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Abstract

We advocate domain-specific virtual processors (DSVP) as a portability layer for expressing and 

executing domain-specific scientific computational workloads on modern heterogeneous HPC 

architectures, with applications in quantum chemistry. In particular, we introduce a system-wide 

recursive (hierarchical) hardware encapsulation mechanism into the DSVP architecture and specify a 

concrete microarchitectural design of an abstract DSVP from which specialized DSVP implementations 

can be derived for specific scientific domains. Subsequently, we demonstrate, an example of a domain-

specific virtual processor specialized to numerical tensor algebra workloads, which is implemented in 

the ExaTENSOR library developed by the author with a primary focus on the quantum many-body 

computational workloads on large-scale GPU-accelerated HPC platforms. 
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Introduction

Quantum chemistry has always been rich on parallel computations. In particular, the quantum many-

body formalism used in quantum chemistry [1] heavily relies on large-scale numerical linear and multi-

linear (tensor) algebra, thus making quantum-chemistry applications highly attractive for massively 

parallel HPC platforms. Numerous parallel quantum-chemistry codes have been developed and widely 

adopted by computational chemistry community over time [2-8]. In particular, many of these codes 

were specifically designed to run on the distributed HPC systems based on multicore processors, 

following the stable hardware trend of 2000’s. Since many quantum-chemical workloads are 

computationally dominated by a few widely used numerical motifs such as the dense matrix-matrix 

multiplication and the linear or eigenvalue solver, the transition to distributed multicore systems was 

relatively straightforward, accompanied by a rather strong support from the math library developers 

from both industry and academia (few examples include generic Intel MKL, Cray LibSci, IBM ESSL, 

UTK Plasma/Magma [9], as well as more specialized ELPA [10] libraries). The basic parallel 

programming tools, like MPI and OpenMP, were relatively easy to use while providing sufficient 

functionality for implementing parallel algorithms on distributed multicore HPC systems. Perhaps one 

of a few subtle issues that had to be explicitly accounted for was the non-uniform memory access 

(NUMA) in OpenMP programming that actually led many codes to restrict themselves to MPI only, 

instead of using the hybrid MPI+OpenMP programming model (for performance reasons).

The situation began to worsen when an attempt to scale out existing multicore HPC architectures failed 

to fit in an acceptable power envelope, thus mandating new hardware solutions with less power 

consumption per executed Flop and transferred Byte. Graphical cards with their superior compute 

density, lower power consumption and constantly improving general purpose programmability quickly 

filled in this niche, with an apogee in the fastest supercomputer in the world being based on the 

NVIDIA GPU cards. The Titan supercomputer [11] was deployed at the Oak Ridge Leadership 

Computing Facility (OLCF) as early as 2012, only few years after NVIDIA introduced a usable 

general-purpose GPU (GPGPU) programming model CUDA (Compute Unified Device Architecture). 

As the price to pay, relative homogeneity of the preceding multicore nodes was lost, leaving 

programmers with a more complex heterogeneous node architecture with separate memory spaces and 

different kinds of compute devices. This drastic change in HPC hardware, though inevitable, posed a 

grand challenge for many scientific codes. The issue of software portability, and especially 

performance portability, became acute.



For the following discussion, we define software portability as a continuous measure, specifically the 

inverse amount of programming/porting effort (inverse person-months) necessary for a successful 

launch of an existing code base on a newly emerged HPC architecture. Similarly, software performance

portability is the inverse amount of programming/porting effort (inverse person-months) necessary for 

a successful launch of an existing code base on a newly emerged HPC architecture with an efficiency 

comparable or exceeding the efficiency achieved on the preceding HPC architectures. Importantly, our 

portability definitions are not limited to the application itself as they generally extend on the entire 

software stack necessary for a successful (and performant) execution of a given code on new hardware.

However, in practice it is useful to exclude lower levels of the software stack from this consideration, 

for example, the operating system and hardware drivers are normally assumed provided with the new 

hardware. Ideally, compilers should also be excluded from consideration in this respect. Unfortunately, 

in practice, many application porting efforts experience numerous issues with compiler bugs and 

inefficiencies on new hardware, spending significant effort on compiler debugging and search for 

workarounds. This is becoming more pronounced as the languages evolve in complexity, thus rendering

compiler stability and efficiency as one of the key aspects of software portability on new architectures. 

Different programming languages suffer to a different extent, depending on how fast new language 

features are adopted by a broad community of developers such that these new features can be well 

covered by extensive tests. Most notably, the stability of the compiler support of modern Fortran 

(2003+) has been suffering lately as the adoption of new features of this classical scientific 

programming language is relatively slow, partially due to compiler bugs, further worsened by a 

pronounced decline in popularity (C++ and Python have taken a large share of scientific programming 

nowadays).

Yet, regardless of the programming language, many existing scientific codes, especially legacy codes 

which have been around for decades, turned out to be rather difficult to port to new HPC architectures. 

Part of the problem is that many codes were not designed in a sufficiently generic and modular fashion 

to be able to run efficiently on vastly different hardware. Essentially, the computer hardware specifics 

has always been an indistinguishable part of the (scientific) application implementation, thus 

introducing a highly dynamic dependency into the application design. In many implementations, the 

hardware was not well encapsulated via a sufficiently portable interface, thus leading to a necessity of 

extensive code modifications every time a new specific kind of computing hardware is introduced, 

additionally plagued by the existence of multiple memory spaces within a heterogeneous node. The 



basic (rather lower-level) parallel abstraction of a concurrent thread which is present in major compiled 

programming languages like C/C++ and Fortran (either the native C++11 std::thread or 

OpenMP/pthreads thread) is no longer suitable for a clean composition of complex algorithms that are 

executed on heterogeneous nodes with diverse computing units and multiple memory spaces. In 

particular, conventional threads do not play well across hardware boundaries and separate memory 

spaces. They are also rather inconvenient for expressing dependencies between work items as well as 

controlling the granularity of the work items. The introduction of the OpenMP 4.0+ and OpenACC 

directive-based programming tools for accelerators did help many codes to begin exploiting accelerated 

node architectures, sometimes quite successfully, but these tools do not generally solve the problem of 

flexible decomposition and distribution of complex computational work among diverse compute units 

in a uniform, portable, and composable fashion. In practice, these directive-based models mostly 

facilitate expression of the data-based parallelism on accelerators. A more general solution should 

exploit a tasks-based algorithm expression with their subsequent execution on any subset of computing 

resources available on the node, where both the task and resource subset granularity should be 

adjustable in order to achieve the best performance. Again, we stress that in any programming model 

the requirement of portability necessitates the ability to properly encapsulate the specifics of the 

computing hardware and memory, exposing a uniform, yet flexible interface to the programmer, which 

can easily be retargeted to new hardware kinds underneath. For example, in this regard the executors 

proposal to the C++ standard shows some promise at the language level [12]. And, of course, a number 

of library-implemented (mostly C++) task-based parallel runtimes and frameworks have already been 

available for experimentation for some time [13-20], providing different levels of hardware abstraction 

and means for a task-based parallelism expression.

