
Domain-Specific Virtual Processors as a Portable Programming and Execution Model

for Parallel Computational Workloads on Modern Heterogeneous High-Performance Computing

Architectures

Dmitry I. Lyakh1

Scientific Computing, National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge TN, 37831

Abstract

We advocate domain-specific virtual processors (DSVP) as a portability layer for expressing and

executing domain-specific scientific computational workloads on modern heterogeneous HPC

architectures, with applications in quantum chemistry. In particular, we introduce a system-wide

recursive (hierarchical) hardware encapsulation mechanism into the DSVP architecture and specify a

concrete microarchitectural design of an abstract DSVP from which specialized DSVP implementations

can be derived for specific scientific domains. Subsequently, we demonstrate, an example of a domain-

specific virtual processor specialized to numerical tensor algebra workloads, which is implemented in

the ExaTENSOR library developed by the author with a primary focus on the quantum many-body

computational workloads on large-scale GPU-accelerated HPC platforms.

Keywords: Scientific computing, high-performance computing, virtual machine, heterogeneous node

architecture, tensor algebra.

1 Corresponding author’s emails: liakhdi@ornl.gov, quant4me@gmail.com
This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S.
Department of Energy. The United States Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-exclusive, paidup, irrevocable, worldwide license to publish
or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The
Department of Energy will provide public access to these results of federally sponsored research in accordance with the
DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Introduction

Quantum chemistry has always been rich on parallel computations. In particular, the quantum many-

body formalism used in quantum chemistry [1] heavily relies on large-scale numerical linear and multi-

linear (tensor) algebra, thus making quantum-chemistry applications highly attractive for massively

parallel HPC platforms. Numerous parallel quantum-chemistry codes have been developed and widely

adopted by computational chemistry community over time [2-8]. In particular, many of these codes

were specifically designed to run on the distributed HPC systems based on multicore processors,

following the stable hardware trend of 2000’s. Since many quantum-chemical workloads are

computationally dominated by a few widely used numerical motifs such as the dense matrix-matrix

multiplication and the linear or eigenvalue solver, the transition to distributed multicore systems was

relatively straightforward, accompanied by a rather strong support from the math library developers

from both industry and academia (few examples include generic Intel MKL, Cray LibSci, IBM ESSL,

UTK Plasma/Magma [9], as well as more specialized ELPA [10] libraries). The basic parallel

programming tools, like MPI and OpenMP, were relatively easy to use while providing sufficient

functionality for implementing parallel algorithms on distributed multicore HPC systems. Perhaps one

of a few subtle issues that had to be explicitly accounted for was the non-uniform memory access

(NUMA) in OpenMP programming that actually led many codes to restrict themselves to MPI only,

instead of using the hybrid MPI+OpenMP programming model (for performance reasons).

The situation began to worsen when an attempt to scale out existing multicore HPC architectures failed

to fit in an acceptable power envelope, thus mandating new hardware solutions with less power

consumption per executed Flop and transferred Byte. Graphical cards with their superior compute

density, lower power consumption and constantly improving general purpose programmability quickly

filled in this niche, with an apogee in the fastest supercomputer in the world being based on the

NVIDIA GPU cards. The Titan supercomputer [11] was deployed at the Oak Ridge Leadership

Computing Facility (OLCF) as early as 2012, only few years after NVIDIA introduced a usable

general-purpose GPU (GPGPU) programming model CUDA (Compute Unified Device Architecture).

As the price to pay, relative homogeneity of the preceding multicore nodes was lost, leaving

programmers with a more complex heterogeneous node architecture with separate memory spaces and

different kinds of compute devices. This drastic change in HPC hardware, though inevitable, posed a

grand challenge for many scientific codes. The issue of software portability, and especially

performance portability, became acute.

For the following discussion, we define software portability as a continuous measure, specifically the

inverse amount of programming/porting effort (inverse person-months) necessary for a successful

launch of an existing code base on a newly emerged HPC architecture. Similarly, software performance

portability is the inverse amount of programming/porting effort (inverse person-months) necessary for

a successful launch of an existing code base on a newly emerged HPC architecture with an efficiency

comparable or exceeding the efficiency achieved on the preceding HPC architectures. Importantly, our

portability definitions are not limited to the application itself as they generally extend on the entire

software stack necessary for a successful (and performant) execution of a given code on new hardware.

However, in practice it is useful to exclude lower levels of the software stack from this consideration,

for example, the operating system and hardware drivers are normally assumed provided with the new

hardware. Ideally, compilers should also be excluded from consideration in this respect. Unfortunately,

in practice, many application porting efforts experience numerous issues with compiler bugs and

inefficiencies on new hardware, spending significant effort on compiler debugging and search for

workarounds. This is becoming more pronounced as the languages evolve in complexity, thus rendering

compiler stability and efficiency as one of the key aspects of software portability on new architectures.

Different programming languages suffer to a different extent, depending on how fast new language

features are adopted by a broad community of developers such that these new features can be well

covered by extensive tests. Most notably, the stability of the compiler support of modern Fortran

(2003+) has been suffering lately as the adoption of new features of this classical scientific

programming language is relatively slow, partially due to compiler bugs, further worsened by a

pronounced decline in popularity (C++ and Python have taken a large share of scientific programming

nowadays).

Yet, regardless of the programming language, many existing scientific codes, especially legacy codes

which have been around for decades, turned out to be rather difficult to port to new HPC architectures.

Part of the problem is that many codes were not designed in a sufficiently generic and modular fashion

to be able to run efficiently on vastly different hardware. Essentially, the computer hardware specifics

has always been an indistinguishable part of the (scientific) application implementation, thus

introducing a highly dynamic dependency into the application design. In many implementations, the

hardware was not well encapsulated via a sufficiently portable interface, thus leading to a necessity of

extensive code modifications every time a new specific kind of computing hardware is introduced,

additionally plagued by the existence of multiple memory spaces within a heterogeneous node. The

basic (rather lower-level) parallel abstraction of a concurrent thread which is present in major compiled

programming languages like C/C++ and Fortran (either the native C++11 std::thread or

OpenMP/pthreads thread) is no longer suitable for a clean composition of complex algorithms that are

executed on heterogeneous nodes with diverse computing units and multiple memory spaces. In

particular, conventional threads do not play well across hardware boundaries and separate memory

spaces. They are also rather inconvenient for expressing dependencies between work items as well as

controlling the granularity of the work items. The introduction of the OpenMP 4.0+ and OpenACC

directive-based programming tools for accelerators did help many codes to begin exploiting accelerated

node architectures, sometimes quite successfully, but these tools do not generally solve the problem of

flexible decomposition and distribution of complex computational work among diverse compute units

in a uniform, portable, and composable fashion. In practice, these directive-based models mostly

facilitate expression of the data-based parallelism on accelerators. A more general solution should

exploit a tasks-based algorithm expression with their subsequent execution on any subset of computing

resources available on the node, where both the task and resource subset granularity should be

adjustable in order to achieve the best performance. Again, we stress that in any programming model

the requirement of portability necessitates the ability to properly encapsulate the specifics of the

computing hardware and memory, exposing a uniform, yet flexible interface to the programmer, which

can easily be retargeted to new hardware kinds underneath. For example, in this regard the executors

proposal to the C++ standard shows some promise at the language level [12]. And, of course, a number

of library-implemented (mostly C++) task-based parallel runtimes and frameworks have already been

available for experimentation for some time [13-20], providing different levels of hardware abstraction

and means for a task-based parallelism expression.

