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Abstract

Model error estimation remains one of the key challenges in uncertainty quantification and
predictive science. For computational models of complex physical systems, model error, also known
as structural error or model inadequacy, is often the largest contributor to the overall predictive
uncertainty. This work builds on a recently developed framework of embedded, internal model
correction, in order to represent and quantify structural errors, together with model parameters,
within a Bayesian inference context. We focus specifically on a Polynomial Chaos representation
with additive modification of existing model parameters, enabling a non-intrusive procedure for
efficient approximate likelihood construction, model error estimation, and disambiguation of model
and data errors’ contributions to predictive uncertainty. The framework is demonstrated on several
synthetic examples, as well as on a chemical ignition problem.

Keywords: Model error, Structural error, Uncertainty quantification, Bayesian inference,
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1 Introduction

Both computational capabilities and observational data availability have seen rapid advances in the
past decade. While these improvements catalyzed and enabled the development of new, sophisticated
methods for analyzing and assimilating data with complex computational models, considerable chal-
lenges remain. One such challenge involves the quantification of uncertainty in model predictions,
and its accurate attribution to different uncertainty sources, all of which is important for targeted
uncertainty reduction and improved predictability. While methods for quantifying data noise/error
and associated parametric uncertainty have grown relatively mature, the quantification of model error
(also known as structural error and model inadequacy) and associated predictive uncertainty is less
developed. All models involve assumptions, and none is perfect. Models of complex physical systems
are also often in error due to lack of proper understanding of underlying phenomena. Accurate at-
tribution and quantification of model error in the process of model calibration is crucial for ensuring
reliable predictions with meaningful estimates of predictive uncertainty, but yet this is rarely done.
This critical gap is widely acknowledged in the literature [12, 51, 9, 16, 30].

Conventional model calibration seeks best-fit estimates of model parameters according to a penalty
on the mismatch between model predictions and observational data. Statistical inference techniques
for model calibration and parameter estimation typically ignore errors associated with the model
itself—i.e., the model is assumed to be correct. However, every model has assumptions and therefore
model error. If unaccounted for, model error can introduce bias in calibration and handicap predictive
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utility of the model [43, 66, 64]. Conventional statistical approaches for capturing model error typ-
ically estimate error correlations from observational data employing ad hoc covariance structures on
quantities of interest (Qols) [43, 35, 10]. This subsequently burdens the model with additive statistical
mismatch terms that are Qol-specific, and lead to predictions that can violate the underlying physical
constraints imposed through the models [66, 58].

A class of methods for model error quantification, inspired by the seminal work of Kennedy and
O’Hagan [43], augments model output quantities of interest (Qols) with external statistical terms
for bias correction. For example, Wang et. al. [70] developed a two-step variation of the external
discrepancy approach with sequential inference of model bias and the true output, while Joseph and
Melkote [41] proposed a compromise between engineering and statistical approaches for explicit cor-
rection by adjusting the model at hand incrementally and sequentially using empirical Bayes methods
retaining both the fitting power of statistical methods and the predictive power of engineering models.
Higdon et al. [36] further developed the model correction framework and demonstrated it for physical
systems. However, it is well-recognized that corrections at the Qol level produce predictions that could
potentially violate physical laws in the model, unless ameliorated with special prior constructions [10].
More crucially, external, Qol-specific corrections do not provide any model error augmentation for
extrapolative scenarios or for prediction of other Qols [5, 53, 54]. Indeed, the resulting calibration
information cannot be easily carried to making predictions of other model outputs. Besides, the model
errors evaluated as explicit bias corrections are often entangled with data/measurement errors.

As a response to these limitations, internal model correction approaches have been gaining popu-
larity, where select internal model components are augmented with statistical bias correction terms.
He and Xiu [34] described a general framework for both internal embedding and external correction
under a constrained optimization setting without quantifying the full Bayesian uncertainty. Strong
et al. [67, 66] applied model internal correction in health-economic studies, and discussed information
measures for the model improvement. Internal model corrections were also demonstrated in Reynolds-
averaged Navier Stokes (RANS) applications [52, 22|, large eddy simulation (LES) computations [38],
molecular simulations [11], and chemical ignition modeling [33, 58].

In our framework, developed in [58], we embed model error in model components such as constitu-
tive laws or phenomenological parameterizations rather than as additive corrections to model outputs.
Specifically, we focus on an approach where corrections are added to select model input parameters,
therefore allowing the model to be treated as a black-box. The framework is developed in a general
Bayesian context, where existing model parameters are inferred simultaneously along with parame-
ters that characterize model error. Additionally, we employ Polynomial Chaos (PC) [28, 72, 49, 44]
to represent the augmented inputs, permitting effortless extraction and propagation of uncertainties,
eventually leading to efficient Bayesian computation. The approach leads to a model error representa-
tion that is consistent with the underlying model physics, and can be employed as a diagnostic device
to enable attribution of model errors to specific submodels, thus enabling targeted model improve-
ment and optimal experimental design. The strength of the developed framework is highlighted in
model-to-model calibration studies where the classical independent Gaussian discrepancy models are
not defensible.

In this present work, we extend and enhance the probabilistic framework of [58] to enable calibration
with respect to noisy observational data, and to provide a principled way of attributing predictive
uncertainties to components due to data noise/error, model error, as well as any additional errors
associated with the lack-of-information. This generalization allows the utilization of the construction
with both computational and/or experimental data, while retaining the non-intrusive PC construction
and the facile implementation of the method with black-box models. We detail a range of options for
construction of likelihoods for model error estimation, and explore their utility in different scenarios.
Overall, this work provides solid foundations for the earlier developments, and extends them to more
general practical contexts.



The paper is organized as follows. Section 2 provides a general overview of model error quantifica-
tion and its associated challenges. The embedded treatment is introduced in Section 3, along with the
Bayesian machinery, PC representation, and predictive uncertainty attribution. The methodology is
then demonstrated on synthetic problems in Section 4, and a chemical ignition application in Section 5.
The paper ends with discussions and future work suggestions in Section 6.

2 The model error challenge

Consider a “truth” model g(x;) that generates datum y; at operating condition x; (e.g. spatial and
temporal coordinates) through the relationship y; = g(x;) 4+ €; where ¢; is the measurement noise, for a
total of = 1,..., N data measurements. While the data can be observed, the truth model is unknown
to us. Instead, we have access to a different model f(z;;A), where A = (A1, ..., \g) is a d-dimensional
parameter vector that can be estimated from experimental data. The model discrepancy, here defined
to be the difference between the truth model and our model of interest, is 6(x) := g(z) — f(a; X). The
fit model f(x;A) thus relates to the observations y; via

yi = f(xi; A) + 0(x;) +€;. (1)
—_—

truth model g(z;)

Conventional parameter estimation (i.e. calibrating for A) often ignores model errors, effectively
assuming that f(x; ) is able to exactly replicate g(x) for some A. However, this assumption typically
does not hold for complex physical systems, where simplified, under-resolved, and poorly conceived
models are often unavoidable. Consequently, the estimated parameter values would be biased, due to
neglected model deficiencies. Bayarri et al. [6] present a clear illustration of this challenge. Moreover,
ignoring model error, and thereby treating discrepancies between model predictions and available
measurements as exclusively the result of uncorrelated data errors/noise results in a calibrated model
whose predictive uncertainty can exhibit excessive overconfidence. This issue becomes quite evident
as the number of data points N increases, as we illustrate through the following example.

Consider an exponential-growth model f(z;A) = Aoe*® — 2, while the truth model includes ‘satu-
ration’ and has the form ¢(z) = tanh3(x — 0.3). Each synthetic datum is the truth model corrupted
with a measurement noise in the form of independent additive Gaussian with zero mean and standard
deviation ¢ = 0.1. As seen in Figure 1, as the number of data points increases, Bayesian calibration
leads to shrinking uncertainty bands in the model prediction that do not adequately capture the mis-
match between model prediction and data. In other words, the calibrated results without model error
become overconfident around values that are, as illustrated elsewhere [6], potentially biased. Model
error needs to be taken into account in order to address these challenges.

