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Abstract 

 

This paper identifies major aspects of ridesourcing services provided by Transportation Network 

Companies (TNCs) which influence vehicles miles traveled (VMT) and energy use. Using 

detailed data on approximately 1.5 million individual rides provided by RideAustin in Austin 

Texas, we quantify the additional miles TNC drivers travel: before beginning and after ending 

their shifts, to reach a passenger once a ride has been requested, and between consecutive rides 

(all of which is referred to as deadheading); and the relative fuel efficiency of the vehicles that 

RideAustin drivers use compared to the average vehicle registered in Austin. We conservatively 

estimate that TNC drivers commute to and from their service areas accounts for 19% of the total 

ridesourcing VMT. In addition, we estimate that TNC drivers drove 55% more miles between 

ride requests within 60 minutes of each other, accounting for 26% of total ridesourcing VMT. 

Vehicles used for ridesourcing are on average two miles per gallon more fuel efficient than 

comparable light-duty vehicles registered in Austin, with twice as many are hybrid-electric 

vehicles. New generation battery electric vehicles with 200 miles of range would be able to 

fulfill 90% of full-time drivers’ shifts on a single charge. We estimate that the net effect of 

ridesourcing on energy use is a 41% to 90% increase compared to baseline, pre-TNC, personal 

travel. 

 

Graphical Abstract 
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Highlights 

 

• A database of 1.5 million individual ridesourcing rides from Austin Texas is used to estimate 

the net effect of ridesourcing services on travel and energy use  

• Commuting and between-ride “deadheading” account for 19% and 26% of  total ridesourcing 

VMT, respectively 

• Vehicles used for rRidesourcinge vehicles are on average two miles per gallon 2 MPG more 

efficient , with and twice as many likely to be hybrid-electric vehicles, than comparable light-

duty vehicles registered in Austin 

• Based on these results, and estimates from the literature on the fraction of rides that are shared 

between strangers and the mode of travel replaced by the TNC ride, rRidesourcing increases 

energy use by an estimated 41% to 90% compared to personal travelrior mode 
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1. Introduction 

 

In the late 2000s pervasive use of smartphones, GPS systems, and digital mapping/routing 

applications gave rise to ridesourcing services. In a ridesourcing service, a smartphone 

application connects an individual seeking a ride with a nearby driver willing to provide 

transportation. The application gives real-time information about wait and travel times, enables 

passengers to pay via credit card, and allows passengers and drivers to evaluate each other once 

travel has been completed. The providers of such services classified as “transportation network 

companies” or TNCs (Rayle et al., 2016). In some cities, the application allows travelers to share 

the ride (and cost) with a stranger. In this case, the ridesourcing trip can be referred to as 

“ridesharing”. 

 

Ridesourcing services have grown dramatically over the past decade. As of early 2018, Uber—

the largest U.S. provider—reported service in 633 cities worldwide, with exponential growth in 

the number of rides provided. Uber accumulated its first 1 billion rides in about 6 years, the next 

billion in 6 months, and 3 billion more in about another year (Uber, 2017). In early 2018, Lyft—

the second-largest U.S. TNC—reported among its “community” 23 million passengers, 1.4 

million drivers, and service in all U.S. states, and more than 300 airports (Lyft, 2018), and in 

September 2018 announced their first billion rides. China’s Didi Chuxing, Uber’s main 

competitor in global growth, reported having more than 450 million users and 21 million drivers, 
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with its 25 million daily rides eclipsing the combined rides given by the rest of the world’s 

ridesourcing services combined (Sreeharsha and Isaac, 2018). Continued evolution of this 

concept consists of a range of similar services including conventional car-sharing, bike-sharing, 

scooter-sharing, and microtransit services (e.g., on-demand shuttle buses) (Burgstaller et al., 

2017; Clewlow and Mishra, 2017). Taken together, these types of emerging travel services are 

referred to as “mobility as a service” (MaaS); many envision travelers eventually purchasing 

access to a portfolio of travel services through a monthly subscription (Goodall et al., 2017). The 

TNC service providers have expressed their intention to eventually replace their contract drivers 

with automated vehicles, thereby greatly reducing the cost of providing a ride (Uber, 2018; Lyft, 

2018).   Using mesoscopic simulation experiments, Loeb et al., 2018 estimated that shared 

autonomous electric vehicles could serve 40% of all trips under 50 miles in Austin Texas, with a 

nearly 20% increase in VMT. Such services could lead to significant reductions in taxi ridership 

(Contreras and Paz, 2018; Nie, 2017), one of the major competitors of TNCs.  

 

TNC companies typically do not release their data to the public or researchers, but a number of 

independent studies show that these services greatly impact urban transportation patterns and 

trends. For example, recent studies in San Francisco suggest that around 6,000 ridesourcing 

vehicles operated in the city at peak times—outnumbering taxis by more than a factor of 15. In 

addition, ridesourcing vehicles accounted for around 10% of all person-trips and vehicle miles 

traveled (VMT), as well as about half of the change in traffic congestion in San Francisco 

between 2010 and 2016 (SFCTA, 2018, 2017). Another study of seven major U.S. cities found 

that 21% of adults used ridesourcing services and 9% more used them with friends but had not 

installed the application themselves; of ridesourcing adopters in metropolitan areas, 24% used 
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the service on a weekly or daily basis (Clewlow and Mishra, 2017). A 2016 Pew Research 

Center study estimated that 21% of urban Americans and 15% of suburban Americans had used 

ridesourcing services (Smith, 2016).  

 

Ridesourcing can decrease energy use in the following ways. In the cities where ridesharing (or 

pooling) is offered, sharing a ride with a stranger can as much as halve vehicle miles of travel 

compared to two travelers driving their own personal vehicles along a similar route. Second, in 

the medium term, by concentrating VMT in fewer vehicles, the owners of those vehicles have an 

incentive to purchase more efficient automobiles; high-mileage use means that the initial 

increase in the purchase price of a more efficient vehicle will be offset sooner by lower fuel 

costs. Finally, in the long term, riders may retire an existing vehicle, and, no longer facing a 

fixed cost for their transportation needs, may eliminate trips they made previously with their own 

vehicle (Cervero et al., 2007; Xue et al., 2018). An analysis of U.S. state-level data found that 

per-capita vehicle registrations decreased 3% after entry of ridesourcing services in metropolitan 

areas, with no effect on VMT (Ward et al., 2018). 

 

On the other hand, ridesourcing services can increase energy use by a number of different ways. 

Miles driven without a paying passenger onboard are referred to as “deadheading”; deadhead 

miles can offset any energy benefits of ridesourcing services, and can lead to greater traffic 

congestion. There are two major components of deadheading: commuting since some drivers 

commute relatively long distances into urban areas to begin and end their shift of driving; and 

between-ride deadheading, which includes drivers circling areas waiting for riders to summon 

them, potentially driving longer distances as directed by their mobile app to take advantage of 
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surge pricing, and the additional miles driven after accepting a ride request to pick up the 

passenger.   

