skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hard X-ray fluorescence spectroscopy of high pressure cavitating fluids in aluminum nozzles

Journal Article · · International Journal of Multiphase Flow

X-rays are frequently used to study the internal geometry of dense objects, and to measure the density of multiphase flows. However, quantitatively measuring fluid density inside a metallic object such as a high pressure spray nozzle is difficult. X-rays of sufficiently high energy to penetrate a metal object are not appreciably absorbed by the fluid inside. This requires the use of plastic or beryllium test sections, which are not suited to high pressure conditions. We present a high-energy X-ray fluorescence technique which can overcome this problem. The experiments were conducted at the 7-BM beamline of the Advanced Photon Source at Argonne National Laboratory. A hydrocarbon fluid was seeded with cerium nanoparticles. The fluid was pumped at high pressure through aluminum nozzles with inner diameters of 0.36-0.90 mm and wall thicknesses of 2-3 mm. A collimated, monochromatic 42.5 keV X-ray beam excited K-edge fluorescence from the cerium. The K-alpha emission lines at 34-35 keV were recorded by a cryogenic germanium detector. Changes in fluid density due to cavitation of the liquid inside the nozzle were measured by raster scanning the nozzle across the beam. A spatial resolution of 20 x 20 mu m(2) was achieved with a slitted beam, which was improved to 5 x 10 mu m(2) with X-ray focusing mirrors. The uncertainty in the path-integrated vapor fraction was 30-40 mu m at 95% confidence. A limitation of this approach is that for low vapor pressure fluids, the nanoparticles increase the vapor pressure of the fluid and act as additional nucleation sites. These experiments demonstrate a path forward for measurements of multiphase flows inside metal components under conditions that are not feasible in optically accessible materials.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
Australian Research Council; USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE
Grant/Contract Number:
AC02-06CH11357
OSTI ID:
1502502
Alternate ID(s):
OSTI ID: 1692158
Journal Information:
International Journal of Multiphase Flow, Vol. 108, Issue C; ISSN 0301-9322
Publisher:
ElsevierCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Similar Records

X-ray fluorescence measurements of dissolved gas and cavitation
Journal Article · Wed Sep 28 00:00:00 EDT 2016 · Experiments in Fluids · OSTI ID:1502502

Three-dimensional x-ray fluorescence mapping of a gold nanoparticle-loaded phantom
Journal Article · Sat Mar 15 00:00:00 EDT 2014 · Medical Physics · OSTI ID:1502502

Interfacial Transport Phenomena Stability in Liquid-Metal/Water Systems
Technical Report · Thu Dec 19 00:00:00 EST 2002 · OSTI ID:1502502