Moreover, and as already stated, the conventional Bayesian construction for calibration with model
error explicitly represents the model error term d(x) in (1), for example, as a stochastic process (e.g.
a Gaussian process) with a covariance structure that is optimized within a given class [43]. However,
this approach has potential pitfalls when calibrating physical models for purposes of prediction [5,
10, 53, 54]. For example, there is no mechanism for utilizing the Qol-specific additive term §(z) for
predictions of other Qols from the same model f(x;A). A general statistical additive term without
additional treatment from physical knowledge can also violate requisite physical constraints imposed
by g(z), and, presumably satisfied by f(z; A) by construction. Lastly, the form (1) suffers identifiability
difficulties since it is the sum of ¢; and d(x;) that is relevant in the measurement magnitude y;. While
progress has been made to incorporate physics-backed regularization for d(x) through informative
priors [10], constructing them is often ad hoc and not feasible in general.
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Figure 1: Demonstration of a classical Bayesian calibration — essentially a probabilistic least-squares
fit — with increasing amount of data. Top row shows how pushed-forward (PF) errorbars, obtained
by pushing posterior probability density functions (PDFs) through the model, shrink and do not
capture the true discrepancy between data and the model. Correspondingly, the bottom row shows
how calibrated parameter distributions shrink around potentially wrong values of A1 and As.

3 Embedded model error representation

We develop a calibration approach that accounts for model error via probabilistic embedding within the
model, in elements of f(x;A). For example, the embedding can be carried out in an intrusive manner,
via physics-backed phenomenological parameterizations that are not yet part of the model, effectively
enhancing the model as f (z; A, 0) to include new parameters 6. In this work, we demonstrate a
simpler, non-intrusive approach in which a subset of parameters in A are selected and augmented by
an additive discrepancy adjustment d, and aim to allow the embedded model f(x; A + §) to produce
predictive uncertainties that are consistent with the data'. This idea in its simplest form has already
been demonstrated in [58] for synthetic examples and a simple chemical kinetics model, in which model
parameters A were cast as probabilistic quantities with a requirement that their randomness, while
respecting the physical constraints by construction, be consistent with the data in some sense, i.e.
f(xi; A) = y;. The embedded model error representation is generally parameterized by a, and obeys
a probability density function ms(-; ), or is explicitly written as d(a, &) to highlight the stochastic
dimension in €. The task of estimating parameters A is thus reformulated as an estimation of the
augmented set of parameters & = (A, ). We note that the resulting uncertainty inflation, a term
coined in [54], does not necessarily improve the validity of the inadequate model, but rather allows for
meaningful calibrated predictions endowed with a degree of uncertainty that captures model predictive

"With some abuse of notation, we use vector notation & for the internal correction in contrast to the explicit model
discrepancy (z).



inadequacy, while remaining consistent with the physical constraints required by the physics.

The specific selection of model components for embedding is a problem-dependent task. In princi-
ple, one can select existing model components where simplifications, approximations, or phenomeno-
logical modeling have been employed. In [38], the authors employed global sensitivity analysis (GSA)
in order to isolate one or two most impactful parameters for model error embedding. However, GSA
only uses model information and is not data-driven. A more rigorous and comprehensive approach
would involve Bayesian model selection based on evidence computation to determine the best prob-
abilistic embedding. Note that it is also possible to envision more complicated scenarios, e.g. an
x-dependent random process discrepancy term 6(z, o, £).

The overall data model with additive model error embedding can be rewritten as

or, in vector notation,

y~H(a)=h({ ea) = f(A+d(a,§)) +e, 3)

where h(€, ;&) = (h1(€,€;),...,hn(€, €;)) is a random vector, parameterized by &, induced by &
and €, as a result of the model evaluations pushed-forward through f(z;;-), with the addition of data
noise €. We define corresponding upper case quantities H;(&) and H (&) to simplify the notation,
with an understanding that these are random quantities. Without loss of generality, and for ease
of illustration, the components of the measurement error vector € will be modeled as independent,
identically distributed normal random variables with zero mean and fixed standard deviation o.

The problem of calibrating model parameters A thus becomes a density estimation problem for
the augmented stochastic input A + d(a, &), or a parameter estimation problem for & = (A, a).
Uncertainty for epistemic parameters can be reduced with increased data size, which translates to a
corresponding reduction of prediction uncertainty. While this is sensible when the discrepancy between
the model prediction f(z;;A) and the data y; is due to measurement noise only, it is not desirable
when this discrepancy includes model error (one would not expect model error to disappear even with
infinite data). The uncertainty in the calibrated model prediction f(x;; A) thus needs to reflect this
residual uncertainty due to model error, and the embedded approach allows such an implementation via
additional stochastic dimensions encoded in &; this will be described with more details in Section 3.2.

3.1 Bayesian inference of model error representation

The reformulated parameter estimation problem for & = (A, &) can be thought of as a density estima-
tion problem for the embedded random input A(&) = A+4d(a; €), and is tackled as Bayesian parameter
estimation of &. Bayesian methods are well-suited for dealing with uncertainties from different sources,
from intrinsic noise in the system to parametric uncertainty and experimental errors. Although it is
usually more computationally involved compared to, for example, regularized optimization techniques,
the Bayesian framework provides a rigorous platform for capturing the state-of-knowledge about quan-
tities of interest before and after assimilating the data. Furthermore, Bayesian techniques are very
convenient for dealing with nuisance parameters, i.e. parameters that are generally unknown and are
not of intrinsic interest, say, for prediction purposes. The key relationship for Bayesian inference is
Bayes formula [8, 62, 13], which in this context reads as

o p(ulap(@) "
The prior probability density p(&) and the posterior probability density p(&|y) represent degrees

of belief about model parameters & before and after the data y is incorporated, respectively. The
evidence p(y) often plays the role of a normalizing constant. However, it becomes a critical measure
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Figure 2: Schematic of the Bayesian inference of & = (A, &), i.e. estimation of model parameters (\)
and stochastic model error correction parameters (o).

when multiple models are compared against each other given the same set of available data. The key
factor in Eq. (4) is the likelihood Ly(&) = p(y|a) that relates the data to the model parameters.
Figure 2 demonstrates the schematic of the embedded model error estimation framework within the
Bayesian paradigm.

The posterior distribution is difficult to evaluate analytically for general likelihoods and priors,
and is also challenging to estimate numerically due to a usually high dimensional &. In such cases,
Markov chain Monte Carlo (MCMC) methods are typically used, in which one generates a Markov
chain whose stationary distribution is the posterior distribution [25, 29]. The posterior distribution
p(aly) provides the current state-of-knowledge about the parameter of interest &, while the maximum
a posteriori (MAP) value

Gniap = arg max p(a|y) (5)

(o2

is also of interest as the vector of most probable value & conditioned on measurements y. A common
point estimate for the density of the embedded random input A(&) = XA + §(«; &) is characterized by
the MAP value of &, which can either be extracted from the full MCMC procedure, or computed via
optimization techniques. Whether optimization or MCMC is used, they all require multiple evaluations
of the likelihood and the prior in Eq. (4). Construction of appropriate likelihoods and, to a smaller
extent, prior distributions are therefore crucial components of the presented approach.

3.1.1 Likelihood construction

The construction of a justifiable likelihood is perhaps the most critical step for obtaining the posterior
probability distribution. From the data model (2) one can write the true likelihood as

ﬁy(&) = FH(d)(?J)? (6)

where 7gr(a)(y) is the PDF of the data prediction vector H(&) = h(§,€; &) defined in Eq. (3).
Therefore, the true likelihood evaluation (6) requires estimation of an N-dimensional PDF as y € IRY.
This can be performed by sampling of both £ and € for a given &, followed by a Kernel Density
Estimation (KDE) to obtain a smooth estimate of g (4)(y) [59, 60]. For example, with R samples of
H (&) the KDE-estimated likelihood is written as

Ly(0) = ma@() ~ 5 3 KR — ). (7)

Typically, Gaussian kernels K(z) = (2r)~4/2|W|~1/2e=2"W™'2/2 are used. The bandwidth matrix

W, required to be symmetric and positive definite, is often selected as a diagonal matrix with entries



proportional to the marginal standard deviations of the samples. Note that this procedure has to be
repeated at each MCMC sample & and is computationally infeasible in most practical cases.

