
The Pitfalls of Provisioning Exascale Networks:
A Trace Replay Analysis for Understanding

Communication Performance

Joseph P. Kenny, Khachik Sargsyan, Samuel Knight, and Jeremiah J. Wilke

Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550
{jpkenny,ksargsy,sknigh,jjwilke}@sandia.gov

Abstract. Data movement is considered the main performance con-
cern for exascale, including both on-node memory and off-node network
communication. Indeed, many application traces show significant time
spent in MPI calls, potentially indicating that faster networks must be
provisioned for scalability. However, equating MPI times with network
communication delays ignores synchronization delays and software over-
heads independent of network hardware. Using point-to-point protocol
details, we explore the decomposition of MPI time into communication,
synchronization and software stack components using architecture sim-
ulation. Detailed validation using Bayesian inference is used to identify
performance sensitivity to specific latency/bandwidth parameters for dif-
ferent network protocols and to quantify associated uncertainties. The
inference combined with trace replay shows that synchronization and
MPI software stack overhead are at least as important as the network
itself in determining time spent in communication routines.

1 Introduction

As high performance computing (HPC) systems are pushed to greater scales, the
compute throughput of nodes has grown rapidly. Bandwidth/throughput ratios
for network/compute performance have not been maintained [1], leading to con-
cern that off-node interconnects may become severe bottlenecks [2, 3]. Choosing
the relative provisioning of network/compute is a critical step in any system
procurement. Application traces can be a useful mechanism to understand ex-
isting performance and extrapolate performance to next-generation systems [4].
For many HPC systems, message passing (MPI) is the dominant network run-
time [5]. Understanding MPI performance is therefore critical to the problem of
network design. In order to properly understand MPI application performance,
however, it is necessary to disambiguate the effects of the network hardware it-
self from properties of the application and underlying communication library. If
an application spends significant time waiting for message completion, the cause
may be that the network is under-provisioned relative to compute. However, ob-
served delays may also be caused by synchronization mismatches between sender
and receiver. MPI delays may also be in the system software rather than the time
spent traversing network links and switches.

SAND2018-0488C

Full system architecture simulation has useful to answer such questions. Sys-
tem simulation is robustly suited to explore design options that would be too
costly or impractical to test on real systems or test beds. These design studies
can include scaling system size, tuning system bandwidth/latency parameters,
or even implementation of parallel algorithms. A discrete event simulator allows
access to arbitrary performance counters or statistics while also imposing a per-
fectly synchronized global clock across the virtual system. Simulation therefore
provides a level of omniscience lacking on physical systems.

In this work, decompositions of communication protocols are defined to allow
precise attribution of application delays to network hardware, system software,
and synchronization. A trace replay endpoint model and a detailed MPI software
stack which was modified for detailed accounting of protocol timing has been
used in conjunction with a hierarchy of full scale network models to perform
system-scale simulation. Bayesian inference was used to quantify uncertainties
and validate the most accurate model against a production software stack run-
ning on physical hardware (OpenMPI running over an Intel Omni-Path network).
This simulation framework was used to collect communication decompositions
for a suite of applications representing typical workloads for HPC systems run by
the U.S. Department of Energy. These simulations demonstrate that performance
degradation which would typically be attributed to poor network performance
is instead often dominated by other factors.

2 Prior Work

2.1 HPC Architecture Simulation

Packet-level simulation of HPC systems using (parallel) discrete event simulation
driven by application traces is a common tool for performance analysis [4, 6–8].
Typically, studies have focused on evaluating time to solution for given work-
loads and network hardware configurations rather than delineating sources of
performance degradation in the software stack. Casanova et. al. used piecewise
linear regressions to account for MPI point-to-point protocols in a flow-based
model [9]. Using an analytical model, Hoefler et. al. examined the impact of
system noise, an external cause of synchronization issues, on application per-
formance [10]. Likewise, Totoni et. al. used packet-level network simulations to
examine noise impacts [11]. Yoga and Chabbi have used simulation to prototype
communication protocol and hardware extensions that allow source code attri-
bution and detailed tracking of network flows [12]. Their focus was on hardware
events rather than application and protocol performance.

2.2 Detailed MPI Performance Analysis

MPI profiling tools collect information about a running MPI application and
provide post-mortem, or in some cases, live analysis. The information collected
varies with how the application is tooled, and may include MPI call times, pa-
rameters, system counters, or hand-flagged portions of code. The MPI standard

includes PMPI, which profilers use to intercept MPI calls at the point of in-
vocation and record statistics including the time, communication pattern, and
call arguments. Despite PMPI’s wide adoption by tracing libraries, it does not
provide insight into what the application or the underlying MPI layer does be-
tween MPI calls. PERUSE was an early effort to improve trace support in MPI
that introduced callbacks for profiling tools to track state changes in the under-
lying implementation [13]. PERUSE was not accepted into the MPI standard,
however, and MPI 3.1 introduced a different API called the MPI Tool Interface
(MPI T), which exposes internal MPI runtime structures [5]. MPI T is a recent
standard, and is still undergoing adoption by profiling tool developers. The new
API has still been used in recent research to profile MPI implementation mem-
ory overhead [14], create MPI-oriented software performance counters [15], and
perform runtime introspection and application auto-tuning [16].

Of the numerous MPI trace collection tools, ScoreP adoption has grown con-
siderably in recent years. It wraps the MPI compiler to instrument trace collec-
tion, and can generate event traces of MPI, OpenMP, CUDA, and PAPI counters
[17]. The OTF2 format is compatible with a number of visualization tools [18],
including Vampir [19], OpenSpeedShop [20], and Tau [21]. Trace visualization
tools for OTF2 have the potential to show the culprits of communication barrier
bottlenecks, but they suffer two shortcomings. Firstly, while a trace visualizer
can elucidate cases where specific ranks enter into a collective late, they generally
cannot visualize operations that occur in an MPI call. Secondly, compute nodes
on HPC systems often have clock skews of several hundred milliseconds [22],
which may ruin temporal alignment of communication barriers in trace files.