On a more general level, the key to portability (and perhaps performance portability) is the use of a 

proper hierarchy of higher-level abstractions for expressing (scientific) computational workloads. It is 

also mandatory to separate the algorithm expression from its execution. Essentially, a portable parallel 

code design should consist of the following three major layers:

1. Expression: High-level computational problem expression in terms of domain-specific

abstractions (a concrete domain-specific language may be helpful, but not necessary).

2. Decomposition: Hierarchical (static or dynamic) decomposition of the computational problem

expressed in terms of domain-specific abstractions into elementary data and work items with

controlled granularity.



3. Execution: Load-balanced, communication optimal scheduling and execution of the elementary 

work items on all available (hierarchical and possibly heterogeneous) computing resources 

encapsulated via portable interfaces.

In this design scheme, only the last (execution) layer is explicitly affected by a hardware change since 

new (optimized) computational kernels may be necessary for each new hardware kind and a new 

(heterogeneous) data storage scheme may be required to deal with hierarchical memory. In contrast, the

second (decomposition) layer is affected only implicitly, namely the granularity of the hierarchical data 

and work decomposition may need to be adjusted for the new hardware. The first (expression) layer 

should in theory be fully agnostic with respect to the underlying hardware. To further improve 

portability in the execution layer (including performance portability), the code should maximize the use

of (performance-)portable software libraries implementing numerical primitives the domain algorithms 

are composed of. For example, quantum many-body workloads in quantum chemistry heavily rely on 

matrix-matrix multiplications, tensor contractions, linear and eigenvalue solvers. Having these 

numerical motifs implemented in optimized math libraries would significantly reduce the portability 

pressure on the application developers. Finally, the entire execution layer, or even both the 

decomposition and execution layers, can in principle be hidden in a black-box task-based parallel 

runtime, thus moving most of the parallel programming complexity from the application developers to 

the parallel runtime and math library developers. Although this looks like an ideal solution for 

application developers, it is not always achievable in real life, at least for now. With a great hope that 

such ideal black-box solutions will become widely available in future, below we elaborate an 

alternative white-box parallel runtime design approach based on the concept of domain-specific virtual 

processors (DSVP). In its most generic essence, a DSVP can be viewed as a software processor 

designed to perform specific parallel computations within a certain (scientific) domain, for example 

quantum chemistry, on vastly different hardware in a portable fashion. We should immediately note that

it is not our goal to reinvent and/or describe the general concept of a parallel virtual machine (PVM), 

which can be found elsewhere [21], but rather we focus on how this concept and its derivatives can be 

useful in handling the complexity of scientific programming on heterogeneous distributed HPC systems

in specific domain areas such as quantum chemistry. In particular, we describe a concrete DSVP 

implementation, namely the tensor algebra virtual processor (TAVP) designed and implemented by the 

author in the form of the ExaTENSOR library [22]. Although the TAVP microarchitecture has its own 

unique design introducing a number of novel elements such as the fully hierarchical hardware 

encapsulation, it can also be viewed as a generalization and evolution of earlier efforts, specifically the 

so-called Super Instruction Architecture framework [23-25] used in the ACES-III [4,5] and ACES-IV 



[6,7] software suites for expressing and executing quantum many-body algorithms operating on large 

dense arrays of numbers. Thus, in this paper we aim at delivering a general DSVP design formalization 

as a standalone programming and execution model for complex parallel scientific workloads that will 

cover our own work as well as relevant earlier efforts by others.

Abstract Domain-Specific Virtual Processor

As mentioned above, the main idea behind the concept of a domain-specific virtual processor (DSVP) 

is to introduce a portable virtual processor architecture, implemented in software instead of hardware, 

which is specifically tailored to a given class of parallel domain workloads and which is capable of 

directly executing the underlying set of domain-specific primitives (primitive numerical operations the 

domain algorithms are composed of) on any kind of hardware in a portable fashion. This set of domain-

specific primitives actually defines the (domain-specific) instruction set of a given DSVP, which 

together with some other relevant design attributes comprises the DSVP architecture. Each concrete 

DSVP architecture is derived from the abstract DSVP architecture template described below. 

Importantly, we should note that the notion of “domain-specific” has a hierarchical meaning/structure 

in our discussion. In other words, we assume that at each level a given set of more domain-specific 

abstractions is based on a set of less domain-specific abstractions, that is, we generally assume multiple

levels of abstraction ordered with respect to their domain specificity. For example, in the domain of ab 

initio quantum chemistry the top level may be concerned with the abstraction of a quantum many-body 

ansatz (wave-function form). The next level may include the following abstractions: Many-body 

operator, many-body operator contraction. At a lower level, we then may have: Tensor, tensor 

contraction, tensor addition, etc. At this point, our “domain” has moved from a higher-level “quantum 

many-body theory” to a lower-level “numerical tensor algebra”. In general, a DSVP can be introduced 

at any of these levels, although it makes more sense to introduce a DSVP at some lower-level boundary

which still possesses certain domain specificity, thus reducing the complexity of the domain-specific 

instruction set. Moreover, in general, a DSVP can also have a hierarchical structure such that a higher-

level DSVP is composed of DSVP’s operating at a lower level of abstraction. At each level, the 

(domain-specific) algorithm expression is accomplished in terms of the (domain-specific) abstractions 

used at that level.

In general, computations in a given computational domain are expressed in terms of domain-specific 

(DS) operations operating on domain-specific (DS) data (at this point, “domain” is an abstract domain).