 

The few studies analyzing deadheading from ridesourcing services vary considerably in terms of 

data sources, methods, and areas of study. Among recent studies, estimates of the fraction of 

total ridesourcing VMT that are deadhead miles range from 36% to 45%, yet none of these 

studies capture all empty miles accumulated by ridesourcing vehicles. Henao and Marshall 

(2018) calculated a conservative (lower end) empty mile rate of 41% for a single Uber/Lyft 

driver in Denver due to deadheading and accounting for commuting only at the end of shifts. 

Komanduri et al., 2018 used the RideAustin data set to estimate that 37% of all ridesourcing 

VMT are deadhead miles, including commuting at the beginning and end of shifts. Their 

estimate assumed a uniform commute distance of two miles, which also applied and when 

picking up passengers after more than 30 minutes of idle time. They also , accounted fors well as 

straight-line distances between the rides without adjusting for the real street network distance. 

Cramer and Krueger, 2016 obtained from Uber the city-wide average percentage of drivers’ 

miles driven with a passenger in five cities.2 They report empty miles rates of 45% in Seattle and 

36% in Los Angeles, excluding miles driven with the Uber app turned off, which might exclude 

empty commuting miles at the beginning and end of shifts. Drawing primarily on operational 

data collected by the New York City Taxi and Limousine Commission, a non-peer-reviewed 

report estimates an empty VMT rate of 40% for weekday ridesourcing rides that started and/or 

ended in Manhattan’s Central Business District, again not accounting for commuting miles 

(Schaller, 2017). In San Francisco, a method based on the public-facing APIs of Uber and Lyft 

                                                        
2 Data for Boston are for three days, and for San Francisco three months, in 2015; data for Los Angeles, 
New York City, and Seattle are for all of 2015. 
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was used to estimate an empty VMT rate of 20% for rides starting and ending within the city’s 

core area (San Francisco County Transportation Authority, 2017). However, their method 

excludes commuting, and understates the share of deadheading as the authors attributed the 

distance from ride request to passenger pickup to passenger miles instead of to empty miles. 

 

Whether ridesourcing increases VMT and energy use depends on the mode of travel replaced by 

the ridesourcing trip. Taxis likely generate comparable, or perhaps even more deadheading miles 

than TNCs: taxis are more likely to circle areas seeking riders, while ridesourcing ridesource 

vehicles in theory can wait parked until a ride is requested through the smart phone app. Private 

auto trips often add additional VMT from searching for parking at the end of the trip, depending 

on the destination, whereas ridesourcing drivers never have to search for parking (although they 

may have to find a safe location to drop off their passengers). In principle, deadheading and 

ridesourcing inefficiency can be reduced over time by TNC providers better matching driver 

supply with passenger trip demand,  thereby reducing the distance driven to reach riders (Xu et 

al., 2019).  

 

A third factor of ridesourcing that may increase energy use is that such trips may substitute for a 

trip in a more energy-efficient mode or even induce new travel; for example, a trip shifted from 

public transit to ridesourcing service would, on average, increase the amount of energy 

consumed per passenger during that trip.3 On the other hand, ridesourcing service may 

supplement conventional public transit service, by providing first-/last-mile travel to or from 

transit stops. An analysis using transit agency data found that ridership increased 5% two years 

                                                        
3 Although a TNC trip may increase accessibility over a transit trip, as the traveler is delivered directly to 
their destination rather than to a transit stop a short distance from their destination. 
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after Uber entry, but ranged from a 7% increase to an 8% decrease based on the size of the metro 

area and its transit system (Hall et al., 2018). In addition, by encouraging more to drive part-time 

(as opposed to fewer full-time taxi drivers), ridesourcing services reduce the average number of 

rides provided per driver or vehicle, which may increase traffic congestion. The stop-and-go 

driving from increased traffic congestion leads to a slight increase in energy use (Gately et al., 

2017).   

 

Table 1 summarizes six aspects of ridesourcing services that influence their VMT and energy 

use. The first three likely result in reduced VMT and energy use, while the last three likely result 

in increased VMT and energy use, relative to travel before the introduction of ridesourcing 

services. 
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Table 1. Aspects of changes in VMT and energy use from ridesourcing, and method used in this 

analysis 

Aspect of ridesourcing Method used in this analysis 

1. Sharing rides  Estimated based on assumptions informedtaken from by 

literature 

2. More fuel-efficient vehicles  Measured by comparison with rated fuel economy of 

RideAustin fleet with overall fleet registered in Austin 

3. Car-shedding and fewer 

trips  

Not estimated 

4. Commute deadheading  Measured using RideAustin ride start and end locations, 

based on estimated driver home location 

5. Between-ride deadheading Measured using distance between RideAustin ride end and 

start of next ride, adjusted for travel on the road network 

6. Modal shift Estimated based on assumptions informedtaken from by rider 

surveys in the literature 

 

Our analysis uses data of individual rides conducted by a TNC, RideAustin, in Austin Texas, to 

quantify VMT and energy use effects of ridesourcing. TNCs Uber and Lyft pulled their services 

out of the Austin, Texas market on May 8, 2016 (Solomon, 2017). One month later a local non-

profit company, RideAustin, was formed to provide such transportation services in the city. In 

addition to RideAustin, several other providers began operation in Austin in the same timeframe. 

An online survey of nearly 1,840 riders, conducted in November and December 2016, found that 

42% used one of these new ridesourcing services after Uber and Lyft left the market, and of 
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those that used one of the new services, 47% used the RideAustin service (Hampshire et al., 

2017). Lavieri et al., 2018 also used RideAustin data to model the spatiotemporal distribution of 

ridesourcing rides, the demographics of passengers, and mode substitution in relation to public 

transit.  

  

This study estimates the fraction of RideAustin drivers’ VMT without passengers, as well as the 

VMT attributed to drivers’ travel into the city at the beginning and the end of their shift, using 

both measured and estimated distances. We categorize drivers based on their weekly working 

hours and compare travel patterns of occasional, frequent, and full-time drivers. In addition, the 

distribution of rides to and from certain major locations and land uses in Austin are analyzed. 

Vehicle fuel economy of the RideAustin vehicles is reviewed and compared with that of the 

personally owned fleet in the region, to determine if vehicles used through the service are more 

efficient than comparable vehicles registered in Austin. Finally, the impacts of the RideAustin 

ridesourcing service on net energy use, based on estimates of five of the six factors shown in 

Table 1, are estimated. This study demonstrates the value of detailed data on individual rides 

provided by TNCs, as well as other necessary data, to fully assess the net impact of this 

emerging type of transportation service on mobility and energy use of urban transportation 

systems. 

 

2. Data and Methods 

 

We obtained publicly-available data from RideAustin on nearly 1.5 million individual rides 

made over an 11-month period from June 2016 to April 2017 (RideAustin, 2017).  The 
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RideAustin data on nearly 1.5 million rides, conducted by almost 5,000 drivers, includes the 

datetime stamp at five points along each ride: when the ride request was dispatched to a driver; 

when the driver accepted the dispatched request; when the driver reached the rider; when the ride 

started; and when the ride was completed (RideAustin, 2017). The database also includes two 

GPS measured distances in meters: the distance traveled between the time the driver accepted the 

ride request and reached the rider, and the distance between the start and the end of the ride. 