2.3 Uncertainty Quantification

While some form of validation is common for network simulators, detailed un-
certainty quantification (UQ) is more difficult and therefore less common. In this
work, the UQ approach consists of two main ingredients, (a) Forward modeling:
Polynomial Chaos machinery for surrogate model construction and global sensi-
tivity analysis, and (b) Inverse modeling: a Bayesian approach for calibrating the
simulation model – or its surrogate – given experimental data. Both approaches
are fairly well established in the UQ community. Synthetic, surrogate approxi-
mations have been employed in various computationally intensive studies, such
as design optimization [23], reliability analysis [24] and, more relevantly, global
sensitivity analysis [24, 25].

3 MPI Implementations

3.1 Point-to-point Protocols and Synchronization

We wish to disambiguate what portion of observed MPI times is due to net-
work delays and what portion is due to synchronization mismatches between
MPI ranks or system software overheads. How to appropriately define synchro-
nization depends on the exact protocol used for messages. Here we use three

MPI_Send
Immediate

Return
Send Eager

Header

Header Arrives
in Mailbox
Copy to

DestinationBuffer

MPI_Recv

Buffer

Time

Tsend

TPostRecv

ΔTSync

Fig. 1: Illustration of mailbox proto-
col for small messages. The sender
returns immediately after copying
into buffer. Receiver completes as
soon as payload arrives, copying
from mailbox buffer into recv array.
TSend and TPostRecv from eq (1) are
shown. The receiver sees a synchro-
nization delay (∆Tsync)

protocols modeled after those used on Cray Gemini and Aries systems [26] and
validated against OpenMPI over OmniPath (see Section 5.1). Protocols distin-
guish small, medium, and large messages. These cutoffs are usually tunable,
but the maximum small message is often 1-4KB while maximum medium mes-
sage is 8-64KB depending on the implementation (e.g. OpenMPI vs MPICH)
and the underlying transport. Small messages are sent directly into preallocated
mailboxes on the receiver (Figure 1). The send completes immediately, provided
there are sufficient mailbox credits. The receive completes immediately (after a
memcopy from mailbox into buffer) if the message has already arrived. Synchro-
nization delays can only occur on the receiver side since the sender completes
immediately. For the receiver, any time gap between posting the receive and the
send beginning is due to synchronization, not a network delay - see equation (2).

MPI_Send
Immediate

Return

RDMA Get

Register
Eager Buffer

Buffer
MPI_Recv

Buffer
Send RDMA

Header

TPostRecv

Tsend

Time

Fig. 2: Illustration of eager RDMA
protocol for medium messages. The
sender returns immediately after
copying into send buffer. Upon
receiving RDMA header, receiver
selects buffer to receive RDMA
get. Receiver completes as soon as
RDMA get finishes, copying from
buffer into receive array. TSend and
TPostRecv from eq (1) are shown.
The sender completes immediately
(eager). The receiver sees only net-
work delays, not synchronization.

Medium messages also use an eager protocol, but using an intermediate
RDMA buffer (Figure 2). The sender copies into a temporary buffer in pinned
memory and sends a coordination header to the receiver. The sender then com-
pletes immediately. Once the header is received (regardless of whether a corre-
sponding MPI Recv was posted), the receiver performs an RDMA get into its
own temporary buffer in pinned memory. Upon completion of the RDMA get
(and posting of matching receive), the payload is copied from the temporary
buffer into the receive buffer. Synchronization is defined the same way as the
mailbox protocol, and again can only occur on the receiver.

ACK
Returns

RDMA Get

MPI_Recv

Send RDMA
Header

RDMA Done
Recv Returns

ACK

MPI_Send

Time

Tsend

TPostRecv

ΔTSync

Fig. 3: Illustration of rendezvous
RDMA protocol for large messages.
The sender must wait for receiver
synchronization. Data is transferred
via zero-copy RDMA get. Receiver
completes as soon as RDMA get fin-
ishes. Sender completes as soon as
RDMA ack is received. TSend and
TPostRecv from eq (1) are shown. In
this case, the sender sees a synchro-
nization delay (∆Tsync).

Large messages use a zero-copy rendezvous protocol (Figure 3). The sender
pins its buffer and then sends a coordination header to the receiver. After both
the receive is posted and the coordination header is received, the receiver pins
its buffer and posts an RDMA get directly from the remote buffer into the local
buffer. The receiver completes when the RDMA get completes. The sender com-
pletes after it receives an ACK from the receiver that the operation is complete.
Synchronization for the receiver is the same as in the eager and mailbox proto-
cols. In the rendezvous protocol, the sender can also see synchronization delays.
The time gap between the send beginning and posting the receive will contribute
to the total observed MPI_Send time, but does not arise from a network delay.

Memcopy operations and RDMA pinning are not included in synchronization
and are included as a distinct “MPI Stack” category. In equation (1), TSend is the
time after all local buffer operations have completed. In the same way, TPostRecv
is the time before all local buffer operations have started.

∆Tsync(sender) = max(0, TPostRecv − TSend) (1)

∆Tsync(recver) = max(0, TSend − TPostRecv) (2)

These quantities clearly require a precisely synchronized clock between sender
and receiver to accurately compute.

For non-blocking calls with deferred waits, the definitions must be amended
slightly. Synchronization (and network) delays are not counted until the sender/re-
ceiver begins waiting:

∆Tsync(sender) = max(0, TPostRecv − TWaitSend) (3)

∆Tsync(recver) = max(0, TSend − TWaitRecv) (4)

Synchronization definitions easily generalize for collectives. Each collective is
a sequence of point-to-point sends implementing a spanning tree [27]. Synchro-
nization delays for collectives are therefore a sum over individual operations.