The true likelihood is degenerate for model-to-model calibration studies when there is no mea-
surement error, as recognized in [58] and, in a slightly different context, in [3]. The degeneracy is
a direct consequence of the fact that, if no data error is expected, there is zero probability that the
model f(z; ) is able to replicate the ‘truth’ g(z) across all  no matter how well one tunes parameter
A, unless g(-) itself is a special case of f(-;A) for some fixed value of A. With data noise, while the
likelihood is not degenerate anymore, it may still lead to posteriors that are hard to sample from.
Besides, as already indicated, the true likelihood computation requires a high-dimensional KDE at
each likelihood evaluation. Below, several approximating options for the true likelihood, that trade-off
computational feasibility and accuracy, are listed.

e Independent-component approximation: The likelihood can be approximated as a product
of its marginal components as

N
Ly (@) = [ 7 (wi), (8)
=1

where each marginal PDF m,(y;) is estimated via sampling and KDE. That is, having con-
structed R samples of h, one approximates the marginal PDFs as

R
1 . ,
whi(yi)~§§ KA —y;) foralli=1,...,N, (9)
r=1

where, again, Gaussian kernels K(z) = (277)_1/211)_16_22/(2“’2) are typically employed. Note
that KDE estimates in this case are one-dimensional and computationally much more feasible
compared to Eq. (7). Nevertheless, the dependence on the KDE bandwidth w, sample size R,
and the general expense of sampling at each likelihood computation step, can make this approach
computationally challenging, albeit to a lesser degree than the computation of the true likelihood
via Eq. (7).

e Multivariate normal approximation: In this case, one can extract the mean and the covari-
ance of the random vector h and, instead of estimating the true joint PDF 7 (y), evaluate a
multivariate normal (MVN) corresponding to the mean and the covariance. If random sampling
is employed for extracting the first two moments of h, one has

R R
1 1 T
b — (r) by~ (ry _,,h (r)y _,,h
7! Rrg_lh and C o1 g (h u ) (h 7 ) , (10)
then one arrives at the likelihood

LYVN(&) = (2m)~F (O rem 2 wmHTE ), (11)

e Independent normal approximation: This option is a combination of the independent-
component and the multivariate normal approximations. With random sampling, the mean and
the variance of the components of h are computed as

R R
1 ,, 1 .
i~ R Zhg : and (0})? = R-1 Z(hg ) w2, (12)
r=1 r=1
followed by the likelihood estimate
N N _ (yi—p)?
Ly(@) = 2m)7 7 [J(el) e 2007 (13)



Likelihood type Formula ‘ Eq.
True likelihood Ly(&) = mr(y) (6)
Independent-component L&) =TI, 7, (vi) (8)
TR =T )
Multivariate normal LYVN (&) = (271’)_% |Ch|_%e_%(y_“} )T w—n") (11)
IN/ ~ _N N [ _hy—1 (yi—p)? 1
Independent normal Ly (&) = (2m)" 2 [, (0i') " exp (— 201 )? ) (13)
13 N2 h_ h_ " \2
ABC; mean and stdev LEBC(&) = T/lﬂ [T, exp (7 G, +<;’;2 ui —il) ) (14)

Table 1: A summary of potential options for likelihood construction, including the corresponding
equation number. Note that all PDFs and moments of h and their components depend on &, but are
dropped for simplicity.

¢ Moment-matching approximation: To avoid computing expensive likelihoods, and in order
to build constraints driven by the purposes of the modeler, one can construct other forms of ap-
proximate likelihoods, inspired by Approximate Bayesian Computation (ABC), otherwise called
likelihood-free methods [7, 47, 61]. This approach measures the discrepancy between a chosen
set of statistics of model outputs and the corresponding estimates from the data. In this regard,
component-wise means and variances are common choices. The ABC formulation relies on a ker-
nel function, typically a Gaussian K(z) = e=#/2 /v/27, and a chosen distance measure between
statistics of interest on data prediction (Sp) and observed data (Sy), as well as a pre-selected
‘tolerance’ parameter € to arrive at

1 p(Sk,59)°

= [ 2¢2 . ]_4
€V 2w (14)

It is of interest for predictive purposes to require agreement, on average, between (a) the mean
prediction and the data, and (b) the predictive standard deviation and the discrepancy between
the mean prediction and the data. That is, besides matching the means pu” ~ y, one should
additionally constrain the standard deviation as " ~ v|u" — y|, where the absolute value is
understood to be taken element-wise, and v > 0 is an additional parameter defined by modeler.
In this case, the ABC likelihood takes the form

£470(a) = UK (e a5 5,)

ABC( 5\ _
L, (a) =

N
i=1

eV 2T 2¢2
K2

Note that all PDFs and moments of h or their components depend on &, albeit dropped for
simplicity in Egs. (7)-(15).

A proof-of-concept demonstration of such an ABC approach has been performed in [58] in the
context of calibrating a low-fidelity chemical kinetic model with respect to (noise free) simulation
data from a higher-fidelity model. As a direct consequence of the ABC likelihood, the resulting
calibrated uncertain model outputs were shown to be centered on the data, at the same time
exhibiting a degree of uncertainty consistent with the average discrepancy from the data.

Table 1 summarizes the likelihood options in a concise way. Note that, in this section, the PDF of h,
as well as, when necessary, computation of its moments, are estimated via random sampling, requiring
a potentially large number R of model evaluations. With the non-intrusive polynomial chaos (PC)
approach described further in Section 3.2.2; one can (a) reduce the sampling cost by replacing model
evaluations with PC evaluations, if KDE estimates are necessary, and (b) evaluate moments exactly
from PC representations, without additional cost.



3.1.2 Prior construction

Another major ingredient of Bayes formula (4) is the prior PDF p(&) on parameters & = (A, ). The
prior, in the absence of information to the contrary, is often separated for convenience, i.e. p(&) =
p(A)p(e). Prior selection is a known conceptual challenge for any Bayesian method. In this context,
while one selects p(A) according to some physical considerations, e.g. expert knowledge, or a result of a
previous calibration, the additional difficulty arises from the fact that o are not physically-meaningful
model parameters, but rather parameters that define the discrepancy term (o, £). At the same time,
prior selection offers several opportunities for imposing specific constraints or regularization. It is
important to select appropriate priors that capture the initial knowledge on o before any observational
or simulation data is available. For bounded embeddings this would typically entail priors with specific
irregular support, while for unbounded embeddings, such as a zero-mean multivariate normal (MVN)
d(a, &) the constraints can be derived from the requisite constraints on the covariance structure.
The latter is a reasonably mature area in Bayesian hierarchical modeling [46, 1, 17], with several
options available, such as both Wishart [15] and inverse-Wishart priors [42], Cholesky-factor priors [63],
reference priors [73], shrinkage priors [69], separation-based priors that separate standard deviation
and correlation coefficients [40, 26, 4], and matrix logarithm [37]. The prior selection will not be made
the focus of the current paper; unless otherwise specified, we will restrict ourselves to uniform priors,
potentially with physics-based support constraints.

3.1.3 Posterior sampling and MCMC challenges

Sampling of the posterior distribution via MCMC is a challenging task due to the high-dimensionality
of & and the near-degeneracy discussed in Section 3.1.1. One approach of mitigating the high-
dimensionality is to embed the model error representation in a few parameters at a time, instead of
the full input A. This enables attribution of model errors to specific parameters and provides grounds
for attributing model errors to certain submodels. Another way of mitigating the high-dimensionality
is to resort to simple posterior maximization, via standard optimization methods, instead of the full
MCMC sampling. This is a key advantage of the embedded representation — even if one resorts to
the best value ayap, it still leads to prediction with uncertainties that capture model errors, albeit
without a component relevant to the posterior distribution.

Nevertheless, sampling of the posterior distribution via MCMC or even simply maximizing the
posterior distribution may be a difficult task in general, due to the structure of the posterior dis-
tribution itself. It may be multimodal as well as peaked along lower-dimensional manifolds, making
MCMC sampling extremely challenging. Structural improvements to the posterior distribution may
be achieved by appropriate regularization via prior selection.