However, the distance to the rider was not recorded until October 27, 2016, so the analysis of 

this trip segment excludes data prior to that date.  In addition, location coordinates, rounded to 

three decimal places, are available for where the ride started and ended; this degree of precision 

identifies ride start and end locations only to within roughly 100 meters. Individual drivers and 

riders are identified, so individual rides can be aggregated by driver and rider to analyze the 

travel patterns of each. The model year, make, and model of drivers’ vehicles is also identified, 

which can be used to determine the Environmental Protection Agency rated fuel economy of 

each vehicle. 

 

Figure 1 shows the total number of rides and drivers per month from when the program started 

on June 6, 2016 through April 13, 2017.  The figure indicates that the program use was ramping 

up between June and October 2016, with the number of rides increasing from 3,700 to 190,000, 

the number of drivers increasing from 230 to 2,100, and the average number of rides per month 

per driver increasing from 16 to 90 (or from one ride every other day to three rides per day).4  

Between October and March 2017 the number of rides and drivers increased, but at a slower rate, 

                                                        
4 Presumably many of the drivers for Uber and Lyft began driving for RideAustin shortly after the program 
was started in June 2016; however, fingerprinting and other licensing requirements likely delayed how 
quickly these experienced drivers could drive under the new RideAustin program. 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted 
manuscript. The published version of the article is available from the relevant publisher.



 14 

while the average number of rides per driver initially decreased and then increased back up to 90 

in March. Peak activity occurred in March, the last month for which we have a full month of 

data, with 320,000 rides provided by 3,560 drivers, each providing on average three rides per 

day.5  The most rides provided by one driver in each month fluctuated between 500 and 600 

rides, or 17 to 20 rides per day, between September and January, and then increased to 740 rides, 

or 25 rides per day, in March.  The peaks in October and March are coincident with major events 

occurring in Austin: the Austin City Limits music festival (October 6 through 8, and October 13 

through 15) and the South by Southwest festival (March 10 through 19).  

 

 

Figure 1. Total number of rides, drivers, and average and maximum number of rides per 

driver, by month 

 

                                                        
5 City of Austin data on taxicab trips in previous years indicates that October and March are the peak 
months for taxi trips, which correspond to the peak months of RideAustin rides. 
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Figure 2 shows the distribution of rides between October 27, 2016 and April 13, 2017 by day of 

the week and hour of the day. Distributions of hourly rides for the four weekdays Monday 

through Thursday are combined because they are quite similar to each other, but distinct from the 

distributions on Friday, Saturday, and Sunday.  The total number of rides given Monday-

Thursday are divided by four, while and the total number of Friday-Sunday rides are divided by 

three to giveare presented as the daily average distribution of total rides by day and hour.  Figure 

2 indicates that the distribution of rides peaks on Friday and weekend nights (from 7 pm through 

2 am the next morning), while the lowest number of rides occurs between 4 am and 8 am on 

weekend mornings, and 3 am to 6 am on weekday mornings. The number of rides during the 

morning commute hours (5 am to 10 am) during weekdays are comparable to the number during 

those hours on weekends. The hourly distributions of rides and the monthly peaks (that roughly 

correspond to the Austin City Limits music festival in October and the South by Southwest 

festival in March) suggest that the majority of RideAustin rides are taken for entertainment or 

recreational purposes, rather than as part of a regular work or school commute. In contrast, Dong 

et al., 2018 using DiDi Chuxing data to describe ridesourcing patterns in Beijing, found that peak 

hours are during commute hours: between 7:30 and 9:30 in the morning, and 4:30 and 6:30 in the 

evening. 
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Figure 2. Distribution of total rides by day of week and hour 

Table 1 lists the methods and data used to estimate the net impacts on VMT and energy use from 

five of the six aspects of TNCs listed in the table. We estimate the decrease in VMT and energy 

use from sharing rides based on estimates in the literature and assumptions regarding the fraction 

of ridesourcing rides that are shared, as well as and the amount of person miles of travel reduced 

by sharing. We calculate the decrease in energy use from TNC drivers using more efficient 

vehicles by comparing the distribution of the vehicles used by RideAustin drivers with those of 

all registered vehicles in Austin Texas. We calculate the increase in VMT and energy use from 

driver commute and between-ride deadheading based on the straight-line distance between the 

starts and ends of the RideAustin rides, using estimated home locations for drivers (for commute 

deadheading) and a calculated adjustment factor for additional miles driven over the local street 

network derived from the measured distance of the RideAustin rides. Finally, we estimate the 
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increase in energy use from travelers shifting from other travel modes to ridesourcing based on 

observed modal shift from two rider surveys in the literature. Of the six factors listed in Table 1, 

we do not estimate the long-term impacts of travelers’ car-shedding and eliminating some 

discretionary trips. 

 

3. Results and Discussion 

In this section we describe the detailed methods used to estimate the effect of ridesourcing 

service on between-ride and commute deadheading, more efficient vehicles, and modal shift, as 

well as an analysis of ride distributions by location and land use. 

 

3.1. Ridesourcing VMT and Deadheading 

The segments of deadheading VMT considered in our analysis are illustrated by red arrows in 

Figure 3. The RideAustin dataset is unique as it provides two GPS measured distances: between 

when the driver accepted a ride request and picked up the rider (from B to C in Figure 3), and 

between the start and end of the ride (from C to D). Other ride-level databases only provide 

origins and destinations, and not measured distances on the road network. To estimate 

deadheading while cruising for a ride request (from A to B), we use the straight-line distance 

between the start of each ride and the end of the previous ride, adjusted for travel over the road 

network, minus the measured distance from when the driver accepted the ride request and the 

ride itself. In this section we describe how we estimated the total amount of deadheading 

between rides (from A to C); in the next section we describe how we estimated the deadheading 

from driver commuting. 
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Figure 3. Ridesourcing driving segments, with empty vehicle miles segments shown in red 

(Henao and Marshall, 2018) . 

Components of a sample ride from the RideAustin database are shown in Figure 4, which 

illustrates how deadheading miles are estimated in this study. The locations of the driver’s 

vehicle are shown in circles, the inferred routes based on measured travel distances are indicated 

by solid lines, and straight-line distances are indicated by dashed lines.  Location 1D is the 

recorded end of the driver’s previous ride (Ride 1), while locations 2C and 2D are the recorded 

start and end of the driver’s next ride, respectively (Ride 2). The dashed lines indicate the 

straight-line distances between the end of the previous ride (1D) and the start of the next ride 

(2C), and the straight-line distance between the start (2C) and end (2D) of the next ride.  The 

database also provides the measured distance the driver travels to reach the rider once the ride 

request is accepted (solid line between 2B and 2C) and the measured distance of the ride itself 

(solid line between 2C and 2D).  Although the measured distances are provided, the exact route 

taken over the road network is not. In Figure 4, we select routes to reach the rider and the ride 

itself that nearly match the measured distances, for this one illustrative ride.  
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The network route the driver takes between rides must be inferred based on where the driver 

ended the previous ride (1D) and where the next rider was reached (2C).  However, the location 

of the driver at the time the ride request was accepted (2B) could be anywhere within a 1.3-mile 

measured distance from where the rider was reached.  The route shown minimizes the additional 

distance driven between the time the driver ends the previous ride (1D) and accepts the next ride 

request (2B).  Note that the measured distance between where the driver accepts the ride request 

(2B) and where the rider is reached (2C) is 1.3 miles, which is 18% further than the straight-line 

distance between the end of the previous ride and the start of the next ride (1.1 miles).  In this 

example the distance between the end of the previous ride (1D) and the inferred location where 

the next ride request is accepted (2B) is minimized (it could have been even farther). 