4 Methodology

4.1 Experimental Methodology

Parameterization and validation of the network model was performed on a cluster
utilizing a 24-port Intel Omni-Path 100 Series Edge Switch. The switch was
fully populated with one compute node per port, with each node containing
two Intel Xeon E5-2683V4 processors with 16 cores each and a base clock rate
of 2.10GHz. An MPI benchmark was run on two nodes within this cluster to
generate throughputs for message sizes ranging from 256 to 1,048,576 bytes.
After a warmup period, the source node sends messages of increasing size in
repeated windows to the same destination node. The total number of repeats
for each size decreases from 2,560 messages for the smallest size to 40 messages
for the largest size. Each run of the application produces an average throughput
value for each of 18 message sizes. 100 runs of the benchmark were completed
to gauge runtime variability. These experimental data were then used as input
for uncertainty quantification.

4.2 Simulation

The Structural Simulation Toolkit (SST) [28] was used as a discrete event core
for combining our simulation components: PISCES, MACRELS, and DUMPI
trace replay[29]. The following applications were generated or obtained from the
NERSC DOE mini-app characterization website [30]:

Simulation MPI Ranks

AMR Boxlib 1728
CESAR Nekbone 1024
Geometric Multigrid 10648
GTC 16384
MiniDFT 1920
miniPIC 1024

The long-running DFT and GTC traces were truncated to 33% and 10%,
respectively. Simulations were run with a hierarchy of network models in order
to analyze various congestion and synchronization effects. The PISCES model
(Packet-flow Interconnect Simulation for Congestion at Extreme Scale), is a
packet-level model which breaks up network flows into coarse-grained packets.
While large packet sizes are typically used to improve simulation efficiency, pack-
ets are allowed to share bandwidth when their paths intersect. This bandwidth
sharing approximates the interleaving of finer-grained flow control units (FLITs)
and reduces the errors associated with coarse-grained packets.

MACRELS (Message passing AnalytiC REally Lightweight Simulation) is an
analytic network model with low computational cost. MACRELS approximates
communication similarly to the LogP family of analytic network models [31].
Network delays assume an analytic function of the form

∆t = α+ βN (5)

with communication time ∆t, communication latency α, inverse bandwidth β,
and message size N. Although network contention is ignored, it is modeled on
injection/ejection with messages being constrained to arrive in-order and seri-
alizing when two messages depart or arrive at the same time. Since MACRELS
is driven by the same fairly detailed endpoint models as PISCES, analysis of
low level features such as MPI protocol overheads is still possible. Comparing
MACRELS with PISCES for a given workload provides insight into both the
importance of congestion in network modeling and into the subtle interplay be-
tween network congestion and application synchronization effects.

A third set of simulation results, termed “Compute Only”, shows application
performance for a theoretical system with zero latency and infinite bandwidth
in the network as well as zero MPI software overheads (∆t = 0 for all messages).
This probes the limit of performance as MPI time can only be attributed to
inherent application load balance and associated synchronization issues.

Each trace was simulated on a canonical dragonfly topology [32] consisting
of 48-switch groups (connected all-to-all) with a concentration of 4 nodes per
switch. Up to eight intergroup connections were allowed per switch (with a max-
imum of one link to each group per switch). Minimal routing was chosen in order
to generate worst case network congestion and thereby derive pessimistic val-
ues for network delays. PISCES (with minimal routing) and MACRELS should
therefore estimate lower and upper bounds on network performance.

One MPI task was simulated per network endpoint (node) simulating a
MPI+X execution model. While MPI traces were collected on the NERSC Edi-
son platform with one MPI rank per core, we wish to understand internode MPI
performance rather than intranode. Compute times from the DUMPI trace were
therefore sped up by a factor of ten to represent the same application executing
with thread-level parallelism on a state of the art multi-core processor. Applica-
tions run in MPI-only mode with one process per core will obviously have very
different network characteristics. The procedure outlined here could be extended
to validate and calibrate intranode MPI protocols and simulation models.

The set of parameters used for simulation is detailed later in Section 5.1 in
Table 1. The latency and bandwidth parameters are separated into those affect-
ing network performance and those affecting performance of the system soft-
ware stack. Memory bandwidth, although a hardware parameter, is important
for CPU operations in the MPI stack (memory copies) as shown in Figures 1-3.

4.3 Uncertainty Quantification

The overall high-level workflow for the UQ analysis is shown in Figure 4. In
the next section, we proceed to demonstrate the results of surrogate-enabled
calibration to arrive at a full probabilistic description of input parameters as
informed by the collected experimental data. Full mathematical details of the UQ
procedure are delayed until the appendix. Here we give a conceptual overview.

The first step is surrogate construction. Running the full inference using the
simulator directly is too expensive since >100K samples must be visited in a
Monte Carlo procedure. Instead, a polynomial surrogate is constructed suitable

KUKU

Inverse
modeling

Forward
modeling

f(λ)

Simulation

fs(λ)

Surrogate

Likelihood D = {yi}

Experiments

Posterior p(λ|D)

Prior p(λ)

(a) (b)

Fig. 4: (a) The UQ workflow employs polynomial chaos machinery for surrogate
construction and global sensitivity analysis (forward modeling), and Bayesian
inference with Markov Chain Monte Carlo (MCMC) for parameter calibration
(inverse modeling). (b) Refinement from a prior distribution (all parameter val-
ues in a reasonable range equally likely) to a well-defined posterior distribution
with small uncertainty.

for fast generation of Monte Carlo samples. The surrogate is built by collecting
simulator results over a multidimensional sparse grid and fitting to a multi-
dimensional polynomial.

While the resulting surrogate polynomial has some inaccuracies, previous
work has shown accuracy is sufficient for parameter calibration; in fact the
surrogate-related errors are incorporated in the likelihood function for calibra-
tion. In the next step, the space of allowed parameter values (prior ranges) is
explored. Each point in parameter space is a set of latencies/bandwidths that
produces corresponding simulator output that can be compared to experimen-
tal values. The procedure searches for a maximum likelihood set of parameters
while also quantifying the associated certainties. This is illustrated schematically
in Figure 4b where the prior distribution is updated into a posterior distribu-
tion with a well-defined maximum posterior value (which in the current context
coincides with the maximum likelihood value), but also includes corresponding
uncertainty information.