On a more general level, the key to portability (and perhaps performance portability) is the use of a

proper hierarchy of higher-level abstractions for expressing (scientific) computational workloads. It is

also mandatory to separate the algorithm expression from its execution. Essentially, a portable parallel

code design should consist of the following three major layers:

1. Expression: High-level computational problem expression in terms of domain-specific

abstractions (a concrete domain-specific language may be helpful, but not necessary).

2. Decomposition: Hierarchical (static or dynamic) decomposition of the computational problem

expressed in terms of domain-specific abstractions into elementary data and work items with

controlled granularity.

3. Execution: Load-balanced, communication optimal scheduling and execution of the elementary

work items on all available (hierarchical and possibly heterogeneous) computing resources

encapsulated via portable interfaces.

In this design scheme, only the last (execution) layer is explicitly affected by a hardware change since

new (optimized) computational kernels may be necessary for each new hardware kind and a new

(heterogeneous) data storage scheme may be required to deal with hierarchical memory. In contrast, the

second (decomposition) layer is affected only implicitly, namely the granularity of the hierarchical data

and work decomposition may need to be adjusted for the new hardware. The first (expression) layer

should in theory be fully agnostic with respect to the underlying hardware. To further improve

portability in the execution layer (including performance portability), the code should maximize the use

of (performance-)portable software libraries implementing numerical primitives the domain algorithms

are composed of. For example, quantum many-body workloads in quantum chemistry heavily rely on

matrix-matrix multiplications, tensor contractions, linear and eigenvalue solvers. Having these

numerical motifs implemented in optimized math libraries would significantly reduce the portability

pressure on the application developers. Finally, the entire execution layer, or even both the

decomposition and execution layers, can in principle be hidden in a black-box task-based parallel

runtime, thus moving most of the parallel programming complexity from the application developers to

the parallel runtime and math library developers. Although this looks like an ideal solution for

application developers, it is not always achievable in real life, at least for now. With a great hope that

such ideal black-box solutions will become widely available in future, below we elaborate an

alternative white-box parallel runtime design approach based on the concept of domain-specific virtual

processors (DSVP). In its most generic essence, a DSVP can be viewed as a software processor

designed to perform specific parallel computations within a certain (scientific) domain, for example

quantum chemistry, on vastly different hardware in a portable fashion. We should immediately note that

it is not our goal to reinvent and/or describe the general concept of a parallel virtual machine (PVM),

which can be found elsewhere [21], but rather we focus on how this concept and its derivatives can be

useful in handling the complexity of scientific programming on heterogeneous distributed HPC systems

in specific domain areas such as quantum chemistry. In particular, we describe a concrete DSVP

implementation, namely the tensor algebra virtual processor (TAVP) designed and implemented by the

author in the form of the ExaTENSOR library [22]. Although the TAVP microarchitecture has its own

unique design introducing a number of novel elements such as the fully hierarchical hardware

encapsulation, it can also be viewed as a generalization and evolution of earlier efforts, specifically the

so-called Super Instruction Architecture framework [23-25] used in the ACES-III [4,5] and ACES-IV

[6,7] software suites for expressing and executing quantum many-body algorithms operating on large

dense arrays of numbers. Thus, in this paper we aim at delivering a general DSVP design formalization

as a standalone programming and execution model for complex parallel scientific workloads that will

cover our own work as well as relevant earlier efforts by others.

Abstract Domain-Specific Virtual Processor

As mentioned above, the main idea behind the concept of a domain-specific virtual processor (DSVP)

is to introduce a portable virtual processor architecture, implemented in software instead of hardware,

which is specifically tailored to a given class of parallel domain workloads and which is capable of

directly executing the underlying set of domain-specific primitives (primitive numerical operations the

domain algorithms are composed of) on any kind of hardware in a portable fashion. This set of domain-

specific primitives actually defines the (domain-specific) instruction set of a given DSVP, which

together with some other relevant design attributes comprises the DSVP architecture. Each concrete

DSVP architecture is derived from the abstract DSVP architecture template described below.

Importantly, we should note that the notion of “domain-specific” has a hierarchical meaning/structure

in our discussion. In other words, we assume that at each level a given set of more domain-specific

abstractions is based on a set of less domain-specific abstractions, that is, we generally assume multiple

levels of abstraction ordered with respect to their domain specificity. For example, in the domain of ab

initio quantum chemistry the top level may be concerned with the abstraction of a quantum many-body

ansatz (wave-function form). The next level may include the following abstractions: Many-body

operator, many-body operator contraction. At a lower level, we then may have: Tensor, tensor

contraction, tensor addition, etc. At this point, our “domain” has moved from a higher-level “quantum

many-body theory” to a lower-level “numerical tensor algebra”. In general, a DSVP can be introduced

at any of these levels, although it makes more sense to introduce a DSVP at some lower-level boundary

which still possesses certain domain specificity, thus reducing the complexity of the domain-specific

instruction set. Moreover, in general, a DSVP can also have a hierarchical structure such that a higher-

level DSVP is composed of DSVP’s operating at a lower level of abstraction. At each level, the

(domain-specific) algorithm expression is accomplished in terms of the (domain-specific) abstractions

used at that level.

In general, computations in a given computational domain are expressed in terms of domain-specific

(DS) operations operating on domain-specific (DS) data (at this point, “domain” is an abstract domain).

The corresponding association relation between the DS operation and DS data is shown in the top-right

part of the class diagram depicted in Figure 1. The directional association here means that the DS

operations use DS data, but the DS data is generally unaware of the DS operations. We will make an

extensive use of an important additional assumption formally depicted by a circular composition arrow

around the DS data, namely the DS data admits a recursive decomposition. That is, in general a DS data

object is a collection of the constituent DS data objects of the same class but of smaller size

(granularity). The decomposition terminates when a DS data object consists of itself. An immediate

consequence of the recursive structure of the DS data is the induced recursive structure of the DS

operations, formally depicted by a similar circular composition arrow in the diagram. The presence of

the recursive decomposition requirement results in the presence of a deferred public decompose()

method in both the DS data and DS operation classes.