 

 

Figure 4. Components of a sample ride 
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In summary, the RideAustin data provides the straight-line distance between rides, the measured 

distance between when the ride request was accepted by the driver and when the driver reached 

the passenger, and both the straight-line distance and the measured distance of the ride itself.  We 

first examine the two measured distances to calculate the additional miles RideAustin drivers 

drove to reach passengers after they had requested a ride. We find that on average a driver drove 

21% more miles after accepting the ride request to reach a rider than the ride itself; that is, the 

total distance to reach the rider plus the ride itself was 21% farther than the distance of just the 

ride itself.  While on average drivers drove 21% more miles to reach the rider, this amount 

fluctuated between 16% and 26% of the ride distance depending upon the hour of the day, with 

the highest percent additional miles driven during morning and evening passenger commute 

hours, and the lowest percent additional miles in the early morning and during the afternoon.  

 

We then estimated the total distance between rides based on the locations of the end of the 

previous and start of the next ride, multiplied by a factor to account for the ratio of network 

distance to the straight-line distance. The straight-line distance between the coordinates at the 

start and completion of each ride (i.e. between points 2C and 2D) was compared to the GPS-

measured distance of each ride following the actual route taken on the road network. Figure 5 

shows the cumulative distribution of this ratio for all rides. For the average ride, the measured 

network distance was 1.4 times the straight-line distance between the ride start and end 

coordinates, and for about 83% of all rides the measured network distance was between 1.1 and 

1.9 times the straight-line distance derived from the coordinates. Therefore, the measured 

network distance the driver travels between rides is estimated as 1.4 times the straight-line 

distance derived from the coordinates of the end of the previous ride and the coordinates of the 
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start of the next ride. The resulting deadheading distances are conservative, as they do not 

account for drivers circulating after each ride awaiting another ride request, but rather heading 

directly over to pick up their next passenger. 

 

 

Figure 5. Distribution and cumulative distribution of ratio of measured distance to 

straight-line distance between start/end coordinates of RideAustin rides 

 

We examined a subset of consecutive rides given by individual drivers, which occurred within 

60 minutes of the previous ride, under the assumption that individual rides more than 60 minutes 

apart could include additional driving not related to providing rides for RideAustin (for example, 

a driver traveling to a particular spot for their lunch break or to conduct errands). About half of 

all rides were started within 20 minutes of the end of an individual driver’s previous ride, while 
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another 20% of rides were started between 20 and 60 minutes after the end of a driver’s previous 

ride, as shown in  (Figure 6).6 Figure 6 indicates that the deadhead distance between rides given 

by a particular driver increases steeply for each minute since the end of the previous ride until 

about 30 minutes after the previous ride. After 30 minutes from the previous ride’s end, the 

average deadhead distance between rides continues to increase, but a much slower rate. The 

deadhead distance between rides levels off just under six miles after about two hours between 

rides. 

                                                        
6 On the other hand, 10% of all rides occurred between one and three hours, and 13% occurred between 
three and 24 hours, after the driver’s previous ride; the remaining 10% of all rides by a specific driver 
occurred more than one day after the driver’s previous ride. 
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Figure 6. Cumulative distribution of rides and average distance between rides, by time 

since driver’s previous ride 

 

On average, for rides that occurred within 60 minutes 7  of each other, the empty-vehicle 

deadheading adds 55% to the following ride’s distance, including the measured distance between 

when the driver accepted the ride and when they reached the rider, as discussed above. The 

estimated distance driven between rides within 60 minutes of each other, is nearly three times that 

                                                        
7 Because the database does not indicate when the RideAustin app is active, we do not know when drivers 
are actively seeking rides. It is possible that drivers are conducting personal travel, such as running 
errands or picking up a child at school, between rides. The likelihood that a driver is conducting personal 
travel between rides increases as the time between rides increases. We chose to use the average 
deadheading distance for rides up to 60 minutes since the previous ride to reflect the time between rides 
that drivers are likely still seeking rides with the app on; we assume that any travel conducted more than 
60 minutes after the previous ride includes at least some personal travel.  
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of the measured distance from ride request to passenger pickup (55% vs. 20% respectively).8  This 

suggests that most RideAustin drivers do not park their vehicles while waiting for their next ride 

request; instead they are cruising while awaiting their next ride request. 

 

Whether the number of deadheading miles driven by RideAustin drivers represents an increase in 

VMT or fuel use depends on what travel mode the RideAustin riders would have used in the 

absence of ridesourcing. If the previous mode was personal vehicle, ridesourcing likely increases 

VMT (as long as the VMT spent looking for parking a personal vehicle does not exceed the 

ridesourcing deadheading VMT). If the previous mode was a taxi, ridesourcing may not increase 

VMT, if the deadheading rate of taxis and ridesourcing is comparable. Future work should 

compare deadheading rates of taxis with those of RideAustin vehicles, as well as utilize rider 

surveys to determine what mode the TNC ride replaced. 

 

3.2. Ridesourcing Drivers Commute Distance and Shifts 

 

The distance drivers travel without passengers at the start and end of their driving shift is an 

often overlooked yet important component of ridesourcing that should be estimated to better 

understand the actual effect of ridesourcing services on VMT and energy use (Henao and 

Mashall, 2018). At the start of each shift, drivers may travel from their residence or garage to an 

area where they would then turn on the app and wait until a first request is made. Similarly, at 

the end of the shift, the driver travels from their last passenger drop-off (or app being turned off) 

to home.   

                                                        
8 Even the estimated distance driven between rides driven within 20 minutes of each other is nearly 
double that of the measured distance from ride request to passenger pickup (36% vs. 20%).  
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Likely for privacy reasons, RideAustin drivers’ addresses were not provided in the dataset. We 

estimated each driver’s residence location by computing the spatial median of the first pick-up 

location of all shifts for each driver. This is a conservative estimate, as it minimizes the average 

commute distance for each driver. Commute distance was estimated as the straight-line distance 

between the approximate residence location and the first pick-up location of each shift, and the 

last drop-off location, of each shift. We applied the same distance adjustment factor of 1.4 to 

estimate the total commute distance on the street network. 

Figure 7 shows the cumulative distribution by distance of five components of a ride, four of 

which are deadheading: a driver’s estimated pre-shift commute; measured travel between when 

the driver accepts the ride request and when they pick up the rider; estimated travel while 

cruising for the next ride request;9 measured travel between the rider’s origin and their 

destination; and a driver’s estimated post-shift commute. 

9 Which is calculated by subtracting the measured distance between acceptance of ride request and pick 
up of rider from the estimated distance between the ride start and the end of the previous ride. 
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Figure 7. Cumulative distribution of distance by ride segment and commuting. 

