
SUBTOTAL 2.	163,082	13,591	27,797	0	204,469	9%	17,740	0%	0	20%	44,446	266,657	485

Project: Montana Rosebud PRB
 TOTAL PLANT COST SUMMARY
 Case: SPOC Base Case
 Plant Size: 550 MWnet
 Cost Base: January 2019 (\$x1000)

Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O. & Fee		Process Contingency		Project Contingency		TOTAL BASE SPOC PLANT Cost	BASE SPOC COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
3 FEEDWATER & MISC. BOP SYSTEMS													
3.1 Feedwater System	23,956		7,739		31,695	9%	2,775	0%		15%	5,170	39,641	72
3.2 Water Makeup & Pretreating	5,541		1,783		7,324	9%	687	0%		20%	1,602	9,613	17
3.3 Other Feedwater Subsystems	8,430		3,563		11,992	9%	1,069	0%		15%	1,959	15,021	27
3.4 Service Water Systems	1,086		591		1,677	9%	156	0%		20%	366	2,199	4
3.5 Other Boiler Plant Systems	10,854		10,716		21,570	9%	2,023	0%		15%	3,539	27,132	49
3.6 FO Supply Sys & Nat Gas	358		447		805	9%	75	0%		15%	132	1,012	2
3.7 Waste Treatment Equipment	0		0		0		0				0	0	0
3.8 Misc. Equip. (Cranes, Air Comp., Comm.)	3,802		1,161		4,963	10%	477	0%		20%	1,088	6,528	12
SUBTOTAL 3.	54,028	0	25,999	0	80,027	9%	7,262	0%	0	16%	13,856	101,147	184
4 PC BOILER & ACCESSORIES													
4.1 SPOC Oxy-Boiler/ ASU / Aux	323,650		229,986		553,636	10%	54,441	15%	83,045	11%	69,112	760,235	1,382
4.2 Open	-		-		-	-	-	-	-	-	-	-	-
4.3 Open	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	\$0	\$0	0
4.4 Boiler BOP (w/ ID Fans)	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	\$0	\$0	0
4.5 Primary Air System	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	\$0	\$0	0
4.6 Secondary Air System	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	\$0	\$0	0
4.8 Major Component Rigging	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	\$0	\$0	0
4.9 Boiler Foundations	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	\$0	\$0	0
SUBTOTAL 4.	323,650		229,986		553,636	10%	54,441	15%	83,045	11%	69,112	760,235	1,382
5 FLUE GAS CLEANUP													
5.1 FGD System	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	10%	\$0	\$0	0
5.2 Other FGD	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	10%	\$0	\$0	0

Project: Montana Rosebud PRB
 TOTAL PLANT COST SUMMARY
 Case: SPOC Base Case
 Plant Size: 550 MWnet
 Cost Base: January 2019 (\$x1000)

Acct No. Item/Description	Equipment Cost	Material Cost	Labor		Bare Erected Cost \$	Eng'g CM H.O. & Fee		Process Contingency		Project Contingency		TOTAL BASE SPOC PLANT Cost	BASE SPOC COST \$/kW
			Direct	Indirect		%	Total	%	Total	%	Total		
5.3 Baghouse & Accessories	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	10%	\$0	\$0	0
5.4 Other Particulate Removal Materials	10,241		4,315		14,556	10%	1,401	0%		10%	1,596	17,553	32
5.5 Gypsum Dewatering	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	10%	\$0	\$0	0
5.6 Mercury Removal	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	10%	\$0	\$0	0
5.9 Mercury Removal System	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	10%	\$0	\$0	0
SUBTOTAL 5.	10,241		4,315		14,556	10%	1,401	0%		10%	1,596	17,553	32
5B CO2 REMOVAL & COMPRESSION													
5B.1 CO2 Condensing Heat Exchanger	7,272		607		7,879	10%	789	0%		15%	1,300	9,967	18
5B.2 CO2 Compression & Drying	79,133		64,746		143,879	10%	14,389	0%		20%	31,653	189,921	345
SUBTOTAL 5B.	86,405	0	65,353	0	151,758	10%	15,177	0%	0	20%	32,952	199,888	363
6 COMBUSTION TURBINE/ACCESSORIES													
SUBTOTAL 6.	\$0	\$0	\$0	\$0	\$0		\$0		\$0		\$0	\$0	0.0
7 HRSG													
7.1 Flue Gas Recycle Heat Exchanger	47,476		3,965		51,441	10%	5,144	0%		15%	8,488	65,073	118
7.2 HRSG Accessories					0							0	0
7.3 Ductwork	10,556		6,781		17,338	9%	1,514	0%		15%	2,828	21,680	39
7.4 Stack	1,688		988		2,675	10%	256	0%		10%	293	3,224	6
7.9 Duct & Stack Foundations		915	1,039		1,954	9%	182	0%		20%	427	2,563	5
SUBTOTAL 7.	59,720	915	12,772	0	73,407	10%	7,096	0%	0	15%	12,035	92,539	168
8 STEAM TURBINE GENERATOR													
8.1 Steam TG & Accessories	87,077	0	11,565		98,642	10%	9,445	0%		10%	10,808	118,895	216
8.2 Turbine Plant Auxiliaries	588	0	1,258		1,846	10%	179	0%		10%	202	2,227	4
8.3a Condenser & Auxiliaries	7,297	0	4,402		11,698	9%	1,111	0%		10%	1,282	14,091	26

Project: Montana Rosebud PRB
 TOTAL PLANT COST SUMMARY
 Case: SPOC Base Case
 Plant Size: 550 MWnet
 Cost Base: January 2019 (\$x1000)

Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O. & Fee		Process Contingency		Project Contingency		TOTAL BASE SPOC PLANT Cost	BASE SPOC COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
8.3b Air Cooled Condenser	0	0	0		0		0				0	0	0
8.4 Steam Piping	34,444	0	16,984		51,427	8%	4,292	0%		15%	8,358	64,078	117
8.9 TG Foundations	0	1,838	2,904		4,742	9%	446	0%		20%	1,038	6,226	11
SUBTOTAL 8.	129,405	1,838	37,112	0	168,355	9%	15,473	0%	0	12%	21,688	205,517	374
9 COOLING WATER SYSTEM													
9.1 Cooling Towers	10,775		3,356		14,131	9%	1,341	0%		10%	1,547	17,019	31
9.2 Circulating Water Pumps	3,162		301		3,463	9%	297	0%		10%	376	4,136	8
9.3 Circ. Water System Auxiliaries	889		119		1,009	9%	95	0%		10%	110	1,214	2
9.4 Circ. Water Piping		7,055	6,837		13,892	9%	1,280	0%		15%	2,276	17,448	32
9.5 Make-up Water System	700		934		1,635	10%	155	0%		15%	269	2,059	4
9.6 Component Cooling Water Sys	704		560		1,264	9%	119	0%		15%	207	1,590	3
9.9 Circ. Water System Foundations & Structures		4,194	6,664		10,858	9%	1,022	0%		20%	2,376	14,256	26
SUBTOTAL 9.	16,231	11,249	18,771	0	46,251	9%	4,310	0%	0	14%	7,161	57,723	105
10 ASH/SPENT SORBENT HANDLING SYS													
10.1 Rotary Ash Coolers	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	10%	\$0	\$0	0
10.2 Cyclone Ash Letdown	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	10%	\$0	\$0	0
10.3 HGCU Ash Letdown	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	10%	\$0	\$0	0
10.4 High Temperature Ash Piping	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	10%	\$0	\$0	0
10.5 Reducer Baghouse Ash Recycle System	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	10%	\$0	\$0	0
10.6 Ash Storage Silos	1,087		3,348		4,435	10%	432	0%		10%	486	5,353	10
10.7 Ash Transport & Feed Equipment	7,033		7,204		14,237	9%	1,347	0%		10%	1,558	17,143	31
10.8 Misc. Ash Handling Equipment	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	10%	\$0	\$0	0

Project: Montana Rosebud PRB													
TOTAL PLANT COST SUMMARY													
Case: SPOC Base Case													
Plant Size: 550 MWnet													
Cost Base: January 2019 (\$x1000)													
Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O. & Fee		Process Contingency		Project Contingency		TOTAL BASE SPOC PLANT Cost	BASE SPOC COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
10.9 Ash/Spent Sorbent Foundation		259	303		562	9%	52	0%		20%	123	738	1
SUBTOTAL 10.	8,120	259	10,855	0	19,235	10%	1,831	0%	0	10%	2,168	23,234	42
11 ACCESSORY ELECTRIC PLANT													
11.1 Generator Equipment	434	0	71		505	9%	47	0%		7%	41	593	1
11.2 Station Service Equipment	7,375	0	2,423		9,798	10%	937	0%		7%	805	11,540	21
11.3 Switchgear & Motor Control	8,479	0	1,441		9,920	9%	918	0%		10%	1,083	11,921	22
11.4 Conduit & Cable Tray	0	5,316	18,380		23,696	10%	2,267	0%		15%	3,895	29,858	54
11.5 Wire & Cable	0	10,031	19,364		29,394	8%	2,477	0%		15%	4,781	36,653	67
11.6 Protective Equipment	309	0	1,054		1,363	10%	133	0%		10%	150	1,646	3
11.7 Standby Equipment	451	0	10		462	9%	44	0%		10%	50	556	1
11.8 Main Power Transformers	1,082	0	33		1,115	8%	85	0%		10%	120	1,320	2
11.9 Electrical Foundations	0	60	147		207	9%	19	0%		20%	45	272	0
SUBTOTAL 11.	18,131	15,407	42,922	0	76,459	9%	6,927	0%	0	13%	10,971	94,359	172
12 INSTRUMENTATION & CONTROL													
12.1 PC Control Equipment	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
12.2 Combustion Turbine Control	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
12.3 Steam Turbine Control	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
12.4 Other Major Component Control	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
12.5 Signal Processing Equipment	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
12.6 Control Boards, Panels, & Racks	683		409		1,092	10%	104	0%		15%	179	1,376	3
12.7 Distributed Control System Equipment	6,898		1,205		8,103	10%	772	0%		10%	888	9,764	18
12.8 Instrument Wiring & Tubing	3,740		7,419		11,159	9%	950	0%		15%	1,816	13,925	25
12.9 Other I & C Equipment	1,949		4,423		6,372	10%	621	0%		10%	699	7,692	14

Project: Montana Rosebud PRB
 TOTAL PLANT COST SUMMARY
 Case: SPOC Base Case
 Plant Size: 550 MWnet
 Cost Base: January 2019 (\$x1000)

Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O. & Fee		Process Contingency		Project Contingency		TOTAL BASE SPOC PLANT Cost	BASE SPOC COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
SUBTOTAL 12.	13,270	0	13,456	0	26,726	9%	2,448	0%	0	12%	3,582	32,756	60
13 IMPROVEMENTS TO SITE													
13.1 Site Preparation		63	1,258		1,321	10%	130	0%		20%	290	1,742	3
13.2 Site Improvements		2,089	2,595		4,684	10%	460	0%		20%	1,028	6,172	11
13.3 Site Facilities	3,744		3,693		7,437	10%	730	0%		20%	1,633	9,800	18
SUBTOTAL 13.	3,744	2,152	7,545	0	13,441	10%	1,320	0%	0	20%	2,951	17,713	32
14 BUILDINGS & STRUCTURES													
14.1 Boiler Building		10,986	9,662		20,648	9%	1,854	0%		15%	3,376	25,878	47
14.2 Turbine Building		14,414	13,434		27,848	9%	2,508	0%		15%	4,553	34,909	63
14.3 Administration Building		716	757		1,473	9%	133	0%		15%	241	1,847	3
14.4 Circulation Water Pumphouse		234	186		420	9%	37	0%		15%	68	526	1
14.5 Water Treatment Buildings		652	537		1,189	9%	106	0%		15%	194	1,489	3
14.6 Machine Shop		479	321		800	9%	71	0%		15%	131	1,002	2
14.7 Warehouse		325	326		651	9%	59	0%		15%	106	816	1
14.8 Other Buildings & Structures		265	226		491	9%	44	0%		15%	80	615	1
14.9 Waste Treating Building & Str.		494	1,500		1,994	9%	189	0%		15%	328	2,511	5
SUBTOTAL 14.	0	28,565	26,949	0	55,514	9%	5,002	0%	0	15%	9,076	69,594	127
TOTAL COST	910,197	81,303	539,837	0	1,531,327	11%	133,697	3%	83,045	16%	239,361	1,998,447	3,634

Table 7-14
Capital Costs for Flexible SPOC Case

Project: Montana Rosebud PRB TOTAL PLANT COST SUMMARY Case: SPOC Flexible Case Plant Size: 550 MWnet Cost Base: January 2019 (\$x1000)													
Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O. & Fee		Process Contingency		Project Contingency		TOTAL BASE SPOC PLANT Cost	BASE SPOC COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
1 COAL & SORBENT HANDLING													
1.1 Coal Receive & Unload	5,842		2,668		8,511	9%	760	0%		15%	1,391	10,663	19
1.2 Coal Stackout & Reclaim	7,551		1,711		9,263	9%	811	0%		15%	1,511	11,585	21
1.3 Coal Conveyors	7,021		1,693		8,714	9%	764	0%		15%	1,422	10,900	20
1.4 Other Coal Handling	1,836		392		2,228	9%	195	0%		15%	364	2,787	5
1.5 Sorbent Receive & Unload	73		22		95	9%	9	0%		15%	16	120	0
1.6 Sorbent Stackout & Reclaim	1,175		215		1,389	9%	121	0%		15%	227	1,737	3
1.7 Sorbent Conveyors	420	90	102		612	9%	53	0%		15%	100	765	1
1.8 Other Sorbent Handling	253	59	133		445	9%	39	0%		15%	73	558	1
1.9 Coal & Sorbent Hnd. Foundations	0	7,179	9,056		16,235	9%	1,517	0%		15%	2,663	20,416	37
SUBTOTAL 1.	24,171	7,328	15,993	0	47,492	9%	4,270	0%	0	15%	7,767	59,532	108
2 COAL & SORBENT PREP & FEED													
2.1 Coal Crushing & Drying	65,655	3,945	9,539		79,139	9%	6,831	0%		20%	17,199	103,169	188
2.2 Coal Storage & Feed	97,427	2,998	12,801		113,226	9%	9,789	0%		20%	24,602	147,618	268
2.3 Coal Injection System	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
2.4 Misc. Coal Prep & Feed	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
2.5 Sorbent Prep Equipment	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
2.6 Sorbent Storage & Feed	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
2.7 Sorbent Injection System	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
2.8 Booster Air Supply System	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
2.9 Coal & Sorbent Feed Foundation	0	6,647	5,457		12,104	9%	1,121	0%		20%	2,645	15,870	29
SUBTOTAL 2.	163,082	13,591	27,797	0	204,469	9%	17,740	0%	0	20%	44,446	266,657	485

Project: Montana Rosebud PRB
 TOTAL PLANT COST SUMMARY
 Case: SPOC Flexible Case
 Plant Size: 550 MWnet
 Cost Base: January 2019 (\$x1000)

Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O. & Fee		Process Contingency		Project Contingency		TOTAL BASE SPOC PLANT Cost	BASE SPOC COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
3 FEEDWATER & MISC. BOP SYSTEMS													
3.1 Feedwater System	23,956		7,739		31,695	9%	2,775	0%		15%	5,170	39,641	72
3.2 Water Makeup & Pretreating	5,541		1,783		7,324	9%	687	0%		20%	1,602	9,613	17
3.3 Other Feedwater Subsystems	8,430		3,563		11,992	9%	1,069	0%		15%	1,959	15,021	27
3.4 Service Water Systems	1,086		591		1,677	9%	156	0%		20%	366	2,199	4
3.5 Other Boiler Plant Systems	10,854		10,716		21,570	9%	2,023	0%		15%	3,539	27,132	49
3.6 FO Supply Sys & Nat Gas	358		447		805	9%	75	0%		15%	132	1,012	2
3.7 Waste Treatment Equipment	0		0		0		0				0	0	0
3.8 Misc. Equip. (Cranes, Air Comp., Comm.)	3,802		1,161		4,963	10%	477	0%		20%	1,088	6,528	12
SUBTOTAL 3.	54,028	0	25,999	0	80,027	9%	7,262	0%	0	16%	13,856	101,147	184
4 PC BOILER & ACCESSORIES													
4.1 SPOC Oxy-Boiler/ ASU / Aux	338,650		237,896		576,546	10%	56,732	15%	86,481	17%	71,976	791,735	1,440
4.2 Open	-		-		-	-	-	-	-	-	-	-	-
4.3 Open	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	\$0	\$0	0
4.4 Boiler BOP (w/ ID Fans)	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	\$0	\$0	0
4.5 Primary Air System	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	\$0	\$0	0
4.6 Secondary Air System	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	\$0	\$0	0
4.8 Major Component Rigging	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	\$0	\$0	0
4.9 Boiler Foundations	\$0	\$0	\$0	\$0	\$0	0.0%	\$0	0%	\$0	0%	\$0	\$0	0
SUBTOTAL 4.	338,650		237,896		576,546	10%	56,732	15%	86,481	17%	71,976	791,735	1,440
5 FLUE GAS CLEANUP													
5.1 FGD System	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	10%	\$0	\$0	0
5.2 Other FGD	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	10%	\$0	\$0	0

Project: Montana Rosebud PRB
 TOTAL PLANT COST SUMMARY
 Case: SPOC Flexible Case
 Plant Size: 550 MWnet
 Cost Base: January 2019 (\$x1000)

Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O. & Fee		Process Contingency		Project Contingency		TOTAL BASE SPOC PLANT Cost	BASE SPOC COST \$/kW
			Cost	Direct		%	Total	%	Total	%	Total		
5.3 Baghouse & Accessories	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	10%	\$0	\$0	0
5.4 Other Particulate Removal Materials	10,241		4,315		14,556	10%	1,401	0%		10%	1,596	17,553	32
5.5 Gypsum Dewatering	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	10%	\$0	\$0	0
5.6 Mercury Removal	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	10%	\$0	\$0	0
5.9 Mercury Removal System	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	10%	\$0	\$0	0
SUBTOTAL 5.	10,241		4,315		14,556	10%	1,401	0%		10%	1,596	17,553	32
5B CO2 REMOVAL & COMPRESSION													
5B.1 CO2 Condensing Heat Exchanger	7,272		607		7,879	10%	789	0%		15%	1,300	9,967	18
5B.2 CO2 Compression & Drying	79,133		64,746		143,879	10%	14,389	0%		20%	31,653	189,921	345
SUBTOTAL 5B.	86,405	0	65,353	0	151,758	10%	15,177	0%	0	20%	32,952	199,888	363
6 COMBUSTION TURBINE/ACCESSORIES													
SUBTOTAL 6.	\$0	\$0	\$0	\$0	\$0		\$0		\$0		\$0	\$0	0.0
7 HRSG													
7.1 Flue Gas Recycle Heat Exchanger	47,476		3,965		51,441	10%	5,144	0%		15%	8,488	65,073	118
7.2 HRSG Accessories					0							0	0
7.3 Ductwork	10,556		6,781		17,338	9%	1,514	0%		15%	2,828	21,680	39
7.4 Stack	1,688		988		2,675	10%	256	0%		10%	293	3,224	6
7.9 Duct & Stack Foundations		915	1,039		1,954	9%	182	0%		20%	427	2,563	5
SUBTOTAL 7.	59,720	915	12,772	0	73,407	10%	7,096	0%	0	15%	12,035	92,539	168
8 STEAM TURBINE GENERATOR													
8.1 Steam TG & Accessories	87,077	0	11,565		98,642	10%	9,445	0%		10%	10,808	118,895	216
8.2 Turbine Plant Auxiliaries	588	0	1,258		1,846	10%	179	0%		10%	202	2,227	4
8.3a Condenser & Auxiliaries	7,297	0	4,402		11,698	9%	1,111	0%		10%	1,282	14,091	26

Project: Montana Rosebud PRB
 TOTAL PLANT COST SUMMARY
 Case: SPOC Flexible Case
 Plant Size: 550 MWnet
 Cost Base: January 2019 (\$x1000)

Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O. & Fee		Process Contingency		Project Contingency		TOTAL BASE SPOC PLANT Cost	BASE SPOC COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
8.3b Air Cooled Condenser	0	0	0		0		0				0	0	0
8.4 Steam Piping	34,444	0	16,984		51,427	8%	4,292	0%		15%	8,358	64,078	117
8.9 TG Foundations	0	1,838	2,904		4,742	9%	446	0%		20%	1,038	6,226	11
SUBTOTAL 8.	129,405	1,838	37,112	0	168,355	9%	15,473	0%	0	12%	21,688	205,517	374
9 COOLING WATER SYSTEM													
9.1 Cooling Towers	10,775		3,356		14,131	9%	1,341	0%		10%	1,547	17,019	31
9.2 Circulating Water Pumps	3,162		301		3,463	9%	297	0%		10%	376	4,136	8
9.3 Circ. Water System Auxiliaries	889		119		1,009	9%	95	0%		10%	110	1,214	2
9.4 Circ. Water Piping		7,055	6,837		13,892	9%	1,280	0%		15%	2,276	17,448	32
9.5 Make-up Water System	700		934		1,635	10%	155	0%		15%	269	2,059	4
9.6 Component Cooling Water Sys	704		560		1,264	9%	119	0%		15%	207	1,590	3
9.9 Circ. Water System Foundations & Structures		4,194	6,664		10,858	9%	1,022	0%		20%	2,376	14,256	26
SUBTOTAL 9.	16,231	11,249	18,771	0	46,251	9%	4,310	0%	0	14%	7,161	57,723	105
10 ASH/SPENT SORBENT HANDLING SYS													
10.1 Rotary Ash Coolers	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	10%	\$0	\$0	0
10.2 Cyclone Ash Letdown	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	10%	\$0	\$0	0
10.3 HGCU Ash Letdown	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	10%	\$0	\$0	0
10.4 High Temperature Ash Piping	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	10%	\$0	\$0	0
10.5 Reducer Baghouse Ash Recycle System	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	10%	\$0	\$0	0
10.6 Ash Storage Silos	1,087		3,348		4,435	10%	432	0%		10%	486	5,353	10
10.7 Ash Transport & Feed Equipment	7,033		7,204		14,237	9%	1,347	0%		10%	1,558	17,143	31
10.8 Misc. Ash Handling Equipment	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	10%	\$0	\$0	0

Project: Montana Rosebud PRB													
TOTAL PLANT COST SUMMARY													
Case: SPOC Flexible Case													
Plant Size: 550 MWnet													
Cost Base: January 2019 (\$x1000)													
Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O. & Fee		Process Contingency		Project Contingency		TOTAL BASE SPOC PLANT Cost	BASE SPOC COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
10.9 Ash/Spent Sorbent Foundation		259	303		562	9%	52	0%		20%	123	738	1
SUBTOTAL 10.	8,120	259	10,855	0	19,235	10%	1,831	0%	0	10%	2,168	23,234	42
11 ACCESSORY ELECTRIC PLANT													
11.1 Generator Equipment	434	0	71		505	9%	47	0%		7%	41	593	1
11.2 Station Service Equipment	7,375	0	2,423		9,798	10%	937	0%		7%	805	11,540	21
11.3 Switchgear & Motor Control	8,479	0	1,441		9,920	9%	918	0%		10%	1,083	11,921	22
11.4 Conduit & Cable Tray	0	5,316	18,380		23,696	10%	2,267	0%		15%	3,895	29,858	54
11.5 Wire & Cable	0	10,031	19,364		29,394	8%	2,477	0%		15%	4,781	36,653	67
11.6 Protective Equipment	309	0	1,054		1,363	10%	133	0%		10%	150	1,646	3
11.7 Standby Equipment	451	0	10		462	9%	44	0%		10%	50	556	1
11.8 Main Power Transformers	1,082	0	33		1,115	8%	85	0%		10%	120	1,320	2
11.9 Electrical Foundations	0	60	147		207	9%	19	0%		20%	45	272	0
SUBTOTAL 11.	18,131	15,407	42,922	0	76,459	9%	6,927	0%	0	13%	10,971	94,359	172
12 INSTRUMENTATION & CONTROL													
12.1 PC Control Equipment	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
12.2 Combustion Turbine Control	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
12.3 Steam Turbine Control	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
12.4 Other Major Component Control	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
12.5 Signal Processing Equipment	\$0	\$0	\$0	\$0	\$0	9.0%	\$0	0%	\$0	0%	\$0	\$0	0
12.6 Control Boards, Panels, & Racks	683		409		1,092	10%	104	0%		15%	179	1,376	3
12.7 Distributed Control System Equipment	6,898		1,205		8,103	10%	772	0%		10%	888	9,764	18
12.8 Instrument Wiring & Tubing	3,740		7,419		11,159	9%	950	0%		15%	1,816	13,925	25
12.9 Other I & C Equipment	1,949		4,423		6,372	10%	621	0%		10%	699	7,692	14

Project: Montana Rosebud PRB TOTAL PLANT COST SUMMARY Case: SPOC Flexible Case Plant Size: 550 MWnet Cost Base: January 2019 (\$x1000)													
Acct No. Item/Description	Equipment Cost	Material	Labor		Bare Erected Cost \$	Eng'g CM H.O. & Fee		Process Contingency		Project Contingency		TOTAL BASE SPOC PLANT Cost	BASE SPOC COST \$/kW
		Cost	Direct	Indirect		%	Total	%	Total	%	Total		
SUBTOTAL 12.	13,270	0	13,456	0	26,726	9%	2,448	0%	0	12%	3,582	32,756	60
13 IMPROVEMENTS TO SITE													
13.1 Site Preparation		63	1,258		1,321	10%	130	0%		20%	290	1,742	3
13.2 Site Improvements		2,089	2,595		4,684	10%	460	0%		20%	1,028	6,172	11
13.3 Site Facilities	3,744		3,693		7,437	10%	730	0%		20%	1,633	9,800	18
SUBTOTAL 13.	3,744	2,152	7,545	0	13,441	10%	1,320	0%	0	20%	2,951	17,713	32
14 BUILDINGS & STRUCTURES													
14.1 Boiler Building		10,986	9,662		20,648	9%	1,854	0%		15%	3,376	25,878	47
14.2 Turbine Building		14,414	13,434		27,848	9%	2,508	0%		15%	4,553	34,909	63
14.3 Administration Building		716	757		1,473	9%	133	0%		15%	241	1,847	3
14.4 Circulation Water Pumphouse		234	186		420	9%	37	0%		15%	68	526	1
14.5 Water Treatment Buildings		652	537		1,189	9%	106	0%		15%	194	1,489	3
14.6 Machine Shop		479	321		800	9%	71	0%		15%	131	1,002	2
14.7 Warehouse		325	326		651	9%	59	0%		15%	106	816	1
14.8 Other Buildings & Structures		265	226		491	9%	44	0%		15%	80	615	1
14.9 Waste Treating Building & Str.		494	1,500		1,994	9%	189	0%		15%	328	2,511	5
SUBTOTAL 14.	0	28,565	26,949	0	55,514	9%	5,002	0%	0	15%	9,076	69,594	127
TOTAL COST	925,197	81,303	547,736	0	1,554,236	9%	146,988	3%	86,481	14%	242,225	2,029,947	3,691

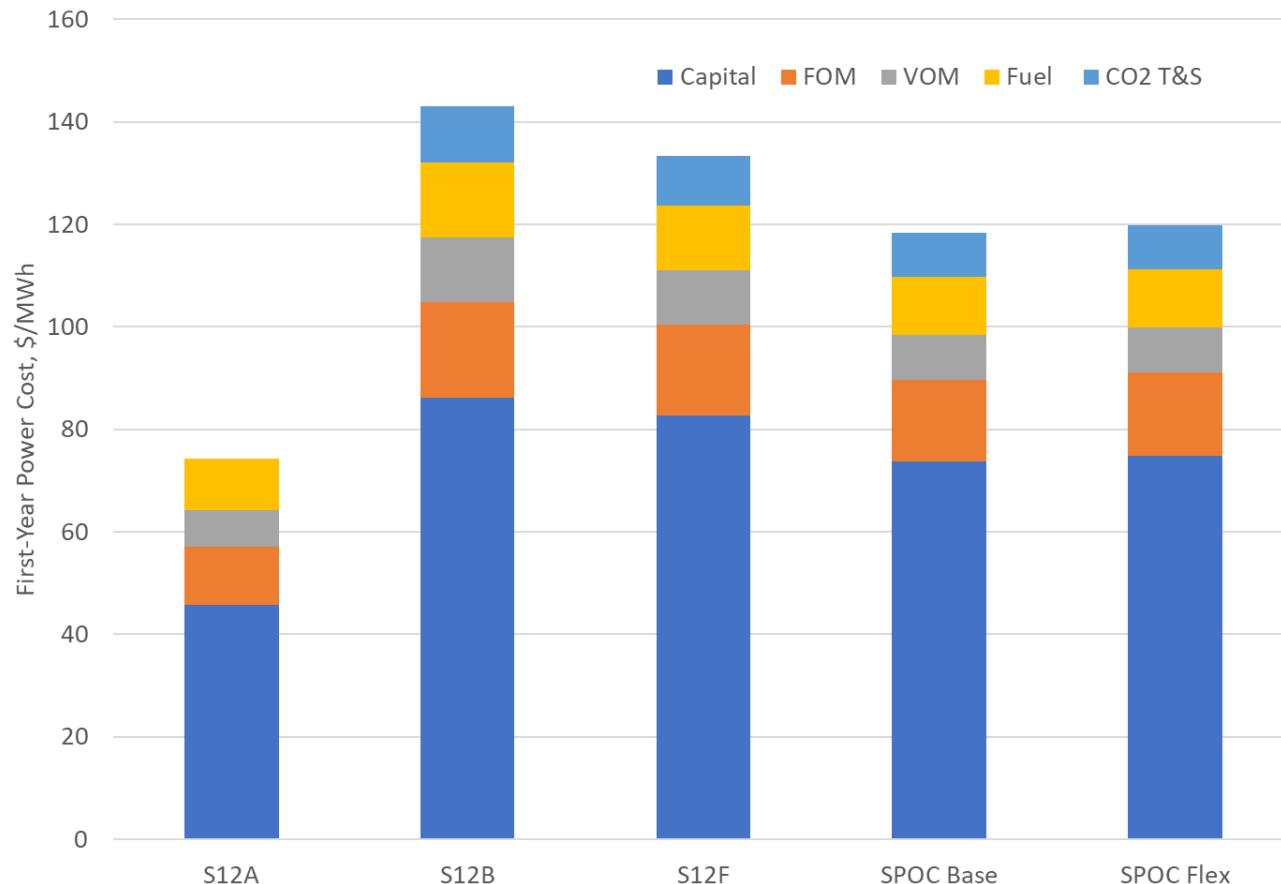
Table 7-15
O&M Costs for All Cases

	NETL Baseline Cases			SPOC Cases	
	S12A	S12B	S12F	Baseline	Flexible
Total Operating Jobs per Shift	14	16	14	14	14
Fixed O&M Costs					
Administrative & Support Labor	3,994	5,876	5,523	5,488	5,577
Operating Labor Costs	6,476	7,540	6,476	6,476	6,476
Maintenance Labor Costs	9,500	15,965	15,616	15,476	15,834
Property Taxes and Insurance	26,468	46,697	44,927	44,527	44,559
Total Fixed O&M Costs, \$1000/yr	46,438	76,060	72,541	71,967	73,447
Variable O&M Costs					
Maintenance Material Cost	14,250	23,947	23,423	23,214	23,752
Consumables					
Bottom Ash Disposal	988	1,424	1,229	1,103	1,103
Chemicals	5,918	14,178	7,158	3,194	3,194
Fly Ash Disposal	5,828	8,338	7,322	6,572	6,572
Water	1,131	3,264	4,133	4,004	4,004
Other Consumables	754	1,087	0	0	0
Total Variable O&M Costs, \$1000/yr	28,870	52,238	43,265	38,087	38,087

Table 7-16
First-Year Power Cost, LCOE, TPC, TOC, TASC, and CO₂ Captured and Avoided Cost for All Cases

Case	S12A	S12B	S12F	Base-SPOC	Flex-SPOC
Net Plant Output, MW	550	550	550	550	550
Efficiency, %	38.8	27.0	31.0	34.5	34.5
% Capture	0	90	90	90	90
CO ₂ Captured, tonne/MW-hr (net)	0.000	1.107	0.965	0.864	0.865
CO ₂ Emitted, tonne/MW-hr (net)	0.858	0.123	0.107	0.095	0.095
Fuel Type	PRB	PRB	PRB	PRB	PRB
Fuel Cost, \$/MMBtu	1.15	1.15	1.15	1.15	1.15
Total Plant Cost, Total Overnight Cost, and Total As Spent Capital Cost					
TPC, \$/kW	2,406	4,243	4,084	3,634	3,691
TOC, \$/kW	2,936	5,174	4,967	4,425	4,494
TASC, \$/kW	3,329	5,898	5,662	5,044	5,124
Power and CO₂ Costs					
Capital, \$/MW-hr	45.7	86.2	82.7	73.7	74.8
Fixed O&M, \$/MW-hr	11.3	18.6	17.7	16.0	16.2
Variable O&M, \$/MW-hr	7.0	12.8	10.6	8.7	8.8
Fuel Cost, \$/MW-hr	10.1	14.5	12.7	11.4	11.4
CO ₂ T&S Cost, \$/MW-hr	0.0	11.1	9.6	8.7	8.7
First-Year Power Cost, \$/MW-hr	74.3	143.1	133.3	118.4	119.9
Levelized Cost of Electricity, \$/MW-hr	94.2	181.4	169.0	150.1	152.0
Cost of CO ₂ Avoided, \$/tonne	Base	94	79	58	60
Cost of CO ₂ Captured, \$/tonne	Base	52	51	41	43

* "Cost and Performance of Low-Rank Pulverized Coal Oxycombustion Energy Plants: Final Report," DOE/NETL-401/093010, September 2010. † Updated Costs (June 2011 Basis) for Selection Bituminous Baseline Cases, DOE/NETL-341/082312, August 2012


Comparison of Cost Results

The following section provides a summary of the cost results presented in a format where comparisons can more easily be made.