The corresponding association relation between the DS operation and DS data is shown in the top-right



part of the class diagram depicted in Figure 1. The directional association here means that the DS 

operations use DS data, but the DS data is generally unaware of the DS operations. We will make an 

extensive use of an important additional assumption formally depicted by a circular composition arrow 

around the DS data, namely the DS data admits a recursive decomposition. That is, in general a DS data

object is a collection of the constituent DS data objects of the same class but of smaller size 

(granularity). The decomposition terminates when a DS data object consists of itself. An immediate 

consequence of the recursive structure of the DS data is the induced recursive structure of the DS 

operations, formally depicted by a similar circular composition arrow in the diagram. The presence of 

the recursive decomposition requirement results in the presence of a deferred public decompose() 

method in both the DS data and DS operation classes.

In order to make DS operations processable (by some formal processor) one needs to encapsulate them 

into DS instructions (a DS instruction is a processable encapsulation of a DS operation). DS 

instructions contain DS operands encapsulating DS data (DS operand is a processable encapsulation of 

DS data). Essentially, both the DS operand and DS instruction classes contain some additional 

attributes necessary for their respective DS data and DS operation members to become processable by a

DSVP. In particular, a DS instruction includes the following attributes: (a) Instruction id; (b) Instruction

opcode; (c) Instruction status; (d) Instruction error code; (e) Instruction control field (an optional field 

containing instruction specification attributes). A DSVP processes DS instructions in order to perform 

the underlying DS operations on the corresponding DS data via invoking the public process() method 

which puts a DS instruction in the instruction processing pipeline. The instruction processing pipeline 

is determined by the DSVP microarchitecture. The DSVP microarchitecture is defined by a set of 

interoperating functional DS units the DSVP is composed of. Each DS unit in our DSVP design has a 

very specific well-defined functional role in processing DS instructions during specific phases of their 

lifetime. DS units normally progress independently, but they are generally aware of the existence of 

other DS units as well as the DSVP they belong to. DS units can move DS instructions between each 

other via DS ports contained in each DS unit. The source of an incoming DS instruction can be 

identified by the id of the DS port the instruction arrived to. In a distributed computing setting, a pair of

DSVP can also pass DS instructions between each other via the send() and receive() methods. There are

two special DS units responsible for the transfers of DS instructions between pairs of DSVP. Their 

interfaces are given by the DS instruction encoder (or simply DS encoder) and the DS instruction 

decoder (or simply DS decoder). The DS encoder converts a DS instruction into a portable DS 

bytecode which can be transferred between two DSVP’s. The DS decoder performs the opposite 



operation, that is, it decodes the received DS bytecode back into a DS instruction object processable by 

the DSVP. Finally, each DSVP will contain a DS microcode, namely a set of code bindings for 

performing actual DS operations (numerical primitives) on physical hardware for each DS instruction 

kind. The DS code bindings can either be provided in a form of an optimized numerical DS driver 

library for all relevant compute devices or they can be just-in-time generated upon the need (a 

combination of the two approaches is also possible). Note that for performance portability purposes the 

numerical DS driver library can be instantiated from a single template via device-specific auto-tuning 

and/or code generation (see for example [26]).

So far we have defined a number of structural design aspects of an abstract domain-specific virtual 

processor, which are rather generic. Now we will extend these further as well as define important 

behavioral aspects of the DSVP microarchitecture, specifically how it encapsulates the actual HPC 

platform architecture in a portable fashion and how it subsequently maps data and computations onto 

the physical hardware. As mentioned above, the requirement of a recursive data and work 

decomposition will play an ultimate role here. On the other hand, the full DSVP specification requires a

proper encapsulation of the HPC platform on which the computations are to be executed. In our design,

we require the HPC platform to admit a recursive (hierarchical) decomposition, up to the level of 

individual devices or even individual cores. To formalize the corresponding portable hierarchical 

hardware encapsulation scheme, one essentially needs to introduce two portable abstractions: (1) 

hierarchical compute resources; (2) hierarchical memory resources. In this way, we will cover all 

available general-purpose HPC platforms, including heterogeneous ones.

The hierarchical compute resources provided by an HPC platform are encapsulated via the Virtual 

Compute Unit (VCU) class. The hierarchical memory resources provided by an HPC platform are 

encapsulated via the Virtual Memory Unit (VMU) class. As schematically shown in the class diagram 

in Figure 2, both VCU and VMU objects are defined via a recursive aggregation, starting from the 

basic VCU and VMU instances. For example, the basic VCU instances can be CPU cores (in both 

multi- and many-core architectures), GPU streaming multiprocessors or whole GPU devices, FPGA 

devices, etc. The basic VMU instances can be NUMA DDR memory banks or whole DDR memory, 

high-bandwidth memory attached to specific devices, specialized memory resources used by GPU, like 

shared-memory, constant memory, etc. But regardless of the physical nature, the VCU and VMU 

instances expose only basic attributes to the client (in addition to their enumerated kind), for example 

the computational throughput (Flop/s) for VCU or the memory volume (Bytes) for VMU. 



Subsequently, the basic VCU and VMU instances can further be aggregated into larger composite VCU

and VMU instances, up to the full machine level. For example, CPU cores can be aggregated into a 

CPU socket, CPU sockets can be aggregated into a CPU processor, CPU processor and a GPU device 

can be aggregated into a heterogeneous node processor, heterogeneous node processors can be 

aggregated into a smaller node cluster, smaller node clusters can be aggregated into a larger node 

cluster, and, finally, larger node clusters can be aggregated into the full HPC machine. In general, each 

VCU instance can be associated with one or more VMU instances and each VMU instance can be 

associated with one or more VCU instances such that the associated VCU-VMU pairs represent 

possible compute+memory aggregates in which compute can access the associated memory, either 

directly or indirectly via a suitable API. These accessibility association links define the cross-topology 

map between VCU and VMU instances. Any general purpose HPC platform can be recursively 

decomposed into a coupled hierarchy of the VCU and VMU units. Such hierarchies are formed by a 

proper enumeration of the basic VCU and VMU units, followed by a recursive aggregation of those, up

to the full machine (the root of the aggregation tree). Once the complete aggregation has been 

established, one can also perform an opposite decomposition operation on each VCU or VMU. Figures 

3 and 4 illustrate the compute/memory aggregation for two OLCF HPC systems, Titan [11] and 

Summit [27]. Note that despite the availability of the coherent unified memory on Summit, we still 

distinguish the high-bandwidth memory close to GPU from the DDR memory close to CPU as the two 

have rather different bandwidths due to their affinity. In general, it is worth quantifying the topology 

map links that couple the VCU and VMU aggregation trees in terms of the bandwidth and latency. The 

VCU-VMU topology map can then be used for optimizing data placement and work scheduling 

decisions by the DSVP.