 

Figure 7 indicates that the average ride is 5.4 miles long (green), higher than the average ride 

distance of 3.2 miles in San Francisco (Rayle et al., 2016) but lower than the average ride 

distance of 7.0 miles in Denver (Henao and Marshall, 2018). The deadheading distance between 

rides is divided into the measured distance after receiving a ride request (from B to C in Figure 

3) and the distance cruising before receiving a ride request (from A to B in Figure 3), which is 

calculated by subtracting the measured distance from ride request to rider pickup from the 

between-ride deadheading distance estimated from the straight-line distance between ride start 

and end of previous ride after adjusting for the road network. The average deadhead distance 

from cruising before a ride request (on average 2.2 miles, in red) is twice that of deadheading 
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between ride request and rider pickup (on average 1.1 miles in, in orange).10 Finally, the average 

pre-shift (blue) and post-shift (purple) commutes, based on the estimated driver’s home location, 

are 5.3 miles and 7.2 miles respectively, suggesting that drivers might turn on the RideAustin 

app close to their residence at the start of their shift, and have little control over their last 

passenger’s destination at the end of their shift. A potential strategy to reduce empty-vehicle 

VMT would be to give drivers incentives to park after completing each ride and wait for the next 

request, instead of cruising around (Kontou et al., 2019); such a strategy would reduce or 

eliminate the deadheading represented by the red curve in Figure 7. 

 

Due to considerable heterogeneity of driving frequency for such a service, understanding drivers’ 

behavior is critical to understand how the number of drivers on the road and the number of ride 

requests relate to passenger wait times and deadhead miles at any given time. In the RideAustin 

dataset, while most are occasional drivers who drive only a few shifts per week, others are 

regular drivers for whom ridesourcing is the primary source of income, much like professional 

taxi drivers. Since the RideAustin data do not provide information on how long the driver has the 

app turned on before accepting a ride request, we have to estimate shifts for individual drivers 

based solely on the duration between consecutive rides. We divided each driver’s activity in the 

RideAustin database into separate shifts, using a threshold of eight or more hours between 

consecutive rides to delineate separate shifts.  

 

                                                        
10 The computed deadheading distance is highly sensitive to the assumptions used, as noted above. The 
between-ride deadheading travel of 3.0 miles is for rides provided by the same driver within 60 minutes 
of the previous ride. For rides provided within 20 minutes of the previous ride, the average deadhead 
distance is only 1.9 miles; while for all trips conducted by an individual driver within a driving shift, the 
estimated between-ride deadheading travel is 3.8 miles.   
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To estimate the number of shifts and rides per shift, we first calculated the “sample duration”, the 

total period of time over which drivers used the RideAustin app during the 11-month period for 

which we have data (i.e. the date of their last ride minus the date of their first ride). Many drivers 

drove for the service for only a short period of time; only half of all drivers drove for a period of 

up to 3 months of the 11-month data period. Then, we calculated the average number of hours 

per week per driver by dividing the sum of all shift durations (difference between the end of the 

last ride and the start of the first ride in a shift) by the number of weeks driven.11 Drivers are then 

categorized into three groups, based on the average weekly hours driving for the service: 

occasional drivers (less than 10 h/week), frequent drivers (10 to 35 h/week) and full-time drivers 

(over 35 h/week). We classified drivers who drove fewer than two weeks for the service over the 

44-week period as occasional drivers, regardless of the number of hours per week they drove. 

Table 2 shows the shift characteristics of driver segments, using the 8-hour definitions of driver 

shifts; annualized VMT is calculated by dividing the total ride VMT by driver over their sample 

duration, multiplied by 365.25 days per year. Full-time drivers account for only 11% of all 

drivers, work on average 49 hours and 5 shifts per week, and provide 10 rides over 10 hours and 

104 miles per shift. Frequent driver segments account for 41% of all drivers, work on average 20 

hours and 4 shifts per week, and provide 7 rides over 6 hours and 70 miles per shift. On the other 

hand, occasional drivers account for nearly half of all drivers, work on average 11 hours and 3 

shifts per week, and provide 5 rides over 4 hours and 50 miles per shift. If each driver segment 

drove their average intensity over an entire year, occasional drivers would accumulate 7,000, and 

frequent drivers 12,600, annual VMT just driving for the service. Full-time drivers would log 

                                                        
11 Since this is an average, it includes drivers who may have driven intensively for most weeks but took 
several weeks off from driving entirely. 
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nearly 28,000 miles just driving for the service, nearly 2.5 times the national average annual 

VMT of 11,500 miles for personal vehicles (FHWA, 2016). 

 

Table 2. Summary of differences between three Ride Austin driver segments 

Characteristic Occasional drivers Frequent drivers Full-time drivers 

Number of drivers 2,415 2,012 534 

Distribution of drivers 49% 41% 11% 

Total VMT (millions) 2.2 8.8 4.5 

Distribution of VMT 14% 57% 29% 

Annualized VMT* 7,300 12,800 29,000 

Hours per week 11 20 49 

Shifts per week 2.8 3.6 5.4 

Rides per shift 4.9 6.8 9.8 

Shift duration (hours) 3.8 5.9 9.8 

Shift distance (miles) 50 70 104 

Shift speed (miles per hour) 13.1 11.8 10.6 

* Sample VMT / sample duration in days * 365.25 days per year, averaged over individual 

drivers 

 

Taking a closer look at the distribution of shift VMT can provide important insights on the 

potential for TNC drivers, especially full-time driversones, to use battery electric vehicles 

(BEVs).  BEVs have lower operating costs but longer refueling times than conventional gasoline 

or hybrid electric vehicles, and TNC drivers may be reluctant to interrupt their shift and take a 
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BEV out of service in order to recharge the battery, especially when charging infrastructure is 

not available. Figure 8 indicates that about 94% of full-time drivers’ shifts are under 200 miles, 

and around 35% of full-time drivers never exceeded 200 miles in any shift during the study 

period.12 As longer electric range BEVs become available, they could be suitable for most 

ridesourcing trip operations. Similar findings are presented in previous research studies (Hu et 

al., 2018). Full-time drivers who accumulate many annual miles for ridesourcing services have 

an incentive to purchase a BEV because the time it takes to offset the initial additional purchase 

price with lower operating costs becomes shorter as annual VMT increases. Electrification of the 

vehicle could lead to faster return on investment from lower operational costs compared to 

conventional vehicles. Although the total fare of each ride is provided in the dataset, the portion 

that is earned by the driver is not, so the ability of even full-time drivers to afford the capital cost 

of a new gasoline or BEV cannot be determined. 