In order to make DS operations processable (by some formal processor) one needs to encapsulate them

into DS instructions (a DS instruction is a processable encapsulation of a DS operation). DS

instructions contain DS operands encapsulating DS data (DS operand is a processable encapsulation of

DS data). Essentially, both the DS operand and DS instruction classes contain some additional

attributes necessary for their respective DS data and DS operation members to become processable by a

DSVP. In particular, a DS instruction includes the following attributes: (a) Instruction id; (b) Instruction

opcode; (c) Instruction status; (d) Instruction error code; (e) Instruction control field (an optional field

containing instruction specification attributes). A DSVP processes DS instructions in order to perform

the underlying DS operations on the corresponding DS data via invoking the public process() method

which puts a DS instruction in the instruction processing pipeline. The instruction processing pipeline

is determined by the DSVP microarchitecture. The DSVP microarchitecture is defined by a set of

interoperating functional DS units the DSVP is composed of. Each DS unit in our DSVP design has a

very specific well-defined functional role in processing DS instructions during specific phases of their

lifetime. DS units normally progress independently, but they are generally aware of the existence of

other DS units as well as the DSVP they belong to. DS units can move DS instructions between each

other via DS ports contained in each DS unit. The source of an incoming DS instruction can be

identified by the id of the DS port the instruction arrived to. In a distributed computing setting, a pair of

DSVP can also pass DS instructions between each other via the send() and receive() methods. There are

two special DS units responsible for the transfers of DS instructions between pairs of DSVP. Their

interfaces are given by the DS instruction encoder (or simply DS encoder) and the DS instruction

decoder (or simply DS decoder). The DS encoder converts a DS instruction into a portable DS

bytecode which can be transferred between two DSVP’s. The DS decoder performs the opposite

operation, that is, it decodes the received DS bytecode back into a DS instruction object processable by

the DSVP. Finally, each DSVP will contain a DS microcode, namely a set of code bindings for

performing actual DS operations (numerical primitives) on physical hardware for each DS instruction

kind. The DS code bindings can either be provided in a form of an optimized numerical DS driver

library for all relevant compute devices or they can be just-in-time generated upon the need (a

combination of the two approaches is also possible). Note that for performance portability purposes the

numerical DS driver library can be instantiated from a single template via device-specific auto-tuning

and/or code generation (see for example [26]).

So far we have defined a number of structural design aspects of an abstract domain-specific virtual

processor, which are rather generic. Now we will extend these further as well as define important

behavioral aspects of the DSVP microarchitecture, specifically how it encapsulates the actual HPC

platform architecture in a portable fashion and how it subsequently maps data and computations onto

the physical hardware. As mentioned above, the requirement of a recursive data and work

decomposition will play an ultimate role here. On the other hand, the full DSVP specification requires a

proper encapsulation of the HPC platform on which the computations are to be executed. In our design,

we require the HPC platform to admit a recursive (hierarchical) decomposition, up to the level of

individual devices or even individual cores. To formalize the corresponding portable hierarchical

hardware encapsulation scheme, one essentially needs to introduce two portable abstractions: (1)

hierarchical compute resources; (2) hierarchical memory resources. In this way, we will cover all

available general-purpose HPC platforms, including heterogeneous ones.

The hierarchical compute resources provided by an HPC platform are encapsulated via the Virtual

Compute Unit (VCU) class. The hierarchical memory resources provided by an HPC platform are

encapsulated via the Virtual Memory Unit (VMU) class. As schematically shown in the class diagram

in Figure 2, both VCU and VMU objects are defined via a recursive aggregation, starting from the

basic VCU and VMU instances. For example, the basic VCU instances can be CPU cores (in both

multi- and many-core architectures), GPU streaming multiprocessors or whole GPU devices, FPGA

devices, etc. The basic VMU instances can be NUMA DDR memory banks or whole DDR memory,

high-bandwidth memory attached to specific devices, specialized memory resources used by GPU, like

shared-memory, constant memory, etc. But regardless of the physical nature, the VCU and VMU

instances expose only basic attributes to the client (in addition to their enumerated kind), for example

the computational throughput (Flop/s) for VCU or the memory volume (Bytes) for VMU.

Subsequently, the basic VCU and VMU instances can further be aggregated into larger composite VCU

and VMU instances, up to the full machine level. For example, CPU cores can be aggregated into a

CPU socket, CPU sockets can be aggregated into a CPU processor, CPU processor and a GPU device

can be aggregated into a heterogeneous node processor, heterogeneous node processors can be

aggregated into a smaller node cluster, smaller node clusters can be aggregated into a larger node

cluster, and, finally, larger node clusters can be aggregated into the full HPC machine. In general, each

VCU instance can be associated with one or more VMU instances and each VMU instance can be

associated with one or more VCU instances such that the associated VCU-VMU pairs represent

possible compute+memory aggregates in which compute can access the associated memory, either

directly or indirectly via a suitable API. These accessibility association links define the cross-topology

map between VCU and VMU instances. Any general purpose HPC platform can be recursively

decomposed into a coupled hierarchy of the VCU and VMU units. Such hierarchies are formed by a

proper enumeration of the basic VCU and VMU units, followed by a recursive aggregation of those, up

to the full machine (the root of the aggregation tree). Once the complete aggregation has been

established, one can also perform an opposite decomposition operation on each VCU or VMU. Figures

3 and 4 illustrate the compute/memory aggregation for two OLCF HPC systems, Titan [11] and

Summit [27]. Note that despite the availability of the coherent unified memory on Summit, we still

distinguish the high-bandwidth memory close to GPU from the DDR memory close to CPU as the two

have rather different bandwidths due to their affinity. In general, it is worth quantifying the topology

map links that couple the VCU and VMU aggregation trees in terms of the bandwidth and latency. The

VCU-VMU topology map can then be used for optimizing data placement and work scheduling

decisions by the DSVP.

Having constructed the coupled VCU-VMU aggregation trees for a given HPC platform, one needs to

provide a proper mapping of the individual nodes or the whole terminal subtrees of these trees to the

DSVP instances associated with those hardware resources, such that each DSVP is associated with one

or more VCU and/or VMU units, and each VCU or VMU unit is directly associated with only one

DSVP (note that by owning a composite VCU or VMU unit a DSVP does not automatically own its

constituent units). As formally depicted in Figure 2, by assigning DSVP’s to the established VCU-

VMU resource aggregates (starting from the aggregation tree root) one introduces a hierarchical DSVP

composition in which each parent DSVP is decomposed into multiple separate child DSVP’s associated

with the constituent compute/memory resources. Figure 5 illustrates an example of a complete

encapsulation of a computer cluster consisting of 16 heterogeneous Titan CPU-GPU nodes [11] by a

hierarchical DSVP:

(1) 16 cores + DDR3 memory → CPU block;

(2) 14 streaming multiprocessors + GDDR5 memory → GPU block;

(3) CPU block + GPU block → Node = L2-DSVP;

(4) 4 Nodes → Cluster = L1-DSVP;

(5) 4 Clusters → Full machine = L0-DSVP.

Note that the lowest-level DSVP is introduced only at the node level, not at the individual device level

as this would likely incur a significant performance penalty since each DSVP always introduces a

certain (constant) virtualization overhead. Thus, the lowest compute granularity level at which a DSVP

should be introduced must be sufficiently coarse to amortize the (constant) virtualization overhead.