5 Results

5.1 Simulator Validation

Before we can accurately partition MPI times into contributions from network,
MPI software stack, and synchronization, we must first validate the simulation
framework. Validation here focuses on the more detailed PISCES model. The
critical simulation parameters are displayed in Table 1. At issue is 1) what cali-
brated values to use for trace replay and 2) whether the chosen simulation is able
to reproduce MPI point-to-point throughputs from OpenMPI over OmniPath

(see Section 4.1). In particular, we wish to assign uncertainties and sensitivities
to individual pieces of the simulation models.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Buffer Size ID

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

Injection Bandwidth
Memory Bandwidth
Link Bandwidth
Post Header Delay

Post RDMA Delay
RDMA Pin Latency
RDMA Pin Delay Per Page

Buffer Sizes/Protocols

Mailbox Eager Rendezvous

1. 256B 7. 6KB 13. 64KB
2. 512B 8. 8KB 14. 96KB
3. 1KB 9. 12KB 15. 128KB
4. 2KB 10. 16KB 16. 256KB
5. 3KB 11. 32KB 17. 512KB
6. 4KB 12. 48KB 18. 1MB

Fig. 5: The sensitivity to model parameters of each simulated point-to-point send
(buffer size ID). The table provides the message size and protocol which corre-
sponds to each buffer size ID. Shifts between communication protocols based on
buffer sizes are clearly observed in the model parameter sensitivities.

We can improve the efficiency of inference by examining the parameter sensi-
tivities in Figure 5. The inference procedure is problem-agnostic, but sensitivies
help double-check the physical intuition and make the parameter inference as
efficient as possible. Different parameters are more critical for different proto-
cols. For example, some parameters are size-independent (post delays, pin la-
tency) while others are size-dependent (bandwidth). As the size of message sent
increases, sensitivity to bandwidth parameters increase. For mailbox protocols
(1-6), header post delays are the most critical. RDMA is not performed. Some
sensitivity to memory bandwidth appears for larger buffers. For eager RDMA
protocols (7-12), RDMA post delays become important. The two memory copies
(sender-size and receiver-side) dominate any network delays from injection or
link bandwidth. For rendezvous protocols (13-18), zero-copy is used so memory
bandwidth is no longer critical. While the eager protocol assumes reusable tem-
porary buffers, rendezvous buffers must be registered for each zero-copy transfer.
Thus RDMA pinning parameters appear in 13-18.

Figure 6 shows the prior distribution for the point-to-point send benchmark.
Plotted here is the full sweep of simulator outputs if the complete prior range
(Table 1) for each parameter is scanned. These are plotted along with the 100
experimental trials for each send buffer size. This demonstrates the inherent
experimental variance and prior uncertainty in the simulation assuming any
combination of parameter values within the prior range is equally likely. The
inference procedure refines the prior distributions based on these discrepancies
to yield the posterior distribution in Figure 6. After parameter calibration, the
posterior distribution demonstrates the remaining uncertainty and discrepancies
between simulation and experimental results.

0

2

4

6

8

10

12

14

T
h
ro
u
g
h
p
u
t
(G

B
/s
)

Prior

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Buffer Size ID

0

2

4

6

8

10

12

14

T
h
ro
u
g
h
p
u
t
(G

B
/s
)

Posterior

Fig. 6: Prior and posterior distributions of point-to-point send throughputs. The
markers indicate output values from experimental trials. Output ID specifies the
message size as defined in Figure 5.

It is important to distinguish simple parameter fitting from the detailed cal-
ibration here. Any single data point can be reproduced by fitting parameters.
However, fitting all data points together is only possible if the simulator is ac-
curate. Data point 1 in Figure 6 will “move” the prior parameters towards one
set of posterior parameters that exactly reproduce the experiment. Exactly re-
producing data point 8, however, may require different parameters from data
point 1. This conflict in “best fit” amongst the individual data points creates
the uncertainty in the posterior distribution. Additional uncertainty comes from
the experiment itself.

Parameter Max Likelihood1 Prior Range Type

Injection Bandwidth (GB/s) 13.04 8.0 - 16.0 Network
Link Bandwidth (GB/s) 12.47 10.0 - 15.0 Network
Memory Bandwidth (GB/s) 11.20 8.0 - 15.0 System Software
Post Header Delay (us) 0.36 0.1 - 1.5 System Software
Post RDMA Delay (us) 0.88 0.5 - 2.0 System Software
RDMA Pin Latency (us) 5.43 1.0 - 7.0 System Software
RDMA Pin Delay Per Page (ns) 50.50 1.0 - 100.0 System Software
Hop Latency2 (ns) 100ns n/a n/a

Table 1: Breakdown of parameters used in simulated trace replay showing max-
imum likelihood parameters derived from inference. The prior range illustrates
the “reasonable” values for each parameter visited during the inference. Maxi-
mum likelihood parameters are constrained to land within the prior range.

Despite discontinuities and irregular shape, the simulation is able to almost
exactly reproduce the experimental results in Figure 6 after parameter cali-
bration. The detailed calibration also shows that the simulator is reproducing
individual pieces of the protocol, not just total throughputs. After calibration,
each parameter has a definitive maximum posterior value (Figure 7), with the
exception of the per page memory pinning delay. This pin delay parameter has
little effect on the final results and therefore is unconstrained. This is consistent
with the sensitivities in Figure 5. If a parameter were either not important or not
accurately modeled, the posterior distribution would be unconstrained (i.e. have
large uncertainties). In trace replay, injection and link bandwidth will contribute
to network delays while the remaining parameters measure events in the MPI
software stack. The validation therefore supports our assertion that MPI times
are accurately decomposed into network, software stack, and synchronization.