 

                                                        
12 These are conservative estimates, and are sensitive to the shift definition described above. For example, 
one driver provided 203 rides over 211 hours between March 9 and March 18 (the South by Southwest 
festival). Relaxing the constraint from 8 hours to 4 hours between shifts divides that single shift into 10 
mini-shifts, each separated by 5 hours of inactivity on average, leaving ample time for the driver to 
recharge a BEV between mini-shifts. It is possible that in this case the single “driver” is actually multiple 
drivers using the same RideAustin driver account. 
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Figure 8. Full time drivers’ shift VMT distribution for all travel days and maximum shift 

VMT per driver distribution 

 

In summary, we estimated between-ride deadheading from 1) the straight-line distance between 

rides, adjusted for the street network distance, for rides up to 60 minutes apart, and from 2) the 

measured distance from ride request to rider pickup for rides more than 60 minutes apart until the 

end of the driver’s shift. Commute distance was estimated based on the straight-line distance 

between the last ride of a driver’s shift and their estimated home location, also adjusted for the 

street network distance. About 55% of all miles driven is with a passenger, while 26% is 

between-ride deadhead miles and 19% commute deadhead miles with no passengers. The 

combined 45% percentage of empty miles is similar to studies in Seattle and Los Angeles which 
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estimate that empty miles accounted for 45% and 36% of ride distances, respectively (Cramer 

and Krueger, 2016), excluding driver commuting segments. 

3.3. Ride Distributions by Specific Locations and Land Use   

 

RideAustin pick-up and drop-off locations were spatially joined with a detailed land use dataset 

made available on the city of Austin’s open data portal (City of Austin, 2010). Residential 

locations are among the most common ride attractors (29% of rides, evenly split between single 

family homes and apartments), along with commercial locations (26% of rides, including retail, 

restaurants, bars, etc.) and offices (12% of rides). The airport is another significant ride attractor; 

6% of all rides end there. These ride flows are presented as a chord chart in Figure 9 (generated 

using Circos of Krzywinski et al., 2009), which shows the flows to and from commercial 

(yellow), residential (pink), office (blue), the airport (red), parking lots/garages (purple), mixed 

use (turquoise), and educational (green) land uses.  
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Figure 9. Chord diagram of rides between RideAustin origin and destination land uses  

 

The innermost thick ring in the figure indicates the distribution of both origins and destinations 

among the seven land uses, while the flows of rides by origin and destination are indicated by the 

bands across the chart. The scale adjacent to the thick inner ring gives the number of combined 

origins and destinations of rides by each land use; e.g. 650,000 for residential (evenly split 

between single- and multi-family), 620,000 for commercial, etc. The thin outermost ring is the 

distribution of all rides by land use type; the thin middle ring is the distribution to each 

(destination) land use type, while the thin inner ring the distribution from each (origin) land use 
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type. For example, there are more rides to (60%) than from (40%) the airport. The color of the 

bands across the chart represents the origin of each ride. For example, the thick yellow diagonal 

ribbon represents rides originating from commercial and headed towards residential areas; most 

rides from the airport are to residential areas (thicker red band), while rides to the airport are 

more evenly distributed from residential, commercial, and office origins (pink, yellow, and blue 

bands).  

 

Figure 9 indicates that the most common ridesourcing rides are between residential and 

commercial areas, followed by rides between two commercial areas. Rides from residential to 

office land uses are less common, suggesting that commuting is not a primary purpose of TNC 

rides. Although rides to the airport represent only 6% of all rides, the airport is the single largest 

destination of TNC rides. These results are supported by passenger survey results in San 

Francisco that indicate that social/leisure rides, as well as rides from/to the airport, as the most 

common (Rayle et al., 2016). On the contrary, results from DiDi Chuxing data analysis in 

Beijing (Dong et al., 2018) show that common morning drop-off destinations and afternoon pick-

up locations are within the city’s central business district, suggesting that this service is primarily 

used for commuting purposes. 

 

The most popular specific origins and destinations for ridesourcing are the Austin airport (AUS), 

downtown employment centers (City Hall, State Capitol, and the campus of the University of 

Texas), downtown entertainment areas (Sixth Street and Rainey Street), and major downtown 

hotels. Table 3 shows that only 16% of rides start, and only 20% end, in these nine areas. The 

average measured distance of rides from or to the airport is just over 12 miles, while the average 
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distance of rides from and to the other eight areas range from 3.2 to 5.1 miles. The average 

distance of rides from/to all other unidentified areas is 5.3 miles, which is slightly lower than the 

average distances of rides from/to the nine areas, including the airport (5.67 and 5.82 miles, 

respectively).  

 

Table 3. Distribution of rides and average distance, by location of origin and destination, 

October 27, 2016 to April 13, 2017 

Locations 

Ride origins Ride destinations 

Rides Share 

Avg. ride 

distance 

(miles) 

Rides Share 

Avg. ride 

distance 

(miles) 

AUS airport 36,219 3.1% 12.63 66,875 5.7% 12.03 

Work 28,781 2.4% 4.40 38,050 3.2% 3.80 

Entertainment 79,424 6.7% 4.01 83,888 7.1% 3.53 

Major hotels 16,921 1.4% 4.72 24,415 2.1% 3.59 

University of Texas 33,783 2.9% 3.65 36,457 3.1% 3.24 

Subtotal, 9 areas 195,128 16.5% 5.67 249,685 21.1% 5.82 

Others 987,683 83.5% 5.35 933,126 78.9% 5.29 

Total 1,182,811 100.0% 5.40 1,182,811 100.0% 5.40 

 

Table 4 indicates the variation in deadheading distances by land use. Although rides to the 

airport are the longest on average, deadheading associated with the airport as a percent of the 

next ride is comparable to that of residential and education land uses. This is likely because not 
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all RideAustin drivers are able to find a return trip from the airport after dropping off their 

previous passenger. Similarly, it appears that drivers also tend to drive back towards locations 

that generate more trips (i.e. commercial, office, mixed use) after dropping off passengers at 

residential or education locations. 

 

 Table 4. Deadheading distances variation by land use, for all rides started within 60 

minutes of the previous ride 

Land Use Category Average deadheading 

distance (miles) 

Deadheading distance as % of 

next ride 

AUS Airport 7.34 61% 

Residential 3.26 59% 

Commercial/Entertainment 2.49 54% 

Office/Work 2.24 51% 

Educational/UT 2.27 61% 

Mixed use 2.15 52% 

 

Figure 10 shows the distribution of rides at a given hour, by day of week, for the major 

destinations and origins listed in Table 3. The columns in each figure represent the distribution of 

all rides given on that day and hour to or from these five location categories; the columns do not 

add up to 100% because the majority of rides do not start or end at any of these locations. The 

highest hourly concentration of rides between the hours of 5 am and 7 am are to the airport 

(shown in blue), especially on weekdays, when 40% to 65% of all rides given during those hours 

are to the airport. Conversely, rides from the airport are evenly distributed throughout the day.  

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted 
manuscript. The published version of the article is available from the relevant publisher.



 37 

The entertainment districts are popular destinations on weekend evenings, increasing from 9% of 

all rides given at 5 pm to 16% of all rides given at 11 pm. Rides away from the entertainment 

districts tend to occur a few hours later, ranging from 14% to 21% of all rides between midnight 

and 2 am on weekend mornings. 

  

Figure 10. Distribution of rides at a given hour, by day of week and destination 

 

3.4. Decreased Energy Use from More Efficient Vehicles 

 

The RideAustin data provides the year and model of the vehicles that drivers have registered 

through the RideAustin mobile app. The vehicle Product Information Catalog and Vehicle 

Listing (vPIC) website maintained by the National Highway Traffic Safety Administration 

(NHTSA) was used to decode the vehicle identification numbers (VINs) in a database purchased 

from AIB (National Highway Traffic Safety Administration, 2018). AIB purchases updated 

registration information from the Texas Department of Motor Vehicles (DMV), and maintains an 
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updated snapshot of vehicle registrations over time. We only included vehicles whose 

registration expiration date was in 2017 or later, as of January 2017.  