First-Year Power Costs and LCOE

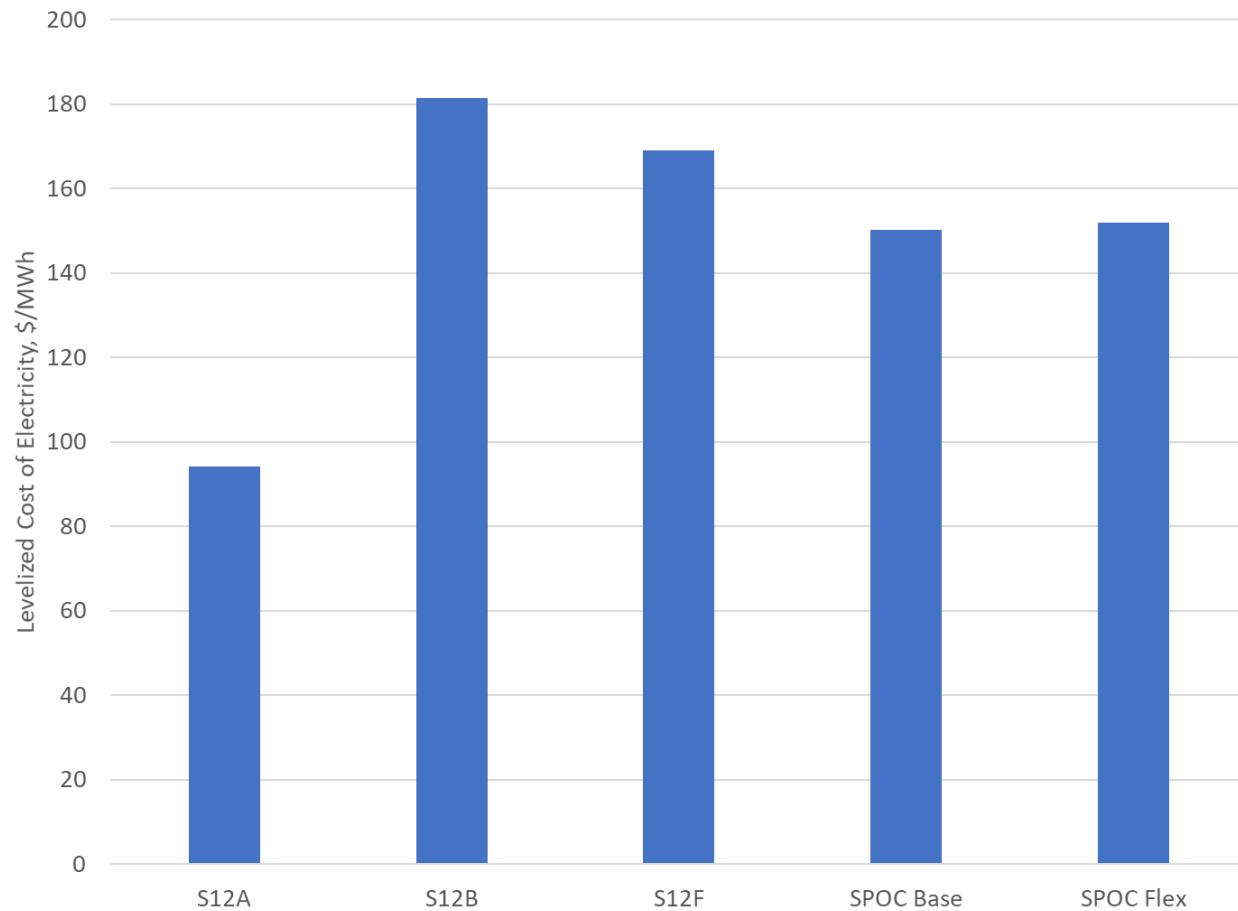

First-year power costs were calculated using the method prescribed by NETL, which uses this as its primary economic metric. The first-year power cost is the revenue received by the generator per net MW-hr during the first year of operation, if the first year of operation COE escalates at a nominal annual rate equal to the general inflation rate (i.e., remains constant in real terms over the operational period of the plant). The LCOE is the revenue received by the generator per net MW-hr during the first year of operation, if the first year of operation COE escalates at a nominal annual rate of 0% (i.e., remains constant in nominal terms over the operation period of the plant).

Figure 7-3 compares the first-year power costs, broken down into their components, for the NETL baseline cases and the SPOC baseline and flexible cases.

Figure 7-3
First-Year Power Costs for All Cases

Figure 7-4 compares the LCOE for the base and test cases.

Figure 7-4
LCOE for All Cases

Cost of CO₂ Avoided and Captured

Figure 7-5 shows the CO₂ avoided and captured costs for the baseline and flexible SPOC cases. The costs are relative to appropriate NETL baseline cases that capture CO₂. Note that the cost of CO₂ captured does not include T&S.

Figure 7-5
CO₂ Avoided and Captured Costs for All Capture Cases

Flexibility Costs

Although the flexible ASU does add \$57/kW to the plant cost, this is only a 1.6% increase on the baseline case, and the efficiency improvements at loads below 50% are significant.

Subsequently, depending on the plant load-profile expectation, the flexible ASU would be beneficial if the plant spent a portion of the operating life below 50% load. This kind of operating profile is likely to be required for all fossil plants when more intermittent renewables are installed on the grid, particularly solar power that can be predicted ahead of time, allowing for appropriate pricing signals to be incorporated into the diurnal cycle.

8

CONCLUSIONS AND RECOMENDATIONS

The goal of this chapter is to summarize the results of the project activities and to make recommendations for the next steps in the development of the SPOC technology.

SPOC Process

The SPOC concept has undergone significant evolution throughout the execution of this project, following review of the constructability of the SPOC boiler stages, its ability to operate at part loads, and strategies for flexible pressurized oxygen delivery. A two-pass PV arrangement for each stage allows for road transportation to be feasible at the 400 MWth scale. This allows a 4-stage SPOC system to deliver 550 MWe with a high degree of modular factory manufacture, ensuring economic efficiency in the manufacture and construction process is attainable at this scale due to lower people hours and improved quality control over onsite construction methods.

Additionally, conventional heat transfer methods have been applied to the convective stages to ensure that heat is delivered to each of the water/steam circuits in appropriate proportions throughout the load range. Allowing bypassing of stages ensures that a significant degree of turndown is achievable on the steam turbine without incurring stage combustion turndown beyond 50%. Testing of the SPOC combustion showed that ultra-low firing rates are also possible, introducing the possibility of being able to sustain stages in a warm-standby condition in readiness for rapid ramping.

Pilot Plant Testing

The 100 kWth pilot system represents a single SPOC stage using synthetic FGR and a down-fired, co-axial low-mixing flow design. The unit has been designed to replicate the environment where the main combustion reactions occur in the first 5 seconds of the full-scale SPOC boiler arrangement. Heated sample lines were installed to facilitate the evaluation of coal particle composition throughout the combustion process as well as the final carbon-in-ash levels at the outlet, allowing comparison with CFD modeling. Additionally, heat flux measurements were conducted to inform the full-scale design requirements. Testing was initially carried out at atmospheric pressure with methane support followed by high pressure operation on a coal only flame. Carbon monoxide and carbon-in-ash measurements showed that complete combustion was possible with ultra-low excess oxygen at 1 vol % in the product flue gas. This allowed the full-scale models to be calculated based on this level of excess oxygen, improving the performance of the system as lower feed oxygen is produced in the air separation unit (ASU), saving auxiliary power.

Performance Summary

The SPOC process can achieve higher overall plant efficiency compared with atmospheric-pressure oxy-combustion due to heat recovery from the flue gases prior to CO₂ purification. The additional heat recovery delivers an improved steam turbine heat rate, which in turn allows for a lower overall steam flow requirement to deliver the required gross power. As lower steam generation requirements yield a lower fuel firing rate, additional auxiliary power savings can also be realized from reduced fuel handling, oxygen production, and CO₂ purification.

Flexibility and Turndown

The Boiler and ASU OEM review of the SPOC process concluded that the system could deliver the targeted 6% load change per minute target. Additionally, with the ability to bypass stages, ultra-low load operation is feasible. Although the baseline case showed low load operation was possible, the process was inefficient at low load due to ASU compressor turndown limitations. The flexible-SPOC arrangement that had a combination of smaller compressors and shared manifolds for the air delivery to the cold boxes can operate at lower loads efficiently and so greatly improved the low-load performance.

Economic Analysis

An economic assessment was carried out for both the baseline and flexible SPOC cases. The results show that both cases achieve a lower first-year power cost than the NETL baseline cases (with the flexible SPOC case being slightly higher due to the compounded impact of higher capital costs and lower efficiency at full load).

Because of the improved efficiency for the SPOC plants over the NETL baseline cases, the cost of CO₂ avoided is lower; however, the cost of CO₂ captured is slightly higher for SPOC vs. the atmospheric oxy-combustion case as lower CO₂ quantities are generated (and hence captured) and so this smaller quantity in effect amplifies the specific cost of capture.

R&D Recommendations

Staged, pressurized oxy-combustion, while a promising technology, is a relatively recent concept and, as such, operability issues of combustor design and steam-side integration for such systems at a scale relevant to commercial deployment have not been evaluated. WUSTL has conducted extensive small pilot-scale (100 kW_{th}) research to understand and advance pressurized oxy-combustion processes, including investigation of combustion and flame characteristics, radiative heat flux, burner operability, turn down, char burnout, ash characteristics, water-wash column operation, etc. for pressurized oxy-combustion systems. Nonetheless, at this stage in the development of the SPOC process, what is needed is a large-scale pilot plant that can serve to study pressurized oxy-combustion systems and components at a scale commensurate with the maturity of the technology.

A scale of 10 MW_{th}, which includes steam-side integration and two stages would yield essential information with respect to heat transfer characteristics both in the radiative and convective sections of the pressure vessels, and the ability to operate the fuel staging process. In addition,

while modeling results indicate that combustion and flame characteristics improve with scale, direct studies of the combustor at this scale will ensure that the models can be relied upon for scale up to commercial scale. Furthermore, a detailed analysis must be performed to understand the scaling aspects of key components and systems, including the DCC.

A

SPOC CONCEPT RISK MATRIX

Table A-1
SPOC Concept Review Risk Matrix

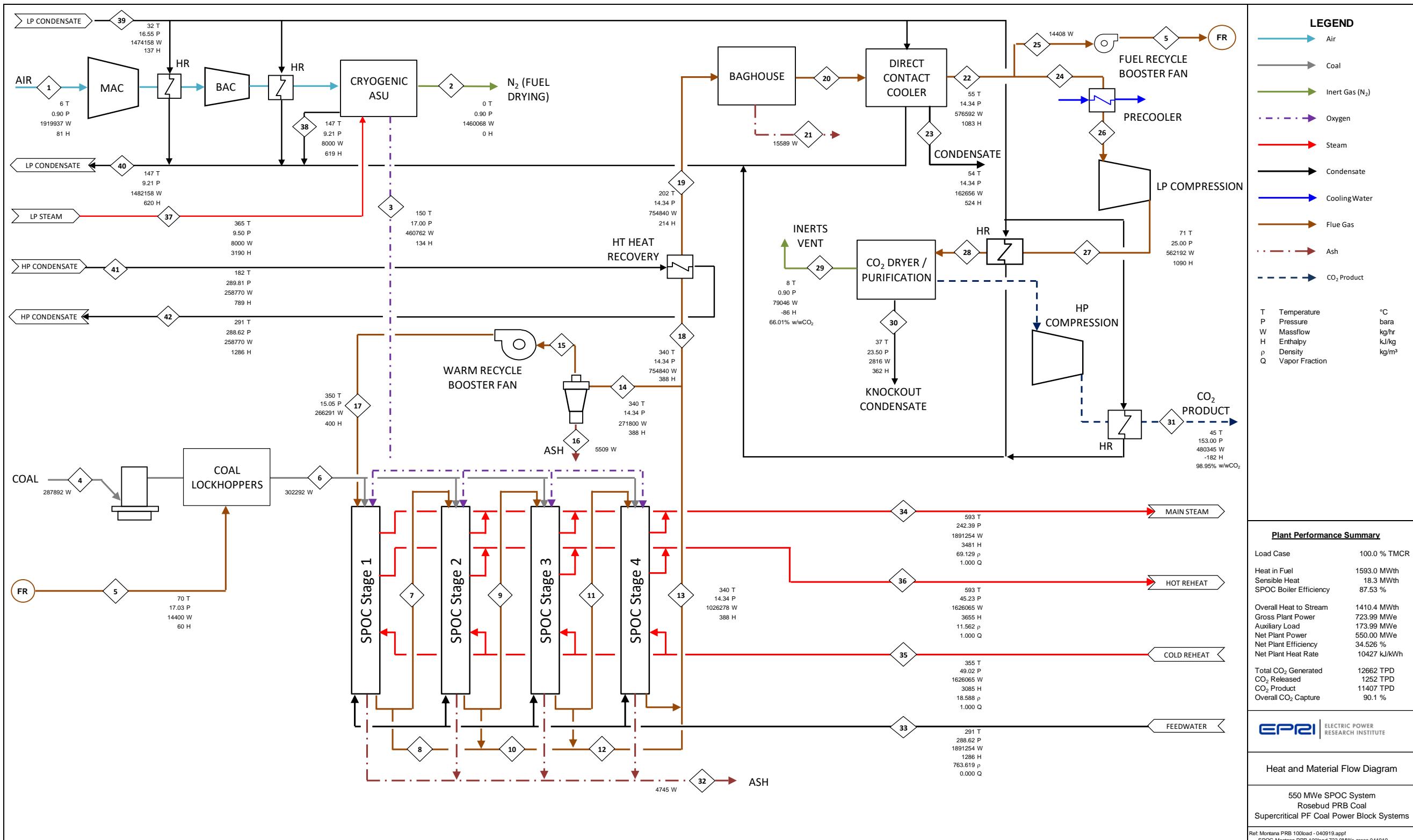
Doosan Babcock			SPOC Concept Review Risk Matrix						
Risk Ref.	Discipline	Design Aspect / Consideration as Currently Proposed	Identified Risks	Possible Consequence(s)	Risk : Initial	Mitigation	Risk : Resultant	Further Mitigation	Risk : Resultant
CR-01	- Layout - Mechanical	Heating Surface Headers and Support	<p>- Proposed concentric heating surface contained within each SPOC PV presents several significant mechanical design challenges.</p> <p>Risk: Complexity of design makes SPOC process uneconomic.</p>	<p>- Costly solution to ensure structural and mechanical integrity. Particularly with respect to differential expansion and resistance to vibration.</p> <p>- Location of headers and vessel penetrations a significant design challenge.</p>	H	<p>- Implement an alternate SPOC boiler configuration. A "two-pass" configuration comprising downward-fired radiant vessel and "upward-flow" convective boiler arrangement with heating surface arranged in cross flow.</p>	M	<p>- Carry out detailed engineering design.</p> <p>- Manufacture and practical demonstration of a complete SPOC boiler system at significant pilot plant scale.</p>	L
CR-02	- Fuels and Chemistry - Process and Systems - Layout	Slagging and Fouling	<p>- Extent of slagging and fouling within each SPOC PV and impact on design of pressure parts is not known. Concentric heating surface design proposed indicates a tight tube pitching.</p> <p>Risk: Potential for excessive slagging and fouling resulting in impaired process performance.</p>	<p>- Excessive slagging and fouling will impact effectiveness of heating surfaces and hence the amount of heating surfaces required. In addition, excessive fouling and slagging could lead to significant gas-side pressure drops resulting in further operational issues and decreased availability/increased maintenance.</p>	H	<p>- Apply OEM design rules for tube pitching to minimize chance of slagging and fouling of heating surfaces.</p> <p>- Include for excess effective heat transfer surface.</p> <p>- Implement an alternate SPOC boiler configuration. A "two-pass" configuration comprising downward-fired radiant vessel and "upward-flow" convective boiler arrangement with heating surface arranged in cross flow allows a degree of ash/slag management before convective heating surface.</p>	M	<p>- Carry out detailed engineering design.</p> <p>- Practical demonstration of a complete SPOC boiler system at significant pilot plant scale.</p>	L
CR-03	- Fuels and Chemistry - Process and Systems	Burner/Combustor Design	<p>- Burner/combustor as proposed has significant thermal input. Performance at 550 MWe scale unknown.</p> <p>Risk: Burner/combustor performance at scale unknown resulting in significant differences in expected performance.</p>	<p>- Unsuitable combustion performance obtained (particularly in later SPOC stages).</p> <p>- An unstable flame.</p>	H	<p>- CFD performed and validated against 100 kWth rig data for all anticipated SPOC stage combustion conditions.</p> <p>- Consideration of multiple burner arrangement to be made.</p>	H	<p>- Carry out detailed engineering design.</p> <p>- Practical demonstration of a complete SPOC boiler system at significant pilot plant scale.</p>	L

DOOSAN Doosan Babcock			SPOC Concept Review Risk Matrix						
Risk Ref.	Discipline	Design Aspect / Consideration as Currently Proposed	Identified Risks	Possible Consequence(s)	Risk : Initial	Mitigation	Risk : Resultant	Further Mitigation	Risk : Resultant
CR-04	- Layout - Mechanical - Process and Systems	Identical Vessels	<p>- From a manufacturing, sparing, and economics viewpoint, having all vessels within the SPOC concept system identical in terms of sizing and heating surface would be beneficial. However, to provide the steam duty and flexibility of the system, it is unlikely that this will be possible.</p> <p>Risk: Higher CAPEX due to bespoke designs for each stage.</p>	<p>- Increased vessel CAPEX cost. - Increased design complexity.</p>	L	<p>- Ensure as much commonality as practical. - Carry out detailed engineering design to minimize CAPEX, while ensuring flexible operation.</p>	L		
CR-05	- Fuels and Chemistry - Process and Systems	Fuel Handling and Delivery System	<p>- Novel SPOC concept requires development of a robust fuel delivery process.</p> <p>Risk: Unknown issues of application of gasifier fuel handling technology to novel SPOC concept.</p>	<p>- Failure in fuel delivery system will be detrimental to performance, reliability, and availability. - Fuel surface moisture has potential to cause issues with solids handling.</p>	M	<p>- Fuel delivery system proposed via lock-hopper arrangement. Process is analogous with commercially available gasifier technology, thus reducing potential technical risks. - Surface drying of fuel by ASU nitrogen waste gas already proposed – requirements and fuel storage need to be considered during detailed design.</p>	M	<p>- Carry out detailed engineering design. - Practical demonstration of a complete SPOC boiler system at significant pilot plant scale.</p>	L
CR-06	- Fuels and Chemistry - Process and Systems	Fuel Selection	<p>- Montana Rosebud PRB selected as the design fuel.</p> <p>Technical Risk: Slagging and fouling characteristics less favorable than higher-rank coal. Commercial Risk: Process economics likely to be considerably less favorable than a higher-rank coal.</p>	<p>- Lower-rank coal has significant effect on plant sizing (plant ~7% greater than Illinois #6 coal from a heat input perspective alone). - Slagging/fouling potential is greater, resulting in a need for increased tube pitching and online cleaning systems (soot blowers) and therefore cavities that increase PV sizing, and hence CAPEX, further. - The increased flue gas flow results in increased auxiliary power and hence OPEX.</p>	M	<p>- Propose a higher-rank coal, such as Illinois #6, as the design coal.</p>	L		

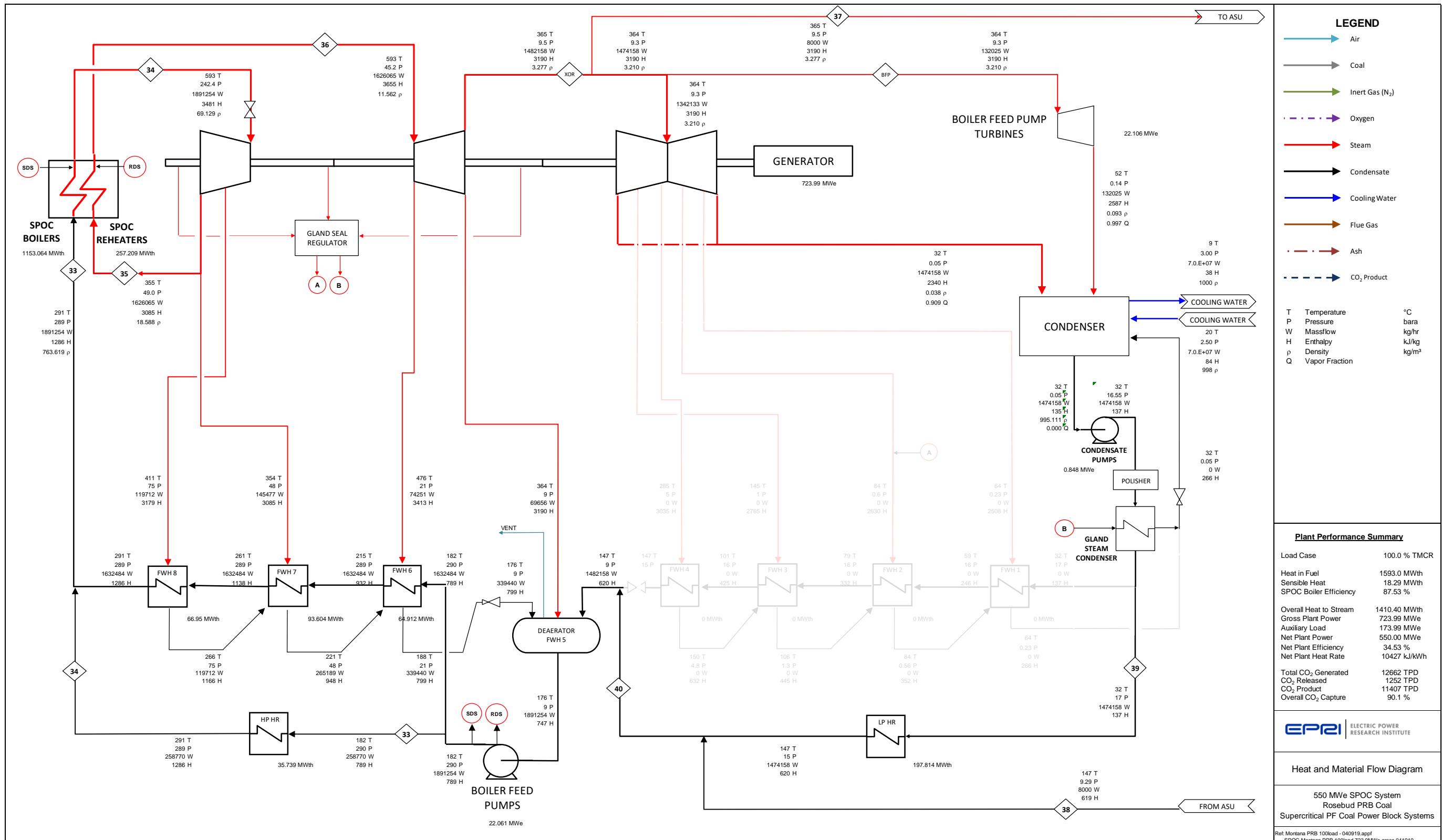
Doosan Babcock			SPOC Concept Review Risk Matrix						
Risk Ref.	Discipline	Design Aspect / Consideration as Currently Proposed	Identified Risks	Possible Consequence(s)	Risk : Initial	Mitigation	Risk : Resultant	Further Mitigation	Risk : Resultant
CR-07	- Process and Systems	Particulate Removal	<ul style="list-style-type: none"> - Dust removal required at relatively high temperature compared to conventional power plant dust removal technologies. <p>Risk: Requirement for high-temperature clean up vs. more conventional particulate removal technology.</p>	<ul style="list-style-type: none"> - Failure in particulate removal system will be detrimental to performance, reliability, and availability. - In proposed concept, particulate removal from flue gas is to be carried out by candle filters. Ceramic candle filters are susceptible to breakage and hence have a negative impact on performance and availability. - Potential for excessive pressure drop through filter blockage. 	M	<ul style="list-style-type: none"> - Both metal and ceramic candle filter elements have been utilized in industry and are commercially proven. Capture efficiency much greater than hot electro-static precipitators. - Potential to pair candle filters with an upstream cyclone separator to optimize cost/removal efficiency/equipment sizing. - Implementation of metallic rather than ceramic candle filters likely to increase availability at the expense of CAPEX. 	M	<ul style="list-style-type: none"> - CAPEX/OPEX (auxiliary power/DCC water treatment costs) vs. removal efficiency needs to be considered in determining optimum solution through detailed engineering design. 	L
CR-08	- Process and Systems	Ash Handling	<ul style="list-style-type: none"> - Novel SPOC concept requires development of a robust ash handling process. <p>Risk: Unknown issues of application of gasifier ash handling technology to novel SPOC concept.</p>	<ul style="list-style-type: none"> - Failure in ash handling system will be detrimental to performance, reliability, and availability. - In proposed concept, flue gas is exposed to concentrically arranged convective heating surface prior to any ash removal resulting in increased fouling, slagging, and erosion potential. 	M	<ul style="list-style-type: none"> - Wet bottom proposed for ash/slag removal. Process analogous with commercially available gasifier technology, thus reducing potential technical risks. - Ash/slag removed via lock-hopper arrangement. Again, process is analogous with commercially available gasifier technology, thus reducing potential technical risks. - Implement an alternate SPOC boiler configuration. A "two-pass" configuration comprising downward-fired radiant vessel and "upward-flow" convective boiler arrangement with heating surface arranged in cross flow allows a degree of ash/slag management before convective heating surface. 	L	<ul style="list-style-type: none"> - Carry out detailed engineering design. - Practical demonstration of a complete SPOC boiler system at significant pilot plant scale. 	L