8 9 10 11 12 13 14 15 16
Injection Bandwidth

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
D
F

Prior

Posterior

8 9 10 11 12 13 14 15
Memory Bandwidth

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P
D
F

Prior

Posterior

10 11 12 13 14 15
Link Bandwidth

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
D
F

Prior

Posterior

20 40 60 80 100
RDMA Pin Delay Per Page

0.000

0.002

0.004

0.006

0.008

0.010

0.012

P
D
F

Prior

Posterior

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Post Header Delay

0

5

10

15

20

25

P
D
F

Prior

Posterior

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Post RDMA Delay

0.0

0.5

1.0

1.5

2.0

2.5

P
D
F

Prior

Posterior

1 2 3 4 5 6 7
RDMA Pin Latency

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
D
F

Prior

Posterior

Fig. 7: Marginal Probability Density Functions (PDFs) from the Bayesian in-
ference for each model input parameter. Peaks indicate parameters have well-
defined values that accurately reproduce experiment. The flat distribution for
pin delay per page indicates the simulation is not sensitive to this parameter.

5.2 Application Analysis

Figure 8 presents the simulated time decompositions for each examined appli-
cation using the PISCES, MACRELS and Compute Only models. Looking at
the most accuate PISCES simulations, the most striking observation is that for
four of the six applications the network delay time is largely overwhelmed by
the combination of MPI stack and synchronization times. The communication
delays are only comparable to these hidden delays for DFT and GTC, yet even

1Maximum likelihood is peak of full 7-dimensional multivariate likelihood function.
Values will differ slightly from the peaks in the marginal distributions in Figure 7.

2This is an aggregate parameter accounting for the zero-load switch and link latency.
In initial calibrations, it had little effect on the final result and was instead fixed at a
nominal value.

To
ta

l

W
ai
t

Allg
at

he
r

Allt
oa

ll

Allr
ed

uc
e

Se
nd

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 T

o
ta

l
T
im

e

(A) PISCES
(B) MACRELS
(C) Compute Only

Network

Sync

MPI Stack

Compute

N
o
rm

a
liz

e
d
 M

P
I
T
im

e

A B

C

(a) AMR

To
ta

l

Allt
oa

llv

Bar
rie

r

Allr
ed

uc
e

Bca
st

Red
uc

e
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 T

o
ta

l
T
im

e

(A) PISCES
(B) MACRELS
(C) Compute Only

Network

Sync

MPI Stack

Compute

N
o
rm

a
liz

e
d
 M

P
I
T
im

e

A

B

C

(b) DFT

To
ta

l

Se
nd

re
cv

Bar
rie

r

Allr
ed

uc
e

W
ai
ta

ll

Red
uc

e
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 T

o
ta

l
T
im

e

(A) PISCES
(B) MACRELS
(C) Compute Only

Network

Sync

MPI Stack

Compute

N
o
rm

a
liz

e
d
 M

P
I
T
im

e
A

B
C

(c) GTC

To
ta

l

Bar
rie

r
W

ai
t

Allr
ed

uc
e

Red
uc

e
Se

nd
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 T

o
ta

l
T
im

e

(A) PISCES
(B) MACRELS
(C) Compute Only

Network

Sync

MPI Stack

Compute

N
o
rm

a
liz

e
d
 M

P
I
T
im

e

A B C

(d) Multigrid

To
ta

l

Allr
ed

uc
e

Ise
nd

W
ai
ta

ll

Bar
rie

r

Bca
st

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 T

o
ta

l
T
im

e

(A) PISCES
(B) MACRELS
(C) Compute Only

Network

Sync

MPI Stack

Compute

N
o
rm

a
liz

e
d
 M

P
I
T
im

e

A B

C

(e) Nekbone

To
ta

l

Allr
ed

uc
e

W
ai
ta

ll

Bca
st

Red
uc

e

Ise
nd

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 T

o
ta

l
T
im

e

(A) PISCES
(B) MACRELS
(C) Compute Only

Network

Sync

MPI Stack

Compute

N
o
rm

a
liz

e
d
 M

P
I
T
im

e

A
B

C

(f) PIC

Fig. 8: Decomposition of simulated runtimes for application trace replays. Each
trace was simulated with (a) the congestion-aware packet model PISCES, (b) the
flow-level analytic model without MACRELS, and (c) a compute-only simulation
with all network delays set to zero. Decompositions demonstrate that the large
fraction of time spent performing MPI operations are often due to MPI stack
overheads or synchronization due to load/performance imbalance.

in these cases the network delays are smaller. The size of the network delays
ranges from 83% of the combined hidden delays for DFT, the application in
which communication is most significant, to only 4.1% for Multigrid. Clearly,
attributing all time spent in MPI operations to network delays would lead to er-

roneous understanding of performance bottlenecks. For Multigrid in particular,
extra network provisioning would make almost no performance difference.

Comparison of the PISCES and MACRELS decompositions illustrates the
significance of network congestion in application performance. For most of the
applications, the simulations which take into account network congestion (PISCES)
are almost identical to the simulations that don’t (MACRELS). GTC is the only
application showing a significant amount of network time attributable to conges-
tion; with the MACRELS model network time for Sendrecv operations drops by
a factor greater than ten and the corresponding total time drops by 21%. This
discrepancy will shrink when adaptive routing (such as UGAL) is used. Here we
instead use minimal packet routing (PISCES) and contention-free flow models
(MACRELS) to establish lower and upper bounds on network performance. For
the rest of the applications, MACRELS total times differ from PISCES by less
than four percent. Despite lacking contention, MACRELS can result in longer
simulation times than PISCES. MACRELS assumes in-order message arrival and
exclusive access to injection links by each flow. Because PISCES flow control al-
lows multiple messages to “multiplex” across injection/ejection links, simulation
times can be lower when contention is not a major factor.