Having constructed the coupled VCU-VMU aggregation trees for a given HPC platform, one needs to 

provide a proper mapping of the individual nodes or the whole terminal subtrees of these trees to the 

DSVP instances associated with those hardware resources, such that each DSVP is associated with one 

or more VCU and/or VMU units, and each VCU or VMU unit is directly associated with only one 

DSVP (note that by owning a composite VCU or VMU unit a DSVP does not automatically own its 

constituent units). As formally depicted in Figure 2, by assigning DSVP’s to the established VCU-

VMU resource aggregates (starting from the aggregation tree root) one introduces a hierarchical DSVP 

composition in which each parent DSVP is decomposed into multiple separate child DSVP’s associated

with the constituent compute/memory resources. Figure 5 illustrates an example of a complete 



encapsulation of a computer cluster consisting of 16 heterogeneous Titan CPU-GPU nodes [11] by a 

hierarchical DSVP:

(1) 16 cores + DDR3 memory → CPU block;

(2) 14  streaming multiprocessors + GDDR5 memory → GPU block;

(3) CPU block + GPU block → Node = L2-DSVP;

(4) 4 Nodes → Cluster = L1-DSVP;

(5) 4 Clusters → Full machine = L0-DSVP.

Note that the lowest-level DSVP is introduced only at the node level, not at the individual device level 

as this would likely incur a significant performance penalty since each DSVP always introduces a 

certain (constant) virtualization overhead. Thus, the lowest compute granularity level at which a DSVP 

should be introduced must be sufficiently coarse to amortize the (constant) virtualization overhead.

Having finalized the principal specification of the structural DSVP design, let us define the behavioral 

aspects of the DSVP microarchitecture in regard to a performance-portable data and work mapping. To 

recap, so far all physical compute and memory hardware resources of an arbitrary HPC platform have 

been encapsulated by the basic VCU and VMU instances, thus providing a portable hardware 

abstraction scheme. Subsequently, these basic VCU and VMU instances have been recursively 

aggregated into larger, composite (generally heterogeneous) VCU and VMU instances, up to the full 

machine level. The full-machine VCU+VMU resource pair is assigned to the L0-DSVP (level-0 

DSVP). Then, by recursively decomposing the VCU+VMU resource pair assigned to a parent DSVP 

into the constituent VCU+VMU resource pairs with their subsequent distribution among the child 

DSVP’s, a DSVP hierarchy is established, thus completing the structural DSVP specification.

As described at the beginning of this section, given a computational domain problem the DSVP is 

supposed to solve, the corresponding algorithm is expressed in terms of the DS operations operating on

DS data. Both the DS data construction/destruction and the numerical DS operations the algorithm is 

composed of are fed as DS instructions into the L0-DSVP which represents the entire HPC platform as 

a serial (virtual) computer designed to directly process these DS instructions. Underneath, starting from

the L0-DSVP, each parent DSVP decomposes the incoming DS data and DS operations, which are 

encapsulated in the DS instructions, and subsequently distributes their constituent (smaller) pieces 

among the child DSVP’s associated with the constituent VCU and VMU resources. The leaves of the 

DSVP hierarchy tree (DSVP’s that consist of themselves) perform the actual data processing expressed 

by the DS instructions, whereas composite DSVP’s (internal tree nodes) only perform data/operation 



decomposition and necessary meta-data updates. Possible dependencies between DS instructions are 

respected via following the corresponding DS data dependencies. Specifically, a DS instruction that 

consumes a specific DS data object cannot be issued until the DS instruction that produces that same 

DS data object has completed. Each DS data object is equipped with the so-called Read/Write (R/W) 

counter showing the current access status on the DS data object with the following possible values: 0 

means no current reads or writes, -1 means an outstanding write/update operation, >0 is the number of 

outstanding read operations. Note that retrieving the R/W counter for a given DS data object may 

require a communication with another DSVP. Although a DSVP is supposed to perform data-driven DS

instruction dependency checking transparently to the client, there are possible variations how this can 

be done exactly. Specifically, the closest to the root tree level at which a dependency check becomes 

enabled (for all subsequent levels) defines the granularity of the DS instruction dependency control. 

For example, enabling the instruction dependency check at the root DSVP level (L0-DSVP) will result 

in a serial synchronized execution of inter-dependent DS instructions sent to the root DSVP. By moving

the instruction dependency control to one of the subsequent DSVP tree levels, the DS instructions at the

preceding DSVP tree levels are freed from any dependency checks. They will progress uninterrupted, 

preserving the original instruction order, until they hit the first DSVP tree level where the DS 

instruction dependency check is active. By varying the depth of the instruction dependency control 

logic, one trades off finer dependency control granularity for an increased logic complexity. 

Importantly, the DS instruction dependency checks at the DSVP tree levels with an active dependency 

control only need to be performed on the child DS instructions produced by a given DSVP from a 

parent DS instruction. Clearly, since the parent DS instruction has already been issued, it cannot have 

dependencies, thus restricting the scope of the dependency check to among its newly spawned child 

subinstructions. However, this local dependency check may require retrieving non-local meta-data from

another DSVP in general.

The inherently hierarchical DSVP architecture is crucial for efficient hierarchical data placement and 

task scheduling (each DS operation encapsulated in a DS instruction forms a task). Essentially, as 

opposed to a flat machine view, a hierarchical machine representation simplifies the data placement and

task scheduling decisions by removing the size of the HPC system from consideration. In other words, 

not only the hardware specifics but also the machine scale is hidden in the hierarchical DSVP 

architecture. The machine scale can be gradually expanded, level-by-level, via a breadth-first traversal 

of the DSVP tree. Essentially, each DSVP at all DSVP tree levels follows more-or-less same logic:



 1. Decompose an incoming (parent) DS instruction into constituent subinstructions (child DS 

instructions of smaller granularity);

 2. Schedule ready-to-be-executed subinstructions on all available resources:

 a) A composite DSVP distributes subinstructions and delegates their execution to its child 

DSVP’s;

 b) A terminal DSVP distributes and actually executes subinstructions on its VCU/VMU units;

 3. Test for completion of the scheduled subinstructions, and when they all have completed, retire 

the parent DS instruction back to where it came from.