DOOSAN Doosan Babcock			SPOC Concept Review Risk Matrix						
Risk Ref.	Discipline	Design Aspect / Consideration as Currently Proposed	Identified Risks	Possible Consequence(s)	Risk : Initial	Mitigation	Risk : Resultant	Further Mitigation	Risk : Resultant
CR-09	- Fuels and Chemistry - Process and Systems	Slagging and Fouling Management	<ul style="list-style-type: none"> - Extent of slagging and fouling within each SPOC PV may require the use of online cleaning system (e.g., sootblowers). Concentric heating surface design not conducive to typical online cleaning methods. <p>Risk: Inability to manage slagging and fouling, impairing heating surface effectiveness.</p>	<ul style="list-style-type: none"> - Excessive slagging and fouling will impact effectiveness of heating surfaces and hence the amount of heating surfaces required. In addition, excessive fouling and slagging could lead to significant gas-side pressure drops resulting in further operational issues and decreased availability/increased maintenance. 	H	<ul style="list-style-type: none"> - Include excess effective heat transfer surface. - Implement an alternate SPOC boiler configuration. A "two-pass" configuration comprising downward-fired radiant vessel and "upward-flow" convective boiler arrangement with heating surface arranged in cross flow allows a degree of ash/slag management before convective heating surface. In addition, it allows for cavities to be incorporated, subject to vessel height limitations, for the installation of typical online cleaning methods. 	M	<ul style="list-style-type: none"> - Carry out detailed engineering design. - Practical demonstration of a complete SPOC boiler system at significant pilot plant scale. 	L
CR-10	- Fuels and Chemistry - Process and Systems - Mechanical	Erosion and Corrosion	<ul style="list-style-type: none"> - Extent of anticipated erosion and corrosion through the SPOC system is not known. <p>Risk: Design basis for erosion and corrosion is not robust enough resulting in under/over specification of equipment.</p>	<ul style="list-style-type: none"> - Adverse impact of erosion and corrosion on pressure parts and non-pressure parts inside the SPOC PV resulting in system performance issues and decreased availability/increased maintenance. 	H	<ul style="list-style-type: none"> - Provide OEM analysis to determine propensity for erosion and corrosion. - Apply OEM design rules and experience to make recommendations for acceptable materials of construction. 	M	<ul style="list-style-type: none"> - Carry out detailed engineering design. - Practical demonstration of a complete SPOC boiler system at significant pilot plant scale. 	L
CR-11	- Process and Systems	Boiler Design (Pressure Parts)	<ul style="list-style-type: none"> - 100 kWth coal combustion test facility has no boiler heating surface and therefore model performance predictions cannot be validated. <p>Risk: Design basis for boiler heating surface not validated resulting in under/over performance of boiler pressure parts.</p>	<ul style="list-style-type: none"> - Lack of a means to validate data may result in significant under or over estimates of boiler heating surface requirements. 	H	<ul style="list-style-type: none"> - Apply OEM knowledge and experience to OEM design tools to predict plant performance. However, boiler performance predictions remain invalidated for novel SPOC application. 	H	<ul style="list-style-type: none"> - Carry out detailed engineering design. - Practical demonstration of a complete SPOC boiler system at significant pilot plant scale. 	M

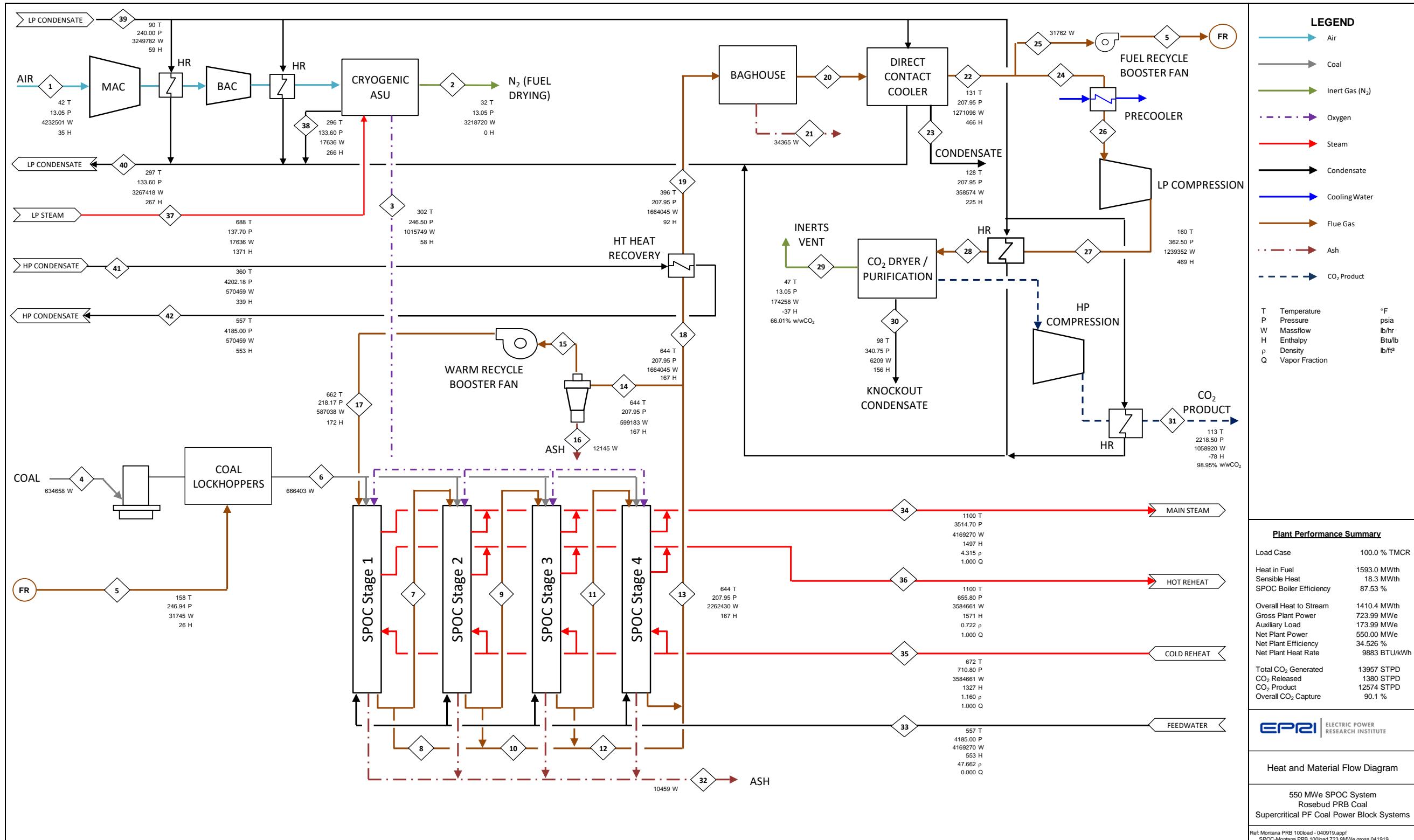
Doosan Babcock			SPOC Concept Review Risk Matrix						
Risk Ref.	Discipline	Design Aspect / Consideration as Currently Proposed	Identified Risks	Possible Consequence(s)	Risk : Initial	Mitigation	Risk : Resultant	Further Mitigation	Risk : Resultant
CR-12	- Process and Systems	Process Scale-Up	<ul style="list-style-type: none"> - Scale up of 100 kWth coal combustion test facility results to give indicative net 550 MWe SPOC plant performance. <p>Risk: Design basis for scale-up not robust enough resulting in errors in system design.</p>	<ul style="list-style-type: none"> - Design rules for scale up not yet established; risk remains until full-scale, validated boiler performance is available. 	H	<ul style="list-style-type: none"> - Apply OEM knowledge and experience to OEM design tools to predict plant performance. However, scale-up predictions remain invalidated for novel SPOC application. 	H	<ul style="list-style-type: none"> - Carry out detailed engineering design. - Practical demonstration of a complete SPOC boiler system at significant pilot plant scale. 	
CR-13	- Process and Systems	Plant Flexibility	<ul style="list-style-type: none"> - Ensuring proposed design concept is capable of flexible operation. <p>Risk: Lack of detailed design resulting in inability to fully assess plant flexibility and operational limits.</p>	<ul style="list-style-type: none"> - Without detailed design of the pressure parts, it will not be possible to properly assess the pressure parts scantlings in terms of maximum allowable ramp rates and operational flexibility against impact on design life. 	H	<ul style="list-style-type: none"> - Apply OEM knowledge and experience to determine generally acceptable ramp rates for novel concept. 	M	<ul style="list-style-type: none"> - Carry out detailed engineering design and finite-element analysis to ensure design concept is fit for purpose. 	
CR-14	<ul style="list-style-type: none"> - Layout - Mechanical - Process and Systems 	Vessel Sizing	<ul style="list-style-type: none"> - As the SPOC system operates under elevated pressure conditions (~16 bara [232 psia]), the combustion envelope and all downstream equipment (convective heat transfer banks, acid gas removal, cooling units, and driers) needs to be contained within PVs. These PVs need to be transportable. <p>Risk: Design basis for vessel sizing not developed enough to determine optimized vessel sizing incorporating technical, logistical, and economic factors.</p>	<ul style="list-style-type: none"> - Required surface needs to be spread over more vessel stages increasing CAPEX and layout concerns. - Increased design complexity. 	M	<ul style="list-style-type: none"> - Gather information on design rules/as-built PVs to determine optimum vessel sizing. - Carry out detailed engineering design to optimize number of stages and vessel heating surface arrangement to minimize CAPEX. - Consider some site assembly based on offsetting higher transport costs. 	L		


B

HEAT BALANCE DIAGRAMS



Heat balance diagrams are presented here for the following cases:


- 1) SPOC Design Case, Montana PRB Fuel, 100% Load
- 2) SPOC Check Coal Case, Illinois No.6 Fuel, 100% Load
- 3) SPOC Part-Load Case, Montana PRB Fuel, 75% Load
- 4) SPOC Part-Load Case, Montana PRB Fuel, 50% Load
- 5) SPOC Part-Load Case, Montana PRB Fuel, 25% Load
- 6) SPOC Part-Load Case, Montana PRB Fuel, 12% Load
- 7) NETL Baseline Case S12A, Montana PRB Fuel, 100% Load
- 8) NETL Baseline Case S12B, Montana PRB Fuel, 100% Load
- 9) NETL Baseline Case S12F, Montana PRB Fuel, 100% Load

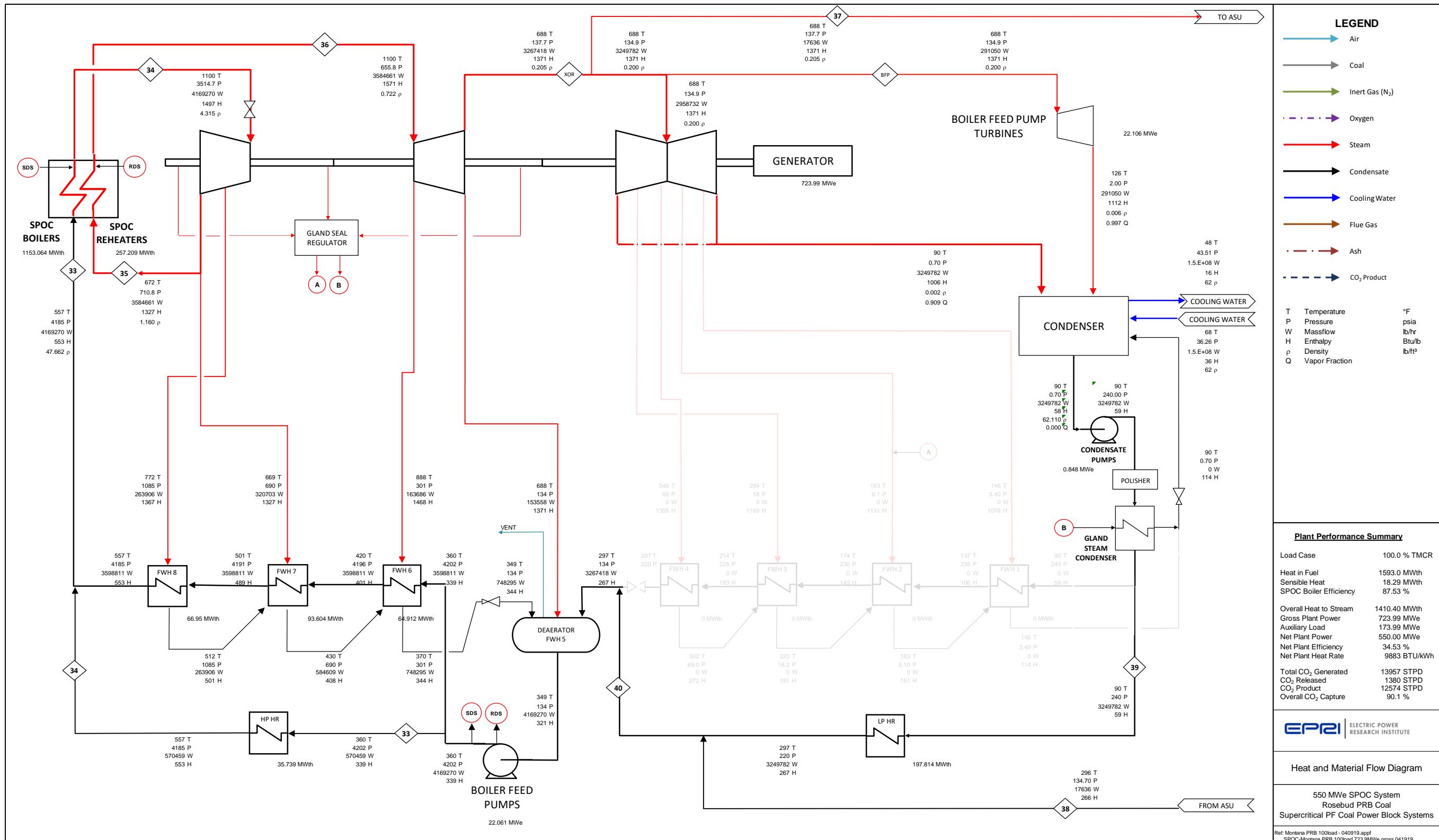
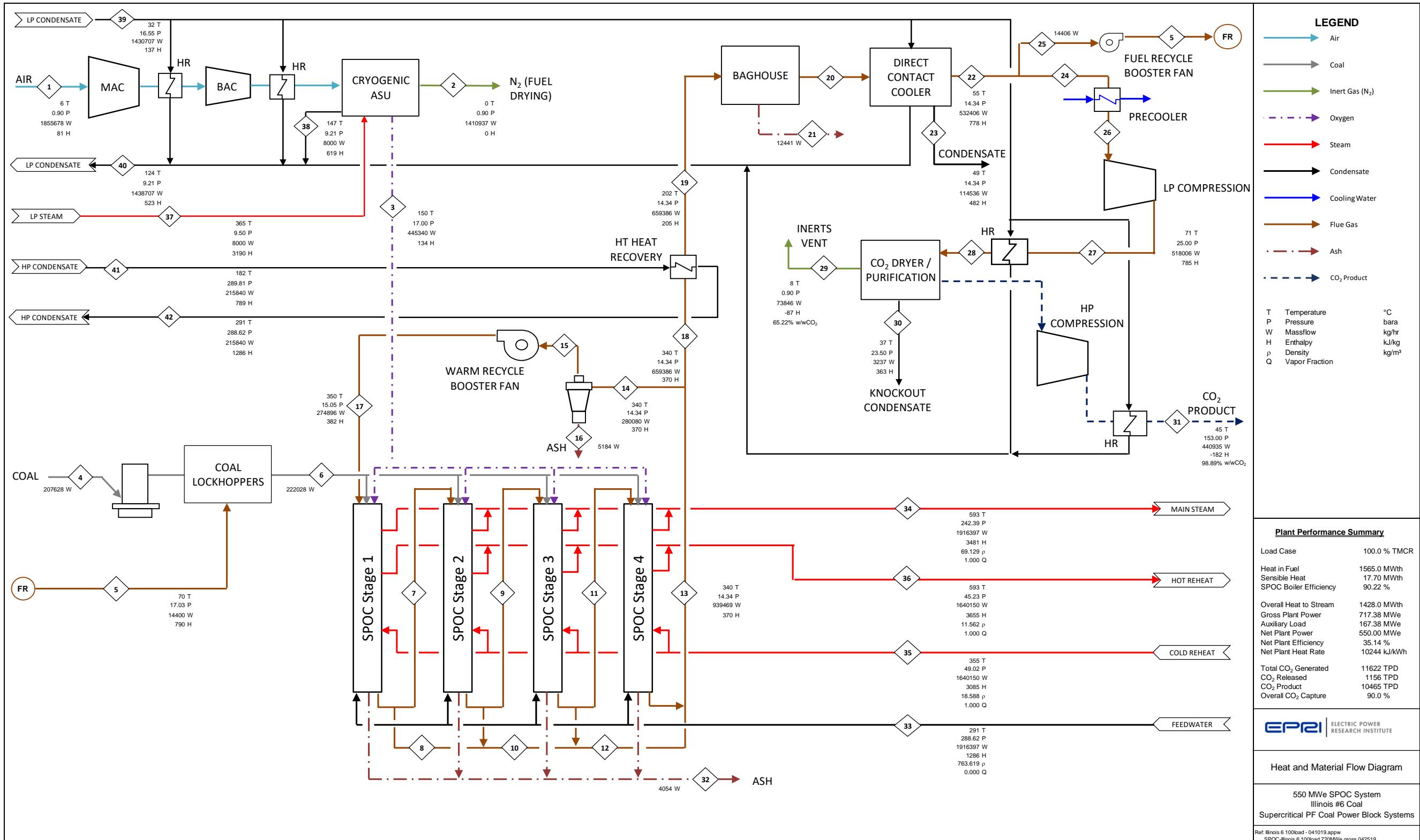

Figure B-1
Design Case Montana PRB 100% Load – Boiler Island – SI Units

Figure B-2
Design Case Montana PRB 100% Load – Steam Turbine Island – SI Units

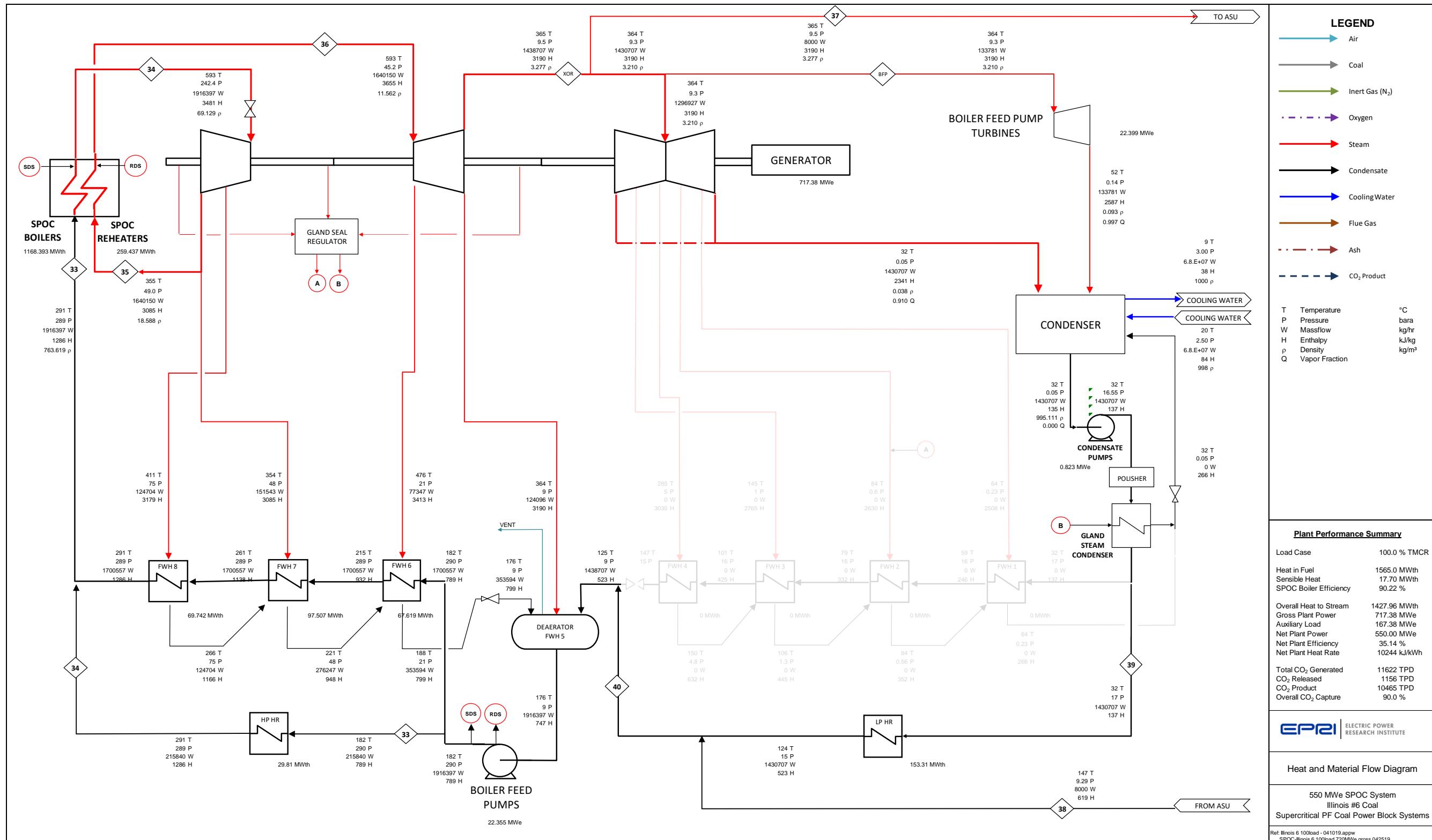
Figure B-3
Design Case Montana PRB 100% Load – Boiler Island – English Units

Figure B-4
Design Case Montana PRB 100% Load – Steam Turbine Island – English Units

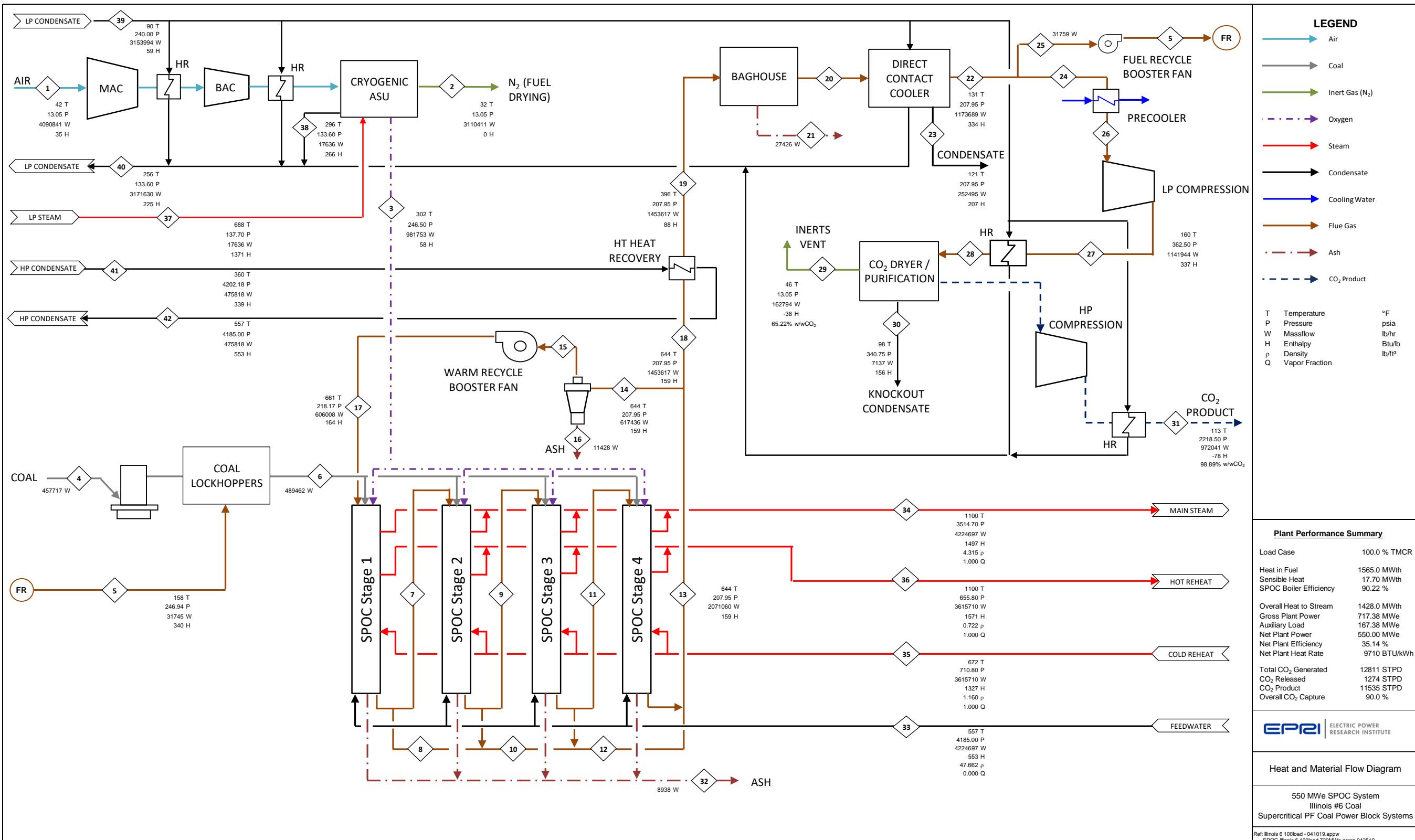
Table B-2
Design Case Montana PRB 100% Load Stream Data


	1	2	3	4	5	6	7	8	9	10
V-L Mole Fraction										
CO ₂	0.0003	0.0004	0.0000	0.0000	0.9205	0.9205	0.5537	0.5537	0.5537	0.5537
H ₂ O	0.0062	0.0000	0.0000	0.0000	0.0110	0.0110	0.4026	0.4026	0.4026	0.4026
N ₂	0.7761	0.9951	0.0050	0.0000	0.0110	0.0110	0.0066	0.0066	0.0066	0.0066
O ₂	0.2082	0.0027	0.9590	0.0000	0.0177	0.0177	0.0101	0.0101	0.0101	0.0101
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0002	0.0002	0.0030	0.0030	0.0030	0.0030
Ar	0.0092	0.0019	0.0360	0.0000	0.0395	0.0395	0.0237	0.0237	0.0237	0.0237
HCl	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NO/NO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0001	0.0001
TOTAL	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	66,444	51,751	14,280	-	333	333	7907	5642	7839	11,261
V-L Flowrate (kg/hr)	1,919,937	1,451,753	460,762	0	14,400	14,400	263,135	187,762	260,864	374,751
Solids Flowrate (kg/hr)	0	8314	0	287,892	0	287,892	4081	2912	5140	6596
Temperature (°C)	6	0	150	15	70	16	340	340	340	340
Pressure (MPa, abs)	0.09	0.09	1.70	0.09	1.70	1.51	1.50	1.50	1.48	1.48
Enthalpy (kJ/kg)	81.1	-0.2	134.0	20.7	59.8	22.6	388.3	388.3	388.3	388.3
Density (kg/m ³)	1.123	1.112	15.610	800.000	27.297	763.191	9.460	9.460	9.460	9.460
V-L Molecular Weight	28.896	28.053	32.265	-	43.180	43.180	33.279	33.279	33.279	33.279
V-L Flowrate (lb _{mol} /hr)	146,475	114,085	31,481	-	735	735	17,431	12,438	17,280	24,825
V-L Flowrate (lb/hr)	4,232,501	3,200,391	1,015,749	0	31,745	31,745	580,081	413,922	575,075	826,140
Solids Flowrate (lb/hr)	0	18,329	0	634,658	0	634,658	8996	6419	11,332	14,542
Temperature (°F)	42	32	302	59	158	61	644	644	644	644
Pressure (psia)	13.1	13.1	246.5	13.1	246.9	218.4	217.6	217.6	215.2	215.2
Enthalpy (Btu/lb)	34.9	-0.1	57.6	8.9	25.7	9.7	166.9	166.9	166.9	166.9
Density (lb/ft ³)	1.123	1.112	15.610	800.000	27.297	763.191	9.460	9.460	9.460	9.460