Compute Only simulations only include application computation time, with
MPI stack overhead eliminated and the network parameterized such that net-
work operations are instantaneous. Compute Only simulations were included to
rule out any possibility that network effects themselves were prolonging synchro-
nization times in any significant way. This measures the inherent synchroniza-
tion properties of the parallel algorithm. Some subtle or counterintuitive effects
can occur as the model changes from PISCES to MACRELS to compute-only.
In MACRELS, e.g., network delays can “hide” synchronization delays between
ranks. Suppose Rank 0 and Rank 1 have a 1ms synchronization mismatch in
the compute-only case. If Rank 0 is delayed 1ms by other communication before
posting the receive from Rank 1, Ranks 0 and 1 will now be synchronized and
the 1ms will be perceived as a network delay in Rank 0 instead. This occurs
in Multigrid, e.g., where synchronization delays increase when communications
delays are set to zero.

The majority of the applications do show a decrease in synchronization delays
when communication is made instantaneous. GTC and Nekbone are the outliers.
Nekbone stands out as the total time drops by 59% between the PISCES and
Compute Only models. While the Allreduce operations in Nekbone don’t cause
any significant congestion in the simulation, they nevertheless generate a great
deal of MPI stack overhead and communication delays. Nekbone shows a very
poor parallel efficiency on the baseline architecture and would benefit greatly
from improvements to the interconnect network and MPI stack overhead.

Though all applications in the examined workload spend at least nine percent
of the total time outside of useful computation, the resulting communication
delay is not entirely due to the network. The network delay itself is under three
percent for AMR, Multigrid and PIC. The overwhelming majority of inefficiency
for these applications are due to inherent synchronization issues, and improving

the network will have a minimal impact on performance. With total time spent in
network delays of seven and thirteen percent, respectively, DFT and GTC occupy
a middle ground in which moderate performance improvements could be made
by improving the network. Nekbone is unique among these applications in that
communication, MPI stack, and synchronization each have significant impacts
on performance and represent useful targets for performance improvement.

6 Conclusion
Managing the costs of network design and network provisioning is a serious chal-
lenge in any machine procurement. Application traces can support an evidence-
based design to properly provision networks to meet application requirements.
Properly attributing application trace data to physical processes in the machine
is critical, however, for properly selecting a design. This work demonstrates the
utility of combining application trace replay with architecture simulation and
Bayesian inference to understand expected application performance. The de-
composition of execution time into network delays, software stack overhead, and
inherent synchronization shows that not all time spent in MPI operations is
equivalent. Even though all applications show significant time spent in MPI
routines, this does not necessarily equate to insufficient network throughput.

Under the system conditions assumed in this study, applications such as
Multigrid and PIC are almost entirely bound by imbalance (either load or sys-
tem noise) leading to poorly synchronized communication. No improvements
to the network would yield meaningful performance improvements for such ap-
plications. Conversely, applications such as Nekbone show very significant per-
formance degradation due to communication delays, but also communication
library overheads. Thus network provisioning alone would not entirely alleviate
communication bottlenecks. The combination of detailed network and endpoint
models with low-level instrumentation of simulations provides a powerful frame-
work for disambiguating the individual causes of observed MPI times. As such,
it provides a useful tool in system design by focusing improvements to have the
biggest performance impact.

Acknowledgment

This work was funded by Sandia National Laboratories, which is a multimission
laboratory managed and operated by National Technology and Engineering So-
lutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International,
Inc., for the U.S. Department of Energy’s (DOE) National Nuclear Security
Administration (NNSA) under contract DE-NA-0003525.

References

1. S. Rumley, M. Bahadori, R. Polster, S. D. Hammond, D. M. Calhoun, K. Wen,
A. Rodrigues, and K. Bergman, “Optical interconnects for extreme scale computing
systems,” Parallel Comput., vol. 64, pp. 65–80, 2017.

2. ASCAC Subcommittee, Lucas, et al., “Top ten exascale research challenges,” US
Department Of Energy Report, 2014.

3. C. Minkenberg, “HPC networks: Challenges and the role of optics,” in Optical
Fiber Communications Conference and Exhibition (OFC), 2015. IEEE, 2015, pp.
1–3.

4. N. Jain et al., “Evaluating HPC networks via simulation of parallel workloads,” in
High Performance Computing, Networking, Storage and Analysis, SC16: Interna-
tional Conference for. IEEE, 2016, pp. 154–165.

5. (2015) MPI: A Message-Passing Interface Standard; Version 3.1. [Online].
Available: http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

6. N. Jain et al., “Predicting the performance impact of different fat-tree configura-
tions,” 2017.

7. G. Michelogiannakis et al., “APHiD: Hierarchical Task Placement to Enable a
Tapered Fat Tree Topology for Lower Power and Cost in HPC Networks,” in
Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing. IEEE Press, 2017, pp. 228–237.

8. C. P. Chan et al., “Topology-aware performance optimization and modeling of
adaptive mesh refinement codes for exascale,” in Communication Optimizations in
HPC (COMHPC), International Workshop on. IEEE, 2016, pp. 17–28.

9. H. Casanova et al., “Versatile, scalable, and accurate simulation of distributed ap-
plications and platforms,” Journal of Parallel and Distributed Computing, vol. 74,
no. 10, pp. 2899 – 2917, 2014.

10. T. Hoefler, T. Schneider, and A. Lumsdaine, “Characterizing the influence of sys-
tem noise on large-scale applications by simulation,” in Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Network-
ing, Storage and Analysis. IEEE Computer Society, 2010, pp. 1–11.

11. E. Totoni et al., “Simulation-based performance analysis and tuning for a two-level
directly connected system,” in Parallel and Distributed Systems (ICPADS), 2011
IEEE 17th International Conference on. IEEE, 2011, pp. 340–347.

12. A. Yoga and M. Chabbi, “Path-synchronous performance monitoring in hpc in-
terconnection networks with source-code attribution,” in PMBS ’17: The 8th In-
ternational Workshop on Performance Modeling, Benchmarking and Simulation of
High Performance Computing Systems, Denver, Colorado, 2017.