3.2 Prediction with model error

The key advantage of the developed method is highlighted when one uses the calibrated model for
prediction purposes. Explicit additive representation of the model discrepancy function 6(x) in [43]
makes the predictions challenging since it may violate physical constraints and is specific to the
observable quantities used for the calibration. On the contrary, in our approach, model discrepancy is
captured within the model, which makes definitions of predictive quantities relatively straightforward
and meaningful. Each fixed value of the vector & = (A, ) induces a random input vector A(&) =
A+ (e, &) which in turn leads to a stochastic process F(x; &) that is the result of pushing forward
the stochastic germ & through the model f(z;A(&)). The mean and covariance of this process are



denoted by uf (2; &) and C7f(z,2; &), respectively, where

pl(@6) = EelF(x;a)] (16)
ClHz,2";a) = CelF(z,2; &)). (17)

The MAP value aap can be used to arrive at the best PDF for A that encompasses the augmented
model error representation. This input can subsequently be pushed forward through the model f(z; A)
to obtain the MAP pushed-forward process fypr(x) = F(x; &map), with moments denoted as pypr ()
and Cypr (2, 2") which can be computed via sampling similar to (10) for general x, or via non-intrusive
spectral projection with polynomial chaos described further in Section 3.2.2.

Furthermore, accounting for the full posterior distribution of &, one can compute the moments
of posterior pushed-forward process F(x;a) for any value of x as a combination of two stochastic
dimensions (model-error £ and posterior range sampled by MCMC samples &):

per () = B¢BalF (z; @)] = Ealn! (2; &), (18)
and, due to variance decomposition formula,
Cpr(w,2') = Ea[C (z,2";&)] + Calu! (z; &), (19)

where Eg and Cg denote the mean and covariance with respect to the posterior distribution p(é&|y),
respectively, and can be computed with MCMC samples and standard estimators. Pushed-forward
variance for each fixed x can be computed simply by J%)F(a:) = Cpp(z,z), and is decomposed as

opp(2) = Ealo! (2;8)) + Valu! (¢; &) (20)
mode\f error posterior uncertainty

which consists of contributions due to the embedded model error as well as due to posterior uncertainty
stemming from the quality and amount of data. The key feature of the developed approach — and one
to be illustrated in numerical examples below — is that, with increasing amount of data, the model
error component Eg[o7f (x; &)?] does not decrease - rather it saturates to a fixed value. At the same
time, the data error encoded into the posterior variance term Vg[uf(2;&)] typically reduces with
increasing amount of data.

While the pushed-forward process can be useful for prediction purposes for general values of x, in
order to compare with data, it is also important to consider the posterior predictive distribution [27],
which is by definition the combination of the pushed-forward process at the design conditions z;
and the data noise model ¢;. The i-th component of the posterior predictive random vector is then
F(zi; &) + €; with mean and covariance

ppp (2:) = Eg[p! (25 &)] = ppr(x;), (21)

Cpp(wi,xj) = Ed[Cf(:ci,:vj; d) + 0251'3'] + (Cd[,uf(xi; 6&)] = CPF(I'i,l'j) + 0251'3" (22)

The posterior predictive covariance (22) should be contrasted with an imposed parameterized
covariance — typically a square exponential — when modeling the model discrepancy term explicitly in
an additive fashion [43]. The major conceptual difference is that the covariance obtained via model
error embedding is directly informed by the model structure, rather than parameterized in a model-
independent way.

Note that often o can be viewed as a hyperparameter to be inferred together with &, in which
case the last term o2 in Eq. (22) is replaced with its posterior average Eg[o?]. This is demonstrated
in the chemical kinetics example in Section 5.1.
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Both likelihood computation via any of the options from Table 1, and predictive/pushed-forward
quantity computations, require sampling of model input A(&) = X + d(, €) and subsequent eval-
uations of the model f(x,A(&)) with given &, or ability to compute the pushed-forward moments
p! (z; &) and Cf(x,2'; &). Polynomial Chaos (PC) machinery provides a flexible mechanism of repre-
senting random variables allowing computationally inexpensive sampling, moment evaluation, as well
as, generally, convenient tools for forward uncertainty propagation [28, 72, 44].

3.2.1 Polynomial chaos representation of augmented inputs

While the present framework remains valid with any parameterization of the stochastic model discrep-
ancy term (e, €), the focus of this paper is specifically on Polynomial Chaos (PC) representations,
since they allow flexible parameterization of a wide class of random variables, with efficient sampling,
moment evaluation and forward propagation machinery. In order to avoid crowding the notation,
and for demonstrating proof-of-concept, assume that model error representation is embedded in all
components of §. In such case, the components of the model input are written as an expansion

Kj—1

k=1

with respect to standard orthogonal polynomials Wy (€) of an independent-component standard random
vector €. The two most commonly used PC expansions are a) Gauss-Hermite, i.e. the germ £ is a
vector of i.i.d. Gaussian random variables, and, correspondingly, the Wy (&) are Hermite polynomials

42
that are orthogonal with respect to the PDF of &, 775(5) = e\/%:g,
£ is a vector of i.i.d. standard uniform random variables on [—1,1], and the (&) are Legendre
orthogonal polynomials. The latter is a more meaningful parameterization for model inputs that are

bounded. The orthogonality of polynomial bases is written as

{Hw, if k=

and b) Legendre-Uniform, in which

/ W4 (€)W (€)me (£)dE = (24)

¢ 0, otherwise

1/2
where the norm ||W|| = ( fE Wi(f)ﬂ'g(&)d&) is usually precomputed and stored a priori. Typically,

with an understanding that each probabilistically cast d; corresponds to a stochastic dimension, one
chooses £ to have the same size as §. The order of each expansion in Eq. (23) is selected a priori, denoted
by pj, leading to K; = (d + p;)!/(d'p;!) terms. Note that formulating model input adjustments as PC
expansions (23), the model-error estimation is essentially reformulated as a parameter estimation for
deterministic quantities ay; that comprise the set & = {ay; }f:?fj 71, in which, out of convenience,
we denoted \j = o ; for all j =1,...,d.

Below we discuss two commonly used embeddings that allow efficient Bayesian calibration.

o Multivariate normal input: A multivariate normal assumption for d(a, &) is a convenient way
of parameterizing the internal model-error correction, particularly in cases when there is no
restriction on the range of input parameters. It, as does the uniform embedding discussed
below, also has the practical advantage of being first-order in &, thus eliminating difficulties
associated with inferring high-order PC coefficients (23). Indeed, the first-order PC expansion
for (e, €), corresponding to an MVN, which leads to

d

Aj(@,€) = N +8;(c,€) = A+ Y ayiéy, for j=1,....d (25)
k=1
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is a special case of Eq. (23) for p; = 1 for all j = 1,...,d. It highlights one key challenge
of such PC representations — many coefficient sets o = {akj} ’ ’fll may correspond to the
same joint PDF for A and therefore will lead to the same hkehhood value and, consequently,
to a multimodal posterior distribution or a posterior distribution that is constant along certain
low-dimensional manifolds. Barring judicious choice of priors for «, this poses practical dif-
ficulties for optimization or MCMC methods. Nevertheless, for the linear case (25), a simple
re-parameterization resolves this ambiguity. Specifically, one can propose a ‘triangular’ linear

PC form '
J
5 (&) = apibp, forj=1,....d (26)

k=1
with an additional constraint agg > 0 for K =1, ..., d enforced via Bayesian priors. In this case,
there is a one-to-one correspondence between any MVN PDF of A and the set of coefficients & =
{ak]}k 0’ ’J , effectively ruling out a large set of potentially challenging, degenerate posteriors.

e Uniform i.i.d input: In physical models, one often has bounds for input parameters that cannot
be exceeded under any circumstances. In such cases, simple Gaussian additive adjustments to
the model inputs may not be the best option. We employ Legendre-Uniform PC expansions for
such cases that are bounded. However, in general this may require prior constraints on & that
are technically challenging to implement. To simplify, and for the sake of demonstration, a linear
Legendre-Uniform PC with i.i.d. embedding can be used,

A]’(d,g) =\ + 5j(a,§) =\ +ay;&, forj=1,...,d (27)

corresponding to model-error correction §;(§;) = a1;¢;, for & €U[—1,1]. The i.i.d. embedding
allows simple prior constraints

Aj oy < a;

2
{ )\j—alijj. <8)
on & = (A, ) to enforce parameters within given ranges A; = A\; + a1;§; € [a;,b;]. The

prior (28), together with a1; > 0 (added due to invariance, and to avoid bimodal posteriors)
corresponds to a triangular region in the (), aq;) space, a subset of IR2.
3.2.2 Uncertainty propagation and predictive moment estimation

Representing inputs of the function f(z; A(&, &)) with PC expansions (23), or its simpler forms (25)
and (27), allows efficient propagation of the uncertainties through f(z;-) via non-intrusive spectral
projection (NISP), as follows. One constructs a PC expansion for the output for each x as

fla; A&, €)) Z frla (€), (29)

k=0

where the coefficients fi(z; &) are found via orthogonal projection that is numerically computed with

quadrature integration, using a precomputed quadrature point-weight pairs (£ (q),wq) forg=1,...,0Q,
fil:a) = H\I,kHQ / A0, €)W (€)me(€)dE ~
~ MP quf 3 A (6, £9)) (€17, (30)
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The PC coefficients depend on & since the relationship A(a, &) encapsulated in the input PC expan-
sion (23) is parameterized by &. It is also important to recognize that this PC propagation approach
essentially relies on sampling, too, since the model evaluations are driven by the underlying quadrature
sampling of €. Such sampling is, however, much more efficient and accurate for a large class of models,
compared to Monte-Carlo based uncertainty propagation approaches [21, 57].