	11	12	13	14	15	16	17	18	19	20
V-L Mole Fraction										
CO ₂	0.5537	0.5537	0.5537	0.5537	0.5537	0.0000	0.5537	0.5535	0.5535	0.5535
H ₂ O	0.4026	0.4026	0.4026	0.4026	0.4026	0.0000	0.4026	0.4024	0.4024	0.4024
N ₂	0.0066	0.0066	0.0066	0.0066	0.0066	0.0000	0.0066	0.0066	0.0066	0.0066
O ₂	0.0101	0.0101	0.0101	0.0101	0.0101	0.0000	0.0101	0.0106	0.0106	0.0106
SO ₂	0.0030	0.0030	0.0030	0.0030	0.0030	0.0000	0.0030	0.0030	0.0030	0.0030
Ar	0.0237	0.0237	0.0237	0.0237	0.0237	0.0000	0.0237	0.0237	0.0237	0.0237
HCl	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NO/NO ₂	0.0001	0.0001	0.0001	0.0001	0.0001	0.0000	0.0001	0.0001	0.0001	0.0001
TOTAL	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	7784	16,866	30,201	7998	7998	-	7998	22,214	22,214	22,214
V-L Flowrate (kg/hr)	259,047	561,287	1,005,052	266,179	266,179	-	266,179	739,236	739,236	739,236
Solids Flowrate (kg/hr)	5747	10,734	21,226	5621	112	5509	112	15,604	15,604	15.6
Temperature (°C)	340	340	340	340	340	340	350	340	202	202
Pressure (MPa, abs)	1.47	1.47	1.43	1.43	1.41	1.41	1.50	1.43	1.43	1.43
Enthalpy (kJ/kg)	388.3	388.3	388.3	388.3	388.3	322.9	400.5	388.3	214.3	214.3
Density (kg/m ³)	9.460	9.460	9.460	9.460	9.324	-	9.768	9.460	12.432	12.432
V-L Molecular Weight	33.279	33.279	33.279	33.279	33.279	-	33.279	33.279	33.279	33.279
V-L Flowrate (lb _{mol} /hr)	17,160	37,181	66,577	17,632	17,632	-	17,632	48,970	48,970	48,970
V-L Flowrate (lb/hr)	571,068	1,237,358	2,215,638	586,791	586,791	-	586,791	1,629,645	1,629,645	1,629,645
Solids Flowrate (lb/hr)	12,669	23,664	46,792	12,392	248	12,145	248	34,400	34,400	34.4
Temperature (°F)	644	644	644	644	644	644	662	644	396	396
Pressure (psia)	212.8	212.8	207.9	207.9	204.9	204.9	218.2	207.9	207.9	207.9
Enthalpy (Btu/lb)	166.9	166.9	166.9	166.9	166.9	138.8	172.2	166.9	92.2	92.2
Density (lb/ft ³)	9.460	9.460	9.460	9.460	9.324	-	9.768	9.460	12.432	12.432


	21	22	23	24	25	26	27	28	29	30
V-L Mole Fraction										
CO ₂	0.0000	0.9205	0.0002	0.9205	0.9205	0.9205	0.9205	0.9205	0.6128	0.0002
H ₂ O	0.0000	0.0110	0.9923	0.0110	0.0110	0.0110	0.0110	0.0110	0.0000	0.9740
N ₂	0.0000	0.0110	0.0000	0.0110	0.0110	0.0110	0.0110	0.0110	0.0635	0.0000
O ₂	0.0000	0.0177	0.0000	0.0177	0.0177	0.0177	0.0177	0.0177	0.1039	0.0000
SO ₂	0.0000	0.0002	0.0072	0.0002	0.0002	0.0002	0.0002	0.0002	0.0000	0.0219
Ar	0.0000	0.0395	0.0000	0.0395	0.0395	0.0395	0.0395	0.0395	0.2198	0.0000
HCl	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0028
SO ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NO/NO ₂	0.0000	0.0000	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0011
TOTAL	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	-	13,353	8860	13,353	333	13,020	13,020	13,020	1935	147
V-L Flowrate (kg/hr)	-	576,584	162,652	576,584	14,400	562,184	562,184	562,184	79,038	2,809
Solids Flowrate (kg/hr)	15,589	7.80	3.90	7.80	7.80	7.80	7.80	7.80	7.80	7.80
Temperature (°C)	202	55	54	55	55	30	71	37	8	37
Pressure (MPa, abs)	0.09	1.43	1.43	1.43	1.43	1.37	2.50	2.40	0.09	2.35
Enthalpy (kJ/kg)	191.9	1082.7	524.1	1082.7	1082.7	1051.9	1090.0	1048.6	-85.8	362.4
Density (kg/m ³)	-	24.025	930.320	24.025	24.025	25.370	41.070	45.664	2.624	811.855
V-L Molecular Weight	-	43.180	18.357	43.180	43.180	43.180	43.180	43.180	40.853	19.096
V-L Flowrate (lb _{mol} /hr)	-	29,437	19,533	29,437	735	28,702	28,702	28,702	4265	324
V-L Flowrate (lb/hr)	-	1,271,079	358,566	1,271,079	31,745	1,239,334	1,239,334	1,239,334	174,240	6191
Solids Flowrate (lb/hr)	34,365	17.2	8.60	17.2	17.2	17.2	17.2	17.2	17.2	17.2
Temperature (°F)	396	131	128	131	131	86	160	99	47	98
Pressure (psia)	13.1	207.9	207.9	207.9	207.9	198.6	362.5	348.0	13.1	340.8
Enthalpy (Btu/lb)	82.5	465.5	225.4	465.5	465.5	452.3	468.7	450.9	-36.9	155.8
Density (lb/ft ³)	-	24.025	930.320	24.025	24.025	25.370	41.070	45.664	2.624	811.855

	31	32	33	34	35	36	37	38	39	40
V-L Mole Fraction										
CO ₂	0.9874	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
N ₂	0.0019	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.0027	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ar	0.0081	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
HCl	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NO/NO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TOTAL	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	10,938	-	104,981	104,981	90,261	90,261	444	444	81,829	82,273
V-L Flowrate (kg/hr)	480,337	-	1,891,254	1,891,254	1,626,065	1,626,065	8,000	8,000	1,474,158	1,482,158
Solids Flowrate (kg/hr)	7.80	4,745	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Temperature (°C)	45	950	291	593	355	593	365	147	32	147
Pressure (MPa, abs)	15.30	0.09	28.86	24.24	4.90	4.52	0.95	0.92	1.66	0.92
Enthalpy (kJ/kg)	-182.2	902.5	1285.9	3480.7	3085.4	3654.9	3189.7	618.6	137.2	620.3
Density (kg/m ³)	731.555	-	763.619	69.129	18.588	11.562	3.277	920.459	995.796	920.088
V-L Molecular Weight	43.915	-	18.015	18.015	18.015	18.015	18.015	18.015	18.015	18.015
V-L Flowrate (lb _{mol} /hr)	24,113	-	231,431	231,431	198,980	198,980	979	979	180,391	181,370
V-L Flowrate (lb/hr)	1,058,903	-	4,169,270	4,169,270	3,584,661	3,584,661	17,636	17,636	3,249,782	3,267,418
Solids Flowrate (lb/hr)	17.2	10,459	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Temperature (°F)	113	1742	557	1100	672	1100	688	296	90	297
Pressure (psia)	2218.5	13.1	4185.0	3514.7	710.8	655.8	137.7	133.6	240.0	133.6
Enthalpy (Btu/lb)	-78.3	388.0	552.9	1496.6	1326.6	1571.5	1371.5	266.0	59.0	266.7
Density (lb/ft ³)	731.555	-	763.619	69.129	18.588	11.562	3.277	920.459	995.796	920.088


	41	42
V-L Mole Fraction		
CO ₂	0.0000	0.0000
H ₂ O	1.0000	1.0000
N ₂	0.0000	0.0000
O ₂	0.0000	0.0000
SO ₂	0.0000	0.0000
Ar	0.0000	0.0000
HCl	0.0000	0.0000
SO ₃	0.0000	0.0000
NO/NO ₂	0.0000	0.0000
TOTAL	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	14,364	14,364
V-L Flowrate (kg/hr)	258,770	258,770
Solids Flowrate (kg/hr)	0.00	0.00
Temperature (°C)	182	291
Pressure (MPa, abs)	28.98	28.86
Enthalpy (kJ/kg)	788.7	1285.9
Density (kg/m ³)	902.211	763.619
V-L Molecular Weight	18.015	18.015
V-L Flowrate (lb _{mol} /hr)	31,665	31,665
V-L Flowrate (lb/hr)	570,459	570,459
Solids Flowrate (lb/hr)	0.00	0.00
Temperature (°F)	360	557
Pressure (psia)	4202.2	4185.0
Enthalpy (Btu/lb)	339.1	552.9
Density (lb/ft ³)	902.211	763.619

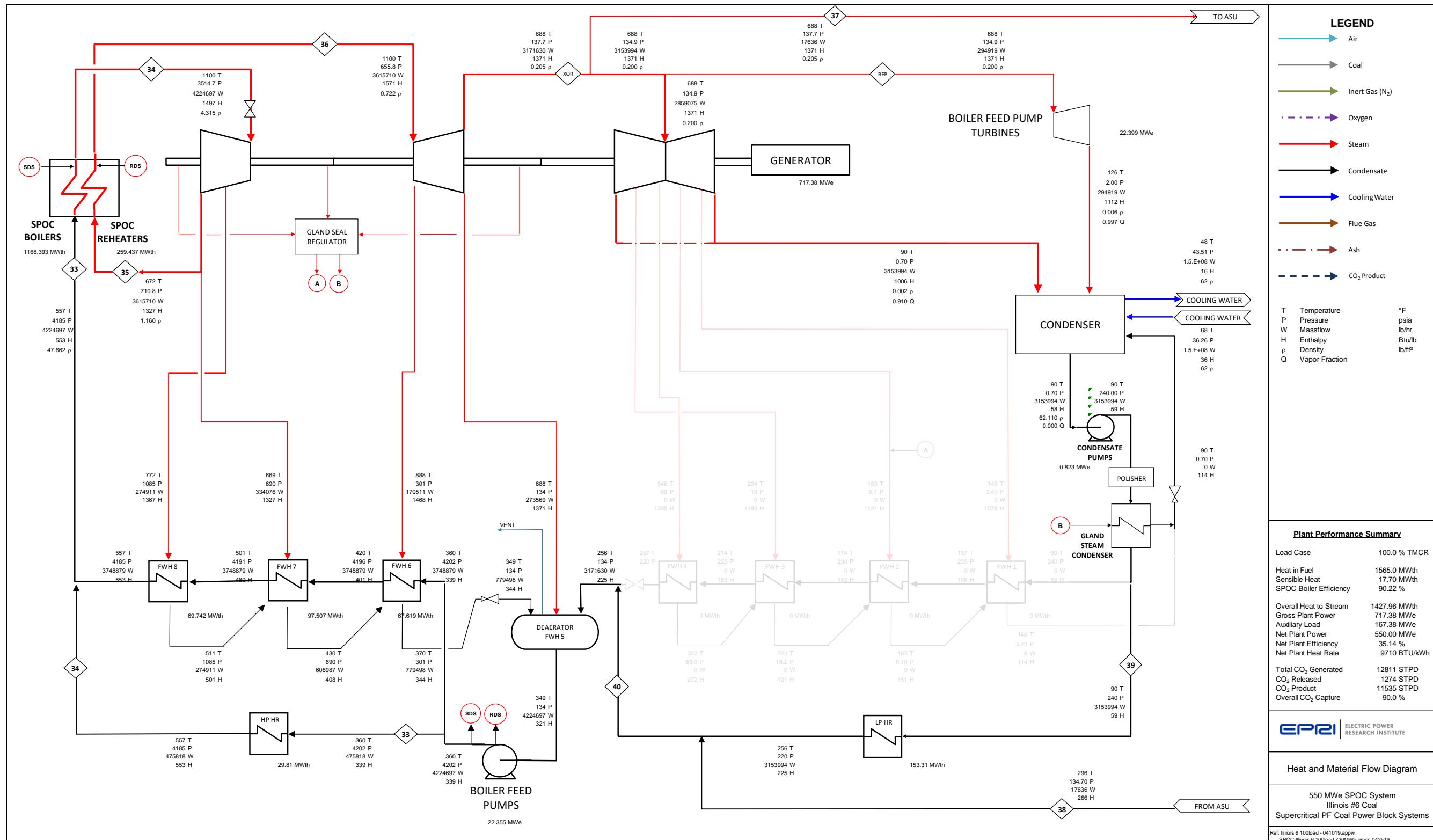
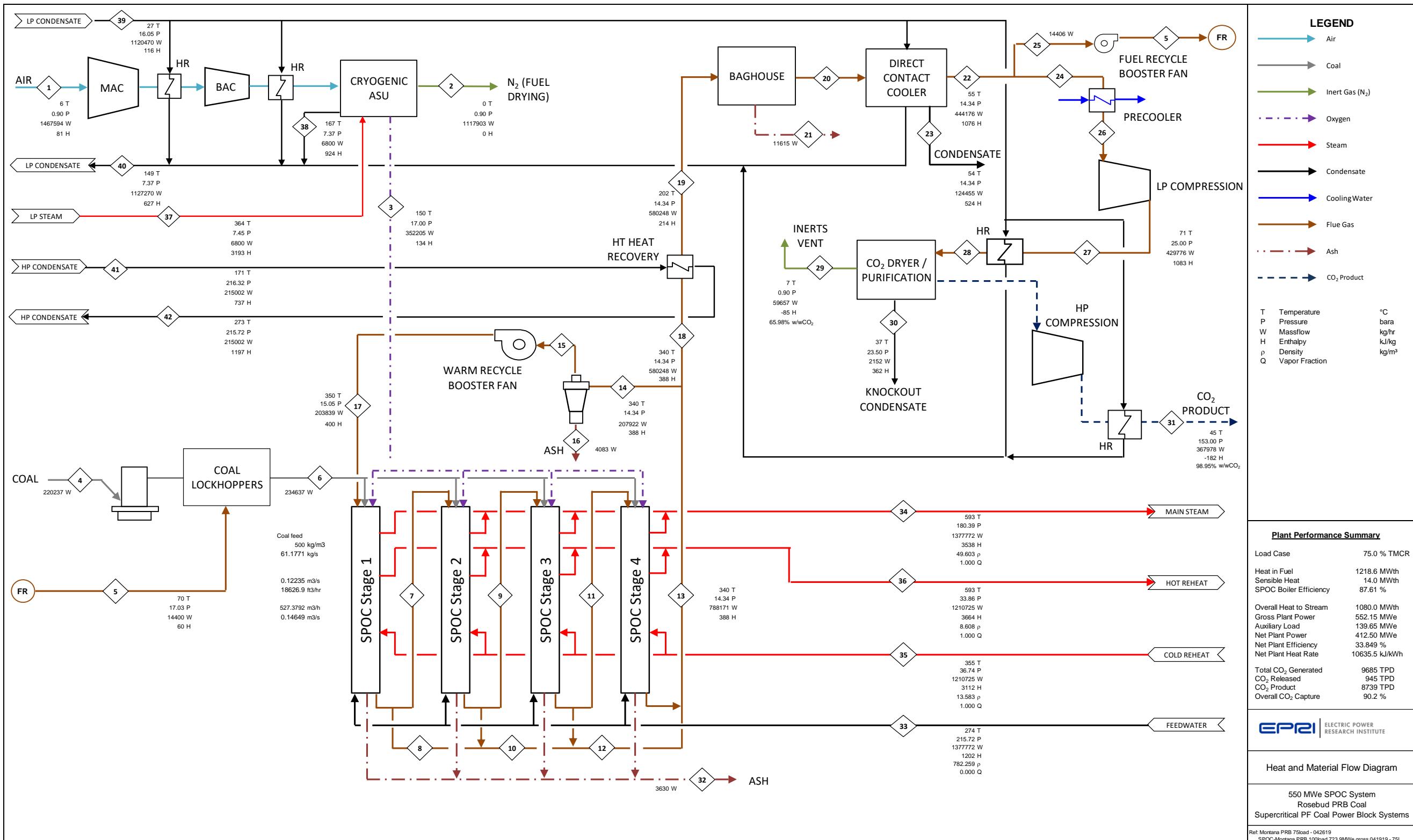


Figure B-5
Check Coal Case Illinois No. 6 100% Load – Boiler Island – SI Units

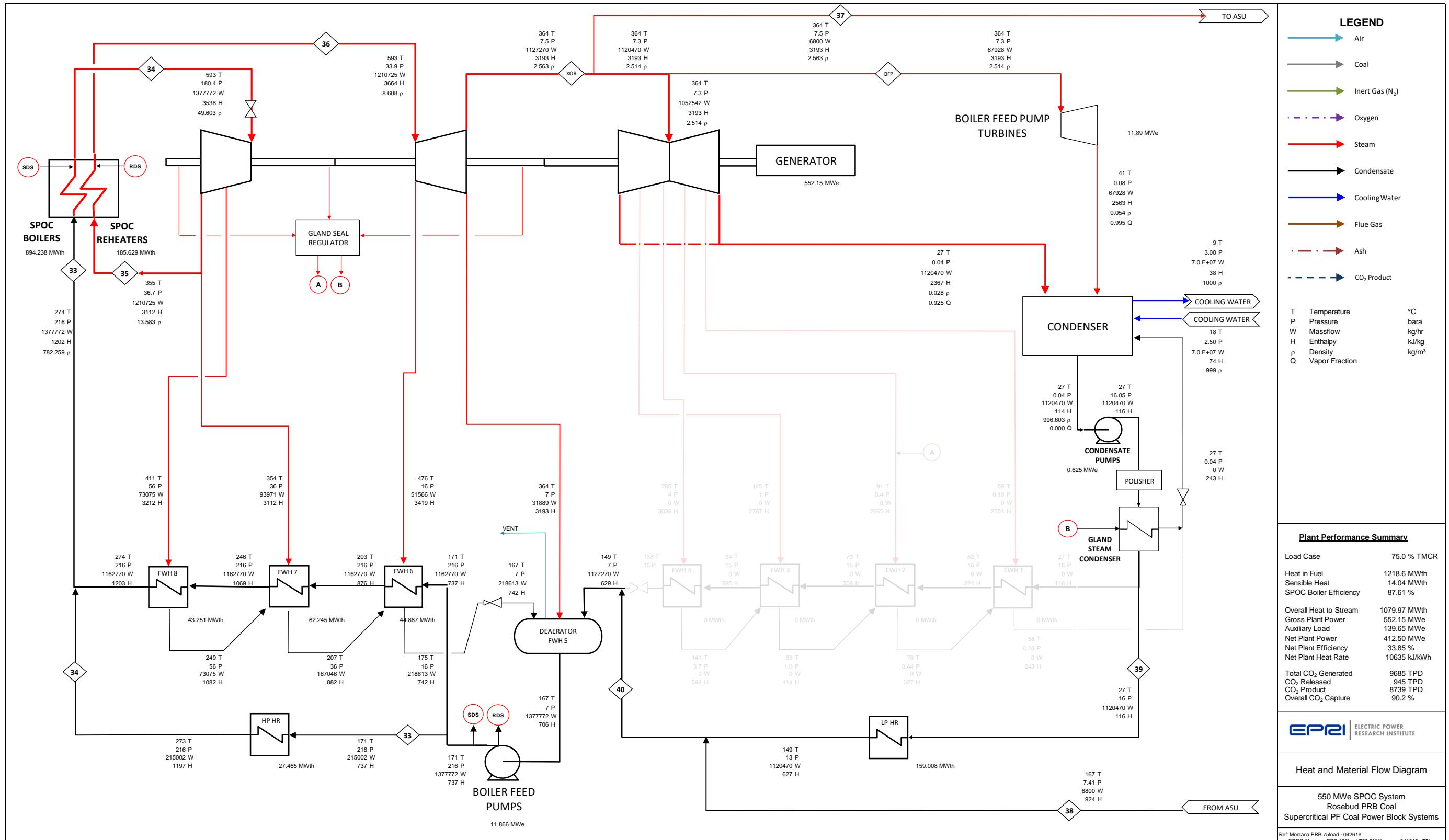
Figure B-6
Check Coal Case Illinois No. 6 100% Load – Turbine Island – SI Units

Figure B-8
Check Coal Case Illinois No. 6 100% Load – Turbine Island – English Units

Table B-3
Check Coal Case Illinois No. 6 100% Load Stream Data


	1	2	3	4	5	6	7	8	9	10
V-L Mole Fraction										
CO ₂	0.0003	0.0004	0.0000	0.0000	0.9165	0.9165	0.6188	0.6188	0.6188	0.6188
H ₂ O	0.0062	0.0000	0.0000	0.0000	0.0111	0.0111	0.3231	0.3231	0.3231	0.3231
N ₂	0.7761	0.9951	0.0050	0.0000	0.0134	0.0134	0.0090	0.0090	0.0090	0.0090
O ₂	0.2082	0.0027	0.9590	0.0000	0.0162	0.0162	0.0110	0.0110	0.0110	0.0110
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0007	0.0007	0.0091	0.0091	0.0091	0.0091
Ar	0.0092	0.0019	0.0360	0.0000	0.0414	0.0414	0.0279	0.0279	0.0279	0.0279
HCl	0.0000	0.0000	0.0000	0.0000	0.0007	0.0007	0.0010	0.0010	0.0010	0.0010
SO ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NO/NO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0001	0.0001
TOTAL	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	64,220	50,019	13,803	-	334	334	7678	4654	7614	9287
V-L Flowrate (kg/hr)	1,855,678	1,403,164	445,340	0	14,400	14,400	271,787	164,738	269,525	328,733
Solids Flowrate (kg/hr)	0	7,773	0	207,628	0	207,628	3474	2106	4681	4954
Temperature (°C)	6	0	150	15	70	16	340	340	340	340
Pressure (MPa, abs)	0.09	0.09	1.70	0.09	1.70	1.51	1.50	1.50	1.48	1.48
Enthalpy (kJ/kg)	81.1	-0.2	134.0	278.8	789.9	311.9	370.4	370.4	370.4	370.4
Density (kg/m ³)	1.123	1.112	15.610	800.000	27.283	749.884	10.044	10.044	10.044	10.044
V-L Molecular Weight	28.896	28.053	32.265	-	43.152	43.152	35.396	35.396	35.396	35.396
V-L Flowrate (lb _{mol} /hr)	141,572	110,267	30,428	-	736	736	16,927	10,260	16,786	20,474
V-L Flowrate (lb/hr)	4,090,841	3,093,276	981,753	0	31,745	31,745	599,153	363,164	594,168	724,692
Solids Flowrate (lb/hr)	0	17,135	0	457,717	0	457,717	7,659	4,642	10,318	10,920
Temperature (°F)	42	32	302	59	158	60	644	644	644	644
Pressure (psia)	13.1	13.1	246.5	13.1	246.9	218.2	217.5	217.5	215.1	215.1
Enthalpy (Btu/lb)	34.9	-0.1	57.6	119.9	339.6	134.1	159.3	159.3	159.3	159.3
Density (lb/ft ³)	1.123	1.112	15.610	800.000	27.283	749.884	10.044	10.044	10.044	10.044

	11	12	13	14	15	16	17	18	19	20
V-L Mole Fraction										
CO ₂	0.6188	0.6188	0.6188	0.6188	0.6188	0.0000	0.6188	0.6188	0.6188	0.6188
H ₂ O	0.3231	0.3231	0.3231	0.3231	0.3231	0.0000	0.3231	0.3231	0.3231	0.3231
N ₂	0.0090	0.0090	0.0090	0.0090	0.0090	0.0000	0.0090	0.0090	0.0090	0.0090
O ₂	0.0110	0.0110	0.0110	0.0110	0.0110	0.0000	0.0110	0.0110	0.0110	0.0110
SO ₂	0.0091	0.0091	0.0091	0.0091	0.0091	0.0000	0.0091	0.0091	0.0091	0.0091
Ar	0.0279	0.0279	0.0279	0.0279	0.0279	0.0000	0.0279	0.0279	0.0279	0.0279
HCl	0.0010	0.0010	0.0010	0.0010	0.0010	0.0000	0.0010	0.0010	0.0010	0.0010
SO ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NO/NO ₂	0.0001	0.0001	0.0001	0.0001	0.0001	0.0000	0.0001	0.0001	0.0001	0.0001
TOTAL	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	7564	13,907	26,040	7763	7763	-	7763	18,277	18,277	18,277
V-L Flowrate (kg/hr)	267,728	492,264	921,726	274,790	274,790	-	274,790	646,933	646,933	646,933
Solids Flowrate (kg/hr)	5423	8266	17,743	5290	106	5,184	106	12,454	12,454	12.5
Temperature (°C)	340	340	340	340	340	340	350	340	202	202
Pressure (MPa, abs)	1.47	1.47	1.43	1.43	1.41	1.41	1.50	1.43	1.43	1.43
Enthalpy (kJ/kg)	370.4	370.4	370.4	370.4	370.4	322.9	381.9	370.4	204.7	204.7
Density (kg/m ³)	10.044	10.044	10.044	10.044	9.899	-	10.373	10.044	13.177	13.177
V-L Molecular Weight	35.396	35.396	35.396	35.396	35.396	-	35.396	35.396	35.396	35.396
V-L Flowrate (lb _{mol} /hr)	16,674	30,658	57,406	17,114	17,114	-	17,114	40,291	40,291	40,291
V-L Flowrate (lb/hr)	590,206	1,085,197	2,031,945	605,775	605,775	-	605,775	1,426,163	1,426,163	1,426,163
Solids Flowrate (lb/hr)	11,955	18,222	39,115	11,661	233	11,428	233	27,454	27,454	27.5
Temperature (°F)	644	644	644	644	644	644	661	644	396	396
Pressure (psia)	212.7	212.7	207.9	207.9	204.9	204.9	218.2	207.9	207.9	207.9
Enthalpy (Btu/lb)	159.3	159.3	159.3	159.3	159.3	138.9	164.2	159.3	88.0	88.0
Density (lb/ft ³)	10.044	10.044	10.044	10.044	9.899	-	10.373	10.044	13.177	13.177


	21	22	23	24	25	26	27	28	29	30
V-L Mole Fraction										
CO ₂	0.0000	0.9165	0.0002	0.9165	0.9165	0.9165	0.9165	0.9165	0.6040	0.0002
H ₂ O	0.0000	0.0111	0.9713	0.0111	0.0111	0.0111	0.0111	0.0111	0.0000	0.8886
N ₂	0.0000	0.0134	0.0000	0.0134	0.0134	0.0134	0.0134	0.0134	0.0758	0.0000
O ₂	0.0000	0.0162	0.0000	0.0162	0.0162	0.0162	0.0162	0.0162	0.0939	0.0000
SO ₂	0.0000	0.0007	0.0266	0.0007	0.0007	0.0007	0.0007	0.0007	0.0000	0.0534
Ar	0.0000	0.0414	0.0000	0.0414	0.0414	0.0414	0.0414	0.0414	0.2264	0.0000
HCl	0.0000	0.0007	0.0015	0.0007	0.0007	0.0007	0.0007	0.0007	0.0000	0.0565
SO ₃	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001
NO/NO ₂	0.0000	0.0000	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0012
TOTAL	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	-	12,338	5939	12,338	334	12,004	12,004	12,004	1812	150
V-L Flowrate (kg/hr)	-	532,400	114,533	532,400	14,400	518,000	518,000	518,000	73,840	3231
Solids Flowrate (kg/hr)	12,441	6.23	3.11	6.23	6.23	6.23	6.23	6.23	6.23	6.23
Temperature (°C)	202	55	49	55	55	30	71	37	8	37
Pressure (MPa, abs)	0.09	1.43	1.43	1.43	1.43	1.37	2.50	2.40	0.09	2.35
Enthalpy (kJ/kg)	191.9	777.6	482.0	777.6	777.6	746.7	784.7	743.5	-87.3	362.8
Density (kg/m ³)	-	24.007	595.265	24.007	24.007	25.394	41.065	45.619	2.629	218.549
V-L Molecular Weight	-	43.152	19.285	43.152	43.152	43.152	43.152	43.152	40.750	21.542
V-L Flowrate (lb _{mol} /hr)	-	27,199	13,093	27,199	736	26,463	26,463	26,463	3,995	331
V-L Flowrate (lb/hr)	-	1,173,675	252,488	1,173,675	31,745	1,141,930	1,141,930	1,141,930	162,780	7,123
Solids Flowrate (lb/hr)	27,426	13.7	6.86	13.7	13.7	13.7	13.7	13.7	13.7	13.7
Temperature (°F)	396	131	121	131	131	86	160	99	46	98
Pressure (psia)	13.1	207.9	207.9	207.9	207.9	198.9	362.5	348.0	13.1	340.8
Enthalpy (Btu/lb)	82.5	334.3	207.3	334.3	334.3	321.1	337.4	319.7	-37.5	156.0
Density (lb/ft ³)	-	24.007	595.265	24.007	24.007	25.394	41.065	45.619	2.629	218.549

	31	32	33	34	35	36	37	38	39	40
V-L Mole Fraction										
CO ₂	0.9866	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
N ₂	0.0023	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.0025	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ar	0.0086	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
HCl	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NO/NO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TOTAL	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	10,042	-	106,377	106,377	91,043	91,043	444	444	79,417	79,861
V-L Flowrate (kg/hr)	440,929	-	1,916,397	1,916,397	1,640,150	1,640,150	8,000	8,000	1,430,707	1,438,707
Solids Flowrate (kg/hr)	6.23	4,054	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Temperature (°C)	45	340	291	593	355	593	365	147	32	124
Pressure (MPa, abs)	15.30	0.09	28.86	24.24	4.90	4.52	0.95	0.92	1.66	0.92
Enthalpy (kJ/kg)	-181.9	323.0	1285.9	3480.7	3085.4	3654.9	3189.7	618.6	137.2	523.0
Density (kg/m ³)	730.483	-	763.619	69.129	18.588	11.562	3.277	920.459	995.796	940.053
V-L Molecular Weight	43.908	-	18.015	18.015	18.015	18.015	18.015	18.015	18.015	18.015
V-L Flowrate (lb _{mol} /hr)	22,138	-	234,507	234,507	200,703	200,703	979	979	175,074	176,053
V-L Flowrate (lb/hr)	972,027	-	4,224,697	4,224,697	3,615,710	3,615,710	17,636	17,636	3,153,994	3,171,630
Solids Flowrate (lb/hr)	13.7	8,938	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Temperature (°F)	113	644	557	1100	672	1100	688	296	90	256
Pressure (psia)	2218.5	13.1	4185.0	3514.7	710.8	655.8	137.7	133.6	240.0	133.6
Enthalpy (Btu/lb)	-78.2	138.9	552.9	1496.6	1326.6	1571.5	1371.5	266.0	59.0	224.9
Density (lb/ft ³)	730.483	-	763.619	69.129	18.588	11.562	3.277	920.459	995.796	940.053