Note that in this scheme the scheduling decisions are inherently local, that is, at each moment each 

DSVP distributes O(1) DS instructions among O(1) child DSVP’s, thus not depending on the problem 

or machine size. Figure 6 depicts the corresponding class diagram. In each DSVP, new DS data objects 

are mapped by the Data Mapper onto either the VMU instances owned by the DSVP or its child 

DSVP’s (if any). In the former case, the VMU instance is used for storing a DS data object. The Data 

Mapper class exposes a public method map() that accepts a list of VMU instances, a list of DS data 

objects, and a mapping policy that governs the distribution of the DS data objects among the available 

VMU instances. Similarly, newly spawned DS operations are scheduled by the Scheduler onto either 

the VCU instances owned by the DSVP or its child DSVP’s (if any). In the former case, the VCU 

instance is used for executing the DS operation. The Scheduler class exposes a public method 

schedule() that accepts a list of VCU instances, a list of DS operations, and a scheduling policy that 

governs the distribution of the DS operations among the available VCU instances. In this scheme, the 

key to efficiency, and thus performance portability, is to match the granularity of the DS data and DS 

operations to the granularity of the DSVP VMU and VCU units at the corresponding levels of the 

recursive decomposition. Since the DS operation decomposition is induced by the DS data 

decomposition, the DS data decomposition needs to be adjusted for a given VCU/VMU aggregation 

tree (established before the DSVP starts). Both the Data Mapper and the Scheduler should be enhanced 

with a dynamic load balancer unit to balance the utilization of the memory and compute resources via, 

for example, data/work stealing, thus altering the instantaneous mapping/scheduling decisions based on

the current policy and utilization of the VMU and VCU units. Additionally, the Scheduler should 

include a dynamic optimization logic based on the locality of DS operands and affinity of DS 

instructions to the VCU units which are close to the VMU units already holding some of the instruction

operands.



The principal abstract DSVP architecture has been described. In the following section, we will 

demonstrate a concrete DSVP implementation, namely the Tensor Algebra Virtual Processor (TAVP) as

implemented by the ExaTENSOR library [22] (here, domain = numerical tensor algebra). But before 

proceeding to the next section, let us highlight some pros and cons of the presented DSVP-based 

parallel computing model as opposed to some black-box, task-based parallel runtime. As we mentioned

before, the key conceptual difference here is that a DSVP is aware of the domain data, operations and 

algorithms. The price to pay is the explicit dependence of the concrete DSVP 

architecture/microarchitecture on a specific domain it is designed for. So, how can this compete with a 

universal generic task-based parallel runtime system designed to execute arbitrary parallel workloads?2 

This question does not really have a clear answer in our point of view. It is very similar to the question 

of whether domain-specific programming languages generally provide any substantial benefits over 

advanced general-purpose languages, like C++. The only reasonable answer here is “It depends”. First 

of all, any complex large-scale computational problem will likely require a complex software solution 

spanning multiple layers in the software stack. In a sense, the overall implementation complexity is 

spread across the necessary software stack while its net value as a whole tends to be preserved. For 

example, the availability of a flexible and efficient parallel runtime that can be leveraged by a particular

application would free the application developers from heavy parallelization efforts, dumping all that 

work on the parallel runtime developers instead. Or, an overly optimistic reliance on compiler 

functionality would move the implementation complexity from the application developers to the 

compiler development teams. In an ideal world, moving most of the implementation complexity from 

the application itself to the lower levels of the software stack would enormously increase the scientific 

programming productivity. However, in real life, in both cases above, the number of application 

developers working in different domains far outruns the number of developers working on compilers 

and parallel runtimes. In practice, the implementation of new features and/or bug fixes in compilers and

parallel runtimes may sometimes take years and often easily extend for months. In light of this, the 

DSVP-based software architecture model may provide certain advantages as it puts more control and 

leverage into the hands of domain programmers, making them responsible for designing and 

implementing a parallel runtime system best suited for their computational domain problems. But since

it does not have to support all possible computational workloads across domains, its implementation 

complexity should also be reduced. Here we should mention again that examples of such domain-

specific parallel runtimes have existed before [28], [23-25], however their architectural design either 

2 Some of the existing task-based distributed parallel runtimes, for example Legion/Realm [18], can formally be viewed 
as general-purpose software processors (with a black-box microarchitecture) used to execute domain workloads. This is 
contrasted with the white-box DSVP microarchitecture design specifically tailored to given domain workloads.



did not use the concept of DSVP or it introduced it in an ad hoc fashion without derivation from the 

abstract (base) DSVP architecture supplied with a clear specification.

In our model, a DSVP consists of a number of interoperating functional DS units, each with a very 

specific functional role. Consequently, similar to the physical processor design, a possibility of reusing 

some of the DS units in multiple DSVP implementations would significantly reduce the effort (and 

cost) of developing new DSVP, thus potentially attracting a larger community of developers who would

consider using DSVP for solving their computational domain problems (we imply all possible domains,

including scientific domains and numerical math domains). In addition, a clean composition of a DSVP

in terms of the DS units with very specific functional roles allows leveraging existing thin software 

building blocks related to a given unit function instead of working with monolithic generic parallel 

runtimes. Furthermore, and this is becoming more and more important, the DS unit based DSVP 

microarchitecture is ideal for hardware co-design, where certain software implemented DS units may 

eventually find hardware assisted implementations with better performance, thus tailoring the hardware

architecture to a given computational domain (domain-specific hardware co-design), without any need 

to significantly change the software. Thus, the DSVP model can be an effective mediator of such a 

domain-specific co-design in which hardware sees the given domain through the prism of a DSVP that 

has already converted all domain requirements into the necessary functional units. Yet, another 

advantage of the DSVP-based software architecture is a better virtualization of generic HPC resources, 

transforming a generic HPC platform into a custom virtual machine tailored for parallel processing of 

specific domain workloads. Finally, last but not least, debugging of domain algorithms and workloads 

on DSVP is naturally done in terms of high-level domain abstractions constituting the domain-specific 

instruction set architecture of the DSVP.