Note that the classical calibration strategy that ignores the model error and assumes f(z; )
replicates the ‘truth’ g(x), is merely a special case of the developed model-error embedding framework
for 0-th order PC expansion in (23), i.e. Aj(&,§) = A;, with no explicit model-error dimension (&)
dependence, and o = A.

Next, we return to the predictive process F'(x; &) = f(x; A&, €)) described in Section 3.2 in terms
of PC representations. Both generic predictions for arbitrary z and likelihood computations for x;’s
require either KDE estimation or moment computation. This entails extensive sampling of the func-
tion outputs and may become prohibitively expensive. For sampling, the PC representation (29) can
serve as a ‘surrogate’ approximation of the function and be sampled instead of it. However, the crucial
advantage of the PC representation is highlighted in moment-based likelihood cases, Egs. (11), (13)
and (14). In these cases, only moments are required to compute the likelihoods, and the PC expan-
sion (29) offers analytical, closed forms for them, circumventing sampling.

The predictive stochastic process F(x; &) is now written as a PC expansion

K—1
Ji(@; 6) Wi (€) (31)
k=0
from which moments can be easily extracted as
K-1
p(w;@) ~ fow;&)  and  Cl(z,a5d@) = ) fulw; @) fr(@'; @)W, (32)
k=1

The overall pushed-forward moments are written as

(1! (25 6)] ~ Eafo(a; &)] (33)
[CY (2,2';&)] + Cap! (z; &)] ~

-1

ppr ()
Cpp(z,2) =

&

~ EH &
[}

12

Ea[fr(z; &) fu(as )1Vl +  Calfo(z; )] (34)
N— ———

k=1 Posterior uncertainty

Model error

Table 2 summarizes the predictive process F(z; &), both for fixed & and posterior average with
respect to a. It also lists its moments, and provides formulae specific for the PC representation.

Correspondingly, the data model (2) now takes the form, as a combination of pushed-forward
process evaluated at z;’s and measurement errors,

K-1

Yi R fk(xi;d)\lfk(ﬁ)—i—agdﬂ, fori=1,..., N, (35)
k=0

from which one can extract moments as in (32). The right-hand-side of Eq. (35) includes all components
of predictive uncertainty (model error £ and data error &, 4) in a PC form for given &. One can further
build a PC expansion given posterior samples of & arriving at an overall PC representation that also
includes posterior uncertainty. Details of this procedure are given in Appendix A. Further in this
text, we will keep & as the uncertain dimension due to the posterior PDF, and the associated variance
contributions will be accounted for via estimators that are based on MCMC samples.
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l - ‘ Process ‘ Mean ‘ Covariance ‘

Fixed & F(m, a) ! (z; &) Cl(z,2"; &)
PC apprx. | Y000 fi(@i @ Ui(é) | fo(z;a) ey (w3 @) fi (25 )|
PF, Es Ea[F(z;&)] Ea[p! (z;8)] | Es[C7 (z,2";&)] + Ca[p (a3 &)]

Table 2: A summary of the predictive process, its moments, PC form and posterior average.

When the predictive process F(z;¢&) is evaluated at specific locations x; at which the data is
taken, it allows direct comparison with the data points y;, thus facilitating likelihood computations.
The corresponding moments can be written as

pi(a) = Eef(xi Al §)) ~ folzia), (36)
Cij(a) = Es[(f(ari; (. 8)) — pi(a)) (f(zj; A, §)) — pj(av))] =~
= ka Zi; & fk Tj; Q¢ )H\Ijk"2+5ija2' (37)
K—1
oi(@) = Eelf(wi; A&, €)) — fi @i @) || + o2, (38)
k=1

Note that in the equations above, as well as before in this text, the symbol ~ highlights the fact
that the result is based on a PC expansion which approximates equality and extra care is needed,
e.g., in terms of appropriate truncation of the expansion. Quadrature point sampling and consequent
function evaluations are still present during the construction of the PC expansion, but for reasonably
smooth forward functions they are much more efficient than Monte-Carlo based approaches for moment
computation. Besides, as shown in the next section, one can pre-construct and employ a polynomial
surrogate before the inference, allowing efficient MCMC without expensive model evaluations for each
&, i.e. at each MCMC step.

3.2.3 Surrogate construction and overall algorithm

For most physical application problems, the model f(z; A) is quite expensive, or difficult to efficiently
evaluate during MCMC. Here we describe a procedure to pre-construct a surrogate fs(z;A) = f(x; A),
to alleviate the cost. The surrogate fs(x;A) can be constructed as an approximation of the function
f(z; X) over the joint space (x, A), or over X only, for a select set of x; that have been utilized during
calibration and prediction. Here, we will describe and employ the latter approach for simplicity. For
each x;, consider a surrogate form

K-1
f(xza ) fs iy A Z Sszk (39)
k=0

where Lp(A)’s are scaled multivariate Legendre polynomials, with inputs scaled to their respective
ranges A\; € [a;j,b;] for j = 1,...,d. Similar to the general PC construction described earlier, the
truncation, i.e. the number of polynomial bases K, is driven by a predefined rule, e.g. according to a
total degree of retained polynomials.

The polynomial fit (39) is constructed via least-squares regression, using an arbitrary set of R model
evaluations {f(z;, A+)}2,. In other words, the coefficients c;, are the solution of the minimization
problem for each ¢

Cik

K-1 2
argmmZ( flzi, A Zcszk ) . (40)
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Note that the simple least-squares solution is analytically available and does not require an optimiza-

tion engine. Namely, the solution vector ¢; = (¢, - - -, ¢ K)T of size K x 1 is written as
¢, = (PTP)'PTf;, (41)
where f; = (f(i, A1), ..., f(2i, Ag))T is the model evaluations’ vector of size R x 1, and P is the basis

evaluation matrix of size R x K with entries P, = Li(A,). Note that the least-squares solution (41)
is employed instead of NISP-like orthogonal projection, since it enables an surrogate error metric,
leave-one-out error which can in principle be added to the predictive uncertainty budget. Besides, the
regression-based surrogate is more general and does not require basis orthogonality.

Now, when we construct the PC propagation (29) via NISP, the surrogate fs(z; ) replaces the
actual forward model f(x;A) in the quadrature integration (30). Moreover, if the surrogate is built as
a polynomial expansion (39) with the same order as the NISP in Eq. (29), then no extra approximation
error is induced due to NISP. The only additional error is due to the surrogate approximation itself
which can be estimated, e.g. via leave-one-out cross-validation as demonstrated in [38]. In this work,
for the numerical demonstrations in Section 4, no surrogate is employed as the functions are synthetic
and easy-to-evaluate, while for the chemical kinetics application in Section 5 the surrogate errors are
negligible and are skipped for the clarity of presentation. The overall mechanism of surrogate-enhanced
model error inference and prediction is listed in Algorithm 1.

4 Numerical demonstrations

In this section, we illustrate the strengths of the embedded model-error strategy with a few numerical
examples. Note that we skip the surrogate construction step as listed in Algorithm 1, since the
synthetic model evaluations are not costly.