	41	42
V-L Mole Fraction		
CO ₂	0.0000	0.0000
H ₂ O	1.0000	1.0000
N ₂	0.0000	0.0000
O ₂	0.0000	0.0000
SO ₂	0.0000	0.0000
Ar	0.0000	0.0000
HCl	0.0000	0.0000
SO ₃	0.0000	0.0000
NO/NO ₂	0.0000	0.0000
TOTAL	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	11,981	11,981
V-L Flowrate (kg/hr)	215,840	215,840
Solids Flowrate (kg/hr)	0.00	0.00
Temperature (°C)	182	291
Pressure (MPa, abs)	28.98	28.86
Enthalpy (kJ/kg)	788.7	1285.9
Density (kg/m ³)	902.211	763.619
V-L Molecular Weight	18.015	18.015
V-L Flowrate (lb _{mol} /hr)	26,412	26,412
V-L Flowrate (lb/hr)	475,818	475,818
Solids Flowrate (lb/hr)	0.00	0.00
Temperature (°F)	360	557
Pressure (psia)	4202.2	4185.0
Enthalpy (Btu/lb)	339.1	552.9
Density (lb/ft ³)	902.211	763.619

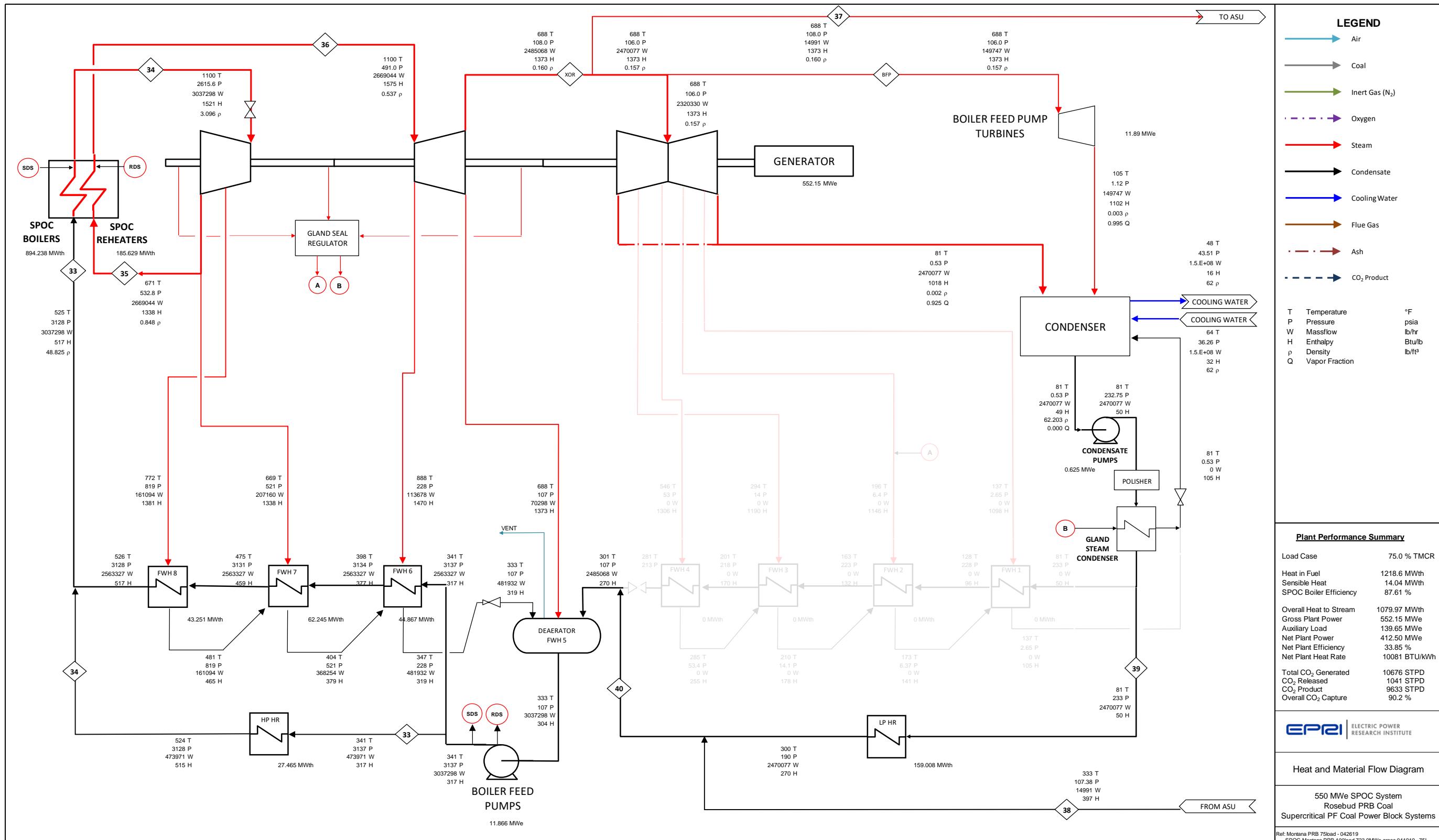
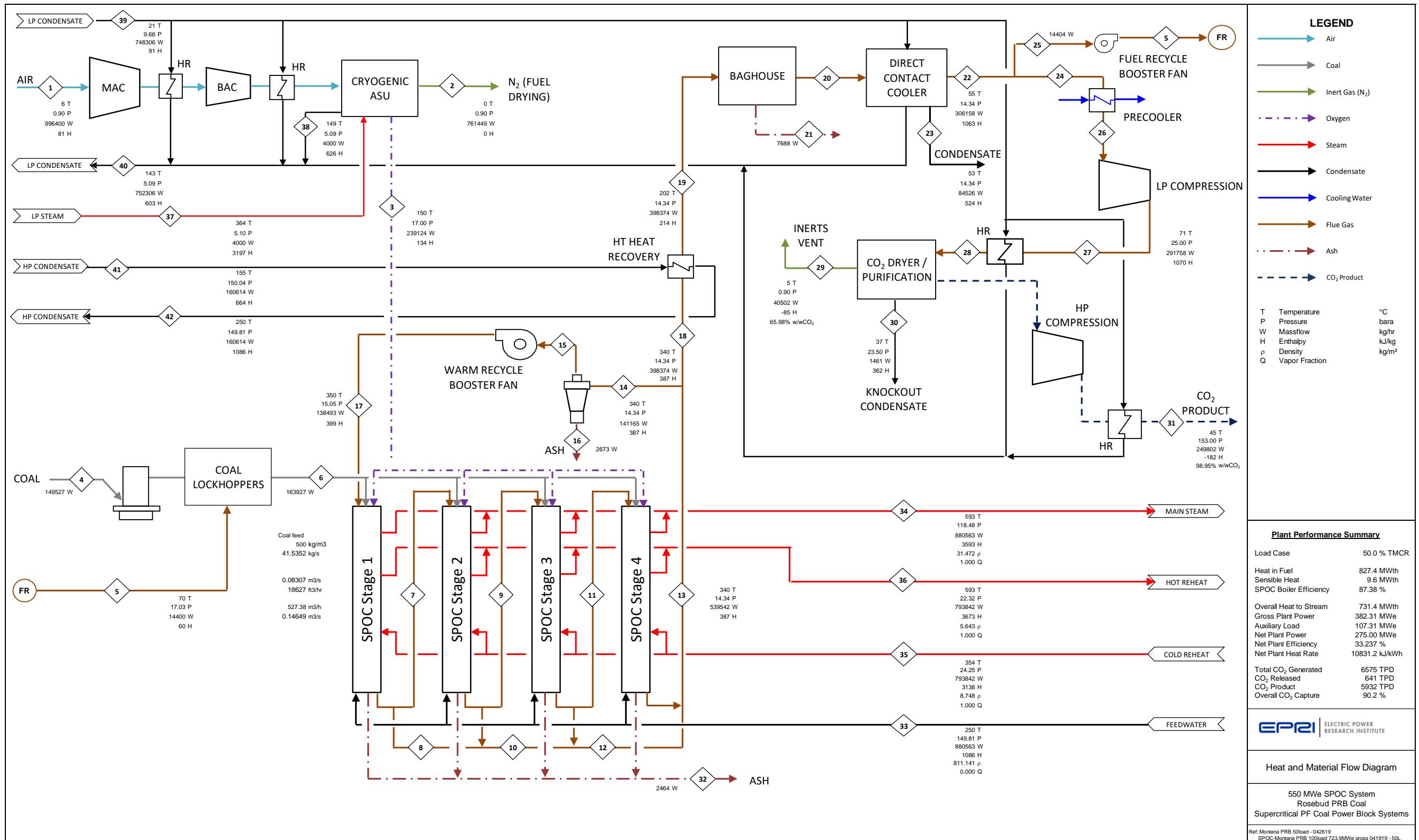

Figure B-9
Part-Load Case Montana PRB 75% Load – Boiler Island – SI Units

Figure B-10
Part-Load Case Montana PRB 75% Load – Turbine Island – SI Units

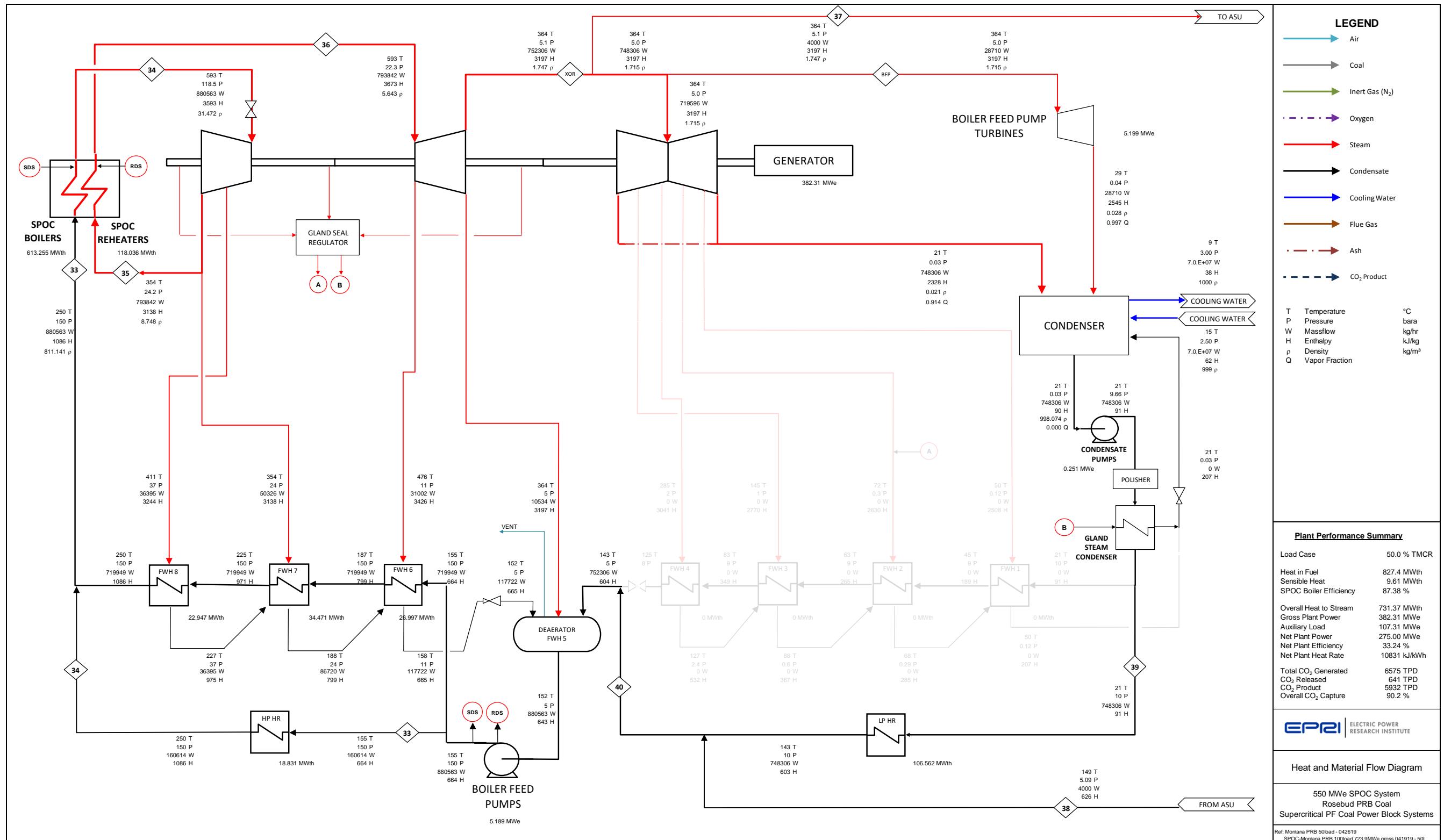
Figure B-11
Part-Load Case Montana PRB 75% Load – Boiler Island – English Units

Figure B-12
Part-Load Case Montana PRB 75% Load – Turbine Island – English Units

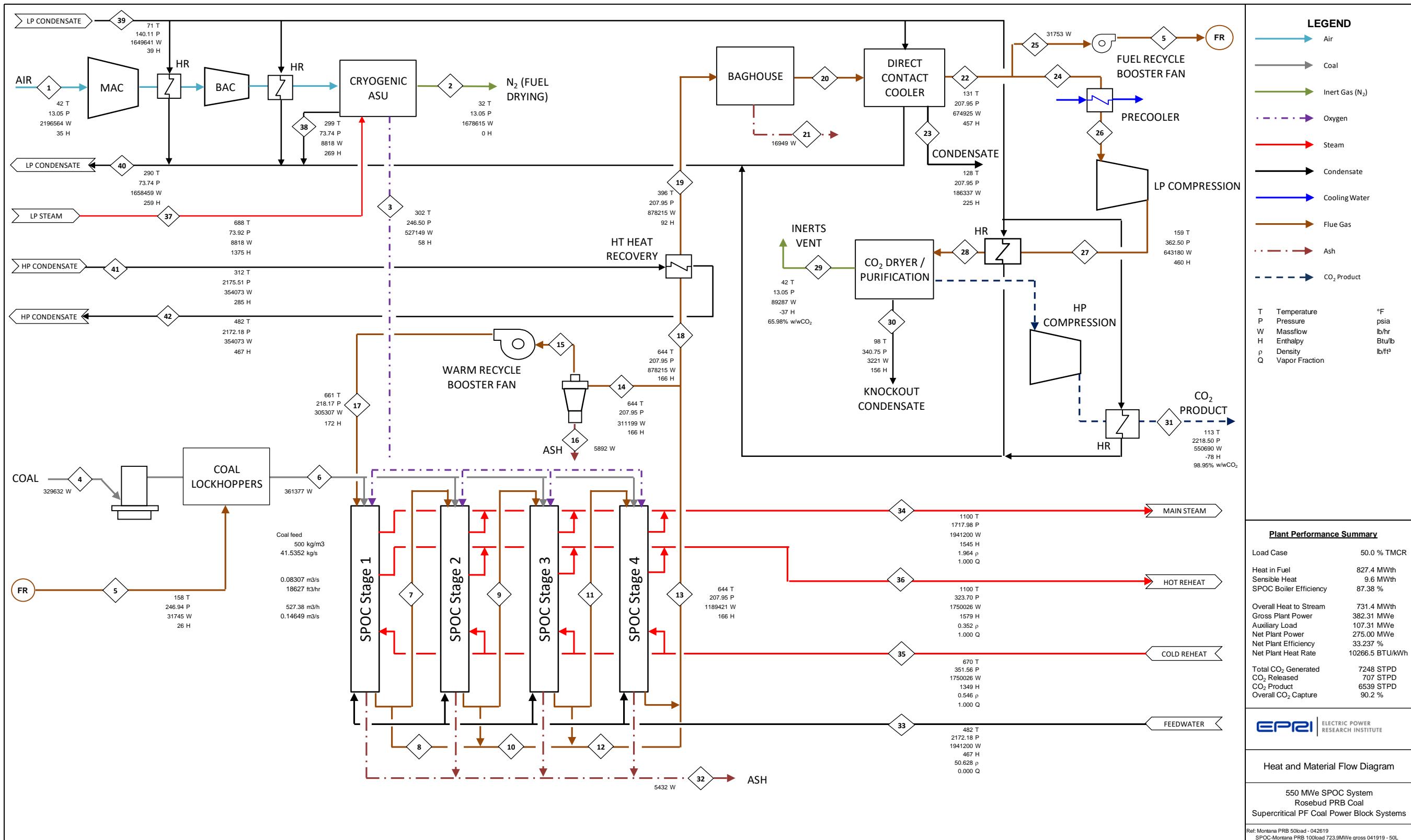
Table B-4
Part-Load Case Montana PRB 75% Load Stream Data


	1	2	3	4	5	6	7	8	9	10
V-L Mole Fraction										
CO ₂	0.0003	0.0004	0.0000	0.0000	0.9213	0.9213	0.5554	0.5554	0.5554	0.5554
H ₂ O	0.0062	0.0000	0.0000	0.0000	0.0110	0.0110	0.4008	0.4008	0.4008	0.4008
N ₂	0.7761	0.9951	0.0050	0.0000	0.0110	0.0110	0.0066	0.0066	0.0066	0.0066
O ₂	0.2082	0.0027	0.9590	0.0000	0.0169	0.0169	0.0102	0.0102	0.0102	0.0102
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0002	0.0002	0.0030	0.0030	0.0030	0.0030
Ar	0.0092	0.0019	0.0360	0.0000	0.0395	0.0395	0.0238	0.0238	0.0238	0.0238
HCl	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NO/NO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0001	0.0001
TOTAL	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	50,789	39,558	10,916	-	333	333	6039	4341	5984	8662
V-L Flowrate (kg/hr)	1,467,594	1,109,716	352,205	0	14,400	14,400	201,251	144,661	199,413	288,654
Solids Flowrate (kg/hr)	0	8187	0	220,237	0	220,237	2853	2051	3764	4769
Temperature (°C)	6	0	150	15	70	17	340	340	340	340
Pressure (MPa, abs)	0.09	0.09	1.70	0.09	1.70	1.48	1.47	1.47	1.46	1.46
Enthalpy (kJ/kg)	81.1	-0.2	134.0	20.7	59.8	23.1	387.9	387.9	387.9	387.9
Density (kg/m ³)	1.123	1.112	15.610	800.000	27.305	752.579	9.473	9.473	9.473	9.473
V-L Molecular Weight	28.896	28.053	32.265	-	43.189	43.189	33.325	33.325	33.325	33.325
V-L Flowrate (lb _{mol} /hr)	111,965	87,206	24,064	-	735	735	13,313	9570	13,191	19,095
V-L Flowrate (lb/hr)	3,235,310	2,446,369	776,436	0	31,745	31,745	443,657	318,905	439,606	636,338
Solids Flowrate (lb/hr)	0	18,048	0	485,513	0	485,513	6,290	4,521	8,299	10,513
Temperature (°F)	42	32	302	59	158	62	644	644	644	644
Pressure (psia)	13.1	13.1	246.5	13.1	246.9	214.0	213.6	213.6	212.2	212.2
Enthalpy (Btu/lb)	34.9	-0.1	57.6	8.9	25.7	9.9	166.8	166.8	166.8	166.8
Density (lb/ft ³)	1.123	1.112	15.610	800.000	27.305	752.579	9.473	9.473	9.473	9.473

	11	12	13	14	15	16	17	18	19	20
V-L Mole Fraction										
CO ₂	0.5554	0.5554	0.5554	0.5554	0.5554	0.0000	0.5554	0.5554	0.5554	0.5554
H ₂ O	0.4008	0.4008	0.4008	0.4008	0.4008	0.0000	0.4008	0.4008	0.4008	0.4008
N ₂	0.0066	0.0066	0.0066	0.0066	0.0066	0.0000	0.0066	0.0066	0.0066	0.0066
O ₂	0.0102	0.0102	0.0102	0.0102	0.0102	0.0000	0.0102	0.0102	0.0102	0.0102
SO ₂	0.0030	0.0030	0.0030	0.0030	0.0030	0.0000	0.0030	0.0030	0.0030	0.0030
Ar	0.0238	0.0238	0.0238	0.0238	0.0238	0.0000	0.0238	0.0238	0.0238	0.0238
HCl	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NO/NO ₂	0.0001	0.0001	0.0001	0.0001	0.0001	0.0000	0.0001	0.0001	0.0001	0.0001
TOTAL	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	5940	12,971	23,177	6114	6114	-	6114	17,063	17,063	17,063
V-L Flowrate (kg/hr)	197,965	432,257	772,378	203,756	203,756	-	203,756	568,622	568,622	568,622
Solids Flowrate (kg/hr)	4285	7878	15,793	4166	83	4083	83	11,626	11,626	11.6
Temperature (°C)	340	340	340	340	340	340	350	340	202	202
Pressure (MPa, abs)	1.45	1.45	1.43	1.43	1.41	1.41	1.50	1.43	1.43	1.43
Enthalpy (kJ/kg)	387.9	387.9	387.9	387.9	387.9	322.9	400.1	387.9	214.1	214.1
Density (kg/m ³)	9.473	9.473	9.473	9.473	9.336	-	9.782	9.473	12.448	12.448
V-L Molecular Weight	33.325	33.325	33.325	33.325	33.325	-	33.325	33.325	33.325	33.325
V-L Flowrate (lb _{mol} /hr)	13,096	28,594	51,094	13,479	13,479	-	13,479	37,615	37,615	37,615
V-L Flowrate (lb/hr)	436,415	952,911	1,702,707	449,179	449,179	-	449,179	1,253,526	1,253,526	1,253,526
Solids Flowrate (lb/hr)	9447	17,366	34,815	9184	184	9,001	184	25,630	25,630	25.6
Temperature (°F)	644	644	644	644	644	644	662	644	396	396
Pressure (psia)	210.8	210.8	207.9	207.9	204.9	204.9	218.2	207.9	207.9	207.9
Enthalpy (Btu/lb)	166.8	166.8	166.8	166.8	166.8	138.8	172.0	166.8	92.1	92.1
Density (lb/ft ³)	9.473	9.473	9.473	9.473	9.336	-	9.782	9.473	12.448	12.448


	21	22	23	24	25	26	27	28	29	30
V-L Mole Fraction										
CO ₂	0.0000	0.9213	0.0002	0.9213	0.9213	0.9213	0.9213	0.9213	0.6129	0.0002
H ₂ O	0.0000	0.0110	0.9923	0.0110	0.0110	0.0110	0.0110	0.0110	0.0000	0.9741
N ₂	0.0000	0.0110	0.0000	0.0110	0.0110	0.0110	0.0110	0.0110	0.0644	0.0000
O ₂	0.0000	0.0169	0.0000	0.0169	0.0169	0.0169	0.0169	0.0169	0.1003	0.0000
SO ₂	0.0000	0.0002	0.0072	0.0002	0.0002	0.0002	0.0002	0.0002	0.0000	0.0219
Ar	0.0000	0.0395	0.0000	0.0395	0.0395	0.0395	0.0395	0.0395	0.2225	0.0000
HCl	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0028
SO ₃	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NO/NO ₂	0.0000	0.0000	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0010
TOTAL	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	-	10,284	6779	10,284	333	9951	9951	9951	1459	112
V-L Flowrate (kg/hr)	-	444,170	124,452	444,170	14,400	429,770	429,770	429,770	59,652	2,146
Solids Flowrate (kg/hr)	11,615	5.81	2.91	5.81	5.81	5.81	5.81	5.81	5.81	5.81
Temperature (°C)	202	55	54	55	55	30	71	37	7	37
Pressure (MPa, abs)	0.09	1.43	1.43	1.43	1.43	1.38	2.50	2.40	0.09	2.35
Enthalpy (kJ/kg)	191.9	1075.7	523.9	1075.7	1075.7	1044.8	1082.5	1041.6	-85.1	362.4
Density (kg/m ³)	-	24.032	932.547	24.032	24.032	25.500	41.145	45.681	2.622	820.375
V-L Molecular Weight	-	43.189	18.360	43.189	43.189	43.189	43.189	43.189	40.872	19.095
V-L Flowrate (lb _{mol} /hr)	-	22,672	14,943	22,672	735	21,937	21,937	21,937	3217	248
V-L Flowrate (lb/hr)	-	979,172	274,354	979,172	31,745	947,428	947,428	947,428	131,502	4731
Solids Flowrate (lb/hr)	25,605	12.8	6.41	12.8	12.8	12.8	12.8	12.8	12.8	12.8
Temperature (°F)	396	131	128	131	131	86	160	99	44	98
Pressure (psia)	13.1	207.9	207.9	207.9	207.9	199.4	362.5	348.0	13.1	340.8
Enthalpy (Btu/lb)	82.5	462.5	225.3	462.5	462.5	449.2	465.5	447.8	-36.6	155.8
Density (lb/ft ³)	-	24.032	932.547	24.032	24.032	25.500	41.145	45.681	2.622	820.375

	31	32	33	34	35	36	37	38	39	40
V-L Mole Fraction										
CO ₂	0.9874	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
N ₂	0.0019	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.0026	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ar	0.0081	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
HCl	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NO/NO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TOTAL	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	8,379	-	76,478	76,478	67,206	67,206	377	377	62,196	62,573
V-L Flowrate (kg/hr)	367,972	-	1,377,772	1,377,772	1,210,725	1,210,725	6,800	6,800	1,120,470	1,127,270
Solids Flowrate (kg/hr)	5.81	3,630	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Temperature (°C)	45	950	274	593	355	593	364	167	27	149
Pressure (MPa, abs)	15.30	0.09	21.57	18.04	3.67	3.39	0.75	0.74	1.61	0.74
Enthalpy (kJ/kg)	-182.2	902.5	1201.7	3538.2	3112.2	3664.1	3193.1	924.5	116.3	627.2
Density (kg/m ³)	731.673	-	782.259	49.603	13.583	8.608	2.563	35.067	997.283	918.468
V-L Molecular Weight	43.916	-	18.015	18.015	18.015	18.015	18.015	18.015	18.015	18.015
V-L Flowrate (lb _{mol} /hr)	18,471	-	168,596	168,596	148,155	148,155	832	832	137,111	137,943
V-L Flowrate (lb/hr)	811,194	-	3,037,298	3,037,298	2,669,044	2,669,044	14,991	14,991	2,470,077	2,485,067
Solids Flowrate (lb/hr)	12.8	8,001	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Temperature (°F)	113	1742	525	1100	671	1100	688	333	81	300
Pressure (psia)	2218.5	13.1	3127.9	2615.6	532.8	491.0	108.0	106.9	232.7	106.9
Enthalpy (Btu/lb)	-78.4	388.0	516.7	1521.3	1338.1	1575.5	1372.9	397.5	50.0	269.7
Density (lb/ft ³)	731.673	-	782.259	49.603	13.583	8.608	2.563	35.067	997.283	918.468


	41	42
V-L Mole Fraction		
CO ₂	0.0000	0.0000
H ₂ O	1.0000	1.0000
N ₂	0.0000	0.0000
O ₂	0.0000	0.0000
SO ₂	0.0000	0.0000
Ar	0.0000	0.0000
HCl	0.0000	0.0000
SO ₃	0.0000	0.0000
NO/NO ₂	0.0000	0.0000
TOTAL	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	11,934	11,934
V-L Flowrate (kg/hr)	215,002	215,002
Solids Flowrate (kg/hr)	0.00	0.00
Temperature (°C)	171	273
Pressure (MPa, abs)	21.63	21.57
Enthalpy (kJ/kg)	737.0	1196.9
Density (kg/m ³)	908.790	783.797
V-L Molecular Weight	18.015	18.015
V-L Flowrate (lb _{mol} /hr)	26,309	26,309
V-L Flowrate (lb/hr)	473,971	473,971
Solids Flowrate (lb/hr)	0.00	0.00
Temperature (°F)	341	524
Pressure (psia)	3136.6	3127.9
Enthalpy (Btu/lb)	316.9	514.6
Density (lb/ft ³)	908.790	783.797