Tensor Algebra Virtual Processor

Numerical tensor algebra constitutes the computational basis of ab initio quantum many-body theory, 

normally consuming the dominant part of computing resources. Consequently, it is important to 

provide portable, exascale-ready numerical tensor algebra libraries that can be leveraged by quantum 

many-body codes in quantum chemistry, physics, and materials science [29-32]. ExaTENSOR has a 

goal to be one of such numerical tensor algebra libraries that is deliberatily built on top of the DSVP 

architecture. Specifically, it uses the tensor algebra virtual processor (TAVP) architecture as a white-

box parallel runtime described below. The ExaTENSOR library is currently undergoing an extensive 

integration testing and debugging before its initial public release. Consequently, we do not have 



performance results yet. However, in this regard, the purpose of this paper is to only provide a concrete 

example of a portable numerical library design based on the DSVP architecture.

First of all, as illustrated in Figure 7, the DS data is specialized as the Tensor class and the DS 

operation is specialized as the Tensor Algebra (TA) operation class. We define a tensor recursively, as a

generally sparse collection of tensors, with the terminal tensors defined as dense multi-dimensional 

arrays of values of some (numerical) type (see Ref. [32] for more details). In this way, we automatically

satisfy the recursive DS data composition requirement of the DSVP programming model. The TAVP 

instruction set encapsulates numerical tensor algebra primitives (primitive operations) as well as some 

special instructions (control instructions and auxiliary instructions), thus having three classes of 

processable instructions: Control, auxiliary, and tensor instructions, distinguished by their one-byte 

opcode. The control instructions include STOP (stops every DSVP), RESUME (does nothing), and 

DUMP_CACHE (dumps the meta-data cache on each DSVP). The auxiliary instructions include 

instructions necessary for defining/registering auxiliary DS objects, like linear spaces, etc., that are 

used for defining tensors. The control and auxiliary instructions, though necessary, are not important 

for the following discussion. The tensor instructions encapsulate numerical tensor algebra primitives 

including the following basic tensor algebra operations:

• CREATE/DESTROY: Creates/destroys a Tensor;

• LOAD/SAVE: Loads/saves a Tensor from/to persistent storage;

• INIT/TRANSFORM: Initializes/transforms a Tensor, either intrinsic or user-defined;

• COPY: Makes a copy of a Tensor;

• SLICE/INSERT: Extracts/inserts a slice from/to a Tensor;

• NORM1/NORM2: Computes the 1-norm/2-norm of a Tensor;

• MIN/MAX: Computes the min/max element of a Tensor;

• SCALE: Multiplies a Tensor by a scalar;

• ADD: Adds a Tensor to another Tensor;

• TRACE: Contracts one or more pairs of modes in a Tensor, producing a new Tensor;

• CONTRACT: Contracts one or more pairs of modes between two Tensors, producing a new 

Tensor (in each pair of modes, the two modes must not belong to the same Tensor argument).

These are the basic intrinsic tensor operations encapsulated by the TAVP instruction set (see Ref. [32] 

for additional details). Additionally, the TAVP instruction set provides special tensor instructions 

encapsulating generic unary, binary, and ternary tensor operations that can be dynamically instantiated 



during run-time by registering external user-defined functions (tensor algebra microcode) before the 

TAVP starts. The possibility of such dynamic TA microcode binding/extension is crucial for 

composability, otherwise the TAVP would be too restrictive for general numerical tensor algebra 

algorithms which tend to use custom tensor operations quite often.

The TAVP subclass extends the abstract DSVP class. In compliance with the hierarchical DSVP design,

the TAVP instances are organized in a tree which defines the TAVP hierarchy: The internal tree nodes 

are associated with multi-node aggregates of the target HPC platform, whereas the terminal tree nodes 

(leaves) are associated with individual nodes of the target HPC platform. As a consequence, the TAVP 

architecture is actually implemented by two TAVP subclasses:

A) TAVP-  mng: TAVP-Manager specialization: Implements an internal node of the TAVP hierarchy;

B) TAVP-  wrk: TAVP-Worker specialization: Implements a terminal node of the TAVP hierarchy.

A TAVP-mng virtual processor accepts parent tensor instructions, decomposes them into 

subinstructions, issues ready-to-be-executed subinstructions to its child TAVP’s, accepts back the 

completed subinstructions from its child TAVP’s, and finally retires each parent tensor instruction once 

all its subinstructions have completed. The parent tensor instruction is considered completed 

successfully if, and only if, all its subinstructions have completed successfully, otherwise the parent 

tensor instruction is considered completed with error. A TAVP-wrk virtual processor accepts tensor 

instructions, allocates local resources provided by VMU for their execution, fetches the remote tensor 

operands (if any), issues tensor instructions to all available VCU if there are no dependencies, tests the 

completion of issued tensor instructions, uploads the remote output tensor operands to their persistent 

storage location (if needed), frees the local resources used by the tensor instructions, and finally retires 

the completed tensor instructions, sending them back to the corresponding TAVP-mng instance.

Following the general DSVP microarchitecture principles, each of the two TAVP subclasses is 

composed of interoperating TA units extending the abstract DS unit class. Figures 8 and 9 

schematically illustrate the structural block diagram of the TAVP-mng and TAVP-wrk virtual processor 

microarchitecture, respectively. The TAVP-mng virtual processor is composed of eight TA units and 

one special unit called Tensor Cache. The TAVP-wrk virtual processor is composed of six TA units and 

one special unit called Tensor Cache. The Tensor Cache is an associative map that is used to store meta-

data for each Tensor object currently in use by the TAVP. This is a shared resource accessible by all TA 

units. Whenever a TA unit needs to access or update information on a specific Tensor object, it sends 

the corresponding request to the Tensor Cache. We should note that in the current TAVP 



implementation used in the ExaTENSOR library the Tensor Cache class is not derived from the DS unit

class, but nothing actually prevents it from being implemented as an extension of the DS unit class. In 

the following discussion, let us describe the TA units implementing the TAVP-mng and TAVP-wrk 

virtual processors. We should also remind again that TAVP’s are organized in a tree (TAVP hierarchy), 

thus hierarchically encapsulating the underlying HPC system. Figure 10 illustrates a simple example of 

such a tree, where the leaves are the TAVP-wrk virtual processors, each associated with a single 

compute node of the target HPC system. Then, according to the tree, a pair of nodes is aggregated into 

a 2-node cluster managed by a TAVP-mng virtual processor. Finally, two 2-node clusters are aggregated

into a 4-node cluster managed by the root TAVP-mng virtual processor. In this example, the full HPC 

resource consists of four nodes while the TAVP hierarchy consists of four TAVP-wrk instances as well 

as three TAVP-mng instances, a total of seven TAVP instances. Thus, the number of TAVP virtual 

processors generally exceeds the number of computing nodes, requiring additional nodes to run the 