13. R. Keller et al., Implementation and Usage of the PERUSE-Interface in Open MPI.
Springer Berlin Heidelberg, 2006, pp. 347–355.

14. T. Islam, K. Mohror, and M. Schulz, “Exploring the Capabilities of the New MPI T
Interface,” in Proceedings of the 21st European MPI Users’ Group Meeting, 2014,
pp. 91:91–91:96.

15. D. Eberius, T. Patinyasakdikul, and G. Bosilca, “Using software-based performance
counters to expose low-level open mpi performance information,” in Proceedings of
the 24th European MPI Users’ Group Meeting, 2017, pp. 7:1–7:8.

16. S. Ramesh et al., “MPI Performance Engineering with the MPI Tool Interface:
The Integration of MVAPICH and TAU,” in Proceedings of the 24th European
MPI Users’ Group Meeting, ser. EuroMPI ’17, 2017, pp. 16:1–16:11.

17. (2017) Score-P. [Online]. Available: http://www.vi-hps.org/projects/score-p/
18. A. Knpfer et al., “Score-P: A Joint Performance Measurement Run-Time Infras-

tructure for Periscope, Scalasca, TAU, and Vampir,” pp. 79–91, 01 2012.
19. (2017) Vampir - Performance Optimization. [Online]. Available:

https://www.vampir.eu/
20. (2017) Open—speedshop. [Online]. Available: https://openspeedshop.org/

21. (2017) Tau Home Page. [Online]. Available:
https://www.cs.uoregon.edu/research/tau/home.php

22. T. Jones, G. Ostrouchov, G. A. Koenig, O. H. Mondragon, and P. G.
Bridges, “An evaluation of the state of time synchronization on leadership class
supercomputers,” Concurrency and Computation: Practice and Experience, pp.
e4341–n/a. [Online]. Available: http://dx.doi.org/10.1002/cpe.4341

23. N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P. K.
Tucker, “Surrogate-based analysis and optimization,” Progress in aerospace sci-
ences, vol. 41, no. 1, pp. 1–28, 2005.

24. B. Sudret, “Meta-models for structural reliability and uncertainty quantification,”
in “Asian-Pacific Symposium on Structural Reliability and its Applications”, 2012,
pp. 1–24.

25. K. Sargsyan, C. Safta, H. Najm, B. Debusschere, D. Ricciuto, and P. Thornton,
“Dimensionality reduction for complex models via Bayesian compressive sensing,”
International Journal of Uncertainty Quantification, vol. 4, no. 1, pp. 63–93, 2014.

26. H. Pritchard, I. Gorodetsky, and D. Buntinas, “A uGNI-based MPICH2 Nemesis
Network Module for the Cray XE,” in 18th European MPI Users’ Group Conference
on Recent Advances in the Message Passing Interface, 2011, pp. 110–119.

27. R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective commu-
nication operations in mpich,” International Journal of High Performance Com-
puting Applications, vol. 19, no. 1, pp. 49–66, 2005.

28. A. F. Rodrigues et al., “The structural simulation toolkit,” ACM SIGMETRICS
Performance Evaluation Review, vol. 38, no. 4, pp. 37–42, 2011.

29. (2017) The DUMPI trace file format. [Online]. Available:
https://github.com/sstsimulator/sst-dumpi/blob/master/docs/traceformat.dox

30. National Energy Research Scientific Computing Center. (2017)
Characterization of the DOE Mini-apps. [Online]. Available:
https://portal.nersc.gov/project/CAL/doe-miniapps.htm

31. T. Hoefler, T. Schneider, and A. Lumsdaine, “LogGOPSim: Simulating Large-
Scale Applications in theLogGOPS Model,” in HPDC ’10: 19th ACM International
Symposium on High Performance Distributed Computing, 2010, pp. 597–604.

32. J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-scalable
dragonfly topology,” in Proceedings of the 35th Annual International Symposium
on Computer Architecture, ser. ISCA ’08, 2008, pp. 77–88.

33. D. S. Sivia and J. Skilling, Data Analysis: A Bayesian Tutorial, Second Edition.
Oxford University Press, 2006.

34. B. P. Carlin and T. A. Louis, Bayesian Methods for Data Analysis. Chapman
and Hall/CRC, Boca Raton, FL, 2011.

35. H. Haario, E. Saksman, and J. Tamminen, “An adaptive Metropolis algorithm,”
Bernoulli, vol. 7, pp. 223–242, 2001.

36. D. Gamerman and H. F. Lopes, Markov chain Monte Carlo: stochastic simulation
for Bayesian inference. Chapman and Hall/CRC, Boca Raton, FL, 2006.

37. R. Ghanem and P. Spanos, Stochastic Finite Elements: A Spectral Approach.
Springer Verlag, New York, 1991.

38. O. Le Mâıtre and O. Knio, Spectral Methods for Uncertainty Quantification. New
York, NY: Springer, 2010.

39. S. A. Smolyak, “Quadrature and interpolation formulas for tensor products of
certain classes of functions,” Soviet Mathematics Dokl., vol. 4, pp. 240–243, 1963.

40. K. Petras, “Smolyak cubature of given polynomial degree with few nodes for in-
creasing dimension,” Numerische Mathematik, vol. 93, pp. 729–753, 2003.

41. R. Christensen, Plane Answers to Complex Questions: The Theory of Linear Mod-
els, 3rd ed. New York, NY: Springer-Verlag New York, 2002.

42. B. Sudret, “Global sensitivity analysis using Polynomial Chaos expansions,” Reli-
ability Engineering and System Safety, vol. doi:10.1016/j.ress.2007.04.002, 2007.

43. I. M. Sobol, “Sensitivity estimates for nonlinear mathematical models,” Math.
Modeling and Comput. Exper., vol. 1, pp. 407–414, 1993.

A Uncertainty Quantification

Consider the experimental data described in Section 4.1, collected as R = 100

replicas for N = 18 message sizes. The data set is denoted as D = {y(r)i }r=1,...,R
i=1,...,N .