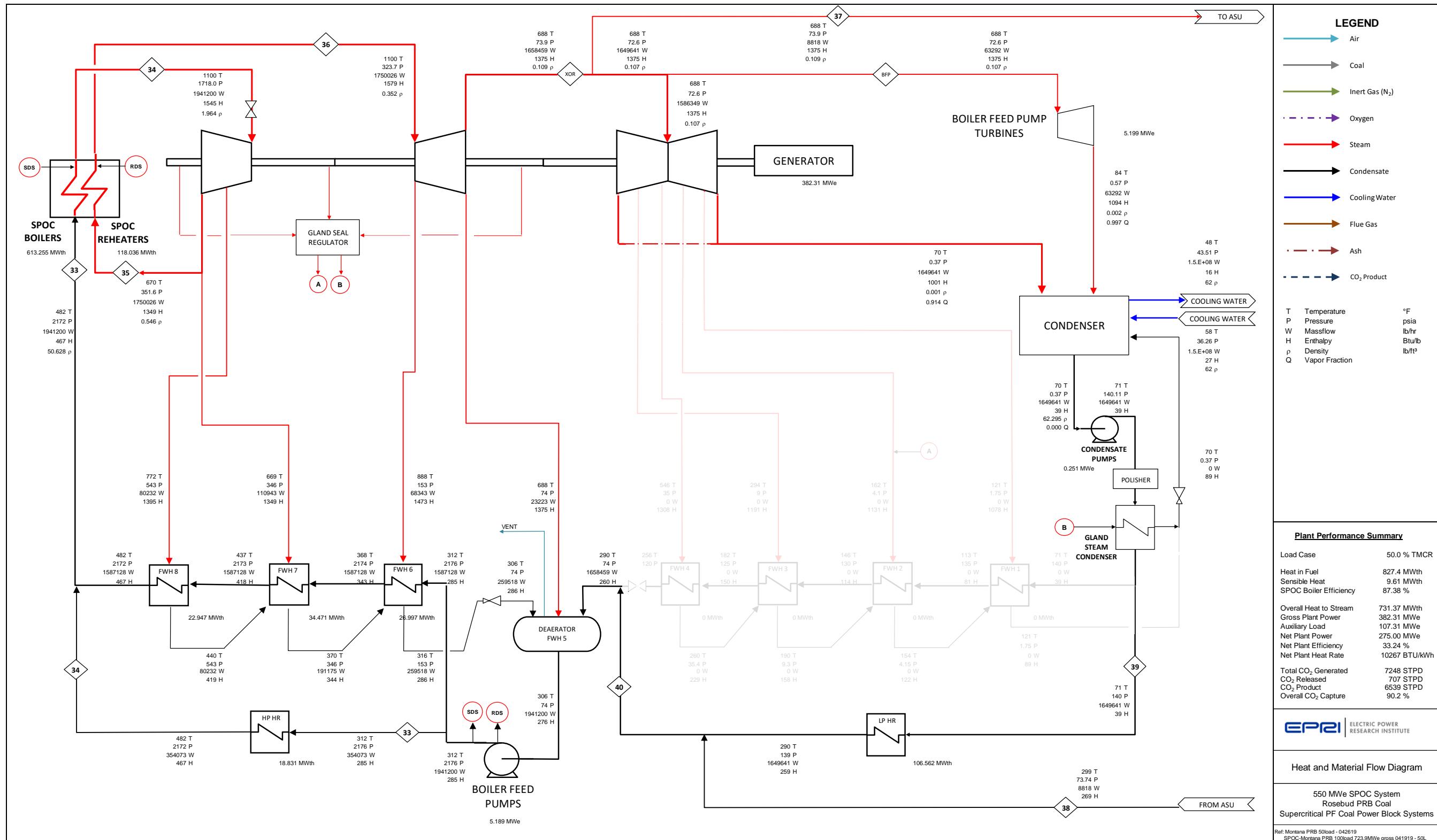
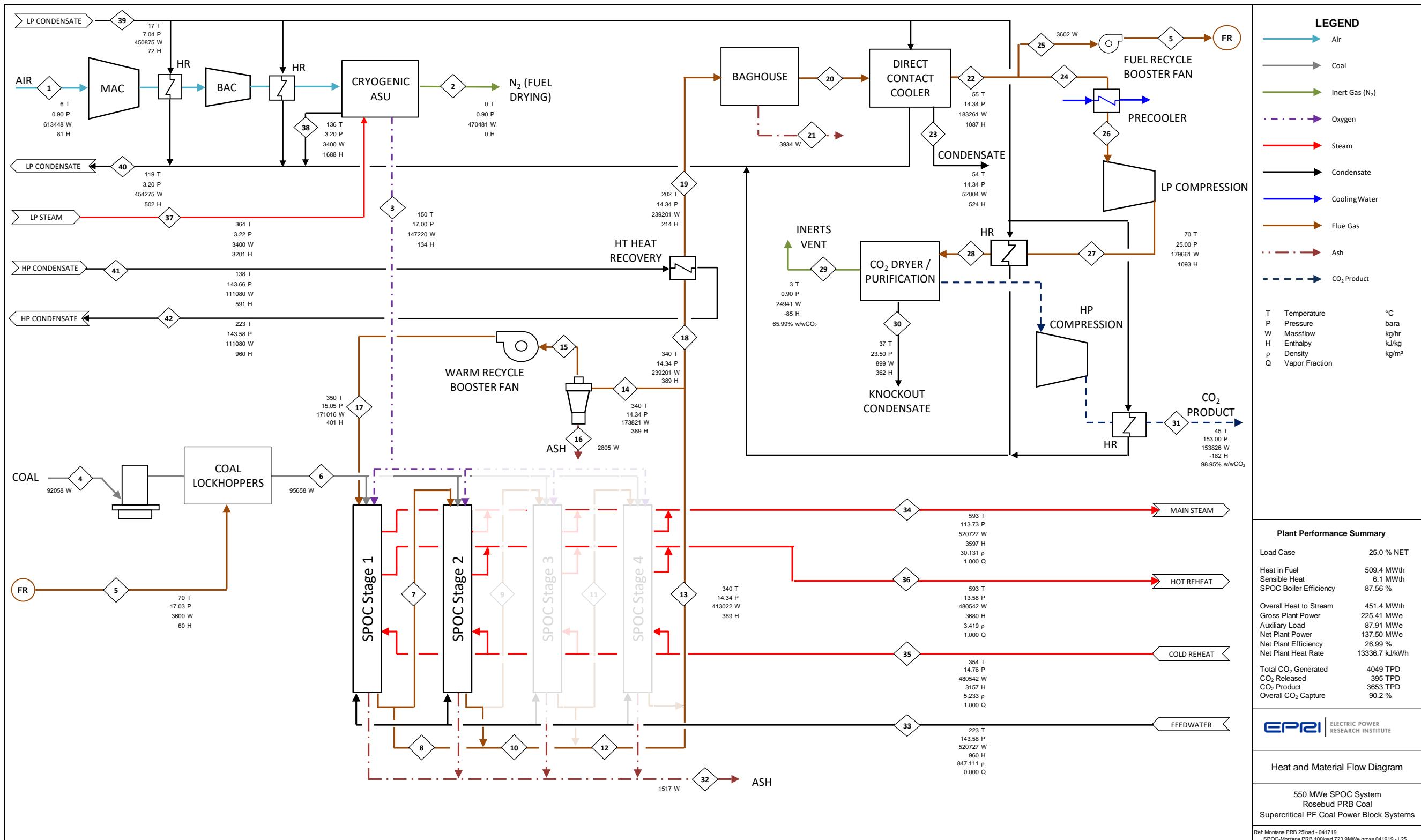

Figure B-13
Part-Load Case Montana PRB 50% Load – Boiler Island – SI Units

Figure B-14
Part-Load Case Montana PRB 50% Load – Turbine Island – SI Units

Figure B-15
Part-Load Case Montana PRB 50% Load – Boiler Island – English Units

Figure B-16
Part-Load Case Montana PRB 50% Load – Turbine Island – English Units

Table B-5
Part-Load Case Montana PRB 50% Load Stream Data


	1	2	3	4	5	6	7	8	9	10
V-L Mole Fraction										
CO ₂	0.0003	0.0004	0.0000	0.0000	0.9213	0.9213	0.5587	0.5587	0.5587	0.5587
H ₂ O	0.0062	0.0000	0.0000	0.0000	0.0110	0.0110	0.3973	0.3973	0.3973	0.3973
N ₂	0.7761	0.9951	0.0050	0.0000	0.0110	0.0110	0.0067	0.0067	0.0067	0.0067
O ₂	0.2082	0.0027	0.9590	0.0000	0.0169	0.0169	0.0102	0.0102	0.0102	0.0102
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0002	0.0002	0.0030	0.0030	0.0030	0.0030
Ar	0.0092	0.0019	0.0360	0.0000	0.0395	0.0395	0.0239	0.0239	0.0239	0.0239
HCl	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NO/NO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0001	0.0001
TOTAL	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	34,483	26,858	7411	-	333	333	4088	2977	4049	5939
V-L Flowrate (kg/hr)	996,400	753,425	239,124	0	14,400	14,400	136,622	99,486	135,311	198,468
Solids Flowrate (kg/hr)	0	8,025	0	149,527	0	149,527	1754	1277	2436	3059
Temperature (°C)	6	0	150	15	70	17	340	340	340	340
Pressure (MPa, abs)	0.09	0.09	1.70	0.09	1.70	1.45	1.45	1.45	1.45	1.45
Enthalpy (kJ/kg)	81.1	-0.2	134.0	20.7	59.8	24.1	387.1	387.1	387.1	387.1
Density (kg/m ³)	1.123	1.112	15.610	800.000	27.305	732.123	9.498	9.498	9.498	9.498
V-L Molecular Weight	28.896	28.053	32.265	-	43.189	43.189	33.416	33.416	33.416	33.416
V-L Flowrate (lb _{mol} /hr)	76,017	59,207	16,338	-	735	735	9013	6563	8927	13,093
V-L Flowrate (lb/hr)	2,196,564	1,660,924	527,149	0	31,745	31,745	301,183	219,318	298,292	437,522
Solids Flowrate (lb/hr)	0	17,691	0	329,632	0	329,632	3866	2815	5370	6743
Temperature (°F)	42	32	302	59	158	63	644	644	644	644
Pressure (psia)	13.1	13.1	246.5	13.1	246.9	210.8	210.6	210.6	209.9	209.9
Enthalpy (Btu/lb)	34.9	-0.1	57.6	8.9	25.7	10.4	166.4	166.4	166.4	166.4
Density (lb/ft ³)	1.123	1.112	15.610	800.000	27.305	732.123	9.498	9.498	9.498	9.498

	11	12	13	14	15	16	17	18	19	20
V-L Mole Fraction										
CO ₂	0.5587	0.5587	0.5587	0.5587	0.5587	0.0000	0.5587	0.5587	0.5587	0.5587
H ₂ O	0.3973	0.3973	0.3973	0.3973	0.3973	0.0000	0.3973	0.3973	0.3973	0.3973
N ₂	0.0067	0.0067	0.0067	0.0067	0.0067	0.0000	0.0067	0.0067	0.0067	0.0067
O ₂	0.0102	0.0102	0.0102	0.0102	0.0102	0.0000	0.0102	0.0102	0.0102	0.0102
SO ₂	0.0030	0.0030	0.0030	0.0030	0.0030	0.0000	0.0030	0.0030	0.0030	0.0030
Ar	0.0239	0.0239	0.0239	0.0239	0.0239	0.0000	0.0239	0.0239	0.0239	0.0239
HCl	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NO/NO ₂	0.0001	0.0001	0.0001	0.0001	0.0001	0.0000	0.0001	0.0001	0.0001	0.0001
TOTAL	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	4019	8893	15,834	4143	4143	-	4143	11,691	11,691	11,691
V-L Flowrate (kg/hr)	134,293	297,156	529,119	138,438	138,438	-	138,438	390,678	390,678	390,678
Solids Flowrate (kg/hr)	2825	5135	10,423	2727	55	2673	55	7696	7696	7.7
Temperature (°C)	340	340	340	340	340	340	350	340	202	202
Pressure (MPa, abs)	1.44	1.44	1.43	1.43	1.41	1.41	1.50	1.43	1.43	1.43
Enthalpy (kJ/kg)	387.1	387.1	387.1	387.1	387.1	322.9	399.3	387.1	213.7	213.7
Density (kg/m ³)	9.498	9.498	9.498	9.498	9.361	-	9.807	9.498	12.480	12.480
V-L Molecular Weight	33.416	33.416	33.416	33.416	33.416	-	33.416	33.416	33.416	33.416
V-L Flowrate (lb _{mol} /hr)	8859	19,604	34,906	9133	9133	-	9,133	25,773	25,773	25,773
V-L Flowrate (lb/hr)	296,049	655,080	1,166,443	305,187	305,187	-	305,187	861,249	861,249	861,249
Solids Flowrate (lb/hr)	6227	11,319	22,978	6012	120	5892	120	16,966	16,966	17.0
Temperature (°F)	644	644	644	644	644	644	661	644	396	396
Pressure (psia)	209.3	209.3	207.9	207.9	204.9	204.9	218.2	207.9	207.9	207.9
Enthalpy (Btu/lb)	166.4	166.4	166.4	166.4	166.4	138.8	171.7	166.4	91.9	91.9
Density (lb/ft ³)	9.498	9.498	9.498	9.498	9.361	-	9.807	9.498	12.480	12.480

	21	22	23	24	25	26	27	28	29	30
V-L Mole Fraction										
CO ₂	0.0000	0.9213	0.0002	0.9213	0.9213	0.9213	0.9213	0.9213	0.6128	0.0002
H ₂ O	0.0000	0.0110	0.9922	0.0110	0.0110	0.0110	0.0110	0.0110	0.0000	0.9740
N ₂	0.0000	0.0110	0.0000	0.0110	0.0110	0.0110	0.0110	0.0110	0.0644	0.0000
O ₂	0.0000	0.0169	0.0000	0.0169	0.0169	0.0169	0.0169	0.0169	0.1003	0.0000
SO ₂	0.0000	0.0002	0.0073	0.0002	0.0002	0.0002	0.0002	0.0002	0.0000	0.0219
Ar	0.0000	0.0395	0.0000	0.0395	0.0395	0.0395	0.0395	0.0395	0.2225	0.0000
HCl	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0028
SO ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NO/NO ₂	0.0000	0.0000	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0010
TOTAL	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	-	7089	4603	7089	333	6755	6755	6755	991	76
V-L Flowrate (kg/hr)	-	306,154	84,524	306,154	14,400	291,754	291,754	291,754	40,498	1,457
Solids Flowrate (kg/hr)	7688	3.85	1.92	3.85	3.85	3.85	3.85	3.85	3.85	3.85
Temperature (°C)	202	55	53	55	55	30	71	37	5	37
Pressure (MPa, abs)	0.09	1.43	1.43	1.43	1.43	1.38	2.50	2.40	0.09	2.35
Enthalpy (kJ/kg)	191.9	1063.1	523.7	1063.1	1063.1	1032.1	1069.6	1028.9	-85.2	362.4
Density (kg/m ³)	-	24.032	931.856	24.032	24.032	25.593	41.190	45.681	2.622	820.049
V-L Molecular Weight	-	43.189	18.365	43.189	43.189	43.189	43.189	43.189	40.872	19.096
V-L Flowrate (lb _{mol} /hr)	-	15,627	10,146	15,627	735	14,892	14,892	14,892	2184	168
V-L Flowrate (lb/hr)	-	674,917	186,333	674,917	31,745	643,172	643,172	643,172	89,279	3,212
Solids Flowrate (lb/hr)	16,949	8.5	4.24	8.5	8.5	8.5	8.5	8.5	8.5	8.5
Temperature (°F)	396	131	128	131	131	86	159	99	42	98
Pressure (psia)	13.1	207.9	207.9	207.9	207.9	200.1	362.5	348.0	13.1	340.8
Enthalpy (Btu/lb)	82.5	457.1	225.2	457.1	457.1	443.8	459.9	442.4	-36.6	155.8
Density (lb/ft ³)	-	24.032	931.856	24.032	24.032	25.593	41.190	45.681	2.622	820.049

	31	32	33	34	35	36	37	38	39	40
V-L Mole Fraction										
CO ₂	0.9874	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
N ₂	0.0019	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.0026	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ar	0.0081	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
HCl	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NO/NO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TOTAL	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	5,688	-	48,879	48,879	44,065	44,065	222	222	41,537	41,760
V-L Flowrate (kg/hr)	249,799	-	880,563	880,563	793,842	793,842	4,000	4,000	748,306	752,306
Solids Flowrate (kg/hr)	3.85	2,464	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Temperature (°C)	45	950	250	593	354	593	364	149	21	143
Pressure (MPa, abs)	15.30	0.09	14.98	11.85	2.42	2.23	0.51	0.51	0.97	0.51
Enthalpy (kJ/kg)	-182.2	902.5	1086.0	3593.2	3138.2	3673.5	3197.3	626.2	90.8	603.4
Density (kg/m ³)	731.673	-	811.141	31.472	8.748	5.643	1.747	918.523	998.496	923.404
V-L Molecular Weight	43.916	-	18.015	18.015	18.015	18.015	18.015	18.015	18.015	18.015
V-L Flowrate (lb _{mol} /hr)	12,539	-	107,753	107,753	97,142	97,142	489	489	91,569	92,059
V-L Flowrate (lb/hr)	550,681	-	1,941,200	1,941,200	1,750,026	1,750,026	8,818	8,818	1,649,641	1,658,459
Solids Flowrate (lb/hr)	8.5	5,432	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Temperature (°F)	113	1742	482	1100	670	1100	688	299	71	290
Pressure (psia)	2218.5	13.1	2172.2	1718.0	351.6	323.7	73.9	73.7	140.1	73.7
Enthalpy (Btu/lb)	-78.4	388.0	466.9	1544.9	1349.3	1579.5	1374.8	269.2	39.0	259.5
Density (lb/ft ³)	731.673	-	811.141	31.472	8.748	5.643	1.747	918.523	998.496	923.404

	41	42
V-L Mole Fraction		
CO ₂	0.0000	0.0000
H ₂ O	1.0000	1.0000
N ₂	0.0000	0.0000
O ₂	0.0000	0.0000
SO ₂	0.0000	0.0000
Ar	0.0000	0.0000
HCl	0.0000	0.0000
SO ₃	0.0000	0.0000
NO/NO ₂	0.0000	0.0000
TOTAL	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	8,915	8,915
V-L Flowrate (kg/hr)	160,614	160,614
Solids Flowrate (kg/hr)	0.00	0.00
Temperature (°C)	155	250
Pressure (MPa, abs)	15.00	14.98
Enthalpy (kJ/kg)	663.9	1086.0
Density (kg/m ³)	920.370	811.146
V-L Molecular Weight	18.015	18.015
V-L Flowrate (lb _{mol} /hr)	19,654	19,654
V-L Flowrate (lb/hr)	354,073	354,073
Solids Flowrate (lb/hr)	0.00	0.00
Temperature (°F)	312	482
Pressure (psia)	2175.5	2172.2
Enthalpy (Btu/lb)	285.5	466.9
Density (lb/ft ³)	920.370	811.146

Figure B-17
Part-Load Case Montana PRB 25% Load – Boiler Island – SI Units

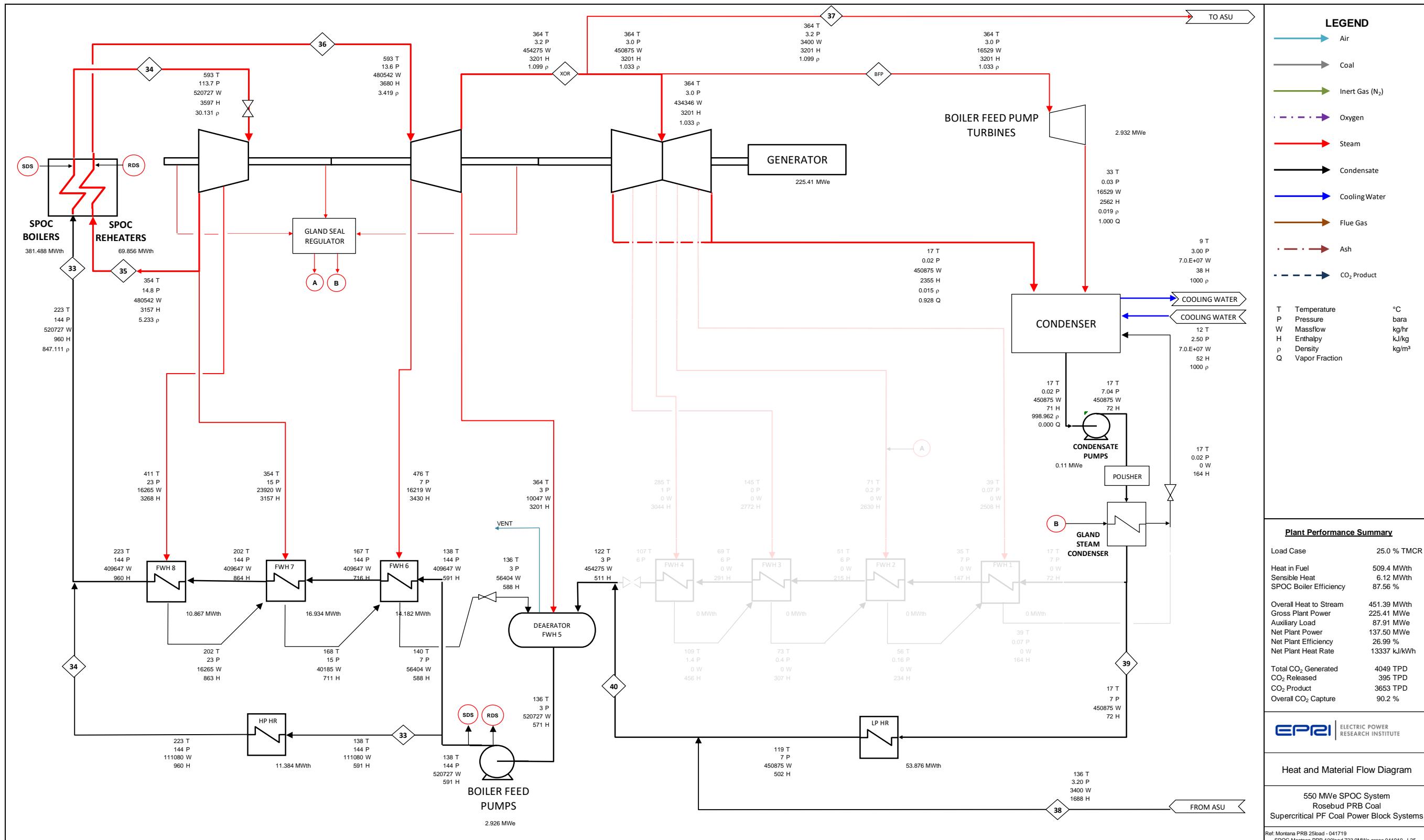
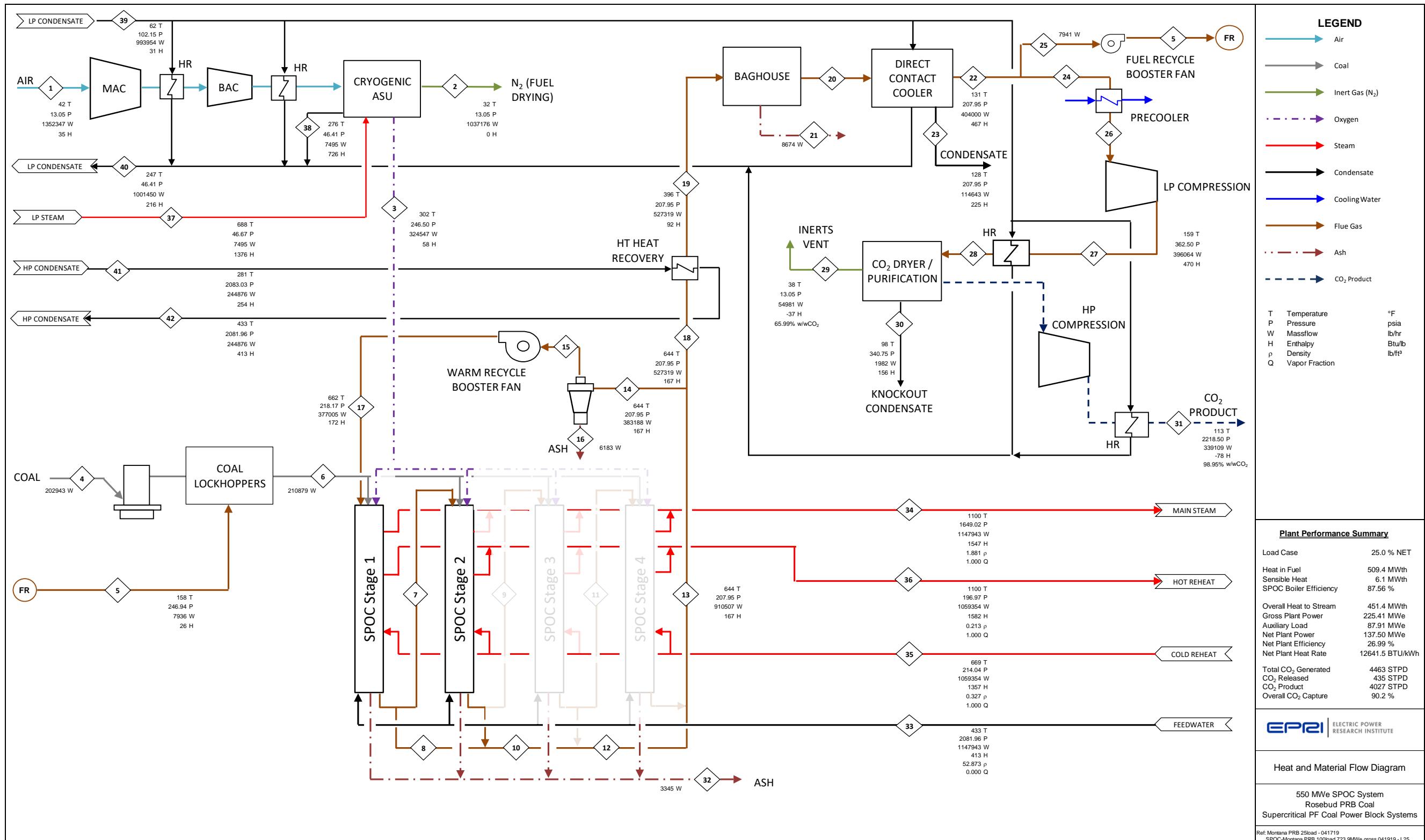
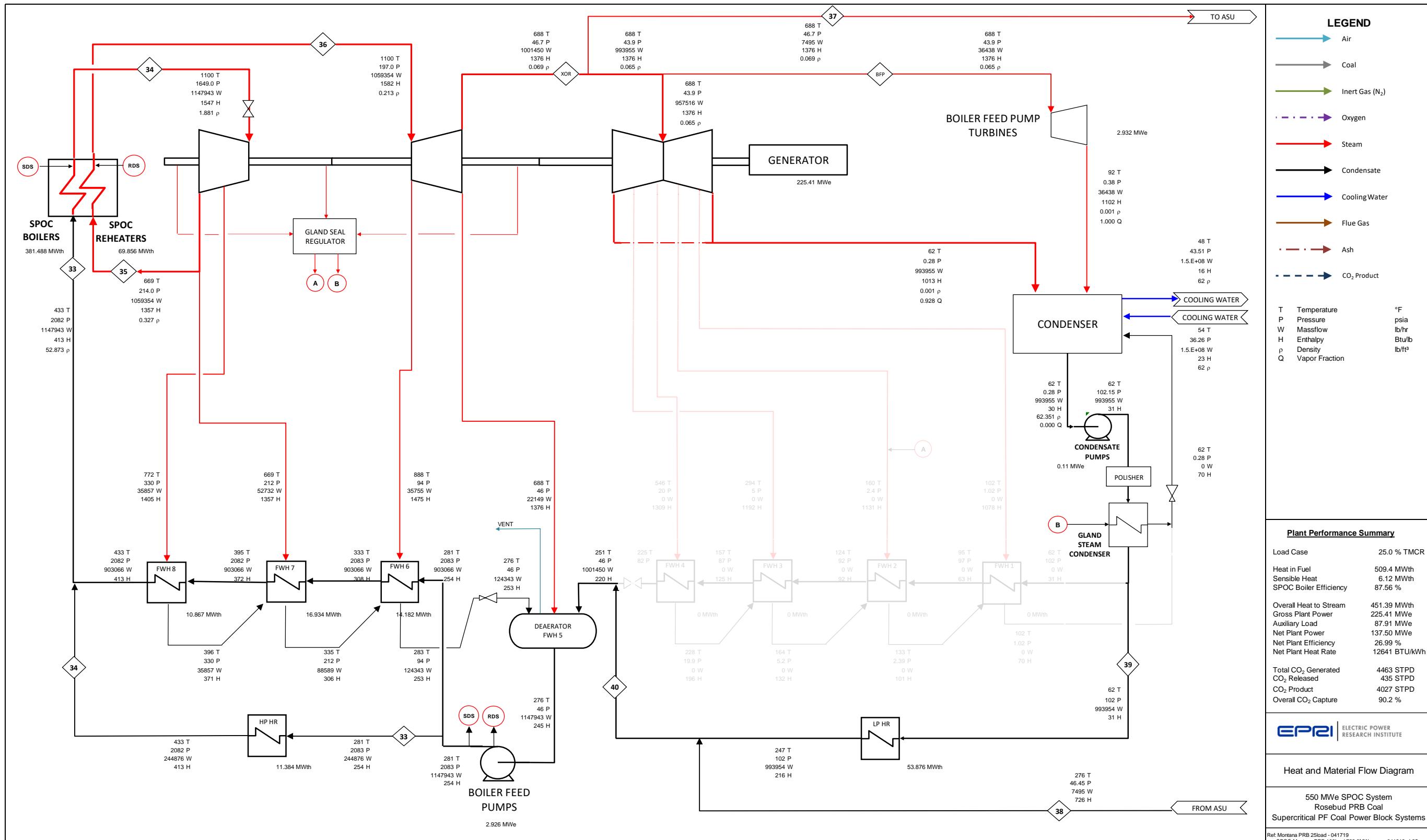