TAVP-mng virtual processors. In our simple synthetic example here, such an overhead is enormous as 

only four out of seven nodes will perform the actual tensor computations, resulting in a 75% overhead 

(alternatively, joining the four TAVP-wrk instances to a single TAVP-mng would reduce the overhead 

to 25%). However, in practice, the TAVP hierarchy should be formed with much larger branching 

factors in the TAVP tree, for example, a single TAVP-mng can easily manage 64 TAVP-wrk virtual 

processors (64 computing nodes), and the next level TAVP-mng virtual processor could manage 16 

lower-level TAVP-mng virtual processors, resulting in 64x16=1024 TAVP-wrk virtual processors (1024

managed compute nodes in total) and 16+1=17 TAVP-mng virtual processors (assuming only two 

TAVP-mng levels in the TAVP tree). In this case, the overhead would drop to less than 2%, which is 

totally acceptable. Another way to reduce the overhead of running TAVP-mng instances is to map them 

to subsets of CPU cores on multicore systems.

The TAVP-mng virtual processor consists of the following TA units, as shown in Figure 11:

(1) u-Decoder (implements DS decoder interface): Decodes incoming TA bytecode from the parent 

TAVP-mng instance (or from the client if it is the root TAVP-mng) and passes it to Locator.

(2) Retirer (implements DS encoder interface): Accepts completed tensor instructions from 

Collector, retires them and then encodes them into TA bytecode, subsequently sending it back to

the parent TAVP-mng instance (or client if it is the root TAVP-mng).

(3) Locator (implements DS encoder interface): Accepts new (parent) tensor instructions from u-

Decoder as well as previously decomposed (child) tensor instructions from Decomposer and 

locates the meta-data for all tensor operands by sending remote requests to other TAVP-mng 



virtual processors at the same level of the TAVP hierarchy. The fully located and dependency-

free tensor instructions are passed to Decomposer, others are deferred.

(4) l-decoder (implements DS decoder interface): Decodes incoming TA bytecode from the meta-

data location requests (from other TAVP-mng instances) and passes it to Locator.

(5) Decomposer: Accepts tensor instructions from Locator, decomposes them into subinstructions 

(child tensor instructions), and passes them to Dispatcher if they have been located or back to 

Locator otherwise.

(6) Dispatcher: Accepts tensor instructions from Decomposer, schedules and issues them for 

execution on constituent compute resources via delegating their execution to the child TAVP 

instances (either TAVP-mng or TAVP-wrk).

(7) Collector: Collects previously issued completed tensor instructions from the child TAVP 

instances (either TAVP-mng or TAVP-wrk), matches them to their respective parent tensor 

instructions, passing the latter to Retirer once all the subinstructions have completed.

(8) c-Decoder: Decodes incoming TA bytecode for Collector.

The TAVP-wrk virtual processor consists of the following TA units, as shown in Figure 12:

(1) Decoder (implements DS decoder interface): Decodes the incoming TA bytecode from the 

parent TAVP-mng instance and passes the decoded tensor instructions to Resourcer.

(2) Resourcer: Accepts tensor instructions from Decoder, checks for data dependencies between 

tensor instructions (locally), performs output operand substitution to maximize the number of 

concurrent tensor instructions in the fly, allocates local VMU resources for tensor instructions 

without dependencies, and passes them to Prefetcher. Also, accepts tensor instructions from 

Uploader, frees the local VMU resources used by those instructions and passes them to Retirer.

(3) Prefetcher: Accepts tensor instructions from Resourcer, initiates input prefetch for remote tensor

operands, tests the completion of the previously issued prefetches, and, once completed, passes 

tensor instructions to Dispatcher. The data prefetch is implemented via MPI-3 one-sided RMA 

operations.

(4) Dispatcher: Accepts tensor instructions from Prefetcher, schedules and issues them for 

execution on all available VCU instances via a portable execution interface (via TA microcode 

bindings), tests the completion of the previously issued tensor instructions, and, once 

completed, passes them to Uploader.

(5) Uploader: Accepts executed tensor instructions from Dispatcher, initiates output upload for 

tensor operands (if needed), tests the completion of the previously issued uploads, and, once 



completed, passes tensor instructions to Resourcer. The data upload is implemented via MPI-3 

one-sided RMA operations.

(6) Retirer (implements DS encoder interface): Accepts tensor instructions from Resourcer, checks 

the completion of all locally spawned operations associated with the full completion of a retired

tensor instruction, and, if fully completed, encodes the fully completed tensor instructions into 

TA bytecode and sends it back to the parent TAVP-mng instance. The full completion check is 

associated with the completion of dynamically spawned local Accumulate instructions that are 

automatically injected in the instruction pipeline by Resourcer when it performs output 

argument substitution for an increased concurrency.

As one can see, each TA unit in both the TAVP-mng and TAVP-wrk microarchitectures has a very 

specific role, progressing on its own. This makes the TAVP design highly modular and weekly coupled.

In general, the TA units can be replaced by other compliant implementations, can be reused in another 

TAVP, as well as new TA units can be added to an existing TAVP (to increase its efficiency, for 

example). In our current implementation each TA unit is run by a dedicated CPU thread, thus 

introducing certain virtualization overhead. This overhead is rather negligible for “fat” heterogeneous 

HPC nodes, like the Summit nodes [27]. However, for “slimmer” HPC nodes, one may need to map 

non-computing TAVP threads to a smaller subset of CPU cores via oversubscription.