Having finalized the principal specification of the structural DSVP design, let us define the behavioral

aspects of the DSVP microarchitecture in regard to a performance-portable data and work mapping. To

recap, so far all physical compute and memory hardware resources of an arbitrary HPC platform have

been encapsulated by the basic VCU and VMU instances, thus providing a portable hardware

abstraction scheme. Subsequently, these basic VCU and VMU instances have been recursively

aggregated into larger, composite (generally heterogeneous) VCU and VMU instances, up to the full

machine level. The full-machine VCU+VMU resource pair is assigned to the L0-DSVP (level-0

DSVP). Then, by recursively decomposing the VCU+VMU resource pair assigned to a parent DSVP

into the constituent VCU+VMU resource pairs with their subsequent distribution among the child

DSVP’s, a DSVP hierarchy is established, thus completing the structural DSVP specification.

As described at the beginning of this section, given a computational domain problem the DSVP is

supposed to solve, the corresponding algorithm is expressed in terms of the DS operations operating on

DS data. Both the DS data construction/destruction and the numerical DS operations the algorithm is

composed of are fed as DS instructions into the L0-DSVP which represents the entire HPC platform as

a serial (virtual) computer designed to directly process these DS instructions. Underneath, starting from

the L0-DSVP, each parent DSVP decomposes the incoming DS data and DS operations, which are

encapsulated in the DS instructions, and subsequently distributes their constituent (smaller) pieces

among the child DSVP’s associated with the constituent VCU and VMU resources. The leaves of the

DSVP hierarchy tree (DSVP’s that consist of themselves) perform the actual data processing expressed

by the DS instructions, whereas composite DSVP’s (internal tree nodes) only perform data/operation

decomposition and necessary meta-data updates. Possible dependencies between DS instructions are

respected via following the corresponding DS data dependencies. Specifically, a DS instruction that

consumes a specific DS data object cannot be issued until the DS instruction that produces that same

DS data object has completed. Each DS data object is equipped with the so-called Read/Write (R/W)

counter showing the current access status on the DS data object with the following possible values: 0

means no current reads or writes, -1 means an outstanding write/update operation, >0 is the number of

outstanding read operations. Note that retrieving the R/W counter for a given DS data object may

require a communication with another DSVP. Although a DSVP is supposed to perform data-driven DS

instruction dependency checking transparently to the client, there are possible variations how this can

be done exactly. Specifically, the closest to the root tree level at which a dependency check becomes

enabled (for all subsequent levels) defines the granularity of the DS instruction dependency control.

For example, enabling the instruction dependency check at the root DSVP level (L0-DSVP) will result

in a serial synchronized execution of inter-dependent DS instructions sent to the root DSVP. By moving

the instruction dependency control to one of the subsequent DSVP tree levels, the DS instructions at the

preceding DSVP tree levels are freed from any dependency checks. They will progress uninterrupted,

preserving the original instruction order, until they hit the first DSVP tree level where the DS

instruction dependency check is active. By varying the depth of the instruction dependency control

logic, one trades off finer dependency control granularity for an increased logic complexity.

Importantly, the DS instruction dependency checks at the DSVP tree levels with an active dependency

control only need to be performed on the child DS instructions produced by a given DSVP from a

parent DS instruction. Clearly, since the parent DS instruction has already been issued, it cannot have

dependencies, thus restricting the scope of the dependency check to among its newly spawned child

subinstructions. However, this local dependency check may require retrieving non-local meta-data from

another DSVP in general.

The inherently hierarchical DSVP architecture is crucial for efficient hierarchical data placement and

task scheduling (each DS operation encapsulated in a DS instruction forms a task). Essentially, as

opposed to a flat machine view, a hierarchical machine representation simplifies the data placement and

task scheduling decisions by removing the size of the HPC system from consideration. In other words,

not only the hardware specifics but also the machine scale is hidden in the hierarchical DSVP

architecture. The machine scale can be gradually expanded, level-by-level, via a breadth-first traversal

of the DSVP tree. Essentially, each DSVP at all DSVP tree levels follows more-or-less same logic:

 1. Decompose an incoming (parent) DS instruction into constituent subinstructions (child DS

instructions of smaller granularity);

 2. Schedule ready-to-be-executed subinstructions on all available resources:

 a) A composite DSVP distributes subinstructions and delegates their execution to its child

DSVP’s;

 b) A terminal DSVP distributes and actually executes subinstructions on its VCU/VMU units;

 3. Test for completion of the scheduled subinstructions, and when they all have completed, retire

the parent DS instruction back to where it came from.

Note that in this scheme the scheduling decisions are inherently local, that is, at each moment each

DSVP distributes O(1) DS instructions among O(1) child DSVP’s, thus not depending on the problem

or machine size. Figure 6 depicts the corresponding class diagram. In each DSVP, new DS data objects

are mapped by the Data Mapper onto either the VMU instances owned by the DSVP or its child

DSVP’s (if any). In the former case, the VMU instance is used for storing a DS data object. The Data

Mapper class exposes a public method map() that accepts a list of VMU instances, a list of DS data

objects, and a mapping policy that governs the distribution of the DS data objects among the available

VMU instances. Similarly, newly spawned DS operations are scheduled by the Scheduler onto either

the VCU instances owned by the DSVP or its child DSVP’s (if any). In the former case, the VCU

instance is used for executing the DS operation. The Scheduler class exposes a public method

schedule() that accepts a list of VCU instances, a list of DS operations, and a scheduling policy that

governs the distribution of the DS operations among the available VCU instances. In this scheme, the

key to efficiency, and thus performance portability, is to match the granularity of the DS data and DS

operations to the granularity of the DSVP VMU and VCU units at the corresponding levels of the

recursive decomposition. Since the DS operation decomposition is induced by the DS data

decomposition, the DS data decomposition needs to be adjusted for a given VCU/VMU aggregation

tree (established before the DSVP starts). Both the Data Mapper and the Scheduler should be enhanced

with a dynamic load balancer unit to balance the utilization of the memory and compute resources via,

for example, data/work stealing, thus altering the instantaneous mapping/scheduling decisions based on

the current policy and utilization of the VMU and VCU units. Additionally, the Scheduler should

include a dynamic optimization logic based on the locality of DS operands and affinity of DS

instructions to the VCU units which are close to the VMU units already holding some of the instruction

operands.