Figure B-18
Part-Load Case Montana PRB 25% Load – Turbine Island – SI Units

Figure B-19
Part-Load Case Montana PRB 25% Load – Boiler Island – English Units

Figure B-20
Part-Load Case Montana PRB 25% Load – Turbine Island – English Units

Table B-6
Part-Load Case Montana PRB 25% Load Stream Data

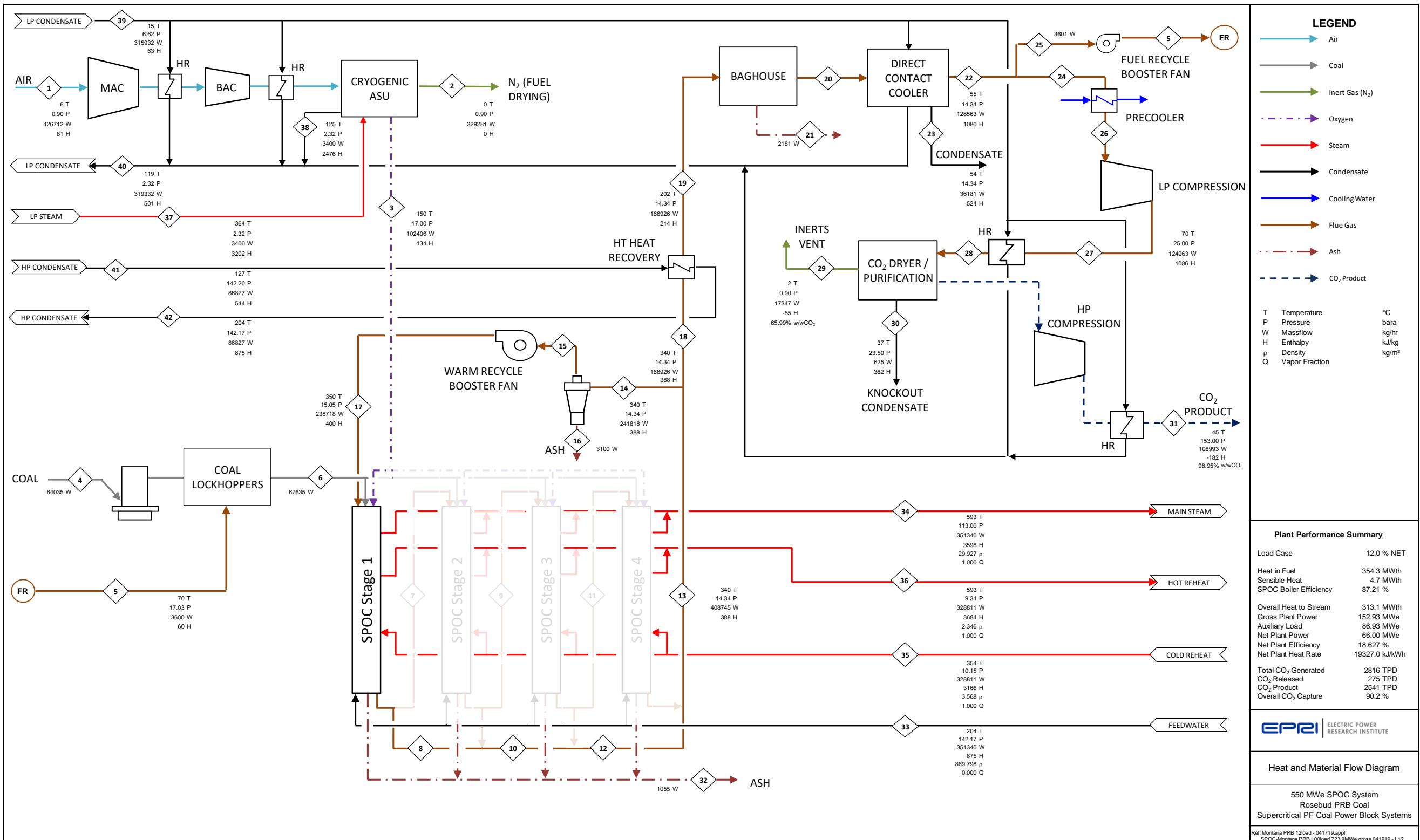
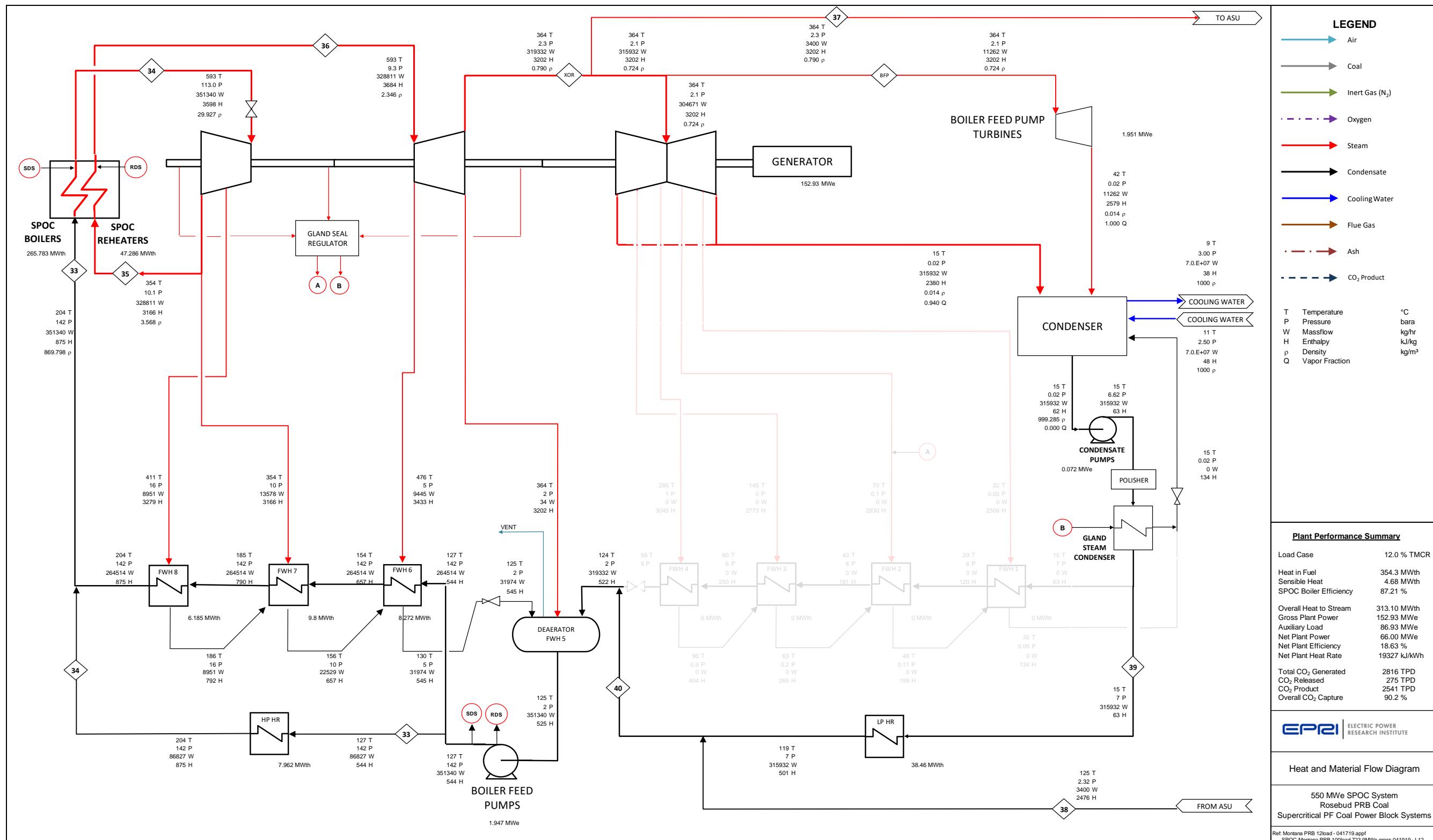
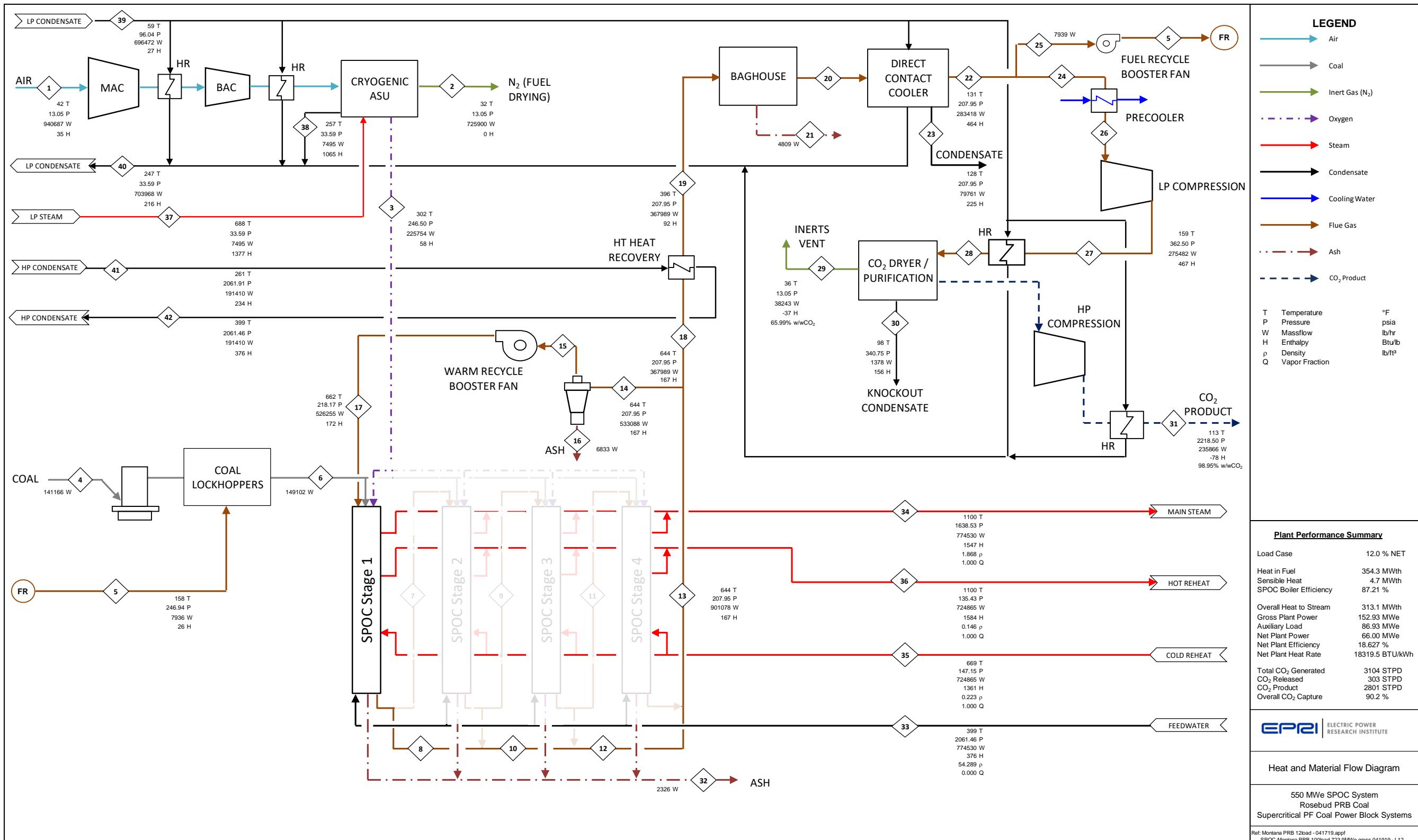
	1	2	3	4	5	6	7	8	9	10
V-L Mole Fraction										
CO ₂	0.0003	0.0004	0.0000	0.0000	0.9213	0.9213	0.5543	0.5543	0.5518	0.5526
H ₂ O	0.0062	0.0000	0.0000	0.0000	0.0110	0.0110	0.4020	0.4020	0.4047	0.4039
N ₂	0.7761	0.9951	0.0050	0.0000	0.0110	0.0110	0.0066	0.0066	0.0066	0.0066
O ₂	0.2082	0.0027	0.9590	0.0000	0.0169	0.0169	0.0101	0.0101	0.0101	0.0101
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0002	0.0002	0.0030	0.0030	0.0030	0.0030
Ar	0.0092	0.0019	0.0360	0.0000	0.0395	0.0395	0.0237	0.0237	0.0236	0.0237
HCl	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NO/NO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0001	0.0001
TOTAL	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	21,230	16,535	4563	-	83	83	5068	3654	0	12,219
V-L Flowrate (kg/hr)	613,448	463,857	147,220	0	3,600	3,600	168,728	121,662	0	406,221
Solids Flowrate (kg/hr)	0	6624	0	92,058	0	92,058	2188	1578	0	6800
Temperature (°C)	6	0	150	15	70	16	340	340	340	340
Pressure (MPa, abs)	0.09	0.09	1.70	0.09	1.70	1.50	1.50	1.50	1.49	1.49
Enthalpy (kJ/kg)	81.1	-0.2	134.0	20.7	59.8	22.2	388.6	388.6	388.6	388.6
Density (kg/m ³)	1.123	1.112	15.610	800.000	27.305	770.920	9.452	9.452	9.452	9.452
V-L Molecular Weight	28.896	28.053	32.265	-	43.189	43.189	33.294	33.294	33.226	33.246
V-L Flowrate (lb _{mol} /hr)	46,801	36,452	10,059	-	184	184	11,172	8056	0	26,936
V-L Flowrate (lb/hr)	1,352,347	1,022,573	324,547	0	7,936	7,936	371,961	268,204	1	895,515
Solids Flowrate (lb/hr)	0	14,604	0	202,943	0	202,943	4824	3478	0	14,991
Temperature (°F)	42	32	302	59	158	61	644	644	644	644
Pressure (psia)	13.1	13.1	246.5	13.1	246.9	217.8	217.5	217.5	216.5	216.5
Enthalpy (Btu/lb)	34.9	-0.1	57.6	8.9	25.7	9.5	167.1	167.1	167.1	167.1
Density (lb/ft ³)	1.123	1.112	15.610	800.000	27.305	770.920	9.452	9.452	9.452	9.452

	11	12	13	14	15	16	17	18	19	20
V-L Mole Fraction										
CO ₂	0.6344	0.5526	0.5526	0.5526	0.5526	0.0000	0.5526	0.5526	0.5526	0.5526
H ₂ O	0.3157	0.4039	0.4039	0.4039	0.4039	0.0000	0.4039	0.4039	0.4039	0.4039
N ₂	0.0075	0.0066	0.0066	0.0066	0.0066	0.0000	0.0066	0.0066	0.0066	0.0066
O ₂	0.0116	0.0101	0.0101	0.0101	0.0101	0.0000	0.0101	0.0101	0.0101	0.0101
SO ₂	0.0035	0.0030	0.0030	0.0030	0.0030	0.0000	0.0030	0.0030	0.0030	0.0030
Ar	0.0272	0.0237	0.0237	0.0237	0.0237	0.0000	0.0237	0.0237	0.0237	0.0237
HCl	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NO/NO ₂	0.0002	0.0001	0.0001	0.0001	0.0001	0.0000	0.0001	0.0001	0.0001	0.0001
TOTAL	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	0	12,219	12,219	5142	5142	-	5142	7076	7076	7076
V-L Flowrate (kg/hr)	0	406,222	406,222	170,959	170,959	-	170,959	235,263	235,263	235,263
Solids Flowrate (kg/hr)	0	6800	6800	2,862	57	2805	57	3938	3938	3.9
Temperature (°C)	340	340	340	340	340	340	350	340	202	202
Pressure (MPa, abs)	1.49	1.49	1.43	1.43	1.41	1.41	1.50	1.43	1.43	1.43
Enthalpy (kJ/kg)	388.6	388.6	388.6	388.6	388.6	322.9	400.8	388.6	214.5	214.5
Density (kg/m ³)	9.452	9.452	9.452	9.452	9.315	-	9.759	9.452	12.421	12.421
V-L Molecular Weight	35.501	33.246	33.246	33.246	33.246	-	33.246	33.246	33.246	33.246
V-L Flowrate (lb _{mol} /hr)	0	26,936	26,936	11,336	11,336	-	11,336	15,600	15,600	15,600
V-L Flowrate (lb/hr)	0	895,515	895,515	376,879	376,879	-	376,879	518,637	518,637	518,637
Solids Flowrate (lb/hr)	0	14,991	14,991	6309	126	6,183	126	8682	8682	8.7
Temperature (°F)	644	644	644	644	644	644	662	644	396	396
Pressure (psia)	215.5	215.5	207.9	207.9	204.9	204.9	218.2	207.9	207.9	207.9
Enthalpy (Btu/lb)	167.1	167.1	167.1	167.1	167.1	138.8	172.3	167.1	92.2	92.2
Density (lb/ft ³)	9.452	9.452	9.452	9.452	9.315	-	9.759	9.452	12.421	12.421

	21	22	23	24	25	26	27	28	29	30
V-L Mole Fraction										
CO ₂	0.0000	0.9213	0.0002	0.9213	0.9213	0.9213	0.9213	0.9213	0.6128	0.0002
H ₂ O	0.0000	0.0110	0.9924	0.0110	0.0110	0.0110	0.0110	0.0110	0.0000	0.9740
N ₂	0.0000	0.0110	0.0000	0.0110	0.0110	0.0110	0.0110	0.0110	0.0644	0.0000
O ₂	0.0000	0.0169	0.0000	0.0169	0.0169	0.0169	0.0169	0.0169	0.1003	0.0000
SO ₂	0.0000	0.0002	0.0071	0.0002	0.0002	0.0002	0.0002	0.0002	0.0000	0.0219
Ar	0.0000	0.0395	0.0000	0.0395	0.0395	0.0395	0.0395	0.0395	0.2225	0.0000
HCl	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0028
SO ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NO/NO ₂	0.0000	0.0000	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0010
TOTAL	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	-	4243	2833	4243	83	4160	4160	4160	610	47
V-L Flowrate (kg/hr)	-	183,259	52,003	183,259	3,600	179,659	179,659	179,659	24,939	897
Solids Flowrate (kg/hr)	3,934	1.97	0.98	1.97	1.97	1.97	1.97	1.97	1.97	1.97
Temperature (°C)	202	55	54	55	55	30	70	37	3	37
Pressure (MPa, abs)	0.09	1.43	1.43	1.43	1.43	1.38	2.50	2.40	0.09	2.35
Enthalpy (kJ/kg)	191.9	1086.8	524.1	1086.8	1086.8	1055.8	1093.1	1052.6	-85.2	362.4
Density (kg/m ³)	-	24.032	932.898	24.032	24.032	25.642	41.214	45.681	2.623	819.855
V-L Molecular Weight	-	43.189	18.355	43.189	43.189	43.189	43.189	43.189	40.872	19.096
V-L Flowrate (lb _{mol} /hr)	-	9,354	6,246	9,354	184	9,170	9,170	9,170	1,345	104
V-L Flowrate (lb/hr)	-	403,996	114,641	403,996	7936	396,059	396,059	396,059	54,977	1978
Solids Flowrate (lb/hr)	8,674	4.3	2.17	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Temperature (°F)	396	131	128	131	131	86	159	99	38	98
Pressure (psia)	13.1	207.9	207.9	207.9	207.9	200.5	362.5	348.0	13.1	340.8
Enthalpy (Btu/lb)	82.5	467.3	225.3	467.3	467.3	453.9	470.0	452.6	-36.6	155.8
Density (lb/ft ³)	-	24.032	932.898	24.032	24.032	25.642	41.214	45.681	2.623	819.855

	31	32	33	34	35	36	37	38	39	40
V-L Mole Fraction										
CO ₂	0.9874	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
N ₂	0.0019	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.0026	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ar	0.0081	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
HCl	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NO/NO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TOTAL	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	3,503	-	28,905	28,905	26,674	26,674	189	189	25,027	25,216
V-L Flowrate (kg/hr)	153,824	-	520,727	520,727	480,542	480,542	3,400	3,400	450,875	454,275
Solids Flowrate (kg/hr)	1.97	1,517	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Temperature (°C)	45	950	223	593	354	593	364	136	17	119
Pressure (MPa, abs)	15.30	0.09	14.36	11.37	1.48	1.36	0.32	0.32	0.70	0.32
Enthalpy (kJ/kg)	-182.2	902.5	959.9	3597.3	3157.1	3680.5	3200.8	1688.3	71.5	501.7
Density (kg/m ³)	731.673	-	847.111	30.131	5.233	3.419	1.099	3.380	999.278	943.762
V-L Molecular Weight	43.916	-	18.015	18.015	18.015	18.015	18.015	18.015	18.015	18.015
V-L Flowrate (lb _{mol} /hr)	7,722	-	63,721	63,721	58,803	58,803	416	416	55,173	55,589
V-L Flowrate (lb/hr)	339,104	-	1,147,943	1,147,943	1,059,354	1,059,354	7,495	7,495	993,954	1,001,450
Solids Flowrate (lb/hr)	4.3	3,345	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Temperature (°F)	113	1742	433	1100	669	1100	688	276	62	247
Pressure (psia)	2218.5	13.1	2082.0	1649.0	214.0	197.0	46.7	46.4	102.1	46.4
Enthalpy (Btu/lb)	-78.4	388.0	412.7	1546.7	1357.5	1582.5	1376.2	725.9	30.8	215.7
Density (lb/ft ³)	731.673	-	847.111	30.131	5.233	3.419	1.099	3.380	999.278	943.762

	41	42
V-L Mole Fraction		
CO ₂	0.0000	0.0000
H ₂ O	1.0000	1.0000
N ₂	0.0000	0.0000
O ₂	0.0000	0.0000
SO ₂	0.0000	0.0000
Ar	0.0000	0.0000
HCl	0.0000	0.0000
SO ₃	0.0000	0.0000
NO/NO ₂	0.0000	0.0000
TOTAL	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	6,166	6,166
V-L Flowrate (kg/hr)	111,080	111,080
Solids Flowrate (kg/hr)	0.00	0.00
Temperature (°C)	138	223
Pressure (MPa, abs)	14.37	14.36
Enthalpy (kJ/kg)	590.9	959.9
Density (kg/m ³)	935.220	847.112
V-L Molecular Weight	18.015	18.015
V-L Flowrate (lb _{mol} /hr)	13,593	13,593
V-L Flowrate (lb/hr)	244,876	244,876
Solids Flowrate (lb/hr)	0.00	0.00
Temperature (°F)	281	433
Pressure (psia)	2083.0	2082.0
Enthalpy (Btu/lb)	254.1	412.7
Density (lb/ft ³)	935.220	847.112

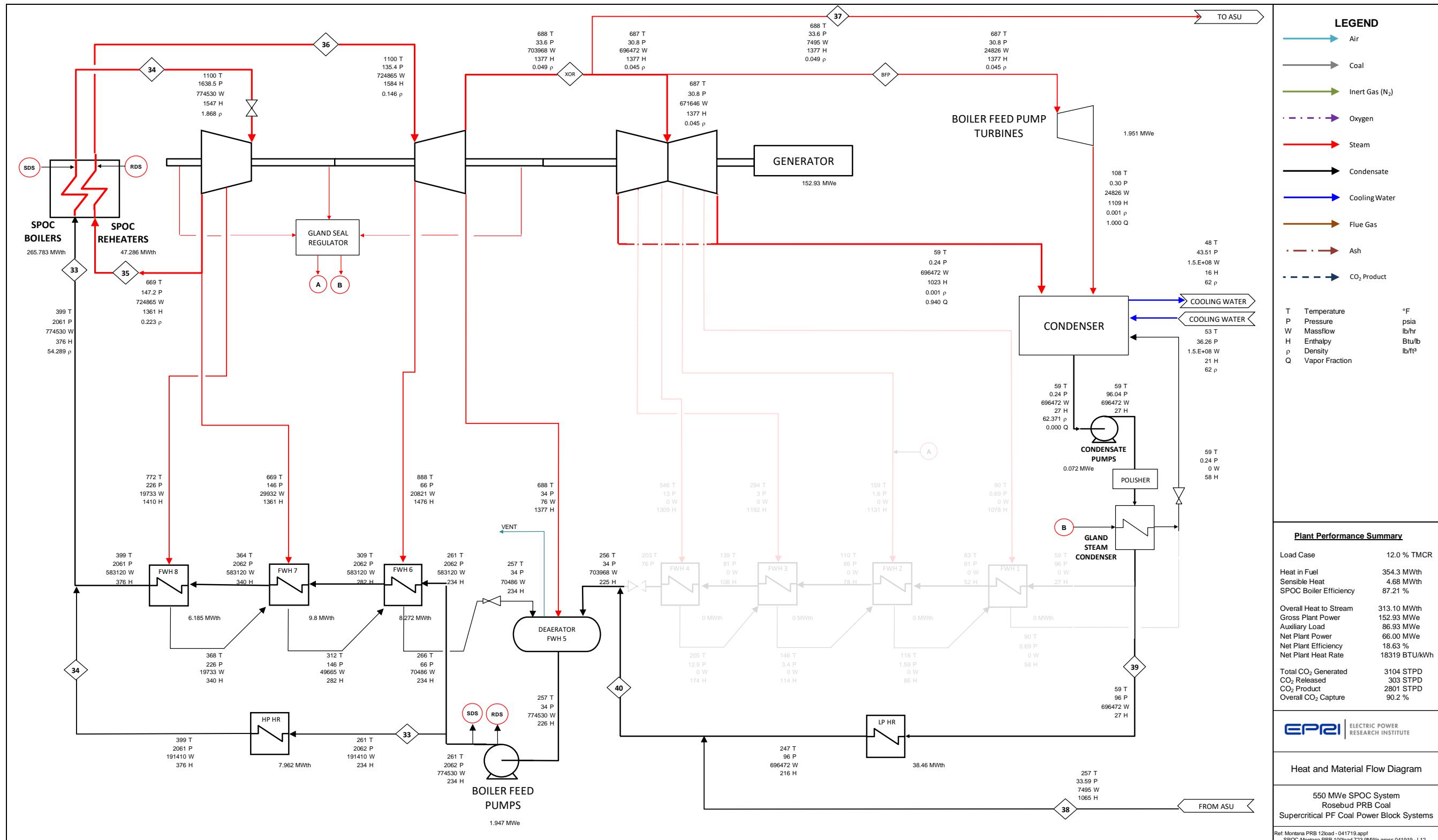
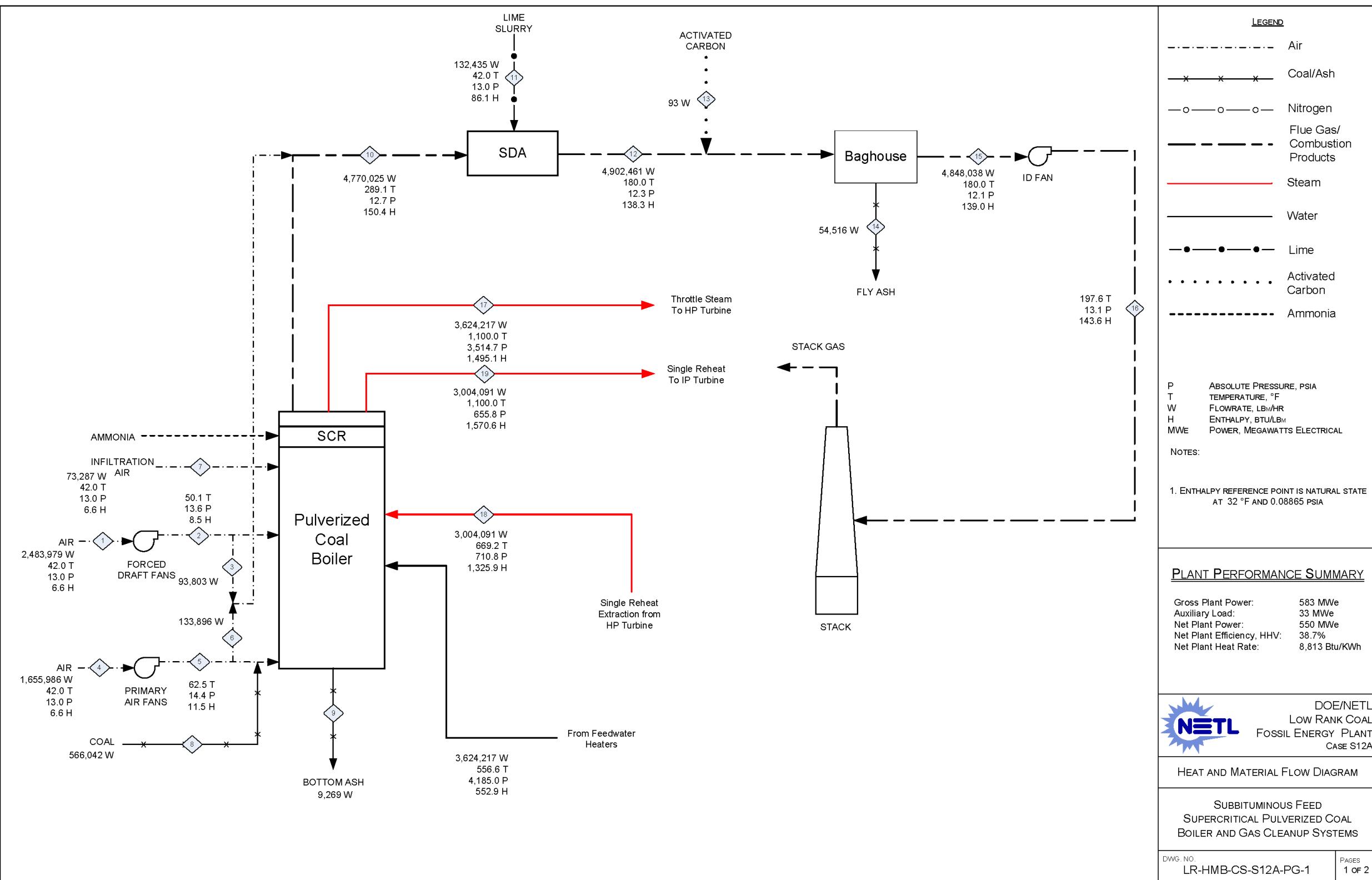