Finally, the tensor algebra microcode (TA microcode), that is, the actual implementation of numerical 

tensor algebra primitives for different devices is provided by the tensor algebra driver library, called 

TAL-SH [33]. TAL-SH exposes a uniform task-based interface for asynchronously performing basic 

tensor operations on chosen computing devices (currently TAL-SH supports multi- and many-core 

CPU and NVIDIA GPU architectures, but it is truly asynchronous only for the NVIDIA GPU so far). 

TAL-SH encapsulates heterogeneous memory management (by providing a universal memory 

allocator/deallocator), data transfers between separate memory spaces, and asynchronous execution of 

basic tensor operations on different computing devices available on the node. TAL-SH is also 

extensible in terms of incorporating new tensor algebra kernels for already supported as well as new 

device kinds. Currently, TAL-SH encapsulates a multi-core CPU or an NVIDIA GPU as a single VCU. 

Correspondingly, the full CPU DDR memory or the GPU GDDR/HBM memory is encapsulated as a 

single VMU. The VMU resources are preallocated during the TAL-SH initialization in order to avoid 

severe performance penalties associated with the dynamic memory allocation. The task scheduling 

logic used by TAL-SH is rather simple, exploiting only the information on the task granularity and 



arithmetic intensity (to decide CPU vs GPU), current tensor operand location, and current load of each 

VCU.

Having described the TAVP architecture, the numerical tensor algebra workloads are executed by the 

TAVP according to the hierarchical execution model described in the previous section. Specifically, the 

client (application) sends symbolic tensor instructions to the ExaTENSOR interpreter which translates 

them into a TA bytecode, subsequently sending it to the root TAVP-mng. The root TAVP-mng receives 

the TA bytecode, decodes it into tensor instructions and then processes those as described above. 

Specifically, each TAVP-mng decomposes tensor instructions into subinstructions and schedules them 

for execution on the lower-level TAVP instances. Ultimately, the tensor instructions arrive at the 

terminal TAVP-wrk instances which perform the actual numerical processing of the tensor operations 

encapsulated by these tensor instructions. Figure 13 schematically illustrates the full picture. As 

mentioned in the previous section, for a given algorithm, the key to performance portability is to match 

the granularity of tensors and tensor operations to the granularity of the VMU/VCU units at each level 

of decomposition. Although necessary, this granularity matching alone is not sufficient for high 

performance of distributed tensor operations and proper communication-avoiding algorithms should be 

employed by the TAVP-mng logic.

Conclusions

We believe that the hierarchical DSVP-based parallel computing model can provide an attractive route 

to portability, including performance portability, for a wide range of scientific applications in different 

computational domains targeting Exascale computing. The DSVP-based software design puts more 

leverage in hands of domain expert programmers, it focuses on higher-level algorithm expression, 

debugging and profiling, and it provides better opportunities for hardware co-design. The DS unit 

based DSVP microarchitecture is highly modular, composable, extensible, and reusable. We have also 

demonstrated a concrete implementation of the hierarchical tensor algebra virtual processor (TAVP) in 

the ExaTENSOR library which will be used as a numerical backend in the DIRAC quantum-chemistry 

software suite [34]. The TAVP development effort took about 1.5-2.0 person-years, showing that 

similar efforts could be realistically undertaken in other scientific domains where the DSVP-based 

application design could provide a better ability to handle an ever increasing complexity of large-scale 

parallel scientific workloads. A conceptual scheme of such portable scientific software development 

based on the DSVP model is illustrated in Figure 14.
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Figure captions

Figure 1: The class diagram illustrating relations between the key concepts of the DSVP model.

Figure 2: The class diagram illustrating a recursive aggregation of the virtual memory units (VMU) 

and virtual computing units (VCU), thus inducing a recursive decomposition of the DSVP instances.

Figure 3: The hardware aggregation tree imposed on two Titan nodes (see text for details).

Figure 4: The hardware aggregation tree imposed on two Summit nodes (see text for details).

Figure 5: A complete hierarchical encapsulation of 16 Titan nodes by the DSVP hierarchy: Individual 

Titan nodes are encapsulated (virtualized) by the L2-DSVP instances, a quartet of L2-DSVP instances 

is aggregated into an L1-DSVP instance, a quartet of L1-DSVP instances is aggregated into the L0-

DSVP instance representing the full (16-node) machine.

Figure 6: The class diagram illustrating mutual relations between the VMU/VCU classes, DS Data and 

DS Operation classes, and the Data Mapper and Work Scheduler classes. Note the symmetry between 

data/memory and work/computations.

Figure 7: The class diagram illustrating a specialization of the DSVP model to the numerical tensor 

algebra domain, introducing the Tensor Algebra Virtual Processor (TAVP) model.

Figure 8: The structure of the TAVP-mng virtual processor composed of interoperating functional units

and the tensor meta-data cache.

Figure 9: The structure of the TAVP-wrk virtual processor composed of interoperating functional units 

and the tensor meta-data cache.

Figure 10: The TAVP hierarchy tree that virtualizes a system of four compute nodes. Each compute 

node is virtualized by a TAVP-wrk instance. A pair of the TAVP-wrk instances is managed by a TAVP-

mng instance. A pair of the lower-level TAVP-mng instances is managed by the root TAVP-mng 

instance.

Figure 11: The class diagram showing relations between different TA units the TAVP-mng virtual 

processor is composed of (a shared Tensor Cache is omitted). The bidirectional association lines 

designate a cooperation (instruction flow) between the linked TA units.

Figure 12: The class diagram showing relations between different TA units the TAVP-wrk virtual 

processor is composed of (a shared Tensor Cache is omitted). The bidirectional association lines 

designate a cooperation (instruction flow) between the linked TA units.
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Figure 13: A schematic illustration of the full TAVP programming and execution model. On top, the 

tensor operations scheduled by the client undergo a recursive (hierarchical) decomposition into 

progressively smaller pieces, induced by the recursive (hierarchical) tensor decomposition. On bottom, 

the HPC system hardware is recursively aggregated into progressively larger (heterogeneous) compute 

and memory units. In the middle, the hierarchical tensor algebra virtual processor (TAVP) recursively 

maps the data and work onto the hierarchical memory and compute resources at each level of the 

decomposition, thus removing not only the hardware specificity but the HPC system scale as well.

Figure 14: A conceptual scheme of portable scientific software development based on the DSVP 

programming and execution model.
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