Demo 1 (consistent predictive errorbars) Let us revisit the motivational example from Sec-
tion 2. That is, we calibrate the model f(z;\) = AoeM® — 2, with noisy data measured from an
underlying ‘truth’ model g(z) = tanh 3(z —0.3). As Figure 1 highlighted, the conventional calibration
approach results in posterior PF uncertainty which is not representative of the correct discrepancy
between the calibrated model and the underlying ‘truth’ model. Now, we employ the embedded model
error calibration as follows. Consider a ‘triangular’ MVN additive term for the parameter A = (A1, A2)
as in Eq. (26), and employ the ABC likelihood (14) with v = 1 and € = 0.0001. The choice of ~y specifies
the requirement that, on average, the 1o range of the predictive uncertainty is equal to yx the dis-
crepancy between the data and the mean prediction. The choice of € < 1 specifies the stringency with
which the ABC kernel density enforces the desired constraints on the predictive mean and standard
deviation. Figure 3(a) clearly demonstrates that the resulting pushed-forward prediction errorbars
are representative of the true discrepancy, unlike the classical case, shown in the N = 50 subplot of
Figure 1. Moreover, Figures 3(b) and (c¢) demonstrate posterior predictive PDFs of A = (A1, A2) for
embedded (in which case A is effectively cast as a random variable A and plotted is PDF induced by
posterior and variability of A itself) and classical cases, respectively, as the number of data points
increases. It can be seen that model-error embedding guards against posterior shrinkage.

Demo 2 (targeted model improvement) For another illustration, consider a ‘truth’ model g(x) =
e 057 1 e=2% mimicking a physical system that involves two decay scales. Assuming no measurement
noise, the data at 10 equidistant locations in x € [0,5] come from this model exactly. Now, consider
a single-decay model f(z;\) = e~ (M1+222) a5 if the analyst is unaware of the second decay source. A
classical calibration for A = (A1, \2) leads to wrong values for the decay rate, and fails to capture the
double-exponential dynamics as shown in the left plot of Figure 4 — clearly the uncertain prediction
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Algorithm 1: The full workflow of the surrogate-enhanced model error inference algorithm.

Surrogate construction:

e Note: this step is skipped for the demo problems, and only applied to the chemistry problem in
Section 5.
e Choose R input samples A, forr=1,..., R:
— we chose uniform random set of points distributed in given parameter ranges.
Air € [ai,bi].
e Evaluate the forward model R times and extract f(x;;\,) at each design condition x;, for
t=1,...,Nandr=1,..., R.
e Build polynomial surrogate (39):
— we employed least-squares solution (41).

Model error inference:

e Select embedding type (see Section 3.2.1):
— we chose MVN input (25) for demo problems with no parameter range constraints, and
the uniform i.i.d. inputs (27) otherwise.
e Select a prior (see Sections 3.1.2 and 3.2.1).
e Select a feasible likelihood form from Table 1:
— for most studies here, we chose independent-normal, or ABC.
e Run MCMC inference:
— we used adaptive MCMC (AMCMC) algorithm, introduced in [31].
— at each MCMC step, in order to compute the likelihood, PC propagation (35) and
moment estimation (36)-(38) is completed via integration by quadrature (30).
— for the chemistry problem in Section 5, the expensive model evaluations required by (30)
are replaced by the surrogate evaluations (39).

Prediction:

e Note: the predictions can be made for general design conditions z, even if data is collected at
specific values z;, fori=1,..., N.

e Predictive moments of f(z; ) are computed as given in Egs. (33) and (34), and are
summarized in Table 2.

is not consistent with the range of discrepancy from the truth. On the other hand, augmenting
with an MVN discrepancy term to A and calibrating for the best values of the MVN parameters «,
via the ABC likelihood (14), leads to an uncertain model prediction that captures the discrepancy
from the data better (middle plot). One can envision a next step, e.g. embed more complicated
‘physics’, albeit still not the true double-exponential. For example, one can keep the single-exponential
description and propose a quadratic-exponential model, fo(z; A) = e~ (M11+222+237%) with an additional
parameter A3. As the right plot suggests, this allows better predictions with smaller model errors.
The present approach allows such embedding of model error terms in targeted model components, and
the evaluation of the resulting uncertain predictions for model comparison/selection studies.

Demo 3 (convergence with increasing N) Figure 5 demonstrates in more detail how the data
error reduces with increasing N while the model error term does not. This illustration uses a fractional-
power polynomial ‘truth’ function g(x) = 6 + 22 — (z + 1)3 defined on = € [—1,1] and observations
that are corrupted by a Gaussian, i.i.d. noise term of standard deviation ¢ = 0.5. Four simple
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Figure 3: Illustration of the pushed-forward predictions with ABC likelihood, as well as comparison

of the posterior PDF's as N grows for classical case and the case with model error augmentation with

ABC likelihood.

models are calibrated with respect to their parameter vector A, (a) linear, f(z;X) = Ao + A1z, (b)
quadratic, f(z;A) = Ao+ A1z + Xex?, (c) cubic, f(x;A) = Ao+ A1z + Aoz? + A323, and (d) true model,
flx;A) = Mg + Mz + Xox? + A3(x + 1)35. Clearly, while the data error component (as given in the
decomposition (20)) reduces with increasing amount of data, the model error ‘saturates’ at a limiting
value driven by the quality of the model, for all the approximate models. Figure 6 illustrates this
effect further for the quadratic model case, with four different values of N, demonstrating the fact
that the model error component of the variance remains relatively constant with increasing N.
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Figure 4: Calibration of a single-exponent model f(z;X) = e~(M1+%2%) with additive Gaussian noise

(left) fails to predict the truth model g(x) = e=%5% 4 727 while the calibration with embedded model
error leads to uncertain predictions that capture the truth model (middle). A quadratic-exponential
model fo(z;A) = e~ M1 TA22HA37%) captures the truth better with smaller uncertainties (right). The
uncertainty bands correspond to one PF standard deviation from the PF means, as defined in Egs. (33)
and (34).
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Figure 5: Demonstration of the decay of predictive variance components as the number of data points
increases. The solid lines correspond to model error, while the dashed lines correspond to data error,
according to the pushed-forward variance decomposition in (20). Besides the true fractional-power
model, three simple models with varying degree of accuracy are used, clearly demonstrating the satu-
ration of the model error component to a limiting value, while the data error due to N keeps reducing.
The points in the plot indicate averages across all values of x;, and, in order to obtain smoother con-
vergence curve, 100 replica simulations have been performed and only median results with 25%-75%
quantiles are reported.

5 Ignition model

This section illustrates the method on an example problem taken from chemical kinetics. Consider
the chemical model with the classical two-step mechanism described by [71], which accounts for the
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Figure 6: Demonstration of the pushed-forward predictions given noisy observations of a ‘truth’
function g(z) = 6 +2% — (2 +1)35 being calibrated by a quadratic model f(z;\) = Ao+ Az + A22? via
MVN model error embedding in all parameters A. The four frames (a, b, ¢, d) correspond to the four
N values (10,102,103, 10%), as indicated, respectively. The model error component (light blue region)
of the pushed-forward variance decomposition in (20) remains relatively unchanged after enough data
is collected, while posterior uncertainty keeps reducing. The average fit variance corresponds to the
convergence curve for the quadratic case in Figure 5.

incomplete oxidation of n-dodecane

Cio2Hog + %02 g 12CO + 13H50 (42)
1 kag

CO + QOQ k;‘ COs. (43)
26

The reaction rates are modeled using Arrhenius laws, with the parameters taken from [71, 20]

kh = AJ‘%)[012H26]0.25[02]1.25 (44)
kop = 3.98 x 10146(_4012()T00)[CO] [H,0]%5[0,]025 (45)
b = 5% 10%5)[00,) (46)
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Figure 7: An example of temperature profile and ignition time definition.

where R is the ideal gas constant, T" is the temperature in Kelvin, and [X] the molar concentration of
species X in units of mol/cm?®. The units of time and energy are sec and cal, respectively. Rate k; is
the rate of progress of fuel oxidation. The pre-exponential factor A is parameterized as

In A = a1 + ape®® + aqtanh((as + agd) Ty + ar), (47)

in which it is modeled as a function of initial temperature, Ty, and equivalence ratio, ¢. Such a special
form allows accounting for the desired behavior of the autoignition delay time in (Tp, ¢) space; e.g.,
in the Negative Temperature Coefficient (NTC) region [45]. Varying the Arrhenius parameters with
mixture state is a well known technique that has been applied elsewhere with good success [23, 24, 48].
Together with the activation energy E, the parameter a; is of interest, i.e. A = (E,ap), while for
the purposes of the demonstrations in this work, we fix the rest of the parameters at their nominal
values (az, a3, a4, as, ag, a7) = (—2.13,—2.05,1.89, —0.01,2.87-10~%,8.43), found in [32]. The operating
conditions for a given ignition simulation are the pressure (in atm), the equivalence ratio, and the scaled
inverse of the initial temperature. In terms of the notation in this work, the operating conditions are
x = (P,$,1000/Tp), and the model output of interest f(z;\) is the logarithm of the ignition time,
In(7). The ignition time is defined as the time when the temperature reaches 1500 K, as demonstrated
in Figure 7. The simulations of the 2-step mechanism are performed using TChem [55], a software
toolkit for the analysis of complex kinetic models.