Figure B-21
Part-Load Case Montana PRB 12% Load – Boiler Island – SI Units

Figure B-22
Part-Load Case Montana PRB 12% Load – Turbine Island – SI Units

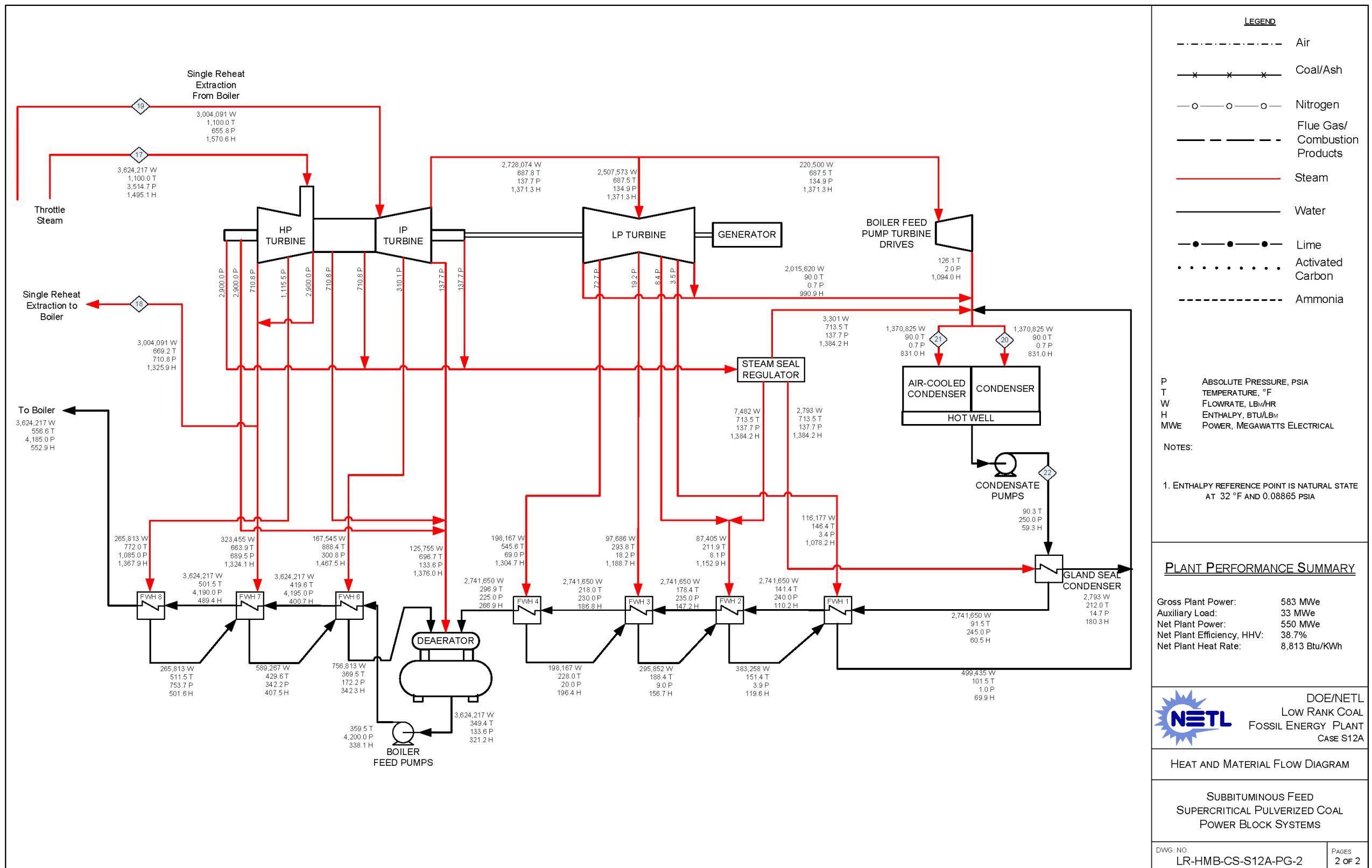
Figure B-23
Part-Load Case Montana PRB 12% Load – Boiler Island – English Units

Figure B-24
Part-Load Case Montana PRB 12% Load – Turbine Island – English Units

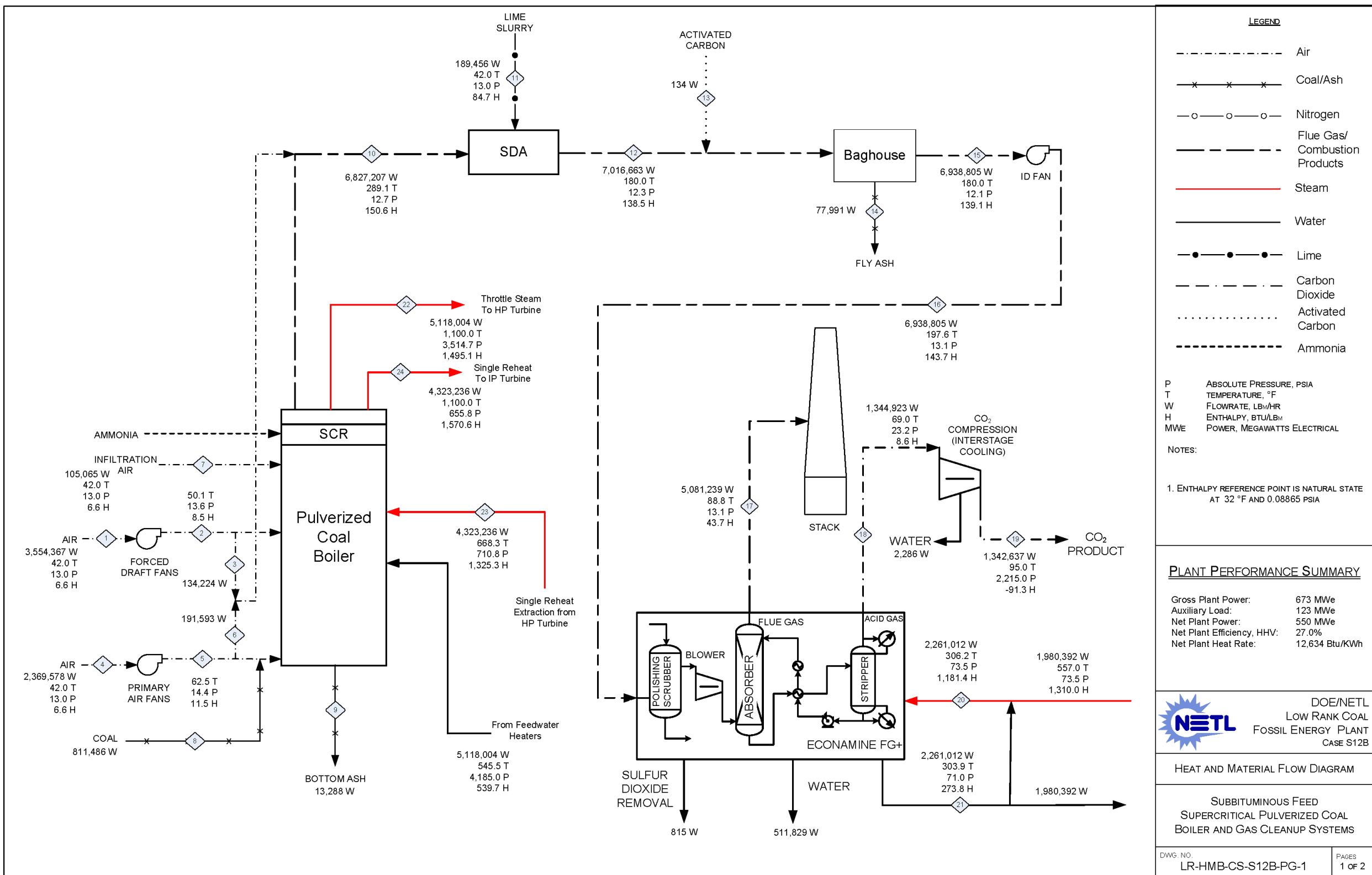
Table B-7
Part-Load Case Montana PRB 12% Load Stream Data

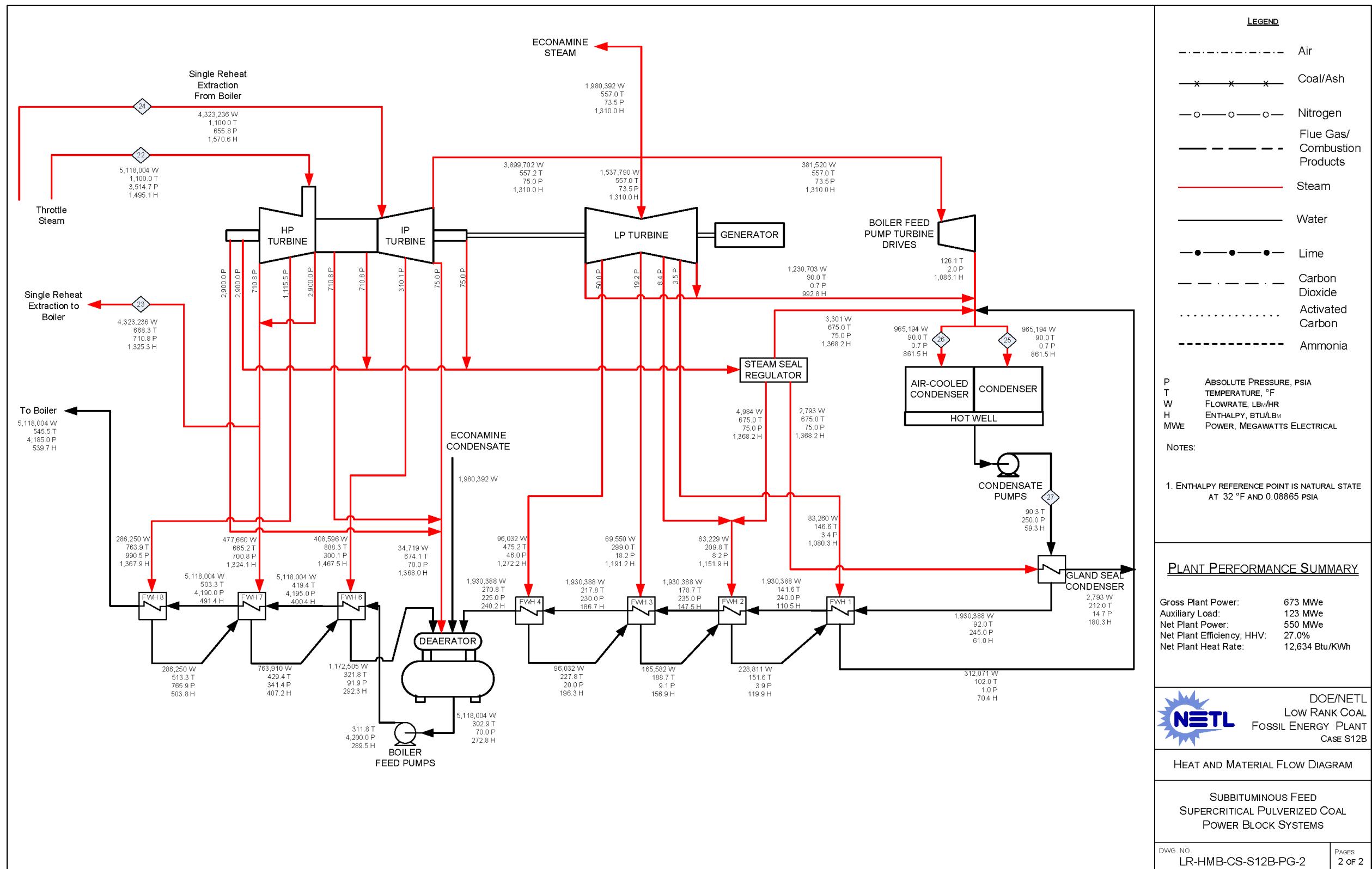

	1	2	3	4	5	6	7	8	9	10
V-L Mole Fraction										
CO ₂	0.0003	0.0004	0.0000	0.0000	0.9213	0.9213	0.5544	0.5544	0.6344	0.5544
H ₂ O	0.0062	0.0000	0.0000	0.0000	0.0110	0.0110	0.4019	0.4019	0.3157	0.4019
N ₂	0.7761	0.9951	0.0050	0.0000	0.0110	0.0110	0.0066	0.0066	0.0075	0.0066
O ₂	0.2082	0.0027	0.9590	0.0000	0.0169	0.0169	0.0101	0.0101	0.0116	0.0101
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0002	0.0002	0.0030	0.0030	0.0035	0.0030
Ar	0.0092	0.0019	0.0360	0.0000	0.0395	0.0395	0.0238	0.0238	0.0272	0.0238
HCl	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NO/NO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0002	0.0001
TOTAL	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	14,767	11,502	3174	-	83	83	0	12,115	0	12,115
V-L Flowrate (kg/hr)	426,712	322,657	102,406	0	3600	3600	0	403,398	0	403,398
Solids Flowrate (kg/hr)	0	6,624	0	64,035	0	64,035	0	5,347	0	5,347
Temperature (°C)	6	0	150	15	70	17	340	340	340	340
Pressure (MPa, abs)	0.09	0.09	1.70	0.09	1.70	1.45	1.45	1.45	1.43	1.43
Enthalpy (kJ/kg)	81.1	-0.2	134.0	20.7	59.8	22.8	388.1	388.1	388.1	388.1
Density (kg/m ³)	1.123	1.112	15.610	800.000	27.305	758.872	9.466	9.466	9.466	9.466
V-L Molecular Weight	28.896	28.053	32.265	-	43.189	43.189	33.298	33.298	35.501	33.298
V-L Flowrate (lb _{mol} /hr)	32,554	25,356	6,997	-	184	184	0	26,707	0	26,707
V-L Flowrate (lb/hr)	940,687	711,297	225,754	0	7936	7936	1	889,291	0	889,292
Solids Flowrate (lb/hr)	0	14,604	0	141,166	0	141,166	0	11,786	0	11,786
Temperature (°F)	42	32	302	59	158	62	644	644	644	644
Pressure (psia)	13.1	13.1	246.5	13.1	246.9	210.4	209.9	209.9	207.9	207.9
Enthalpy (Btu/lb)	34.9	-0.1	57.6	8.9	25.7	9.8	166.9	166.9	166.9	166.9
Density (lb/ft ³)	1.123	1.112	15.610	800.000	27.305	758.872	9.466	9.466	9.466	9.466

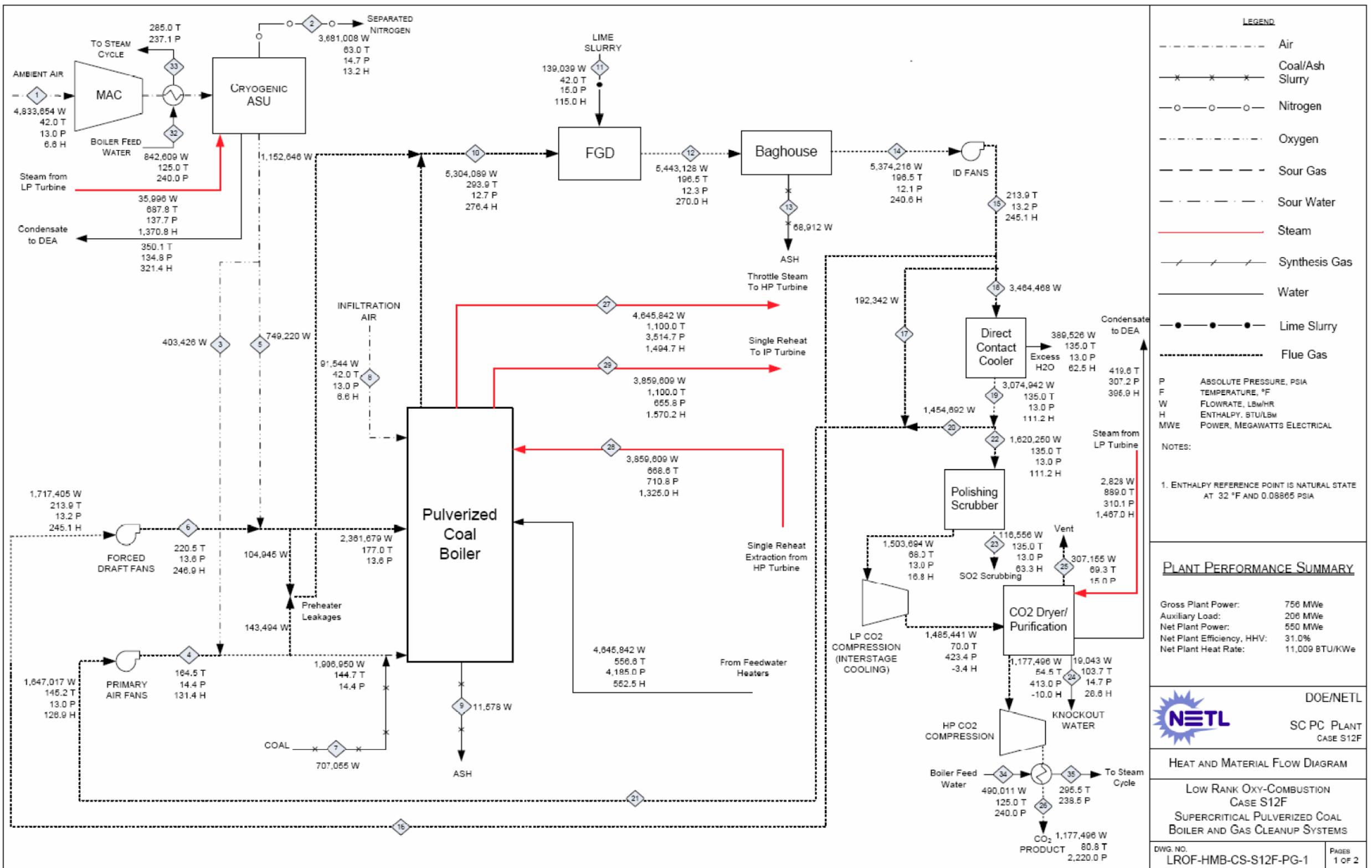
	11	12	13	14	15	16	17	18	19	20
V-L Mole Fraction										
CO ₂	0.6344	0.5544	0.5544	0.5544	0.5544	0.0000	0.5544	0.5544	0.5544	0.5544
H ₂ O	0.3157	0.4019	0.4019	0.4019	0.4019	0.0000	0.4019	0.4019	0.4019	0.4019
N ₂	0.0075	0.0066	0.0066	0.0066	0.0066	0.0000	0.0066	0.0066	0.0066	0.0066
O ₂	0.0116	0.0101	0.0101	0.0101	0.0101	0.0000	0.0101	0.0101	0.0101	0.0101
SO ₂	0.0035	0.0030	0.0030	0.0030	0.0030	0.0000	0.0030	0.0030	0.0030	0.0030
Ar	0.0272	0.0238	0.0238	0.0238	0.0238	0.0000	0.0238	0.0238	0.0238	0.0238
HCl	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NO/NO ₂	0.0002	0.0001	0.0001	0.0001	0.0001	0.0000	0.0001	0.0001	0.0001	0.0001
TOTAL	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	0	12,115	12,115	7167	7167	-	7167	4948	4948	4948
V-L Flowrate (kg/hr)	0	403,398	403,398	238,655	238,655	-	238,655	164,743	164,743	164,743
Solids Flowrate (kg/hr)	0	5347	5347	3163	63	3100	63	2183	2183	2.2
Temperature (°C)	340	340	340	340	340	340	350	340	202	202
Pressure (MPa, abs)	1.43	1.43	1.43	1.43	1.41	1.41	1.50	1.43	1.43	1.43
Enthalpy (kJ/kg)	388.1	388.1	388.1	388.1	388.1	322.9	400.4	388.1	214.3	214.3
Density (kg/m ³)	9.466	9.466	9.466	9.466	9.329	-	9.774	9.466	12.439	12.439
V-L Molecular Weight	35.501	33.298	33.298	33.298	33.298	-	33.298	33.298	33.298	33.298
V-L Flowrate (lb _{mol} /hr)	0	26,707	26,707	15,800	15,800	-	15,800	10,907	10,907	10,907
V-L Flowrate (lb/hr)	0	889,292	889,292	526,115	526,115	-	526,115	363,175	363,175	363,175
Solids Flowrate (lb/hr)	0	11,786	11,786	6,973	139	6,833	139	4,813	4,813	4.8
Temperature (°F)	644	644	644	644	644	644	662	644	396	396
Pressure (psia)	207.9	207.9	207.9	207.9	204.9	204.9	218.2	207.9	207.9	207.9
Enthalpy (Btu/lb)	166.9	166.9	166.9	166.9	166.9	138.8	172.1	166.9	92.1	92.1
Density (lb/ft ³)	9.466	9.466	9.466	9.466	9.329	-	9.774	9.466	12.439	12.439


	21	22	23	24	25	26	27	28	29	30
V-L Mole Fraction										
CO ₂	0.0000	0.9213	0.0002	0.9213	0.9213	0.9213	0.9213	0.9213	0.6128	0.0002
H ₂ O	0.0000	0.0110	0.9923	0.0110	0.0110	0.0110	0.0110	0.0110	0.0000	0.9741
N ₂	0.0000	0.0110	0.0000	0.0110	0.0110	0.0110	0.0110	0.0110	0.0644	0.0000
O ₂	0.0000	0.0169	0.0000	0.0169	0.0169	0.0169	0.0169	0.0169	0.1003	0.0000
SO ₂	0.0000	0.0002	0.0072	0.0002	0.0002	0.0002	0.0002	0.0002	0.0000	0.0219
Ar	0.0000	0.0395	0.0000	0.0395	0.0395	0.0395	0.0395	0.0395	0.2225	0.0000
HCl	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0028
SO ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NO/NO ₂	0.0000	0.0000	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0010
TOTAL	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	-	2977	1971	2977	83	2893	2893	2893	424	33
V-L Flowrate (kg/hr)	-	128,562	36,180	128,562	3,600	124,962	124,962	124,962	17,346	624
Solids Flowrate (kg/hr)	2,181	1.09	0.55	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Temperature (°C)	202	55	54	55	55	30	70	37	2	37
Pressure (MPa, abs)	0.09	1.43	1.43	1.43	1.43	1.38	2.50	2.40	0.09	2.35
Enthalpy (kJ/kg)	191.9	1079.6	524.0	1079.6	1079.6	1048.6	1085.9	1045.4	-85.2	362.4
Density (kg/m ³)	-	24.032	932.913	24.032	24.032	25.658	41.222	45.680	2.623	821.044
V-L Molecular Weight	-	43.189	18.358	43.189	43.189	43.189	43.189	43.189	40.872	19.096
V-L Flowrate (lb _{mol} /hr)	-	6562	4345	6562	184	6378	6378	6378	936	72
V-L Flowrate (lb/hr)	-	283,416	79,760	283,416	7,936	275,479	275,479	275,479	38,240	1,376
Solids Flowrate (lb/hr)	4,809	2.4	1.20	2.4	2.4	2.4	2.4	2.4	2.4	2.4
Temperature (°F)	396	131	128	131	131	86	159	99	36	98
Pressure (psia)	13.1	207.9	207.9	207.9	207.9	200.6	362.5	348.0	13.1	340.8
Enthalpy (Btu/lb)	82.5	464.2	225.3	464.2	464.2	450.8	466.9	449.5	-36.6	155.8
Density (lb/ft ³)	-	24.032	932.913	24.032	24.032	25.658	41.222	45.680	2.623	821.044

	31	32	33	34	35	36	37	38	39	40
V-L Mole Fraction										
CO ₂	0.9874	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
N ₂	0.0019	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.0026	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ar	0.0081	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
HCl	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NO/NO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TOTAL	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	2,436	-	19,502	19,502	18,252	18,252	189	189	17,537	17,726
V-L Flowrate (kg/hr)	106,992	-	351,340	351,340	328,811	328,811	3,400	3,400	315,932	319,332
Solids Flowrate (kg/hr)	1.09	1,055	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Temperature (°C)	45	950	204	593	354	593	364	125	15	119
Pressure (MPa, abs)	15.30	0.09	14.22	11.30	1.01	0.93	0.23	0.23	0.66	0.23
Enthalpy (kJ/kg)	-182.2	902.5	874.6	3597.9	3166.2	3683.9	3202.4	2476.4	63.0	501.2
Density (kg/m ³)	731.673	-	869.798	29.927	3.568	2.346	0.790	1.452	999.586	943.790
V-L Molecular Weight	43.916	-	18.015	18.015	18.015	18.015	18.015	18.015	18.015	18.015
V-L Flowrate (lb _{mol} /hr)	5,371	-	42,993	42,993	40,236	40,236	416	416	38,660	39,076
V-L Flowrate (lb/hr)	235,864	-	774,530	774,530	724,865	724,865	7,495	7,495	696,472	703,968
Solids Flowrate (lb/hr)	2.4	2,326	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Temperature (°F)	113	1742	399	1100	669	1100	688	257	59	247
Pressure (psia)	2218.5	13.1	2061.5	1638.5	147.2	135.4	33.6	33.6	96.0	33.6
Enthalpy (Btu/lb)	-78.4	388.0	376.0	1547.0	1361.3	1583.9	1376.9	1064.8	27.1	215.5
Density (lb/ft ³)	731.673	-	869.798	29.927	3.568	2.346	0.790	1.452	999.586	943.790


	41	42
V-L Mole Fraction		
CO ₂	0.0000	0.0000
H ₂ O	1.0000	1.0000
N ₂	0.0000	0.0000
O ₂	0.0000	0.0000
SO ₂	0.0000	0.0000
Ar	0.0000	0.0000
HCl	0.0000	0.0000
SO ₃	0.0000	0.0000
NO/NO ₂	0.0000	0.0000
TOTAL	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	4,820	4,820
V-L Flowrate (kg/hr)	86,827	86,827
Solids Flowrate (kg/hr)	0.00	0.00
Temperature (°C)	127	204
Pressure (MPa, abs)	14.22	14.22
Enthalpy (kJ/kg)	544.4	874.6
Density (kg/m ³)	944.318	869.799
V-L Molecular Weight	18.015	18.015
V-L Flowrate (lb _{mol} /hr)	10,625	10,625
V-L Flowrate (lb/hr)	191,410	191,410
Solids Flowrate (lb/hr)	0.00	0.00
Temperature (°F)	261	399
Pressure (psia)	2061.9	2061.5
Enthalpy (Btu/lb)	234.1	376.0
Density (lb/ft ³)	944.318	869.799




Figure B-25
NETL Baseline Case S12A, Montana PRB Fuel, Boiler Island, 100% Load

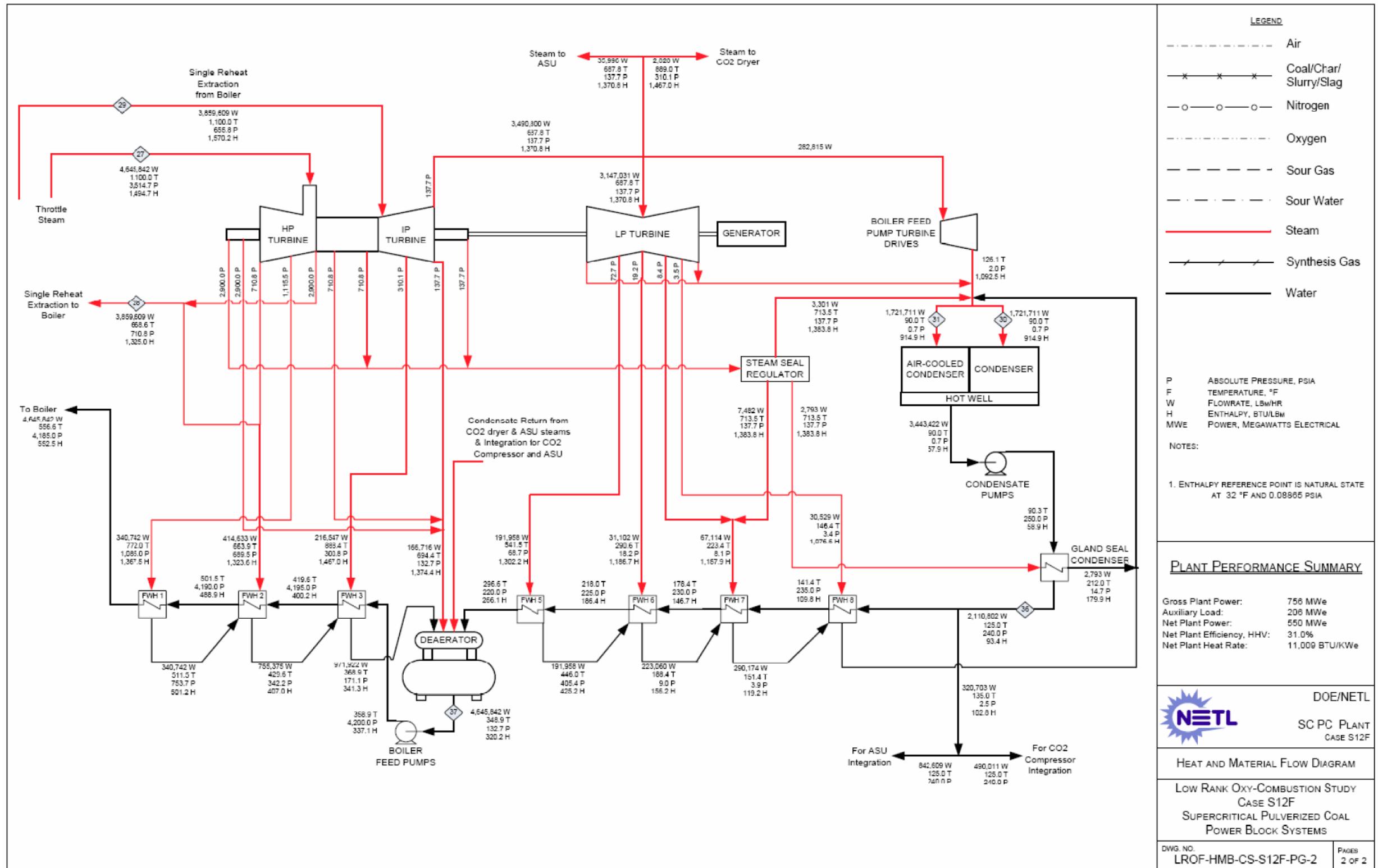

Figure B-26
NETL Baseline Case S12A, Montana PRB Fuel, Turbine Island, 100% Load

Figure B-29
NETL Baseline Case S12F, Montana PRB Fuel, Boiler Island, 100% Load

Figure B-30
NETL Baseline Case S12F, Montana PRB Fuel, Turbine Island, 100% Load