The principal abstract DSVP architecture has been described. In the following section, we will

demonstrate a concrete DSVP implementation, namely the Tensor Algebra Virtual Processor (TAVP) as

implemented by the ExaTENSOR library [22] (here, domain = numerical tensor algebra). But before

proceeding to the next section, let us highlight some pros and cons of the presented DSVP-based

parallel computing model as opposed to some black-box, task-based parallel runtime. As we mentioned

before, the key conceptual difference here is that a DSVP is aware of the domain data, operations and

algorithms. The price to pay is the explicit dependence of the concrete DSVP

architecture/microarchitecture on a specific domain it is designed for. So, how can this compete with a

universal generic task-based parallel runtime system designed to execute arbitrary parallel workloads?2

This question does not really have a clear answer in our point of view. It is very similar to the question

of whether domain-specific programming languages generally provide any substantial benefits over

advanced general-purpose languages, like C++. The only reasonable answer here is “It depends”. First

of all, any complex large-scale computational problem will likely require a complex software solution

spanning multiple layers in the software stack. In a sense, the overall implementation complexity is

spread across the necessary software stack while its net value as a whole tends to be preserved. For

example, the availability of a flexible and efficient parallel runtime that can be leveraged by a particular

application would free the application developers from heavy parallelization efforts, dumping all that

work on the parallel runtime developers instead. Or, an overly optimistic reliance on compiler

functionality would move the implementation complexity from the application developers to the

compiler development teams. In an ideal world, moving most of the implementation complexity from

the application itself to the lower levels of the software stack would enormously increase the scientific

programming productivity. However, in real life, in both cases above, the number of application

developers working in different domains far outruns the number of developers working on compilers

and parallel runtimes. In practice, the implementation of new features and/or bug fixes in compilers and

parallel runtimes may sometimes take years and often easily extend for months. In light of this, the

DSVP-based software architecture model may provide certain advantages as it puts more control and

leverage into the hands of domain programmers, making them responsible for designing and

implementing a parallel runtime system best suited for their computational domain problems. But since

it does not have to support all possible computational workloads across domains, its implementation

complexity should also be reduced. Here we should mention again that examples of such domain-

specific parallel runtimes have existed before [28], [23-25], however their architectural design either

2 Some of the existing task-based distributed parallel runtimes, for example Legion/Realm [18], can formally be viewed
as general-purpose software processors (with a black-box microarchitecture) used to execute domain workloads. This is
contrasted with the white-box DSVP microarchitecture design specifically tailored to given domain workloads.

did not use the concept of DSVP or it introduced it in an ad hoc fashion without derivation from the

abstract (base) DSVP architecture supplied with a clear specification.

In our model, a DSVP consists of a number of interoperating functional DS units, each with a very

specific functional role. Consequently, similar to the physical processor design, a possibility of reusing

some of the DS units in multiple DSVP implementations would significantly reduce the effort (and

cost) of developing new DSVP, thus potentially attracting a larger community of developers who would

consider using DSVP for solving their computational domain problems (we imply all possible domains,

including scientific domains and numerical math domains). In addition, a clean composition of a DSVP

in terms of the DS units with very specific functional roles allows leveraging existing thin software

building blocks related to a given unit function instead of working with monolithic generic parallel

runtimes. Furthermore, and this is becoming more and more important, the DS unit based DSVP

microarchitecture is ideal for hardware co-design, where certain software implemented DS units may

eventually find hardware assisted implementations with better performance, thus tailoring the hardware

architecture to a given computational domain (domain-specific hardware co-design), without any need

to significantly change the software. Thus, the DSVP model can be an effective mediator of such a

domain-specific co-design in which hardware sees the given domain through the prism of a DSVP that

has already converted all domain requirements into the necessary functional units. Yet, another

advantage of the DSVP-based software architecture is a better virtualization of generic HPC resources,

transforming a generic HPC platform into a custom virtual machine tailored for parallel processing of

specific domain workloads. Finally, last but not least, debugging of domain algorithms and workloads

on DSVP is naturally done in terms of high-level domain abstractions constituting the domain-specific

instruction set architecture of the DSVP.

Tensor Algebra Virtual Processor

Numerical tensor algebra constitutes the computational basis of ab initio quantum many-body theory,

normally consuming the dominant part of computing resources. Consequently, it is important to

provide portable, exascale-ready numerical tensor algebra libraries that can be leveraged by quantum

many-body codes in quantum chemistry, physics, and materials science [29-32]. ExaTENSOR has a

goal to be one of such numerical tensor algebra libraries that is deliberatily built on top of the DSVP

architecture. Specifically, it uses the tensor algebra virtual processor (TAVP) architecture as a white-

box parallel runtime described below. The ExaTENSOR library is currently undergoing an extensive

integration testing and debugging before its initial public release. Consequently, we do not have

performance results yet. However, in this regard, the purpose of this paper is to only provide a concrete

example of a portable numerical library design based on the DSVP architecture.

First of all, as illustrated in Figure 7, the DS data is specialized as the Tensor class and the DS

operation is specialized as the Tensor Algebra (TA) operation class. We define a tensor recursively, as a

generally sparse collection of tensors, with the terminal tensors defined as dense multi-dimensional

arrays of values of some (numerical) type (see Ref. [32] for more details). In this way, we automatically

satisfy the recursive DS data composition requirement of the DSVP programming model. The TAVP

instruction set encapsulates numerical tensor algebra primitives (primitive operations) as well as some

special instructions (control instructions and auxiliary instructions), thus having three classes of

processable instructions: Control, auxiliary, and tensor instructions, distinguished by their one-byte

opcode. The control instructions include STOP (stops every DSVP), RESUME (does nothing), and

DUMP_CACHE (dumps the meta-data cache on each DSVP). The auxiliary instructions include

instructions necessary for defining/registering auxiliary DS objects, like linear spaces, etc., that are

used for defining tensors. The control and auxiliary instructions, though necessary, are not important

for the following discussion. The tensor instructions encapsulate numerical tensor algebra primitives

including the following basic tensor algebra operations:

• CREATE/DESTROY: Creates/destroys a Tensor;

• LOAD/SAVE: Loads/saves a Tensor from/to persistent storage;

• INIT/TRANSFORM: Initializes/transforms a Tensor, either intrinsic or user-defined;

• COPY: Makes a copy of a Tensor;

• SLICE/INSERT: Extracts/inserts a slice from/to a Tensor;

• NORM1/NORM2: Computes the 1-norm/2-norm of a Tensor;

• MIN/MAX: Computes the min/max element of a Tensor;

• SCALE: Multiplies a Tensor by a scalar;

• ADD: Adds a Tensor to another Tensor;

• TRACE: Contracts one or more pairs of modes in a Tensor, producing a new Tensor;

• CONTRACT: Contracts one or more pairs of modes between two Tensors, producing a new

Tensor (in each pair of modes, the two modes must not belong to the same Tensor argument).

These are the basic intrinsic tensor operations encapsulated by the TAVP instruction set (see Ref. [32]

for additional details). Additionally, the TAVP instruction set provides special tensor instructions

encapsulating generic unary, binary, and ternary tensor operations that can be dynamically instantiated

during run-time by registering external user-defined functions (tensor algebra microcode) before the

TAVP starts. The possibility of such dynamic TA microcode binding/extension is crucial for

composability, otherwise the TAVP would be too restrictive for general numerical tensor algebra

algorithms which tend to use custom tensor operations quite often.