We demonstrate calibration of this 2-step model in two case studies: (a) experimental shock-tube
data from [68], and (b) simulation data generated from the skeletal mechanism by [50] with 255 species
and 2289 reactions.

5.1 Calibration with experimental data

Here we employ experimental shock-tube ignition data from [68] collected in a heated, high-pressure
shock tube for two fixed values of equivalence ratio (¢ = 0.5 and ¢ = 1.0), over a range of variation of
the two other operating conditions, pressure (P) and initial temperature (7p). As such, the logarithm
of ignition time, In(7), collected under varying conditions x = (P, ¢, 1000/Tp), is the data generation
model g(x). Overall, there are 42 data samples, or quartets, {(P, ¢, 1000/Tp);,In(7;)}#2,, 16 of which
correspond to ¢ = 0.5, while the other 26 are collected under equivalence ratio ¢ = 1.0. We note
that the two other operating conditions, P and Tj, are measured rather than strictly enforced, and
the authors in [68] somewhat heuristically evaluate the overall noise in ignition time measurement as
+10%. Besides, the definition of ignition time in the experiments differs somewhat from the definition
employed in the model-to-be-calibrated. However, the difference is of little consequence. Given the
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sharp temperature increase and overall shape of the temperature evolution as in Figure 7, the minor
discrepancy in the definition of ignition time can essentially be regarded as data noise. Overall, given
In(1.17) ~ In(7) + 0.1 and In(0.97) ~ In(7) — 0.1, we note that the nominal standard deviation is
o = 0.1. For the inference, we assume an i.i.d. additive data noise model on In(7), distributed as a
normal random variable with vanishing mean and constant standard deviation to be inferred.

Following Algorithm 1, we build a polynomial surrogate for the output In(7) of the two-step
mechanism (42)-(43) at all operating conditions z;, for i = 1,..., N and with N = 42. The polynomial
surrogate is chosen to be 3-rd order, with the coefficients found by regression described in Section 3.2.3,
using R = 100 input parameters A = (F,a1), sampled uniformly over ranges E € [10000,40000] and
a; € [15,37]. The polynomial regression allows analytical extraction of leave-one-out (LOO) error
as a measure of its accuracy [14], and can subsequently augment predictive uncertainty budget, as
demonstrated in [39]. For the examples shown, the LOO errors are on the order of 1072, while the
observable In7 varies in the range between —11 and —6, therefore we ignore surrogate error in the
present discussion. Moreover, as we employ a third-order polynomial surrogate model, the PC-based
NISP propagation with third-order truncation provides an exact extraction of mean and variance of
the PF predictions. The data noise is assumed constant, independent across operating conditions
i =1,...,42, and is inferred together with the model parameters. The goal of the demonstration
is to highlight the ability of the model error approach to differentiate model error from data noise
appropriately. In other words, we demonstrate that including embedded model error term allows
estimating data noise standard deviation much more accurately, while the classical inference without
accounting for model error overestimates the data standard deviation, compensating for unaccounted
model error. Figure 8 demonstrates the posterior predictive uncertainty that can be derived similar
to Eq. (22) as

opp(ri) = Balo! (1i;&)°]+ Valp! (vi;&)] + E,0?] . (48)
model error posterior?fncertainty data noise

This equation is similar to the pushed forward uncertainty (20), with the additional data noise term.
The classical calibration, as Figure 8(a) shows, captures the experimental data well on average, with
posterior uncertainties, due to low amount of the data, being consistent with the data. However, it
includes no model error by construction, and attributes most of the posterior predictive uncertainty to
data noise, thus overestimating the latter. When including model error, as shown in Figure 8(b), with
MVN embedding (11) in the two main parameters A = (E, a;1) of the 2-step model, and independent-
normal likelihood (13), one achieves similar posterior predictive variance, but with an estimate of
data noise size that is closer to the nominal value of o = 0.1. This more accurate estimation of o is
highlighted in Figure 9, in which the MCMC samples from both cases are shown, together with their
respective PDFs and the nominal value of o.

5.2 Calibration with complex-model data

Consider a more complex mechanism (albeit still a “skeletal” mechanism for this fuel) with 255 species
and 2289 reactions defined in [50]. We simulate ignition with this mechanism, using TChem [55], at
arbitrary operating conditions. We select a uniform 11 x 11 x 11 grid in the x = (P, ¢,1000/T}) space
varying these conditions in the ranges = € [11,61] atm, ¢ € [0.5,2.5], 1000/T, € [0.8,1.3] K~*. The
logarithm of the ignition time for this mechanism is the data generation model g(x) in the notation
of this work. The ignition time is defined as the time when temperature reaches 1500 K. As in the
previous case, the model-to-be-calibrated is the two-step mechanism from (42)-(43), for which we
prebuild 3-rd order polynomial surrogates for all N = 1331 operating conditions, using R = 100
random parameter samples of A = (E, a1), sampled from ranges E € [10000,40000] and a; € [15,37].
Once again, the PC-based NISP propagation provides exact values for the PF moments. Unlike the
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Figure 8: Demonstration of uncertainty decomposition of the predictions, according to Eq. (48). The
classical Bayesian calibration, with inferred constant data noise o is shown in the first plot, while the
results with the embedded model error approach are shown in the second plot. Note that in both
cases, the posterior uncertainty contribution is relatively small.
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Figure 9: Demonstration of posterior samples of data noise standard deviation with or without in-
cluding model error.

experimental data from the previous case, the complex-model simulation produces data with no noise,
and the discrepancy between the two-step mechanism and the complex model is purely due to model
error. As such, the main assumption underlying the classical calibration, i.e. the i.i.d. nature of
data noise is unfounded. Still, we proceed with the classical calibration for demonstration, assuming
constant data noise o that is inferred together with the model parameters A = (E, a;). What we have
found is that the posterior variance Vy[f(x; A)], being the only contributor to the PF uncertainty, is
negligibly small due to abundance of data for calibration.

Indeed, we have found that while the calibrated 2-step mechanism captures the detailed mechanism
reasonably well on average, the PF uncertainty is by no means representative of the true discrepancy.
At the same time, as Figure 10 shows, the embedded model error calibration (again, we employed MVN
embedding (11) and independent-normal likelihood (13)) leads to a predictive uncertainty component
that fairly describes the true discrepancy across all 1331 data points. This figure shows the true dis-
crepancy from complex-model data to the mean prediction of the two-step mechanism, with a cloud of
errorbars behind it corresponding to the PF variance components according to the decomposition (20).
Further, Figure 11 illustrates the posterior joint PDFs for (F,a;). While the classical calibration (on
the left) leads to an over-confident PDF, the model-error embedded approach leads to posterior PDF's
that are representative of actual model discrepancies, as its PF predictions show in Figures 12 and 13.
These results demonstrate the model-to-model calibration for a small subset of the 1331 operating
conditions. Namely, they illustrate the ignition time dependence on initial temperature for 4 ‘corner’
cases of pressure and equivalence ratio, (11,0.5), (11,2.5), (61,0.5) and (61,2.5). Again, it is clear that
the classical calibration (Figure 12) underestimates the predictive uncertainties, while the model-error
embedding (Figure 13) allows predictive uncertainties to capture the discrepancy across a wide range
of conditions.
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classical calibration (results not shown), which includes negligibly small PF uncertainty.
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Figure 12: Demonstration of PF uncertainties of classical calibration. The output of interest, In(7) is
shown as a function of the inverse initial temperature, for 4 ‘corner’ cases of the two other operating
conditions, the equivalence ratio ¢ and the pressure P.