 

VINs from the Texas DMV data provided by AIB were decoded and merged with certification 

fuel economy ratings (combined city-highway miles per gallon) from EPA’s Fuel Economy 

Guide (U.S. Department of Energy, 2018), by vehicle year, make, model, engine size in 

cylinders and displacement, fuel type, drive configuration, and, for pickup trucks, rated capacity 

(1/2-, ¾-, or 1-ton) and gross vehicle weight rating. Vehicle type in the Fuel Economy Guide       

(DOE, 2018) was used to classify vehicles into six groups: cars, car-based crossover utility 

vehicles, minivans, pickup trucks, truck-based sport utility vehicles, and full vans. Since the 

RideAustin data do not provide the VIN of specific vehicles, and only provides year, make, and 

model (and not engine size variables), the weighted average fuel economy was assigned to a 

given model in the RideAustin database based on the average fuel economy weighted by engine 

configuration and other variables for vehicles registered in Austin from the AIB DMV database. 

Using this method, fuel economy values were assigned to over 98% of the RideAustin vehicle 

fleet. 

 

The left-hand panel of Figure 11 compares the vehicle type and powertrain distributions of the 

RideAustin fleet with the fleet of registered vehicles in Austin as of January 2017. Figure 11 

indicates that the RideAustin fleet has more cars, CUVs, and minivans (61%, 23%, and 6%, 

respectively) than the overall Austin fleet (49%, 21%, and 3% respectively), while the 

RideAustin fleet is comprised of fewer pickups and SUVs than the overall Austin fleet (3% and 

6% vs. 14% and 12%, respectively).  The three car-based vehicle types tend to have higher fuel 
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economy than the two truck-based types of light trucks.  The right hand panel of the figure 

indicates that the RideAustin fleet has double the portion of hybrid-electric vehicles than the 

overall Austin fleet (6.2% vs. 3.1%), but comparable portions of battery-electric and plug-in 

hybrid-electric vehicles.  The RideAustin fleet is on average two years newer than the overall 

Austin fleet (average model year of 2011.9 vs. 2009.7). 

 

The larger proportion of newer , car-based vehicles cars, CUVs, and minivans with more 

efficient powertrains in the RideAustin fleet results in a 3.2 MPG greater fuel economy of the 

RideAustin fleet compared to the overall Austin fleet (25.5 vs. 22.3 MPG).13  This suggests that 

TNC drivers are using more efficient vehicles than the average on-road vehicle; thus, energy 

consumption is reduced if they replace an equal amount of travel in a personal vehicle. The 

distributions by vehicle type, powertrain, and model year, as well as the average fuel economy, 

of the RideAustin fleet is insensitive to whether the fleet is weighted by the number of vehicles, 

rides provided, or miles driven.  Similarly, the average fuel economy of the overall Austin fleet 

does not change after accounting for different average VMT by model year (with newer vehicles 

being driven more miles annually than older vehicles). 

 

                                                        
13 RideAustin required its drivers to use a vehicle from model years 2001 or newer; the average fuel 
economy of the overall Austin fleet for these model years is 22.7 MPG.  
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Figure 11. Distribution of vehicles by vehicle type and powertrain, RideAustin fleet and all 

vehicles registered in Austin  

3.5. Mode Replacement 

Spatiotemporal analysis of ride origins and destinations, along the lines of the analysis in Section 

3.3, can help infer what mode a specific RideAustin ride displaced. For example, in the absence 

of the RideAustin service, rides to and from the airport would most likely have been taken in a 

personal vehicle or taxi. If replacing a taxi ride or personal vehicle ride and park to the airport, 

the ridesourcing ride would likely have comparable VMT. However, a ridesourcing ride that 

replaced a friend or relative delivering a passenger to the airport in a personal vehicle likely 

would have lower VMT, as the return ride home in the personal vehicle would be eliminated.  

Ridesourcing rides that coincide with a fixed transit route could have been taken by transit, while 

rides to a transit stop may have enabled replacing a personal vehicle ride with a multi-modal 

transit trip, with the ridesourcing ride providing first- and/or last-mile travel to/from transit.  
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Rather than inferring modal shift using detailed spatiotemporal analysis of the distribution of 

individual rides, we assumed modal shifts induced by ridesourcing based on surveys from the 

literature. Table 5 summarizes four such surveys; we used the results from two surveys each 

conducted in seven US cities, as they likely are more representative of traveler behavior in the 

average US city. Note the large differences between the Clewlow et al., 2017 and Feigon and 

Murphy, 2016 survey results for the share of car and non-motorized modal trips replaced by 

ridesourcing trips, even though six of the seven cities were the same in each survey. These large 

differences may be due to how survey respondents were sampled or how the question was asked 

in each survey. Due to the large differences in modal shifts between these two surveys, we use 

each as a bounding case of the estimated shift in travel using different modes induced by a 

ridesourcing service. 
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Table 5. Modal distribution replaced by ridesourcing trips, and average per passenger fuel 

economy 

Mode 

Survey estimates in the literature Average 

passenger miles 

per gasoline 

gallon 

equivalent* 

Clewlow and 

Mishra, 2017 

(7 US cities) 

Feigon and 

Murphy, 2016 

(7 US cities) 

Rayle et al., 2016 

(San Francisco, 

CA) 

Henao, 2017 

(Denver, CO) 

Public Transit 

   Transit bus 

   Transit rail 

15.0% 

  

 

 

9.0% 

6.0% 

33.0% 

 

 

22.2% 

 

 

 

31.5 

44.5 

Bike/walk/other 45.0% 18.5% 21.0% 25.7% 0 

Driving/carpool/taxi 40.0% 66.5% 46.0% 52.1% 38.6 / 24.1 

*Alternative Fuels Data Center, 2018; for personal vehicles, first number is based on AFDC 

assumption of 1.6 occupants per vehicle, second number adjusts for only one occupant per 

vehicle. 

 

3.6. Net Energy Impact 

 

We estimate the overall net impact of TNC operation on energy use accounting for deadheading 

and commuting miles and vehicle energy efficiency from the above analysis, as well as the effect 

of ride sharing and mode shift based on low and high energy assumptions from the literature. 

This impact is estimated as follows. First, the energy consumption of TNC rides is estimated 

using the average fuel economy of the RideAustin fleet, 22.3 miles per gallon, as computed 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted 
manuscript. The published version of the article is available from the relevant publisher.