The goal is to tune the M = 7 parameters λ = (λ1, . . . , λM) of the simulation
model with vector output f(λ) = (f1(λ), . . . , fN (λ)), to match with the data
fi(λ) ≈ yi. Bayesian inference is employed to arrive at a probabilistic representa-
tion of model input parameters. The Bayesian method is additionally well-suited
to work with noisy, heterogeneous data, as well as efficiently incorporating prior,
expert-based information with experimental data [33, 34].

The parameter calibration relies on Bayes’ formula, which in the present
context reads as

p(λ|D)︸ ︷︷ ︸
Posterior

∝ p(D|λ)︸ ︷︷ ︸
Likelihood

p(λ)︸︷︷︸
Prior

(6)

The prior probability density function (PDF) encapsulates prior information
about the input parameters λ = (λ1, . . . , λM). In the current setting, we are
given the ranges [am, bm] of possible values for each λm, for m = 1, . . . ,M , and
employed uniform priors on [am, bm] accordingly.

The proportionality constant in Eq. (6) is typically difficult to compute and
is not necessary if one’s goal is to sample from the posterior PDF. Samples
from the latter are obtained via Markov chain Monte Carlo (MCMC), which
builds a Markov chain that has the posterior PDF as its stationary distribu-
tion [35, 36]. The key component of the Bayes’ formula is the likelihood function
LD(λ) = p(D|λ) that encodes the fit of the model with parameter settings λ to
the observed data D. In order to construct the likelihood function, one needs to
assume a noise model of the experiments compared to the simulation outputs as
follows. Specifically, an independent Gaussian noise is assumed:

LD(λ) =

N∏
i=1

1

σi
√

2π
exp

(
− (fi(λ)− µi)2

2σ2
i

)
, (7)

where µi = 1
R

∑R
r=1 y

(r)
i and σ2

i = 1
R

∑R
r=1(y

(r)
i − µi)2 are the sample mean and

variance of the experimental data over R = 100 replicas, correspondingly.
Besides obtaining samples from the posterior PDF, the maximum a posteriori

(MAP) value of λ is of interest. It is defined as λMAP = argmaxλp(λ|D) and, for
the current work coincides with the maximum likelihood (ML) estimate λML,
since uniform prior PDF p(λ) = const is employed.

Note that in order to achieve a sufficient number of posterior λ-samples,
one is required to evaluate the model f(λ) many – usually between 10,000 and
100,000 – times. In the current work, model evaluation corresponds to running
the simulation benchmark. Even for benchmarks running quickly (5-10s), cali-
bration becomes expensive - particularly if it must be repeated as the model is
changed to correct errors. For this purpose, it is common to pre-build a surrogate
model fs(λ) ≈ f(λ) that is computationally inexpensive to evaluate. Specifically,
we built a surrogate model that has a polynomial form

fs(λ) =

K−1∑
k=0

skΨk(λ), (8)

where Ψk(λ) = Lk(λ̃) are multivariate Legendre orthogonal polynomials, scaled
to inputs λ̃ ∈ [−1, 1], and defined as products of univariate Legendre poly-

nomials Lk(λ̃) =
∏M
j=1 Lkj (λ̃j). The polynomial expansion (8) is truncated at

total order K = 4, i.e.
∑M
j=1 kj ≤ K, leading to K = (M + P)!/M !/P ! = 330

terms. The form (8) is a special case of Polynomial Chaos expansions, which
are convenient for uncertain quantity representations, propagation and moment
estimation [37, 38]. The surrogate model coefficients are found simply by a least-
squares regression, using a set of 2465 simulations of f(λ), selected at 4-th order
sparse quadrature locations [39, 40], for sufficient coverage of the 7-dimensional
parameter space. Note that we also extract leave-one-out (LOO) error measure
of the surrogate model [41], compared to the simulation f(λ), and augment the
likelihood variance σ2

i in Eq. (7) accordingly.

Due to orthogonality of the basis polynomials in Eq. (8), one can extract
sensitivity coefficients, or Sobol indices analytically [42]. This procedure is also
called global sensitivity analysis or variance-based decomposition, since each sen-
sitivity index is interpreted as the fractional reduction of the output variance if
one fixed the corresponding parameter [43]. More specifically, we employ the total
sensitivity index that accounts for total effect of the given parameter including
all interactions with other parameters.

As the sensitivity results in Section 5.1 suggest, model input parameters
and outputs are conveniently divided into sensitivity based subgroups. We took
advantage of such structure, in order to accelerate MCMC and make the pos-
terior sampling as efficient as possible. Namely, the first six outputs (Mailbox)
are dominated by Post Header Delay (λ4), while the next six (Eager) are most
sensitive to Memory Bandwidth (λ2) and Post RDMA Delay (λ5), and the last
group (Rendezvous) mostly depends on Injection Bandwidth (λ1), Link Band-
width (λ3) and RDMA Pin Latency (λ6). Note that the last parameter, RDMA
Pin Delay Per Page (λ7) has relatively little effect on any of the outputs, and the
corresponding posterior PDF coincides with the prior PDF. In order to take ad-
vantage of the group-sensitive structure, we split the data into three subgroups
D = {D1,D2,D3}, and simplify the likelihood of the Bayes’ formula as

p(D|λ1, . . . , λ7) ≈ p(D1|λ4) p(D2|λ2, λ5) p(D3|λ1, λ3, λ6) (9)

With such reformulation and independent uniform priors p(λ) =
∏M
i=1 p(λi)

for M = 7, instead of one 7-dimensional MCMC, we arrived at three differ-
ence MCMC sampling procedures, with 1, 2 and 3 dimensions respectively, and
the corresponding MCMC chains with much more efficiently sampled. We note
that the missing λ’s in each of the three product terms in (9) are set to their
nominal values without losing accuracy due to the low sensitivity towards the
corresponding group of outputs.