6 Discussion

The framework presented in this work takes essential steps towards representation and quantifica-
tion of model errors. Specifically, we present a principled approach for representing model structural
error by embedding it in the model itself. The Bayesian machinery is employed for estimation of
embedded model error parameterization together with original model parameters. At the same time,
polynomial chaos expansions with pre-built surrogates allow efficient likelihood estimation and un-
certainty propagation. The approach shows promising results in various contexts/scenarios that are
well-recognized to highlight fundamental challenges associated with model error assessment. For ex-
ample, model-to-model calibration is a special case of the developed methodology. In such cases,
there is no observational data, i.e. ¢, = 0 in Eq. (1), one strives to calibrate a lower-fidelity model
f(x; A) with respect to simulation data from a higher-fidelity model that is effectively assumed to be
the ‘truth’ g(x). This scenario particularly highlights the deficiency of the conventional calibration
approaches that assume i.i.d error between the high- and low-fidelity models, while the embedded
model error calibration allows a principled way to construct model-to-model discrepancy terms that
are directly propagated through the physical model and satisfy physical constraints by definition. This
work extends this no-noise approach, developed in [58], to incorporate experimental /observational data
leading to full attribution of predictive uncertainties to various components, including uncertainties
associated with both structural errors and data amount/quality.
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Figure 13: Demonstration of PF uncertainties of calibration with model error embedding. The output
of interest, In(7) is shown as a function of the inverse initial temperature, for 4 ‘corner’ cases of the
two other operating conditions, the equivalence ratio ¢ and the pressure P.

As a future extension, one can tackle hierarchical models, as hierarchical structure is quite com-
mon in physical models. There are also potential opportunities for exploring connections between this
embedded model error approach and multi-fidelity model analysis. Another advantage of the present
approach is highlighted when the predictive quantities are computed for another Qol that relies on A
or a subset thereof. Two different extrapolation modes for prediction are implied, (a) extrapolating
f(z; ) to design conditions x that are outside the range of z;’s used for calibration, and (b) extrap-
olating to a different observable or model, e.g. h(z’; A), potentially at qualitatively different design
conditions z’. The latter in particular highlights the strength of the proposed approach compared to
conventional statistical approaches of explicit modeling of model discrepancy as an additive correction
on a specific observable [43]. Such additive corrections do not have any predictive meaning when ap-
plied to other observable Qols, while the present approach of embedding model error representations
inside the models allows predictions, with quantified uncertainties, for categorically different models
or model scenarios. It is worth noting that extrapolation in any sense is a dangerous task — and this
work is not guaranteeing accurate extrapolative predictions for general models of interest. Rather, by
“correcting” the model in physically consistent ways, the approach retains the predictive strength of
the physical model intact, whether for prediction of other Qols, or, to the extent that the phyiscal
model is “valid” over a broad set of operating conditions, for extrapolation. The approach lays a foun-
dation for making such predictions that are at least meaningful and informed by the inferred model
error magnitude.
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While, generally throughout the paper, it is assumed that both the model f(z;A) and the ‘truth’
or high-fidelity model g(z) are deterministic, the developed machinery in principle generalizes to
stochastic models that exhibit internal variability. Such internal variability will simply add an extra
uncertainty component to the pushed-forward process F'(x; &) (if the model-to-be-calibrated f(z; )
is stochastic) in Eq. (20), or to the posterior predictive random variable (if the high-fidelity model
g(x) is stochastic), effectively playing a role of observational error. In a PC context, one can envision
extra elements in the augmented germ (52) to capture internal stochasticity of f(z;\) or g(z).

Finally, it is also important to highlight some major challenges for the embedded model error
construction that are only partially addressed in this paper or relegated to future work. For example,
the dimensionality increase in the associated calibration problem renders the MCMC sampling quite
challenging, suggesting the use of advanced MCMC sampling schemes that are well-tuned to sample in
data-informed lower-dimensional manifolds or nearly-degenerate posteriors. Also, the Bayesian prob-
lem can often be prior-dominated, making appropriate prior selection a crucial part of the methodology.
Further, in general, identifiability is an issue for inferring both model structural error parameterization
and physical parameters at the same time, particularly in the limit of low amount of high-fidelity or
observational data [2].

The calibration with model error embedding, including a variety of likelihood, prior, and embedding
form options, is implemented as a part of UQTk v3.0 [19, 18], a lightweight C++/Python library for
a range of basic UQ tasks developed at Sandia National Laboratories in Livermore, CA.

Acknowledgments

The authors would like to thank Jason Bender, Chi Feng, Youssef Marzouk and Cosmin Safta for
comments and suggestions throughout this work. The authors acknowledge the support by the Defense
Advanced Research Projects Agency (DARPA) program on Enabling Quantification of Uncertainty
in Physical Systems (EQUiPS). Also, KS and HNN acknowledge support for this work through the
Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department
of Energy (DOE), Office of Science, Advanced Scientific Computing Research (ASCR). HNN also
acknowledges support for this work through the DOE, Office of Basic Energy Sciences (BES), Division
of Chemical Sciences, Geosciences, and Biosciences. Sandia National Laboratories is a multimission
laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC.,
a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA-0003525.

Appendices

A Attribution of predictive uncertainties

Eq. (35) can be viewed as a (d+ N )-dimensional PC expansion with respect to the augmented PC germ
é = (&1, .-, &a, €441, - - -, €arnN) in which the first d stochastic dimensions correspond to the embedded
model error, and the last IV correspond to the error associated with data collection.

One can proceed further with the PC paradigm and represent the posterior random vector & as a
PC expansion of dimension dg, the number of entries in &,

Ka—1

Qj ~ Z Ak VE(§ar N1, -5 Edr N4, forj=1,...,da. (49)
k=0
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This can be accomplished via the Rosenblatt transformation, using posterior samples obtained from
MCMC. As before, one will need to truncate at an appropriate PC order pg, leading to a number
of terms Kg = (da + pa)!/(da!pa!). Then, similar to the PC propagation of A through the model
f(x; A), one can propagate the PCE of & in Eq. (49), through each of the coefficients fi(x;; &) to
obtain

K-1
k(2 o Z Srim¥m(Ea4N+1, - - - 5 Edt Ntda) (50)
m=0

for some truncation number K. Plugging this into the data model (35), one obtains the fully expanded
PC representation

K-1K-1

Ui DY FrimTm(Carnats s EarNade) Pk(€) + 0t fori=1,...,N. (51)
k=0 m=0

This is a generic PC representation with respect to the fully augmented PC germ

5 = (517 s 7£d7 £d+1> ce a§d+N7£d+N+17 s agd—HV—i-da)- (52)
—— ~
Model error Measurement error Posterior uncertainty

Even if the resulting PC expansion (51) has a very large stochastic dimensionality of df,; = d+ N +da,
one can employ generic PC tools for variance attribution — without additional cost — in order to
attribute the overall uncertainty of the data model into specific components/dimensionalities, such as
model error, measurement error and posterior uncertainty. Namely, the right-hand side of Eq. (51)
can be written in a general PC form

yim Y fpUp(8), (53)
pES
where S denotes the set of multiindices, i.e. dimension-wise orders, p = (p1, ..., P4 full), induced by the

specific form of the expansion (51). Now the total variance of this expansion Viptar = 3 _,cs Sl |2
can be attributed to fractional contributions corresponding to specific subsets of the germ, via Sobol
sensitivity indices [65, 56]. For example, the main Sobol sensitivity index corresponding to a subset

of dimensions £_ C £ is

S
E* Vto tal

> Ll (54)

pES.

where S_ C § is the subset of multiindices that involve only dimensions in é,. When specific subsets
of the full germ, highlighted in Eq. (52), are taken, one recovers a decomposition that is essentially
the PC-based counterpart of the general variance decomposition (20). Such uncertainty attribution
decomposes the overall uncertainty and allows informed decision-making in selecting the submod-
els/parameterizations that contribute most to it.
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