The TAVP subclass extends the abstract DSVP class. In compliance with the hierarchical DSVP design,

the TAVP instances are organized in a tree which defines the TAVP hierarchy: The internal tree nodes

are associated with multi-node aggregates of the target HPC platform, whereas the terminal tree nodes

(leaves) are associated with individual nodes of the target HPC platform. As a consequence, the TAVP

architecture is actually implemented by two TAVP subclasses:

A) TAVP- mng: TAVP-Manager specialization: Implements an internal node of the TAVP hierarchy;

B) TAVP- wrk: TAVP-Worker specialization: Implements a terminal node of the TAVP hierarchy.

A TAVP-mng virtual processor accepts parent tensor instructions, decomposes them into

subinstructions, issues ready-to-be-executed subinstructions to its child TAVP’s, accepts back the

completed subinstructions from its child TAVP’s, and finally retires each parent tensor instruction once

all its subinstructions have completed. The parent tensor instruction is considered completed

successfully if, and only if, all its subinstructions have completed successfully, otherwise the parent

tensor instruction is considered completed with error. A TAVP-wrk virtual processor accepts tensor

instructions, allocates local resources provided by VMU for their execution, fetches the remote tensor

operands (if any), issues tensor instructions to all available VCU if there are no dependencies, tests the

completion of issued tensor instructions, uploads the remote output tensor operands to their persistent

storage location (if needed), frees the local resources used by the tensor instructions, and finally retires

the completed tensor instructions, sending them back to the corresponding TAVP-mng instance.

Following the general DSVP microarchitecture principles, each of the two TAVP subclasses is

composed of interoperating TA units extending the abstract DS unit class. Figures 8 and 9

schematically illustrate the structural block diagram of the TAVP-mng and TAVP-wrk virtual processor

microarchitecture, respectively. The TAVP-mng virtual processor is composed of eight TA units and

one special unit called Tensor Cache. The TAVP-wrk virtual processor is composed of six TA units and

one special unit called Tensor Cache. The Tensor Cache is an associative map that is used to store meta-

data for each Tensor object currently in use by the TAVP. This is a shared resource accessible by all TA

units. Whenever a TA unit needs to access or update information on a specific Tensor object, it sends

the corresponding request to the Tensor Cache. We should note that in the current TAVP

implementation used in the ExaTENSOR library the Tensor Cache class is not derived from the DS unit

class, but nothing actually prevents it from being implemented as an extension of the DS unit class. In

the following discussion, let us describe the TA units implementing the TAVP-mng and TAVP-wrk

virtual processors. We should also remind again that TAVP’s are organized in a tree (TAVP hierarchy),

thus hierarchically encapsulating the underlying HPC system. Figure 10 illustrates a simple example of

such a tree, where the leaves are the TAVP-wrk virtual processors, each associated with a single

compute node of the target HPC system. Then, according to the tree, a pair of nodes is aggregated into

a 2-node cluster managed by a TAVP-mng virtual processor. Finally, two 2-node clusters are aggregated

into a 4-node cluster managed by the root TAVP-mng virtual processor. In this example, the full HPC

resource consists of four nodes while the TAVP hierarchy consists of four TAVP-wrk instances as well

as three TAVP-mng instances, a total of seven TAVP instances. Thus, the number of TAVP virtual

processors generally exceeds the number of computing nodes, requiring additional nodes to run the

TAVP-mng virtual processors. In our simple synthetic example here, such an overhead is enormous as

only four out of seven nodes will perform the actual tensor computations, resulting in a 75% overhead

(alternatively, joining the four TAVP-wrk instances to a single TAVP-mng would reduce the overhead

to 25%). However, in practice, the TAVP hierarchy should be formed with much larger branching

factors in the TAVP tree, for example, a single TAVP-mng can easily manage 64 TAVP-wrk virtual

processors (64 computing nodes), and the next level TAVP-mng virtual processor could manage 16

lower-level TAVP-mng virtual processors, resulting in 64x16=1024 TAVP-wrk virtual processors (1024

managed compute nodes in total) and 16+1=17 TAVP-mng virtual processors (assuming only two

TAVP-mng levels in the TAVP tree). In this case, the overhead would drop to less than 2%, which is

totally acceptable. Another way to reduce the overhead of running TAVP-mng instances is to map them

to subsets of CPU cores on multicore systems.

The TAVP-mng virtual processor consists of the following TA units, as shown in Figure 11:

(1) u-Decoder (implements DS decoder interface): Decodes incoming TA bytecode from the parent

TAVP-mng instance (or from the client if it is the root TAVP-mng) and passes it to Locator.

(2) Retirer (implements DS encoder interface): Accepts completed tensor instructions from

Collector, retires them and then encodes them into TA bytecode, subsequently sending it back to

the parent TAVP-mng instance (or client if it is the root TAVP-mng).

(3) Locator (implements DS encoder interface): Accepts new (parent) tensor instructions from u-

Decoder as well as previously decomposed (child) tensor instructions from Decomposer and

locates the meta-data for all tensor operands by sending remote requests to other TAVP-mng

virtual processors at the same level of the TAVP hierarchy. The fully located and dependency-

free tensor instructions are passed to Decomposer, others are deferred.

(4) l-decoder (implements DS decoder interface): Decodes incoming TA bytecode from the meta-

data location requests (from other TAVP-mng instances) and passes it to Locator.

(5) Decomposer: Accepts tensor instructions from Locator, decomposes them into subinstructions

(child tensor instructions), and passes them to Dispatcher if they have been located or back to

Locator otherwise.

(6) Dispatcher: Accepts tensor instructions from Decomposer, schedules and issues them for

execution on constituent compute resources via delegating their execution to the child TAVP

instances (either TAVP-mng or TAVP-wrk).

(7) Collector: Collects previously issued completed tensor instructions from the child TAVP

instances (either TAVP-mng or TAVP-wrk), matches them to their respective parent tensor

instructions, passing the latter to Retirer once all the subinstructions have completed.

(8) c-Decoder: Decodes incoming TA bytecode for Collector.

The TAVP-wrk virtual processor consists of the following TA units, as shown in Figure 12:

(1) Decoder (implements DS decoder interface): Decodes the incoming TA bytecode from the

parent TAVP-mng instance and passes the decoded tensor instructions to Resourcer.

(2) Resourcer: Accepts tensor instructions from Decoder, checks for data dependencies between

tensor instructions (locally), performs output operand substitution to maximize the number of

concurrent tensor instructions in the fly, allocates local VMU resources for tensor instructions

without dependencies, and passes them to Prefetcher. Also, accepts tensor instructions from

Uploader, frees the local VMU resources used by those instructions and passes them to Retirer.

(3) Prefetcher: Accepts tensor instructions from Resourcer, initiates input prefetch for remote tensor

operands, tests the completion of the previously issued prefetches, and, once completed, passes

tensor instructions to Dispatcher. The data prefetch is implemented via MPI-3 one-sided RMA

operations.