 43 

above,14 multiplied by the VMT of TNC rides, including deadheading and commuting, also 

estimated above. Then the pre-TNC energy use is estimated for each displaced travel mode, by 

allocating the reported VMT of TNC rides in Austin to one of two assumed distributions (low 

energy from Feigon and Murphy, 2016, high energy from Clewlow and Mishra, 2017) of three 

travel modes15 to represent a low and high estimate of the modal distribution of trips that are 

displaced by TNC rides. The energy intensity (occupant miles per gasoline-gallon equivalent) of 

each of these modes, from the Alternative Fuels Data Center (AFDC, 2018), as shown in Table 

5, is applied to these two modal distributions to estimate a low and high baseline energy 

consumption of the displaced trips; we assume the same distance of displaced trips on transit 

vehicles as the TNC ride, even though the transit ride would have likely been shorter than the 

point-to-point ride provided by the TNC.16 Finally, low and high energy assumptions regarding 

sharing are applied. The lower estimate assumes 30% of all TNC rides are shared (George and 

Zafar, 2018),17 and that two shared rides each have the same distance, thereby reducing 

passenger miles of travel (PMT) in half; the higher estimate assumes that only 15% of rides are 

shared, and that the combined distance of the two shared rides is half that of the two separate 

rides. The net effect of the sharing assumptions is that PMT is reduced by 30% in the low energy 

case, and by 7.5% in the high energy case. 

                                                        
14 The actual fuel economy of the RideAustin fleet is used rather than the 38.6 mpg in the AFDC analysis, 
which assumes 1.6 occupants per light-duty vehicle. 
15 Transit bus and rail, bike/walk/other non-motorized, and light-duty vehicles including taxis. 
16 A transit ride is likely of a shorter distance than a TNC ride to the same destination, but involves 
walking to and from the transit stops. 
17 This is based on the claim by Uber and Lyft that 30% of all ride requests are for shared rides; the 
fraction of requested shared rides that are actually shared is unknown (George and Zafar, 2018) 
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Figure 12. Low and high estimates of net energy impact of ridesourcing in Austin 

 

Figure 12 summarizes the net effect of five factors discussed above on the energy use from 

ridesourcing operation.18 Increased VMT from between-ride deadheading and commuting, and 

replacing trips that were previously made by more efficient modes, increase energy use by 84% 

to 110%. On the other hand, the higher fleet efficiency and potential for sharing rides reduce 

energy consumption by 43% to 20%.  The net effect is a 41% increase in energy use under our 

low energy assumptions, and a 90% increase under our high energy assumptions.19 We believe 

                                                        
18 We do not estimate the effect of ridesourcing service on retiring of personally owned vehicles and 
elimination of discretionary trips, which may occur over the longer term.  
19 The assumptions we used regarding the modal distributions of trips replaced by TNC rides come from 
cities with fairly extensive public transit systems (Feigon and Murphy : Austin, Boston, Chicago, Los 
Angeles, San Francisco, Seattle, Washington DC; Clewlow and Mishra: Boston, Chicago, Los Angeles, 
New York, San Francisco Bay Area, Seattle, Washington DC).     
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that the increased energy use from TNC services is likely even greater, as our estimate of 

deadheading VMT from driver commuting is likely conservative, as noted above. 

4. Conclusions 

 

Data on 1.5 million individual rides were used to estimate the additional miles RideAustin 

drivers travel to reach a rider, as well as the additional miles driven between consecutive rides 

(referred to as deadheading). Relative to the distance from passenger pick up to drop off, 

RideAustin drivers traveled 21% more miles just to reach their riders passenger(s) after 

accepting the ride request; and drivers traveled an estimated 55% more miles between the end of 

a ride and the start of the next ride (including the distance traveled to reach the rider who 

requested the ride) for rides within 60 minutes of each other. The estimated distance driven by a 

driver between rides is greater than the measured distance between when a driver accepted a ride 

request and reached their rider, suggesting that RideAustin drivers are not parking their vehicles 

but are driving or circling while awaiting their next ride request. However, RideAustin vehicles 

are more efficient than the average vehicle registered in Austin, partially offsetting the increased 

energy use from additional VMT. 

 

Out of the total miles driven by RideAustin drivers, 26% correspond to between-ride 

deadheading and 19% to drivers’ commuting. Three distinct types of drivers are examined, based 

on the frequency of their driving shifts; the 40% of drivers that are half-time drivers conduct 

more than half of the ridesourcing rides, and 57% of all ridesourcing VMT, while the 11% of 

drivers that are full-time drivers conduct almost 30% of rides with average daily distance of 109 

miles.  Full-time drivers could complete over 94% of their shifts on a single charge in the latest 
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generation electric vehicles (with around 200 miles real-world range); in addition, 35% of full-

time drivers never exceeded 200 miles in one shift during the study period. In the current 

situation where the TNC has little control over the number of drivers and vehicles, other than 

pricing incentives, the supply of drivers may be short of the optimum necessary to minimize 

rider wait times and deadheading. When ridesourcing operations are conducted by a centrally 

managed fleet of automated vehicles, TNCs will have the capability to better balance the supply 

of vehicles in order to meet the demand for rides, thereby reducing wait times and between-ride 

deadheading.  In addition, a centrally managed fleet of automated vehicles likely will reduce 

commute deadheading, as well as minimize between-ride deadheading by parking vehicles until 

their next ride request (Bauer et al., 2018). 

 

The results presented here, from a single non-profit TNC operating in a unique market, are not 

necessarily generalizable to all ridesourcing in cities across the US. The RideAustin dataset and 

our analysis allow us to gain better understanding of the many aspects of ridesourcing that affect 

mobility and energy use. Similar data on individual rides provided by large TNCs such as Uber 

and Lyft in other cities would be useful in understanding many of the aspects that influence 

changes in overall VMT and energy use from greater use of these services in cities with different 

characteristics. In future analysis, geospatial analysis of detailed ride data can be used to infer 

whether the TNC ride may have replaced travel on public transit, as in Komanduri et al., 2018. 

Analyses of TNCs timing entering different regional markets can provide useful insights into the 

relationship between ridesourcing service and largescale changes in vehicle registrations, VMT, 

and public transit use. However, simultaneous surveys of riders are necessary to determine the 

causal effect between individuals’ use of ridesourcing and modal shift, including car-shedding or 
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eliminating discretionary travel. Other important aspects of ride-sourcing services, such as driver 

residence (to calculate exact commute distances), the extent to which rides are shared with 

separate paying passengers, and the makeup of the vehicle fleet used for ridesourcing services, 

also can only be obtained through surveys of drivers, or other innovative strategies to collect 

such data. More data on individual rides or from surveys of drivers and riders can also be used to 

calibrate assumptions used in agent-based, mesocopicmesoscopic, travel simulation models such 

as BEAM (DOE, 2017) and POLARIS (Auld et al., 2016). These models, in conjunction with a 

long-term land use development model such as UrbanSim (Waddell, 2011, 2002; Waddell et al., 

2007) can be used to simulate the short- and long-term effect of ridesourcing and other 

innovative transportation services on overall regional transportation systems under different 

scenarios, to investigate the sensitivity of overall system mobility and energy use to different 

aspects of these services. 

 

This work overall provides a thorough overview of a ridesourcing dataset and sets an example 

for researchers and practitioners on how to use information like RideAustin trips to uncover 

travel, schedule, driving, land-use, and energy-related patterns of TNC services. Several of the 

metrics and the analysis methods presented here can be used to measure the effectiveness of such 

services, enhance microscopic and agent-based modeling assumptions, and inform urban policy 

directions that can help towards seamless integration of ridesourcing in a city’s transportation 

system. 
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