(4) Dispatcher: Accepts tensor instructions from Prefetcher, schedules and issues them for

execution on all available VCU instances via a portable execution interface (via TA microcode

bindings), tests the completion of the previously issued tensor instructions, and, once

completed, passes them to Uploader.

(5) Uploader: Accepts executed tensor instructions from Dispatcher, initiates output upload for

tensor operands (if needed), tests the completion of the previously issued uploads, and, once

completed, passes tensor instructions to Resourcer. The data upload is implemented via MPI-3

one-sided RMA operations.

(6) Retirer (implements DS encoder interface): Accepts tensor instructions from Resourcer, checks

the completion of all locally spawned operations associated with the full completion of a retired

tensor instruction, and, if fully completed, encodes the fully completed tensor instructions into

TA bytecode and sends it back to the parent TAVP-mng instance. The full completion check is

associated with the completion of dynamically spawned local Accumulate instructions that are

automatically injected in the instruction pipeline by Resourcer when it performs output

argument substitution for an increased concurrency.

As one can see, each TA unit in both the TAVP-mng and TAVP-wrk microarchitectures has a very

specific role, progressing on its own. This makes the TAVP design highly modular and weekly coupled.

In general, the TA units can be replaced by other compliant implementations, can be reused in another

TAVP, as well as new TA units can be added to an existing TAVP (to increase its efficiency, for

example). In our current implementation each TA unit is run by a dedicated CPU thread, thus

introducing certain virtualization overhead. This overhead is rather negligible for “fat” heterogeneous

HPC nodes, like the Summit nodes [27]. However, for “slimmer” HPC nodes, one may need to map

non-computing TAVP threads to a smaller subset of CPU cores via oversubscription.

Finally, the tensor algebra microcode (TA microcode), that is, the actual implementation of numerical

tensor algebra primitives for different devices is provided by the tensor algebra driver library, called

TAL-SH [33]. TAL-SH exposes a uniform task-based interface for asynchronously performing basic

tensor operations on chosen computing devices (currently TAL-SH supports multi- and many-core

CPU and NVIDIA GPU architectures, but it is truly asynchronous only for the NVIDIA GPU so far).

TAL-SH encapsulates heterogeneous memory management (by providing a universal memory

allocator/deallocator), data transfers between separate memory spaces, and asynchronous execution of

basic tensor operations on different computing devices available on the node. TAL-SH is also

extensible in terms of incorporating new tensor algebra kernels for already supported as well as new

device kinds. Currently, TAL-SH encapsulates a multi-core CPU or an NVIDIA GPU as a single VCU.

Correspondingly, the full CPU DDR memory or the GPU GDDR/HBM memory is encapsulated as a

single VMU. The VMU resources are preallocated during the TAL-SH initialization in order to avoid

severe performance penalties associated with the dynamic memory allocation. The task scheduling

logic used by TAL-SH is rather simple, exploiting only the information on the task granularity and

arithmetic intensity (to decide CPU vs GPU), current tensor operand location, and current load of each

VCU.

Having described the TAVP architecture, the numerical tensor algebra workloads are executed by the

TAVP according to the hierarchical execution model described in the previous section. Specifically, the

client (application) sends symbolic tensor instructions to the ExaTENSOR interpreter which translates

them into a TA bytecode, subsequently sending it to the root TAVP-mng. The root TAVP-mng receives

the TA bytecode, decodes it into tensor instructions and then processes those as described above.

Specifically, each TAVP-mng decomposes tensor instructions into subinstructions and schedules them

for execution on the lower-level TAVP instances. Ultimately, the tensor instructions arrive at the

terminal TAVP-wrk instances which perform the actual numerical processing of the tensor operations

encapsulated by these tensor instructions. Figure 13 schematically illustrates the full picture. As

mentioned in the previous section, for a given algorithm, the key to performance portability is to match

the granularity of tensors and tensor operations to the granularity of the VMU/VCU units at each level

of decomposition. Although necessary, this granularity matching alone is not sufficient for high

performance of distributed tensor operations and proper communication-avoiding algorithms should be

employed by the TAVP-mng logic.

Conclusions

We believe that the hierarchical DSVP-based parallel computing model can provide an attractive route

to portability, including performance portability, for a wide range of scientific applications in different

computational domains targeting Exascale computing. The DSVP-based software design puts more

leverage in hands of domain expert programmers, it focuses on higher-level algorithm expression,

debugging and profiling, and it provides better opportunities for hardware co-design. The DS unit

based DSVP microarchitecture is highly modular, composable, extensible, and reusable. We have also

demonstrated a concrete implementation of the hierarchical tensor algebra virtual processor (TAVP) in

the ExaTENSOR library which will be used as a numerical backend in the DIRAC quantum-chemistry

software suite [34]. The TAVP development effort took about 1.5-2.0 person-years, showing that

similar efforts could be realistically undertaken in other scientific domains where the DSVP-based

application design could provide a better ability to handle an ever increasing complexity of large-scale

parallel scientific workloads. A conceptual scheme of such portable scientific software development

based on the DSVP model is illustrated in Figure 14.

Acknowledgements

This research used resources of the Oak Ridge Leadership Computing Facility (OLCF), which is a

DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725. We would also

like to specifically acknowledge the DOE Office of Science funding allocated for the Center for

Accelerated Application Readiness (CAAR) program at OLCF.

References

1. I. Shavitt, R. J. Bartlett. Many-body methods in chemistry and physics: MBPT and Coupled-

Cluster Theory. Cambridge Molecular Science Press, 2009, ISBN: 9780521818322.

2. http://www.msg.ameslab.gov/gamess/index.html

3. http://www.nwchem-sw.org/index.php/Main_Page

4. http://www.qtp.ufl.edu/ACES/

5. V. Lotrich, N. Flocke, M. Ponton, A. Yau, A. Perera, E. Deumens, R. J. Bartlett. J. Chem. Phys.

128, 194104 (2008).

6. https://github.com/UFParLab

7. B. A. Sanders, J. N. Byrd, N. Jindal, V. F. Lotrich, D. I. Lyakh, A. Perera, R. J. Bartlett.

Proceedings of the 2017 IEEE International Parallel and Distributed Processing Symposium

(IPDPS’17), 2017, Orlando FL, ISSN: 1530-2075.

8. http://www.mpqc.org/

9. E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief, P. Luszczek, S.

Tomov. J. Phys.: Conf. Series 180. Proceedings of the 5th Annual Conference of Scientific

Discovery through Advanced Computing (SciDAC 2009), Jun 14-18, 2009, San Diego CA.

10. A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler, A. Heinecke, H.-J.

Bungartz, H. Lederer. J. Phys: Cond. Matt. 26, 213201 (2014).

11. https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/

12. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0443r1.html

13. T. Heller, P. Diehl, Z. Byerly, J. Biddiscombe, H. Kaiser. Proceedings of OpenSuCo’17,

Supercomputing 2017, Denver CO, Nov 2017.

14. A. Tran Tan, J. Falcou, D. Etiemble, H. Kaiser. Int. J. Parallel Prog. 44, 449-465 (2016).

15. T. G. Mattson, R. Cledat, V. Cave, V. Sarkar, Z. Budimlic, S. Chatterjee, J. Fryman, I. Ganev, R.

Knauerhase, M. Lee, B. Meister, B. Nickerson, N. Pepperling, B. Seshasayee, S. Tasirlar, J.

Teller, N. Vrvilo. Proceedings of 2016 IEEE High Performance Extreme Computing Conference

(HPEC), Waltham MA, Sep 13-15, 2016. DOI: 10.1109/HPEC.2016.7761580.

http://www.msg.ameslab.gov/gamess/index.html
https://doi.org/10.1109/HPEC.2016.7761580
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0443r1.html
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
http://www.mpqc.org/
https://github.com/UFParLab
http://www.qtp.ufl.edu/ACES/
http://www.nwchem-sw.org/index.php/Main_Page

16. A. Danalis, H. Jagode, G. Bosilca, J. Dongarra. Proceedings of 2015 IEEE International

Conference on Cluster Computing, Chicago IL, Sep 8-11, 2015, pp. 304-313.

17. B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida, X. Ni, M. Robson, Y. Sun, E.

Totoni, L. Wesolowski, L. Kale. Proceedings of Supercomputing 2014, New Orleans LA, Nov

16-21, 2014, pp. 647-658.

18. M. Bauer, S. Treichler, E. Slaughter, A. Aiken. Proceedings of Supercomputing 2012 (SC’12),

Salt Lake City Utah, Nov 10-16, 2012.

19. J. J. Wilke, J. C. Bennett, R. Clay. Proceedings of Runtime Systems for Extreme Scale

Programming Models and Architectures, Supercomputing 2015, Austin TX, Nov 15-20, 2015.

20. http://hihat.modelado.org

21. V. S. Sunderam, G. A. Geist. Parallel Computing 25, 1699 (1999).

22. D. I. Lyakh. Parallel numerical tensor algebra library for heterogeneous HPC systems built on

top of the tensor algebra virtual processor. Software to be publicly released in 2018.

23. V. F. Lotrich, J. M. Ponton, A. S. Perera, E. Deumens, R. J. Bartlett, B. A. Sanders. Mol. Phys.

108, 3323 (2010).

24. E. Deumens, V. F. Lotrich, A. S. Perera, R. J. Bartlett, N. Jindal, B. A. Sanders. Annu. Rep.

Comput. Chem. 7, 179-191 (2011).

25. N. Jindal, V. F. Lotrich, E. Deumens, B. A. Sanders. Int. J. Parallel Prog. 44, 309-324 (2016).

26. F. G. van Zee, R. A. van de Geijn. ACM Trans. Math. Softw. 41, Article 14 (2015).

27. https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

28. D. Sunderland, B. Peterson, J. Schmidt, A. Humphrey, J. Thornock, M. Berzins. Proceedings of

2016 Second International Workshop on Extreme Scale Programming Models and Middleware,

Supercomputing 2016, Salt Lake City Utah, No 13-18, 2016.

29. E. Solomonik, D. Matthews, J. Hammond, J. Demmel. Proceedings of 2013 IEEE 27th

International Symposium on Parallel and Distributed Processing, Boston MA, May 20-24,

2013.

30. E. Solomonik, D. Matthews, J. R. Hammond, J. F. Stanton, J. Demmel. J. Parallel Distr.

Comput. 74, 3176 (2014).

31. J. A. Calvin, C. A. Lewis, E. F. Valeev. Proceedings of the 5th Workshop on Irregular

Applications: Architectures and Algorithms, Austin TX, Nov 15, 2015, Article 4.

32. D. I. Lyakh, W. Joubert. Exascale Scientific Applications: Scalability and Performance

Portability, Edited by T. P. Straatsma, K. B. Antypas, T. J. Williams, CRC Press, Taylor and

Francis Group, ISBN: 9781138197541.

https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
http://hihat.modelado.org/

33. https://github.com/DmitryLyakh/TAL_SH

34. http://diracprogram.org/doku.php

Figure captions

Figure 1: The class diagram illustrating relations between the key concepts of the DSVP model.

Figure 2: The class diagram illustrating a recursive aggregation of the virtual memory units (VMU)

and virtual computing units (VCU), thus inducing a recursive decomposition of the DSVP instances.

Figure 3: The hardware aggregation tree imposed on two Titan nodes (see text for details).

Figure 4: The hardware aggregation tree imposed on two Summit nodes (see text for details).

Figure 5: A complete hierarchical encapsulation of 16 Titan nodes by the DSVP hierarchy: Individual

Titan nodes are encapsulated (virtualized) by the L2-DSVP instances, a quartet of L2-DSVP instances

is aggregated into an L1-DSVP instance, a quartet of L1-DSVP instances is aggregated into the L0-

DSVP instance representing the full (16-node) machine.

Figure 6: The class diagram illustrating mutual relations between the VMU/VCU classes, DS Data and

DS Operation classes, and the Data Mapper and Work Scheduler classes. Note the symmetry between

data/memory and work/computations.

Figure 7: The class diagram illustrating a specialization of the DSVP model to the numerical tensor

algebra domain, introducing the Tensor Algebra Virtual Processor (TAVP) model.

Figure 8: The structure of the TAVP-mng virtual processor composed of interoperating functional units

and the tensor meta-data cache.

Figure 9: The structure of the TAVP-wrk virtual processor composed of interoperating functional units

and the tensor meta-data cache.

Figure 10: The TAVP hierarchy tree that virtualizes a system of four compute nodes. Each compute

node is virtualized by a TAVP-wrk instance. A pair of the TAVP-wrk instances is managed by a TAVP-

mng instance. A pair of the lower-level TAVP-mng instances is managed by the root TAVP-mng

instance.

Figure 11: The class diagram showing relations between different TA units the TAVP-mng virtual

processor is composed of (a shared Tensor Cache is omitted). The bidirectional association lines

designate a cooperation (instruction flow) between the linked TA units.

Figure 12: The class diagram showing relations between different TA units the TAVP-wrk virtual

processor is composed of (a shared Tensor Cache is omitted). The bidirectional association lines

designate a cooperation (instruction flow) between the linked TA units.

http://diracprogram.org/doku.php
https://github.com/DmitryLyakh/TAL_SH

Figure 13: A schematic illustration of the full TAVP programming and execution model. On top, the

tensor operations scheduled by the client undergo a recursive (hierarchical) decomposition into

progressively smaller pieces, induced by the recursive (hierarchical) tensor decomposition. On bottom,

the HPC system hardware is recursively aggregated into progressively larger (heterogeneous) compute

and memory units. In the middle, the hierarchical tensor algebra virtual processor (TAVP) recursively

maps the data and work onto the hierarchical memory and compute resources at each level of the

decomposition, thus removing not only the hardware specificity but the HPC system scale as well.

Figure 14: A conceptual scheme of portable scientific software development based on the DSVP

programming and execution model.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

